1
|
Lai W, Wang Y, Huang C, Xu H, Zheng X, Li K, Wang J, Lou Z. DIREN mitigates DSS-induced colitis in mice and attenuates collagen deposition via inhibiting the Wnt/β-catenin and focal adhesion pathways. Biomed Pharmacother 2024; 175:116671. [PMID: 38678963 DOI: 10.1016/j.biopha.2024.116671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND DIREN is a SHE ethnic medicine with stasis-resolving, hemostasis, clearing heat, and removing toxin effects. It is clinically used in the treatment of gastrointestinal bleeding, such as ulcerative colitis (UC). AIM OF THE STUDY Fibrosis is one of the pathological changes in the progression of UC, which can make it challenging to respond to a treatment. We aimed to illuminate the role of DIREN in DSS-induced UC and tried to unveil its related mechanisms from two perspectives: intestinal inflammation and collagen deposition. MATERIALS AND METHODS A 2.5 % dextran sulfate sodium (DSS) water solution was used to induce colitis in mice. The therapeutic effect of DIREN was assessed using the disease activity index, histopathological score, and colon length. Masson and Sirius Red staining was used to observe the fibrosis in the colon. Apoptosis of colonic epithelial cells was observed by TUNEL immunofluorescence staining. RNA-seq observed differential genes and enrichment pathways. Immunohistochemistry and RT-qPCR were used to detect the expression of molecules related to fibrosis and focal adhesion signaling in colon tissue. RESULTS The administration of DIREN resulted in a reduction of disease activity index (DAI) in mice with UC while simultaneously promoting an increase in colon length. DIREN mitigated the loss of goblet cells in the colon of UC mice and maintained the integrity of the intestinal mucosa barrier. Masson staining revealed a reduction in colonic fibrosis with DIREN treatment, while Sirius red staining demonstrated a decrease in collagen Ⅰ deposition. DIREN reduced apoptosis of colonic epithelial cells and the expression of genes, such as CDH2, ITGA1, and TGF-β2. Additionally, the results of GSEA analysis of colon tissue transcriptome showed that the differentially expressed genes were enriched in the focal adhesion pathway. DIREN was found to downregulate the protein expression of BAX, N-cadherin, β-catenin, Integrin A1, and Vinculin while upregulating the protein expression of BCL2. Additionally, it led to the co-expression of N-cadherin and α-SMA. CONCLUSION DIREN exerts a protective effect against DSS-induced UC by ameliorating colonic fibrosis via regulation of focal adhesion and the WNT/β-catenin signaling pathway, thereby inhibiting fibroblast migration and reducing collagen secretion.
Collapse
Affiliation(s)
- Weizhi Lai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yingying Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Chen Huang
- The First School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Hao Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xunjie Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Ke Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jue Wang
- Department of Oncology, the Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| | - Zhaohuan Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Songyang Institute of Zhejiang Chinese Medical University, Lishui, Zhejiang 323400, China.
| |
Collapse
|
2
|
Lenti MV, Santacroce G, Broglio G, Rossi CM, Di Sabatino A. Recent advances in intestinal fibrosis. Mol Aspects Med 2024; 96:101251. [PMID: 38359700 DOI: 10.1016/j.mam.2024.101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/02/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
Despite many progresses have been made in the treatment of inflammatory bowel disease, especially due to the increasing number of effective therapies, the development of tissue fibrosis is a very common occurrence along the natural history of this condition. To a certain extent, fibrogenesis is a physiological and necessary process in all those conditions characterised by chronic inflammation. However, the excessive deposition of extracellular matrix within the bowel wall will end up in the formation of strictures, with the consequent need for surgery. A number of mechanisms have been described in this process, but some of them are not yet clear. For sure, the main trigger is the presence of a persistent inflammatory status within the mucosa, which in turn favours the occurrence of a pro-fibrogenic environment. Among the main key players, myofibroblasts, fibroblasts, immune cells, growth factors and cytokines must be mentioned. Although there are no available therapies able to target fibrosis, the only way to prevent it is by controlling inflammation. In this review, we summarize the state of art of the mechanisms involved in gut fibrogenesis, how to diagnose it, and which potential targets could be druggable to tackle fibrosis.
Collapse
Affiliation(s)
- Marco Vincenzo Lenti
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Giovanni Santacroce
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Giacomo Broglio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Carlo Maria Rossi
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Antonio Di Sabatino
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy.
| |
Collapse
|
3
|
Hausmann M, Seuwen K, de Vallière C, Busch M, Ruiz PA, Rogler G. Role of pH-sensing receptors in colitis. Pflugers Arch 2024; 476:611-622. [PMID: 38514581 PMCID: PMC11006753 DOI: 10.1007/s00424-024-02943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
Low pH in the gut is associated with severe inflammation, fibrosis, and colorectal cancer (CRC) and is a hallmark of active inflammatory bowel disease (IBD). Subsequently, pH-sensing mechanisms are of interest for the understanding of IBD pathophysiology. Tissue hypoxia and acidosis-two contributing factors to disease pathophysiology-are linked to IBD, and understanding their interplay is highly relevant for the development of new therapeutic options. One member of the proton-sensing G protein-coupled receptor (GPCR) family, GPR65 (T-cell death-associated gene 8, TDAG8), was identified as a susceptibility gene for IBD in a large genome-wide association study. In response to acidic extracellular pH, GPR65 induces an anti-inflammatory response, whereas the two other proton-sensing receptors, GPR4 and GPR68 (ovarian cancer G protein-coupled receptor 1, OGR1), mediate pro-inflammatory responses. Here, we review the current knowledge on the role of these proton-sensing receptors in IBD and IBD-associated fibrosis and cancer, as well as colitis-associated cancer (CAC). We also describe emerging small molecule modulators of these receptors as therapeutic opportunities for the treatment of IBD.
Collapse
Affiliation(s)
- Martin Hausmann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland.
| | - Klaus Seuwen
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| | - Cheryl de Vallière
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| | - Moana Busch
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| | - Pedro A Ruiz
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, 8091, Zurich, CH, Switzerland
| |
Collapse
|
4
|
Tavares de Sousa H, Magro F. How to Evaluate Fibrosis in IBD? Diagnostics (Basel) 2023; 13:2188. [PMID: 37443582 DOI: 10.3390/diagnostics13132188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
In this review, we will describe the importance of fibrosis in inflammatory bowel disease (IBD) by discussing its distinct impact on Crohn's disease (CD) and ulcerative colitis (UC) through their translation to histopathology. We will address the existing knowledge on the correlation between inflammation and fibrosis and the still not fully explained inflammation-independent fibrogenesis. Finally, we will compile and discuss the recent advances in the noninvasive assessment of intestinal fibrosis, including imaging and biomarkers. Based on the available data, none of the available cross-sectional imaging (CSI) techniques has proved to be capable of measuring CD fibrosis accurately, with MRE showing the most promising performance along with elastography. Very recent research with radiomics showed encouraging results, but further validation with reliable radiomic biomarkers is warranted. Despite the interesting results with micro-RNAs, further advances on the topic of fibrosis biomarkers depend on the development of robust clinical trials based on solid and validated endpoints. We conclude that it seems very likely that radiomics and AI will participate in the future non-invasive fibrosis assessment by CSI techniques in IBD. However, as of today, surgical pathology remains the gold standard for the diagnosis and quantification of intestinal fibrosis in IBD.
Collapse
Affiliation(s)
- Helena Tavares de Sousa
- Gastroenterology Department, Algarve University Hospital Center, 8500-338 Portimão, Portugal
- ABC-Algarve Biomedical Center, University of Algarve, 8005-139 Faro, Portugal
| | - Fernando Magro
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
- Department of Gastroenterology, São João University Hospital Center, 4200-319 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
5
|
Solitano V, Dal Buono A, Gabbiadini R, Wozny M, Repici A, Spinelli A, Vetrano S, Armuzzi A. Fibro-Stenosing Crohn's Disease: What Is New and What Is Next? J Clin Med 2023; 12:jcm12093052. [PMID: 37176493 PMCID: PMC10179180 DOI: 10.3390/jcm12093052] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Fibro-stenosing Crohn's disease (CD) is a common disease presentation that leads to impaired quality of life and often requires endoscopic treatments or surgery. From a pathobiology perspective, the conventional view that intestinal fibro-stenosis is an irreversible condition has been disproved. Currently, there are no existing imaging techniques that can accurately quantify the amount of fibrosis within a stricture, and managing patients is challenging, requiring a multidisciplinary team. Novel therapies targeting different molecular components of the fibrotic pathways are increasing regarding other diseases outside the gut. However, a large gap between clinical need and the lack of anti-fibrotic agents in CD remains. This paper reviews the current state of pathobiology behind fibro-stenosing CD, provides an updated diagnostic and therapeutic approach, and finally, focuses on clinical trial endpoints and possible targets of anti-fibrotic therapies.
