1
|
Asumda FZ, Campbell NA, Hassan MA, Fathi R, Vasquez Rico DF, Kiem M, Vang EV, Kim YH, Luo X, O’Brien DR, Buhrow SA, Reid JM, Moore MJ, Ben-Yair VK, Levitt ML, Leiting JL, Abdelrahman AM, Zhu X, Lucien F, Truty MJ, Roberts LR. Combined Antitumor Effect of the Serine Protease Urokinase Inhibitor Upamostat and the Sphingosine Kinase 2 Inhibitor Opaganib on Cholangiocarcinoma Patient-Derived Xenografts. Cancers (Basel) 2024; 16:1050. [PMID: 38473407 PMCID: PMC10930726 DOI: 10.3390/cancers16051050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Upamostat is an orally available small-molecule serine protease inhibitor that is a highly potent inhibitor of trypsin 1, trypsin 2, trypsin 3 (PRSS1/2/3), and the urokinase-type plasminogen activator (uPA). These enzymes are expressed in many cancers, especially during tissue remodeling and subsequent tumor cell invasion. Opaganib (ABC294640), a novel, orally available small molecule is a selective inhibitor of the phosphorylation of sphingosine to sphingosine-1-phosphate (S-1-P) by sphingosine kinase 2 (SPHK2). Both sphingosine kinase 1 (SPHK1) and SPHK2 are known to regulate the proliferation-inducing compound S-1-P. However, SPHK2 is more critical in cancer pathogenesis. The goal of this project was to investigate the potential antitumor effects of upamostat and opaganib, individually and in combination, on cholangiocarcinoma (CCA) xenografts in nude mice. PAX165, a patient-derived xenograft (PDX) from a surgically resected CCA, expresses substantial levels of SPHK2, PRSS1, PRSS2, and PRSS3. Four groups of 18 mice each were treated with upamostat, opaganib, both, or vehicle. Mouse weights and PAX165 tumor volumes were measured. Tumor volumes in the upamostat, opaganib, and upamostat plus opaganib groups were significantly decreased compared to the control group.
Collapse
Affiliation(s)
- Faizal Z. Asumda
- Departments of Pediatrics and Pathology, Medical College of Georgia-Augusta University Medical Center, Augusta, GA 30912, USA;
| | - Nellie A. Campbell
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Mayo Clinic Cancer Center, Rochester, MN 55905, USA; (N.A.C.); (M.J.M.); (X.Z.)
| | | | - Reza Fathi
- RedHill Biopharma, Ltd., 21 Ha’arba’a St., Tel Aviv 6473921, Israel; (R.F.); (M.L.L.)
| | | | - Melanie Kiem
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Mayo Clinic Cancer Center, Rochester, MN 55905, USA; (N.A.C.); (M.J.M.); (X.Z.)
- Study of Human Medicine, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Ethan V. Vang
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Mayo Clinic Cancer Center, Rochester, MN 55905, USA; (N.A.C.); (M.J.M.); (X.Z.)
| | - Yo Han Kim
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (Y.H.K.); (F.L.)
| | - Xin Luo
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Daniel R. O’Brien
- Department of Quantitative Health Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Sarah A. Buhrow
- Department of Oncology and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (S.A.B.); (J.M.R.)
| | - Joel M. Reid
- Department of Oncology and Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (S.A.B.); (J.M.R.)
| | - Michael J. Moore
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Mayo Clinic Cancer Center, Rochester, MN 55905, USA; (N.A.C.); (M.J.M.); (X.Z.)
| | - Vered Katz Ben-Yair
- RedHill Biopharma, Ltd., 21 Ha’arba’a St., Tel Aviv 6473921, Israel; (R.F.); (M.L.L.)
| | - Mark L. Levitt
- RedHill Biopharma, Ltd., 21 Ha’arba’a St., Tel Aviv 6473921, Israel; (R.F.); (M.L.L.)
| | - Jennifer L. Leiting
- Division of Subspecialty General Surgery, Department of Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA;
| | - Amro M. Abdelrahman
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (A.M.A.); (M.J.T.)
| | - Xinli Zhu
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Mayo Clinic Cancer Center, Rochester, MN 55905, USA; (N.A.C.); (M.J.M.); (X.Z.)
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310030, China
| | - Fabrice Lucien
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (Y.H.K.); (F.L.)
| | - Mark J. Truty
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (A.M.A.); (M.J.T.)
| | - Lewis R. Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Mayo Clinic Cancer Center, Rochester, MN 55905, USA; (N.A.C.); (M.J.M.); (X.Z.)
| |
Collapse
|
2
|
Plasse TF, Fathi R, Fehrmann C, McComsey GA. Upamostat: a serine protease inhibitor for antiviral, gastrointestinal, and anticancer indications. Expert Opin Investig Drugs 2023; 32:1095-1103. [PMID: 37970658 DOI: 10.1080/13543784.2023.2284385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023]
Abstract
INTRODUCTION Serine proteases are involved in many normal metabolic processes but also contribute to diseases of several organ systems, including viral and gastrointestinal diseases and oncology. Upamostat is an orally bioavailable prodrug of WX-UK1, which is most active against trypsins and closely related enzymes. AREAS COVERED Research over the past two decades suggests several diseases in the three areas noted above which upamostat may be active. Upamostat has been studied clinically against several cancers and for outpatient treatment of COVID-19. Preclinical and clinical pharmacokinetic and metabolism studies demonstrate good bioavailability, sustained tissue levels, and high concentrations of the active moiety, WX-UK1, in stool, potentially important for treatment of gastrointestinal diseases. Clinical studies suggest activity against SARS-CoV-2; results against pancreatic cancer are also encouraging, though studies in both indications are not definitive. The drug was very well tolerated for periods of 2 weeks to several months. EXPERT OPINION Upamostat is an orally bioavailable serine protease inhibitor with an excellent safety profile and favorable pharmacokinetic properties. It has demonstrated preliminary evidence of efficacy against COVID-19, and nonclinical data suggest potential applicability against other viral illnesses, gastrointestinal diseases, and cancer.
Collapse
Affiliation(s)
- T F Plasse
- RedHill Biopharma, Ltd, Tel Aviv, Israel
| | - R Fathi
- RedHill Biopharma, Ltd, Tel Aviv, Israel
| | - C Fehrmann
- CEEF Solutions, Beaconsfield, Quebec, Canada
| | - G A McComsey
- CEEF Solutions, Beaconsfield, Quebec, Canada
- University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
3
|
Ismail AA, Shaker BT, Bajou K. The Plasminogen-Activator Plasmin System in Physiological and Pathophysiological Angiogenesis. Int J Mol Sci 2021; 23:ijms23010337. [PMID: 35008762 PMCID: PMC8745544 DOI: 10.3390/ijms23010337] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis is a process associated with the migration and proliferation of endothelial cells (EC) to form new blood vessels. It is involved in various physiological and pathophysiological conditions and is controlled by a wide range of proangiogenic and antiangiogenic molecules. The plasminogen activator–plasmin system plays a major role in the extracellular matrix remodeling process necessary for angiogenesis. Urokinase/tissue-type plasminogen activators (uPA/tPA) convert plasminogen into the active enzyme plasmin, which in turn activates matrix metalloproteinases and degrades the extracellular matrix releasing growth factors and proangiogenic molecules such as the vascular endothelial growth factor (VEGF-A). The plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of uPA and tPA, thereby an inhibitor of pericellular proteolysis and intravascular fibrinolysis, respectively. Paradoxically, PAI-1, which is expressed by EC during angiogenesis, is elevated in several cancers and is found to promote angiogenesis by regulating plasmin-mediated proteolysis and by promoting cellular migration through vitronectin. The urokinase-type plasminogen activator receptor (uPAR) also induces EC cellular migration during angiogenesis via interacting with signaling partners. Understanding the molecular functions of the plasminogen activator plasmin system and targeting angiogenesis via blocking serine proteases or their interactions with other molecules is one of the major therapeutic strategies scientists have been attracted to in controlling tumor growth and other pathological conditions characterized by neovascularization.
