1
|
Iturriaga A, Mounts E, Picchetta L, Vega C, Mulas F, Ottolini CS, Whitehead C, Tao X, Zhan Y, Loia N, Jobanputra V, Capalbo A, Jalas C. Confirmation and pathogenicity of small copy number variations incidentally detected via a targeted next-generation sequencing-based preimplantation genetic testing for aneuploidy platform. Fertil Steril 2024; 122:789-798. [PMID: 38996904 DOI: 10.1016/j.fertnstert.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
OBJECTIVE To evaluate the technical accuracy, inheritance, and pathogenicity of small copy number variants (CNVs) detected by a targeted next-generation sequencing-based preimplantation genetic testing for aneuploidy (PGT-A) platform. DESIGN Retrospective observational study performed between 2020 and 2022. SETTING Clinic. PATIENT(S) A total of 12,157 patients who underwent clinical PGT-A performed by targeted next-generation sequencing for whole chromosome and large segmental aneuploidies. INTERVENTION(S) An incidental finding was reported when a CNV gain/loss of at least 3 consecutive amplicons appeared in at least 2 embryos from the same in vitro fertilization cycle. MAIN OUTCOME MEASURE(S) The primary outcome measures were the specificity, incidence, inheritance, and pathogenicity of small CNVs detected by the PGT-A platform. Accuracy of the PGT-A platform CNV calls was assessed via concordance with the CNV calls (size and genomic location) on chromosomal microarray of the gamete provider(s). Parental origin of the CNV and pathogenicity classifications were also reported. RESULT(S) An incidental finding that met reporting criteria was identified in 75 (0.62%; 95% confidence interval, 0.5%-0.8%) of 12,157 unique PGT-A patients. Chromosomal microarray follow-up was requested for all cases, and results were received for 1 or both members of 65 reproductive couples. In all cases, 1 of the gamete providers was confirmed to have the CNV identified in the embryos (100.0%, N = 65/65; 95% confidence interval, 94.5-100). The identified CNV was of maternal origin in 34 cases (52.3%) and of paternal origin in 31 cases (47.7%). A significant correlation was identified between PGT-A-predicted CNV sizes and chromosomal microarray detected sizes (r = 0.81) and genomic coordinates on parental deoxyribonucleic acid. Twenty-six (40%) of the CNVs were classified as benign/likely benign, 30 (46.2%) as a variant of uncertain significance, and 9 (13.8%) as pathogenic/likely pathogenic. CONCLUSION(S) Certain PGT-A platforms may enable the detection of inherited, small CNVs with extremely high specificity without prior knowledge of parental status. Most CNVs in this data set were confirmed to be benign/likely benign or a variant of uncertain significance. Pathogenic/likely pathogenic CNVs associated with a broad range of phenotypic features may also be detected, although a reliable negative predictive value for small CNVs with current PGT-A technologies is unknown because of the many technical challenges.
Collapse
Affiliation(s)
| | - Emily Mounts
- Juno Genetics-US, Genetic Lab, Basking Ridge, New Jersey
| | | | - Cara Vega
- Juno Genetics-US, Genetic Lab, Basking Ridge, New Jersey
| | | | - Christian Simon Ottolini
- Juno Genetics-Italy, Reproductive Genetics, Rome, Italy; Department of Maternal and Fetal Medicine, University College of London Institute for Women's Health, University College London, London, United Kingdom
| | | | - Xin Tao
- Juno Genetics-US, Genetic Lab, Basking Ridge, New Jersey
| | - Yiping Zhan
- Juno Genetics-US, Genetic Lab, Basking Ridge, New Jersey
| | - Nicole Loia
- Juno Genetics-US, Genetic Lab, Basking Ridge, New Jersey
| | - Vaidehi Jobanputra
- Juno Genetics-US, Genetic Lab, Basking Ridge, New Jersey; Columbia University Irving Medical Center, New York, New York
| | - Antonio Capalbo
- Juno Genetics-Italy, Reproductive Genetics, Rome, Italy; Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy; Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Chaim Jalas
- Juno Genetics-US, Genetic Lab, Basking Ridge, New Jersey
| |
Collapse
|
2
|
Reis LM, Zaidman GW, Thompson S, Muheisen S, Glaser T, Semina EV. Further Evidence for a Possible Role for ZHFX4 in Human Ocular Development and Disease. Am J Med Genet A 2024:e63911. [PMID: 39450701 DOI: 10.1002/ajmg.a.63911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Affiliation(s)
- Linda M Reis
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Gerald W Zaidman
- Department of Ophthalmology, New York Medical College, Westchester Medical Center, Valhalla, New York, USA
| | - Samuel Thompson
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sanaa Muheisen
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Tom Glaser
- Department of Cell Biology and Human Anatomy, University of California, Davis, California, USA
| | - Elena V Semina
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, Wisconsin, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
3
|
Claus LR, Ernst RF, Elferink MG, van Deutekom HW, van der Zwaag B, van Eerde AM. The Importance of Copy Number Variant Analysis in Patients with Monogenic Kidney Disease. Kidney Int Rep 2024; 9:2695-2704. [PMID: 39291214 PMCID: PMC11403095 DOI: 10.1016/j.ekir.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Genetic testing can reveal monogenic causes of kidney diseases, offering diagnostic, therapeutic, and prognostic benefits. Although single nucleotide variants (SNVs) and copy number variants (CNVs) can result in kidney disease, CNV analysis is not always included in genetic testing. Methods We investigated the diagnostic value of CNV analysis in 2432 patients with kidney disease genetically tested at the University Medical Centre Utrecht between 2014 and May 2022. We combined previous diagnostic testing results, encompassing SNVs and CNVs, with newly acquired results based on retrospective CNV analysis. The reported yield considers both the American College of Medical Genetics and Genomics (ACMG) classification and whether the genotype actually results in disease. Results We report a diagnostic yield of at least 23% for our complete diagnostic cohort. The total diagnostic yield based solely on CNVs was 2.4%. The overall contribution of CNV analysis, defined as the proportion of positive genetic tests requiring CNV analysis, was 10.5% and varied among different disease subcategories, with the highest impact seen in congenital anomalies of the kidney and urinary tract (CAKUT) and chronic kidney disease at a young age. We highlight the efficiency of exome-based CNV calling, which reduces the need for additional diagnostic tests. Furthermore, a complex structural variant, likely a COL4A4 founder variant, was identified. Additional findings unrelated to kidney diseases were reported in a small percentage of cases. Conclusion In summary, this study demonstrates the substantial diagnostic value of CNV analysis, providing insights into its contribution to the diagnostic yield and advocating for its routine inclusion in genetic testing of patients with kidney disease.
Collapse
Affiliation(s)
- Laura R. Claus
- Department of Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Robert F. Ernst
- Department of Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Martin G. Elferink
- Department of Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | | | - Bert van der Zwaag
- Department of Genetics, University Medical Centre Utrecht, Utrecht, the Netherlands
| | | |
Collapse
|
4
|
María Del Rocío PB, Palomares Bralo M, Vanhooydonck M, Hamerlinck L, D'haene E, Leimbacher S, Jacobs EZ, De Cock L, D'haenens E, Dheedene A, Malfait Z, Vantomme L, Silva A, Rooney K, Santos-Simarro F, Lleuger-Pujol R, García-Miñaúr S, Losantos-García I, Menten B, Gestri G, Ragge N, Sadikovic B, Bogaert E, Syx D, Callewaert B, Vergult S. Loss-of-function of the Zinc Finger Homeobox 4 ( ZFHX4) gene underlies a neurodevelopmental disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.07.24311381. [PMID: 39148819 PMCID: PMC11326360 DOI: 10.1101/2024.08.07.24311381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
8q21.11 microdeletions encompassing the gene encoding transcription factor ZFHX4, have previously been associated by us with a syndromic form of intellectual disability, hypotonia, decreased balance and hearing loss. Here, we report on 57 individuals, 52 probands and 5 affected family members, with protein truncating variants (n=36), (micro)deletions (n=20) or an inversion (n=1) affecting ZFHX4 with variable developmental delay and intellectual disability, distinctive facial characteristics, morphological abnormalities of the central nervous system, behavioral alterations, short stature, hypotonia, and occasionally cleft palate and anterior segment dysgenesis. The phenotypes associated with 8q21.11 microdeletions and ZFHX4 intragenic loss-of-function variants largely overlap, identifying ZFHX4 as the main driver for the microdeletion syndrome, although leukocyte-derived DNA shows a mild common methylation profile for (micro)deletions only. We identify ZFHX4 as a transcription factor that is increasingly expressed during human brain development and neuronal differentiation. Furthermore, ZFHX4 interacting factors identified via IP-MS in neural progenitor cells, suggest an important role for ZFHX4 in cellular and developmental pathways, especially during histone modifications, cytosolic transport and development. Additionally, using CUT&RUN, we observed that ZFHX4 binds with the promoter regions of genes with crucial roles in embryonic, neuron and axon development. Since loss-of-function variants in ZFHX4 are found with consistent dysmorphic facial features, we investigated whether the disruption of zfhx4 causes craniofacial abnormalities in zebrafish. First-generation (F0) zfhx4 crispant zebrafish, (mosaic) mutant for zfhx4 loss-of-function variants, have significantly shorter Meckel's cartilages and smaller ethmoid plates compared to control zebrafish. Furthermore, behavioral assays show a decreased movement frequency in the zfhx4 crispant zebrafish in comparison with control zebrafish larvae. Although further research is needed, our in vivo work suggests a role for zfhx4 in facial skeleton patterning, palatal development and behavior.
Collapse
Affiliation(s)
- Pérez Baca María Del Rocío
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - María Palomares Bralo
- CIBERER-ISCIII and INGEMM, Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, Madrid, Spain
- ITHACA- European Reference Network, Spain
| | - Michiel Vanhooydonck
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lisa Hamerlinck
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Eva D'haene
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sebastian Leimbacher
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Eva Z Jacobs
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Laurenz De Cock
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Erika D'haenens
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Annelies Dheedene
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Zoë Malfait
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lies Vantomme
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Ananilia Silva
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Fernando Santos-Simarro
- Unit of Molecular Diagnostics and Clinical Genetics, Hospital Universitari Son Espases, Health Research Institute of the Balearic Islands (IdiSBa), Palma, Spain
| | - Roser Lleuger-Pujol
- Hereditary Cancer Program, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital; Precision Oncology Group (OncoGIR-Pro), Institut d'Investigació Biomèdica de Girona (IDIGBI), Girona, Spain
| | - Sixto García-Miñaúr
- CIBERER-ISCIII and INGEMM, Institute of Medical and Molecular Genetics, Hospital Universitario La Paz, Madrid, Spain
- ITHACA- European Reference Network, Spain
| | | | - Björn Menten
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Gaia Gestri
- University College London, London, England, Great Britain
| | - Nicola Ragge
- Birmingham Women's and Children's NHS Foundation Trust, Clinical Genetics Unit, Birmingham Womens Hospital, Lavender House, Mindelsohn Way, Edgbaston, Birmingham B15 2TG
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
| | - Elke Bogaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Delfien Syx
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bert Callewaert
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Sarah Vergult
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Chen Y, Karaca E, Robin NH, Goodloe D, Al-Beshri A, Dean SJ, Hurst ACE, Carroll AJ, Mikhail FM. DLG2 intragenic exonic deletions reinforce the link to neurodevelopmental disorders and suggest a potential association with congenital anomalies and dysmorphism. Genet Med 2024; 26:101010. [PMID: 37860969 DOI: 10.1016/j.gim.2023.101010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
PURPOSE Multiple studies suggest an association between DLG2 and neurodevelopmental disorders and indicate the haploinsufficiency of this gene; however, few cases have been thoroughly described. We performed additional studies to confirm this clinical association and DLG2 haploinsufficiency. METHODS Chromosomal microarray analysis was performed on 11,107 patients at the Cytogenetics Laboratory at the University of Alabama at Birmingham. The Database of Genomic Variants-Gold Standard Variants and the Genome Aggregation Database were selected for the association analysis. Fifty-nine patients from the literature and DECIPHER, all having DLG2 intragenic deletions, were included for comprehensive analysis of the distribution of these deletions. RESULTS A total of 13 patients with DLG2 intragenic deletions, from 10 families in our cohort, were identified. Nine of 10 probands presented with clinical features of neurodevelopmental disorders. Congenital anomalies and dysmorphism were common in our cohort of patients. Association analysis showed that the frequency of DLG2 deletions in our cohort is significantly higher than those in the Database of Genomic Variants-Gold Standard Variants and the Genome Aggregation Database. Most of DLG2 intragenic deletions identified in 69 unrelated patients from our cohort, the literature, and DECIPHER map to the 5' region of the gene, with a hotspot centered around HPin7, exon 8, and HPin8. CONCLUSION Our findings reinforce the link between DLG2 intragenic deletions and neurodevelopmental disorders, strongly support the haploinsufficiency of this gene, and indicate that these deletions might also have an association with congenital anomalies and dysmorphism.
Collapse
Affiliation(s)
- Yunjia Chen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Ender Karaca
- Department of Pathology, Baylor University Medical Center, Dallas, TX; Texas A&M School of Medicine, Dallas, TX
| | - Nathaniel H Robin
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Dana Goodloe
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Ali Al-Beshri
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - S Joy Dean
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | - Fady M Mikhail
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
6
|
Dingemans AJM, Hinne M, Truijen KMG, Goltstein L, van Reeuwijk J, de Leeuw N, Schuurs-Hoeijmakers J, Pfundt R, Diets IJ, den Hoed J, de Boer E, Coenen-van der Spek J, Jansen S, van Bon BW, Jonis N, Ockeloen CW, Vulto-van Silfhout AT, Kleefstra T, Koolen DA, Campeau PM, Palmer EE, Van Esch H, Lyon GJ, Alkuraya FS, Rauch A, Marom R, Baralle D, van der Sluijs PJ, Santen GWE, Kooy RF, van Gerven MAJ, Vissers LELM, de Vries BBA. PhenoScore quantifies phenotypic variation for rare genetic diseases by combining facial analysis with other clinical features using a machine-learning framework. Nat Genet 2023; 55:1598-1607. [PMID: 37550531 PMCID: PMC11414844 DOI: 10.1038/s41588-023-01469-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 07/05/2023] [Indexed: 08/09/2023]
Abstract
Several molecular and phenotypic algorithms exist that establish genotype-phenotype correlations, including facial recognition tools. However, no unified framework that investigates both facial data and other phenotypic data directly from individuals exists. We developed PhenoScore: an open-source, artificial intelligence-based phenomics framework, combining facial recognition technology with Human Phenotype Ontology data analysis to quantify phenotypic similarity. Here we show PhenoScore's ability to recognize distinct phenotypic entities by establishing recognizable phenotypes for 37 of 40 investigated syndromes against clinical features observed in individuals with other neurodevelopmental disorders and show it is an improvement on existing approaches. PhenoScore provides predictions for individuals with variants of unknown significance and enables sophisticated genotype-phenotype studies by testing hypotheses on possible phenotypic (sub)groups. PhenoScore confirmed previously known phenotypic subgroups caused by variants in the same gene for SATB1, SETBP1 and DEAF1 and provides objective clinical evidence for two distinct ADNP-related phenotypes, already established functionally.
