1
|
Bodenbender JP, Bethge L, Stingl K, Mazzola P, Haack T, Biskup S, Wissinger B, Weisschuh N, Kohl S, Kühlewein L. Clinical and Genetic Findings in a Cohort of Patients with PRPF31-Associated Retinal Dystrophy. Am J Ophthalmol 2024; 267:213-229. [PMID: 38909744 DOI: 10.1016/j.ajo.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024]
Abstract
PURPOSE The purpose of our study was to assess the phenotypic and genotypic spectrum in a large cohort of patients with PRPF31-associated retinal dystrophy. DESIGN Retrospective cohort study. METHODS In this retrospective chart review study, we collected cross-sectional data on the phenotype and genotype of patients with PRPF31-associated retinal dystrophy from the clinics for inherited retinal dystrophies at the University of Tuebingen and the local RetDis database and biobank. Patients underwent thorough ophthalmological examinations and genetic testing. RESULTS Eighty-six patients from 61 families were available for clinical assessment, while genomic DNA was available for 111 individuals (index patients and family members). Fifty-three different disease-associated variants were observed in our cohort. Point mutations were the most common class. All but two patients exhibited features of a typical Retinitis pigmentosa (RP). One patient showed a cone-rod dystrophy pattern. One mutation carrier revealed no signs of a retinal dystrophy. There was a statistically significant better visual acuity for patients with large deletions in the 20-39 age group. Cystoid macular edema was common in those with preserved central retina and showed an association with female sex. CONCLUSION Our study confirms high phenotypic variability in disease onset and age at which legal blindness is reached in PRPF31-associated RP. Non-penetrance is commonly documented in family history, although poorly represented in our study, possibly indicating that true asymptomatic mutation carriers are rare if followed-up over lifetime with thorough ophthalmologic workup.
Collapse
Affiliation(s)
- Jan-Philipp Bodenbender
- University Eye Hospital, Center for Ophthalmology, Eberhard Karls University (J.P.B., L.B., K.S., L.K.), Tübingen, Germany
| | - Leon Bethge
- University Eye Hospital, Center for Ophthalmology, Eberhard Karls University (J.P.B., L.B., K.S., L.K.), Tübingen, Germany
| | - Katarina Stingl
- University Eye Hospital, Center for Ophthalmology, Eberhard Karls University (J.P.B., L.B., K.S., L.K.), Tübingen, Germany
| | - Pascale Mazzola
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University (P.M., T.H.), Tübingen, Germany
| | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University (P.M., T.H.), Tübingen, Germany; Center for Rare Diseases, Eberhard Karls University (T.H.), Tübingen, Germany
| | | | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, Eberhard Karls University (B.W., N.W., S.K.), Tübingen, Germany
| | - Nicole Weisschuh
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, Eberhard Karls University (B.W., N.W., S.K.), Tübingen, Germany
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, Eberhard Karls University (B.W., N.W., S.K.), Tübingen, Germany
| | - Laura Kühlewein
- University Eye Hospital, Center for Ophthalmology, Eberhard Karls University (J.P.B., L.B., K.S., L.K.), Tübingen, Germany; Institute for Ophthalmic Research, Center for Ophthalmology, Eberhard Karls University (L.K.), Tübingen, Germany.
| |
Collapse
|
2
|
Holtes LK, de Bruijn SE, Cremers FPM, Roosing S. Dual inheritance patterns: a spectrum of non-syndromic inherited retinal disease phenotypes with varying molecular mechanisms. Prog Retin Eye Res 2024:101308. [PMID: 39486507 DOI: 10.1016/j.preteyeres.2024.101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Inherited retinal diseases (IRDs) encompass a variety of disease phenotypes and are known to display both clinical and genetic heterogeneity. A further complexity is that for several IRD-associated genes, pathogenic variants have been reported to cause either autosomal dominant (AD) or autosomal recessive (AR) diseases. The possibility of dual inheritance can create a challenge for variant interpretation as well as the genetic counselling of patients. This review aims to determine whether the molecular mechanisms behind the dual inheritance of each IRD-associated gene is well established, not yet properly understood, or if the association is questionable. Each gene is discussed individually in detail due to different protein structures and functions, but there are overlapping characteristics. For example, eight genes only have a limited number of reported pathogenic variants or a hotspot region implicated in the second inheritance pattern. Whereas CRX and RP1 display distinct spatial patterns for AR and AD pathogenic variants based on the variant type and/or location. The genes with a questionable dual inheritance, namely AIPL1, CRB1, and RCBTB1 highlight the importance of carefully considering allele frequency data. Finally, the crucial role relevant functional studies in animal and cell models play in validating a variant's biochemical or molecular effect is emphasised.
Collapse
Affiliation(s)
- Lara K Holtes
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Suzanne E de Bruijn
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
3
|
Zhang Q, Sun J, Liu Z, Wang H, Zhou H, Liu W, Jia H, Li N, Li T, Wang F, Sun X. Clinical and Molecular Characterization of AIPL1-Associated Leber Congenital Amaurosis/Early-Onset Severe Retinal Dystrophy. Am J Ophthalmol 2024; 266:235-247. [PMID: 38880373 DOI: 10.1016/j.ajo.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
PURPOSE This study aimed to characterize the clinical features, genetic findings, and genotype-phenotype correlations of patients with Leber congenital amaurosis (LCA) or early-onset severe retinal dystrophy (EOSRD) harboring biallelic AIPL1 pathogenic variants. DESIGN Retrospective case series. METHODS This study consecutively enrolled 51 patients from 47 families with a clinical diagnosis of LCA/EOSRD harboring disease-causing variants in the AIPL1 gene, from October 2021 to September 2023. Molecular genetic findings, medical history, and ophthalmic evaluation including visual acuity (VA), multimodal retinal imaging, and electrophysiologic assessment were reviewed. RESULTS Of the 51 patients (32 with LCA and 19 with EOSRD), 27 (53%) were females, and age at last review ranged from 0.5 to 58.4 years. We identified 28 disease-causing AIPL1 variants, with 18 being novel. In patients with EOSRD, the mean (range) VA was 1.3 (0.7-2.7) logMAR and 1.3 (0.5-2.3) logMAR for right and left eyes respectively, with an average annual decline of 0.03 logMAR (R2 = 0.7547, P < .01). For patients with LCA, the VA ranged from light perception to counting fingers. Optical coherence tomography imaging demonstrated preservation of foveal ellipsoid zone in the 5 youngest EOSRD patients and 9 LCA children. Electroretinography showed severe cone-rod patterns in 78.6% (11/14) of patients with EOSRD, while classical extinguished pattern was documented in all patients with LCA available for the examination. The most common mutation was the nonsense variants of c.421C>T, with an allele frequency of 53.9%. All patients with EOSRD carried at least one missense mutation, of whom 13 identified with c.152A>G and 5 with c.572T>C. Twenty-six patients with LCA harbored two null AIPL1 variants, while 18 were homozygous for c.421C>T and 6 were heterozygous for c.421C>T with another loss-of-function variant. CONCLUSIONS This study reveals distinct clinical features and variation spectrum between AIPL1-associated LCA and EOSRD. Patients harboring at least one nonnull mutation, especially c.152A>G and c.572T>C, were significantly more likely to have a milder EOSRD phenotype than those with two null mutations. Residual foveal outer retinal structure observed in the youngest proportion of patients suggests an early window for gene augmentation therapy.
Collapse
Affiliation(s)
- Quan Zhang
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China; National Clinical Research Center for Ophthalmic Diseases (QZ, JS, ZL, HW, WL, HJ, NL, TL, and XS), Shanghai, China
| | - Junran Sun
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China; National Clinical Research Center for Ophthalmic Diseases (QZ, JS, ZL, HW, WL, HJ, NL, TL, and XS), Shanghai, China
| | - Zishi Liu
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China; National Clinical Research Center for Ophthalmic Diseases (QZ, JS, ZL, HW, WL, HJ, NL, TL, and XS), Shanghai, China
| | - Hong Wang
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China; National Clinical Research Center for Ophthalmic Diseases (QZ, JS, ZL, HW, WL, HJ, NL, TL, and XS), Shanghai, China
| | - Hao Zhou
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China
| | - Wenjia Liu
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China; National Clinical Research Center for Ophthalmic Diseases (QZ, JS, ZL, HW, WL, HJ, NL, TL, and XS), Shanghai, China
| | - Huixun Jia
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China; National Clinical Research Center for Ophthalmic Diseases (QZ, JS, ZL, HW, WL, HJ, NL, TL, and XS), Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine (HJ, FW, and XS), Shanghai, China
| | - Ningdong Li
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China; National Clinical Research Center for Ophthalmic Diseases (QZ, JS, ZL, HW, WL, HJ, NL, TL, and XS), Shanghai, China
| | - Tong Li
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China; National Clinical Research Center for Ophthalmic Diseases (QZ, JS, ZL, HW, WL, HJ, NL, TL, and XS), Shanghai, China.
| | - Fenghua Wang
- Shanghai Engineering Center for Visual Science and Photomedicine (HJ, FW, and XS), Shanghai, China; Innostellar Biotherapeutics Co., Ltd (FW), Shanghai, China
| | - Xiaodong Sun
- From the Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (QZ, JS, ZL, HW, HZ, WL, HJ, NL, TL, and XS), Shanghai, China; National Clinical Research Center for Ophthalmic Diseases (QZ, JS, ZL, HW, WL, HJ, NL, TL, and XS), Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine (HJ, FW, and XS), Shanghai, China; Shanghai Key Laboratory of Fundus Diseases (XS), Shanghai, China.
| |
Collapse
|
4
|
Fabian‐Morales G, Ordoñez‐Labastida V, Garcia‐Martínez F, Montes‐Almanza L, Zenteno J. Identification of Pathogenic Copy Number Variants in Mexican Patients With Inherited Retinal Dystrophies Applying an Exome Sequencing Data-Based Read-Depth Approach. Mol Genet Genomic Med 2024; 12:e70019. [PMID: 39400524 PMCID: PMC11472028 DOI: 10.1002/mgg3.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/27/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Retinal dystrophies (RDs) are the most common cause of inherited blindness worldwide and are caused by genetic defects in about 300 different genes. While targeted next-generation sequencing (NGS) has been demonstrated to be a reliable and efficient method to identify RD disease-causing variants, it doesn't routinely identify pathogenic structural variant as copy number variations (CNVs). Targeted NGS-based CNV detection has become a crucial step for RDs molecular diagnosis, particularly in cases without identified causative single nucleotide or Indels variants. Herein, we report the exome sequencing (ES) data-based read-depth bioinformatic analysis in a group of 30 unrelated Mexican RD patients with a negative or inconclusive genetic result after ES. METHODS CNV detection was performed using ExomeDepth software, an R package designed to detect CNVs using exome data. Bioinformatic validation of identified CNVs was conducted through a commercially available CNV caller. All identified candidate pathogenic CNVs were orthogonally verified through quantitative PCR assays. RESULTS Pathogenic or likely pathogenic CNVs were identified in 6 out of 30 cases (20%), and of them, a definitive molecular diagnosis was reached in 5 cases, for a final diagnostic rate of ~17%. CNV-carrying genes included CLN3 (2 cases), ABCA4 (novel deletion), EYS, and RPGRIP1. CONCLUSIONS Our results indicate that bioinformatic analysis of ES data is a reliable method for pathogenic CNV detection and that it should be incorporated in cases with a negative or inconclusive molecular result after ES.
Collapse
Affiliation(s)
| | - Vianey Ordoñez‐Labastida
- Department of GeneticsInstitute of Ophthalmology "Conde de Valenciana"Mexico CityMexico
- Rare Diseases Diagnostic Unit, Faculty of MedicineUNAMMexico CityMexico
- Faculty of MedicineAutonomous University of the State of Morelos (UAEM)MorelosMexico
| | | | - Luis Montes‐Almanza
- Department of GeneticsInstitute of Ophthalmology "Conde de Valenciana"Mexico CityMexico
| | - Juan C. Zenteno
- Department of GeneticsInstitute of Ophthalmology "Conde de Valenciana"Mexico CityMexico
- Rare Diseases Diagnostic Unit, Faculty of MedicineUNAMMexico CityMexico
- Faculty of Medicine, Department of BiochemistryNational Autonomous University of Mexico (UNAM)Mexico CityMexico
| |
Collapse
|
5
|
Marques JP, Ferreira N, Moreno N, Marta A, Vaz-Pereira S, Estrela-Silva S, Costa J, Cardoso AR, Neves P, Duarte L, Meira D, Pires J, Menezes C, Rodrigues F, Arede P, Coutinho A, Cabral D, Coutinho I, Ribeiro M, Macedo M, Brito S, Isidro F, Rodrigues FG, Sousa JPC, Marques M, Martins R, Silva E. Current management of inherited retinal degenerations in Portugal (IRD-PT survey). Sci Rep 2024; 14:21473. [PMID: 39277603 PMCID: PMC11401845 DOI: 10.1038/s41598-024-72589-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
Inherited retinal dystrophies/degenerations (IRDs) are the leading cause of visual impairment and incurable familial blindness in the Western world. Given the clinical and genetic heterogeneity, establishing a molecular diagnosis is especially relevant. The aim of this study was to perform the first nationwide survey to understand the prevalence and current management of IRDs in Portugal. A response was obtained from 26 healthcare providers (HCP) (76.5% response rate). Only 4 respondents reported not managing IRD patients. Most HCPs (68.1%) reported managing up to 100 patients, while three currently manage between 501 and 1000 patients. Based on the Portuguese population, an estimated IRD prevalence of 0.031%, i.e., about 1 in 3000 individuals, was calculated. In most HCPs (86.3%), most patients are adults, and non-syndromic retinitis pigmentosa is the most frequent diagnosis. Only 4 HCPs currently use the national, web-based IRD registry (IRD-PT). However, all but one respondent expressed interest in participating in such a registry. Genetic testing is available in 54.5%, with 58.3% HCPs reporting solved rates between 61-80%, but 4 to 9 months to get a genetic test result in 83.4% of cases. Based on this survey, the prevalence of biallelic RPE65-associated disease in Portugal is 0.00031%, i.e., approximately 1:300,000 individuals. Data from this study provide vital background information on national differences in the diagnosis and management of IRD patients. Nationwide implementation of the IRD-PT registry should be encouraged and supported to provide population-based reference data and to identify patients eligible for current and future therapies.
Collapse
Affiliation(s)
- João Pedro Marques
- Ophthalmology Department, Unidade Local de Saúde (ULS) de Coimbra, EPE, Coimbra, Portugal.
- Ophthalmology Department, Unidade Local de Saúde (ULS) de Coimbra, EPE, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal.
| | - Nuno Ferreira
- Ophthalmology Deparment, Unidade Local de Saúde (ULS) de Trás-os-Montes e Alto Douro, EPE, Vila Real, Portugal
| | - Natacha Moreno
- Ophthalmology Department, Unidade Local de Saúde (ULS) de Barcelos/Esposende, EPE, Barcelos, Portugal
| | - Ana Marta
- Ophthalmology Department, Unidade Local de Saúde (ULS) de Santo António, EPE, Porto, Portugal
| | - Sara Vaz-Pereira
- Ophthalmology Department, Unidade Local de Saúde (ULS) de Santa Maria, EPE, Lisboa, Portugal
| | - Sérgio Estrela-Silva
- Ophthalmology Department, Unidade Local de Saúde (ULS) de São João, EPE, Porto, Portugal
| | - José Costa
- Ophthalmology Department, Unidade Local de Saúde (ULS) de Braga, EPE, Braga, Portugal
| | - Ana Rocha Cardoso
- Ophthalmology Department, Unidade Local de Saúde (ULS) do Baixo Alentejo, EPE, Beja, Portugal
| | - Pedro Neves
- Ophthalmology Department, Unidade Local de Saúde (ULS) da Arrábida, EPE, Setúbal, Portugal
| | - Lilianne Duarte
- Ophthalmology Department, Unidade Local de Saúde (ULS) de Entre Douro e Vouga, EPE, Santa Maria da Feira, Portugal
| | - Dália Meira
- Ophthalmology Department, Unidade Local de Saúde (ULS) de Gaia/Espinho, EPE, Gaia, Portugal
| | - Joana Pires
- Ophthalmology Department, Unidade Local de Saúde (ULS) do Alto Ave, EPE, Guimarães, Portugal
| | - Carlos Menezes
- Ophthalmology Department, Unidade Local de Saúde (ULS) do Alto Minho, EPE, Viana Do Castelo, Portugal
| | - Filipa Rodrigues
- Ophthalmology Department, Unidade Local de Saúde (ULS) do Litoral Alentejano, EPE, Santiago Do Cacém, Portugal
| | - Pedro Arede
- Ophthalmology Department, Unidade Local de Saúde (ULS) de Lisboa Ocidental, EPE, Lisboa, Portugal
| | - André Coutinho
- Ophthalmology Department, Unidade Local de Saúde (ULS) da Região de Aveiro, EPE, Aveiro, Portugal
| | - Diogo Cabral
- Ophthalmology Department, Unidade Local de Saúde (ULS) de Almada-Seixal, EPE, Lisboa, Portugal
| | - Inês Coutinho
- Ophthalmology Department, Unidade Local de Saúde (ULS) de Amadora/Sintra, EPE, Amadora, Portugal
| | - Miguel Ribeiro
- Ophthalmology Department, Unidade Local de Saúde (ULS) de Viseu Dão-Lafões, EPE, Viseu, Portugal
| | - Marta Macedo
- Ophthalmology Department, Hospital Dr. Nélio Mendonça, EPE, Funchal, Portugal
| | - Sérgio Brito
- Ophthalmology Department, Unidade Local de Saúde (ULS) de Castelo Branco, EPE, Castelo Branco, Portugal
| | - Filipe Isidro
- Ophthalmology Department, Unidade Local de Saúde (ULS) do Algarve, EPE, Faro, Portugal
| | - Filipa Gomes Rodrigues
- Ophthalmology Department, Unidade Local de Saúde (ULS) do Estuário do Tejo, EPE, Vila Franca de Xira, Portugal
| | - João Paulo Castro Sousa
- Ophthalmology Department, Unidade Local de Saúde (ULS) da Região de Leiria, EPE, Leiria, Portugal
| | - Marco Marques
- Ophthalmology Department, Unidade Local de Saúde (ULS) do Baixo Mondego, EPE, Figueira da Foz, Portugal
| | | | - Eduardo Silva
- Ophthalmology Department, Unidade Local de Saúde (ULS) de São José, EPE, Lisboa, Portugal
| |
Collapse
|
6
|
Borchert GA, Shanks ME, Whitfield J, Clouston P, Raji S, Sperring S, Thompson JA, Xue K, De Silva SR, Downes SM, MacLaren RE, Cehajic-Kapetanovic J. Expanding the genotypic and phenotypic spectra with a novel variant in the ciliopathy gene, CFAP410, associated with selective cone degeneration. Ophthalmic Genet 2024:1-7. [PMID: 39232248 DOI: 10.1080/13816810.2024.2369271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND CFAP410 (Cilia and Flagella Associated Protein 410) encodes a protein that has an important role in the development and function of cilia. In ophthalmology, pathogenic variants in CFAP410 have been described in association with cone rod dystrophy, retinitis pigmentosa, with or without macular staphyloma, or with systemic abnormalities such as skeletal dysplasia and amyotrophic lateral sclerosis. Herein, we report a consanguineous family with a novel homozygous CFAP410 c.335_346del variant with cone only degeneration and no systemic features. METHODS A retrospective analysis of ophthalmic history, examination, retinal imaging, electrophysiology and microperimetry was performed as well as genetic testing with in silico pathogenicity predictions and a literature review. RESULTS A systemically well 28-year-old female of Pakistani ethnicity with parental consanguinity and no relevant family history, presented with childhood-onset poor central vision and photophobia. Best-corrected visual acuity and colour vision were reduced (0.5 LogMAR, 6/17 Ishihara plates (right) and 0.6 LogMAR, 3/17 Ishihara plates (left). Fundus examination showed no pigmentary retinopathy, no macular staphyloma and autofluorescence was unremarkable. Optical coherence tomography showed subtle signs of intermittent disruption of the ellipsoid zone. Microperimetry demonstrated a reduction in central retinal sensitivity. Electrodiagnostic testing confirmed a reduction in cone-driven responses. Whole-genome sequencing identified an in-frame homozygous deletion of 12 base pairs at c.335_346del in CFAP410. CONCLUSIONS The non-syndromic cone dystrophy phenotype reported herein expands the genotypic and phenotypic spectra of CFAP410-associated ciliopathies and highlights the need for light of potential future genetic therapies.