Collapse
Affiliation(s)
- Virginia Solitano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- Division of Gastroenterology, Department of Medicine, Western University, London, ON N6A 4V2, Canada
| | - Arianna Dal Buono
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Roberto Gabbiadini
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Marek Wozny
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- Department of Endoscopy, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Antonino Spinelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- Division of Colon and Rectal Surgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Stefania Vetrano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Alessandro Armuzzi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| |
Collapse
|
6
|
Dovrolis N, Filidou E, Tarapatzi G, Kokkotis G, Spathakis M, Kandilogiannakis L, Drygiannakis I, Valatas V, Arvanitidis K, Karakasiliotis I, Vradelis S, Manolopoulos VG, Paspaliaris V, Bamias G, Kolios G. Co-expression of fibrotic genes in inflammatory bowel disease; A localized event? Front Immunol 2022; 13:1058237. [PMID: 36632136 PMCID: PMC9826764 DOI: 10.3389/fimmu.2022.1058237] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/08/2022] [Indexed: 12/27/2022] Open
Abstract
Introduction Extracellular matrix turnover, a ubiquitous dynamic biological process, can be diverted to fibrosis. The latter can affect the intestine as a serious complication of Inflammatory Bowel Diseases (IBD) and is resistant to current pharmacological interventions. It embosses the need for out-of-the-box approaches to identify and target molecular mechanisms of fibrosis. Methods and results In this study, a novel mRNA sequencing dataset of 22 pairs of intestinal biopsies from the terminal ileum (TI) and the sigmoid of 7 patients with Crohn's disease, 6 with ulcerative colitis and 9 control individuals (CI) served as a validation cohort of a core fibrotic transcriptomic signature (FIBSig), This signature, which was identified in publicly available data (839 samples from patients and healthy individuals) of 5 fibrotic disorders affecting different organs (GI tract, lung, skin, liver, kidney), encompasses 241 genes and the functional pathways which derive from their interactome. These genes were used in further bioinformatics co-expression analyses to elucidate the site-specific molecular background of intestinal fibrosis highlighting their involvement, particularly in the terminal ileum. We also confirmed different transcriptomic profiles of the sigmoid and terminal ileum in our validation cohort. Combining the results of these analyses we highlight 21 core hub genes within a larger single co-expression module, highly enriched in the terminal ileum of CD patients. Further pathway analysis revealed known and novel inflammation-regulated, fibrogenic pathways operating in the TI, such as IL-13 signaling and pyroptosis, respectively. Discussion These findings provide a rationale for the increased incidence of fibrosis at the terminal ileum of CD patients and highlight operating pathways in intestinal fibrosis for future evaluation with mechanistic and translational studies.
Collapse
Affiliation(s)
- Nikolas Dovrolis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece,Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece,Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece,*Correspondence: George Kolios, ; Nikolas Dovrolis,
| | - Eirini Filidou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece,Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece
| | - Gesthimani Tarapatzi
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece,Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece
| | - Georgios Kokkotis
- Gastrointestinal (GI) Unit, 3 Department of Internal Medicine, Sotiria Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Michail Spathakis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece,Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece
| | - Leonidas Kandilogiannakis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece,Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece
| | - Ioannis Drygiannakis
- Gastroenterology and Hepatology Research Laboratory, Medical School, University of Crete, Heraklion, Greece
| | - Vassilis Valatas
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece,Gastroenterology and Hepatology Research Laboratory, Medical School, University of Crete, Heraklion, Greece
| | - Konstantinos Arvanitidis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece,Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece
| | - Ioannis Karakasiliotis
- Laboratory of Biology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Stergios Vradelis
- Second Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vangelis G. Manolopoulos
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece,Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece
| | | | - Giorgos Bamias
- Gastrointestinal (GI) Unit, 3 Department of Internal Medicine, Sotiria Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George Kolios
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece,Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), Alexandroupolis, Greece,*Correspondence: George Kolios, ; Nikolas Dovrolis,
| |
Collapse
|
7
|
Wei Y, Cai J, Zhu R, Xu K, Li H, Li J. Function and therapeutic potential of transient receptor potential ankyrin 1 in fibrosis. Front Pharmacol 2022; 13:1014041. [PMID: 36278189 PMCID: PMC9582847 DOI: 10.3389/fphar.2022.1014041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
The transient receptor potential (TRP) protein superfamily is a special group of cation channels expressed in different cell types and signaling pathways. In this review, we focus on TRPA1 (transient receptor potential ankyrin 1), an ion channel in this family that exists in the cell membrane and shows a different function from other TRP channels. TRPA1 usually has a special activation effect that can induce cation ions, especially calcium ions, to flow into activated cells. In this paper, we review the role of TRPA1 in fibroblasts. To clarify the relationship between fibroblasts and TRPA1, we have also paid special attention to the interactions between TRPA1 and inflammatory factors leading to fibroblast activation. TRPA1 has different functions in the fibrosis process in different organs, and there have also been interesting discussions of the mechanism of TRPA1 in fibroblasts. Therefore, this review aims to describe the function of TRP channels in controlling fibrosis through fibroblasts in different organ inflammatory and immune-mediated diseases. We attempt to prove that TRPA1 is a target for fibrosis. In fact, some clinical trials have already proven that TRPA1 is a potential adjuvant therapy for treating fibrosis.
Collapse
Affiliation(s)
- Yicheng Wei
- Third Affiliated Hospital of Shanghai University/Wenzhou People’s Hospital, Wenzhou, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jialuo Cai
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ruiqiu Zhu
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Xu
- Musculoskeletal Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- Wenzhou Institute of Shanghai University, Wenzhou, China
- *Correspondence: Ke Xu, , ; Hongchang Li, ; Jianxin Li,
| | - Hongchang Li
- Department of General Surgery, Institute of Fudan–Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
- *Correspondence: Ke Xu, , ; Hongchang Li, ; Jianxin Li,
| | - Jianxin Li
- Third Affiliated Hospital of Shanghai University/Wenzhou People’s Hospital, Wenzhou, China
- *Correspondence: Ke Xu, , ; Hongchang Li, ; Jianxin Li,
| |
Collapse
|
8
|
Exosomes derived from human hypertrophic scar fibroblasts induces smad and TAK1 signaling in normal dermal fibroblasts. Arch Biochem Biophys 2022; 722:109215. [DOI: 10.1016/j.abb.2022.109215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022]
|
9
|
Estrada HQ, Patel S, Rabizadeh S, Casero D, Targan SR, Barrett RJ. Development of a Personalized Intestinal Fibrosis Model Using Human Intestinal Organoids Derived From Induced Pluripotent Stem Cells. Inflamm Bowel Dis 2022; 28:667-679. [PMID: 34918082 PMCID: PMC9074870 DOI: 10.1093/ibd/izab292] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Intestinal fibrosis is a serious complication of Crohn's disease. Numerous cell types including intestinal epithelial and mesenchymal cells are implicated in this process, yet studies are hampered by the lack of personalized in vitro models. Human intestinal organoids (HIOs) derived from induced pluripotent stem cells (iPSCs) contain these cell types, and our goal was to determine the feasibility of utilizing these to develop a personalized intestinal fibrosis model. METHODS iPSCs from 2 control individuals and 2 very early onset inflammatory bowel disease patients with stricturing complications were obtained and directed to form HIOs. Purified populations of epithelial and mesenchymal cells were derived from HIOs, and both types were treated with the profibrogenic cytokine transforming growth factor β (TGFβ). Quantitative polymerase chain reaction and RNA sequencing analysis were used to assay their responses. RESULTS In iPSC-derived mesenchymal cells, there was a significant increase in the expression of profibrotic genes (Col1a1, Col5a1, and TIMP1) in response to TGFβ. RNA sequencing analysis identified further profibrotic genes and demonstrated differential responses to this cytokine in each of the 4 lines. Increases in profibrotic gene expression (Col1a1, FN, TIMP1) along with genes associated with epithelial-mesenchymal transition (vimentin and N-cadherin) were observed in TGFβ -treated epithelial cells. CONCLUSIONS We demonstrate the feasibility of utilizing iPSC-HIO technology to model intestinal fibrotic responses in vitro. This now permits the generation of near unlimited quantities of patient-specific cells that could be used to reveal cell- and environmental-specific mechanisms underpinning intestinal fibrosis.