Collapse
Affiliation(s)
- Alexander J M Dingemans
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Artificial Intelligence, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Max Hinne
- Department of Artificial Intelligence, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Kim M G Truijen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lia Goltstein
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jeroen van Reeuwijk
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicole de Leeuw
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Janneke Schuurs-Hoeijmakers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Illja J Diets
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joery den Hoed
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Elke de Boer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jet Coenen-van der Spek
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sandra Jansen
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Bregje W van Bon
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Noraly Jonis
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Charlotte W Ockeloen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anneke T Vulto-van Silfhout
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - David A Koolen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Philippe M Campeau
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Elizabeth E Palmer
- Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, University of Leuven, Leuven, Belgium
| | - Gholson J Lyon
- Department of Human Genetics and George A. Jervis Clinic, Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY, USA
- Biology PhD Program, The Graduate Center, The City University of New York, New York City, NY, USA
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Anita Rauch
- Institute of Medical Genetics, University of Zürich, Zürich, Switzerland
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Diana Baralle
- Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Marcel A J van Gerven
- Department of Artificial Intelligence, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Bert B A de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
7
|
Pennings M, Meijer RPP, Gerrits M, Janssen J, Pfundt R, de Leeuw N, Gilissen C, Gardeitchik T, Schouten M, Voermans N, van de Warrenburg B, Kamsteeg EJ. Copy number variants from 4800 exomes contribute to ~7% of genetic diagnoses in movement disorders, muscle disorders and neuropathies. Eur J Hum Genet 2023; 31:654-662. [PMID: 36781956 PMCID: PMC10250492 DOI: 10.1038/s41431-023-01312-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
Various groups of neurological disorders, including movement disorders and neuromuscular diseases, are clinically and genetically heterogeneous. Diagnostic panel-based exome sequencing is a routine test for these disorders. Despite the success rates of exome sequencing, it results in the detection of causative sequence variants in 'only' 25-30% of cases. Copy number variants (CNVs), i.e. deletion or duplications, explain 10-20% of individuals with multisystemic phenotypes, such as co-existing intellectual disability, but may also have a role in disorders affecting a single system (organ), like neurological disorders with normal intelligence. In this study, CNVs were extracted from clinical exome sequencing reports of 4800 probands primarily with a movement disorder, myopathy or neuropathy. In 88 (~2%) probands, phenotype-matching CNVs were detected, representing ~7% of genetically confirmed cases. CNVs varied from involvement of over 100 genes to single exons and explained X-linked, autosomal dominant, or - recessive disorders, the latter due to either a homozygous CNV or a compound heterozygous CNV with a sequence variant on the other allele. CNVs were detected affecting genes where deletions or duplications are established as a common mechanism, like PRKN (in Parkinson's disease), DMD (in Duchenne muscular dystrophy) and PMP22 (in neuropathies), but also genes in which no intragenic CNVs have been reported to date. Analysis of CNVs as part of panel-based exome sequencing for genetically heterogeneous neurological diseases provides an additional diagnostic yield of ~2% without extra laboratory costs. Therefore it is recommended to perform CNV analysis for movement disorders, muscle disease, neuropathies, or any other single-system disorder.
Collapse
Affiliation(s)
- Maartje Pennings
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Rowdy P P Meijer
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Monique Gerrits
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jannie Janssen
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Thatjana Gardeitchik
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Meyke Schouten
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands
| | - Nicol Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical Center, Nijmegen, the Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical Center, Nijmegen, the Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud university medical center, Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Franco E, Scanga HL, Jacob S, Chu CT, Nischal KK. Congenital corneal staphyloma in 8q21.11 microdeletion syndrome. Ophthalmic Genet 2023; 44:147-151. [PMID: 36341706 DOI: 10.1080/13816810.2022.2127152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Although 8q21.11 microdeletion syndrome (8q21.11 DS) has been reported in association with congenital corneal opacities, reports of the clinicopathological features and management are scarce. METHODS We reviewed medical records including ophthalmic evaluations, imaging, operative reports, and pathology reports of two unrelated patients referred to the Ophthalmology Clinic of UPMC Children's Hospital of Pittsburgh with a cytogenetic diagnosis of 8q21.11 DS. RESULTS Ophthalmological evaluation of both children revealed bilateral enlarged, staphylomatous, and cloudy corneas with neovascularization. These findings were consistent with the diagnosis of congenital corneal staphyloma (CCS). In one patient, anterior segment optical coherence tomography and high-frequency ultrasound revealed materials consistent with lens remnants embedded in the cornea; this was confirmed by histopathology. In the second patient, lens was found to be adherent to the cornea during surgery. One eye underwent enucleation for corneal perforation secondary to elevated intraocular pressure. In the other eyes, treatment consisted of penetrating keratoplasty combined with vitrectomy. Ahmed tube was subsequently placed to control intraocular pressure. CONCLUSION 8q21.11 microdeletion syndrome can be associated with bilateral CCS, likely related to a combination of anterior segment developmental anomalies and elevated intraocular pressure. Tectonic penetrating keratoplasty is necessary to prevent corneal perforation, together with a strict control of the intraocular pressure.
Collapse
Affiliation(s)
- Elena Franco
- Division of Pediatric Ophthalmology, Strabismus, andAdult Motility, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Istituto Internazionale per la Ricerca e Formazione in Oftalmologia (IRFO), Forlì, Italy
| | - Hannah L Scanga
- Division of Pediatric Ophthalmology, Strabismus, andAdult Motility, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Charleen T Chu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ken K Nischal
- Division of Pediatric Ophthalmology, Strabismus, andAdult Motility, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
The Genetics of Intellectual Disability. Brain Sci 2023; 13:brainsci13020231. [PMID: 36831774 PMCID: PMC9953898 DOI: 10.3390/brainsci13020231] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
Intellectual disability (ID) has a prevalence of ~2-3% in the general population, having a large societal impact. The underlying cause of ID is largely of genetic origin; however, identifying this genetic cause has in the past often led to long diagnostic Odysseys. Over the past decades, improvements in genetic diagnostic technologies and strategies have led to these causes being more and more detectable: from cytogenetic analysis in 1959, we moved in the first decade of the 21st century from genomic microarrays with a diagnostic yield of ~20% to next-generation sequencing platforms with a yield of up to 60%. In this review, we discuss these various developments, as well as their associated challenges and implications for the field of ID, which highlight the revolutionizing shift in clinical practice from a phenotype-first into genotype-first approach.
Collapse
|
10
|
Key role of Rho GTPases in motor disorders associated with neurodevelopmental pathologies. Mol Psychiatry 2023; 28:118-126. [PMID: 35918397 DOI: 10.1038/s41380-022-01702-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 06/24/2022] [Accepted: 07/02/2022] [Indexed: 01/07/2023]
Abstract
Growing evidence suggests that Rho GTPases and molecules involved in their signaling pathways play a major role in the development of the central nervous system (CNS). Whole exome sequencing (WES) and de novo examination of mutations, including SNP (Single Nucleotide Polymorphism) in genes coding for the molecules of their signaling cascade, has allowed the recent discovery of dominant autosomic mutations and duplication or deletion of candidates in the field of neurodevelopmental diseases (NDD). Epidemiological studies show that the co-occurrence of several of these neurological pathologies may indeed be the rule. The regulators of Rho GTPases have often been considered for cognitive diseases such as intellectual disability (ID) and autism. But, in a remarkable way, mild to severe motor symptoms are now reported in autism and other cognitive NDD. Although a more abundant litterature reports the involvement of Rho GTPases and signaling partners in cognitive development, molecular investigations on their roles in central nervous system (CNS) development or degenerative CNS pathologies also reveal their role in embryonic and perinatal motor wiring through axon guidance and later in synaptic plasticity. Thus, Rho family small GTPases have been revealed to play a key role in brain functions including learning and memory but their precise role in motor development and associated symptoms in NDD has been poorly scoped so far, despite increasing clinical data highlighting the links between cognition and motor development. Indeed, early impairements in fine or gross motor performance is often an associated feature of NDDs, which then impact social communication, cognition, emotion, and behavior. We review here recent insights derived from clinical developmental neurobiology in the field of Rho GTPases and NDD (autism spectrum related disorder (ASD), ID, schizophrenia, hypotonia, spastic paraplegia, bipolar disorder and dyslexia), with a specific focus on genetic alterations affecting Rho GTPases that are involved in motor circuit development.
Collapse
|
11
|
Streață I, Caramizaru A, Riza AL, Șerban-Sosoi S, Pîrvu A, Cara ML, Cucu MG, Dobrescu AM, Shelby ES, Albeanu A, Burada F, Ioana M. Pathogenic Copy Number Variations Involved in the Genetic Etiology of Syndromic and Non-Syndromic Intellectual Disability-Data from a Romanian Cohort. Diagnostics (Basel) 2022; 12:diagnostics12123137. [PMID: 36553144 PMCID: PMC9777762 DOI: 10.3390/diagnostics12123137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The investigation of unexplained global developmental delay (GDD)/intellectual disability (ID) is challenging. In low resource settings, patients may not follow a standardized diagnostic process that makes use of the benefits of advanced technologies. Our study aims to explore the contribution of chromosome microarray analysis (CMA) in identifying the genetic etiology of GDD/ID. A total of 371 Romanian patients with syndromic or non-syndromic GDD/ID, without epilepsy, were routinely evaluated in tertiary clinics. A total of 234 males (63.07%) and 137 (36.93%) females, with ages ranging from 6 months to 40 years (median age of 5.5 years), were referred for genetic diagnosis between 2015 and 2022; testing options included CMA and/or karyotyping. Agilent Technologies and Oxford Gene Technology CMA workflows were used. Pathogenic/likely pathogenic copy number variations (pCNVs) were identified in 79 patients (21.29%). Diagnosis yield was comparable between mild ID (17.05%, 22/129) and moderate/severe ID 23.55% (57/242). Higher rates were found in cases where facial dysmorphism (22.97%, 71/309), autism spectrum disorder (ASD) (19.11%, 26/136) and finger anomalies (20%, 27/96) were associated with GDD/ID. GDD/ID plus multiple congenital anomalies (MCA) account for the highest detection rates at 27.42% (17/62). pCNVs represent a significant proportion of the genetic causes of GDD/ID. Our study confirms the utility of CMA in assessing GDD/ID with an uncertain etiology, especially in patients with associated comorbidities.
Collapse
Affiliation(s)
- Ioana Streață
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Alexandru Caramizaru
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anca-Lelia Riza
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
- Correspondence: (A.-L.R.); (F.B.)
| | - Simona Șerban-Sosoi
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Andrei Pîrvu
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Monica-Laura Cara
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Department of Public Health, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Mihai-Gabriel Cucu
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Amelia Mihaela Dobrescu
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Ro-NMCA-ID Group
- The Ro-NMCA-ID (RoNetwork Multiple Congenital Abnormalities with ID) Member of European Reference Network on Rare Congenital Malformations and Rare Intellectual Disability (ERN-ITHACA) [EU Framework Partnership Agreement ID: 3HP-HP-FPA ERN-01-2016/739516], 400011 Timisoara, Romania
| | | | | | - Elena-Silvia Shelby
- National University Center for Children’s Neurorehabilitation “Dr. Nicolae Robănescu”, 44 Dumitru Mincă Street, District 4, 041408 Bucharest, Romania
| | - Adriana Albeanu
- Department of Pediatric Neurology, Clinical Emergency Children Hospital Brasov, Nicopole Street No. 45, 500063 Brasov, Romania
| | - Florin Burada
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
- Correspondence: (A.-L.R.); (F.B.)
| | - Mihai Ioana
- Regional Centre of Medical Genetics Dolj, Emergency County Hospital Craiova, 200642 Craiova, Romania
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| |
Collapse
|
12
|
Liu M, Yu C, Zhang Z, Song M, Sun X, Piálek J, Jacob J, Lu J, Cong L, Zhang H, Wang Y, Li G, Feng Z, Du Z, Wang M, Wan X, Wang D, Wang YL, Li H, Wang Z, Zhang B, Zhang Z. Whole-genome sequencing reveals the genetic mechanisms of domestication in classical inbred mice. Genome Biol 2022; 23:203. [PMID: 36163035 PMCID: PMC9511766 DOI: 10.1186/s13059-022-02772-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background The laboratory mouse was domesticated from the wild house mouse. Understanding the genetics underlying domestication in laboratory mice, especially in the widely used classical inbred mice, is vital for studies using mouse models. However, the genetic mechanism of laboratory mouse domestication remains unknown due to lack of adequate genomic sequences of wild mice. Results We analyze the genetic relationships by whole-genome resequencing of 36 wild mice and 36 inbred strains. All classical inbred mice cluster together distinctly from wild and wild-derived inbred mice. Using nucleotide diversity analysis, Fst, and XP-CLR, we identify 339 positively selected genes that are closely associated with nervous system function. Approximately one third of these positively selected genes are highly expressed in brain tissues, and genetic mouse models of 125 genes in the positively selected genes exhibit abnormal behavioral or nervous system phenotypes. These positively selected genes show a higher ratio of differential expression between wild and classical inbred mice compared with all genes, especially in the hippocampus and frontal lobe. Using a mutant mouse model, we find that the SNP rs27900929 (T>C) in gene Astn2 significantly reduces the tameness of mice and modifies the ratio of the two Astn2 (a/b) isoforms. Conclusion Our study indicates that classical inbred mice experienced high selection pressure during domestication under laboratory conditions. The analysis shows the positively selected genes are closely associated with behavior and the nervous system in mice. Tameness may be related to the Astn2 mutation and regulated by the ratio of the two Astn2 (a/b) isoforms. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02772-1.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,International Society of Zoological Sciences, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Yu
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Zhichao Zhang
- Novogene Bioinformatics Institute, Beijing, China.,Glbizzia Biosciences, Beijing, China
| | - Mingjing Song
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiuping Sun
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
| | - Jaroslav Piálek
- House Mouse Group, Research Facility Studenec, Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jens Jacob
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests / Institute for Epidemiology and Pathogen Diagnostics, Münster, Germany
| | - Jiqi Lu
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Lin Cong
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Hongmao Zhang
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Yong Wang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Guoliang Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Feng
- Plant Protection Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Zhenglin Du
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Meng Wang
- Novogene Bioinformatics Institute, Beijing, China
| | - Xinru Wan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Dawei Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongjun Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Bing Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. .,International Society of Zoological Sciences, Beijing, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Collins RL, Glessner JT, Porcu E, Lepamets M, Brandon R, Lauricella C, Han L, Morley T, Niestroj LM, Ulirsch J, Everett S, Howrigan DP, Boone PM, Fu J, Karczewski KJ, Kellaris G, Lowther C, Lucente D, Mohajeri K, Nõukas M, Nuttle X, Samocha KE, Trinh M, Ullah F, Võsa U, Hurles ME, Aradhya S, Davis EE, Finucane H, Gusella JF, Janze A, Katsanis N, Matyakhina L, Neale BM, Sanders D, Warren S, Hodge JC, Lal D, Ruderfer DM, Meck J, Mägi R, Esko T, Reymond A, Kutalik Z, Hakonarson H, Sunyaev S, Brand H, Talkowski ME. A cross-disorder dosage sensitivity map of the human genome. Cell 2022; 185:3041-3055.e25. [PMID: 35917817 PMCID: PMC9742861 DOI: 10.1016/j.cell.2022.06.036] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/17/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023]
Abstract
Rare copy-number variants (rCNVs) include deletions and duplications that occur infrequently in the global human population and can confer substantial risk for disease. In this study, we aimed to quantify the properties of haploinsufficiency (i.e., deletion intolerance) and triplosensitivity (i.e., duplication intolerance) throughout the human genome. We harmonized and meta-analyzed rCNVs from nearly one million individuals to construct a genome-wide catalog of dosage sensitivity across 54 disorders, which defined 163 dosage sensitive segments associated with at least one disorder. These segments were typically gene dense and often harbored dominant dosage sensitive driver genes, which we were able to prioritize using statistical fine-mapping. Finally, we designed an ensemble machine-learning model to predict probabilities of dosage sensitivity (pHaplo & pTriplo) for all autosomal genes, which identified 2,987 haploinsufficient and 1,559 triplosensitive genes, including 648 that were uniquely triplosensitive. This dosage sensitivity resource will provide broad utility for human disease research and clinical genetics.