Collapse
Affiliation(s)
- Asmaa Anwar Ismail
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (A.A.I.); (B.T.S.)
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Baraah Tariq Shaker
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (A.A.I.); (B.T.S.)
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Khalid Bajou
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; (A.A.I.); (B.T.S.)
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence:
| |
Collapse
|
4
|
Lv T, Zhao Y, Jiang X, Yuan H, Wang H, Cui X, Xu J, Zhao J, Wang J. uPAR: An Essential Factor for Tumor Development. J Cancer 2021; 12:7026-7040. [PMID: 34729105 PMCID: PMC8558663 DOI: 10.7150/jca.62281] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/02/2021] [Indexed: 02/06/2023] Open
Abstract
Tumorigenesis is closely related to the loss of control of many genes. Urokinase-type plasminogen activator receptor (uPAR), a glycolipid-anchored protein on the cell surface, is controlled by many factors in tumorigenesis and is expressed in many tumor tissues. In this review, we summarize the regulatory effects of the uPAR signaling pathway on processes and factors related to tumor progression, such as tumor cell proliferation, adhesion, metastasis, glycolysis, tumor microenvironment and angiogenesis. Overall, the evidence accumulated to date suggests that uPAR induction by tumor progression may be one of the most important factors affecting therapeutic efficacy. An improved understanding of the interactions between uPAR and its coreceptors in cancer will provide critical biomolecular information that may help to better predict the disease course and response to therapy.
Collapse
Affiliation(s)
- Tao Lv
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011.,Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and Plants on YunGui Plateau, Qujing Normal University, Qujing, China 655011
| | - Ying Zhao
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Xinni Jiang
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, Sichuan, China 610500
| | - Hemei Yuan
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Haibo Wang
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011.,Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and Plants on YunGui Plateau, Qujing Normal University, Qujing, China 655011
| | - Xuelin Cui
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Jiashun Xu
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Jingye Zhao
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Jianlin Wang
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan, China 655011
| |
Collapse
|
5
|
Vasiljeva O, Hostetter DR, Moore SJ, Winter MB. The multifaceted roles of tumor-associated proteases and harnessing their activity for prodrug activation. Biol Chem 2019; 400:965-977. [PMID: 30913028 DOI: 10.1515/hsz-2018-0451] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
The role of proteases in cancer was originally thought to be limited to the breakdown of basement membranes and extracellular matrix (ECM), thereby promoting cancer cell invasion into surrounding normal tissues. It is now well understood that proteases play a much more complicated role in all stages of cancer progression and that not only tumor cells, but also stromal cells are an important source of proteases in the tumor microenvironment. Among all the proteolytic enzymes potentially associated with cancer, some proteases have taken on heightened importance due to their significant up-regulation and ability to participate at multiple stages of cancer progression and metastasis. In this review, we discuss some of the advances in understanding of the roles of several key proteases from different classes in the development and progression of cancer and the potential to leverage their upregulated activity for the development of novel targeted treatment strategies.
Collapse
Affiliation(s)
- Olga Vasiljeva
- CytomX Therapeutics Inc., Platform Biology, 151 Oyster Point Blvd, South San Francisco, CA 94080, USA
| | - Daniel R Hostetter
- CytomX Therapeutics Inc., Platform Biology, 151 Oyster Point Blvd, South San Francisco, CA 94080, USA
| | - Stephen J Moore
- CytomX Therapeutics Inc., Platform Biology, 151 Oyster Point Blvd, South San Francisco, CA 94080, USA
| | - Michael B Winter
- CytomX Therapeutics Inc., Platform Biology, 151 Oyster Point Blvd, South San Francisco, CA 94080, USA
| |
Collapse
|
6
|
Wyganowska-Świątkowska M, Tarnowski M, Murtagh D, Skrzypczak-Jankun E, Jankun J. Proteolysis is the most fundamental property of malignancy and its inhibition may be used therapeutically (Review). Int J Mol Med 2018; 43:15-25. [PMID: 30431071 PMCID: PMC6257838 DOI: 10.3892/ijmm.2018.3983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 09/06/2018] [Indexed: 12/22/2022] Open
Abstract
The mortality rates of cancer patients decreased by ~1.5% per year between 2001 and 2015, although the decrease depends on patient sex, ethnic group and type of malignancy. Cancer remains a significant global health problem, requiring a search for novel treatments. The most common property of malignant tumors is their capacity to invade adjacent tissue and to metastasize, and this cancer aggressiveness is contingent on overexpression of proteolytic enzymes. The components of the plasminogen activation system (PAS) and the metal-loproteinase family [mainly matrix metalloproteinases (MMPs)] are overexpressed in malignant tumors, driving the local invasion, metastasis and angiogenesis. This is the case for numerous types of cancer, such as breast, colon, prostate and oral carcinoma, among others. Present chemotherapeutics agents typically attack all dividing cells; however, for future therapeutic agents to be clinically successful, they need to be highly selective for a specific protein(s) and act on the cancerous tissues without adverse systemic effects. Inhibition of proteolysis in cancerous tissue has the ability to attenuate tumor invasion, angiogenesis and migration. For that purpose, inhibiting both PAS and MMPs may be another approach, since the two groups of enzymes are overexpressed in cancer. In the present review, the roles and new findings on PAS and MMP families in cancer formation, growth and possible treatments are discussed.
Collapse
Affiliation(s)
| | | | - Daniel Murtagh
- Urology Research Center, Department of Urology, Health Science Campus, The University of Toledo, Toledo, OH 43614‑2598, USA
| | - Ewa Skrzypczak-Jankun
- Urology Research Center, Department of Urology, Health Science Campus, The University of Toledo, Toledo, OH 43614‑2598, USA
| | - Jerzy Jankun
- Urology Research Center, Department of Urology, Health Science Campus, The University of Toledo, Toledo, OH 43614‑2598, USA
| |
Collapse
|
7
|
SERPA MS, MAFRA RP, QUEIROZ SIML, SILVA LPD, SOUZA LBD, PINTO LP. Expression of urokinase-type plasminogen activator and its receptor in squamous cell carcinoma of the oral tongue. Braz Oral Res 2018; 32:e93. [DOI: 10.1590/1807-3107bor-2018.vol32.0093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/25/2018] [Indexed: 01/31/2023] Open
|
8
|
Yamada Y, Kanayama S, Ito F, Kurita N, Kobayashi H. A novel peptide blocking cancer cell invasion by structure-based drug design. Biomed Rep 2017; 7:221-225. [PMID: 28819560 DOI: 10.3892/br.2017.957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 07/31/2017] [Indexed: 01/09/2023] Open
Abstract
The receptor for the urokinase-type plasminogen activator (uPA), uPAR, facilitates tumor cell invasion and metastasis by focusing on several ligands, including uPA, integrins and vitronectin. With computational prediction algorithms and structure-based drug design, we identified peptides containing the Gly-Lys-Gly-Glu-Gly-Glu-Gly-Lys-Gly sequence (peptide H1), which strongly interacts with uPAR. The aim of the present study was to investigate the effect of allosteric inhibition at the uPAR interface using a novel synthetic peptide and its function on ovarian cancer cell invasion. The molecular and functional mechanisms of H1 were determined by complementary biochemical and biological methods in the promyeloid U937 cell line as well as ovarian cancer cell lines, including serous carcinoma SKOV3 and clear cell carcinoma TOV21G. The effects of H1 treatment on cancer cell invasion were evaluated in vitro. H1 inhibited cancer cell invasion, without affecting cell viability, accompanied by the suppression of extracellular signal-regulated kinase (ERK)-1 phosphorylation and then matrix metalloproteinase (MMP)-9 expression. H1 failed to block the interaction of uPA-uPAR protein-protein interaction in cells, but antagonized the uPA function. H1 failed to disrupt the uPA-uPAR complex, but abolished the invasion of ovarian cancer cells at least through suppression of the ERK-MMP-9 signaling pathway. Further studies are needed to confirm our observations and to describe the underlying molecular mechanism.