Collapse
Affiliation(s)
- Grace A Borchert
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Morag E Shanks
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jennifer Whitfield
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Penny Clouston
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Shabnam Raji
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sian Sperring
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jennifer A Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Washington, Australia
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Samantha R De Silva
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Susan M Downes
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
7
|
Zeuli R, Karali M, de Bruijn SE, Rodenburg K, Scarpato M, Capasso D, Astuti GDN, Gilissen C, Rodríguez-Hidalgo M, Ruiz-Ederra J, Testa F, Simonelli F, Cremers FPM, Banfi S, Roosing S. Whole genome sequencing identifies elusive variants in genetically unsolved Italian inherited retinal disease patients. HGG ADVANCES 2024; 5:100314. [PMID: 38816995 PMCID: PMC11225895 DOI: 10.1016/j.xhgg.2024.100314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024] Open
Abstract
Inherited retinal diseases (IRDs) are a group of rare monogenic diseases with high genetic heterogeneity (pathogenic variants identified in over 280 causative genes). The genetic diagnostic rate for IRDs is around 60%, mainly thanks to the routine application of next-generation sequencing (NGS) approaches such as extensive gene panels or whole exome analyses. Whole-genome sequencing (WGS) has been reported to improve this diagnostic rate by revealing elusive variants, such as structural variants (SVs) and deep intronic variants (DIVs). We performed WGS on 33 unsolved cases with suspected autosomal recessive IRD, aiming to identify causative genetic variants in non-coding regions or to detect SVs that were unexplored in the initial screening. Most of the selected cases (30 of 33, 90.9%) carried monoallelic pathogenic variants in genes associated with their clinical presentation, hence we first analyzed the non-coding regions of these candidate genes. Whenever additional pathogenic variants were not identified with this approach, we extended the search for SVs and DIVs to all IRD-associated genes. Overall, we identified the missing causative variants in 11 patients (11 of 33, 33.3%). These included three DIVs in ABCA4, CEP290 and RPGRIP1; one non-canonical splice site (NCSS) variant in PROM1 and three SVs (large deletions) in EYS, PCDH15 and USH2A. For the previously unreported DIV in CEP290 and for the NCCS variant in PROM1, we confirmed the effect on splicing by reverse transcription (RT)-PCR on patient-derived RNA. This study demonstrates the power and clinical utility of WGS as an all-in-one test to identify disease-causing variants missed by standard NGS diagnostic methodologies.
Collapse
Affiliation(s)
- Roberta Zeuli
- Medical Genetics, Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Marianthi Karali
- Medical Genetics, Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy; Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Suzanne E de Bruijn
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Kim Rodenburg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Margherita Scarpato
- Medical Genetics, Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Dalila Capasso
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomic and Experimental Medicine Program, Naples, Italy
| | - Galuh D N Astuti
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - María Rodríguez-Hidalgo
- Department of Neuroscience, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; Department of Dermatology, Ophthalmology, and Otorhinolaryngology, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Spain
| | - Javier Ruiz-Ederra
- Department of Neuroscience, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Spain; Department of Dermatology, Ophthalmology, and Otorhinolaryngology, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Spain
| | - Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sandro Banfi
- Medical Genetics, Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Orlova M, Gundorova P, Kadnikova V, Polyakov A. Spectrum of pathogenic variants and high prevalence of pathogenic BBS7 variants in Russian patients with Bardet-Biedl syndrome. Front Genet 2024; 15:1419025. [PMID: 39092430 PMCID: PMC11291329 DOI: 10.3389/fgene.2024.1419025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/05/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Bardet-Biedl syndrome is a rare condition characterized by obesity, retinitis pigmentosa, polydactyly, development delay, and structural kidney anomalies. This syndrome has an autosomal recessive type of inheritance. For the first time, molecular genetic testing has been provided for a large cohort of Russian patients with Bardet-Biedl syndrome. Materials and methods Genetic testing was provided to 61 unrelated patients using an MPS panel that includes coding regions and intronic areas of all genes (n = 21) currently associated with Bardet-Biedl syndrome. Results The diagnosis was confirmed for 41% of the patients (n = 25). Disease-causing variants were observed in BBS1, BBS4, BBS7, TTC8, BBS9, BBS10, BBS12, and MKKS genes. In most cases, pathogenic and likely pathogenic variants were localized in BBS1, BBS10, and BBS7 genes; recurrent variants were also observed in these genes. Discussion The frequency of pathogenic and likely pathogenic variants in the BBS1 and BBS10 genes among Russian patients matches the research data in other countries. The frequency of pathogenic variants in the BBS7 gene is about 1.5%-2% of patients with Bardet-Biedl syndrome, while in the cohort of Russian patients, the fraction is 24%. In addition, the recurrent pathogenic variant c.1967_1968delinsC was detected in the BBS7 gene. The higher frequency of this variant in the Russian population, as well as the lack of association of this pathogenic variant with Bardet-Biedl syndrome in other populations, suggests that the variant c.1967_1968delinsC in the BBS7 gene is major and has a founder effect in the Russian population. Results provided in this article show the significant role of pathogenic variants in the BBS7 gene for patients with Bardet-Biedl syndrome in the Russian population.
Collapse
Affiliation(s)
- M. Orlova
- DNA-diagnostics Laboratory, Research Centre for Medical Genetics, Moscow, Russia
| | - P. Gundorova
- University Children’s Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - V. Kadnikova
- DNA-diagnostics Laboratory, Research Centre for Medical Genetics, Moscow, Russia
| | - A. Polyakov
- DNA-diagnostics Laboratory, Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
9
|
Lin S, Vermeirsch S, Pontikos N, Martin-Gutierrez MP, Daich Varela M, Malka S, Schiff E, Knight H, Wright G, Jurkute N, Simcoe MJ, Yu-Wai-Man P, Moosajee M, Michaelides M, Mahroo OA, Webster AR, Arno G. Spectrum of Genetic Variants in the Most Common Genes Causing Inherited Retinal Disease in a Large Molecularly Characterized United Kingdom Cohort. Ophthalmol Retina 2024; 8:699-709. [PMID: 38219857 DOI: 10.1016/j.oret.2024.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
PURPOSE Inherited retinal disease (IRD) is a leading cause of blindness. Recent advances in gene-directed therapies highlight the importance of understanding the genetic basis of these disorders. This study details the molecular spectrum in a large United Kingdom (UK) IRD patient cohort. DESIGN Retrospective study of electronic patient records. PARTICIPANTS Patients with IRD who attended the Genetics Service at Moorfields Eye Hospital between 2003 and July 2020, in whom a molecular diagnosis was identified. METHODS Genetic testing was undertaken via a combination of single-gene testing, gene panel testing, whole exome sequencing, and more recently, whole genome sequencing. Likely disease-causing variants were identified from entries within the genetics module of the hospital electronic patient record (OpenEyes Electronic Medical Record). Analysis was restricted to only genes listed in the Genomics England PanelApp R32 Retinal Disorders panel (version 3.24), which includes 412 genes associated with IRD. Manual curation ensured consistent variant annotation and included only plausible disease-associated variants. MAIN OUTCOME MEASURES Detailed analysis was performed for variants in the 5 most frequent genes (ABCA4, USH2A, RPGR, PRPH2, and BEST1), as well as for the most common variants encountered in the IRD study cohort. RESULTS We identified 4415 individuals from 3953 families with molecularly diagnosed IRD (variants in 166 genes). Of the families, 42.7% had variants in 1 of the 5 most common IRD genes. Complex disease alleles contributed to disease in 16.9% of affected families with ABCA4-associated retinopathy. USH2A exon 13 variants were identified in 43% of affected individuals with USH2A-associated IRD. Of the RPGR variants, 71% were clustered in the ORF15 region. PRPH2 and BEST1 variants were associated with a range of dominant and recessive IRD phenotypes. Of the 20 most prevalent variants identified, 5 were not in the most common genes; these included founder variants in CNGB3, BBS1, TIMP3, EFEMP1, and RP1. CONCLUSIONS We describe the most common pathogenic IRD alleles in a large single-center multiethnic UK cohort and the burden of disease, in terms of families affected, attributable to these variants. Our findings will inform IRD diagnoses in future patients and help delineate the cohort of patients eligible for gene-directed therapies under development. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Siying Lin
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, United Kingdom; UCL Institute of Ophthalmology, University College London, United Kingdom
| | - Sandra Vermeirsch
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, United Kingdom
| | - Nikolas Pontikos
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, United Kingdom; UCL Institute of Ophthalmology, University College London, United Kingdom
| | - Maria Pilar Martin-Gutierrez
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, United Kingdom
| | - Malena Daich Varela
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, United Kingdom; UCL Institute of Ophthalmology, University College London, United Kingdom
| | - Samantha Malka
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, United Kingdom; UCL Institute of Ophthalmology, University College London, United Kingdom
| | - Elena Schiff
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, United Kingdom; UCL Institute of Ophthalmology, University College London, United Kingdom
| | - Hannah Knight
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, United Kingdom; UCL Institute of Ophthalmology, University College London, United Kingdom
| | - Genevieve Wright
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, United Kingdom; UCL Institute of Ophthalmology, University College London, United Kingdom
| | - Neringa Jurkute
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, United Kingdom; UCL Institute of Ophthalmology, University College London, United Kingdom; Department of Neuro-Ophhalmology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Mark J Simcoe
- UCL Institute of Ophthalmology, University College London, United Kingdom
| | - Patrick Yu-Wai-Man
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, United Kingdom; UCL Institute of Ophthalmology, University College London, United Kingdom
| | - Mariya Moosajee
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, United Kingdom; UCL Institute of Ophthalmology, University College London, United Kingdom
| | - Michel Michaelides
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, United Kingdom; UCL Institute of Ophthalmology, University College London, United Kingdom
| | - Omar A Mahroo
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, United Kingdom; UCL Institute of Ophthalmology, University College London, United Kingdom; Department of Ophthalmology, St Thomas' Hospital, London, United Kingdom
| | - Andrew R Webster
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, United Kingdom; UCL Institute of Ophthalmology, University College London, United Kingdom
| | - Gavin Arno
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London, United Kingdom; UCL Institute of Ophthalmology, University College London, United Kingdom.
| |
Collapse
|
10
|
Goto K, Koyanagi Y, Akiyama M, Murakami Y, Fukushima M, Fujiwara K, Iijima H, Yamaguchi M, Endo M, Hashimoto K, Ishizu M, Hirakata T, Mizobuchi K, Takayama M, Ota J, Sajiki AF, Kominami T, Ushida H, Fujita K, Kaneko H, Ueno S, Hayashi T, Terao C, Hotta Y, Murakami A, Kuniyoshi K, Kusaka S, Wada Y, Abe T, Nakazawa T, Ikeda Y, Momozawa Y, Sonoda KH, Nishiguchi KM. Disease-specific variant interpretation highlighted the genetic findings in 2325 Japanese patients with retinitis pigmentosa and allied diseases. J Med Genet 2024; 61:613-620. [PMID: 38499336 DOI: 10.1136/jmg-2023-109750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/02/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND As gene-specific therapy for inherited retinal dystrophy (IRD) advances, unified variant interpretation across institutes is becoming increasingly important. This study aims to update the genetic findings of 86 retinitis pigmentosa (RP)-related genes in a large number of Japanese patients with RP by applying the standardised variant interpretation guidelines for Japanese patients with IRD (J-IRD-VI guidelines) built upon the American College of Medical Genetics and Genomics and the Association for Molecular Pathology rules, and assess the contribution of these genes in RP-allied diseases. METHODS We assessed 2325 probands with RP (n=2155, including n=1204 sequenced previously with the same sequencing panel) and allied diseases (n=170, newly analysed), including Usher syndrome, Leber congenital amaurosis and cone-rod dystrophy (CRD). Target sequencing using a panel of 86 genes was performed. The variants were interpreted according to the J-IRD-VI guidelines. RESULTS A total of 3564 variants were detected, of which 524 variants were interpreted as pathogenic or likely pathogenic. Among these 524 variants, 280 (53.4%) had been either undetected or interpreted as variants of unknown significance or benign variants in our earlier study of 1204 patients with RP. This led to a genetic diagnostic rate in 38.6% of patients with RP, with EYS accounting for 46.7% of the genetically solved patients, showing a 9% increase in diagnostic rate from our earlier study. The genetic diagnostic rate for patients with CRD was 28.2%, with RP-related genes significantly contributing over other allied diseases. CONCLUSION A large-scale genetic analysis using the J-IRD-VI guidelines highlighted the population-specific genetic findings for Japanese patients with IRD; these findings serve as a foundation for the clinical application of gene-specific therapies.
Collapse
Affiliation(s)
- Kensuke Goto
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshito Koyanagi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masato Akiyama
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Fukushima
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohta Fujiwara
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hanae Iijima
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Mitsuyo Yamaguchi
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Mikiko Endo
- RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Kazuki Hashimoto
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masataka Ishizu
- Department of Ophthalmology, University of Miyazaki Faculty of Medicine, Miyazaki, Japan
| | - Toshiaki Hirakata
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Masakazu Takayama
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Junya Ota
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ai Fujita Sajiki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taro Kominami
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Ushida
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kosuke Fujita
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kaneko
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Ophthalmology, Hirosaki University Graduate School of Medicine, Hisoraki, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuki Kuniyoshi
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | | | - Toshiaki Abe
- Division of Clinical Cell Therapy, Tohoku University Graduate School of Medicine United Centers for Advanced Research and Translational Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Ikeda
- Department of Ophthalmology, University of Miyazaki Faculty of Medicine, Miyazaki, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji M Nishiguchi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
11
|
Sundaresan Y, Rivera A, Obolensky A, Gopalakrishnan P, Ohayon Hadad H, Shemesh A, Khateb S, Ross M, Ofri R, Durst S, Newman H, Leibu R, Soudry S, Zur D, Ben-Yosef T, Banin E, Sharon D. Genetic and Clinical Analyses of the KIZ-c.226C>T Variant Resulting in a Dual Mutational Mechanism. Genes (Basel) 2024; 15:804. [PMID: 38927740 PMCID: PMC11202946 DOI: 10.3390/genes15060804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Retinitis pigmentosa (RP) is a heterogeneous inherited retinal disorder. Mutations in KIZ cause autosomal recessive (AR) RP. We aimed to characterize the genotype, expression pattern, and phenotype in a large cohort of KIZ cases. Sanger and whole exome sequencing were used to identify the KIZ variants. Medical records were reviewed and analyzed. Thirty-one patients with biallelic KIZ mutations were identified: 28 homozygous for c.226C>T (p.R76*), 2 compound heterozygous for p.R76* and c.3G>A (p.M1?), and one homozygous for c.247C>T (p.R83*). c.226C>T is a founder mutation among patients of Jewish descent. The clinical parameters were less severe in KIZ compared to DHDDS and FAM161A cases. RT-PCR analysis in fibroblast cells revealed the presence of four different transcripts in both WT and mutant samples with a lower percentage of the WT transcript in patients. Sequence analysis identified an exonic sequence enhancer (ESE) that includes the c.226 position which is affected by the mutation. KIZ mutations are an uncommon cause of IRD worldwide but are not rare among Ashkenazi Jews. Our data indicate that p.R76* affect an ESE which in turn results in the pronounced skipping of exon 3. Therefore, RNA-based therapies might show low efficacy since the mutant transcripts are spliced.