Collapse
Affiliation(s)
- Hannah Q Estrada
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shachi Patel
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shervin Rabizadeh
- Division of Pediatric Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA, USAand
| | - David Casero
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephan R Targan
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Robert J Barrett
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
10
|
D'Alessio S, Ungaro F, Noviello D, Lovisa S, Peyrin-Biroulet L, Danese S. Revisiting fibrosis in inflammatory bowel disease: the gut thickens. Nat Rev Gastroenterol Hepatol 2022; 19:169-184. [PMID: 34876680 DOI: 10.1038/s41575-021-00543-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/11/2022]
Abstract
Intestinal fibrosis, which is usually the consequence of chronic inflammation, is a common complication of inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. In the past few years, substantial advances have been made in the areas of pathogenesis, diagnosis and management of intestinal fibrosis. Of particular interest have been inflammation-independent mechanisms behind the gut fibrotic process, genetic and environmental risk factors (such as the role of the microbiota), and the generation of new in vitro and in vivo systems to study fibrogenesis in the gut. A huge amount of work has also been done in the area of biomarkers to predict or detect intestinal fibrosis, including novel cross-sectional imaging techniques. In parallel, researchers are embarking on developing and validating clinical trial end points and protocols to test novel antifibrotic agents, although no antifibrotic therapies are currently available. This Review presents the state of the art on the most recently identified pathogenic mechanisms of this serious IBD-related complication, focusing on possible targets of antifibrotic therapies, management strategies, and factors that might predict fibrosis progression or response to treatment.
Collapse
Affiliation(s)
| | - Federica Ungaro
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Daniele Noviello
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Sara Lovisa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,IBD Centre, Laboratory of Gastrointestinal Immunopathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Laurent Peyrin-Biroulet
- INSERM NGERE, University of Lorraine, Vandoeuvre-les-Nancy, Nancy, France.,Nancy University Hospital, Vandoeuvre-les-Nancy, Nancy, France
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy. .,University Vita-Salute San Raffaele, Milan, Italy.
| |
Collapse
|
11
|
Herb-Partitioned Moxibustion Improves Crohn's Disease-Associated Intestinal Fibrosis by Suppressing the RhoA/ROCK1/MLC Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2247953. [PMID: 34840583 PMCID: PMC8612780 DOI: 10.1155/2021/2247953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022]
Abstract
Background and Aims Intestinal fibrosis is one of the severe and common complications of Crohn's disease (CD), but the etiology and pathogenesis remain uncertain. The study intended to examine whether the effect of herb-partitioned moxibustion on rats with CD-associated intestinal fibrosis is associated with the RhoA/ROCK1/MLC pathway. Methods All experimental rats were randomly allocated into the normal control group (NC), model control group (MC), and herb-partitioned moxibustion group (HPM). Intestinal fibrosis was established in rats with CD by repeated rectal administrations of 2,4,6-trinitrobenzenesulfonic acid (TNBS). Herb-partitioned moxibustion was applied at the Qihai (CV6) and Tianshu (ST25) acupoints once daily for 10 days in the HPM group. In this study, histological changes were examined by hematoxylin and eosin (HE) staining; then, Masson's trichrome staining was used to assess the degree of fibrosis in each group. Experimental methods of immunohistochemistry, western blotting, and real-time PCR were applied to detect the levels of α-SMA, collagen III, RhoA, ROCK1, and p-MLC. Moreover, the double immunofluorescent staining for the colocalization of both α-SMA and ROCK1 was performed. Results Contrasted with the normal controls, the collagen deposition and fibrosis scores were increased in colonic tissue of model rats, and HPM decreased the collagen deposition and fibrosis scores. The protein of α-SMA and collagen III in the MC group exceeds that of the NC group; HPM decreased the expression of α-SMA and collagen III in rats with intestinal fibrosis. Similarly, the expression of RhoA, ROCK1, and p-MLC in model rats was obviously increased compared with normal controls; the expression of RhoA, ROCK1, and p-MLC was decreased after HPM. The coexpression of α-SMA and ROCK1 in rats with intestinal fibrosis was higher than normal rats. Conclusion HPM improves CD-associated intestinal fibrosis by suppressing the RhoA/ROCK1/MLC pathway.
Collapse
|
12
|
Schmoyer CJ, Saidman J, Bohl JL, Bierly CL, Kuemmerle JF, Bickston SJ. The Pathogenesis and Clinical Management of Stricturing Crohn Disease. Inflamm Bowel Dis 2021; 27:1839-1852. [PMID: 33693860 DOI: 10.1093/ibd/izab038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 02/07/2023]
Abstract
Stricturing of the gastrointestinal tract is a common complication in Crohn disease and is a significant cause of morbidity and mortality among this population. The inflammatory process initiates fibrosis, leading to aberrant wound healing and excess deposition of extracellular matrix proteins. Our understanding of this process has grown and encompasses cellular mechanisms, epigenetic modifications, and inherent genetic predisposition toward fibrosis. Although medications can improve inflammation, there is still no drug to attenuate scar formation. As such, management of stricturing disease requires a multidisciplinary and individualized approach including medical management, therapeutic endoscopy, and surgery. This review details the current understanding regarding the pathogenesis, detection, and management of stricturing Crohn disease.
Collapse
Affiliation(s)
- Christopher J Schmoyer
- Virginia Commonwealth University, Division of Gastroenterology and Hepatology, Richmond, Virginia, USA
| | - Jakob Saidman
- Virginia Commonwealth University, Division of Gastroenterology and Hepatology, Richmond, Virginia, USA
| | - Jaime L Bohl
- Virginia Commonwealth University, Division of Colorectal Surgery, Richmond, Virginia, USA
| | - Claire L Bierly
- Virginia Commonwealth University, Division of Gastroenterology and Hepatology, Richmond, Virginia, USA
| | - John F Kuemmerle
- Virginia Commonwealth University, Division of Gastroenterology and Hepatology, Richmond, Virginia, USA.,Virginia Commonwealth University, Department of Physiology and Biophysics, Richmond, Virginia, USA
| | - Stephen J Bickston
- Virginia Commonwealth University, Division of Gastroenterology and Hepatology, Richmond, Virginia, USA
| |
Collapse
|
13
|
Pirri C, Fede C, Pirri N, Petrelli L, Fan C, De Caro R, Stecco C. Diabetic Foot: The Role of Fasciae, a Narrative Review. BIOLOGY 2021; 10:biology10080759. [PMID: 34439991 PMCID: PMC8389550 DOI: 10.3390/biology10080759] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 12/19/2022]
Abstract
Simple Summary Diabetes mellitus and its complications are increasingly prevalent worldwide with severe impacts on patients and health care systems. Diabetic foot ulcers have an important impact on disability, morbidity, and mortality. The mechanism of diabetic wound chronicity has not yet been understood in a complete way. Regarding the involved soft tissues, little space has been given to the fasciae, even if nowadays there is more and more evidence of their role in proprioception, muscular force transmission, skin vascularization and tropism, and wound healing. Thus, we aimed to deepen the fascial involvement in diabetic wounds. Based on this review, we suggest that a clear scientific perception of fascial role can improve treatment strategies and create new perspectives of treatment. Abstract Wound healing is an intricate, dynamic process, in which various elements such as hyperglycemia, neuropathy, blood supply, matrix turnover, wound contraction, and the microbiome all have a role in this “out of tune” diabetic complex symphony, particularly noticeable in the complications of diabetic foot. Recently it was demonstrated that the fasciae have a crucial role in proprioception, muscular force transmission, skin vascularization and tropism, and wound healing. Indeed, the fasciae are a dynamic multifaceted meshwork of connective tissue comprised of diverse cells settled down in the extracellular matrix and nervous fibers; each constituent plays a particular role in the fasciae adapting in various ways to the diverse stimuli. This review intends to deepen the discussion on the possible fascial role in diabetic wounds. In diabetes, the thickening of collagen, the fragmentation of elastic fibers, and the changes in glycosaminoglycans, in particular hyaluronan, leads to changes in the stiffness, gliding, and the distribution of force transmission in the fasciae, with cascading repercussions at the cellular and molecular levels, consequently feeding a vicious pathophysiological circle. A clear scientific perception of fascial role from microscopic and macroscopic points of view can facilitate the identification of appropriate treatment strategies for wounds in diabetes and create new perspectives of treatment.