Collapse
Affiliation(s)
- Yuki Yamada
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara 634-8522, Japan
| | - Seiji Kanayama
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara 634-8522, Japan
| | - Fuminori Ito
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara 634-8522, Japan
| | - Noriyuki Kurita
- Department of Computer Science of Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan
| | - Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara 634-8522, Japan
| |
Collapse
|
9
|
Endo-Munoz L, Cai N, Cumming A, Macklin R, Merida de Long L, Topkas E, Mukhopadhyay P, Hill M, Saunders NA. Progression of Osteosarcoma from a Non-Metastatic to a Metastatic Phenotype Is Causally Associated with Activation of an Autocrine and Paracrine uPA Axis. PLoS One 2015; 10:e0133592. [PMID: 26317203 PMCID: PMC4552671 DOI: 10.1371/journal.pone.0133592] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 06/29/2015] [Indexed: 12/18/2022] Open
Abstract
Pulmonary metastasis is the major untreatable complication of osteosarcoma (OS) resulting in 10-20% long-term survival. The factors and pathways regulating these processes remain unclear, yet their identification is crucial in order to find new therapeutic targets. In this study we used a multi-omics approach to identify molecules in metastatic and non-metastatic OS cells that may contribute to OS metastasis, followed by validation in vitro and in vivo. We found elevated levels of the urokinase plasminogen activator (uPA) and of the uPA receptor (uPAR) exclusively in metastatic OS cells. uPA was secreted in soluble form and as part of the protein cargo of OS-secreted extracellular vesicles, including exosomes. In addition, in the tumour microenvironment, uPA was expressed and secreted by bone marrow cells (BMC), and OS- and BMC-derived uPA significantly and specifically stimulated migration of metastatic OS cells via uPA-dependent signaling pathways. Silencing of uPAR in metastatic OS cells abrogated the migratory response to uPA in vitro and decreased metastasis in vivo. Finally, a novel small-molecule inhibitor of uPA significantly (P = 0.0004) inhibited metastasis in an orthotopic mouse model of OS. Thus, we show for the first time that malignant conversion of OS cells to a metastatic phenotype is defined by activation of the uPA/uPAR axis in both an autocrine and paracrine fashion. Furthermore, metastasis is driven by changes in OS cells as well as in the microenvironment. Finally, our data show that pharmacological inhibition of the uPA/uPAR axis with a novel small-molecule inhibitor can prevent the emergence of metastatic foci.
Collapse
Affiliation(s)
- Liliana Endo-Munoz
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4102, Australia
- * E-mail:
| | - Na Cai
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Andrew Cumming
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Rebecca Macklin
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Lilia Merida de Long
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Eleni Topkas
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Pamela Mukhopadhyay
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Michelle Hill
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Nicholas A Saunders
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4102, Australia
| |
Collapse
|
10
|
Paprottka PM, Roßpunt S, Ingrisch M, Cyran CC, Nikolaou K, Reiser MF, Mack B, Gires O, Clevert DA, Zengel P. Reducing tumor growth and angiogenesis using a triple therapy measured with Contrast-enhanced ultrasound (CEUS). BMC Cancer 2015; 15:373. [PMID: 25947947 PMCID: PMC4435644 DOI: 10.1186/s12885-015-1333-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/22/2015] [Indexed: 11/10/2022] Open
Abstract
Background To evaluate the in vivo response by detecting the anti-angiogenic and invasion-inhibiting effects of a triple-combination-therapy in an experimental-small-animal-squamous-cell-carcinoma-model using the “flash-replenishment” (FR) method to assess tissue hemodynamics via contrast-enhanced-ultrasound (CEUS). Methods Human hypopharynx-carcinoma-cells were subcutaneously injected into the left flank of 22-female-athymic-nude-rats. After seven days of subcutaneous tumor growth, FR-measurements were performed on each rat. Treatment-group and control-group were treated every day for a period of one week, with the treatment-group receiving solvents containing a triple therapy of Upamostat®, Celecoxib® and Ilomastat® and the control-group solvents only. On day seven, follow-up measurements were performed using the same measurement protocol to assess the effects of the triple therapy. VueBox® was used to quantify the kinetic parameters and additional immunohistochemistry analyses were performed for comparison with and validation of the CEUS results against established methods (Proliferation/Ki-67, vascularization/CD31, apoptosis/caspase3). Results Compared to the control-group, the treatment-group that received the triple-therapy resulted in a reduction of tumor growth by 48.6% in size. Likewise, the immunohistochemistry results showed significant decreases in tumor proliferation and vascularization in the treatment-group in comparison to the control-group of 26%(p≤0.05) and 32.2%(p≤0.05) respectively. Correspondingly, between the baseline and follow-up measurements, the therapy-group was associated with a significant(p ≤ 0.01) decrease in the relative-Blood-Volume(rBV) in both the whole tumor(wt) and hypervascular tumor(ht) areas (p≤0.01), while the control-group was associated with a significant (p≤0.01) increase of the rBV in the wt area and a non-significant increase (p≤0.16) in the ht area. The mean-transit-time (mTT) of the wt and the ht areas showed a significant increase (p≤0.01) in the follow-up measurements in the therapy group. Conclusion The triple-therapy is feasible and effective in reducing both tumor growth and vascularization. In particular, compared with the placebo-group, the triple-therapy-group resulted in a reduction in tumor growth of 48.6% in size when assessed by CEUS and a significant reduction in the number of vessels in the tumor of 32% as assessed by immunohistochemistry. As the immunohistochemistry supports the CEUS findings, CEUS using the “flash replenishment”(FR) method appears to provide a useful assessment of the anti-angiogenic and invasion-inhibiting effects of a triple combination therapy.