Collapse
Affiliation(s)
- Ryan L Collins
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Division of Medical Sciences and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Joseph T Glessner
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Eleonora Porcu
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Maarja Lepamets
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia; Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
| | | | | | - Lide Han
- Division of Genetic Medicine, Department of Medicine, and Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Theodore Morley
- Division of Genetic Medicine, Department of Medicine, and Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Jacob Ulirsch
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Division of Medical Sciences and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Selin Everett
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Daniel P Howrigan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Philip M Boone
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jack Fu
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Konrad J Karczewski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Georgios Kellaris
- Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Lurie Children's Hospital, Chicago, IL 60611, USA; Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Chelsea Lowther
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Diane Lucente
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kiana Mohajeri
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Division of Medical Sciences and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Margit Nõukas
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia; Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
| | - Xander Nuttle
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kaitlin E Samocha
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Division of Medical Sciences and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10, UK
| | - Mi Trinh
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10, UK
| | - Farid Ullah
- Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Lurie Children's Hospital, Chicago, IL 60611, USA; Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Urmo Võsa
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | | | | | - Matthew E Hurles
- Human Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10, UK
| | | | - Erica E Davis
- Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Lurie Children's Hospital, Chicago, IL 60611, USA; Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hilary Finucane
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - James F Gusella
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | | | - Nicholas Katsanis
- Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Lurie Children's Hospital, Chicago, IL 60611, USA; Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Benjamin M Neale
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | - Jennelle C Hodge
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dennis Lal
- Cologne Center for Genomics, University of Cologne, 51149 Cologne, Germany; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Douglas M Ruderfer
- Division of Genetic Medicine, Department of Medicine, and Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Precision Medicine, Department of Biomedical Informatics, and Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Tõnu Esko
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Zoltán Kutalik
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; Center for Primary Care and Public Health, University of Lausanne, 1015 Lausanne, Switzerland; Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Hakon Hakonarson
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shamil Sunyaev
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Division of Medical Sciences and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Michael E Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
14
|
Griesius S, O'Donnell C, Waldron S, Thomas KL, Dwyer DM, Wilkinson LS, Hall J, Robinson ESJ, Mellor JR. Reduced expression of the psychiatric risk gene DLG2 (PSD93) impairs hippocampal synaptic integration and plasticity. Neuropsychopharmacology 2022; 47:1367-1378. [PMID: 35115661 PMCID: PMC9117295 DOI: 10.1038/s41386-022-01277-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 11/15/2022]
Abstract
Copy number variants indicating loss of function in the DLG2 gene have been associated with markedly increased risk for schizophrenia, autism spectrum disorder, and intellectual disability. DLG2 encodes the postsynaptic scaffolding protein DLG2 (PSD93) that interacts with NMDA receptors, potassium channels, and cytoskeletal regulators but the net impact of these interactions on synaptic plasticity, likely underpinning cognitive impairments associated with these conditions, remains unclear. Here, hippocampal CA1 neuronal excitability and synaptic function were investigated in a novel clinically relevant heterozygous Dlg2+/- rat model using ex vivo patch-clamp electrophysiology, pharmacology, and computational modelling. Dlg2+/- rats had reduced supra-linear dendritic integration of synaptic inputs resulting in impaired associative long-term potentiation. This impairment was not caused by a change in synaptic input since NMDA receptor-mediated synaptic currents were, conversely, increased and AMPA receptor-mediated currents were unaffected. Instead, the impairment in associative long-term potentiation resulted from an increase in potassium channel function leading to a decrease in input resistance, which reduced supra-linear dendritic integration. Enhancement of dendritic excitability by blockade of potassium channels or activation of muscarinic M1 receptors with selective allosteric agonist 77-LH-28-1 reduced the threshold for dendritic integration and 77-LH-28-1 rescued the associative long-term potentiation impairment in the Dlg2+/- rats. These findings demonstrate a biological phenotype that can be reversed by compound classes used clinically, such as muscarinic M1 receptor agonists, and is therefore a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Simonas Griesius
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Cian O'Donnell
- Computational Neuroscience Unit, School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK
| | - Sophie Waldron
- Neuroscience and Mental Health Research Institute, Cardiff, CF24 4HQ, UK
- School of Psychology, Cardiff, CF24 4HQ, UK
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff, CF24 4HQ, UK
- School of Medicine, Cardiff, CF24 4HQ, UK
| | - Dominic M Dwyer
- Neuroscience and Mental Health Research Institute, Cardiff, CF24 4HQ, UK
- School of Psychology, Cardiff, CF24 4HQ, UK
| | - Lawrence S Wilkinson
- Neuroscience and Mental Health Research Institute, Cardiff, CF24 4HQ, UK
- School of Psychology, Cardiff, CF24 4HQ, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff, CF24 4HQ, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff, CF24 4HQ, UK
- School of Medicine, Cardiff, CF24 4HQ, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff, CF24 4HQ, UK
| | - Emma S J Robinson
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Jack R Mellor
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
15
|
Bertini V, Milone R, Cristofani P, Cambi F, Bosetti C, Barbieri F, Bertelloni S, Cioni G, Valetto A, Battini R. Enhancing DLG2 Implications in Neuropsychiatric Disorders: Analysis of a Cohort of Eight Patients with 11q14.1 Imbalances. Genes (Basel) 2022; 13:genes13050859. [PMID: 35627244 PMCID: PMC9140951 DOI: 10.3390/genes13050859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are considered synaptopathies, as they are due to anomalies in neuronal connectivity during development. DLG2 is a gene involved insynaptic function; the phenotypic effect of itsalterations in NDDs has been underestimated since few cases have been thoroughly described.We report on eight patients with 11q14.1 imbalances involving DLG2, underlining its potential effects on clinical presentation and its contribution to NDD comorbidity by accurate neuropsychiatric data collection. DLG2 is a very large gene in 11q14.1, extending over 2.172 Mb, with alternative splicing that gives rise to numerous isoforms differentially expressed in brain tissues. A thorough bioinformatic analysis of the altered transcripts was conducted for each patient. The different expression profiles of the isoforms of this gene and their influence on the excitatory–inhibitory balance in crucial brain structures could contribute to the phenotypic variability related to DLG2 alterations. Further studies on patients would be helpful to enrich clinical and neurodevelopmental findings and elucidate the molecular mechanisms subtended to NDDs.
Collapse
Affiliation(s)
- Veronica Bertini
- Cytogenetic Unit, Department of Laboratory Medicine, Azienda Ospedaliero-Univeristaria Pisana, Via Roma 57, 56100 Pisa, Italy; (V.B.); (F.C.)
| | - Roberta Milone
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56125 Pisa, Italy; (R.M.); (P.C.); (C.B.); (G.C.); (R.B.)
| | - Paola Cristofani
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56125 Pisa, Italy; (R.M.); (P.C.); (C.B.); (G.C.); (R.B.)
| | - Francesca Cambi
- Cytogenetic Unit, Department of Laboratory Medicine, Azienda Ospedaliero-Univeristaria Pisana, Via Roma 57, 56100 Pisa, Italy; (V.B.); (F.C.)
| | - Chiara Bosetti
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56125 Pisa, Italy; (R.M.); (P.C.); (C.B.); (G.C.); (R.B.)
| | - Filippo Barbieri
- Mental Health Department, ASL Toscana Nordovest, 56100 Pisa, Italy;
| | - Silvano Bertelloni
- Pediatric Endocrinology, Department of Obstetrics, Gynecology and Pediatrics, Azienda Ospedaliero-Universitaria Pisana, Via Roma 57, 56100 Pisa, Italy;
| | - Giovanni Cioni
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56125 Pisa, Italy; (R.M.); (P.C.); (C.B.); (G.C.); (R.B.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy
| | - Angelo Valetto
- Cytogenetic Unit, Department of Laboratory Medicine, Azienda Ospedaliero-Univeristaria Pisana, Via Roma 57, 56100 Pisa, Italy; (V.B.); (F.C.)
- Correspondence:
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, 56125 Pisa, Italy; (R.M.); (P.C.); (C.B.); (G.C.); (R.B.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
16
|
Class III PI3K Biology. Curr Top Microbiol Immunol 2022; 436:69-93. [DOI: 10.1007/978-3-031-06566-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Scala M, Nishikawa M, Nagata KI, Striano P. Pathophysiological Mechanisms in Neurodevelopmental Disorders Caused by Rac GTPases Dysregulation: What's behind Neuro-RACopathies. Cells 2021; 10:3395. [PMID: 34943902 PMCID: PMC8699292 DOI: 10.3390/cells10123395] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Rho family guanosine triphosphatases (GTPases) regulate cellular signaling and cytoskeletal dynamics, playing a pivotal role in cell adhesion, migration, and cell cycle progression. The Rac subfamily of Rho GTPases consists of three highly homologous proteins, Rac 1-3. The proper function of Rac1 and Rac3, and their correct interaction with guanine nucleotide-exchange factors (GEFs) and GTPase-activating proteins (GAPs) are crucial for neural development. Pathogenic variants affecting these delicate biological processes are implicated in different medical conditions in humans, primarily neurodevelopmental disorders (NDDs). In addition to a direct deleterious effect produced by genetic variants in the RAC genes, a dysregulated GTPase activity resulting from an abnormal function of GEFs and GAPs has been involved in the pathogenesis of distinctive emerging conditions. In this study, we reviewed the current pertinent literature on Rac-related disorders with a primary neurological involvement, providing an overview of the current knowledge on the pathophysiological mechanisms involved in the neuro-RACopathies.
Collapse
Affiliation(s)
- Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy;
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Masashi Nishikawa
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; (M.N.); (K.-i.N.)
| | - Koh-ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai 480-0392, Japan; (M.N.); (K.-i.N.)
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Nagoya 466-8550, Japan
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy;
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| |
Collapse
|
18
|
Ben Ayed I, Bouzid A, Kammoun F, Souissi A, Jallouli O, Mallouli S, Guidara S, Loukil S, Aloulou H, Jbeli F, Aouichaoui S, Abid D, Abdelhedi F, Triki C, Kamoun H, Masmoudi S. 8q21.11 microdeletion syndrome: Delineation of HEY1 as a candidate gene in neurodevelopmental and cardiac defects. Mol Genet Genomic Med 2021; 9:e1811. [PMID: 34549899 PMCID: PMC8606210 DOI: 10.1002/mgg3.1811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/13/2021] [Accepted: 09/02/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND 8q21.11 microdeletion syndrome is a rare chromosomal disorder characterized by recurrent dysmorphic features, a variable degree of intellectual disability and ocular, cardiac and hand/feet abnormalities. To date, ZFHX4 is the only candidate gene implicated in the ocular findings. In this study, we evaluated a patient with a de novo 8q21.13-21.3 deletion to define a new small region of overlap (SRO) for this entity. METHODS We conducted a clinical evaluation and comparative genomic hybridization (CGH) 4x44K microarrays in a patient with de novo unbalanced translocation t(8;16)(q21; q11.2). RESULTS The case, a 6-year-old boy, presented dysmorphic features including an elongated face, brachycephaly with a high forehead, an underdeveloped ala, thin upper lip, micrognathia, low-set ears, hypotonia, mild intellectual disability, cortical atrophy with thin corpus callosum defect, and an atrial septal defect. No ocular abnormalities were found. Microarray analysis revealed a 9.6 Mb interstitial 8q21.11-21.3 deletion, not including the ZFHX4 gene. This microdeletion was confirmed in our patient through qPCR analysis, and both parents had a normal profile. Alignment analysis of our case defined a new SRO encompassing five genes. Among them, the HEY1 gene is involved in the embryonic development of the heart, central nervous system, and vascular system. Hrt1/Hey1 null mice show perinatal lethality due to congenital malformations of the aortic arch and its branch arteries. HEY1 has also been linked to the maintenance of neural stem cells, inhibition of oligodendrocyte differentiation, and myelin gene expression. CONCLUSION HEY1 is a candidate gene for both neurological and cardiac features of the 8q21.11 microdeletion syndrome and might, therefore, explain specific components of its pathophysiology.