Collapse
Affiliation(s)
- Yogapriya Sundaresan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (Y.S.); (A.R.); (P.G.); (E.B.)
| | - Antonio Rivera
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (Y.S.); (A.R.); (P.G.); (E.B.)
| | - Alexey Obolensky
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (Y.S.); (A.R.); (P.G.); (E.B.)
| | - Prakadeeswari Gopalakrishnan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (Y.S.); (A.R.); (P.G.); (E.B.)
| | - Hanit Ohayon Hadad
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (Y.S.); (A.R.); (P.G.); (E.B.)
| | - Aya Shemesh
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (Y.S.); (A.R.); (P.G.); (E.B.)
| | - Samer Khateb
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (Y.S.); (A.R.); (P.G.); (E.B.)
| | - Maya Ross
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Ron Ofri
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Sharon Durst
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (Y.S.); (A.R.); (P.G.); (E.B.)
| | - Hadas Newman
- Ophthalmology Division, Tel Aviv Sourasky Medical Center, Affiliated to Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rina Leibu
- Department of Ophthalmology, Rambam Health Care Center, Haifa 31096, Israel
| | - Shiri Soudry
- Department of Ophthalmology, Rabin Medical Center, Petah Tikva 49100, Israel
| | - Dinah Zur
- Ophthalmology Division, Tel Aviv Sourasky Medical Center, Affiliated to Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tamar Ben-Yosef
- The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (Y.S.); (A.R.); (P.G.); (E.B.)
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel; (Y.S.); (A.R.); (P.G.); (E.B.)
| |
Collapse
|
12
|
Maggi J, Koller S, Feil S, Bachmann-Gagescu R, Gerth-Kahlert C, Berger W. Limited Added Diagnostic Value of Whole Genome Sequencing in Genetic Testing of Inherited Retinal Diseases in a Swiss Patient Cohort. Int J Mol Sci 2024; 25:6540. [PMID: 38928247 PMCID: PMC11203445 DOI: 10.3390/ijms25126540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The purpose of this study was to assess the added diagnostic value of whole genome sequencing (WGS) for patients with inherited retinal diseases (IRDs) who remained undiagnosed after whole exome sequencing (WES). WGS was performed for index patients in 66 families. The datasets were analyzed according to GATK's guidelines. Additionally, DeepVariant was complemented by GATK's workflow, and a novel structural variant pipeline was developed. Overall, a molecular diagnosis was established in 19/66 (28.8%) index patients. Pathogenic deletions and one deep-intronic variant contributed to the diagnostic yield in 4/19 and 1/19 index patients, respectively. The remaining diagnoses (14/19) were attributed to exonic variants that were missed during WES analysis due to bioinformatic limitations, newly described loci, or unclear pathogenicity. The added diagnostic value of WGS equals 5/66 (9.6%) for our cohort, which is comparable to previous studies. This figure would decrease further to 1/66 (1.5%) with a standardized and reliable copy number variant workflow during WES analysis. Given the higher costs and limited added value, the implementation of WGS as a first-tier assay for inherited eye disorders in a diagnostic laboratory remains untimely. Instead, progress in bioinformatic tools and communication between diagnostic and clinical teams have the potential to ameliorate diagnostic yields.
Collapse
Affiliation(s)
- Jordi Maggi
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (S.F.)
| | - Samuel Koller
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (S.F.)
| | - Silke Feil
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (S.F.)
| | | | - Christina Gerth-Kahlert
- Department of Ophthalmology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland;
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (S.F.)
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
13
|
Mihalich A, Cammarata G, Tremolada G, Manfredini E, Bianchi Marzoli S, Di Blasio AM. Genetic Characterization of 191 Probands with Inherited Retinal Dystrophy by Targeted NGS Analysis. Genes (Basel) 2024; 15:766. [PMID: 38927702 PMCID: PMC11203276 DOI: 10.3390/genes15060766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Inherited retinal diseases (IRDs) represent a frequent cause of blindness in children and adults. As a consequence of the phenotype and genotype heterogeneity of the disease, it is difficult to have a specific diagnosis without molecular testing. To date, over 340 genes and loci have been associated with IRDs. We present the molecular finding of 191 individuals with IRD, analyzed by targeted next-generation sequencing (NGS). For 67 of them, we performed a family segregation study, considering a total of 126 relatives. A total of 359 variants were identified, 44 of which were novel. Genetic diagnostic yield was 41%. However, after stratifying the patients according to their clinical suspicion, diagnostic yield was higher for well-characterized diseases such as Stargardt disease (STGD), at 65%, and for congenital stationary night blindness 2 (CSNB2), at 64%. Diagnostic yield was higher in the patient group where family segregation analysis was possible (68%) and it was higher in younger (55%) than in older patients (33%). The results of this analysis demonstrated that targeted NGS is an effective method for establishing a molecular genetic diagnosis of IRDs. Furthermore, this study underlines the importance of segregation studies to understand the role of genetic variants with unknow pathogenic role.
Collapse
Affiliation(s)
- Alessandra Mihalich
- Molecular Biology Laboratory, Istituto Auxologico Italiano IRCCS, 20145 Milan, Italy; (E.M.); (A.M.D.B.)
- Neuro-Ophthalmology Center and Electrophysiology Laboratory, Department of Ophthalmology, Istituto Auxologico Italiano IRCCS, 20145 Milan, Italy; (G.C.); (G.T.); (S.B.M.)
| | - Gabriella Cammarata
- Neuro-Ophthalmology Center and Electrophysiology Laboratory, Department of Ophthalmology, Istituto Auxologico Italiano IRCCS, 20145 Milan, Italy; (G.C.); (G.T.); (S.B.M.)
| | - Gemma Tremolada
- Neuro-Ophthalmology Center and Electrophysiology Laboratory, Department of Ophthalmology, Istituto Auxologico Italiano IRCCS, 20145 Milan, Italy; (G.C.); (G.T.); (S.B.M.)
| | - Emanuela Manfredini
- Molecular Biology Laboratory, Istituto Auxologico Italiano IRCCS, 20145 Milan, Italy; (E.M.); (A.M.D.B.)
| | - Stefania Bianchi Marzoli
- Neuro-Ophthalmology Center and Electrophysiology Laboratory, Department of Ophthalmology, Istituto Auxologico Italiano IRCCS, 20145 Milan, Italy; (G.C.); (G.T.); (S.B.M.)
| | - Anna Maria Di Blasio
- Molecular Biology Laboratory, Istituto Auxologico Italiano IRCCS, 20145 Milan, Italy; (E.M.); (A.M.D.B.)
| |
Collapse
|
14
|
Gwack J, Kim N, Park J. Improving the Yield of Genetic Diagnosis through Additional Genetic Panel Testing in Hereditary Ophthalmic Diseases. Curr Issues Mol Biol 2024; 46:5010-5022. [PMID: 38785568 PMCID: PMC11119902 DOI: 10.3390/cimb46050300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024] Open
Abstract
Numerous hereditary ophthalmic diseases display significant genetic diversity. Consequently, the utilization of gene panel sequencing allows a greater number of patients to receive a genetic diagnosis for their clinical manifestations. We investigated how to improve the yield of genetic diagnosis through additional gene panel sequencing in hereditary ophthalmic diseases. A gene panel sequencing consisting of a customized hereditary retinopathy panel or hereditary retinitis pigmentosa (RP) panel was prescribed and referred to a CAP-accredited clinical laboratory. If no significant mutations associated with hereditary retinopathy and RP were detected in either panel, additional gene panel sequencing was requested for research use, utilizing the remaining panel. After additional gene panel sequencing, a total of 16 heterozygous or homozygous variants were identified in 15 different genes associated with hereditary ophthalmic diseases. Of 15 patients carrying any candidate variants, the clinical symptoms could be tentatively accounted for by genetic mutations in seven patients. However, in the remaining eight patients, given the in silico mutation predictive analysis, variant allele frequency in gnomAD, inheritance pattern, and genotype-phenotype correlation, fully elucidating the clinical manifestations with the identified rare variant was challenging. Our study highlights the utility of gene panel sequencing in achieving accurate diagnoses for hereditary ophthalmic diseases and enhancing the diagnostic yield through additional gene panel sequencing. Thus, gene panel sequencing can serve as a primary tool for the genetic diagnosis of hereditary ophthalmic diseases, even in cases where a single genetic cause is suspected. With a deeper comprehension of the genetic mechanisms underlying these diseases, it becomes feasible.
Collapse
Affiliation(s)
- Jin Gwack
- Department of Preventive Medicine, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea;
| | - Namsu Kim
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Joonhong Park
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Laboratory Medicine, Daejeon St. Mary’s Hospital, Daejeon 34943, Republic of Korea
| |
Collapse
|
15
|
Fernández-Caballero L, Martín-Merida I, Blanco-Kelly F, Avila-Fernandez A, Carreño E, Fernandez-San Jose P, Irigoyen C, Jimenez-Rolando B, Lopez-Grondona F, Mahillo I, Martin-Gutierrez MP, Minguez P, Perea-Romero I, Del Pozo-Valero M, Riveiro-Alvarez R, Rodilla C, Rodriguez-Peña L, Sánchez-Barbero AI, Swafiri ST, Trujillo-Tiebas MJ, Zurita O, García-Sandoval B, Corton M, Ayuso C. PRPH2-Related Retinal Dystrophies: Mutational Spectrum in 103 Families from a Spanish Cohort. Int J Mol Sci 2024; 25:2913. [PMID: 38474159 PMCID: PMC10931554 DOI: 10.3390/ijms25052913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
PRPH2, one of the most frequently inherited retinal dystrophy (IRD)-causing genes, implies a high phenotypic variability. This study aims to analyze the PRPH2 mutational spectrum in one of the largest cohorts worldwide, and to describe novel pathogenic variants and genotype-phenotype correlations. A study of 220 patients from 103 families recruited from a database of 5000 families. A molecular diagnosis was performed using classical molecular approaches and next-generation sequencing. Common haplotypes were ascertained by analyzing single-nucleotide polymorphisms. We identified 56 variants, including 11 novel variants. Most of them were missense variants (64%) and were located in the D2-loop protein domain (77%). The most frequently occurring variants were p.Gly167Ser, p.Gly208Asp and p.Pro221_Cys222del. Haplotype analysis revealed a shared region in families carrying p.Leu41Pro or p.Pro221_Cys222del. Patients with retinitis pigmentosa presented an earlier disease onset. We describe the largest cohort of IRD families associated with PRPH2 from a single center. Most variants were located in the D2-loop domain, highlighting its importance in interacting with other proteins. Our work suggests a likely founder effect for the variants p.Leu41Pro and p.Pro221_Cys222del in our Spanish cohort. Phenotypes with a primary rod alteration presented more severe affectation. Finally, the high phenotypic variability in PRPH2 hinders the possibility of drawing genotype-phenotype correlations.
Collapse
Affiliation(s)
- Lidia Fernández-Caballero
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (L.F.-C.); (I.M.-M.); (F.B.-K.); (A.A.-F.); (F.L.-G.); (P.M.); (C.R.); (A.I.S.-B.); (S.T.S.); (M.J.T.-T.); (O.Z.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Inmaculada Martín-Merida
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (L.F.-C.); (I.M.-M.); (F.B.-K.); (A.A.-F.); (F.L.-G.); (P.M.); (C.R.); (A.I.S.-B.); (S.T.S.); (M.J.T.-T.); (O.Z.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Fiona Blanco-Kelly
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (L.F.-C.); (I.M.-M.); (F.B.-K.); (A.A.-F.); (F.L.-G.); (P.M.); (C.R.); (A.I.S.-B.); (S.T.S.); (M.J.T.-T.); (O.Z.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Almudena Avila-Fernandez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (L.F.-C.); (I.M.-M.); (F.B.-K.); (A.A.-F.); (F.L.-G.); (P.M.); (C.R.); (A.I.S.-B.); (S.T.S.); (M.J.T.-T.); (O.Z.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ester Carreño
- Department of Ophthalmology, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (E.C.); (B.J.-R.); (M.P.M.-G.); (B.G.-S.)
| | - Patricia Fernandez-San Jose
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics, Ramón y Cajal University Hospital, 28034 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Cristina Irigoyen
- Ophthalmology Service, Donostia University Hospital, 20014 Donostia-San Sebastián, Spain
| | - Belen Jimenez-Rolando
- Department of Ophthalmology, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (E.C.); (B.J.-R.); (M.P.M.-G.); (B.G.-S.)
| | - Fermina Lopez-Grondona
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (L.F.-C.); (I.M.-M.); (F.B.-K.); (A.A.-F.); (F.L.-G.); (P.M.); (C.R.); (A.I.S.-B.); (S.T.S.); (M.J.T.-T.); (O.Z.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ignacio Mahillo
- Department of Statistics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain;
| | - María Pilar Martin-Gutierrez
- Department of Ophthalmology, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (E.C.); (B.J.-R.); (M.P.M.-G.); (B.G.-S.)
| | - Pablo Minguez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (L.F.-C.); (I.M.-M.); (F.B.-K.); (A.A.-F.); (F.L.-G.); (P.M.); (C.R.); (A.I.S.-B.); (S.T.S.); (M.J.T.-T.); (O.Z.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Irene Perea-Romero
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (L.F.-C.); (I.M.-M.); (F.B.-K.); (A.A.-F.); (F.L.-G.); (P.M.); (C.R.); (A.I.S.-B.); (S.T.S.); (M.J.T.-T.); (O.Z.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Del Pozo-Valero
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (L.F.-C.); (I.M.-M.); (F.B.-K.); (A.A.-F.); (F.L.-G.); (P.M.); (C.R.); (A.I.S.-B.); (S.T.S.); (M.J.T.-T.); (O.Z.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rosa Riveiro-Alvarez
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (L.F.-C.); (I.M.-M.); (F.B.-K.); (A.A.-F.); (F.L.-G.); (P.M.); (C.R.); (A.I.S.-B.); (S.T.S.); (M.J.T.-T.); (O.Z.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina Rodilla
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (L.F.-C.); (I.M.-M.); (F.B.-K.); (A.A.-F.); (F.L.-G.); (P.M.); (C.R.); (A.I.S.-B.); (S.T.S.); (M.J.T.-T.); (O.Z.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Lidya Rodriguez-Peña
- Sección de Genética Medica, Servicio de Pediatría, HCU Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Ana Isabel Sánchez-Barbero
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (L.F.-C.); (I.M.-M.); (F.B.-K.); (A.A.-F.); (F.L.-G.); (P.M.); (C.R.); (A.I.S.-B.); (S.T.S.); (M.J.T.-T.); (O.Z.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Saoud T. Swafiri
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (L.F.-C.); (I.M.-M.); (F.B.-K.); (A.A.-F.); (F.L.-G.); (P.M.); (C.R.); (A.I.S.-B.); (S.T.S.); (M.J.T.-T.); (O.Z.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María José Trujillo-Tiebas
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (L.F.-C.); (I.M.-M.); (F.B.-K.); (A.A.-F.); (F.L.-G.); (P.M.); (C.R.); (A.I.S.-B.); (S.T.S.); (M.J.T.-T.); (O.Z.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Olga Zurita
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (L.F.-C.); (I.M.-M.); (F.B.-K.); (A.A.-F.); (F.L.-G.); (P.M.); (C.R.); (A.I.S.-B.); (S.T.S.); (M.J.T.-T.); (O.Z.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Blanca García-Sandoval
- Department of Ophthalmology, Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (E.C.); (B.J.-R.); (M.P.M.-G.); (B.G.-S.)
| | - Marta Corton
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (L.F.-C.); (I.M.-M.); (F.B.-K.); (A.A.-F.); (F.L.-G.); (P.M.); (C.R.); (A.I.S.-B.); (S.T.S.); (M.J.T.-T.); (O.Z.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain; (L.F.-C.); (I.M.-M.); (F.B.-K.); (A.A.-F.); (F.L.-G.); (P.M.); (C.R.); (A.I.S.-B.); (S.T.S.); (M.J.T.-T.); (O.Z.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
16
|
Ribarich N, Rivolta MC, Sacconi R, Querques G. Novel IMPG2 variant causing adult macular vitelliform dystrophy: A case report. Eur J Ophthalmol 2024; 34:NP1-NP4. [PMID: 37661650 DOI: 10.1177/11206721231199850] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
INTRODUCTION Adult-onset vitelliform macular dystrophy (AVMD) is an inherited maculopathy characterized by metamorphopsias and decrease in visual acuity occurring between the fourth and the sixth decade. It is characterized by an 'egg yolk' macular lesion eventually evolving towards foveal atrophy and fibrosis. It is usually an autosomal dominant inherited disorder with variable penetrance, mainly related to variants in BEST1, PRPH2, IMPG1, and IMPG2 genes. CASE DESCRIPTION A 47-year-old woman complaining of "wavy" vision was referred to our clinic. Her past medical history and reported family history did not reveal any ocular disease. Complete ophthalmological evaluation was performed. Funduscopic examination and multimodal imaging revealed a round vitelliform lesion in both eyes, leading to a diagnosis of AVMD. Genetic analysis revealed a novel, likely pathogenetic, heterozygous c.478G > T (p.Glu160Ter), (NM_016247) variant in the IMPG2 gene. DISCUSSION Our patient exhibits a novel pathogenetic variant in a gene associated with AVMD. Heterozygous variants in the IMPG2 gene have been reported in multiple individuals with vitelliform macular dystrophy, with an autosomal dominant mode of inheritance. Genetic screening is essential to characterize patients, to predict vision loss in patients with a positive family history and to characterize eligible patients for new potential emerging therapies. Genotype-phenotype correlation studies are needed to have a clearer picture of pathogenetic mechanisms. Our study characterizes the phenotype related to a novel IMPG2 pathogenic variant through multimodal imaging.
Collapse
Affiliation(s)
- Nicolò Ribarich
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | | | - Riccardo Sacconi
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Giuseppe Querques
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
17
|
Weisschuh N, Mazzola P, Zuleger T, Schaeferhoff K, Kühlewein L, Kortüm F, Witt D, Liebmann A, Falb R, Pohl L, Reith M, Stühn LG, Bertrand M, Müller A, Casadei N, Kelemen O, Kelbsch C, Kernstock C, Richter P, Sadler F, Demidov G, Schütz L, Admard J, Sturm M, Grasshoff U, Tonagel F, Heinrich T, Nasser F, Wissinger B, Ossowski S, Kohl S, Riess O, Stingl K, Haack TB. Diagnostic genome sequencing improves diagnostic yield: a prospective single-centre study in 1000 patients with inherited eye diseases. J Med Genet 2024; 61:186-195. [PMID: 37734845 PMCID: PMC10850689 DOI: 10.1136/jmg-2023-109470] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE Genome sequencing (GS) is expected to reduce the diagnostic gap in rare disease genetics. We aimed to evaluate a scalable framework for genome-based analyses 'beyond the exome' in regular care of patients with inherited retinal degeneration (IRD) or inherited optic neuropathy (ION). METHODS PCR-free short-read GS was performed on 1000 consecutive probands with IRD/ION in routine diagnostics. Complementary whole-blood RNA-sequencing (RNA-seq) was done in a subset of 74 patients. An open-source bioinformatics analysis pipeline was optimised for structural variant (SV) calling and combined RNA/DNA variation interpretation. RESULTS A definite genetic diagnosis was established in 57.4% of cases. For another 16.7%, variants of uncertain significance were identified in known IRD/ION genes, while the underlying genetic cause remained unresolved in 25.9%. SVs or alterations in non-coding genomic regions made up for 12.7% of the observed variants. The RNA-seq studies supported the classification of two unclear variants. CONCLUSION GS is feasible in clinical practice and reliably identifies causal variants in a substantial proportion of individuals. GS extends the diagnostic yield to rare non-coding variants and enables precise determination of SVs. The added diagnostic value of RNA-seq is limited by low expression levels of the major IRD disease genes in blood.