Collapse
Affiliation(s)
| | - Svenja Roßpunt
- Institute for Ear, Nose and Throat Medicine, Ludwig Maximilian University Hospital, Munich, Germany.
| | - Michael Ingrisch
- Institute for Clinical Radiology, Ludwig Maximilian University Hospital, Munich, Germany.
| | - Clemens C Cyran
- Institute for Clinical Radiology, Ludwig Maximilian University Hospital, Munich, Germany.
| | - Konstantin Nikolaou
- Institute for Clinical Radiology, Ludwig Maximilian University Hospital, Munich, Germany.
| | - Maximilian F Reiser
- Institute for Clinical Radiology, Ludwig Maximilian University Hospital, Munich, Germany.
| | - Brigitte Mack
- Institute for Ear, Nose and Throat Medicine, Ludwig Maximilian University Hospital, Munich, Germany.
| | - Olivier Gires
- Institute for Ear, Nose and Throat Medicine, Ludwig Maximilian University Hospital, Munich, Germany.
| | - Dirk A Clevert
- Institute for Clinical Radiology, Ludwig Maximilian University Hospital, Munich, Germany.
| | - Pamela Zengel
- Institute for Ear, Nose and Throat Medicine, Ludwig Maximilian University Hospital, Munich, Germany.
| |
Collapse
|
11
|
Al-Horani RA, Desai UR. Recent advances on plasmin inhibitors for the treatment of fibrinolysis-related disorders. Med Res Rev 2014; 34:1168-1216. [PMID: 24659483 PMCID: PMC8788159 DOI: 10.1002/med.21315] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Growing evidence suggests that plasmin is involved in a number of physiological processes in addition to its key role in fibrin cleavage. Plasmin inhibition is critical in preventing adverse consequences arising from plasmin overactivity, e.g., blood loss that may follow cardiac surgery. Aprotinin was widely used as an antifibrinolytic drug before its discontinuation in 2008. Tranexamic acid and ε-aminocaproic acid, two small molecule plasmin inhibitors, are currently used in the clinic. Several molecules have been designed utilizing covalent, but reversible, chemistry relying on reactive cyclohexanones, nitrile warheads, and reactive aldehyde peptidomimetics. Other major classes of plasmin inhibitors include the cyclic peptidomimetics and polypeptides of the Kunitz and Kazal-type. Allosteric inhibitors of plasmin have also been designed including small molecule lysine analogs that bind to plasmin's kringle domain(s) and sulfated glycosaminoglycan mimetics that bind to plasmin's catalytic domain. Plasmin inhibitors have also been explored for resolving other disease states including cell metastasis, cell proliferation, angiogenesis, and embryo implantation. This review highlights functional and structural aspects of plasmin inhibitors with the goal of advancing their design.
Collapse
Affiliation(s)
- Rami A Al-Horani
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia
| | | |
Collapse
|
12
|
Application of molecular modeling to urokinase inhibitors development. BIOMED RESEARCH INTERNATIONAL 2014; 2014:625176. [PMID: 24967388 PMCID: PMC4055159 DOI: 10.1155/2014/625176] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/22/2014] [Indexed: 01/01/2023]
Abstract
Urokinase-type plasminogen activator (uPA) plays an important role in the regulation of diverse physiologic and pathologic processes. Experimental research has shown that elevated uPA expression is associated with cancer progression, metastasis, and shortened survival in patients, whereas suppression of proteolytic activity of uPA leads to evident decrease of metastasis. Therefore, uPA has been considered as a promising molecular target for development of anticancer drugs. The present study sets out to develop the new selective uPA inhibitors using computer-aided structural based drug design methods. Investigation involves the following stages: computer modeling of the protein active site, development and validation of computer molecular modeling methods: docking (SOL program), postprocessing (DISCORE program), direct generalized docking (FLM program), and the application of the quantum chemical calculations (MOPAC package), search of uPA inhibitors among molecules from databases of ready-made compounds to find new uPA inhibitors, and design of new chemical structures and their optimization and experimental examination. On the basis of known uPA inhibitors and modeling results, 18 new compounds have been designed, calculated using programs mentioned above, synthesized, and tested in vitro. Eight of them display inhibitory activity and two of them display activity about 10 μM.
Collapse
|
13
|
Goswami R, Mukherjee S, Wohlfahrt G, Ghadiyaram C, Nagaraj J, Chandra BR, Sistla RK, Satyam LK, Samiulla DS, Moilanen A, Subramanya HS, Ramachandra M. Discovery of Pyridyl Bis(oxy)dibenzimidamide Derivatives as Selective Matriptase Inhibitors. ACS Med Chem Lett 2013; 4:1152-7. [PMID: 24900621 DOI: 10.1021/ml400213v] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/07/2013] [Indexed: 12/12/2022] Open
Abstract
Matriptase belongs to trypsin-like serine proteases involved in matrix remodeling/degradation, growth regulation, survival, motility, and cell morphogenesis. Herein, we report a structure-based approach, which led to the discovery of sulfonamide and amide derivatives of pyridyl bis(oxy)benzamidine as potent and selective matriptase inhibitors. Co-crystal structures of selected compounds in complex with matriptase supported compound designing. Additionally, WaterMap analyses indicated the possibility of occupying a distinct pocket within the catalytic domain, exploration of which resulted in >100-fold improvement in potency. Co-crystal structure of 10 with matriptase revealed critical interactions leading to potent target inhibition and selectivity against other serine proteases.
Collapse
Affiliation(s)
- Rajeev Goswami
- Aurigene Discovery Technologies Limited, 39-40 KIADB Industrial Area, Electronic
City Phase II, Bangalore 560 100, India
| | - Subhendu Mukherjee
- Aurigene Discovery Technologies Limited, 39-40 KIADB Industrial Area, Electronic
City Phase II, Bangalore 560 100, India
| | - Gerd Wohlfahrt
- Orion Corporation, Orionintie 1, FIN-02101 Espoo, Finland
| | - Chakshusmathi Ghadiyaram
- Aurigene Discovery Technologies Limited, 39-40 KIADB Industrial Area, Electronic
City Phase II, Bangalore 560 100, India
| | - Jwala Nagaraj
- Aurigene Discovery Technologies Limited, 39-40 KIADB Industrial Area, Electronic
City Phase II, Bangalore 560 100, India
| | - Beeram Ravi Chandra
- Aurigene Discovery Technologies Limited, 39-40 KIADB Industrial Area, Electronic
City Phase II, Bangalore 560 100, India
| | - Ramesh K. Sistla
- Aurigene Discovery Technologies Limited, 39-40 KIADB Industrial Area, Electronic
City Phase II, Bangalore 560 100, India
| | - Leena K. Satyam
- Aurigene Discovery Technologies Limited, 39-40 KIADB Industrial Area, Electronic
City Phase II, Bangalore 560 100, India
| | - Dodheri S. Samiulla
- Aurigene Discovery Technologies Limited, 39-40 KIADB Industrial Area, Electronic
City Phase II, Bangalore 560 100, India
| | - Anu Moilanen
- Orion Corporation, Tengströminkatu
8, FIN-20101 Turku, Finland
| | - Hosahalli S. Subramanya
- Aurigene Discovery Technologies Limited, 39-40 KIADB Industrial Area, Electronic
City Phase II, Bangalore 560 100, India
| | - Murali Ramachandra
- Aurigene Discovery Technologies Limited, 39-40 KIADB Industrial Area, Electronic
City Phase II, Bangalore 560 100, India
| |
Collapse
|
14
|
Wong MS, Sidik SM, Mahmud R, Stanslas J. Molecular targets in the discovery and development of novel antimetastatic agents: current progress and future prospects. Clin Exp Pharmacol Physiol 2013; 40:307-19. [PMID: 23534409 DOI: 10.1111/1440-1681.12083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/18/2013] [Accepted: 03/21/2013] [Indexed: 01/08/2023]
Abstract
Tumour invasion and metastasis have been recognized as major causal factors in the morbidity and mortality among cancer patients. Many advances in the knowledge of cancer metastasis have yielded an impressive array of attractive drug targets, including enzymes, receptors and multiple signalling pathways. The present review summarizes the molecular pathogenesis of metastasis and the identification of novel molecular targets used in the discovery of antimetastatic agents. Several promising targets have been highlighted, including receptor tyrosine kinases, effector molecules involved in angiogenesis, matrix metalloproteinases (MMPs), urokinase plasminogen activator, adhesion molecules and their receptors, signalling pathways (e.g. phosphatidylinositol 3-kinase, phospholipase Cγ1, mitogen-activated protein kinases, c-Src kinase, c-Met kinases and heat shock protein. The discovery and development of potential novel therapeutics for each of the targets are also discussed in this review. Among these, the most promising agents that have shown remarkable clinical outcome are anti-angiogenic agents (e.g. bevacizumab). Newer agents, such as c-Met kinase inhibitors, are still undergoing preclinical studies and are yet to have their clinical efficacy proven. Some therapeutics, such as first-generation MMP inhibitors (MMPIs; e.g. marimastat) and more selective versions of them (e.g. prinomastat, tanomastat), have undergone clinical trials. Unfortunately, these drugs produced serious adverse effects that led to the premature termination of their development. In the future, third-generation MMPIs and inhibitors of signalling pathways and adhesion molecules could form valuable novel classes of drugs in the anticancer armamentarium to combat metastasis.