Collapse
Affiliation(s)
- Ikhlas Ben Ayed
- Laboratory of Molecular and Cellular Screening Processes (LPCMC), Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia.,Medical Genetics Department, University Hedi Chaker Hospital of Sfax, Sfax, Tunisia
| | - Amal Bouzid
- Laboratory of Molecular and Cellular Screening Processes (LPCMC), Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia.,Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Fatma Kammoun
- Child Neurology Department, University Hedi Chaker Hospital of Sfax, Sfax, Tunisia.,Research Laboratory, Sfax University, Sfax, Tunisia
| | - Amal Souissi
- Laboratory of Molecular and Cellular Screening Processes (LPCMC), Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Olfa Jallouli
- Child Neurology Department, University Hedi Chaker Hospital of Sfax, Sfax, Tunisia.,Research Laboratory, Sfax University, Sfax, Tunisia
| | - Salma Mallouli
- Child Neurology Department, University Hedi Chaker Hospital of Sfax, Sfax, Tunisia.,Research Laboratory, Sfax University, Sfax, Tunisia
| | - Souhir Guidara
- Medical Genetics Department, University Hedi Chaker Hospital of Sfax, Sfax, Tunisia.,Laboratory of Human Molecular Genetics, LR33ES99, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Salma Loukil
- Laboratory of Molecular and Cellular Screening Processes (LPCMC), Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Hajer Aloulou
- Pediatric Department, Hedi Chaker University Hospital, University of Sfax, Sfax, Tunisia
| | - Fida Jbeli
- Laboratory of Molecular and Cellular Screening Processes (LPCMC), Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Sahar Aouichaoui
- Medical Genetics Department, University Hedi Chaker Hospital of Sfax, Sfax, Tunisia
| | - Dorra Abid
- Cardiology Department, Hedi Chaker University Hospital, University of Sfax, Sfax, Tunisia
| | - Fatma Abdelhedi
- Medical Genetics Department, University Hedi Chaker Hospital of Sfax, Sfax, Tunisia.,Laboratory of Human Molecular Genetics, LR33ES99, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Chahnez Triki
- Child Neurology Department, University Hedi Chaker Hospital of Sfax, Sfax, Tunisia.,Research Laboratory, Sfax University, Sfax, Tunisia
| | - Hassen Kamoun
- Medical Genetics Department, University Hedi Chaker Hospital of Sfax, Sfax, Tunisia.,Laboratory of Human Molecular Genetics, LR33ES99, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Saber Masmoudi
- Laboratory of Molecular and Cellular Screening Processes (LPCMC), Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
19
|
Fontana P, Ginevrino M, Bejo K, Cantalupo G, Ciavarella M, Lombardi C, Maioli M, Scarano F, Costabile C, Novelli A, Lonardo F. A ZFHX4 mutation associated with a recognizable neuropsychological and facial phenotype. Eur J Med Genet 2021; 64:104321. [PMID: 34461323 DOI: 10.1016/j.ejmg.2021.104321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/27/2021] [Accepted: 08/22/2021] [Indexed: 11/29/2022]
Abstract
Several patients with chromosomal deletions including ZFHX4 gene have been described, whereas point mutations are very rare. This gene encodes for a transcription factor involved in the development of several embryonal processes, including brain differentiation. Patients with 8q21.11 deletions usually show intellectual disability, short stature, peculiar facial features, and severe eye abnormalities. We describe a female patient with mild intellectual disability, autism spectrum disorder, strabismus, ptosis, low-set and prominent ears, high-arched palate, microretrognathia. Clinical Exome Sequencing revealed the presence of a de novo heterozygous variant in ZFHX4. Therefore, we further investigate the different phenotypes of ZFHX4 mutations and 8q21.11 deletions.
Collapse
Affiliation(s)
- Paolo Fontana
- Medical Genetics Unit - P.O. Gaetano Rummo - A.O.R.N. San Pio, Benevento, BN, Italy.
| | - Monia Ginevrino
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Kristel Bejo
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giuseppina Cantalupo
- Medical Genetics Unit - P.O. Gaetano Rummo - A.O.R.N. San Pio, Benevento, BN, Italy
| | - Maria Ciavarella
- Medical Genetics Unit - P.O. Gaetano Rummo - A.O.R.N. San Pio, Benevento, BN, Italy
| | - Cinzia Lombardi
- Medical Genetics Unit - P.O. Gaetano Rummo - A.O.R.N. San Pio, Benevento, BN, Italy
| | - Marianna Maioli
- Medical Genetics Unit - P.O. Gaetano Rummo - A.O.R.N. San Pio, Benevento, BN, Italy
| | - Francesca Scarano
- Medical Genetics Unit - P.O. Gaetano Rummo - A.O.R.N. San Pio, Benevento, BN, Italy
| | - Claudia Costabile
- Medical Genetics Unit - P.O. Gaetano Rummo - A.O.R.N. San Pio, Benevento, BN, Italy
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fortunato Lonardo
- Medical Genetics Unit - P.O. Gaetano Rummo - A.O.R.N. San Pio, Benevento, BN, Italy
| |
Collapse
|
20
|
Duplication of Chromosome 16p13.11-p12.3 with Different Expressions in the Same Family. Balkan J Med Genet 2021; 24:89-94. [PMID: 34447664 PMCID: PMC8366479 DOI: 10.2478/bjmg-2021-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The knowledge about genetic involvement in neurodevelopmental disorders, and especially in autism, is currently rising. To date, more than 100 gene mutations related to autistic syndromes have been described. Some disorders that affect multiple family members are caused by gene mutations, which can be inherited. Recently, array comparative genomic hybridization (aCGH) has identified sub microscopic deletions and duplications as a common cause of mental retardation and autism. In this article we report the occurrence of the same genetic finding (chromosome 16p13.11-p12.3 duplication) in a family with four small children, where two older siblings manifested a global neurodevelopmental delay associated with an autism spectrum disorder (ASD), but younger twin brothers with the same mutation, have typical development. Genetic analysis showed that the chromosomal duplication was inherited from the father, in which phenotype and functioning are quite typical. As is known, the duplication can pass from parents to children. The 16p13.11 micro duplication has been implicated in several neurodevelopmental and behavioral disorders and is characterized by variable expressivity and incomplete penetrance.
Collapse
|
21
|
Rojano E, Córdoba-Caballero J, Jabato FM, Gallego D, Serrano M, Pérez B, Parés-Aguilar Á, Perkins JR, Ranea JAG, Seoane-Zonjic P. Evaluating, Filtering and Clustering Genetic Disease Cohorts Based on Human Phenotype Ontology Data with Cohort Analyzer. J Pers Med 2021; 11:730. [PMID: 34442375 PMCID: PMC8398478 DOI: 10.3390/jpm11080730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022] Open
Abstract
Exhaustive and comprehensive analysis of pathological traits is essential to understanding genetic diseases, performing precise diagnosis and prescribing personalized treatments. It is particularly important for disease cohorts, as thoroughly detailed phenotypic profiles allow patients to be compared and contrasted. However, many disease cohorts contain patients that have been ascribed low numbers of very general and relatively uninformative phenotypes. We present Cohort Analyzer, a tool that measures the phenotyping quality of patient cohorts. It calculates multiple statistics to give a general overview of the cohort status in terms of the depth and breadth of phenotyping, allowing us to detect less well-phenotyped patients for re-examining or excluding from further analyses. In addition, it performs clustering analysis to find subgroups of patients that share similar phenotypic profiles. We used it to analyse three cohorts of genetic diseases patients with very different properties. We found that cohorts with the most specific and complete phenotypic characterization give more potential insights into the disease than those that were less deeply characterised by forming more informative clusters. For two of the cohorts, we also analysed genomic data related to the patients, and linked the genomic data to the patient-subgroups by mapping shared variants to genes and functions. The work highlights the need for improved phenotyping in this era of personalized medicine. The tool itself is freely available alongside a workflow to allow the analyses shown in this work to be applied to other datasets.
Collapse
Affiliation(s)
- Elena Rojano
- Department of Molecular Biology and Biochemistry, University of Málaga, 29071 Málaga, Spain; (E.R.); (J.C.-C.); (Á.P.-A.); (J.A.G.R.); (P.S.-Z.)
- Institute of Biomedical Research in Málaga (IBIMA), 29010 Málaga, Spain;
| | - José Córdoba-Caballero
- Department of Molecular Biology and Biochemistry, University of Málaga, 29071 Málaga, Spain; (E.R.); (J.C.-C.); (Á.P.-A.); (J.A.G.R.); (P.S.-Z.)
| | - Fernando M. Jabato
- Institute of Biomedical Research in Málaga (IBIMA), 29010 Málaga, Spain;
- Supercomputation and Bioinformatics (SCBI), University of Malaga, 29071 Malaga, Spain
- LifeWatch-ERIC, 41071 Seville, Spain
| | - Diana Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), [Madrid, Málaga, Barcelona], Instituto de Salud Carlos III, 28029 Madrid, Spain; (D.G.); (M.S.); (B.P.)
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto de Investigación Sanitaria idiPAZ, 28049 Madrid, Spain
| | - Mercedes Serrano
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), [Madrid, Málaga, Barcelona], Instituto de Salud Carlos III, 28029 Madrid, Spain; (D.G.); (M.S.); (B.P.)
- Neuropediatric Department, Institut de Recerca Hospital Sant Joan de Déu, 08950 Barcelona, Spain
| | - Belén Pérez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), [Madrid, Málaga, Barcelona], Instituto de Salud Carlos III, 28029 Madrid, Spain; (D.G.); (M.S.); (B.P.)
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-SO UAM-CSIC, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto de Investigación Sanitaria idiPAZ, 28049 Madrid, Spain
| | - Álvaro Parés-Aguilar
- Department of Molecular Biology and Biochemistry, University of Málaga, 29071 Málaga, Spain; (E.R.); (J.C.-C.); (Á.P.-A.); (J.A.G.R.); (P.S.-Z.)
| | - James R. Perkins
- Department of Molecular Biology and Biochemistry, University of Málaga, 29071 Málaga, Spain; (E.R.); (J.C.-C.); (Á.P.-A.); (J.A.G.R.); (P.S.-Z.)
- Institute of Biomedical Research in Málaga (IBIMA), 29010 Málaga, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), [Madrid, Málaga, Barcelona], Instituto de Salud Carlos III, 28029 Madrid, Spain; (D.G.); (M.S.); (B.P.)
| | - Juan A. G. Ranea
- Department of Molecular Biology and Biochemistry, University of Málaga, 29071 Málaga, Spain; (E.R.); (J.C.-C.); (Á.P.-A.); (J.A.G.R.); (P.S.-Z.)
- Institute of Biomedical Research in Málaga (IBIMA), 29010 Málaga, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), [Madrid, Málaga, Barcelona], Instituto de Salud Carlos III, 28029 Madrid, Spain; (D.G.); (M.S.); (B.P.)
| | - Pedro Seoane-Zonjic
- Department of Molecular Biology and Biochemistry, University of Málaga, 29071 Málaga, Spain; (E.R.); (J.C.-C.); (Á.P.-A.); (J.A.G.R.); (P.S.-Z.)
- Institute of Biomedical Research in Málaga (IBIMA), 29010 Málaga, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), [Madrid, Málaga, Barcelona], Instituto de Salud Carlos III, 28029 Madrid, Spain; (D.G.); (M.S.); (B.P.)
| |
Collapse
|
22
|
Al-Ward H, Liu CY, Liu N, Shaher F, Al-Nusaif M, Mao J, Xu H. Voltage-Gated Sodium Channel β1 Gene: An Overview. Hum Hered 2021; 85:101-109. [PMID: 34038903 DOI: 10.1159/000516388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/01/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Voltage-gated sodium channels are protein complexes composed of 2 subunits, namely, pore-forming α- and regulatory β-subunits. A β-subunit consists of 5 proteins encoded by 4 genes (i.e., SCN1B-SCN4B). SUMMARY β1-Subunits regulate sodium ion channel functions, including gating properties, subcellular localization, and kinetics. Key Message: Sodium channel β1- and its variant β1B-subunits are encoded by SCN1B. These variants are associated with many human diseases, such as epilepsy, Brugada syndrome, Dravet syndrome, and cancers. On the basis of previous research, we aimed to provide an overview of the structure, expression, and involvement of SCN1B in physiological processes and focused on its role in diseases.
Collapse
Affiliation(s)
- Hisham Al-Ward
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, China
| | - Chun-Yang Liu
- Department of Biochemistry and Molecular Biology, Ankang University School of Medicine, Ankang, China
| | - Ning Liu
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, China
| | - Fahmi Shaher
- Department of Pathophysiology, Jiamusi University School of Basic Medical Sciences, Jiamusi, China
| | - Murad Al-Nusaif
- Department of Neurology, Dalian Medical University, Dalian, China
| | - Jing Mao
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, China
| | - Hui Xu
- Department of Biochemistry and Molecular Biology, Jiamusi University School of Basic Medical Sciences, Jiamusi, China
| |
Collapse
|
23
|
Czakó M, Till Á, Zima J, Zsigmond A, Szabó A, Maász A, Melegh B, Hadzsiev K. Xp11.2 Duplication in Females: Unique Features of a Rare Copy Number Variation. Front Genet 2021; 12:635458. [PMID: 33936165 PMCID: PMC8080037 DOI: 10.3389/fgene.2021.635458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Among the diseases with X-linked inheritance and intellectual disability, duplication of the Xp11.23p11.22 region is indeed a rare phenomenon, with less than 90 cases known in the literature. Most of them have been recognized with the routine application of array techniques, as these copy number variations (CNVs) are highly variable in size, occurring in recurrent and non-recurrent forms. Its pathogenic role is not debated anymore, but the information available about the pathomechanism, especially in affected females, is still very limited. It has been observed that the phenotype in females varies from normal to severe, which does not correlate with the size of the duplication or the genes involved, and which makes it very difficult to give an individual prognosis. Among the patients studied by the authors because of intellectual disability, epilepsy, and minor anomalies, overlapping duplications affecting the Xp11.23p11.22 region were detected in three females. Based on our detailed phenotype analysis, we concluded that Xp11.23p11.22 duplication is a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Márta Czakó
- Department of Medical Genetics, Medical School, University of Pécs, Pécs, Hungary.,Szentágothai Research Centre, Pécs, Hungary
| | - Ágnes Till
- Department of Medical Genetics, Medical School, University of Pécs, Pécs, Hungary
| | - Judith Zima
- Department of Medical Genetics, Medical School, University of Pécs, Pécs, Hungary
| | - Anna Zsigmond
- Department of Medical Genetics, Medical School, University of Pécs, Pécs, Hungary
| | - András Szabó
- Department of Medical Genetics, Medical School, University of Pécs, Pécs, Hungary.,Szentágothai Research Centre, Pécs, Hungary
| | - Anita Maász
- Department of Medical Genetics, Medical School, University of Pécs, Pécs, Hungary.,Szentágothai Research Centre, Pécs, Hungary
| | - Béla Melegh
- Department of Medical Genetics, Medical School, University of Pécs, Pécs, Hungary.,Szentágothai Research Centre, Pécs, Hungary
| | - Kinga Hadzsiev
- Department of Medical Genetics, Medical School, University of Pécs, Pécs, Hungary.,Szentágothai Research Centre, Pécs, Hungary
| |
Collapse
|
24
|
Pauper M, Kucuk E, Wenger AM, Chakraborty S, Baybayan P, Kwint M, van der Sanden B, Nelen MR, Derks R, Brunner HG, Hoischen A, Vissers LELM, Gilissen C. Long-read trio sequencing of individuals with unsolved intellectual disability. Eur J Hum Genet 2021; 29:637-648. [PMID: 33257779 PMCID: PMC8115091 DOI: 10.1038/s41431-020-00770-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Long-read sequencing (LRS) has the potential to comprehensively identify all medically relevant genome variation, including variation commonly missed by short-read sequencing (SRS) approaches. To determine this potential, we performed LRS around 15×-40× genome coverage using the Pacific Biosciences Sequel I System for five trios. The respective probands were diagnosed with intellectual disability (ID) whose etiology remained unresolved after SRS exomes and genomes. Systematic assessment of LRS coverage showed that ~35 Mb of the human reference genome was only accessible by LRS and not SRS. Genome-wide structural variant (SV) calling yielded on average 28,292 SV calls per individual, totaling 12.9 Mb of sequence. Trio-based analyses which allowed to study segregation, showed concordance for up to 95% of these SV calls across the genome, and 80% of the LRS SV calls were not identified by SRS. De novo mutation analysis did not identify any de novo SVs, confirming that these are rare events. Because of high sequence coverage, we were also able to call single nucleotide substitutions. On average, we identified 3 million substitutions per genome, with a Mendelian inheritance concordance of up to 97%. Of these, ~100,000 were located in the ~35 Mb of the genome that was only captured by LRS. Moreover, these variants affected the coding sequence of 64 genes, including 32 known Mendelian disease genes. Our data show the potential added value of LRS compared to SRS for identifying medically relevant genome variation.