Collapse
Affiliation(s)
- Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Pascale Mazzola
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Theresia Zuleger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Karin Schaeferhoff
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Laura Kühlewein
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Friederike Kortüm
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Dennis Witt
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Alexandra Liebmann
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Ruth Falb
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Lisa Pohl
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Milda Reith
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Lara G Stühn
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Miriam Bertrand
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Amelie Müller
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Olga Kelemen
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Carina Kelbsch
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Christoph Kernstock
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Paul Richter
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Francoise Sadler
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - German Demidov
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Leon Schütz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Marc Sturm
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Ute Grasshoff
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Felix Tonagel
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Tilman Heinrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- MVZ für Humangenetik und Molekularpathologie, Rostock, Germany
| | - Fadi Nasser
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Center for Rare Disease, University of Tübingen, Tübingen, Germany
| | - Katarina Stingl
- University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Center for Rare Disease, University of Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Yang Z, Yan L, Zhang W, Qi J, An W, Yao K. Dyschromatopsia: a comprehensive analysis of mechanisms and cutting-edge treatments for color vision deficiency. Front Neurosci 2024; 18:1265630. [PMID: 38298913 PMCID: PMC10828017 DOI: 10.3389/fnins.2024.1265630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Color blindness is a retinal disease that mainly manifests as a color vision disorder, characterized by achromatopsia, red-green color blindness, and blue-yellow color blindness. With the development of technology and progress in theory, extensive research has been conducted on the genetic basis of color blindness, and various approaches have been explored for its treatment. This article aims to provide a comprehensive review of recent advances in understanding the pathological mechanism, clinical symptoms, and treatment options for color blindness. Additionally, we discuss the various treatment approaches that have been developed to address color blindness, including gene therapy, pharmacological interventions, and visual aids. Furthermore, we highlight the promising results from clinical trials of these treatments, as well as the ongoing challenges that must be addressed to achieve effective and long-lasting therapeutic outcomes. Overall, this review provides valuable insights into the current state of research on color blindness, with the intention of informing further investigation and development of effective treatments for this disease.
Collapse
Affiliation(s)
- Zihao Yang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Lin Yan
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Wenliang Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Jia Qi
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Wenjing An
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Kao HJ, Lin TY, Hsieh FJ, Chien JY, Yeh EC, Lin WJ, Chen YH, Ding KH, Yang Y, Chi SC, Tsai PH, Hsu CC, Hwang DK, Tsai HY, Peng ML, Lee SH, Chau SF, Chen CY, Cheang WM, Chen SJ, Kwok PY, Chiou SH, Lu MYJ, Huang SP. Highly efficient capture approach for the identification of diverse inherited retinal disorders. NPJ Genom Med 2024; 9:4. [PMID: 38195571 PMCID: PMC10776681 DOI: 10.1038/s41525-023-00388-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/01/2023] [Indexed: 01/11/2024] Open
Abstract
Our study presents a 319-gene panel targeting inherited retinal dystrophy (IRD) genes. Through a multi-center retrospective cohort study, we validated the assay's effectiveness and clinical utility and characterized the mutation spectrum of Taiwanese IRD patients. Between January 2018 and May 2022, 493 patients in 425 unrelated families, all initially suspected of having IRD without prior genetic diagnoses, underwent detailed ophthalmic and physical examinations (with extra-ocular features recorded) and genetic testing with our customized panel. Disease-causing variants were identified by segregation analysis and clinical interpretation, with validation via Sanger sequencing. We achieved a read depth of >200× for 94.2% of the targeted 1.2 Mb region. 68.5% (291/425) of the probands received molecular diagnoses, with 53.9% (229/425) resolved cases. Retinitis pigmentosa (RP) is the most prevalent initial clinical impression (64.2%), and 90.8% of the cohort have the five most prevalent phenotypes (RP, cone-rod syndrome, Usher's syndrome, Leber's congenital amaurosis, Bietti crystalline dystrophy). The most commonly mutated genes of probands that received molecular diagnosis are USH2A (13.7% of the cohort), EYS (11.3%), CYP4V2 (4.8%), ABCA4 (4.5%), RPGR (3.4%), and RP1 (3.1%), collectively accounted for 40.8% of diagnoses. We identify 87 unique unreported variants previously not associated with IRD and refine clinical diagnoses for 21 patients (7.22% of positive cases). We developed a customized gene panel and tested it on the largest Taiwanese cohort, showing that it provides excellent coverage for diverse IRD phenotypes.
Collapse
Affiliation(s)
- Hsiao-Jung Kao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Ting-Yi Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
- Doctoral Degree Program of Translational Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 115201, Taiwan
| | - Feng-Jen Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Jia-Ying Chien
- Institute of Medical Sciences, Tzu Chi University, Hualien, 970374, Taiwan
| | - Erh-Chan Yeh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Wan-Jia Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan
| | - Yi-Hua Chen
- Biodiversity Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Kai-Hsuan Ding
- Biodiversity Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Yu Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
| | - Sheng-Chu Chi
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
| | - Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Chih-Chien Hsu
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - De-Kuang Hwang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Hsien-Yang Tsai
- Department of Ophthalmology, Taichung Tzu Chi Hospital, Taichung, 427003, Taiwan
| | - Mei-Ling Peng
- Department of Ophthalmology, Taichung Tzu Chi Hospital, Taichung, 427003, Taiwan
| | - Shi-Huang Lee
- Department of Ophthalmology, Taichung Tzu Chi Hospital, Taichung, 427003, Taiwan
| | - Siu-Fung Chau
- Department of Ophthalmology, Taichung Tzu Chi Hospital, Taichung, 427003, Taiwan
| | - Chen Yu Chen
- Department of Ophthalmology, Taichung Tzu Chi Hospital, Taichung, 427003, Taiwan
| | - Wai-Man Cheang
- Department of Ophthalmology, Taichung Tzu Chi Hospital, Taichung, 427003, Taiwan
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Pui-Yan Kwok
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115201, Taiwan.
- Institute for Human Genetics, Cardiovascular Research Institute, and Department of Dermatology, University of California, San Francisco, CA, USA.
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112201, Taiwan.
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan.
- Genomic Research Center, Academia Sinica, Taipei, 115201, Taiwan.
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, 115201, Taiwan.
| | - Shun-Ping Huang
- Institute of Medical Sciences, Tzu Chi University, Hualien, 970374, Taiwan.
- Department of Ophthalmology, Taichung Tzu Chi Hospital, Taichung, 427003, Taiwan.
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, 970374, Taiwan.
| |
Collapse
|
20
|
Bolz HJ, Kochs CL, Holz FG, Bucher F, Herrmann P. [Inherited retinal diseases in Germany-Challenges in health care supply structure and diagnostics]. DIE OPHTHALMOLOGIE 2023; 120:1251-1257. [PMID: 37606831 DOI: 10.1007/s00347-023-01903-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Inherited retinal diseases (IRD) are rare eye diseases and pose high diagnostic challenges. A care structure with few highly specialized centers in Germany, misdiagnosis due to the lack of molecular genetic testing, and a lack of a central registry lead to a lack of reliable information on the prevalence and distribution of IRDs in Germany. METHODS Based on clinical data from an ophthalmological center and molecular data from a genetic center as well as a nationwide health insurance data query, we estimated the prevalence of IRDs in Germany in addition to collecting information on their phenotypic and genotypic distribution. RESULTS The median travelling distance to the ophthalmological center was 60 km. The most frequent diagnoses were retinitis pigmentosa, macular dystrophy and general retinal dystrophy. Molecular genetic testing was performed in 87% of patients with clinical suspicion of IRD, with marked differences in frequencies among age cohorts. The molecular genetic detection rate in the genetic center was 51%. The prevalence of inherited retinal dystrophy in Germany determined by health insurance data retrieval was approximately 1:1150. CONCLUSION Many patients must travel long distances to visit specialized clinics for IRDs with access to genetic testing. To obtain more reliable numbers on the prevalence in Germany, routine molecular genetic testing, and a national registry for IRD detection are needed.
Collapse
Affiliation(s)
- Hanno J Bolz
- Senckenberg Zentrum für Humangenetik, Weismüllerstr. 50, 60314, Frankfurt am Main, Deutschland
- Institut für Humangenetik, Universitätsklinikum Köln, Kerpener Str. 34, 50931, Köln, Deutschland
| | - Constanze L Kochs
- Universitäts-Augenklinik Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Ernst-Abbe-Str. 2, 53127, Bonn, Deutschland
- Zentrum für seltene Erkrankungen Bonn, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127, Bonn, Deutschland
| | - Frank G Holz
- Universitäts-Augenklinik Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Ernst-Abbe-Str. 2, 53127, Bonn, Deutschland
- Zentrum für seltene Erkrankungen Bonn, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127, Bonn, Deutschland
| | - Franziska Bucher
- Novartis Pharma GmbH, Roonstr. 25, 90429, Nürnberg, Deutschland
- Zentrum für Augenheilkunde, Universitätsklinikum Köln, Kerpener Str. 62, 50924, Köln, Deutschland
| | - Philipp Herrmann
- Universitäts-Augenklinik Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Ernst-Abbe-Str. 2, 53127, Bonn, Deutschland.
- Zentrum für seltene Erkrankungen Bonn, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127, Bonn, Deutschland.
| |
Collapse
|
21
|
Stepanova A, Ogorodova N, Kadyshev V, Shchagina O, Kutsev S, Polyakov A. A Molecular Genetic Analysis of RPE65-Associated Forms of Inherited Retinal Degenerations in the Russian Federation. Genes (Basel) 2023; 14:2056. [PMID: 38002999 PMCID: PMC10671290 DOI: 10.3390/genes14112056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogenic variants in the RPE65 gene cause the only known form of inherited retinal degenerations (IRDs) that are prone to gene therapy. The current study is aimed at the evaluation of the prevalence of RPE65-associated retinopathy in the Russian Federation, the characterization of known variants in the RPE65 gene, and the establishment of the specificities of the mutation spectrum in Russian patients. METHODS The analysis was carried out on blood samples obtained from 1053 non-related IRDs patients. The analysis, which consisted of 211 genes, was carried out based on the method of massive parallel sequencing (MPS) for all probands. Variant validation, as well as biallelic status verification, were carried out using direct automated Sanger sequencing. The number of copies of RPE65 exons 1-14 was analyzed with quantitative MLPA using an MRC-Holland SALSA MLPA probemix. RESULTS Out of 1053 non-related patients, a molecular genetic diagnosis of IRDs has been confirmed in 474 cases, including 25 (5.3%) patients with RPE65-associated retinopathy. We detected 26 variants in the RPE65 gene, nine of which have not been previously described in the literature. The most common mutations in the Russian population were c.304G>T/p.(Glu102*), c.370C>T/p.(Arg124*), and c.272G>A/p.(Arg91Gln), which comprised 41.8% of all affected chromosomes. CONCLUSIONS The current study shows that pathogenic variants in the RPE65 gene contribute significantly to the pathogenesis of IRDs and comprise 5.3% of all patients with a confirmed molecular genetic diagnosis. This study allowed for the formation of a cohort for target therapy of the disorder; such therapy has already been carried out for some patients.
Collapse
Affiliation(s)
- Anna Stepanova
- Research Centre for Medical Genetics, Moscow 115478, Russia
| | | | | | | | | | | |
Collapse
|
22
|
Künzel SH, Mahren E, Morr M, Holz FG, Lorenz B. [Diagnostics and management of patients with inherited retinal diseases in Germany : Results of a nationwide survey of university and non-university eye departments and specialized practices]. DIE OPHTHALMOLOGIE 2023; 120:1127-1137. [PMID: 37582888 DOI: 10.1007/s00347-023-01902-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND Inherited retinal diseases (IRDs) refer to a heterogeneous group of rare disorders that potentially lead to blindness. Emerging therapeutic options have led to a growing interest in IRDs; however, there are insufficient systematic studies on IRDs in Germany characterizing the demographics and management in clinical practice. OBJECTIVE To characterize the care for IRD patients in Germany, to assess the applied diagnostics, the use of databases and the implementation of education in ophthalmic genetics. METHODS The anonymous online survey (SoSci Survey GmbH) was sent to all German ophthalmology departments listed on the website of the German Ophthalmological Society and to three practices focusing on IRDs. RESULTS The overall response rate was 44.8%. Almost all institutions (93.6%) reported seeing IRD patients, but university and non-university hospitals differed in the number of patients. Databases are used in 60% of universities but only in 5.9% of non-university hospitals. Regarding the number of patients with genetic diagnostics, 53% of the non-university and 12% of the university sites reported that 20% at most of their patients had received a molecular genetic diagnosis. The results of the IRD practices are comparable with the university hospitals. Patients with biallelic RPE65 mutations-associated IRD, potential candidates for treatment with voretigene neparvovec (Luxturna®), were followed in 9/25 participating university departments. CONCLUSION This survey highlights the deficits in the management of IRD patients. In particular, we found a clear difference between university and non-university hospitals in the rate of patients with known molecular genetic results. Improvements should be initiated in the latter, especially because of existing and emerging therapeutic options.
Collapse
Affiliation(s)
- Sandrine H Künzel
- Klinik für Augenheilkunde, Universitätsklinikum Bonn, Ernst-Abbe Str. 2, 53127, Bonn, Deutschland
| | - Elias Mahren
- Klinik für Augenheilkunde, Universitätsklinikum Bonn, Ernst-Abbe Str. 2, 53127, Bonn, Deutschland
| | - Mitjan Morr
- Sektion für Medizinische Psychologie, Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsklinikum Bonn, Bonn, Deutschland
| | - Frank G Holz
- Klinik für Augenheilkunde, Universitätsklinikum Bonn, Ernst-Abbe Str. 2, 53127, Bonn, Deutschland
| | - Birgit Lorenz
- Klinik für Augenheilkunde, Universitätsklinikum Bonn, Ernst-Abbe Str. 2, 53127, Bonn, Deutschland.
- Justus-Liebig-Universität Gießen, Gießen, Deutschland.
| |
Collapse
|
23
|
Yang S, Li Y, Yang L, Guo Q, You Y, Lei B. Pathogenicity and functional analysis of CFAP410 mutations causing cone-rod dystrophy with macular staphyloma. Front Med (Lausanne) 2023; 10:1216427. [PMID: 37901396 PMCID: PMC10601463 DOI: 10.3389/fmed.2023.1216427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Background Cone-rod dystrophy (CORD) caused by pathogenic variants in CFAP410 is a very rare disease. The mechanisms by which the variants caused the disease remained largely unknown. CFAP410 pathogenic variants were identified in a cone-rod dystrophy with macular staphyloma patient. We explored the pathogenicity and performed functional analysis of two compound heterozygous mutations. Methods A 6-year-old boy complained decreased vision for 1 year, underwent ocular examinations together with systemic X-ray check. Blood sample was taken for targeted next generation sequencing (Tg-NGS). Pathogenicity of identified variants was determined by ACMG guideline. Mutated plasmids were constructed and transferred to HEK293T cells. Cell cycle, protein stability, and protein ubiquitination level was measured. Results The best-corrected visual acuity of proband was 0.20 bilaterally. Fundus showed macular staphyloma and uneven granular pigment disorder in the periphery of the retina. SS-OCT showed thinning and atrophy of the outer retina, residual ellipsoid zone (EZ) in the fovea. Scotopic and photopic ERG responses severe reduced. Two heterozygous missense pathogenic variants, c.319 T > C (p.Tyr107His) and c.347 C > T (p.Pro116Leu) in exon 4 of the CFAP410, were found and were pathogenic by the ACMG guideline. In vitro, pathogenic variants affect cell cycle. Immunofluorescence and western blotting showed that the mutant proteins decreased expression levels protein stability. Meanwhile, co-IP data suggested that ubiquitination level was altered in cells transferred with the mutated plasmids. Conclusion Compound heterozygous pathogenic variants c.319 T > C and c.347 C > T in CFAP410 caused CORD with macular staphyloma. The pathogenic mechanisms may be associated with alternations of protein stability and degradation through the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Shaoqing Yang
- Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Ya Li
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Institute/Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Lin Yang
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Institute/Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Qingge Guo
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Institute/Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Ya You
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Institute/Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Bo Lei
- Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Institute/Henan Eye Hospital, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
24
|
Sakti DH, Cornish EE, Nash BM, Jamieson RV, Grigg JR. IMPDH1-associated autosomal dominant retinitis pigmentosa: natural history of novel variant Lys314Gln and a comprehensive literature search. Ophthalmic Genet 2023; 44:437-455. [PMID: 37259572 DOI: 10.1080/13816810.2023.2215310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Inosine monophosphate dehydrogenase (IMPDH) is a key regulatory enzyme in the de novo synthesis of the purine base guanine. Mutations in the inosine monophosphate dehydrogenase 1 gene (IMPDH1) are causative for RP10 autosomal dominant retinitis pigmentosa (adRP). This study reports a novel variant in a family with IMPDH1-associated retinopathy. We also performed a comprehensive review of all reported IMPDH1 disease causing variants with their associated phenotype. MATERIALS AND METHODS Multimodal imaging and functional studies documented the phenotype including best-corrected visual acuity (BCVA), fundus photograph, fundus autofluorescence (FAF), full field electroretinogram (ffERG), optical coherence tomography (OCT) and visual field (VF) data were collected. A literature search was performed in the PubMed and LOVD repositories. RESULTS We report 3 cases from a 2-generation family with a novel heterozygous likely pathogenic variant p. (Lys314Gln) (exon 10). The ophthalmic phenotype showed diffuse outer retinal atrophy with mild pigmentary changes with sparse pigmentary changes. FAF showed early macular involvement with macular hyperautofluorescence (hyperAF) surrounded by hypoAF. Foveal ellipsoid zone island can be found in the youngest patient but not in the older ones. The literature review identified a further 56 heterozygous, 1 compound heterozygous, and 2 homozygous variant. The heterozygous group included 43 missense, 3 in-frame, 1 nonsense, 2 frameshift, 1 synonymous, and 6 intronic variants. Exon 10 was noted as a hotspot harboring 18 variants. CONCLUSIONS We report a novel IMPDH1 variant. IMPDH1-associated retinopathy presents most frequently in the first decade of life with early macular involvement.