Collapse
Affiliation(s)
- Mei S Wong
- Pharmacotherapeutics Unit, Department of Medicine, University Putra Malaysia, Serdang, Selangor, Malaysia
| | | | | | | |
Collapse
|
15
|
Gamage DG, Hendrickson TL. GPI Transamidase and GPI anchored proteins: Oncogenes and biomarkers for cancer. Crit Rev Biochem Mol Biol 2013; 48:446-64. [DOI: 10.3109/10409238.2013.831024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Froriep D, Clement B, Bittner F, Mendel RR, Reichmann D, Schmalix W, Havemeyer A. Activation of the anti-cancer agent upamostat by the mARC enzyme system. Xenobiotica 2013; 43:780-4. [DOI: 10.3109/00498254.2013.767481] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
Weitz JI, Eikelboom JW, Samama MM. New antithrombotic drugs: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012; 141:e120S-e151S. [PMID: 22315258 DOI: 10.1378/chest.11-2294] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
This article focuses on new antithrombotic drugs that are in or are entering phase 3 clinical testing. Development of these new agents was prompted by the limitations of existing antiplatelet, anticoagulant, or fibrinolytic drugs. Addressing these unmet needs, this article (1) outlines the rationale for development of new antithrombotic agents; (2) describes the new antiplatelet, anticoagulant, and fibrinolytic drugs; and (3) provides clinical perspectives on the opportunities and challenges faced by these novel agents.
Collapse
Affiliation(s)
- Jeffrey I Weitz
- Thrombosis and Atherosclerosis Research Institute and Department of Medicine, McMaster University, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| | - John W Eikelboom
- Thrombosis and Atherosclerosis Research Institute and Department of Medicine, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
18
|
Jakobsche CE, McEnaney PJ, Zhang AX, Spiegel DA. Reprogramming urokinase into an antibody-recruiting anticancer agent. ACS Chem Biol 2012; 7:316-21. [PMID: 22098560 DOI: 10.1021/cb200374e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic compounds for controlling or creating human immunity have the potential to revolutionize disease treatment. Motivated by challenges in this arena, we report herein a strategy to target metastatic cancer cells for immune-mediated destruction by targeting the urokinase-type plasminogen activator receptor (uPAR). Urokinase-type plasminogen activator (uPA) and uPAR are overexpressed on the surfaces of a wide range of invasive cancer cells and are believed to contribute substantially to the migratory propensities of these cells. The key component of our approach is an antibody-recruiting molecule that targets the urokinase receptor (ARM-U). This bifunctional construct is formed by selectively, covalently attaching an antibody-binding small molecule to the active site of the urokinase enzyme. We demonstrate that ARM-U is capable of directing antibodies to the surfaces of target cancer cells and mediating both antibody-dependent cellular phagocytosis (ADCP) and antibody-dependent cellular cytotoxicity (ADCC) against multiple human cancer cell lines. We believe that the reported strategy has the potential to inform novel treatment options for a variety of deadly, invasive cancers.
Collapse
Affiliation(s)
- Charles E. Jakobsche
- Department of Chemistry, Yale University, 225 Prospect Street, P.O. Box 208107, New Haven, Connecticut 06520,
United States
| | - Patrick J. McEnaney
- Department of Chemistry, Yale University, 225 Prospect Street, P.O. Box 208107, New Haven, Connecticut 06520,
United States
| | - Andrew X. Zhang
- Department of Chemistry, Yale University, 225 Prospect Street, P.O. Box 208107, New Haven, Connecticut 06520,
United States
| | - David A. Spiegel
- Department of Chemistry, Yale University, 225 Prospect Street, P.O. Box 208107, New Haven, Connecticut 06520,
United States
| |
Collapse
|
19
|
Tumor necrosis factor alpha modulates the dynamics of the plasminogen-mediated early interaction between Bifidobacterium animalis subsp. lactis and human enterocytes. Appl Environ Microbiol 2012; 78:2465-9. [PMID: 22287006 DOI: 10.1128/aem.07883-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The capacity to intervene with the host plasminogen system has recently been considered an important component in the interaction process between Bifidobacterium animalis subsp. lactis and the human host. However, its significance in the bifidobacterial microecology within the human gastrointestinal tract is still an open question. Here we demonstrate that human plasminogen favors the B. animalis subsp. lactis BI07 adhesion to HT29 cells. Prompting the HT29 cell capacity to activate plasminogen, tumor necrosis factor alpha (TNF-α) modulated the plasminogen-mediated bacterium-enterocyte interaction, reducing the bacterial adhesion to the enterocytes and enhancing migration to the luminal compartment.
Collapse
|
20
|
Tervonen TA, Partanen JI, Saarikoski ST, Myllynen M, Marques E, Paasonen K, Moilanen A, Wohlfahrt G, Kovanen PE, Klefstrom J. Faulty epithelial polarity genes and cancer. Adv Cancer Res 2011; 111:97-161. [PMID: 21704831 DOI: 10.1016/b978-0-12-385524-4.00003-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epithelial architecture is formed in tissues and organs when groups of epithelial cells are organized into polarized structures. The epithelial function and integrity as well as signaling across the epithelial layer is orchestrated by apical junctional complexes (AJCs), which are landmarks for PAR/CRUMBS and lateral SCRIB polarity modules and by dynamic interactions of the cells with underlying basement membrane (BM). These highly organized epithelial architectures are demolished in cancer. In all advanced epithelial cancers, malignant cells have lost polarity and connections to the basement membrane and they have become proliferative, motile, and invasive. Clearly, loss of epithelial integrity associates with tumor progression but does it contribute to tumor development? Evidence from studies in Drosophila and recently also in vertebrate models have suggested that even the oncogene-driven enforced cell proliferation can be conditional, dependant on the influence of cell-cell or cell-microenvironment contacts. Therefore, loss of epithelial integrity may not only be an obligate consequence of unscheduled proliferation of malignant cells but instead, malignant epithelial cells may need to acquire capacity to break free from the constraints of integrity to freely and autonomously proliferate. We discuss how epithelial polarity complexes form and regulate epithelial integrity, highlighting the roles of enzymes Rho GTPases, aPKCs, PI3K, and type II transmembrane serine proteases (TTSPs). We also discuss relevance of these pathways to cancer in light of genetic alterations found in human cancers and review molecular pathways and potential pharmacological strategies to revert or selectively eradicate disorganized tumor epithelium.