Collapse
Affiliation(s)
- Marc Pauper
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Erdi Kucuk
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | | | | | | | - Michael Kwint
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bart van der Sanden
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 HR, Nijmegen, The Netherlands
| | - Marcel R Nelen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronny Derks
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
- Department of Internal Medicine, Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 HR, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
- Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
25
|
The Role of Alpha-Synuclein and Other Parkinson's Genes in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2020; 21:ijms21165724. [PMID: 32785033 PMCID: PMC7460874 DOI: 10.3390/ijms21165724] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/29/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodevelopmental and late-onset neurodegenerative disorders present as separate entities that are clinically and neuropathologically quite distinct. However, recent evidence has highlighted surprising commonalities and converging features at the clinical, genomic, and molecular level between these two disease spectra. This is particularly striking in the context of autism spectrum disorder (ASD) and Parkinson's disease (PD). Genetic causes and risk factors play a central role in disease pathophysiology and enable the identification of overlapping mechanisms and pathways. Here, we focus on clinico-genetic studies of causal variants and overlapping clinical and cellular features of ASD and PD. Several genes and genomic regions were selected for our review, including SNCA (alpha-synuclein), PARK2 (parkin RBR E3 ubiquitin protein ligase), chromosome 22q11 deletion/DiGeorge region, and FMR1 (fragile X mental retardation 1) repeat expansion, which influence the development of both ASD and PD, with converging features related to synaptic function and neurogenesis. Both PD and ASD display alterations and impairments at the synaptic level, representing early and key disease phenotypes, which support the hypothesis of converging mechanisms between the two types of diseases. Therefore, understanding the underlying molecular mechanisms might inform on common targets and therapeutic approaches. We propose to re-conceptualize how we understand these disorders and provide a new angle into disease targets and mechanisms linking neurodevelopmental disorders and neurodegeneration.
Collapse
|
26
|
Wang J, Wang Y, Wang L, Chen WY, Sheng M. The diagnostic yield of intellectual disability: combined whole genome low-coverage sequencing and medical exome sequencing. BMC Med Genomics 2020; 13:70. [PMID: 32429945 PMCID: PMC7236547 DOI: 10.1186/s12920-020-0726-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
Background Intellectual disability (ID) is a heterogeneous neurodevelopmental disorder with a complex genetic underpinning in its etiology. Chromosome microarray (CMA) is recommended as the first-tier diagnostic test for ID due to high detection rate of copy number variation (CNV). Methods To identify an appropriate clinical detection scheme for ID in Han Chinese patients, whole genome low-coverage sequencing was performed as the first-tier diagnostic test, and medical exome sequencing (MES) as the second-tier diagnostic test for patients with negative results of CNVs. Results A total of 19 pathogenic CNVs in 16/95(16.84%) ID patients and 10 pathogenic single-nucleotide variations (SNVs), including 6 novel mutations in 8/95(8.42%) ID patients were identified on whom no pathogenic CNVs were discovered. The detection rate of CNVs in ID with multiple congenital anomalies (MCA) subgroup was significantly higher than ID with autism spectrum disorders and other IDs subgroups. And the single-nucleotide variations showed a higher occurrence rate in the other IDs subgroup. Conclusions There were differences in the diagnostic yields of different variation types among the three ID subgroups. Our findings provided a new perspective on appropriate clinical detection scheme in different ID subgroups based on statistically significant differences among the three ID subgroups. The application of whole genome low-coverage sequencing as the first-tier diagnostic test for ID with MCA subgroup and MES as the first-tier diagnostic test for other ID subgroup was considered as an efficient clinical detection scheme.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Yan Wang
- Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, 100020, China
| | - Liwen Wang
- Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics, Beijing, 100020, China
| | - Wang Yang Chen
- Kaiumph Medical Diagnostics Co,Ltd, Beijing, 100102, China
| | - Min Sheng
- Kaiumph Medical Diagnostics Co,Ltd, Beijing, 100102, China
| |
Collapse
|
27
|
Lantieri F, Gimelli S, Viaggi C, Stathaki E, Malacarne M, Santamaria G, Grossi A, Mosconi M, Sloan-Béna F, Prato AP, Coviello D, Ceccherini I. Copy number variations in candidate genomic regions confirm genetic heterogeneity and parental bias in Hirschsprung disease. Orphanet J Rare Dis 2019; 14:270. [PMID: 31767031 PMCID: PMC6878652 DOI: 10.1186/s13023-019-1205-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 09/13/2019] [Indexed: 11/26/2022] Open
Abstract
Background Hirschsprung Disease (HSCR) is a congenital defect of the intestinal innervations characterized by complex inheritance. Many susceptibility genes including RET, the major HSCR gene, and several linked regions and associated loci have been shown to contribute to disease pathogenesis. Nonetheless, a proportion of patients still remains unexplained. Copy Number Variations (CNVs) have already been involved in HSCR, and for this reason we performed Comparative Genomic Hybridization (CGH), using a custom array with high density probes. Results A total of 20 HSCR candidate regions/genes was tested in 55 sporadic patients and four patients with already known chromosomal aberrations. Among 83 calls, 12 variants were experimentally validated, three of which involving the HSCR crucial genes SEMA3A/3D, NRG1, and PHOX2B. Conversely RET involvement in HSCR does not seem to rely on the presence of CNVs while, interestingly, several gains and losses did co-occur with another RET defect, thus confirming that more than one predisposing event is necessary for HSCR to develop. New loci were also shown to be involved, such as ALDH1A2, already found to play a major role in the enteric nervous system. Finally, all the inherited CNVs were of maternal origin. Conclusions Our results confirm a wide genetic heterogeneity in HSCR occurrence and support a role of candidate genes in expression regulation and cell signaling, thus contributing to depict further the molecular complexity of the genomic regions involved in the Enteric Nervous System development. The observed maternal transmission bias for HSCR associated CNVs supports the hypothesis that in females these variants might be more tolerated, requiring additional alterations to develop HSCR disease.
Collapse
Affiliation(s)
- Francesca Lantieri
- Dipartimento di Scienze della Salute, sezione di Biostatistica, Universita' degli Studi di Genova, 16132, Genoa, Italy
| | - Stefania Gimelli
- Department of Medical Genetic and Laboratories, University Hospitals of Geneva, Geneva, Switzerland
| | - Chiara Viaggi
- S.C. Laboratorio Genetica Umana, Ospedali Galliera, Genoa, Italy
| | - Elissavet Stathaki
- Department of Medical Genetic and Laboratories, University Hospitals of Geneva, Geneva, Switzerland
| | - Michela Malacarne
- S.C. Laboratorio Genetica Umana, Ospedali Galliera, Genoa, Italy.,Present address: U.O.C. Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genoa, 16148, Italy
| | - Giuseppe Santamaria
- U.O.C. Genetica Medica, IRCCS, Istituto Giannina Gaslini, 16148, Genoa, Italy
| | - Alice Grossi
- U.O.C. Genetica Medica, IRCCS, Istituto Giannina Gaslini, 16148, Genoa, Italy
| | - Manuela Mosconi
- UOC Chirurgia Pediatrica, Istituto Giannina Gaslini, 16148, Genoa, Italy
| | - Frédérique Sloan-Béna
- Department of Medical Genetic and Laboratories, University Hospitals of Geneva, Geneva, Switzerland
| | - Alessio Pini Prato
- UOC Chirurgia Pediatrica, Istituto Giannina Gaslini, 16148, Genoa, Italy.,Present address: Children Hospital, AON SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Domenico Coviello
- S.C. Laboratorio Genetica Umana, Ospedali Galliera, Genoa, Italy.,Present address: U.O.C. Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genoa, 16148, Italy
| | - Isabella Ceccherini
- U.O.C. Genetica Medica, IRCCS, Istituto Giannina Gaslini, 16148, Genoa, Italy.
| |
Collapse
|
28
|
Additive Diagnostic Yield of Homozygosity Regions Identified During Chromosomal microarray Testing in Children with Developmental Delay, Dysmorphic Features or Congenital Anomalies. Biochem Genet 2019; 58:74-101. [PMID: 31273557 DOI: 10.1007/s10528-019-09931-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/27/2019] [Indexed: 11/26/2022]
Abstract
Chromosomal microarray (CMA) has emerged as a robust tool for identifying microdeletions and microduplications, termed copy number variants (CNVs). Nevertheless, data regarding its utility in different patient populations with developmental delay (DD), dysmorphic features (DF) and congenital anomalies (CA), is a matter of dense debate. Although regions of homozygosity (ROH) are not diagnostic of a specific condition, they may have pathogenic implications. Certain CNVs and ROH have ethnically specific occurrences and frequencies. We aimed to determine whether CMA testing offers additional diagnostic information over classical cytogenetics for identifying genomic imbalances in a pediatric cohort with idiopathic DD, DF, or CA. One hundred sixty-nine patients were offered cytogenetics and CMA simultaneously for etiological diagnosis of DD (n = 67), DF (n = 52) and CA (n = 50). CMA could identify additional, clinically significant anomalies as compared with cytogenetics. CMA detected 61 CNVs [21 (34.4%) pathogenic CNVs, 37 (60.7%) variants of uncertain clinical significance and 3 (4.9%) benign CNVs] in 44 patients. CMA identified one or more ROH in 116/169 (68.6%) patients. When considering pathogenic CNVs and aneuploidies as positive findings, 9/169 (5.3%) received a genetic diagnosis from cytogenetics, while 25/169 (14.8%) could have a genetic diagnosis from CMA. The identification of ROH was clinically significant in two cases (2/169), thereby, adding 1.2% to the diagnostic yield of CMA (16% vs. 5.3%, p < 0.001). CMA uncovers additional genetic diagnoses over cytogenetics, thereby, offering a much higher diagnostic yield. Our findings convincingly demonstrate the additive diagnostic value of clinically significant ROH identified during CMA testing, highlighting the need for careful clinical interpretation of these ROH.
Collapse
|
29
|
|
30
|
Masson J, Rossi M, Labalme A, Till M, Trost D, Morin I, Schluth-Bolard C, Sanlaville D. Molecular Characterization of a Familial 13.6-Mb 20p11.1p12.1 Duplication without Clinical Consequence. Cytogenet Genome Res 2019; 157:141-147. [PMID: 30947196 DOI: 10.1159/000498904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2018] [Indexed: 11/19/2022] Open
Abstract
Chromosomal microarray (CMA) is currently considered as a first-tier test in the genetic assessment of patients presenting with intellectual disability and/or multiple congenital abnormalities. The distinction between pathogenic CNVs, polymorphisms, and variants of unknown significance can be a diagnostic dilemma for cytogeneticists. The size of the CNV has been proposed as a useful criterion. We herein report the characterization of a 13.6-Mb interstitial duplication 20p11.1p12.1, found in a child presenting with mild global developmental delay, by standard karyotype and CMA. Unexpectedly, the same CNV was detected in the patient's mother and pregnant sister, who were healthy. On the basis of these results, an implication of this CNV in the neurological problems observed in the proband was considered to be unlikely. This report underlines the complexity of genetic counseling concerning rare chromosomal abnormalities, when little information is available either in the literature or in international cytogenetic databases.
Collapse
|
31
|
Niftullayev S, Lamarche-Vane N. Regulators of Rho GTPases in the Nervous System: Molecular Implication in Axon Guidance and Neurological Disorders. Int J Mol Sci 2019; 20:E1497. [PMID: 30934641 PMCID: PMC6471118 DOI: 10.3390/ijms20061497] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
One of the fundamental steps during development of the nervous system is the formation of proper connections between neurons and their target cells-a process called neural wiring, failure of which causes neurological disorders ranging from autism to Down's syndrome. Axons navigate through the complex environment of a developing embryo toward their targets, which can be far away from their cell bodies. Successful implementation of neuronal wiring, which is crucial for fulfillment of all behavioral functions, is achieved through an intimate interplay between axon guidance and neural activity. In this review, our focus will be on axon pathfinding and the implication of some of its downstream molecular components in neurological disorders. More precisely, we will talk about axon guidance and the molecules implicated in this process. After, we will briefly review the Rho family of small GTPases, their regulators, and their involvement in downstream signaling pathways of the axon guidance cues/receptor complexes. We will then proceed to the final and main part of this review, where we will thoroughly comment on the implication of the regulators for Rho GTPases-GEFs (Guanine nucleotide Exchange Factors) and GAPs (GTPase-activating Proteins)-in neurological diseases and disorders.