Collapse
Affiliation(s)
- Dhimas H Sakti
- Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia
- Department of Ophthalmology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Elisa E Cornish
- Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Benjamin M Nash
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Sydney Genome Diagnostics, Western Sydney Genetics Program, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
| | - Robyn V Jamieson
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - John R Grigg
- Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia
- Eye Genetics Research Unit, Children's Medical Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
Chan CM, Tan TE, Jain K, Bylstra Y, Mathur RS, Tang RWC, Lee BJH, Jamuar SS, Kam S, Vithana EN, Lim WK, Fenner BJ. RETINITIS PIGMENTOSA ASSOCIATED WITH THE EYS C2139Y VARIANT : An Important Cause of Blindness in East Asian Populations. Retina 2023; 43:1788-1796. [PMID: 37418643 DOI: 10.1097/iae.0000000000003874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
PURPOSE The study aimed to describe the phenotypic features of retinitis pigmentosa (RP) associated with the previously described EYS C2139Y variant in Singaporeans and establish the importance of this variant as a prevalent cause of RP among East Asians. METHODS A clinical phenotyping and exome-sequencing study was conducted on consecutive patients with nonsyndromic RP. Epidemiological analysis was performed using Singaporean and global population-based genetic data. RESULTS A study of 150 consecutive unrelated individuals with nonsyndromic RP found that 87 (58%) of cases had plausible genotypes. A previously described missense variant in the EYS gene, 6416G>A (C2139Y), occurred heterozygously or homozygously in 17 of 150 families (11.3%), all with autosomal recessive RP. Symptom onset in EYS C2139Y-related RP ranged from 6 to 45 years, with visual acuity ranging from 20/20 at 21 years to no light perception by 48 years. C2139Y-related RP had typical findings, including sectoral RP in cases with EYS E2703X in trans . The median age at presentation was 45 years and visual fields declined to less than 20° (Goldmann V4e isopter) by age 65 years. Intereye correlation for visual acuity, fields, and ellipsoid band width was high (r 2 = 0.77-0.95). Carrier prevalence was 0.66% (allele frequency of 0.33%) in Singaporean Chinese and 0.34% in East Asians, suggesting a global disease burden exceeding 10,000 individuals. CONCLUSION The EYS C2139Y variant is common in Singaporean RP patients and other ethnic Chinese populations. Targeted molecular therapy for this single variant could potentially treat a significant proportion of RP cases worldwide.
Collapse
Affiliation(s)
- Choi Mun Chan
- Singapore National Eye Centre, Singapore Eye Research Institute, and the Ophthalmology and Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Graduate Medical School, Singapore
| | - Tien-En Tan
- Singapore National Eye Centre, Singapore Eye Research Institute, and the Ophthalmology and Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Graduate Medical School, Singapore
| | - Kanika Jain
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Yasmin Bylstra
- SingHealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore
| | - Ranjana S Mathur
- Singapore National Eye Centre, Singapore Eye Research Institute, and the Ophthalmology and Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Graduate Medical School, Singapore
| | - Rachael W C Tang
- Singapore National Eye Centre, Singapore Eye Research Institute, and the Ophthalmology and Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Graduate Medical School, Singapore
| | - Brian J H Lee
- Lee Kong Chian Medical School, Nanyang Technological University, Singapore; and
| | - Saumya S Jamuar
- Department of Paediatrics, KK Women's and Children's Hospital and the SingHealth Duke-NUS Genomic Medicine Center, Singapore
| | - Sylvia Kam
- Department of Paediatrics, KK Women's and Children's Hospital and the SingHealth Duke-NUS Genomic Medicine Center, Singapore
| | - Eranga N Vithana
- Singapore National Eye Centre, Singapore Eye Research Institute, and the Ophthalmology and Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Graduate Medical School, Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore
| | - Beau J Fenner
- Singapore National Eye Centre, Singapore Eye Research Institute, and the Ophthalmology and Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
26
|
Wang J, Li S, Jiang Y, Wang Y, Ouyang J, Yi Z, Sun W, Jia X, Xiao X, Wang P, Zhang Q. Pathogenic Variants in CEP290 or IQCB1 Cause Earlier-Onset Retinopathy in Senior-Loken Syndrome Compared to Those in INVS, NPHP3, or NPHP4. Am J Ophthalmol 2023; 252:188-204. [PMID: 36990420 DOI: 10.1016/j.ajo.2023.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE Senior-Loken syndrome (SLSN) is an autosomal recessive disorder characterized by retinopathy and nephronophthisis. This study aimed to evaluate whether different phenotypes are associated with different variants or subsets of 10 SLSN-associated genes based on an in-house data set and a literature review. DESIGN Retrospective case series. METHODS Patients with biallelic variants in SLSN-associated genes, including NPHP1, INVS, NPHP3, NPHP4, IQCB1, CEP290, SDCCAG8, WDR19, CEP164, and TRAF3IP1, were recruited. Ocular phenotypes and nephrology medical records were collected for comprehensive analysis. RESULTS Variants in 5 genes were identified in 74 patients from 70 unrelated families, including CEP290 (61.4%), IQCB1 (28.6%), NPHP1 (4.2%), NPHP4 (2.9%), and WDR19 (2.9%). The median age at the onset of retinopathy was approximately 1 month (since birth). Nystagmus was the most common initial sign in patients with CEP290 (28 of 44, 63.6%) or IQCB1 (19 of 22, 86.4%) variants. Cone and rod responses were extinguished in 53 of 55 patients (96.4%). Characteristic fundus changes were observed in CEP290- and IQCB1-associated patients. During follow-up, 70 of the 74 patients were referred to nephrology, among whom nephronophthisis was not detected in 62 patients (88.6%) at a median age of 6 years but presented in 8 patients (11.4%) aged approximately 9 years. CONCLUSIONS Patients with pathogenic variants in CEP290 or IQCB1 presented early with retinopathy, whereas other patients with INVS, NPHP3, or NPHP4 variants first developed nephropathy. Therefore, awareness of the genetic and clinical features may facilitate the clinical management of SLSN, especially early intervention of kidney problems for patients with eyes affected first.
Collapse
Affiliation(s)
- Junwen Wang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Shiqiang Li
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yi Jiang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yingwei Wang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jiamin Ouyang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhen Yi
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Wenmin Sun
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiaoyun Jia
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xueshan Xiao
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Panfeng Wang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qingjiong Zhang
- From the The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| |
Collapse
|
27
|
Toms M, Ward N, Moosajee M. Nuclear Receptor Subfamily 2 Group E Member 3 (NR2E3): Role in Retinal Development and Disease. Genes (Basel) 2023; 14:1325. [PMID: 37510230 PMCID: PMC10379133 DOI: 10.3390/genes14071325] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
NR2E3 is a nuclear hormone receptor gene required for the correct development of the retinal rod photoreceptors. Expression of NR2E3 protein in rod cell precursors suppresses cone-specific gene expression and, in concert with other transcription factors including NRL, activates the expression of rod-specific genes. Pathogenic variants involving NR2E3 cause a spectrum of retinopathies, including enhanced S-cone syndrome, Goldmann-Favre syndrome, retinitis pigmentosa, and clumped pigmentary retinal degeneration, with limited evidence of genotype-phenotype correlations. A common feature of NR2E3-related disease is an abnormally high number of cone photoreceptors that are sensitive to short wavelength light, the S-cones. This characteristic has been supported by mouse studies, which have also revealed that loss of Nr2e3 function causes photoreceptors to develop as cells that are intermediate between rods and cones. While there is currently no available cure for NR2E3-related retinopathies, there are a number of emerging therapeutic strategies under investigation, including the use of viral gene therapy and gene editing, that have shown promise for the future treatment of patients with NR2E3 variants and other inherited retinal diseases. This review provides a detailed overview of the current understanding of the role of NR2E3 in normal development and disease, and the associated clinical phenotypes, animal models, and therapeutic studies.
Collapse
Affiliation(s)
- Maria Toms
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Natasha Ward
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
28
|
Wen S, Wang M, Qian X, Li Y, Wang K, Choi J, Pennesi ME, Yang P, Marra M, Koenekoop RK, Lopez I, Matynia A, Gorin M, Sui R, Yao F, Goetz K, Porto FBO, Chen R. Systematic assessment of the contribution of structural variants to inherited retinal diseases. Hum Mol Genet 2023; 32:2005-2015. [PMID: 36811936 PMCID: PMC10244226 DOI: 10.1093/hmg/ddad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/03/2023] [Accepted: 02/11/2023] [Indexed: 02/24/2023] Open
Abstract
Despite increasing success in determining genetic diagnosis for patients with inherited retinal diseases (IRDs), mutations in about 30% of the IRD cases remain unclear or unsettled after targeted gene panel or whole exome sequencing. In this study, we aimed to investigate the contributions of structural variants (SVs) to settling the molecular diagnosis of IRD with whole-genome sequencing (WGS). A cohort of 755 IRD patients whose pathogenic mutations remain undefined were subjected to WGS. Four SV calling algorithms including include MANTA, DELLY, LUMPY and CNVnator were used to detect SVs throughout the genome. All SVs identified by any one of these four algorithms were included for further analysis. AnnotSV was used to annotate these SVs. SVs that overlap with known IRD-associated genes were examined with sequencing coverage, junction reads and discordant read pairs. Polymerase Chain Reaction (PCR) followed by Sanger sequencing was used to further confirm the SVs and identify the breakpoints. Segregation of the candidate pathogenic alleles with the disease was performed when possible. A total of 16 candidate pathogenic SVs were identified in 16 families, including deletions and inversions, representing 2.1% of patients with previously unsolved IRDs. Autosomal dominant, autosomal recessive and X-linked inheritance of disease-causing SVs were observed in 12 different genes. Among these, SVs in CLN3, EYS and PRPF31 were found in multiple families. Our study suggests that the contribution of SVs detected by short-read WGS is about 0.25% of our IRD patient cohort and is significantly lower than that of single nucleotide changes and small insertions and deletions.
Collapse
Affiliation(s)
- Shu Wen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xinye Qian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Keqing Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jongsu Choi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Paul Yang
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Molly Marra
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Robert K Koenekoop
- McGill Ocular Genetics Laboratory and Centre, Department of Paediatric Surgery, Human Genetics, and Ophthalmology, McGill University Health Centre, Montreal, Quebec, H4A 3S5, Canada
| | - Irma Lopez
- McGill Ocular Genetics Laboratory and Centre, Department of Paediatric Surgery, Human Genetics, and Ophthalmology, McGill University Health Centre, Montreal, Quebec, H4A 3S5, Canada
| | - Anna Matynia
- Jules Stein Eye Institute, Los Angeles, CA 90095, USA
- Ophthalmology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Michael Gorin
- Jules Stein Eye Institute, Los Angeles, CA 90095, USA
- Ophthalmology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Fengxia Yao
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Kerry Goetz
- Office of the Director, National Eye Institute/National Institutes of Health, Bethesda, MD 20892, USA
| | - Fernanda Belga Ottoni Porto
- INRET Clínica e Centro de Pesquisa, Belo Horizonte, Minas Gerais, 30150270, Brazil
- Department of Ophthalmology, Santa Casa de Misericórdia de Belo Horizonte, Belo Horizonte, Minas Gerais, 30150221, Brazil
- Centro Oftalmológico de Minas Gerais, Belo Horizonte, Minas Gerais, 30180070, Brazil
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
29
|
Schlottmann PG, Luna JD, Labat N, Yadarola MB, Bainttein S, Esposito E, Ibañez A, Barbaro EI, Álvarez Mendiara A, Picotti CP, Chirino Misisian A, Andreussi L, Gras J, Capalbo L, Visotto M, Dipierri JE, Alcoba E, Fernández Gabrielli L, Ávila S, Aucar ME, Martin DM, Ormaechea GJ, Inga ME, Francone AA, Charles M, Zompa T, Pérez PJ, Lotersztein V, Nuova PJ, Canonero IB, Mahroo OA, Michaelides M, Arno G, Daich Varela M. Nationwide genetic analysis of more than 600 families with inherited eye diseases in Argentina. NPJ Genom Med 2023; 8:8. [PMID: 37217489 DOI: 10.1038/s41525-023-00352-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/05/2023] [Indexed: 05/24/2023] Open
Abstract
This study corresponds to the first large-scale genetic analysis of inherited eye diseases (IED) in Argentina and describes the comprehensive genetic profile of a large cohort of patients. Medical records of 22 ophthalmology and genetics services throughout 13 Argentinian provinces were analyzed retrospectively. Patients with a clinical diagnosis of an ophthalmic genetic disease and a history of genetic testing were included. Medical, ophthalmological and family history was collected. A total of 773 patients from 637 families were included, with 98% having inherited retinal disease. The most common phenotype was retinitis pigmentosa (RP, 62%). Causative variants were detected in 379 (59%) patients. USH2A, RPGR, and ABCA4 were the most common disease-associated genes. USH2A was the most frequent gene associated with RP, RDH12 early-onset severe retinal dystrophy, ABCA4 Stargardt disease, PROM1 cone-rod dystrophy, and BEST1 macular dystrophy. The most frequent variants were RPGR c.1345 C > T, p.(Arg449*) and USH2A c.15089 C > A, p.(Ser5030*). The study revealed 156/448 (35%) previously unreported pathogenic/likely pathogenic variants and 8 possible founder mutations. We present the genetic landscape of IED in Argentina and the largest cohort in South America. This data will serve as a reference for future genetic studies, aid diagnosis, inform counseling, and assist in addressing the largely unmet need for clinical trials to be conducted in the region.
Collapse
Affiliation(s)
| | - José D Luna
- Centro Privado de Ojos Romagosa SA, Córdoba, Argentina
| | - Natalia Labat
- Centro Privado de Ojos Romagosa SA, Córdoba, Argentina
| | | | | | - Evangelina Esposito
- University Clinic Reina Fabiola, Córdoba, Córdoba, Argentina
- Catholic University of Cordoba, Cordoba, Argentina
| | - Agustina Ibañez
- University Clinic Reina Fabiola, Córdoba, Córdoba, Argentina
- Catholic University of Cordoba, Cordoba, Argentina
| | | | | | | | | | | | | | | | - Mauro Visotto
- Instituto Oftalmológico Trelew, Trelew, Chubut, Argentina
| | | | - Emilio Alcoba
- Hospital Materno Infantil Dr Héctor Quintana, Jujuy, Argentina
| | | | - Silvia Ávila
- Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Río Negro, Argentina
| | | | | | | | - M Eugenia Inga
- Organización Medica de Investigación, Buenos Aires, Argentina
| | | | | | - Tamara Zompa
- Charles Centro Oftalmológico, Buenos Aires, Argentina
| | | | | | - Pedro J Nuova
- Ocularyb Oftalmoclinica, Yerba Buena, Tucumán, Argentina
| | | | - Omar A Mahroo
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Michel Michaelides
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Gavin Arno
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Malena Daich Varela
- Moorfields Eye Hospital, London, UK.
- UCL Institute of Ophthalmology, University College London, London, UK.
| |
Collapse
|
30
|
Zobor D, Brühwiler B, Zrenner E, Weisschuh N, Kohl S. Genetic and Clinical Profile of Retinopathies Due to Disease-Causing Variants in Leber Congenital Amaurosis (LCA)-Associated Genes in a Large German Cohort. Int J Mol Sci 2023; 24:ijms24108915. [PMID: 37240262 DOI: 10.3390/ijms24108915] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
To report the spectrum of Leber congenital amaurosis (LCA) associated genes in a large German cohort and to delineate their associated phenotype. Local databases were screened for patients with a clinical diagnosis of LCA and for patients with disease-causing variants in known LCA-associated genes independent of their clinical diagnosis. Patients with a mere clinical diagnosis were invited for genetic testing. Genomic DNA was either analyzed in a diagnostic-genetic or research setup using various capture panels for syndromic and non-syndromic IRD (inherited retinal dystrophy) genes. Clinical data was obtained mainly retrospectively. Patients with genetic and phenotypic information were eventually included. Descriptive statistical data analysis was performed. A total of 105 patients (53 female, 52 male, age 3-76 years at the time of data collection) with disease-causing variants in 16 LCA-associated genes were included. The genetic spectrum displayed variants in the following genes: CEP290 (21%), CRB1 (21%), RPE65 (14%), RDH12 (13%), AIPL1 (6%), TULP1 (6%), and IQCB1 (5%), and few cases harbored pathogenic variants in LRAT, CABP4, NMNAT1, RPGRIP1, SPATA7, CRX, IFT140, LCA5, and RD3 (altogether accounting for 14%). The most common clinical diagnosis was LCA (53%, 56/105) followed by retinitis pigmentosa (RP, 40%, 42/105), but also other IRDs were seen (cone-rod dystrophy, 5%; congenital stationary night blindness, 2%). Among LCA patients, 50% were caused by variants in CEP290 (29%) and RPE65 (21%), whereas variants in other genes were much less frequent (CRB1 11%, AIPL1 11%, IQCB1 9%, and RDH12 7%, and sporadically LRAT, NMNAT1, CRX, RD3, and RPGRIP1). In general, the patients showed a severe phenotype hallmarked by severely reduced visual acuity, concentric narrowing of the visual field, and extinguished electroretinograms. However, there were also exceptional cases with best corrected visual acuity as high as 0.8 (Snellen), well-preserved visual fields, and preserved photoreceptors in spectral domain optical coherence tomography. Phenotypic variability was seen between and within genetic subgroups. The study we are presenting pertains to a considerable LCA group, furnishing valuable comprehension of the genetic and phenotypic spectrum. This knowledge holds significance for impending gene therapeutic trials. In this German cohort, CEP290 and CRB1 are the most frequently mutated genes. However, LCA is genetically highly heterogeneous and exhibits clinical variability, showing overlap with other IRDs. For any therapeutic gene intervention, the disease-causing genotype is the primary criterion for treatment access, but the clinical diagnosis, state of the retina, number of to be treated target cells, and the time point of treatment will be crucial.