Collapse
Affiliation(s)
- Carmelo Pirri
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, 35121 Padua, Italy; (C.F.); (L.P.); (C.F.); (R.D.C.); (C.S.)
- Correspondence:
| | - Caterina Fede
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, 35121 Padua, Italy; (C.F.); (L.P.); (C.F.); (R.D.C.); (C.S.)
| | - Nina Pirri
- School of Medicine and Surgery, University of Messina, 98125 Messina, Italy;
| | - Lucia Petrelli
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, 35121 Padua, Italy; (C.F.); (L.P.); (C.F.); (R.D.C.); (C.S.)
| | - Chenglei Fan
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, 35121 Padua, Italy; (C.F.); (L.P.); (C.F.); (R.D.C.); (C.S.)
| | - Raffaele De Caro
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, 35121 Padua, Italy; (C.F.); (L.P.); (C.F.); (R.D.C.); (C.S.)
| | - Carla Stecco
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, 35121 Padua, Italy; (C.F.); (L.P.); (C.F.); (R.D.C.); (C.S.)
| |
Collapse
|
14
|
Caio G, Lungaro L, Chiarioni G, Giancola F, Caputo F, Guarino M, Volta U, Testino G, Pellicano R, Zoli G, DE Giorgio R. Beyond biologics: advanced therapies in inflammatory bowel diseases. Minerva Gastroenterol (Torino) 2021; 68:319-332. [PMID: 34309337 DOI: 10.23736/s2724-5985.21.02985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Inflammatory bowel diseases (IBDs) are conditions characterized by persistent and relapsing inflammation involving the gastrointestinal tract at various levels. Although the etiopathogenesis of IBDs is partially understood, a deregulated activation of intestinal immune cells in genetically susceptible patients is thought to be key for the disease onset and evolution. Artificial Nutrition might affect favorably on inflammation and related cytokine storm. However, the discovery of monoclonal antibodies blocking pro-inflammatory cytokines (e.g., tumor necrosis factor-α - TNF-α) changed radically the management of IBDs. Anti-TNF-α agents represent the prototype molecule of the so-called 'biologics' / 'biologicals'. These compounds have significantly improved the therapeutic management of IBDs refractory to standard medications, achieving clinical remission, mucosal healing and preventing extra-intestinal manifestations. However, about 50% of patients treated with biologicals experienced drawbacks, such as primary failure or loss of response, requiring new effective treatments. Translational studies have identified other pathways, different from the TNF-α blockade, and new molecules, e.g. sphingosine-1-phosphate agonists and the JAK kinase inhibitors, have been proposed as potential therapeutic options for IBDs. These novel therapeutic approaches represent a "new era" of IBD management, especially for patients poorly responsive to biologicals. In this review, we will summarize the new pharmacological strategies to treat IBDs, and discuss their effectiveness and safety, along with future perspectives for IBD treatment.
Collapse
Affiliation(s)
- Giacomo Caio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.,Mucosal Immunology and Biology Research Center, Massachusetts General Hospital-Harvard Medical School, Boston, MA, USA.,Center for the Study and Treatment of Chronic Inflammatory Intestinal Diseases (IBD) and Gastroenterological Manifestations of Rare Diseases, Department of Translational Medicine, University of Ferrara, Ferrara, Italy.,Center for the Study and Treatment of Alcohol-Related Diseases, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Lisa Lungaro
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.,Department of Internal Medicine, Santissima Annunziata Hospital, University of Ferrara, Cento, Ferrara, Italy
| | - Giuseppe Chiarioni
- Division of Gastroenterology of the University of Verona, A.O.U.I. Verona, Verona, Italy.,Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fiorella Giancola
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Fabio Caputo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.,Center for the Study and Treatment of Chronic Inflammatory Intestinal Diseases (IBD) and Gastroenterological Manifestations of Rare Diseases, Department of Translational Medicine, University of Ferrara, Ferrara, Italy.,Center for the Study and Treatment of Alcohol-Related Diseases, Department of Translational Medicine, University of Ferrara, Ferrara, Italy.,Department of Internal Medicine, Santissima Annunziata Hospital, University of Ferrara, Cento, Ferrara, Italy
| | - Matteo Guarino
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Umberto Volta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Gianni Testino
- Unit of Addiction and epatology/Alcohological Regional Centre, ASL3 c/o IRCCS San Martino Hospital, Genova, Italy.,Italian Society on Alcohol, Bologna, Italy
| | | | - Giorgio Zoli
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.,Center for the Study and Treatment of Chronic Inflammatory Intestinal Diseases (IBD) and Gastroenterological Manifestations of Rare Diseases, Department of Translational Medicine, University of Ferrara, Ferrara, Italy.,Center for the Study and Treatment of Alcohol-Related Diseases, Department of Translational Medicine, University of Ferrara, Ferrara, Italy.,Department of Internal Medicine, Santissima Annunziata Hospital, University of Ferrara, Cento, Ferrara, Italy
| | - Roberto DE Giorgio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy - .,Center for the Study and Treatment of Chronic Inflammatory Intestinal Diseases (IBD) and Gastroenterological Manifestations of Rare Diseases, Department of Translational Medicine, University of Ferrara, Ferrara, Italy.,Center for the Study and Treatment of Alcohol-Related Diseases, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
15
|
Wan L, Jiang D, Correa-Gallegos D, Ramesh P, Zhao J, Ye H, Zhu S, Wannemacher J, Volz T, Rinkevich Y. Connexin43 gap junction drives fascia mobilization and repair of deep skin wounds. Matrix Biol 2021; 97:58-71. [PMID: 33508427 DOI: 10.1016/j.matbio.2021.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/23/2022]
Abstract
Deep and voluminous skin wounds are repaired with scars, by mobilization of fibroblasts and extracellular matrix from fascia, deep below the skin. The molecular trigger of this novel repair mechanism is incompletely understood. Here we reveal that the gap junction alpha-1 protein (Connexin43, Cx43) is the key to patch repair of deep wounds. By combining full-thickness wound models with fibroblast lineage specific transgenic lines, we show Cx43 expression is substantially upregulated in specialized fibroblasts of the fascia deep beneath the skin that are responsible for scar formation. Using live imaging of fascia fibroblasts and fate tracing of the fascia extracellular matrix we show that Cx43 inhibition disrupts calcium oscillations in cultured fibroblasts and that this inhibits collective migration of fascia EPFs necessary to mobilize fascia matrix into open wounds. Cell-cell communication through Cx43 thus mediates matrix movement and scar formation, and is necessary for patch repair of voluminous wounds. These mechanistic findings have broad clinical implications toward treating fibrosis, aggravated scarring and impaired wound healing.