Collapse
|
21
|
Ma Y, Wang JG, Wang B, Li ZM. Integrating molecular docking, DFT and CoMFA/CoMSIA approaches for a series of naphthoquinone fused cyclic α-aminophosphonates that act as novel topoisomerase II inhibitors. J Mol Model 2010; 17:1899-909. [PMID: 21107989 DOI: 10.1007/s00894-010-0898-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 11/08/2010] [Indexed: 11/29/2022]
Abstract
Since they are potential topoisomerase II (Topo II) inhibitors, naphthoquinone fused cyclic α-aminophosphonates display anticancer activity. In order to explore the inhibitory mechanisms of these compounds, they were docked into the active site of Topo II structure, which allowed their probable binding modes to be predicted. Some meaningful results concerning their structure-activity relationships were obtained from density functional theory calculations. Models based on quantitative comparative molecular field analysis and comparative molecular similarity index analysis were derived for the steric, electrostatic, hydrophobic and H-bonding features of the compounds. The present study provides valuable results that enhance our understanding of the anticancer activities of these inhibitors and will aid the rational drug design of novel Topo II inhibitors in the future.
Collapse
Affiliation(s)
- Yi Ma
- State-key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | | | | | | |
Collapse
|
22
|
Nowicki TS, Kummer NT, Iacob C, Suslina N, Schaefer S, Schantz S, Shin E, Moscatello AL, Tiwari RK, Geliebter J. Inhibition of uPAR and uPA reduces invasion in papillary thyroid carcinoma cells. Laryngoscope 2010; 120:1383-90. [PMID: 20578104 DOI: 10.1002/lary.20915] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES/HYPOTHESIS We analyzed the expression of urokinase plasminogen activator (uPA) and its receptor (uPAR) in papillary thyroid carcinoma (PTC) and normal thyroid tissue and examined in vitro how uPA and uPAR contribute to an invasive/metastatic phenotype, and the functional consequences of inhibiting this system. STUDY DESIGN Retrospective chart review of PTC patients, followed by prospective study using previously obtained patient tissue and PTC cellular models. METHODS uPA and uPAR RNA and protein levels were analyzed in PTC patient tissue samples, PTC and normal thyroid tissue culture cells, and conditioned media (CM) using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and/or Western blotting. The plasminogen-activating ability of CM was examined using dark-quenched casein fluorimetry and casein-plasminogen gel zymography. The invasive potentials of the PTC and normal thyroid epithelial cell lines were assessed using an in vitro cellular invasion/migration system. RESULTS uPA and uPAR RNA and protein levels were increased in PTC patient samples and PTC cells relative to controls. uPA and uPAR RNA were also significantly higher in patients with metastatic disease. Casein-plasminogen zymography and Western blotting demonstrated increased active uPA secreted by PTC cells compared with normal thyroid cells. Fluorimetric assays revealed that the PTC cells' CM was able to activate plasminogen, resulting in measurable casein hydrolysis. This casein hydrolysis was prevented by the addition of several specific uPA inhibitors. Finally, the in vitro invasion phenotypes of PTC cells were augmented by the addition of plasminogen, and this augmentation was reversed by inhibitory anti-uPA and anti-uPAR antibodies. CONCLUSIONS These data provide new functional evidence of the uPA/uPAR system's role in PTC invasion/metastasis and demonstrate the attractiveness of uPA and uPAR as molecular biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Theodore S Nowicki
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The urokinase receptor (u-PAR) is one of the most critical molecules in migration, invasion, intravasation, and metastasis and is also a key regulator between tumour cell proliferation and dormancy. It is overexpressed in most human solid cancer types, which has led to increasing translational and clinical research on this molecule. The current review discusses in particular the in vivo, translational, and putative clinical relevance of u-PAR in the context of this latest development. It outlines how u-PAR is already being used and might increasingly be applied as a diagnostic tool, for example, in distinguishing benign from malignant neoplasms, as a molecular marker for predicting clinical response to chemotherapy or novel targeted therapy, and finally as a promising tool for the development of novel cancer therapeutics.
Collapse
|
24
|
Zengel P, Ramp D, Mack B, Zahler S, Berghaus A, Muehlenweg B, Gires O, Schmitz S. Multimodal therapy for synergic inhibition of tumour cell invasion and tumour-induced angiogenesis. BMC Cancer 2010; 10:92. [PMID: 20222943 PMCID: PMC2841144 DOI: 10.1186/1471-2407-10-92] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 03/11/2010] [Indexed: 12/21/2022] Open
Abstract
Background Squamous cell carcinoma of the head and neck (SCCHN) are highly invasive tumours with frequent local and distant recurrence. Metastasis formation requires degradation of the extracellular matrix, which is fulfilled by membrane-associated proteases such as the urokinase plasminogen activator (uPA). WX-UK1 is a competitive active site inhibitor of the protease function of uPA that impairs on the capacity of tumour cells to invade in vitro. Methods In the present study, effects of combinations of WX-UK1 with matrix metalloprotease inhibitors (MMP, galardin®) and cyclooxygenase-2 (COX-2, celecoxib®) inhibitors on tumour cell proliferation, invasion, and angiogenesis induction were evaluated. Matrigel invasion chambers and a spheroid co-cultivation model with human fibroblast served to determine the invasive potential of both FaDu (SCCHN) and HeLa (cervical carcinoma) cells, each treated with combinations of Celecoxib®, Galardin®, and WX-UK1. Results Blocking of single protease systems resulted in a significant 50% reduction of tumour cell invasion using WX-UK1, while the triple combination was even more effective with 80% reduction of invasion. Additionally, a sprouting assay with HUVEC was used to test the anti-angiogenetic potential of the triple combination, resulting in a 40% decrease in the sprouting rate. Conclusions A combined approach targeting different families of proteases and cyclooxygenases represents a promising adjuvant therapy.
Collapse
Affiliation(s)
- Pamela Zengel
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University of Munich, Marchioninistr 15, 81377 Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Henneke I, Greschus S, Savai R, Korfei M, Markart P, Mahavadi P, Schermuly RT, Wygrecka M, Stürzebecher J, Seeger W, Günther A, Ruppert C. Inhibition of urokinase activity reduces primary tumor growth and metastasis formation in a murine lung carcinoma model. Am J Respir Crit Care Med 2010; 181:611-9. [PMID: 20056905 DOI: 10.1164/rccm.200903-0342oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Lung cancer is the most common malignancy in humans. Urokinase (uPA) plays a crucial role in carcinogenesis by facilitating tumor cell invasion and metastasis. OBJECTIVES We investigated the effect of the highly specific urokinase inhibitor CJ-463 (benzylsulfonyl-D-Ser-Ser-4-amidinobenzylamide) on tumor growth, metastasis formation, and tumor vascularization in the murine Lewis lung carcinoma (LLC) and a human small lung cancer model. METHODS A quantity of 3 x 10(6) LLC cells were subcutaneously injected into the right flank of C57Bl6/N mice, uPA knock out, and uPA receptor knockout mice. Seven days later mice were randomized to receive intraperitoneally either saline (control group), CJ-463 (10 and 100 mg/kg, twice a day), or its ineffective stereoisomer (10 mg/kg, twice a day). Tumor volume was measured every second day and metastasis formation was monitored by volumetric-computed tomography. Twelve days after onset of treatment mice were killed and tumors were prepared for histologic examination. MEASUREMENTS AND MAIN RESULTS Treatment with CJ-463 resulted in a significant inhibition of primary tumor growth, with the highest efficacy seen in the 100 mg/kg group. In addition, histological analysis of the lung revealed a significant reduction in lung micrometastasis in the 100 mg/kg group. Similarly, a reduced seeding of tumor cells into the lung after intravenous injection of LLC cells was observed in inhibitor-treated mice. In these mice, treatment with CJ-463 appeared not to significantly alter the relative extent of tumor vascularization. In vitro, proliferation of LLC cells remained unchanged upon inhibitor treatment. CJ-463 was found to similarly reduce tumor growth in uPA receptor knockout mice, but was ineffective in uPA knockout mice. CONCLUSIONS Our results suggest that synthetic low-molecular-weight uPA-inhibitors offer as novel agents for treatment of lung cancer.