Collapse
Affiliation(s)
- Ditta Zobor
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Elfriede-Aulhorn Strasse 7, 72076 Tübingen, Germany
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| | - Britta Brühwiler
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Elfriede-Aulhorn Strasse 7, 72076 Tübingen, Germany
| | - Eberhart Zrenner
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Elfriede-Aulhorn Strasse 7, 72076 Tübingen, Germany
- Werner Reichardt Center for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Elfriede-Aulhorn Strasse 7, 72076 Tübingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Elfriede-Aulhorn Strasse 7, 72076 Tübingen, Germany
| |
Collapse
|
31
|
Lee BJH, Tham YC, Tan TE, Bylstra Y, Lim WK, Jain K, Chan CM, Mathur R, Cheung CMG, Fenner BJ. Characterizing the genotypic spectrum of retinitis pigmentosa in East Asian populations: a systematic review. Ophthalmic Genet 2023; 44:109-118. [PMID: 36856324 DOI: 10.1080/13816810.2023.2182329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
BACKGROUND Ongoing trials for retinitis pigmentosa (RP) are genotype-specific, with most trials conducted on European cohorts. Due to genetic differences across diverse ancestries and populations, these therapies may not be efficacious in East Asians. MATERIALS AND METHODS A literature search was conducted from 1966 to September 2022 for cohort studies on East Asian populations reporting on non-syndromic RP genotypes and variants. Population-weighted prevalence was used to determine the genotypes and individual variants across the entire cohort. The carrier prevalence of common variants was compared against those in Europe. RESULTS A total of 12 articles describing 2,932 clinically diagnosed East Asian RP probands were included. We identified 876 variants across 54 genes. The most common genotypes included USH2A, EYS, RPGR, ABCA4, PRPF31, RHO, RP1, RP2, PDE6B and SNRNP200, with USH2A as the most common (17.1%). Overall, 60.5% of probands with clinically relevant variants were found to have one of the genotypes above, with 543/876 (62.0%) of the variants occurring in these genes. The most frequently reported variant was USH2A missense variant c.2802T>G/p.C934W (4.9%). Carrier prevalence of these variants was significantly different (p < 0.0001) than in Europe. CONCLUSIONS USH2A was the most commonly affected RP gene in this East Asian cohort, although sub-population analysis revealed distinct genotype prevalence patterns. While the genotypes are similar between East Asia and European cohorts, variants are specific to East Asia. The identification of several prevalent variants in USH2A and EYS provides an opportunity for the development of therapeutics that are relevant for East Asia patients.
Collapse
Affiliation(s)
- Brian Juin Hsien Lee
- Department of Medical Retina, Singapore National Eye Centre, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Yih-Chung Tham
- Retina Research Group Singapore Eye Research Institute, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Medical School, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Centre for Innovation & Precision Eye Health, Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore
| | - Tien-En Tan
- Department of Medical Retina, Singapore National Eye Centre, Singapore
- Retina Research Group Singapore Eye Research Institute, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Medical School, Singapore
| | - Yasmin Bylstra
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore Health Services, Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore Health Services, Singapore
| | - Kanika Jain
- POLARIS, Genome Institute of Singapore, Singapore
| | - Choi Mun Chan
- Department of Medical Retina, Singapore National Eye Centre, Singapore
- Retina Research Group Singapore Eye Research Institute, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Medical School, Singapore
| | - Ranjana Mathur
- Department of Medical Retina, Singapore National Eye Centre, Singapore
- Retina Research Group Singapore Eye Research Institute, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Medical School, Singapore
| | - Chui Ming Gemmy Cheung
- Department of Medical Retina, Singapore National Eye Centre, Singapore
- Retina Research Group Singapore Eye Research Institute, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Medical School, Singapore
| | - Beau J Fenner
- Department of Medical Retina, Singapore National Eye Centre, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Retina Research Group Singapore Eye Research Institute, Singapore
- Ophthalmology & Visual Sciences Academic Clinical Program (EYE ACP), Duke-NUS Medical School, Singapore
| |
Collapse
|
32
|
Han J, Joo K, Kim US, Woo SJ, Lee EK, Lee JY, Park TK, Kim SJ, Byeon SH. Voretigene Neparvovec for the Treatment of RPE65-associated Retinal Dystrophy: Consensus and Recommendations from the Korea RPE65-IRD Consensus Paper Committee. KOREAN JOURNAL OF OPHTHALMOLOGY 2023; 37:166-186. [PMID: 36950921 PMCID: PMC10151174 DOI: 10.3341/kjo.2023.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023] Open
Abstract
Mutations in the RPE65 gene, associated with Leber congenital amaurosis, early-onset severe retinal dystrophy, and retinitis pigmentosa, gained growing attention since gene therapy for patients with RPE65-associated retinal dystrophy is available in clinical practice. RPE65 gene accounts for a very small proportion of patients with inherited retinal degeneration, especially Asian patients. Because RPE65-associated retinal dystrophy shares common clinical characteristics, such as early-onset severe nyctalopia, nystagmus, low vision, and progressive visual field constriction, with retinitis pigmentosa by other genetic mutations, appropriate genetic testing is essential to make a correct diagnosis. Also, fundus abnormalities can be minimal in early childhood, and the phenotype is highly variable depending on the type of mutations in RPE65-associated retinal dystrophy, which makes a diagnostic difficulty. The aim of this paper is to review the epidemiology of RPE65-associated retinal dystrophy, mutation spectrum, genetic diagnosis, clinical characteristics, and voretigene neparvovec, a gene therapy product for the treatment of RPE65-related retinal dystrophy.
Collapse
Affiliation(s)
- Jinu Han
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| | - Kwangsic Joo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam,
Korea
| | - Ungsoo Samuel Kim
- Department of Ophthalmology, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong,
Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam,
Korea
| | - Eun Kyoung Lee
- Department of Ophthalmology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul,
Korea
| | - Joo Yong Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Tae Kwann Park
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Bucheon,
Korea
| | - Sang Jin Kim
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Suk Ho Byeon
- Institute of Vision Research, Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| | | |
Collapse
|
33
|
Jung S, Park YC, Lee D, Kim S, Kim SM, Kim Y, Lee D, Hyun J, Koh I, Lee JY. Exome sequencing identified five novel USH2A variants in Korean patients with retinitis pigmentosa. Ophthalmic Genet 2023; 44:163-170. [PMID: 36314366 DOI: 10.1080/13816810.2022.2138456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Retinitis pigmentosa (RP) is an inherited disorder that causes progressive loss of vision. This study aimed to describe the possible causative variants of the USH2A gene in Korean RP families and their associated phenotypes. MATERIALS AND METHODS We recruited 94 RP families (220 subjects, including 94 probands and 126 family members) in a Korean cohort, and analyzed USH2A gene variants through whole-exome sequencing. The pathogenicity of the variants was classified according to American College of Medical Genetics and Genomics and Association for Molecular Pathology guidelines. RESULTS We found 14 USH2A disease-causing variants, including 5 novel variants. Disease causing variants were identified in 10 probands with RP, accounting for 10.6% (10/94) of the Korean RPs in the cohort. To visually represent the structural changes induced by novel variants, we modeled the three-dimensional structures of the wild-type and mutant proteins. CONCLUSIONS This study expands the spectrum of USH2A variants and provides information for future therapeutic strategies for RP.
Collapse
Affiliation(s)
- SeungHee Jung
- Department of Biomedical Informatics, Hanyang University, Seoul, Korea
| | - Young Chan Park
- Department of Biomedical Informatics, Hanyang University, Seoul, Korea
- Oneomics Co, Ltd, Gyeonggi-do, Korea
| | - DongHee Lee
- Department of Biomedical Informatics, Hanyang University, Seoul, Korea
- Oneomics Co, Ltd, Gyeonggi-do, Korea
| | - SiYeon Kim
- Department of Biomedical Informatics, Hanyang University, Seoul, Korea
| | | | | | | | | | - InSong Koh
- Department of Biomedical Informatics, Hanyang University, Seoul, Korea
| | | |
Collapse
|
34
|
Bodenbender JP, Marino V, Bethge L, Stingl K, Haack TB, Biskup S, Kohl S, Kühlewein L, Dell’Orco D, Weisschuh N. Biallelic Variants in TULP1 Are Associated with Heterogeneous Phenotypes of Retinal Dystrophy. Int J Mol Sci 2023; 24:ijms24032709. [PMID: 36769033 PMCID: PMC9916573 DOI: 10.3390/ijms24032709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Biallelic pathogenic variants in TULP1 are mostly associated with severe rod-driven inherited retinal degeneration. In this study, we analyzed clinical heterogeneity in 17 patients and characterized the underlying biallelic variants in TULP1. All patients underwent thorough ophthalmological examinations. Minigene assays and structural analyses were performed to assess the consequences of splice variants and missense variants. Three patients were diagnosed with Leber congenital amaurosis, nine with early onset retinitis pigmentosa, two with retinitis pigmentosa with an onset in adulthood, one with cone dystrophy, and two with cone-rod dystrophy. Seventeen different alleles were identified, namely eight missense variants, six nonsense variants, one in-frame deletion variant, and two splice site variants. For the latter two, minigene assays revealed aberrant transcripts containing frameshifts and premature termination codons. Structural analysis and molecular modeling suggested different degrees of structural destabilization for the missense variants. In conclusion, we report the largest cohort of patients with TULP1-associated IRD published to date. Most of the patients exhibited rod-driven disease, yet a fraction of the patients exhibited cone-driven disease. Our data support the hypothesis that TULP1 variants do not fold properly and thus trigger unfolded protein response, resulting in photoreceptor death.
Collapse
Affiliation(s)
- Jan-Philipp Bodenbender
- Department for Ophthalmology, University Eye Hospital, University of Tübingen, 72076 Tübingen, Germany
- Correspondence: (J.-P.B.); (N.W.)
| | - Valerio Marino
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37124 Verona, Italy
| | - Leon Bethge
- Department for Ophthalmology, University Eye Hospital, University of Tübingen, 72076 Tübingen, Germany
| | - Katarina Stingl
- Department for Ophthalmology, University Eye Hospital, University of Tübingen, 72076 Tübingen, Germany
| | - Tobias B. Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, 72076 Tübingen, Germany
| | - Saskia Biskup
- Praxis für Humangenetik, 72076 Tübingen, Germany
- CeGaT GmbH, 72076 Tübingen, Germany
| | - Susanne Kohl
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | - Laura Kühlewein
- Department for Ophthalmology, University Eye Hospital, University of Tübingen, 72076 Tübingen, Germany
| | - Daniele Dell’Orco
- Section of Biological Chemistry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37124 Verona, Italy
| | - Nicole Weisschuh
- Department for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
- Correspondence: (J.-P.B.); (N.W.)
| |
Collapse
|
35
|
Biology, Pathobiology and Gene Therapy of CNG Channel-Related Retinopathies. Biomedicines 2023; 11:biomedicines11020269. [PMID: 36830806 PMCID: PMC9953513 DOI: 10.3390/biomedicines11020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
The visual process begins with the absorption of photons by photopigments of cone and rod photoreceptors in the retina. In this process, the signal is first amplified by a cyclic guanosine monophosphate (cGMP)-based signaling cascade and then converted into an electrical signal by cyclic nucleotide-gated (CNG) channels. CNG channels are purely ligand-gated channels whose activity can be controlled by cGMP, which induces a depolarizing Na+/Ca2+ current upon binding to the channel. Structurally, CNG channels belong to the superfamily of pore-loop cation channels and share structural similarities with hyperpolarization-activated cyclic nucleotide (HCN) and voltage-gated potassium (KCN) channels. Cone and rod photoreceptors express distinct CNG channels encoded by homologous genes. Mutations in the genes encoding the rod CNG channel (CNGA1 and CNGB1) result in retinitis-pigmentosa-type blindness. Mutations in the genes encoding the cone CNG channel (CNGA3 and CNGB3) lead to achromatopsia. Here, we review the molecular properties of CNG channels and describe their physiological and pathophysiological roles in the retina. Moreover, we summarize recent activities in the field of gene therapy aimed at developing the first gene therapies for CNG channelopathies.
Collapse
|
36
|
Wen S, Wang M, Qian X, Li Y, Wang K, Choi J, Pennesi ME, Yang P, Marra M, Koenekoop RK, Lopez I, Matynia A, Gorin M, Sui R, Yao F, Goetz K, Porto FBO, Chen R. Systematic assessment of the contribution of structural variants to inherited retinal diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.02.522522. [PMID: 36789417 PMCID: PMC9928032 DOI: 10.1101/2023.01.02.522522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite increasing success in determining genetic diagnosis for patients with inherited retinal diseases (IRDs), mutations in about 30% of the IRD cases remain unclear or unsettled after targeted gene panel or whole exome sequencing. In this study, we aimed to investigate the contributions of structural variants (SVs) to settling the molecular diagnosis of IRD with whole-genome sequencing (WGS). A cohort of 755 IRD patients whose pathogenic mutations remain undefined was subjected to WGS. Four SV calling algorithms including include MANTA, DELLY, LUMPY, and CNVnator were used to detect SVs throughout the genome. All SVs identified by any one of these four algorithms were included for further analysis. AnnotSV was used to annotate these SVs. SVs that overlap with known IRD-associated genes were examined with sequencing coverage, junction reads, and discordant read pairs. PCR followed by Sanger sequencing was used to further confirm the SVs and identify the breakpoints. Segregation of the candidate pathogenic alleles with the disease was performed when possible. In total, sixteen candidate pathogenic SVs were identified in sixteen families, including deletions and inversions, representing 2.1% of patients with previously unsolved IRDs. Autosomal dominant, autosomal recessive, and X-linked inheritance of disease-causing SVs were observed in 12 different genes. Among these, SVs in CLN3, EYS, PRPF31 were found in multiple families. Our study suggests that the contribution of SVs detected by short-read WGS is about 0.25% of our IRD patient cohort and is significantly lower than that of single nucleotide changes and small insertions and deletions.
Collapse
|
37
|
The Diagnostic Yield of Next Generation Sequencing in Inherited Retinal Diseases: A Systematic Review and Meta-analysis. Am J Ophthalmol 2022; 249:57-73. [PMID: 36592879 DOI: 10.1016/j.ajo.2022.12.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
PURPOSE Accurate genotyping of individuals with inherited retinal diseases (IRD) is essential for patient management and identifying suitable candidates for gene therapies. This study evaluated the diagnostic yield of next generation sequencing (NGS) in IRDs. DESIGN Systematic review and meta-analysis. METHODS This systematic review was prospectively registered (CRD42021293619). Ovid MEDLINE and Ovid Embase were searched on 6 June 2022. Clinical studies evaluating the diagnostic yield of NGS in individuals with IRDs were eligible for inclusion. Risk of bias assessment was performed. Studies were pooled using a random...effects inverse variance model. Sources of heterogeneity were explored using stratified analysis, meta-regression, and sensitivity analysis. RESULTS This study included 105 publications from 28 countries. Most studies (90 studies) used targeted gene panels. The diagnostic yield of NGS was 61.3% (95% confidence interval: 57.8-64.7%; 51 studies) in mixed IRD phenotypes, 58.2% (51.6-64.6%; 41 studies) in rod-cone dystrophies, 57.7% (46.8-68.3%; eight studies) in macular and cone/cone-rod dystrophies, and 47.6% (95% CI: 41.0-54.3%; four studies) in familial exudative vitreoretinopathy. For mixed IRD phenotypes, a higher diagnostic yield was achieved pooling studies published between 2018-2022 (64.2% [59.5-68.7%]), studies using exome sequencing (73.5% [58.9-86.1%]), and studies using the American College of Medical Genetics variant interpretation standards (65.6% [60.8-70.4%]). CONCLUSION The current diagnostic yield of NGS in IRDs is between 52-74%. The certainty of the evidence was judged as low or very low. A key limitation of the current evidence is the significant heterogeneity between studies. Adoption of standardized reporting guidelines could improve confidence in future meta-analyses.
Collapse
|
38
|
Karali M, Testa F, Di Iorio V, Torella A, Zeuli R, Scarpato M, Romano F, Onore ME, Pizzo M, Melillo P, Brunetti-Pierri R, Passerini I, Pelo E, Cremers FPM, Esposito G, Nigro V, Simonelli F, Banfi S. Genetic epidemiology of inherited retinal diseases in a large patient cohort followed at a single center in Italy. Sci Rep 2022; 12:20815. [PMID: 36460718 PMCID: PMC9718770 DOI: 10.1038/s41598-022-24636-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 11/17/2022] [Indexed: 12/04/2022] Open
Abstract
Inherited retinal diseases (IRDs) are the leading cause of vision loss in the working-age population. We performed a retrospective epidemiological study to determine the genetic basis of IRDs in a large Italian cohort (n = 2790) followed at a single referral center. We provided, mainly by next generation sequencing, potentially conclusive molecular diagnosis for 2036 patients (from 1683 unrelated families). We identified a total of 1319 causative sequence variations in 132 genes, including 353 novel variants, and 866 possibly actionable genotypes for therapeutic approaches. ABCA4 was the most frequently mutated gene (n = 535; 26.3% of solved cases), followed by USH2A (n = 228; 11.2%) and RPGR (n = 102; 5.01%). The other 129 genes had a lower contribution to IRD pathogenesis (e.g. CHM 3.5%, RHO 3.5%; MYO7A 3.4%; CRB1 2.7%; RPE65 2%, RP1 1.8%; GUCY2D 1.7%). Seventy-eight genes were mutated in five patients or less. Mitochondrial DNA variants were responsible for 2.1% of cases. Our analysis confirms the complex genetic etiology of IRDs and reveals the high prevalence of ABCA4 and USH2A mutations. This study also uncovers genetic associations with a spectrum of clinical subgroups and highlights a valuable number of cases potentially eligible for clinical trials and, ultimately, for molecular therapies.