Collapse
Affiliation(s)
- Li Wan
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Munich, Germany
| | - Dongsheng Jiang
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Munich, Germany
| | - Donovan Correa-Gallegos
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Munich, Germany
| | - Pushkar Ramesh
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Munich, Germany
| | - Jiakuan Zhao
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Munich, Germany
| | - Haifeng Ye
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Munich, Germany
| | - Shaohua Zhu
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Munich, Germany
| | - Juliane Wannemacher
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Munich, Germany
| | - Thomas Volz
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Dermatology and Allergology, Munich, Germany
| | - Yuval Rinkevich
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Munich, Germany; Helmholtz Zentrum München, Institute of Regenerative Biology and Medicine, Munich, Germany.
| |
Collapse
|
16
|
Alfredsson J, Wick MJ. Mechanism of fibrosis and stricture formation in Crohn's disease. Scand J Immunol 2020; 92:e12990. [PMID: 33119150 PMCID: PMC7757243 DOI: 10.1111/sji.12990] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/06/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
Crohn's disease (CD) is a chronic inflammatory disease of the gastrointestinal tract that leads to substantial suffering for millions of patients. In some patients, the chronic inflammation leads to remodelling of the extracellular matrix and fibrosis. Fibrosis, in combination with expansion of smooth muscle layers, leaves the bowel segment narrowed and stiff resulting in strictures, which often require urgent medical intervention. Although stricture development is associated with inflammation in the affected segment, anti‐inflammatory therapies fall far short of treating strictures. At best, current therapies might allow some patients to avoid surgery in a shorter perspective and no anti‐fibrotic therapy is yet available. This likely relates to our poor understanding of the mechanism underlying stricture development. Chronic inflammation is a prerequisite, but progression to strictures involves changes in fibroblasts, myofibroblasts and smooth muscle cells in a poorly understood interplay with immune cells and environmental cues. Much of the experimental evidence available is from animal models, cell lines or non‐strictured patient tissue. Accordingly, these limitations create the basis for many previously published reviews covering the topic. Although this information has contributed to the understanding of fibrotic mechanisms in general, in the end, data must be validated in strictured tissue from patients. As stricture formation is a serious complication of CD, we endeavoured to summarize findings exclusively performed using strictured tissue from patients. Here, we give an update of the mechanism driving this serious complication in patients, and how the strictured tissue differs from adjacent unaffected tissue and controls.
Collapse
Affiliation(s)
- Johannes Alfredsson
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mary Jo Wick
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Jiang D, Christ S, Correa-Gallegos D, Ramesh P, Kalgudde Gopal S, Wannemacher J, Mayr CH, Lupperger V, Yu Q, Ye H, Mück-Häusl M, Rajendran V, Wan L, Liu J, Mirastschijski U, Volz T, Marr C, Schiller HB, Rinkevich Y. Injury triggers fascia fibroblast collective cell migration to drive scar formation through N-cadherin. Nat Commun 2020; 11:5653. [PMID: 33159076 PMCID: PMC7648088 DOI: 10.1038/s41467-020-19425-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
Scars are more severe when the subcutaneous fascia beneath the dermis is injured upon surgical or traumatic wounding. Here, we present a detailed analysis of fascia cell mobilisation by using deep tissue intravital live imaging of acute surgical wounds, fibroblast lineage-specific transgenic mice, and skin-fascia explants (scar-like tissue in a dish - SCAD). We observe that injury triggers a swarming-like collective cell migration of fascia fibroblasts that progressively contracts the skin and form scars. Swarming is exclusive to fascia fibroblasts, and requires the upregulation of N-cadherin. Both swarming and N-cadherin expression are absent from fibroblasts in the upper skin layers and the oral mucosa, tissues that repair wounds with minimal scar. Impeding N-cadherin binding inhibits swarming and skin contraction, and leads to reduced scarring in SCADs and in animals. Fibroblast swarming and N-cadherin thus provide therapeutic avenues to curtail fascia mobilisation and pathological fibrotic responses across a range of medical settings.
Collapse
Affiliation(s)
- Dongsheng Jiang
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Group Regenerative Biology and Medicine, Munich, Germany
| | - Simon Christ
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Group Regenerative Biology and Medicine, Munich, Germany
| | - Donovan Correa-Gallegos
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Group Regenerative Biology and Medicine, Munich, Germany
| | - Pushkar Ramesh
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Group Regenerative Biology and Medicine, Munich, Germany
| | - Shruthi Kalgudde Gopal
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Group Regenerative Biology and Medicine, Munich, Germany
| | - Juliane Wannemacher
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Group Regenerative Biology and Medicine, Munich, Germany
| | - Christoph H Mayr
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Group Systems Medicine of Chronic Lung Disease, Munich, Germany
| | - Valerio Lupperger
- Helmholtz Zentrum München, Institute of Computational Biology, Munich, Germany
| | - Qing Yu
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Group Regenerative Biology and Medicine, Munich, Germany
| | - Haifeng Ye
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Group Regenerative Biology and Medicine, Munich, Germany
| | - Martin Mück-Häusl
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Group Regenerative Biology and Medicine, Munich, Germany
| | - Vijayanand Rajendran
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Group Regenerative Biology and Medicine, Munich, Germany
| | - Li Wan
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Group Regenerative Biology and Medicine, Munich, Germany
| | - Juan Liu
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Group Regenerative Biology and Medicine, Munich, Germany
| | - Ursula Mirastschijski
- Mira-Beau gender esthetics, Berlin, Germany
- Wound Repair Unit, CBIB, Faculty of Biology and Biochemistry, University of Bremen, Bremen, Germany
| | - Thomas Volz
- Department of Dermatology and Allergology, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Carsten Marr
- Helmholtz Zentrum München, Institute of Computational Biology, Munich, Germany
| | - Herbert B Schiller
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Group Systems Medicine of Chronic Lung Disease, Munich, Germany
- German Centre for Lung Research (DZL), Munich, Germany
| | - Yuval Rinkevich
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Group Regenerative Biology and Medicine, Munich, Germany.
- German Centre for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
18
|
The Role of MicroRNAs upon Epithelial-to-Mesenchymal Transition in Inflammatory Bowel Disease. Cells 2019; 8:cells8111461. [PMID: 31752264 PMCID: PMC6912477 DOI: 10.3390/cells8111461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/03/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence suggest the significance of inflammation in the progression of cancer, for example the development of colorectal cancer in Inflammatory Bowel Disease (IBD) patients. Long-lasting inflammation in the gastrointestinal tract causes serious systemic complications and breaks the homeostasis of the intestine, where the altered expression of regulatory genes and miRNAs trigger malignant transformations. Several steps lead from acute inflammation to malignancies: epithelial-to-mesenchymal transition (EMT) and inhibitory microRNAs (miRNAs) are known factors during multistage carcinogenesis and IBD pathogenesis. In this review, we outline the interactions between EMT components and miRNAs that may affect cancer development during IBD.
Collapse
|
19
|
Li J, Mao R, Kurada S, Wang J, Lin S, Chandra J, Rieder F. Pathogenesis of fibrostenosing Crohn's disease. Transl Res 2019; 209:39-54. [PMID: 30981697 DOI: 10.1016/j.trsl.2019.03.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
Crohn's disease (CD) is a chronic inflammatory disease, which could affect any part of the gastrointestinal tract. A severe complication of CD is fibrosis-associated strictures, which can cause bowel obstruction. Unfortunately, there is no specific antifibrotic therapy available. More than 80% of the patients with CD will have to undergo at least 1 surgery in their life and recurrence of strictures after surgery is common. Investigations on the mechanism of fibrostenosing CD have revealed that fibrosis is mainly driven by expansion of mesenchymal cells including fibroblasts, myofibroblasts, and smooth muscle cells. Being exposed to a pro-fibrotic milieu, these cells increase the secretion of extracellular matrix, as well as crosslinking enzymes, which drive tissue stiffness and remodeling. Fibrogenesis can become independent of inflammation in later stages of disease, which offers unique therapeutic potential. Exciting new evidence suggests smooth muscle cell hyperplasia as a strong contributor to luminal narrowing in fibrostenotic CD. Approval of new drugs in other fibrotic diseases, such as idiopathic pulmonary fibrosis, as well as new targets associated with fibrosis found in CD, such as cadherins or specific integrins, shed light on the development of novel antifibrotic approaches in CD.