Collapse
Affiliation(s)
- Ingrid Henneke
- Universty of Giessen Lung Center, Dept. of Internal Medicine, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mekkawy AH, Morris DL, Pourgholami MH. Urokinase plasminogen activator system as a potential target for cancer therapy. Future Oncol 2009; 5:1487-99. [DOI: 10.2217/fon.09.108] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteolysis of extracellular matrix (ECM) and basement membrane is an essential mechanism used by cancer cells for their invasion and metastasis. The ECM proteinases are divided into three groups: metalloproteinases, cysteine proteinases and serine proteinases. The urokinase plasminogen activator (uPA) system is one of the serine proteinase systems involved in ECM degradation. Members of this system, including uPA and its receptor (uPAR), are overexpressed in several malignant tumors. This system plays a major role in adhesion, migration, invasion and metastasis of cancer cells, thus making it an important target for anticancer drug therapy. Several strategies, including the use of antisense oligodeoxynucleotides, ribozymes, DNAzyme, RNAi, uPA inhibitors, soluble uPAR, catalytically inactive uPA fragments, synthetic peptides and synthetic hybrids are under study, as they interfere with the expression and/or activity of uPA or uPAR in tumor cells. Herein, we discuss the various pharmaceutical strategies under investigation to combat the uPA activity in cancer.
Collapse
Affiliation(s)
| | | | - Mohammad H Pourgholami
- Cancer Research Laboratories, University of New South Wales, Department of Surgery, St George Hospital (SESIAHS), Sydney, NSW 2217, Australia
| |
Collapse
|
27
|
Killeen SD, Wang JH, Andrews EJ, Redmond HP. Bacterial endotoxin enhances colorectal cancer cell adhesion and invasion through TLR-4 and NF-kappaB-dependent activation of the urokinase plasminogen activator system. Br J Cancer 2009; 100:1589-602. [PMID: 19436306 PMCID: PMC2696751 DOI: 10.1038/sj.bjc.6604942] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Perioperative exposure to lipopolysaccharide (LPS) is associated with accelerated metastatic colorectal tumour growth. LPS directly affects cells through Toll-like receptor 4 (TLR-4) and the transcription factor NF-κB. The urokinase plasminogen activator (u-PA) system is intimately implicated in tumour cell extracellular matrix (ECM) interactions fundamental to tumour progression. Thus we sought to determine if LPS directly induces accelerated tumour cell ECM adhesion and invasion through activation of the u-PA system and to elucidate the cellular pathways involved. Human colorectal tumour cell lines were stimulated with LPS. u-PA concentration, u-PA activity, active u-PA, surface urokinase plasminogen activator receptor (u-PAR) and TLR-4 expression were assessed by ELISA, colorimetric assay, western blot analysis and flow cytometry respectively. In vitro tumour cell vitronectin adhesion and ECM invasion were analysed by vitronectin adhesion assay and ECM invasion chambers. u-PA and u-PAR function was inhibited with anti u-PA antibodies or the selective u-PA inhibitors amiloride or WXC-340, TLR-4 by TLR-4-blocking antibodies and NF-κB by the selective NF-κB inhibitor SN-50. LPS upregulates u-PA and u-PAR in a dose-dependent manner, enhancing in vitro tumour cell vitronectin adhesion and ECM invasion by >40% (P<0.01). These effects were ameliorated by u-PA and u-PAR inhibition. LPS activates NF-κB through TLR-4. TLR-4 and NF-κB inhibition ameliorated LPS-enhanced u-PA and u-PAR expression, tumour cell vitronectin adhesion and ECM invasion. LPS promotes tumour cell ECM adhesion and invasion through activation of the u-PA system in a TLR-4- and NF-κB-dependent manner.
Collapse
Affiliation(s)
- S D Killeen
- Department of Academic Surgery, Cork University Hospital and University College Cork, Cork, Ireland.
| | | | | | | |
Collapse
|
28
|
Meyer JE, Brocks C, Graefe H, Mala C, Thäns N, Bürgle M, Rempel A, Rotter N, Wollenberg B, Lang S. The Oral Serine Protease Inhibitor WX-671 - First Experience in Patients with Advanced Head and Neck Carcinoma. ACTA ACUST UNITED AC 2008; 3:20-24. [PMID: 20824010 DOI: 10.1159/000151736] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Jens E Meyer
- Department of Otorhinolaryngology and Facial Plastic Surgery, University Hospital Schleswig Holstein - Campus Lübeck, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gupta A, Lotan Y, Ashfaq R, Roehrborn CG, Raj GV, Aragaki CC, Montorsi F, Shariat SF. Predictive value of the differential expression of the urokinase plasminogen activation axis in radical prostatectomy patients. Eur Urol 2008; 55:1124-33. [PMID: 18585843 DOI: 10.1016/j.eururo.2008.06.054] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Accepted: 06/12/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND The urokinase plasminogen axis is composed of urokinase plasminogen activator (uPA), its receptor (uPAR), and its inhibitors (PAI-1 and PAI-2). This axis is involved in cell proliferation, angiogenesis, extracellular matrix degradation, invasion, and metastases. OBJECTIVE To assess the relationship of the uPA axis with pathologic features and outcomes in prostate cancer. DESIGN, SETTING, AND PARTICIPANTS Retrospective study of 230 consecutive patients treated with radical prostatectomy for clinically localized disease. INTERVENTIONS None. MEASUREMENTS Immunohistochemical staining for uPA, uPAR, and PAI-1 were carried out on serial archival tissue microarray specimens. These markers were histologically categorized as normal or overexpressed. Disease recurrence was classified as aggressive if metastases were present, if postrecurrence prostate-specific antigen (PSA) doubling time was <10 mo, or if the patients failed to respond to salvage local radiation therapy. RESULTS AND LIMITATIONS The median follow-up was 63 mo. The combined expression of uPA and PAI-1 was associated with extraprostatic extension (p=0.01) and seminal vesicle invasion (p=0.008). On multivariable analysis, the combined uPA/PAI-1 expression was associated with overall (risk ratio [RR]: 2.3; 95% confidence interval [CI]: 1.1-4.8; p=0.02) and aggressive disease recurrence (RR: 9.4; 95% CI: 3.5-25; p<0.0001) but not with nonaggressive disease recurrence. Expression of uPAR was not associated with any of the outcomes. The study is limited by its retrospective nature and lack of long-term follow-up. CONCLUSIONS Overexpression of both uPA and PAI-1 is associated with adverse pathologic features and higher risk of overall and aggressive disease recurrence in men treated with radical prostatectomy for clinically localized prostate cancer. After validation, these markers may be useful in selecting patients most likely to benefit from adjuvant therapy. These markers should also be considered for addition into postoperative prediction tools.