Collapse
Affiliation(s)
- Marianthi Karali
- grid.9841.40000 0001 2200 8888Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy ,grid.9841.40000 0001 2200 8888Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Pansini 5, 80131 Naples, Italy
| | - Francesco Testa
- grid.9841.40000 0001 2200 8888Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Pansini 5, 80131 Naples, Italy
| | - Valentina Di Iorio
- grid.9841.40000 0001 2200 8888Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Pansini 5, 80131 Naples, Italy
| | - Annalaura Torella
- grid.9841.40000 0001 2200 8888Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy ,grid.410439.b0000 0004 1758 1171Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Roberta Zeuli
- grid.9841.40000 0001 2200 8888Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy
| | - Margherita Scarpato
- grid.9841.40000 0001 2200 8888Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy
| | - Francesca Romano
- grid.9841.40000 0001 2200 8888Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy
| | - Maria Elena Onore
- grid.9841.40000 0001 2200 8888Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy
| | - Mariateresa Pizzo
- grid.410439.b0000 0004 1758 1171Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Paolo Melillo
- grid.9841.40000 0001 2200 8888Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Pansini 5, 80131 Naples, Italy
| | - Raffaella Brunetti-Pierri
- grid.9841.40000 0001 2200 8888Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Pansini 5, 80131 Naples, Italy
| | - Ilaria Passerini
- grid.24704.350000 0004 1759 9494Department of Genetic Diagnosis, Careggi Teaching Hospital, Florence, Italy
| | - Elisabetta Pelo
- grid.24704.350000 0004 1759 9494Department of Genetic Diagnosis, Careggi Teaching Hospital, Florence, Italy
| | - Frans P. M. Cremers
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gabriella Esposito
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy ,CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80145 Naples, Italy
| | - Vincenzo Nigro
- grid.9841.40000 0001 2200 8888Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy ,grid.410439.b0000 0004 1758 1171Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Francesca Simonelli
- grid.9841.40000 0001 2200 8888Multidisciplinary Department of Medical, Surgical and Dental Sciences, Eye Clinic, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Pansini 5, 80131 Naples, Italy
| | - Sandro Banfi
- grid.9841.40000 0001 2200 8888Medical Genetics, Department of Precision Medicine, Università degli Studi della Campania ’Luigi Vanvitelli’, Via Luigi De Crecchio 7, 80138 Naples, Italy ,grid.410439.b0000 0004 1758 1171Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| |
Collapse
|
39
|
Suga A, Yoshitake K, Minematsu N, Tsunoda K, Fujinami K, Miyake Y, Kuniyoshi K, Hayashi T, Mizobuchi K, Ueno S, Terasaki H, Kominami T, Nao-I N, Mawatari G, Mizota A, Shinoda K, Kondo M, Kato K, Sekiryu T, Nakamura M, Kusuhara S, Yamamoto H, Yamamoto S, Mochizuki K, Kondo H, Matsushita I, Kameya S, Fukuchi T, Hatase T, Horiguchi M, Shimada Y, Tanikawa A, Yamamoto S, Miura G, Ito N, Murakami A, Fujimaki T, Hotta Y, Tanaka K, Iwata T. Genetic characterization of 1210 Japanese pedigrees with inherited retinal diseases by whole-exome sequencing. Hum Mutat 2022; 43:2251-2264. [PMID: 36284460 DOI: 10.1002/humu.24492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/18/2022] [Accepted: 10/21/2022] [Indexed: 01/25/2023]
Abstract
Inherited retinal diseases (IRDs) comprise a phenotypically and genetically heterogeneous group of ocular disorders that cause visual loss via progressive retinal degeneration. Here, we report the genetic characterization of 1210 IRD pedigrees enrolled through the Japan Eye Genetic Consortium and analyzed by whole exome sequencing. The most common phenotype was retinitis pigmentosa (RP, 43%), followed by macular dystrophy/cone- or cone-rod dystrophy (MD/CORD, 13%). In total, 67 causal genes were identified in 37% (448/1210) of the pedigrees. The first and second most frequently mutated genes were EYS and RP1, associated primarily with autosomal recessive (ar) RP, and RP and arMD/CORD, respectively. Examinations of variant frequency in total and by phenotype showed high accountability of a frequent EYS missense variant (c.2528G>A). In addition to the two known EYS founder mutations (c.4957dupA and c.8805C>G) of arRP, we observed a frequent RP1 variant (c.5797C>T) in patients with arMD/CORD.
Collapse
Affiliation(s)
- Akiko Suga
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Kazutoshi Yoshitake
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.,Laboratory of Aquatic Molecular Biology and Biotechnology, Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoko Minematsu
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Kazushige Tsunoda
- Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Kaoru Fujinami
- Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | | | - Kazuki Kuniyoshi
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Ophthalmology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiroko Terasaki
- Nagoya University, Institutes of Innovation for Future Society, Nagoya, Japan
| | - Taro Kominami
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuhisa Nao-I
- Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Go Mawatari
- Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Atsushi Mizota
- Department of Ophthalmology, Teikyo University School of Medicine, Teikyo, Japan
| | - Kei Shinoda
- Department of Ophthalmology, Teikyo University School of Medicine, Teikyo, Japan.,Department of Ophthalmology, Saitama Medical University, Iruma-gun, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kumiko Kato
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Tetsuju Sekiryu
- Department of Ophthalmology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Makoto Nakamura
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sentaro Kusuhara
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | - Kiyofumi Mochizuki
- Department of Ophthalmology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Kondo
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Itsuka Matsushita
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shuhei Kameya
- Nippon Medical School Chiba Hokusoh Hospital, Chiba, Japan
| | - Takeo Fukuchi
- Division of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Tetsuhisa Hatase
- Division of Ophthalmology and Visual Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | | | - Yoshiaki Shimada
- Department of Ophthalmology, Fujita Health University, Fujita, Japan
| | - Atsuhiro Tanikawa
- Department of Ophthalmology, Fujita Health University, Fujita, Japan
| | - Shuichi Yamamoto
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Gen Miura
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nana Ito
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Takuro Fujimaki
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan.,Kohinata Eye Clinic, Tokyo, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Koji Tanaka
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Chiyoda-ku, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| |
Collapse
|
40
|
Sangermano R, Biswas P, Sullivan LS, Place EM, Borooah S, Straubhaar J, Pierce EA, Daiger SP, Bujakowska KM, Ayaggari R. Identification of a novel large multigene deletion and a frameshift indel in PDE6B as the underlying cause of early-onset recessive rod-cone degeneration. Cold Spring Harb Mol Case Stud 2022; 8:a006247. [PMID: 36376065 PMCID: PMC9808551 DOI: 10.1101/mcs.a006247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/02/2022] [Indexed: 11/15/2022] Open
Abstract
A family, with two affected identical twins with early-onset recessive inherited retinal degeneration, was analyzed to determine the underlying genetic cause of pathology. Exome sequencing revealed a rare and previously reported causative variant (c.1923_1969delinsTCTGGG; p.Asn643Glyfs*29) in the PDE6B gene in the affected twins and their unaffected father. Further investigation, using genome sequencing, identified a novel ∼7.5-kb deletion (Chr 4:670,405-677,862del) encompassing the ATP5ME gene, part of the 5' UTR of MYL5, and a 378-bp (Chr 4:670,405-670,782) region from the 3' UTR of PDE6B in the affected twins and their unaffected mother. Both variants segregated with disease in the family. Analysis of the relative expression of PDE6B, in peripheral blood cells, also revealed a significantly lower level of PDE6B transcript in affected siblings compared to a normal control. PDE6B is associated with recessive rod-cone degeneration and autosomal dominant congenital stationary night blindness. Ophthalmic evaluation of these patients showed night blindness, fundus abnormalities, and peripheral vision loss, which are consistent with PDE6B-associated recessive retinal degeneration. These findings suggest that the loss of PDE6B transcript resulting from the compound heterozygous pathogenic variants is the underlying cause of recessive rod-cone degeneration in the study family.
Collapse
Affiliation(s)
- Riccardo Sangermano
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Pooja Biswas
- Shiley Eye Institute, University of California San Diego, La Jolla, California 92093, USA
| | - Lori S Sullivan
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Emily M Place
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Shyamanga Borooah
- Shiley Eye Institute, University of California San Diego, La Jolla, California 92093, USA
| | - Juerg Straubhaar
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Stephen P Daiger
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Kinga M Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Radha Ayaggari
- Shiley Eye Institute, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
41
|
Vinikoor-Imler LC, Simpson C, Narayanan D, Abbasi S, Lally C. Prevalence of RPGR-mutated X-linked retinitis pigmentosa among males. Ophthalmic Genet 2022; 43:581-588. [PMID: 36004681 DOI: 10.1080/13816810.2022.2109686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
BACKGROUND X-linked retinitis pigmentosa (XLRP) is a rare inherited retinal disease predominantly affecting males. MATERIALS AND METHODS A comprehensive literature review was conducted to determine the prevalence of retinitis pigmentosa GTPase regulator (RPGR)-mutated XLRP. Identified studies were used to estimate four components among males: the prevalence of retinitis pigmentosa (RP), the proportion of RP that was X-linked, the proportion of misclassified inheritance type among RP cases, and the proportion of XLRP that was RPGR-mutated. Studies providing a direct estimate of XLRP prevalence were also included. The components' sample size-weighted averages were combined to determine an overall prevalence estimate. RESULTS The prevalence of XLRP was estimated to be between 2.7-3.5 per 100,000 males in the US, Europe, and Australia. After correction for misclassification, the prevalence increased to 4.0-5.2 per 100,000 males. Finally, the proportion of XLRP cases due to RPGR mutations was applied, resulting in an RPGR-mutated XLRP estimate of 3.4-4.4 per 100,000 males. Studies from other countries were consistent with the results for the overall XLRP prevalence but were not included in the final calculation because of regional variations and lack of detailed information. CONCLUSIONS These findings address an important gap in the understanding of RPGR-mutated XLRP by summarizing the global burden of this condition.
Collapse
Affiliation(s)
| | | | - Divya Narayanan
- Global Medical Affairs, Biogen, Cambridge, Massachusetts, USA
| | - Saad Abbasi
- Global Medical Affairs, Biogen, Cambridge, Massachusetts, USA
| | - Cathy Lally
- Epidemiologic Research & Methods, LLC, Atlanta, Georgia, USA
| |
Collapse
|
42
|
Griffith J, Sioufi K, Wilbanks L, Magrath GN, Say EAT, Lyons MJ, Wilkes M, Pai GS, Peterseim MMW. Inherited Retinal Dystrophy in Southeastern United States: Characterization of South Carolina Patients and Comparative Literature Review. Genes (Basel) 2022; 13:genes13081490. [PMID: 36011402 PMCID: PMC9407983 DOI: 10.3390/genes13081490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a group of rare diseases involving more than 340 genes and a variety of clinical phenotypes that lead to significant visual impairment. The aim of this study is to evaluate the rates and genetic characteristics of IRDs in the southeastern region of the United States (US). A retrospective chart review was performed on 325 patients with a clinical diagnosis of retinal dystrophy. Data including presenting symptoms, visual acuity, retinal exam findings, imaging findings, and genetic test results were compiled and compared to national and international IRD cohorts. The known ethnic groups included White (64%), African American or Black (30%), Hispanic (3%), and Asian (2%). The most prevalent dystrophies identified clinically were non-syndromic retinitis pigmentosa (29.8%), Stargardt disease (8.3%), Usher syndrome (8.3%), cone-rod dystrophy (8.0%), cone dystrophy (4.9%), and Leber congenital amaurosis (4.3%). Of the 101 patients (31.1%) with genetic testing, 54 (53.5%) had causative genetic variants identified. The most common pathogenic genetic variants were USH2A (n = 11), ABCA4 (n = 8), CLN3 (n = 7), and CEP290 (n = 3). Our study provides initial information characterizing IRDs within the diverse population of the southeastern US, which differs from national and international genetic and diagnostic trends with a relatively high proportion of retinitis pigmentosa in our African American or Black population and a relatively high frequency of USH2A pathogenic variants.
Collapse
Affiliation(s)
- Joseph Griffith
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kareem Sioufi
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Laurie Wilbanks
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - George N. Magrath
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Emil A. T. Say
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Meg Wilkes
- Greenwood Genetic Center, Greenwood, SC 29646, USA
| | - Gurpur Shashidhar Pai
- Department of Genetics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mae Millicent Winfrey Peterseim
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
- Correspondence: ; Tel.: +1-843-792-3758
| |
Collapse
|
43
|
Nasser F, Kohl S, Kurtenbach A, Kempf M, Biskup S, Zuleger T, Haack TB, Weisschuh N, Stingl K, Zrenner E. Ophthalmic and Genetic Features of Bardet Biedl Syndrome in a German Cohort. Genes (Basel) 2022; 13:genes13071218. [PMID: 35886001 PMCID: PMC9322102 DOI: 10.3390/genes13071218] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of this study was to characterize the ophthalmic and genetic features of Bardet Biedl (BBS) syndrome in a cohort of patients from a German specialized ophthalmic care center. Sixty-one patients, aged 5−56 years, underwent a detailed ophthalmic examination including visual acuity and color vision testing, electroretinography (ERG), visually evoked potential recording (VEP), fundus examination, and spectral domain optical coherence tomography (SD-OCT). Adaptive optics flood illumination ophthalmoscopy was performed in five patients. All patients had received diagnostic genetic testing and were selected upon the presence of apparent biallelic variants in known BBS-associated genes. All patients had retinal dystrophy with morphologic changes of the retina. Visual acuity decreased from ~0.2 (decimal) at age 5 to blindness 0 at 50 years. Visual field examination could be performed in only half of the patients and showed a concentric constriction with remaining islands of function in the periphery. ERG recordings were mostly extinguished whereas VEP recordings were reduced in about half of the patients. The cohort of patients showed 51 different likely biallelic mutations—of which 11 are novel—in 12 different BBS-associated genes. The most common associated genes were BBS10 (32.8%) and BBS1 (24.6%), and by far the most commonly observed variants were BBS10 c.271dup;p.C91Lfs*5 (21 alleles) and BBS1 c.1169T>G;p.M390R (18 alleles). The phenotype associated with the different BBS-associated genes and genotypes in our cohort is heterogeneous, with diverse features without genotype−phenotype correlation. The results confirm and expand our knowledge of this rare disease.
Collapse
Affiliation(s)
- Fadi Nasser
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
- Department of Ophthalmology, University of Leipzig, 04103 Leipzig, Germany
- Correspondence:
| | - Susanne Kohl
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
| | - Anne Kurtenbach
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
| | - Melanie Kempf
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
- Center for Rare Eye Diseases, University of Tübingen, 72076 Tuebingen, Germany
| | | | - Theresia Zuleger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tuebingen, Germany; (T.Z.); (T.B.H.)
| | - Tobias B. Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tuebingen, Germany; (T.Z.); (T.B.H.)
| | - Nicole Weisschuh
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
| | - Katarina Stingl
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
- Center for Rare Eye Diseases, University of Tübingen, 72076 Tuebingen, Germany
| | - Eberhart Zrenner
- Centre for Ophthalmology, University of Tübingen, 72076 Tuebingen, Germany; (S.K.); (A.K.); (M.K.); (N.W.); (K.S.); (E.Z.)
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, 72076 Tuebingen, Germany
| |
Collapse
|
44
|
Solaki M, Baumann B, Reuter P, Andreasson S, Audo I, Ayuso C, Balousha G, Benedicenti F, Birch D, Bitoun P, Blain D, Bocquet B, Branham K, Català-Mora J, De Baere E, Dollfus H, Falana M, Giorda R, Golovleva I, Gottlob I, Heckenlively JR, Jacobson SG, Jones K, Jägle H, Janecke AR, Kellner U, Liskova P, Lorenz B, Martorell-Sampol L, Messias A, Meunier I, Belga Ottoni Porto F, Papageorgiou E, Plomp AS, de Ravel TJL, Reiff CM, Renner AB, Rosenberg T, Rudolph G, Salati R, Sener EC, Sieving PA, Stanzial F, Traboulsi EI, Tsang SH, Varsanyi B, Weleber RG, Zobor D, Stingl K, Wissinger B, Kohl S. Comprehensive variant spectrum of the CNGA3 gene in patients affected by achromatopsia. Hum Mutat 2022; 43:832-858. [PMID: 35332618 DOI: 10.1002/humu.24371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/23/2022] [Accepted: 03/22/2022] [Indexed: 11/06/2022]
Abstract
Achromatopsia (ACHM) is a congenital cone photoreceptor disorder characterized by impaired color discrimination, low visual acuity, photosensitivity, and nystagmus. To date, six genes have been associated with ACHM (CNGA3, CNGB3, GNAT2, PDE6C, PDE6H, and ATF6), the majority of these being implicated in the cone phototransduction cascade. CNGA3 encodes the CNGA3 subunit of the cyclic nucleotide-gated ion channel in cone photoreceptors and is one of the major disease-associated genes for ACHM. Herein, we provide a comprehensive overview of the CNGA3 variant spectrum in a cohort of 1060 genetically confirmed ACHM patients, 385 (36.3%) of these carrying "likely disease-causing" variants in CNGA3. Compiling our own genetic data with those reported in the literature and in public databases, we further extend the CNGA3 variant spectrum to a total of 316 variants, 244 of which we interpreted as "likely disease-causing" according to ACMG/AMP criteria. We report 48 novel "likely disease-causing" variants, 24 of which are missense substitutions underlining the predominant role of this mutation class in the CNGA3 variant spectrum. In addition, we provide extensive in silico analyses and summarize reported functional data of previously analyzed missense, nonsense and splicing variants to further advance the pathogenicity assessment of the identified variants.