Collapse
Affiliation(s)
- Jiannan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Ren Mao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Satya Kurada
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio; School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Sinan Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jyotsna Chandra
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio.
| |
Collapse
|
20
|
The metabolic network coherence of human transcriptomes is associated with genetic variation at the cadherin 18 locus. Hum Genet 2019; 138:375-388. [PMID: 30852652 PMCID: PMC6483969 DOI: 10.1007/s00439-019-01994-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/27/2019] [Indexed: 01/11/2023]
Abstract
Metabolic coherence (MC) is a network-based approach to dimensionality reduction that can be used, for example, to interpret the joint expression of genes linked to human metabolism. Computationally, the derivation of 'transcriptomic' MC involves mapping of an individual gene expression profile onto a gene-centric network derived beforehand from a metabolic network (currently Recon2), followed by the determination of the connectivity of a particular, profile-specific subnetwork. The biological significance of MC has been exemplified previously in the context of human inflammatory bowel disease, among others, but the genetic architecture of this quantitative cellular trait is still unclear. Therefore, we performed a genome-wide association study (GWAS) of MC in the 1000 Genomes/ GEUVADIS data (n = 457) and identified a solitary genome-wide significant association with single nucleotide polymorphisms (SNPs) in the intronic region of the cadherin 18 (CDH18) gene on chromosome 5 (lead SNP: rs11744487, p = 1.2 × 10- 8). Cadherin 18 is a transmembrane protein involved in human neural development and cell-to-cell signaling. Notably, genetic variation at the CDH18 locus has been associated with metabolic syndrome-related traits before. Replication of our genome-wide significant GWAS result was successful in another population study from the Netherlands (BIOS, n = 2661; lead SNP), but failed in two additional studies (KORA, Germany, n = 711; GENOA, USA, n = 411). Besides sample size issues, we surmise that these discrepant findings may be attributable to technical differences. While 1000 Genomes/GEUVADIS and BIOS gene expression profiles were generated by RNA sequencing, the KORA and GENOA data were microarray-based. In addition to providing first evidence for a link between regional genetic variation and a metabolism-related characteristic of human transcriptomes, our findings highlight the benefit of adopting a systems biology-oriented approach to molecular data analysis.
Collapse
|
21
|
Yun SM, Kim SH, Kim EH. The Molecular Mechanism of Transforming Growth Factor-β Signaling for Intestinal Fibrosis: A Mini-Review. Front Pharmacol 2019; 10:162. [PMID: 30873033 PMCID: PMC6400889 DOI: 10.3389/fphar.2019.00162] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/11/2019] [Indexed: 01/01/2023] Open
Abstract
Inflammatory bowel disease is known as the most chronic inflammatory disorder in colon, which subsequently progresses to intestinal obstruction and fistula formation. Many studies to date for the treatment of IBD have been focused on inflammation. However, most of the anti-inflammatory agents do not have anti-fibrotic effects and could not relieve intestinal stricture in IBD patients. Because preventing or reversing intestinal fibrosis in IBD is a major therapeutic target, we analyzed the papers focusing on TGF-β signaling in intestinal fibrosis. TGF-β is a good candidate to treat the intestinal fibrosis in IBD which involves TGF-β signaling pathway, EMT, EndMT, ECM, and other regulators. Understanding the mechanism involved in TGF-β signaling will contribute to the treatment and diagnosis of intestinal fibrosis occurring in IBD as well as the understanding of the molecular mechanisms underlying the pathogenesis.
Collapse
Affiliation(s)
- Sun-Mi Yun
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, South Korea
| | - Seok-Ho Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, South Korea
| | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, South Korea
| |
Collapse
|
22
|
Inoue R, Kurahara LH, Hiraishi K. TRP channels in cardiac and intestinal fibrosis. Semin Cell Dev Biol 2018; 94:40-49. [PMID: 30445149 DOI: 10.1016/j.semcdb.2018.11.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/05/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
It is now widely accepted that advanced fibrosis underlies many chronic inflammatory disorders and is the main cause of morbidity and mortality of the modern world. The pathogenic mechanism of advanced fibrosis involves diverse and intricate interplays between numerous extracellular and intracellular signaling molecules, among which the non-trivial roles of a stress-responsive Ca2+/Na+-permeable cation channel superfamily, the transient receptor potential (TRP) protein, are receiving growing attention. Available evidence suggests that several TRP channels such as TRPC3, TRPC6, TRPV1, TRPV3, TRPV4, TRPA1, TRPM6 and TRPM7 may play central roles in the progression and/or prevention of fibroproliferative disorders in vital visceral organs such as lung, heart, liver, kidney, and bowel as well as brain, blood vessels and skin, and may contribute to both acute and chronic inflammatory processes involved therein. This short paper overviews the current knowledge accumulated in this rapidly growing field, with particular focus on cardiac and intestinal fibrosis, which are tightly associated with the pathogenesis of atrial fibrillation and inflammatory bowel diseases such as Crohn's disease.
Collapse
Affiliation(s)
- Ryuji Inoue
- Department of Physiology, Fukuoka University School of medicine, Nanakuma 7-451, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Lin-Hai Kurahara
- Department of Physiology, Fukuoka University School of medicine, Nanakuma 7-451, Jonan-ku, Fukuoka 814-0180, Japan
| | - Keizo Hiraishi
- Department of Physiology, Fukuoka University School of medicine, Nanakuma 7-451, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
23
|
Lenti MV, Di Sabatino A. Intestinal fibrosis. Mol Aspects Med 2018; 65:100-109. [PMID: 30385174 DOI: 10.1016/j.mam.2018.10.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 10/19/2018] [Accepted: 10/28/2018] [Indexed: 02/07/2023]
Abstract
Extensive tissue fibrosis is the end-stage process of a number of chronic conditions affecting the gastrointestinal tract, including inflammatory bowel disease (Crohn's disease, ulcerative colitis), ulcerative jejunoileitis, and radiation enteritis. Fibrogenesis is a physiological, reparative process that may become harmful as a consequence of the persistence of a noxious agent, after an excessive duration of the healing process. In this case, after replacement of dead or injured cells, fibrogenesis continues to substitute normal parenchymal tissue with fibrous connective tissue, leading to uncontrolled scar formation and, ultimately, permanent organ damage, loss of function, and/or strictures. Several mechanisms have been implicated in sustaining the fibrogenic process. Despite their obvious etiological and clinical distinctions, most of the above-mentioned fibrotic disorders have in common a persistent inflammatory stimulus which sustains the production of growth factors, proteolytic enzymes, and pro-fibrogenic cytokines that activate both non-immune (i.e., myofibroblasts, fibroblasts) and immune (i.e., monocytes, macrophages, T-cells) cells, the interactions of which are crucial in the progressive tissue remodeling and destroy. Here we summarize the current status of knowledge regarding the mechanisms implicated in gut fibrosis with a clinical approach, also focusing on possible targets of antifibrogenic therapies.
Collapse
Affiliation(s)
- Marco Vincenzo Lenti
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Antonio Di Sabatino
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy.
| |
Collapse
|
24
|
Luciani P, Estella-Hermoso de Mendoza A, Casalini T, Lang S, Atrott K, Spalinger MR, Pratsinis A, Sobek J, Frey-Wagner I, Schumacher J, Leroux JC, Rogler G. Gastroresistant oral peptide for fluorescence imaging of colonic inflammation. J Control Release 2017; 262:118-126. [DOI: 10.1016/j.jconrel.2017.07.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/15/2017] [Accepted: 07/17/2017] [Indexed: 01/02/2023]
|
25
|
Kurahara LH, Hiraishi K, Sumiyoshi M, Doi M, Hu Y, Aoyagi K, Jian Y, Inoue R. Significant contribution of TRPC6 channel-mediated Ca 2+ influx to the pathogenesis of Crohn's disease fibrotic stenosis. J Smooth Muscle Res 2017; 52:78-92. [PMID: 27818466 PMCID: PMC5321852 DOI: 10.1540/jsmr.52.78] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intestinal fibrosis is an intractable complication of Crohn's disease (CD), and, when occurring excessively, causes severe intestinal obstruction that often necessitates surgical resection. The fibrosis is characterized by an imbalance in the turnover of extracellular matrix (ECM) components, where intestinal fibroblasts/myofibroblasts play active roles in ECM production, fibrogenesis and tissue remodeling, which eventually leads to the formation of stenotic lesions. There is however a great paucity of knowledge about how intestinal fibrosis initiates and progresses, which hampers the development of effective pharmacotherapies against CD. Recently, we explored the potential implications of transient receptor potential (TRP) channels in the pathogenesis of intestinal fibrosis, since they are known to act as cellular stress sensors/transducers affecting intracellular Ca2+ homeostasis/dynamics, and are involved in a broad spectrum of cell pathophysiology including inflammation and tissue remodeling. In this review, we will place a particular emphasis on the intestinal fibroblast/myofibroblast TRPC6 channel to discuss its modulatory effects on fibrotic responses and therapeutic potential for anti-fibrotic treatment against CD-related stenosis.