Collapse
Affiliation(s)
- Sadig Niftullayev
- Cancer Research Program, Research Institute of the MUHC, Montreal, QC H4A 3J1, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada.
| | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the MUHC, Montreal, QC H4A 3J1, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada.
| |
Collapse
|
32
|
Next-generation phenotyping using computer vision algorithms in rare genomic neurodevelopmental disorders. Genet Med 2018; 21:1719-1725. [PMID: 30568311 PMCID: PMC6752476 DOI: 10.1038/s41436-018-0404-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/03/2018] [Indexed: 11/09/2022] Open
Abstract
Purpose The interpretation of genetic variants after genome-wide analysis is complex in heterogeneous disorders such as intellectual disability (ID). We investigate whether algorithms can be used to detect if a facial gestalt is present for three novel ID syndromes and if these techniques can help interpret variants of uncertain significance. Methods Facial features were extracted from photos of ID patients harboring a pathogenic variant in three novel ID genes (PACS1, PPM1D, and PHIP) using algorithms that model human facial dysmorphism, and facial recognition. The resulting features were combined into a hybrid model to compare the three cohorts against a background ID population. Results We validated our model using images from 71 individuals with Koolen–de Vries syndrome, and then show that facial gestalts are present for individuals with a pathogenic variant in PACS1 (p = 8 × 10−4), PPM1D (p = 4.65 × 10−2), and PHIP (p = 6.3 × 10−3). Moreover, two individuals with a de novo missense variant of uncertain significance in PHIP have significant similarity to the expected facial phenotype of PHIP patients (p < 1.52 × 10−2). Conclusion Our results show that analysis of facial photos can be used to detect previously unknown facial gestalts for novel ID syndromes, which will facilitate both clinical and molecular diagnosis of rare and novel syndromes.
Collapse
|
33
|
Mucha BE, Banka S, Ajeawung NF, Molidperee S, Chen GG, Koenig MK, Adejumo RB, Till M, Harbord M, Perrier R, Lemyre E, Boucher RM, Skotko BG, Waxler JL, Thomas MA, Hodge JC, Gecz J, Nicholl J, McGregor L, Linden T, Sisodiya SM, Sanlaville D, Cheung SW, Ernst C, Campeau PM. A new microdeletion syndrome involving TBC1D24, ATP6V0C, and PDPK1 causes epilepsy, microcephaly, and developmental delay. Genet Med 2018; 21:1058-1064. [DOI: 10.1038/s41436-018-0290-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022] Open
|
34
|
Luo J, Norris RH, Gordon SL, Nithianantharajah J. Neurodevelopmental synaptopathies: Insights from behaviour in rodent models of synapse gene mutations. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:424-439. [PMID: 29217145 DOI: 10.1016/j.pnpbp.2017.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/28/2017] [Accepted: 12/03/2017] [Indexed: 11/15/2022]
Abstract
The genomic revolution has begun to unveil the enormous complexity and heterogeneity of the genetic basis of neurodevelopmental disorders such as such epilepsy, intellectual disability, autism spectrum disorder and schizophrenia. Increasingly, human mutations in synapse genes are being identified across these disorders. These neurodevelopmental synaptopathies highlight synaptic homeostasis pathways as a convergence point underlying disease mechanisms. Here, we review some of the key pre- and postsynaptic genes in which penetrant human mutations have been identified in neurodevelopmental disorders for which genetic rodent models have been generated. Specifically, we focus on the main behavioural phenotypes that have been documented in these animal models, to consolidate our current understanding of how synapse genes regulate key behavioural and cognitive domains. These studies provide insights into better understanding the basis of the overlapping genetic and cognitive heterogeneity observed in neurodevelopmental disorders.
Collapse
Affiliation(s)
- J Luo
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - R H Norris
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - S L Gordon
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - J Nithianantharajah
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
35
|
Piper DA, Sastre D, Schüle B. Advancing Stem Cell Models of Alpha-Synuclein Gene Regulation in Neurodegenerative Disease. Front Neurosci 2018; 12:199. [PMID: 29686602 PMCID: PMC5900030 DOI: 10.3389/fnins.2018.00199] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022] Open
Abstract
Alpha-synuclein (non A4 component of amyloid precursor, SNCA, NM_000345.3) plays a central role in the pathogenesis of Parkinson's disease (PD) and related Lewy body disorders such as Parkinson's disease dementia, Lewy body dementia, and multiple system atrophy. Since its discovery as a disease-causing gene in 1997, alpha-synuclein has been a central point of scientific interest both at the protein and gene level. Mutations, including copy number variants, missense mutations, short structural variants, and single nucleotide polymorphisms, can be causative for PD and affect conformational changes of the protein, can contribute to changes in expression of alpha-synuclein and its isoforms, and can influence regulation of temporal as well as spatial levels of alpha-synuclein in different tissues and cell types. A lot of progress has been made to understand both the physiological transcriptional and epigenetic regulation of the alpha-synuclein gene and whether changes in transcriptional regulation could lead to disease and neurodegeneration in PD and related alpha-synucleinopathies. Although the histopathological changes in these neurodegenerative disorders are similar, the temporal and spatial presentation and progression distinguishes them which could be in part due to changes or disruption of transcriptional regulation of alpha-synuclein. In this review, we describe different genetic alterations that contribute to PD and neurodegenerative conditions and review aspects of transcriptional regulation of the alpha-synuclein gene in the context of the development of PD. New technologies, advanced gene engineering and stem cell modeling, are on the horizon to shed further light on a better understanding of gene regulatory processes and exploit them for therapeutic developments.
Collapse
Affiliation(s)
- Desiree A Piper
- Parkinson's Institute and Clinical Center, Sunnyvale, CA, United States
| | - Danuta Sastre
- Parkinson's Institute and Clinical Center, Sunnyvale, CA, United States
| | - Birgitt Schüle
- Parkinson's Institute and Clinical Center, Sunnyvale, CA, United States
| |
Collapse
|
36
|
Maini I, Ivanovski I, Djuric O, Caraffi SG, Errichiello E, Marinelli M, Franchi F, Bizzarri V, Rosato S, Pollazzon M, Gelmini C, Malacarne M, Fusco C, Gargano G, Bernasconi S, Zuffardi O, Garavelli L. Prematurity, ventricular septal defect and dysmorphisms are independent predictors of pathogenic copy number variants: a retrospective study on array-CGH results and phenotypical features of 293 children with neurodevelopmental disorders and/or multiple congenital anomalies. Ital J Pediatr 2018; 44:34. [PMID: 29523172 PMCID: PMC5845186 DOI: 10.1186/s13052-018-0467-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 02/21/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Since 2010, array-CGH (aCGH) has been the first-tier test in the diagnostic approach of children with neurodevelopmental disorders (NDD) or multiple congenital anomalies (MCA) of unknown origin. Its broad application led to the detection of numerous variants of uncertain clinical significance (VOUS). How to appropriately interpret aCGH results represents a challenge for the clinician. METHOD We present a retrospective study on 293 patients with age range 1 month - 29 years (median 7 years) with NDD and/or MCA and/or dysmorphisms, investigated through aCGH between 2005 and 2016. The aim of the study was to analyze clinical and molecular cytogenetic data in order to identify what elements could be useful to interpret unknown or poorly described aberrations. Comparison of phenotype and cytogenetic characteristics through univariate analysis and multivariate logistic regression was performed. RESULTS Copy number variations (CNVs) with a frequency < 1% were detected in 225 patients of the total sample, while 68 patients presented only variants with higher frequency (heterozygous deletions or amplification) and were considered to have negative aCGH. Proved pathogenic CNVs were detected in 70 patients (20.6%). Delayed psychomotor development, intellectual disability, intrauterine growth retardation (IUGR), prematurity, congenital heart disease, cerebral malformations and dysmorphisms correlated to reported pathogenic CNVs. Prematurity, ventricular septal defect and dysmorphisms remained significant predictors of pathogenic CNVs in the multivariate logistic model whereas abnormal EEG and limb dysmorphisms were mainly detected in the group with likely pathogenic VOUS. A flow-chart regarding the care for patients with NDD and/or MCA and/or dysmorphisms and the interpretation of aCGH has been made on the basis of the data inferred from this study and literature. CONCLUSION Our work contributes to make the investigative process of CNVs more informative and suggests possible directions in aCGH interpretation and phenotype correlation.
Collapse
MESH Headings
- Abnormalities, Multiple/diagnosis
- Abnormalities, Multiple/genetics
- Adolescent
- Adult
- Child
- Child, Preschool
- Comparative Genomic Hybridization/methods
- DNA Copy Number Variations
- Facies
- Female
- Genetic Testing
- Heart Septal Defects, Ventricular/diagnosis
- Heart Septal Defects, Ventricular/genetics
- Humans
- Infant
- Infant, Newborn
- Infant, Premature, Diseases/diagnosis
- Infant, Premature, Diseases/genetics
- Male
- Muscular Atrophy/diagnosis
- Muscular Atrophy/genetics
- Neurodevelopmental Disorders/diagnosis
- Neurodevelopmental Disorders/genetics
- Phenotype
- Retrospective Studies
- Young Adult
Collapse
Affiliation(s)
- I. Maini
- Clinical Genetics Unit, Maternal and Child Health Department, AUSL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
- Child Neuropsychiatry Unit, Maternal and Child Health Department, AUSL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - I. Ivanovski
- Clinical Genetics Unit, Maternal and Child Health Department, AUSL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
- Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - O. Djuric
- Institute of Epidemiology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - S. G. Caraffi
- Clinical Genetics Unit, Maternal and Child Health Department, AUSL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - E. Errichiello
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - M. Marinelli
- Laboratory of Genetics, Maternal and Child Health Department, AUSL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - F. Franchi
- Laboratory of Genetics, Maternal and Child Health Department, AUSL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - V. Bizzarri
- Laboratory of Genetics, Maternal and Child Health Department, AUSL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - S. Rosato
- Clinical Genetics Unit, Maternal and Child Health Department, AUSL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - M. Pollazzon
- Clinical Genetics Unit, Maternal and Child Health Department, AUSL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - C. Gelmini
- Clinical Genetics Unit, Maternal and Child Health Department, AUSL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - M. Malacarne
- Division of Medical Genetics, Galliera Hospital, Genoa, Italy
| | - C. Fusco
- Child Neuropsychiatry Unit, Maternal and Child Health Department, AUSL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - G. Gargano
- Neonatal Intensive Care Unit (NICU), Maternal and Child Health Department, AUSL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - S. Bernasconi
- Former Director Pediatric Department, University of Parma, Parma, Italy
| | - O. Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - L. Garavelli
- Clinical Genetics Unit, Maternal and Child Health Department, AUSL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
- Santa Maria Nuova Hospital, viale Risorgimento 80, 42123 Reggio Emilia, Italy
| |
Collapse
|
37
|
Lu N, Wang J, Zhu B, Zhang M, Qi F, Wang X, Gu J. Whole-exome sequencing to identify novel mutations of nevoid basal cell carcinoma syndrome in a Chinese population. Cancer Biomark 2017; 21:161-168. [DOI: 10.3233/cbm-170541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
d’Orsi G, Martino T, Palumbo O, Pascarella MG, Palumbo P, Di Claudio MT, Avolio C, Carella M. The epilepsy phenotype in adult patients with intellectual disability and pathogenic copy number variants. Seizure 2017; 53:86-93. [PMID: 29156220 DOI: 10.1016/j.seizure.2017.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 12/30/2022] Open
|
39
|
Wilfert AB, Sulovari A, Turner TN, Coe BP, Eichler EE. Recurrent de novo mutations in neurodevelopmental disorders: properties and clinical implications. Genome Med 2017; 9:101. [PMID: 29179772 PMCID: PMC5704398 DOI: 10.1186/s13073-017-0498-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Next-generation sequencing (NGS) is now more accessible to clinicians and researchers. As a result, our understanding of the genetics of neurodevelopmental disorders (NDDs) has rapidly advanced over the past few years. NGS has led to the discovery of new NDD genes with an excess of recurrent de novo mutations (DNMs) when compared to controls. Development of large-scale databases of normal and disease variation has given rise to metrics exploring the relative tolerance of individual genes to human mutation. Genetic etiology and diagnosis rates have improved, which have led to the discovery of new pathways and tissue types relevant to NDDs. In this review, we highlight several key findings based on the discovery of recurrent DNMs ranging from copy number variants to point mutations. We explore biases and patterns of DNM enrichment and the role of mosaicism and secondary mutations in variable expressivity. We discuss the benefit of whole-genome sequencing (WGS) over whole-exome sequencing (WES) to understand more complex, multifactorial cases of NDD and explain how this improved understanding aids diagnosis and management of these disorders. Comprehensive assessment of the DNM landscape across the genome using WGS and other technologies will lead to the development of novel functional and bioinformatics approaches to interpret DNMs and drive new insights into NDD biology.
Collapse
Affiliation(s)
- Amy B Wilfert
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Arvis Sulovari
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Tychele N Turner
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Bradley P Coe
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
40
|
Caballero Pérez V, López Pisón F, Miramar Gallart M, González Álvarez A, García Jiménez M, García Iñiguez J, Orden Rueda C, Gil Hernández I, Fuertes Rodrigo C, Fernando Martínez R, Rodríguez Valle A, Alcaine Villarroya M. Phenotype in patients with intellectual disability and pathological results in array CGH. NEUROLOGÍA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.nrleng.2016.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
41
|
Lee KY, Shin E. Application of array comparative genomic hybridization in Korean children under 6 years old with global developmental delay. KOREAN JOURNAL OF PEDIATRICS 2017; 60:282-289. [PMID: 29042871 PMCID: PMC5638834 DOI: 10.3345/kjp.2017.60.9.282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/11/2017] [Accepted: 07/27/2017] [Indexed: 11/30/2022]
Abstract
Purpose Recent advancements in molecular techniques have greatly contributed to the discovery of genetic causes of unexplained developmental delay. Here, we describe the results of array comparative genomic hybridization (CGH) and the clinical features of 27 patients with global developmental delay. Methods We included 27 children who fulfilled the following criteria: Korean children under 6 years with global developmental delay; children who had at least one or more physical or neurological problem other than global developmental delay; and patients in whom both array CGH and G-banded karyotyping tests were performed. Results Fifteen male and 12 female patients with a mean age of 29.3±17.6 months were included. The most common physical and neurological abnormalities were facial dysmorphism (n=16), epilepsy (n=7), and hypotonia (n=7). Pathogenic copy number variation results were observed in 4 patients (14.8%): 18.73 Mb dup(2)(p24.2p25.3) and 1.62 Mb del(20p13) (patient 1); 22.31 Mb dup(2) (p22.3p25.1) and 4.01 Mb dup(2)(p21p22.1) (patient 2); 12.08 Mb del(4)(q22.1q24) (patient 3); and 1.19 Mb del(1)(q21.1) (patient 4). One patient (3.7%) displayed a variant of uncertain significance. Four patients (14.8%) displayed discordance between G-banded karyotyping and array CGH results. Among patients with normal array CGH results, 4 (16%) revealed brain anomalies such as schizencephaly and hydranencephaly. One patient was diagnosed with Rett syndrome and one with Möbius syndrome. Conclusion As chromosomal microarray can elucidate the cause of previously unexplained developmental delay, it should be considered as a first-tier cytogenetic diagnostic test for children with unexplained developmental delay.