Collapse
Affiliation(s)
- Maria Solaki
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Britta Baumann
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Peggy Reuter
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Sten Andreasson
- Department of Ophthalmology, University Hospital Lund, Lund, Sweden
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, Centre de Référence Maladies Rares REFERET, and INSERM-DGOS CIC1423, Paris, France
| | - Carmen Ayuso
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Ghassan Balousha
- Department of Pathology and Histology, Faculty of Medicine, Al-Quds University, Eastern Jerusalem, Palestine
| | - Francesco Benedicenti
- Clinical Genetics Service and South Tyrol Coordination Center for Rare Diseases, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - David Birch
- Retina Foundation of the Southwest, Dallas, Texas, USA
| | - Pierre Bitoun
- Genetique Medicale, CHU Paris Nord, Hopital Jean Verdier, Bondy Cedex, France
| | | | - Beatrice Bocquet
- National Reference Centre for Inherited Sensory Diseases, Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Kari Branham
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Jaume Català-Mora
- Unitat de Distròfies Hereditàries de Retina Hospital Sant Joan de Déu, Barcelona, Esplugues de Llobregat, Spain
| | - Elfride De Baere
- Department of Biomolecular Medicine, Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Helene Dollfus
- CARGO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- U-1112, Inserm, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Mohammed Falana
- Department of Pathology and Histology, Faculty of Medicine, Al-Quds University, Eastern Jerusalem, Palestine
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Irina Golovleva
- Department of Medical Biosciences/Medical and Clinical Genetics, University of Umea, Umea, Sweden
| | - Irene Gottlob
- The University of Leicester Ulverscroft Eye Unit, Leicester Royal Infirmary, Leicester, UK
| | - John R Heckenlively
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Samuel G Jacobson
- Department of Ophthalmology, Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kaylie Jones
- Retina Foundation of the Southwest, Dallas, Texas, USA
| | - Herbert Jägle
- Department of Ophthalmology, University of Regensburg, Regensburg, Germany
| | - Andreas R Janecke
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Ulrich Kellner
- Zentrum für Seltene Netzhauterkrankungen, AugenZentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, Siegburg, Germany
- RetinaScience, Bonn, 53192, Germany
| | - Petra Liskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Birgit Lorenz
- Department of Ophthalmology, Justus-Liebig University Giessen, Giessen, Germany
- Department of Ophthalmology, Universitaetsklinikum Bonn, Bonn, Germany
| | | | - André Messias
- Department of Ophthalmology, Otorhinolaryngology, and Head and Neck Surgery, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isabelle Meunier
- National Reference Centre for Inherited Sensory Diseases, Montpellier University Hospital, University of Montpellier, Montpellier, France
- Sensgene Care Network, France
| | | | - Eleni Papageorgiou
- Department of Ophthalmology, University Hospital of Larissa, Mezourlo, Larissa, Greece
| | - Astrid S Plomp
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Thomy J L de Ravel
- Centre for Medical Genetics, University Hospital Brussels, Brussels, Belgium
| | | | | | - Thomas Rosenberg
- Department of Ophthalmology, National Eye Clinic, Glostrup Hospital, Glostrup, Denmark
| | - Günther Rudolph
- University Eye Hospital, Ludwig Maximilians University, Munich, Germany
| | - Roberto Salati
- Scientific Institute, IRCCS Eugenio Medea, Pediatric Ophthalmology Unit, Bosisio Parini, Lecco, Italy
| | - E Cumhur Sener
- Strabismus and Pediatric Ophthalmology, Private Practice, Ankara, Turkey
| | - Paul A Sieving
- Center for Ocular Regenerative Therapy, School of Medicine, University of California Davis, Sacramento, USA
| | - Franco Stanzial
- Clinical Genetics Service and South Tyrol Coordination Center for Rare Diseases, Department of Pediatrics, Regional Hospital of Bolzano, Bolzano, Italy
| | - Elias I Traboulsi
- Center for Genetic Eye Diseases, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Pathology and Cell Biology, College of Physicians and Surgeons, Columbia Stem Cell Initiative, Columbia University, New York City, New York, USA
| | - Balázs Varsanyi
- Department of Ophthalmology, Medical School, University of Pécs and Ganglion Medical Center, Pécs, Pécs, Hungary
| | - Richard G Weleber
- Oregon Health & Science University, Ophthalmic Genetics Service of the Casey Eye Institute, 515 SW Campus Drive, 97239, Portland, Oregon, USA
| | - Ditta Zobor
- Centre for Ophthalmology, Institute for Ophthalmic Research, University Hospital Tübingen, Tübingen, Germany
- Department of Ophthalmology, Semmelweis University Budapest, Budapest, Hungary
| | - Katarina Stingl
- Center for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
- Center for Rare Eye Diseases, University of Tübingen, Tübingen, Germany
| | - Bernd Wissinger
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
45
|
Kazmierczak de Camargo JP, Prezia GNDB, Shiokawa N, Sato MT, Rosati R, Beate Winter Boldt A. New Insights on the Regulatory Gene Network Disturbed in Central Areolar Choroidal Dystrophy-Beyond Classical Gene Candidates. Front Genet 2022; 13:886461. [PMID: 35656327 PMCID: PMC9152281 DOI: 10.3389/fgene.2022.886461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Central areolar choroidal dystrophy (CACD) is a rare hereditary disease that mainly affects the macula, resulting in progressive and usually profound visual loss. Being part of congenital retinal dystrophies, it may have an autosomal dominant or recessive inheritance and, until now, has no effective treatment. Given the shortage of genotypic information about the disease, this work systematically reviews the literature for CACD-causing genes. Three independent researchers selected 33 articles after carefully searching and filtering the Scielo, Pubmed, Lilacs, Web of Science, Scopus, and Embase databases. Mutations of six genes (PRPH2, GUCA1A, GUCY2D, CDHR1, ABCA4, and TTLL5) are implicated in the monogenic dominant inheritance of CACD. They are functionally related to photoreceptors (either in the phototransduction process, as in the case of GUCY2D, or the recovery of retinal photodegradation in photoreceptors for GUCA1A, or the formation and maintenance of specific structures within photoreceptors for PRPH2). The identified genetic variants do not explain all observed clinical features, calling for further whole-genome and functional studies for this disease. A network analysis with the CACD-related genes identified in the systematic review resulted in the identification of another 20 genes that may influence CACD onset and symptoms. Furthermore, an enrichment analysis allowed the identification of 13 transcription factors and 4 long noncoding RNAs interacting with the products of the previously mentioned genes. If mutated or dysregulated, they may be directly involved in CACD development and related disorders. More than half of the genes identified by bioinformatic tools do not appear in commercial gene panels, calling for more studies about their role in the maintenance of the retina and phototransduction process, as well as for a timely update of these gene panels.
Collapse
Affiliation(s)
| | - Giovanna Nazaré de Barros Prezia
- Post-Graduation Program in Biotechnology Applied to Child and Adolescent Health, Faculdades Pequeno Príncipe and Pelé Pequeno Príncipe Research Institute, Curitiba, Brazil
| | - Naoye Shiokawa
- Retina and Vitreo Consulting Eye Clinic, Curitiba, Brazil
| | - Mario Teruo Sato
- Retina and Vitreo Consulting Eye Clinic, Curitiba, Brazil.,Department of Ophthalmol/Otorhinolaryngology, Federal University of Paraná, Curitiba, Brazil
| | - Roberto Rosati
- Post-Graduation Program in Biotechnology Applied to Child and Adolescent Health, Faculdades Pequeno Príncipe and Pelé Pequeno Príncipe Research Institute, Curitiba, Brazil
| | | |
Collapse
|
46
|
Wang J, Wang Y, Jiang Y, Li X, Xiao X, Li S, Jia X, Sun W, Wang P, Zhang Q. Autosomal Dominant Retinitis Pigmentosa-Associated TOPORS Protein Truncating Variants Are Exclusively Located in the Region of Amino Acid Residues 807 to 867. Invest Ophthalmol Vis Sci 2022; 63:19. [PMID: 35579903 PMCID: PMC9123486 DOI: 10.1167/iovs.63.5.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Heterozygous truncating variants of TOPORS have been reported to cause autosomal dominant retinitis pigmentosa (adRP). The purpose of this study was to investigate whether all heterozygous truncating variants, including copy number variants (CNVs), are pathogenic. Methods TOPORS truncating variants were collected and reviewed through an in-house dataset and existing databases. Individuals with truncating variants underwent ophthalmological evaluation. Results Six truncating variants were detected in seven families. Three N-terminus truncating variants were detected in three families without RP, and the other three were identified in four unrelated families with typical RP. Based on the in-house dataset and published literature, 17 truncating variants were identified in 47 families with RP. All RP-associated truncating alleles, except one, were distributed in the last exon of TOPORS and clustered in amino acid residues 807 to 867 (46/47, 97.9%). Conversely, in the gnomAD database, only one truncating allele (1/27, 3.7%) was in this region, and the others were outside (26/27, 96.3%), suggesting that the pathogenic truncating variants were significantly clustered in residues 807 to 867 (χ2 = 65.6, P = 1.1 × 10–17). Additionally, three CNVs involving the N-terminus of TOPORS were recorded in control populations but were absent in affected patients. Conclusions This study suggests that all pathogenic truncating variants of TOPORS were clustered in residues 807 to 867, whereas the truncating variants outside this region and the CNVs involving the N-terminus were not associated with RP. A dominant-negative effect, rather than haploinsufficiency, is speculated to be the underlying pathogenesis. These findings provide valuable information for interpreting variation in TOPORS and other genes in similar situations, especially for CNVs.
Collapse
Affiliation(s)
- Junwen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yingwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xueqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
47
|
Nowomiejska K, Nasser F, Stingl K, Schimpf‐Linzenbold S, Biskup S, Brzozowska A, Rejdak R, Kohl S, Zrenner E. Disease expression caused by different variants in the BEST1 gene: genotype and phenotype findings in bestrophinopathies. Acta Ophthalmol 2022; 100:e847-e858. [PMID: 34327816 PMCID: PMC9328113 DOI: 10.1111/aos.14958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/17/2021] [Indexed: 12/30/2022]
Abstract
Purpose: To analyse the spectrum of clinical features and molecular genetic data in a series of patients carrying likely disease-associated variants in the BEST1 gene. Methods: Retrospective observational analysis of clinical data extracted from the medical records of visual function, multimodal imaging and electrophysiology of 62 eyes of 31 patients. Molecular genetic analysis was performed by means of panel-based NGS or Sanger sequencing. Results: The spectrum of variants in the BEST1 gene comprised 19 different variants and three of which are novel. Fundus photographs and OCT images allowed categorization of 52 eyes as Best vitelliform macular dystrophy (BVMD) with stages 1 to 5 and 10 eyes with autosomal recessive bestrophinopathy (ARB), with more severe phenotype. One patient was shown to be heterozygous for a variant, which has so far been described only in ARB, but this patient had the BVMD phenotype. There was no significant progression of the visual acuity during the follow-up period of 5 years both in BVMD and ARB. The most prevalent pattern of fundus autofluorescence (FAF) in BVMD was ‘patchy’. There were diverse visual field defects in static automated perimetry (SAP) depending on the stage. The Arden ratio was significantly lower in ARB patients and in eyes with stage 5 of BVMD. Conclusions: The genotype does not always predict the phenotype in patients with BVMD and ARB; however, having two mutations in the BEST1 gene causes a more severephenotype. FAFhelped to distinguish ARB from BVMD. Most of the observed eyesdidnotprogressfunctionallyduringthefollow-up.ARBandtheatrophicstageof BVMD as the disease end-stage had the worst visual functions and EOG results.
Collapse
Affiliation(s)
- Katarzyna Nowomiejska
- Chair and Department of General and Pediatric Ophthalmology Medical University of Lublin Lublin Poland
- Institute for Ophthalmic Research Center for Ophthalmology University of Tübingen Tübingen Germany
| | - Fadi Nasser
- Institute for Ophthalmic Research Center for Ophthalmology University of Tübingen Tübingen Germany
| | - Katarina Stingl
- University Eye Hospital Center for Ophthalmology University of Tübingen Tübingen Germany
- Center for Rare Eye Diseases University of Tübingen Tübingen Germany
| | | | | | - Agnieszka Brzozowska
- Department of Mathematics and Medical Biostatistics Medical University of Lublin Lublin Poland
| | - Robert Rejdak
- Chair and Department of General and Pediatric Ophthalmology Medical University of Lublin Lublin Poland
| | - Susanne Kohl
- Institute for Ophthalmic Research Center for Ophthalmology University of Tübingen Tübingen Germany
| | - Eberhart Zrenner
- Institute for Ophthalmic Research Center for Ophthalmology University of Tübingen Tübingen Germany
- Werner Reichardt Centre for Integrative Neuroscience University of Tübingen Tübingen Germany
| |
Collapse
|
48
|
[Diagnosis of inherited retinal dystrophies. Relevance of molecular genetic testing from the patient's perspective]. Ophthalmologe 2022; 119:820-826. [PMID: 35312834 DOI: 10.1007/s00347-022-01602-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The diagnostic process of inherited retinal dystrophies (IRD) is impeded by their low prevalence and the variability of the clinical presentations; however, for patients a valid diagnosis is vital for future planning and evaluating the potential of an appropriate early treatment to delay disease progression. OBJECTIVE Aim of the current study was to outline the patients' journeys until they receive the final diagnosis. This should help uncover diagnostic shortcomings and highlight potential for improvement with respect to the use of genetic diagnostic testing. MATERIAL AND METHODS Data were collected by questionnaires and an online survey conducted by the self-help association PRO RETINA Deutschland e. V. among patients with IRD. Data were analyzed by descriptive statistics. RESULTS From 15 March to 22 April 2021, 183 questionnaires were completed and 42 online interviews conducted. The surveyed population consisted of 48% female patients, mean age was 55 years and first symptoms occurred at a mean age of 22 years. On average about 14 years passed from first symptoms until final diagnosis. Only 66% of the patients reported that they had received at least 1 diagnostic genetic testing; less than half of the patients (47%) received genetic counseling. The huge majority of patients (85%) would be interested in gene therapy. CONCLUSION From the perspective of affected patients, a shortening of the time to diagnosis, the use of molecular genetic testing and the offer of genetic counseling are important to improve patient care for patients with IRD.
Collapse
|
49
|
Mustafi D, Hisama FM, Huey J, Chao JR. The current state of genetic testing platforms for inherited retinal diseases. Ophthalmol Retina 2022; 6:702-710. [PMID: 35307606 PMCID: PMC9356993 DOI: 10.1016/j.oret.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE To evaluate genetic testing platforms used to aid in the diagnosis of inherited retinal degenerations (IRDs). DESIGN Evaluation of diagnostic test or technology SUBJECTS: Targeted genetic panel testing for IRDs METHODS, INTERVENTION, OR TESTING: Data collected regarding targeted genetic panel testing for IRDs offered by different labs were investigated for inclusion of coding and non-coding variants in disease genes. Both large IRD panels and smaller, more focused disease specific panels were included in the analysis. MAIN OUTCOME MEASURES Number of disease genes tested as well as the commonality and uniqueness across testing platforms in both coding and non-coding variants of disease. RESULTS Across the three IRD panel tests investigated, 409 unique genes are represented, of which 269 genes are tested by all three panels. The top 20 genes known to cause over 70% of all IRDs are represented in the 269 common genes tested by all three panels. In addition, 138 non-coding variants are assayed across the three platforms in 50 unique genes. Focused disease specific panels exhibited significant variability across 5 testing platforms that were studied. CONCLUSIONS Ordering genetic testing for IRDs is not straightforward, as evidenced by the multitude of panels available to providers. It is important that there is coverage of both coding and non-coding regions in IRD genes to offer a diagnosis in these patients. This paper details the diversity of testing platforms currently available to clinicians and provides a thorough explanation of genes tested in the different IRD panels. In a time of increased importance for clinical genetic testing of IRD patients, knowledge of the proper test to order is paramount.
Collapse
Affiliation(s)
- Debarshi Mustafi
- Department of Ophthalmology, University of Washington, Seattle, Washington; Department of Ophthalmology, Seattle Children's Hospital, Seattle, Washington.
| | - Fuki M Hisama
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington
| | - Jennifer Huey
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, Washington
| |
Collapse
|
50
|
Sallum JMF, Kaur VP, Shaikh J, Banhazi J, Spera C, Aouadj C, Viriato D, Fischer MD. Epidemiology of Mutations in the 65-kDa Retinal Pigment Epithelium (RPE65) Gene-Mediated Inherited Retinal Dystrophies: A Systematic Literature Review. Adv Ther 2022; 39:1179-1198. [PMID: 35098484 PMCID: PMC8918161 DOI: 10.1007/s12325-021-02036-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Inherited retinal dystrophies (IRDs) represent a genetically diverse group of progressive, visually debilitating diseases. Adult and paediatric patients with vision loss due to IRD caused by biallelic mutations in the 65-kDa retinal pigment epithelium (RPE65) gene are often clinically diagnosed as retinitis pigmentosa (RP), and Leber congenital amaurosis (LCA). This study aimed to understand the epidemiological landscape of RPE65 gene-mediated IRD through a systematic review of the literature, as the current evidence base for its epidemiology is very limited. METHODS Medline, Embase, and other databases were searched for articles on the epidemiology of RPE65 gene-mediated IRDs from inception until June 2021. Studies were included if they were original research articles reporting the epidemiology of RP and LCA and/or proportion of RPE65 gene mutations in these clinically diagnosed or molecularly confirmed IRDs patients. RESULTS A total of 100 studies with relevant data were included in this systematic review. The range for prevalence of LCA and RP in the literature was 1.20-2.37 and 11.09-26.43 per 100,000, respectively. The proportion of RPE65 mutations in clinically diagnosed patients with LCA was found to be between ~ 2-16% within the US and major European countries (France, Germany, Italy, Spain, and the UK). This range was also comparable to our findings in the Asian region for RPE65-LCA (1.26-16.67%). Similarly, for these European countries, RPE65-RP was estimated between 0.23 and 1.94%, and RPE65-IRD range was 1.2-14%. Further, in the Americas region, mutations in RPE65 were reported to cause 1-3% of RP and 0.8-3.7% of IRD cases. Lastly, the RPE65-IRD range was 4.81-8% in the Middle East region. CONCLUSIONS There are significant variations in reporting of RPE65 proportions within countries as well as regions. Generating robust epidemiological evidence on RPE65 gene-mediated IRDs would be fundamental to support rare disease awareness, timely therapeutic intervention, and public health decision-making.
Collapse
Affiliation(s)
- Juliana M F Sallum
- Department of Ophthalmology, Universidade Federal de São Paulo, São Paulo, Brazil
- Instituto de Genética Ocular, São Paulo, Brazil
| | | | | | | | | | | | | | - M Dominik Fischer
- Centre for Ophthalmology, University Eye Hospital, University Hospital Tübingen, Tübingen, Germany
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|