Collapse
Affiliation(s)
- Lin Hai Kurahara
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Koo JB, Nam MO, Jung Y, Yoo J, Kim DH, Kim G, Shin SJ, Lee KM, Hahm KB, Kim JW, Hong SP, Lee KJ, Yoo JH. Anti-fibrogenic effect of PPAR-γ agonists in human intestinal myofibroblasts. BMC Gastroenterol 2017; 17:73. [PMID: 28592228 PMCID: PMC5463383 DOI: 10.1186/s12876-017-0627-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/19/2017] [Indexed: 12/30/2022] Open
Abstract
Background Intestinal fibrosis is a serious complication of inflammatory bowel disease, including Crohn’s disease and ulcerative colitis. There is no specific treatment for intestinal fibrosis. Studies have indicated that peroxisome proliferator-activated receptor- γ (PPAR-γ) agonists have anti-fibrogenic properties in organs besides the gut; however, their effects on human intestinal fibrosis are poorly understood. This study investigated the anti-fibrogenic properties and mechanisms of PPAR-γ agonists on human primary intestinal myofibroblasts (HIFs). Methods HIFs were isolated from normal colonic tissue of patients undergoing resection due to colorectal cancer. HIFs were treated with TGF-β1 and co-incubated with or without one of two synthetic PPAR-γ agonists, troglitazone or rosiglitazone. mRNA and protein expression of procollagen1A1, fibronectin, and α-smooth muscle actin were determined by semiquantitative reverse transcription-polymerase chain reaction and Western blot. LY294002 (Akt inhibitor) was used to examine whether Akt phosphorylation was a downstream mechanism of TGF-β1 induced expression of procollagen1A1, fibronectin, and α-smooth muscle actin in HIFs. The irreversible PPAR-γ antagonist GW9662 was used to investigate whether the effect of PPAR-γ agonists was PPAR-γ dependent. Results Both PPAR-γ agonists reduced the TGF-β1-induced expression of α-smooth muscle actin which was integrated into stress fibers in HIFs, as determined by actin microfilaments fluorescent staining and α-smooth muscle actin-specific immunocytochemistry. PPAR-γ agonists also inhibited TGF-β1-induced mRNA and protein expressions of procollagen1A1, fibronectin, and α-smooth muscle actin. TGF-β1 stimulation increased phosphorylation of downstream signaling molecules Smad2, Akt, and ERK. TGF-β1 induced synthesis of procollagen1A1, fibronectin, and α-smooth muscle actin through a phosphatidylinositol 3-kinase/Akt-dependent mechanism. PPAR-γ agonists down regulated fibrogenesis, as shown by inhibition of Akt and Smad2 phosphorylation. This anti-fibrogenic effect was PPAR-γ independent. Conclusions Troglitazone and rosiglitazone suppress TGF-β1-induced synthesis of procollagen1A1, fibronectin, and α-smooth muscle actin in HIFs and may be useful in treating intestinal fibrosis. Electronic supplementary material The online version of this article (doi:10.1186/s12876-017-0627-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Bon Koo
- Clinical Research Center, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Myeong-Ok Nam
- Department of Microbiology, Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam, South Korea
| | - Younshin Jung
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam, 463-712, South Korea
| | - Jongman Yoo
- Department of Microbiology, Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam, South Korea
| | - Duk Hwan Kim
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam, 463-712, South Korea
| | - Gwangil Kim
- Department of Pathology, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Sung Jae Shin
- Department of Gastroenterology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 443-380, South Korea
| | - Kee Myung Lee
- Department of Gastroenterology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 443-380, South Korea
| | - Ki Baik Hahm
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam, 463-712, South Korea
| | - Jong Woo Kim
- Department of Surgery, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Sung Pyo Hong
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam, 463-712, South Korea
| | - Kwang Jae Lee
- Department of Gastroenterology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 443-380, South Korea.
| | - Jun Hwan Yoo
- Digestive Disease Center, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam, 463-712, South Korea.
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW This article assesses the role of the mesentery in Crohn's disease. RECENT FINDINGS The mesentery is centrally positioned both anatomically and physiologically. Overlapping mesenteric and submucosal mesenchymal contributions are important in the pathobiology of Crohn's disease. Mesenteric contributions explain the topographic distribution of Crohn's disease in general and mucosal disease in particular. Operative strategies that are mesenteric based (i.e. mesocolic excision) may reduce rates of postoperative recurrence. SUMMARY The net effect of mesenteric events in Crohn's disease is pathologic. This can be targeted by operative means. VIDEO ABSTRACT http://links.lww.com/COG/A18.
Collapse
|
28
|
Abstract
BACKGROUND Intestinal fibrosis is a frequent complication of Crohn's disease (CD) and often leads to detrimental stricture formation. Myofibroblasts play active roles in mediating fibrotic changes in various tissues. We investigated whether transient receptor potential channels in intestinal myofibroblasts are involved in CD-associated intestinal fibrosis. METHODS An intestinal myofibroblast cell line (InMyoFibs) was stimulated with transforming growth factor-β1 (TGF-β1) to model excessive fibrosis. Biopsy samples from nonstenotic or stenotic intestinal regions from patients with CD were used for quantitative comparisons of transient receptor potential channel and fibrosis-associated factor expression levels. RESULTS TGF-β1 treatment transformed spindle-shaped InMyoFibs into filament-shaped cells with enhanced α-actin stress fiber formation, transient receptor potential canonical (TRPC) 4 and TRPC6 messenger RNA and protein expression, and basal- and agonist-induced Ca influxes. TGF-β1 also enhanced the formation of TRPC6/smooth muscle α-actin, TRPC6/N-cadherin, and TRPC4/N-cadherin coimmunoprecipitates. Inhibition of TRPC6 in InMyoFibs by RNA interference or dominant-negative mutations suppressed TGF-β1-induced Ca influxes, stress fiber formation, and smooth muscle α-actin expression, but increased COL1A1, interleukin (IL)-10, and IL-11 expression, as well as Smad-2, ERK, and p38-MAPK phosphorylation. Similar increases in phosphorylation levels were observed with TRPC and calcineurin inhibitors. In stenotic areas in patients with CD, TRPC6, ACTA2 (smooth muscle α-actin), CDH2 (N-cadherin), COL1A1, IL-10, and IL-11 were significantly increased. CONCLUSIONS These results suggest that augmented Ca influxes due to TRPC6 upregulation facilitate stress fiber formation and strengthen cell-cell interactions by negatively regulating the synthesis of antifibrotic factors in TGF-β1-treated myofibroblasts. Similar changes observed in stenotic areas of patients with CD suggest the therapeutic significance of targeting TRPC6.
Collapse
|
29
|
Tokuhira N, Kitagishi Y, Suzuki M, Minami A, Nakanishi A, Ono Y, Kobayashi K, Matsuda S, Ogura Y. PI3K/AKT/PTEN pathway as a target for Crohn's disease therapy (Review). Int J Mol Med 2014; 35:10-6. [PMID: 25352295 DOI: 10.3892/ijmm.2014.1981] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/16/2014] [Indexed: 11/06/2022] Open
Abstract
The pathogenesis of inflammatory bowel disease (IBD), including Crohn's disease, is a subject of increasing interest. Loss-of-function mutations in nucleotide-binding oligomerization domain-containing protein 2 (NOD2) are strong genetic factors linked to Crohn's disease, which eventually leads to an excessive mucosal inflammatory response directed against components of normal gut microbiota. Reactive oxygen species (ROS) play an important role in inflammation processes, as well as in transduction of signals from receptors for several cytokines, such as tumor necrosis factor α (TNFα). ROS activate nuclear factor-κB (NF-κB) via IκB kinase (IKK) through the PI3K/AKT/PTEN pathway. Therefore, this pathway is recognized to play a key role in Crohn's disease. Loss of function has been demonstrated to occur as an early event in a wide variety of diseases. Given this prevalent involvement in a number of diseases, the molecular development that modulates this pathway has been the subject of several studies. In addition, it has been the focus of extensive research and drug discovery activities. A better understanding of the molecular assemblies may reveal novel targets for the therapeutic development against Crohn's disease.