Collapse
Affiliation(s)
- Kyung Yeon Lee
- Department of Pediatrics, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Eunsim Shin
- Korea Clinical Laboratory, Molecular Diagnostics Team, Seoul, Korea
| |
Collapse
|
42
|
Abstract
The idea that disturbances occurring early in brain development contribute to the pathogenesis of schizophrenia, often referred to as the neurodevelopmental hypothesis, has become widely accepted. Despite this, the disorder is viewed as being distinct nosologically, and by implication pathophysiologically and clinically, from syndromes such as autism spectrum disorders, attention-deficit/hyperactivity disorder (ADHD) and intellectual disability, which typically present in childhood and are grouped together as "neurodevelopmental disorders". An alternative view is that neurodevelopmental disorders, including schizophrenia, rather than being etiologically discrete entities, are better conceptualized as lying on an etiological and neurodevelopmental continuum, with the major clinical syndromes reflecting the severity, timing and predominant pattern of abnormal brain development and resulting functional abnormalities. It has also been suggested that, within the neurodevelopmental continuum, severe mental illnesses occupy a gradient of decreasing neurodevelopmental impairment as follows: intellectual disability, autism spectrum disorders, ADHD, schizophrenia and bipolar disorder. Recent genomic studies have identified large numbers of specific risk DNA changes and offer a direct and robust test of the predictions of the neurodevelopmental continuum model and gradient hypothesis. These findings are reviewed in detail. They not only support the view that schizophrenia is a disorder whose origins lie in disturbances of brain development, but also that it shares genetic risk and pathogenic mechanisms with the early onset neurodevelopmental disorders (intellectual disability, autism spectrum disorders and ADHD). They also support the idea that these disorders lie on a gradient of severity, implying that they differ to some extent quantitatively as well as qualitatively. These findings have important implications for nosology, clinical practice and research.
Collapse
Affiliation(s)
- Michael J Owen
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Michael C O'Donovan
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| |
Collapse
|
43
|
Gambin T, Yuan B, Bi W, Liu P, Rosenfeld JA, Coban-Akdemir Z, Pursley AN, Nagamani SCS, Marom R, Golla S, Dengle L, Petrie HG, Matalon R, Emrick L, Proud MB, Treadwell-Deering D, Chao HT, Koillinen H, Brown C, Urraca N, Mostafavi R, Bernes S, Roeder ER, Nugent KM, Bader PI, Bellus G, Cummings M, Northrup H, Ashfaq M, Westman R, Wildin R, Beck AE, Immken L, Elton L, Varghese S, Buchanan E, Faivre L, Lefebvre M, Schaaf CP, Walkiewicz M, Yang Y, Kang SHL, Lalani SR, Bacino CA, Beaudet AL, Breman AM, Smith JL, Cheung SW, Lupski JR, Patel A, Shaw CA, Stankiewicz P. Identification of novel candidate disease genes from de novo exonic copy number variants. Genome Med 2017; 9:83. [PMID: 28934986 PMCID: PMC5607840 DOI: 10.1186/s13073-017-0472-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/01/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Exon-targeted microarrays can detect small (<1000 bp) intragenic copy number variants (CNVs), including those that affect only a single exon. This genome-wide high-sensitivity approach increases the molecular diagnosis for conditions with known disease-associated genes, enables better genotype-phenotype correlations, and facilitates variant allele detection allowing novel disease gene discovery. METHODS We retrospectively analyzed data from 63,127 patients referred for clinical chromosomal microarray analysis (CMA) at Baylor Genetics laboratories, including 46,755 individuals tested using exon-targeted arrays, from 2007 to 2017. Small CNVs harboring a single gene or two to five non-disease-associated genes were identified; the genes involved were evaluated for a potential disease association. RESULTS In this clinical population, among rare CNVs involving any single gene reported in 7200 patients (11%), we identified 145 de novo autosomal CNVs (117 losses and 28 intragenic gains), 257 X-linked deletion CNVs in males, and 1049 inherited autosomal CNVs (878 losses and 171 intragenic gains); 111 known disease genes were potentially disrupted by de novo autosomal or X-linked (in males) single-gene CNVs. Ninety-one genes, either recently proposed as candidate disease genes or not yet associated with diseases, were disrupted by 147 single-gene CNVs, including 37 de novo deletions and ten de novo intragenic duplications on autosomes and 100 X-linked CNVs in males. Clinical features in individuals with de novo or X-linked CNVs encompassing at most five genes (224 bp to 1.6 Mb in size) were compared to those in individuals with larger-sized deletions (up to 5 Mb in size) in the internal CMA database or loss-of-function single nucleotide variants (SNVs) detected by clinical or research whole-exome sequencing (WES). This enabled the identification of recently published genes (BPTF, NONO, PSMD12, TANGO2, and TRIP12), novel candidate disease genes (ARGLU1 and STK3), and further confirmation of disease association for two recently proposed disease genes (MEIS2 and PTCHD1). Notably, exon-targeted CMA detected several pathogenic single-exon CNVs missed by clinical WES analyses. CONCLUSIONS Together, these data document the efficacy of exon-targeted CMA for detection of genic and exonic CNVs, complementing and extending WES in clinical diagnostics, and the potential for discovery of novel disease genes by genome-wide assay.
Collapse
Affiliation(s)
- Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Institute of Computer Science, Warsaw University of Technology, Warsaw, 00-665, Poland.,Department of Medical Genetics, Institute of Mother and Child, Warsaw, 01-211, Poland
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Amber N Pursley
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Sailaja Golla
- Division of Pediatric Neurology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lauren Dengle
- Division of Pediatric Neurology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - Reuben Matalon
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, 77555, USA.,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Lisa Emrick
- Department of Pediatric, Section of Child Neurology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Monica B Proud
- Department of Pediatric, Section of Child Neurology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Diane Treadwell-Deering
- Department of Psychiatry and Behavioral Sciences, Child and Adolescent Psychiatry Division, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hsiao-Tuan Chao
- Department of Pediatric, Section of Child Neurology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Hannele Koillinen
- Department of Clinical Genetics, Helsinki University Hospital, Helsinki, 00029, Finland
| | - Chester Brown
- Genetics Division, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, 38105, USA.,Le Bonheur Children's Hospital, Memphis, TN, 38103, USA
| | - Nora Urraca
- Le Bonheur Children's Hospital, Memphis, TN, 38103, USA
| | | | | | - Elizabeth R Roeder
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Department of Pediatrics, Baylor College of Medicine, San Antonio, TX, 78207, USA
| | - Kimberly M Nugent
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Department of Pediatrics, Baylor College of Medicine, San Antonio, TX, 78207, USA
| | - Patricia I Bader
- Northeast Indiana Genetic Counseling Center, Wayne, IN, 46804, USA
| | - Gary Bellus
- Section of Clinical Genetics & Metabolism, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Michael Cummings
- Department of Psychiatry Erie County Medical Center, Buffalo, NY, 14215, USA
| | - Hope Northrup
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Myla Ashfaq
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | | | - Robert Wildin
- St. Luke's Children's Hospital, Boise, ID, 83702, USA.,The National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | - Anita E Beck
- Seattle Children's Hospital, Seattle, WA, 98105, USA.,Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, 98195, USA
| | | | - Lindsay Elton
- Child Neurology Consultants of Austin, Austin, TX, 78731, USA
| | - Shaun Varghese
- THINK Neurology for Kids/Children's Memorial Hermann Hospital, The Woodlands, TX, 77380, USA
| | - Edward Buchanan
- Division of Plastic Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Laurence Faivre
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Est, FHU-TRANSLAD, CHU Dijon, Dijon, France
| | - Mathilde Lefebvre
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Est, FHU-TRANSLAD, CHU Dijon, Dijon, France
| | - Christian P Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Magdalena Walkiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Sung-Hae L Kang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Arthur L Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Amy M Breman
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Janice L Smith
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.,Texas Children's Hospital, Houston, TX, 77030, USA
| | - Ankita Patel
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA. .,Baylor Genetics, Houston, TX, 77021, USA.
| |
Collapse
|
44
|
Pal LR, Kundu K, Yin Y, Moult J. CAGI4 SickKids clinical genomes challenge: A pipeline for identifying pathogenic variants. Hum Mutat 2017; 38:1169-1181. [PMID: 28512736 PMCID: PMC5577808 DOI: 10.1002/humu.23257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022]
Abstract
Compared with earlier more restricted sequencing technologies, identification of rare disease variants using whole-genome sequence has the possibility of finding all causative variants, but issues of data quality and an overwhelming level of background variants complicate the analysis. The CAGI4 SickKids clinical genome challenge provided an opportunity to assess the landscape of variants found in a difficult set of 25 unsolved rare disease cases. To address the challenge, we developed a three-stage pipeline, first carefully analyzing data quality, then classifying high-quality gene-specific variants into seven categories, and finally examining each candidate variant for compatibility with the often complex phenotypes of these patients for final prioritization. Variants consistent with the phenotypes were found in 24 out of the 25 cases, and in a number of these, there are prioritized variants in multiple genes. Data quality analysis suggests that some of the selected variants are likely incorrect calls, complicating interpretation. The data providers followed up on three suggested variants with Sanger sequencing, and in one case, a prioritized variant was confirmed as likely causative by the referring physician, providing a diagnosis in a previously intractable case.
Collapse
Affiliation(s)
- Lipika R. Pal
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850
| | - Kunal Kundu
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850
- Computational Biology, Bioinformatics and Genomics, Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
| | - Yizhou Yin
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850
- Computational Biology, Bioinformatics and Genomics, Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
| | - John Moult
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, MD 20850
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| |
Collapse
|
45
|
Reggiani C, Coppens S, Sekhara T, Dimov I, Pichon B, Lufin N, Addor MC, Belligni EF, Digilio MC, Faletra F, Ferrero GB, Gerard M, Isidor B, Joss S, Niel-Bütschi F, Perrone MD, Petit F, Renieri A, Romana S, Topa A, Vermeesch JR, Lenaerts T, Casimir G, Abramowicz M, Bontempi G, Vilain C, Deconinck N, Smits G. Novel promoters and coding first exons in DLG2 linked to developmental disorders and intellectual disability. Genome Med 2017; 9:67. [PMID: 28724449 PMCID: PMC5518101 DOI: 10.1186/s13073-017-0452-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/20/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Tissue-specific integrative omics has the potential to reveal new genic elements important for developmental disorders. METHODS Two pediatric patients with global developmental delay and intellectual disability phenotype underwent array-CGH genetic testing, both showing a partial deletion of the DLG2 gene. From independent human and murine omics datasets, we combined copy number variations, histone modifications, developmental tissue-specific regulation, and protein data to explore the molecular mechanism at play. RESULTS Integrating genomics, transcriptomics, and epigenomics data, we describe two novel DLG2 promoters and coding first exons expressed in human fetal brain. Their murine conservation and protein-level evidence allowed us to produce new DLG2 gene models for human and mouse. These new genic elements are deleted in 90% of 29 patients (public and in-house) showing partial deletion of the DLG2 gene. The patients' clinical characteristics expand the neurodevelopmental phenotypic spectrum linked to DLG2 gene disruption to cognitive and behavioral categories. CONCLUSIONS While protein-coding genes are regarded as well known, our work shows that integration of multiple omics datasets can unveil novel coding elements. From a clinical perspective, our work demonstrates that two new DLG2 promoters and exons are crucial for the neurodevelopmental phenotypes associated with this gene. In addition, our work brings evidence for the lack of cross-annotation in human versus mouse reference genomes and nucleotide versus protein databases.