Collapse
Affiliation(s)
- Nana Tokuhira
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Miho Suzuki
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Akari Minami
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Atsuko Nakanishi
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Yuna Ono
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Keiko Kobayashi
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| | - Yasunori Ogura
- Department of Food Science and Nutrition, Nara Women's University, Nara 630‑8506, Japan
| |
Collapse
|
30
|
Abstract
Crohn's disease is complicated by the development of fibrosis and stricture in approximately 30% to 50% of patients over time. The pathogenesis of fibrostenotic disease is multifactorial involving the activation of mesenchymal cells by cytokines, growth factors, and other mediators released by immune cells, epithelial cells, and mesenchymal cells. Transforming growth factor β, a key activator of mesenchymal cells, is central to the process of fibrosis and regulates numerous genes involved in the disordered wound healing including collagens, and other extracellular matrix proteins, connective tissue growth factor, and insulin-like growth factors. The activated mesenchymal compartment is expanded by recruitment of new mesenchymal cells through epithelial to mesenchymal transition, endothelial to mesenchymal transition, and invasion of circulating fibrocytes. Cellular hyperplasia and increased extracellular matrix production, particularly collagens, from fibroblasts, myofibroblasts, and smooth muscle cells add to the disturbed architecture and scarring on the intestine. Extracellular matrix homeostasis is further disrupted by alterations in the expression of matrix metalloproteinases and tissue inhibitors of metalloproteinase in the gut. Among the 163 susceptibility genes identified that contribute to susceptibility in inflammatory bowel disease mutations in NOD2/CARD15, innate immune system components and autophagy jointly contribute to the activation of mesenchymal cells and pathogenesis of fibrosis in this polygenic disorder. Numerous growth factors cytokines and other mediators also contribute to development of fibrosis in the susceptible patient. This review focuses on the molecular mechanisms that regulate mesenchymal cell function, particularly smooth muscle cells, the largest compartment of mesenchyme in the intestine, that lead to fibrosis in Crohn's disease.
Collapse
|
31
|
Zhang Y, Kent JW, Olivier M, Ali O, Cerjak D, Broeckel U, Abdou RM, Dyer TD, Comuzzie A, Curran JE, Carless MA, Rainwater DL, Göring HHH, Blangero J, Kissebah AH. A comprehensive analysis of adiponectin QTLs using SNP association, SNP cis-effects on peripheral blood gene expression and gene expression correlation identified novel metabolic syndrome (MetS) genes with potential role in carcinogenesis and systemic inflammation. BMC Med Genomics 2013; 6:14. [PMID: 23628382 PMCID: PMC3643849 DOI: 10.1186/1755-8794-6-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 04/23/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is an aberration associated with increased risk for cancer and inflammation. Adiponectin, an adipocyte-produced abundant protein hormone, has countering effect on the diabetogenic and atherogenic components of MetS. Plasma levels of adiponectin are negatively correlated with onset of cancer and cancer patient mortality. We previously performed microsatellite linkage analyses using adiponectin as a surrogate marker and revealed two QTLs on chr5 (5p14) and chr14 (14q13). METHODS Using individuals from 85 extended families that contributed to the linkage and who were measured for 42 clinical and biologic MetS phenotypes, we tested QTL-based SNP associations, peripheral white blood cell (PWBC) gene expression, and the effects of cis-acting SNPs on gene expression to discover genomic elements that could affect the pathophysiology and complications of MetS. RESULTS Adiponectin levels were found to be highly intercorrelated phenotypically with the majority of MetS traits. QTL-specific haplotype-tagging SNPs associated with MetS phenotypes were annotated to 14 genes whose function could influence MetS biology as well as oncogenesis or inflammation. These were mechanistically categorized into four groups: cell-cell adhesion and mobility, signal transduction, transcription and protein sorting. Four genes were highly prioritized: cadherin 18 (CDH18), myosin X (MYO10), anchor protein 6 of AMPK (AKAP6), and neuronal PAS domain protein 3 (NPAS3). PWBC expression was detectable only for the following genes with multi-organ or with multi-function properties: NPAS3, MARCH6, MYO10 and FBXL7. Strong evidence of cis-effects on the expression of MYO10 in PWBC was found with SNPs clustered near the gene's transcription start site. MYO10 expression in PWBC was marginally correlated with body composition (p = 0.065) and adipokine levels in the periphery (p = 0.064). Variants of genes AKAP6, NPAS3, MARCH6 and FBXL7 have been previously reported to be associated with insulin resistance, inflammatory markers or adiposity studies using genome-wide approaches whereas associations of CDH18 and MYO10 with MetS traits have not been reported before. CONCLUSIONS Adiponectin QTLs-based SNP association and mRNA expression identified genes that could mediate the association between MetS and cancer or inflammation.
Collapse
Affiliation(s)
- Yi Zhang
- TOPS Obesity and Metabolic Research Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jack W Kent
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Michael Olivier
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Omar Ali
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Diana Cerjak
- TOPS Obesity and Metabolic Research Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ulrich Broeckel
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Reham M Abdou
- TOPS Obesity and Metabolic Research Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Thomas D Dyer
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Anthony Comuzzie
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Joanne E Curran
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Melanie A Carless
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - David L Rainwater
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Harald H H Göring
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - John Blangero
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Ahmed H Kissebah
- TOPS Obesity and Metabolic Research Center, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
32
|
Michalik M, Pierzchalska M, Włodarczyk A, Wójcik KA, Czyż J, Sanak M, Madeja Z. Transition of asthmatic bronchial fibroblasts to myofibroblasts is inhibited by cell-cell contacts. Respir Med 2011; 105:1467-75. [PMID: 21802932 DOI: 10.1016/j.rmed.2011.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 04/13/2011] [Accepted: 04/13/2011] [Indexed: 01/14/2023]
Abstract
The role of airway wall remodelling in bronchial asthma is well established. Myofibroblasts, the cells displaying features intermediate between fibroblasts and smooth muscle cells, are involved in this process but the mechanism of myofibroblasts activation in the onset of the disease remains obscure. Myofibroblasts can differentiate from various cell types, including resident fibroblasts, and the fibroblasts to myofibroblasts transition (FMT) can be reproduced in vitro. We aimed to investigate the process of FMT in human bronchial fibroblasts (HBF) derived from non-asthmatic (n = 7) and asthmatic (n = 7) subjects. We also tested whether cell-cell contacts affect FMT by using N-cadherin blocking antibody. HBF plated in low or high cell density were treated with TGF-β(1) up to one week to induce FMT. The percentage of myofibroblsts was counted and expression of α-smooth muscle actin was evaluated by cytoimmunofluorescence, flow cytometry and immunobloting. We demonstrated that the intensity of FMT induced by TGF-β(1)in vitro was strongly enhanced in asthmatic as compared to non-asthmatic HBF populations. This process was facilitated by low cell plating density in both groups of cultures. Furthermore, we proved that neither HBF-conditioned medium nor growth arrest in G(0)/G(1) phase of cell cycle could stop the TGF-β(1)-induced FMT in asthmatic cell populations. However, even in sparse asthmatic HBF, the blocking of N-cadherin resulted in the inhibition of FMT. Our findings show for the first time that the initial absence or an induced loss of cell-cell adhesions in asthmatic HBF populations is important for the completion of FMT.
Collapse
Affiliation(s)
- Marta Michalik
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, Poland.
| | | | | | | | | | | | | |
Collapse
|