Collapse
Affiliation(s)
- Claudio Reggiani
- Interuniversity Institute of Bioinformatics in Brussels ULB-VUB, Brussels, 1050 Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, 1050 Belgium
| | - Sandra Coppens
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, 1070 Belgium
- Neuropediatrics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, 1020 Belgium
| | - Tayeb Sekhara
- Neuropediatrics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, 1020 Belgium
- Present address: Neuropediatrics, Clinique Saint-Anne Saint-Rémy - CHIREC, Brussels, 1070 Belgium
| | - Ivan Dimov
- Faculté de Médecine, Université Libre de Bruxelles, Brussels, 1070 Belgium
| | - Bruno Pichon
- ULB Center of Medical Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, 1070 Belgium
| | - Nicolas Lufin
- Interuniversity Institute of Bioinformatics in Brussels ULB-VUB, Brussels, 1050 Belgium
- ULB Center of Medical Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, 1070 Belgium
| | - Marie-Claude Addor
- Service de Médecine Génétique, Centre Hospitalier Universitaire Vaudois CHUV, Lausanne, 1011 Switzerland
| | - Elga Fabia Belligni
- Department of Public Health and Pediatrics, University of Torino, Turin, 10126 Italy
| | | | - Flavio Faletra
- S.C. Medical Genetics, Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, 34137 Italy
| | | | - Marion Gerard
- Laboratory of Medical Genetics, CHU de Caen - Hôpital Clémenceau, Caen, 14033 Caen Cedex, France
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, Nantes, 44093 Nantes Cedex 1, France
| | - Shelagh Joss
- West of Scotland Clinical Genetics Service, South Glasgow University Hospitals, Glasgow, G51 4TF UK
| | - Florence Niel-Bütschi
- Service de Médecine Génétique, Centre Hospitalier Universitaire Vaudois CHUV, Lausanne, 1011 Switzerland
| | - Maria Dolores Perrone
- S.C. Medical Genetics, Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, 34137 Italy
- Present address: Assisted Fertilization Department, Casa di Cura Città di Udine, Udine, 33100 Italy
| | - Florence Petit
- Service de Génétique, CHRU de Lille - Hôpital Jeanne de Flandre, Lille, 59000 France
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, 53100 Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, 53100 Italy
| | - Serge Romana
- Service d’Histologie Embryologie Cytogénétique, Hôpital Necker Enfants Malades, Paris, 75015 France
- Université Paris Descartes - Institut IMAGINE, Paris, 75015 France
| | - Alexandra Topa
- Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, 413 45 Sweden
| | | | - Tom Lenaerts
- Interuniversity Institute of Bioinformatics in Brussels ULB-VUB, Brussels, 1050 Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, 1050 Belgium
- AI lab, Vrije Universiteit Brussel, Brussels, 1050 Belgium
| | - Georges Casimir
- Pediatrics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, 1020 Belgium
| | - Marc Abramowicz
- Interuniversity Institute of Bioinformatics in Brussels ULB-VUB, Brussels, 1050 Belgium
- ULB Center of Medical Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, 1070 Belgium
| | - Gianluca Bontempi
- Interuniversity Institute of Bioinformatics in Brussels ULB-VUB, Brussels, 1050 Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, 1050 Belgium
| | - Catheline Vilain
- Interuniversity Institute of Bioinformatics in Brussels ULB-VUB, Brussels, 1050 Belgium
- ULB Center of Medical Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, 1070 Belgium
- Genetics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, 1020 Belgium
| | - Nicolas Deconinck
- Neuropediatrics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, 1020 Belgium
| | - Guillaume Smits
- Interuniversity Institute of Bioinformatics in Brussels ULB-VUB, Brussels, 1050 Belgium
- ULB Center of Medical Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, 1070 Belgium
- Genetics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, 1020 Belgium
| |
Collapse
|
46
|
Mouse models of 17q21.31 microdeletion and microduplication syndromes highlight the importance of Kansl1 for cognition. PLoS Genet 2017; 13:e1006886. [PMID: 28704368 PMCID: PMC5531616 DOI: 10.1371/journal.pgen.1006886] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 07/27/2017] [Accepted: 06/21/2017] [Indexed: 11/24/2022] Open
Abstract
Koolen-de Vries syndrome (KdVS) is a multi-system disorder characterized by intellectual disability, friendly behavior, and congenital malformations. The syndrome is caused either by microdeletions in the 17q21.31 chromosomal region or by variants in the KANSL1 gene. The reciprocal 17q21.31 microduplication syndrome is associated with psychomotor delay, and reduced social interaction. To investigate the pathophysiology of 17q21.31 microdeletion and microduplication syndromes, we generated three mouse models: 1) the deletion (Del/+); or 2) the reciprocal duplication (Dup/+) of the 17q21.31 syntenic region; and 3) a heterozygous Kansl1 (Kans1+/-) model. We found altered weight, general activity, social behaviors, object recognition, and fear conditioning memory associated with craniofacial and brain structural changes observed in both Del/+ and Dup/+ animals. By investigating hippocampus function, we showed synaptic transmission defects in Del/+ and Dup/+ mice. Mutant mice with a heterozygous loss-of-function mutation in Kansl1 displayed similar behavioral and anatomical phenotypes compared to Del/+ mice with the exception of sociability phenotypes. Genes controlling chromatin organization, synaptic transmission and neurogenesis were upregulated in the hippocampus of Del/+ and Kansl1+/- animals. Our results demonstrate the implication of KANSL1 in the manifestation of KdVS phenotypes and extend substantially our knowledge about biological processes affected by these mutations. Clear differences in social behavior and gene expression profiles between Del/+ and Kansl1+/- mice suggested potential roles of other genes affected by the 17q21.31 deletion. Together, these novel mouse models provide new genetic tools valuable for the development of therapeutic approaches. The 17q21.31 deletion syndrome, also named Koolen-de Vries syndrome (KdVS), is a rare copy number variants associated in humans with intellectual disability, friendly behavior, congenital malformations. The syndrome is caused either by microdeletions in the 17q21.31 region or by variants in the KANSL1 gene in human. The reciprocal 17q21.31 microduplication syndrome is not so well characterized. To investigate the pathophysiology of the syndromes, we studied the deletion, the duplication of the syntenic region and a heterozygous Kansl1 mutant in the mouse. We found affected morphology and cognition, similar to human condition, with genes controlling chromatin organization, synaptic transmission and neurogenesis dysregulated in the hippocampus of KdVS models. In addition we found that synaptic transmission was altered in KdVS mice. Our results demonstrate the implication of KANSL1 in the manifestation of KdVS and extend substantially our knowledge about altered biological processes. Nevertheless, phenotypic differences between deletion and Kansl1+/- models suggested roles of other genes affected by the 17q21.31 deletion.
Collapse
|
47
|
Fletcher E, Porteous M, McKenzie KJ, Maher EJ, Evans MJ. Fetal Dysmorphology-Still an Essential Art. Analysis of the Limitations of Microarray in a Fetal Population and a Look Toward the Genome Sequencing Era. Pediatr Dev Pathol 2017; 20:288-297. [PMID: 28727969 DOI: 10.1177/1093526617693104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cytogenomic microarray allows assessment of the genome at higher resolutions than traditional karyotyping. The objective of this study is to evaluate the utility of microarray in a routine fetal autopsy setting before the advent of routine fetal exome/genome sequencing and the issues these technologies may generate. A systematic review of fetal postmortems at 12-24 weeks gestation between January 2011 and December 2014 was undertaken. Cases where there was no consent for audit, research, or genetic testing were excluded as were cases referred to the Procurator Fiscal, stillbirths, and neonatal deaths. Copy number variations were detected in 16 cases. In addition, there was 1 case of uniparental disomy; not all of these were related to the phenotype. There were a number of cases with phenotypic abnormalities and normal array results. Five of these underwent directed mutation analysis-3 were positive. Genetic laboratory investigations such as microarray and Quantitative Fluorescent-Polymerase Chain Reaction may increase the diagnostic yield in the assessment of fetal dysmorphology. However, this study shows that genetic results not only require careful review given the potential uncertain significance but also require phenotypic assessment of the fetus by a competent fetal dysmorphologist to determine the likely causative effect of any detected anomaly. This best practice will also extend to next generation sequencing and interpretation of variants of unknown significance. Fetal medicine teams should ideally include specialists well versed in assessment of fetal anomaly to provide families with the best possible information about the cause of their pregnancy loss and their options for future pregnancies.
Collapse
Affiliation(s)
- E Fletcher
- 1 Department of Clinical Genetics, South East Scotland NHS Service, Western General Hospital, Edinburgh, Scotland
| | - M Porteous
- 1 Department of Clinical Genetics, South East Scotland NHS Service, Western General Hospital, Edinburgh, Scotland
| | - K J McKenzie
- 3 Department of Pathology, Royal Infirmary of Edinburgh, Edinburgh, Scotland
| | - E J Maher
- 2 Department of Cytogenetics, South East Scotland NHS Service, Western General Hospital, Edinburgh, Scotland
| | - M J Evans
- 3 Department of Pathology, Royal Infirmary of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
48
|
Quintela I, Eirís J, Gómez-Lado C, Pérez-Gay L, Dacruz D, Cruz R, Castro-Gago M, Míguez L, Carracedo Á, Barros F. Copy number variation analysis of patients with intellectual disability from North-West Spain. Gene 2017; 626:189-199. [PMID: 28506748 DOI: 10.1016/j.gene.2017.05.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/07/2017] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
Abstract
Intellectual disability (ID) is a complex and phenotypically heterogeneous neurodevelopmental disorder characterized by significant deficits in cognitive and adaptive skills, debuting during the developmental period. In the last decade, microarray-based copy number variation (CNV) analysis has been proved as a strategy particularly useful in the discovery of loci and candidate genes associated with these phenotypes and is widely used in the clinics with a diagnostic purpose. In this study, we evaluated the usefulness of two genome-wide high density SNP microarrays -Cytogenetics Whole-Genome 2.7M SNP array (n=126 patients; Group 1) and CytoScan High-Density SNP array (n=447 patients; Group 2)- in the detection of clinically relevant CNVs in a cohort of ID patients from Galicia (NW Spain). In 159 (27.7%) patients, we detected 186 rare exonic chromosomal imbalances, that were grouped into the following classes: Clinically relevant (67/186; 36.0%), of unknown clinical significance (93/186; 50.0%) and benign (26/186; 14.0%). The 67 pathogenic CNVs were identified in 64 patients, which means an overall diagnostic yield of 11.2%. Overall, we confirmed that ID is a genetically heterogeneous condition and emphasized the importance of using genome-wide high density SNP microarrays in the detection of its genetic causes. Additionally, we provided clinical and molecular data of patients with pathogenic or likely pathogenic CNVs and discussed the potential implication in neurodevelopmental disorders of genes located within these variants.
Collapse
Affiliation(s)
- Inés Quintela
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro Nacional de Genotipado - Plataforma de Recursos Biomoleculares y Bioinformáticos - Instituto de Salud Carlos III (CeGen-PRB2-ISCIII), Santiago de Compostela, Spain
| | - Jesús Eirís
- Complexo Hospitalario Universitario de Santiago de Compostela, Unidad de Neurología Pediátrica, Departamento de Pediatría, Santiago de Compostela, Spain
| | - Carmen Gómez-Lado
- Complexo Hospitalario Universitario de Santiago de Compostela, Unidad de Neurología Pediátrica, Departamento de Pediatría, Santiago de Compostela, Spain
| | - Laura Pérez-Gay
- Hospital Universitario Lucus Augusti, Unidad de Neurología Pediátrica, Departamento de Pediatría, Lugo, Spain
| | - David Dacruz
- Complexo Hospitalario Universitario de Santiago de Compostela, Unidad de Neurología Pediátrica, Departamento de Pediatría, Santiago de Compostela, Spain
| | - Raquel Cruz
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, CIBER de Enfermedades Raras (CIBERER)-Instituto de Salud Carlos III, Santiago de Compostela, Spain
| | - Manuel Castro-Gago
- Complexo Hospitalario Universitario de Santiago de Compostela, Unidad de Neurología Pediátrica, Departamento de Pediatría, Santiago de Compostela, Spain
| | - Luz Míguez
- Grupo de Medicina Xenómica, CIBERER, Fundación Pública Galega de Medicina Xenómica - SERGAS, Santiago de Compostela, Spain
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro Nacional de Genotipado - Plataforma de Recursos Biomoleculares y Bioinformáticos - Instituto de Salud Carlos III (CeGen-PRB2-ISCIII), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, CIBERER, Fundación Pública Galega de Medicina Xenómica - SERGAS, Santiago de Compostela, Spain; King Abdulaziz University, Center of Excellence in Genomic Medicine Research, Jeddah, Saudi Arabia
| | - Francisco Barros
- Grupo de Medicina Xenómica, CIBERER, Fundación Pública Galega de Medicina Xenómica - SERGAS, Santiago de Compostela, Spain.
| |
Collapse
|
49
|
Stessman HAF, Xiong B, Coe BP, Wang T, Hoekzema K, Fenckova M, Kvarnung M, Gerdts J, Trinh S, Cosemans N, Vives L, Lin J, Turner TN, Santen G, Ruivenkamp C, Kriek M, van Haeringen A, Aten E, Friend K, Liebelt J, Barnett C, Haan E, Shaw M, Gecz J, Anderlid BM, Nordgren A, Lindstrand A, Schwartz C, Kooy RF, Vandeweyer G, Helsmoortel C, Romano C, Alberti A, Vinci M, Avola E, Giusto S, Courchesne E, Pramparo T, Pierce K, Nalabolu S, Amaral D, Scheffer IE, Delatycki MB, Lockhart PJ, Hormozdiari F, Harich B, Castells-Nobau A, Xia K, Peeters H, Nordenskjöld M, Schenck A, Bernier RA, Eichler EE. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat Genet 2017; 49:515-526. [PMID: 28191889 PMCID: PMC5374041 DOI: 10.1038/ng.3792] [Citation(s) in RCA: 380] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/22/2017] [Indexed: 12/12/2022]
Abstract
Gene-disruptive mutations contribute to the biology of neurodevelopmental disorders (NDDs), but most of the related pathogenic genes are not known. We sequenced 208 candidate genes from >11,730 cases and >2,867 controls. We identified 91 genes, including 38 new NDD genes, with an excess of de novo mutations or private disruptive mutations in 5.7% of cases. Drosophila functional assays revealed a subset with increased involvement in NDDs. We identified 25 genes showing a bias for autism versus intellectual disability and highlighted a network associated with high-functioning autism (full-scale IQ >100). Clinical follow-up for NAA15, KMT5B, and ASH1L highlighted new syndromic and nonsyndromic forms of disease.
Collapse
Affiliation(s)
| | - Bo Xiong
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of forensic medicine and Institute of Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bradley P. Coe
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Tianyun Wang
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Michaela Fenckova
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Malin Kvarnung
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Jennifer Gerdts
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Sandy Trinh
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Nele Cosemans
- Centre for Human Genetics, KU Leuven and Leuven Autism Research (LAuRes), Leuven, Belgium
| | - Laura Vives
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Janice Lin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Tychele N. Turner
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Gijs Santen
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Claudia Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Marjolein Kriek
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Emmelien Aten
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Kathryn Friend
- Robinson Research Institute and the University of Adelaide at the Women’s and Children’s Hospital, North Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Jan Liebelt
- South Australian Clinical Genetics Service, SA Pathology (at Women’s and Children’s Hospital), Adelaide, Australia, Australia
| | - Christopher Barnett
- South Australian Clinical Genetics Service, SA Pathology (at Women’s and Children’s Hospital), Adelaide, Australia, Australia
| | - Eric Haan
- Robinson Research Institute and the University of Adelaide at the Women’s and Children’s Hospital, North Adelaide, Australia
- South Australian Clinical Genetics Service, SA Pathology (at Women’s and Children’s Hospital), Adelaide, Australia, Australia
| | - Marie Shaw
- Robinson Research Institute and the University of Adelaide at the Women’s and Children’s Hospital, North Adelaide, Australia
| | - Jozef Gecz
- Robinson Research Institute and the University of Adelaide at the Women’s and Children’s Hospital, North Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Charles Schwartz
- Center for Molecular Studies, J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Geert Vandeweyer
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | - Stefania Giusto
- Unit of Neurology, IRCCS Associazione Oasi Maria Santissima, Troina, Italy
| | | | | | - Karen Pierce
- UCSD, Autism Center of Excellence, La Jolla, CA, USA
| | | | - David Amaral
- MIND Institute and the University of California Davis School of Medicine, Sacramento, CA, USA
| | - Ingrid E. Scheffer
- Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Martin B. Delatycki
- Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Parkville, Victoria, Australia
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Paul J. Lockhart
- Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Fereydoun Hormozdiari
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Davis, CA, USA
| | - Benjamin Harich
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Anna Castells-Nobau
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Kun Xia
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hilde Peeters
- Centre for Human Genetics, KU Leuven and Leuven Autism Research (LAuRes), Leuven, Belgium
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Annette Schenck
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Raphael A. Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
50
|
Epistasis in Neuropsychiatric Disorders. Trends Genet 2017; 33:256-265. [PMID: 28268034 DOI: 10.1016/j.tig.2017.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 12/12/2022]
Abstract
The contribution of epistasis to human disease remains unclear. However, several studies have now identified epistatic interactions between common variants that increase the risk of a neuropsychiatric disorder, while there is growing evidence that genetic interactions contribute to the pathogenicity of rare, multigenic copy-number variants (CNVs) that have been observed in patients. This review discusses the current evidence for epistatic events and genetic interactions in neuropsychiatric disorders, how paradigm shifts in the phenotypic classification of patients would empower the search for epistatic effects, and how network and cellular models might be employed to further elucidate relevant epistatic interactions.
Collapse
|