Collapse
Affiliation(s)
- Amit Gupta
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9110, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang JS, Wang FB, Zhang QG, Shen ZZ, Shao ZM. Enhanced expression of Rab27A gene by breast cancer cells promoting invasiveness and the metastasis potential by secretion of insulin-like growth factor-II. Mol Cancer Res 2008; 6:372-82. [PMID: 18337447 DOI: 10.1158/1541-7786.mcr-07-0162] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In addition to the functions of transporting melanosome in melanocytes and releasing contents of lytic granules in CTLs, Rab27A was recently shown to be involved in exocytosis of insulin and chromaffin granules in endocrine cells; it was also reported to be expressed in an exceptionally broad range of specialized secretory cells. As autocrine and paracrine cytokines are essential for invasion and metastasis in some solid tumors, blocking them may be an effective strategy to prevent tumor dissemination. In the present study, we show that Rab27A is associated with invasive and metastatic potentials of human breast cancer cells. The overexpression of Rab27A protein redistributed the cell cycle and increased the invasive and metastatic abilities in breast cancer cells both in vitro and in vivo. We also certified that Rab27A conferred the invasive and metastatic phenotypes on breast cancer cells by promoting the secretion of insulin-like growth factor-II (IGF-II), which regulates the expression of p16, vascular endothelial growth factor, matrix metalloproteinase-9, cathepsin D, cyclin D1, and urokinase-type plasminogen activator. These data provide functional evidence that Rab27A acts as a novel mediator of invasion and metastasis promotion in human breast cancer cells, at least in part, through regulating the secretion of IGF-II, suggesting that synergistic suppression of Rab27A and IGF-II activities holds a promise for preventing breast cancer invasion and metastasis.
Collapse
Affiliation(s)
- Jin-Song Wang
- Department of Oncology, Breast Cancer Institute, Cancer Hospital, Fudan University, Shanghai 200032, PR China
| | | | | | | | | |
Collapse
|
31
|
Ramer R, Hinz B. Inhibition of cancer cell invasion by cannabinoids via increased expression of tissue inhibitor of matrix metalloproteinases-1. J Natl Cancer Inst 2007; 100:59-69. [PMID: 18159069 DOI: 10.1093/jnci/djm268] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cannabinoids, in addition to having palliative benefits in cancer therapy, have been associated with anticarcinogenic effects. Although the antiproliferative activities of cannabinoids have been intensively investigated, little is known about their effects on tumor invasion. METHODS Matrigel-coated and uncoated Boyden chambers were used to quantify invasiveness and migration, respectively, of human cervical cancer (HeLa) cells that had been treated with cannabinoids (the stable anandamide analog R(+)-methanandamide [MA] and the phytocannabinoid delta9-tetrahydrocannabinol [THC]) in the presence or absence of antagonists of the CB1 or CB2 cannabinoid receptors or of transient receptor potential vanilloid 1 (TRPV1) or inhibitors of p38 or p42/44 mitogen-activated protein kinase (MAPK) pathways. Reverse transcriptase-polymerase chain reaction (RT-PCR) and immunoblotting were used to assess the influence of cannabinoids on the expression of matrix metalloproteinases (MMPs) and endogenous tissue inhibitors of MMPs (TIMPs). The role of TIMP-1 in the anti-invasive action of cannabinoids was analyzed by transfecting HeLa, human cervical carcinoma (C33A), or human lung carcinoma cells (A549) cells with siRNA targeting TIMP-1. All statistical tests were two-sided. RESULTS Without modifying migration, MA and THC caused a time- and concentration-dependent suppression of HeLa cell invasion through Matrigel that was accompanied by increased expression of TIMP-1. At the lowest concentrations tested, MA (0.1 microM) and THC (0.01 microM) led to a decrease in invasion (normalized to that observed with vehicle-treated cells) of 61.5% (95% CI = 38.7% to 84.3%, P < .001) and 68.1% (95% CI = 31.5% to 104.8%, P = .0039), respectively. The stimulation of TIMP-1 expression and suppression of cell invasion were reversed by pretreatment of cells with antagonists to CB1 or CB2 receptors, with inhibitors of MAPKs, or, in the case of MA, with an antagonist to TRPV1. Knockdown of cannabinoid-induced TIMP-1 expression by siRNA led to a reversal of the cannabinoid-elicited decrease in tumor cell invasiveness in HeLa, A549, and C33A cells. CONCLUSION Increased expression of TIMP-1 mediates an anti-invasive effect of cannabinoids. Cannabinoids may therefore offer a therapeutic option in the treatment of highly invasive cancers.
Collapse
Affiliation(s)
- Robert Ramer
- Institute of Toxicology and Pharmacology, University of Rostock, Schillingallee 70, Rostock D-18057, Germany
| | | |
Collapse
|
32
|
Kim B, Koo H, Yang S, Bang S, Jung Y, Kim Y, Kim J, Park J, Moon RT, Song K, Lee I. TC1(C8orf4) correlates with Wnt/beta-catenin target genes and aggressive biological behavior in gastric cancer. Clin Cancer Res 2007; 12:3541-8. [PMID: 16740781 DOI: 10.1158/1078-0432.ccr-05-2440] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE We have recently reported that TC1(C8orf4), a small protein present in vertebrates, functions as a novel regulator of the Wnt/beta-catenin pathway. TC1 up-regulates beta-catenin target genes that are implicated in the aggressive behavior of cancers. Our aim was to investigate the clinical and pathobiological relevance of TC1 in gastric cancer. EXPERIMENTAL DESIGN The expression of TC1 was analyzed using tissue microarray in correlation with clinicopathologic variables and beta-catenin target genes in 299 gastric cancers. The biological effects of TC1 on Matrigel invasiveness and the proliferation of cancer cells were analyzed. TC1 expression was analyzed in gastric cancer cells after serial peritoneal implantation in nude mice. RESULTS TC1 expression was present in 111 carcinomas (37.1%), correlating with tumor stage (P < 0.002), poor differentiation (P < 0.001), lymphatic infiltration (P < 0.005), and lymph node metastasis (P < 0.006). TC1 also correlated with poor survival in diffuse type carcinomas (P < 0.0001), and even in patients with lymph node metastasis (P < 0.0014). TC1 also correlated with the expression of beta-catenin target genes including laminin gamma2, metalloproteinase-7 and metalloproteinase-14, cyclin D1, c-Met, and CD44. TC1 enhanced Matrigel invasiveness and proliferation, supporting its role in the aggressive biological behavior of cancers. The expression of TC1 increased in MKN45 cells after serial peritoneal seeding in nude mice. CONCLUSIONS Our data suggests that TC1 coordinates the up-regulation of Wnt/beta-catenin target genes that are implicated in the aggressive biological behavior of cancers. The strong clinical relevance, even in patients with lymph node metastasis, suggested that TC1 could be a potential therapeutic target of advanced gastric cancers.
Collapse
Affiliation(s)
- Byungsik Kim
- Department of General Surgery, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Stutchbury TK, Al-Ejeh F, Stillfried GE, Croucher DR, Andrews J, Irving D, Links M, Ranson M. Preclinical evaluation of 213Bi-labeled plasminogen activator inhibitor type 2 in an orthotopic murine xenogenic model of human breast carcinoma. Mol Cancer Ther 2007; 6:203-12. [PMID: 17237280 DOI: 10.1158/1535-7163.mct-06-0264] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor-associated urokinase plasminogen activator (uPA) is a critical marker of invasion and metastasis, has strong prognostic relevance, and is thus a potential therapeutic target. Experimental data published to date has established the proof-of-principle of uPA targeting by (213)Bi-labeled plasminogen activator inhibitor type 2 (alpha-PAI-2) in multiple carcinoma models. Here, we present preclinical toxicologic and efficacy assessment of alpha-PAI-2 in mice, using both single and multiple-dose schedules, administered by an i.p. route. We also present novel data showing that human PAI-2 inhibited murine uPA and was specifically endocytosed by murine fibroblast cells. This diminishes potential problems associated with species specificity of the targeting reagent in toxicologic assessments as human alpha-PAI-2 should interact with any uPA-expressing host cells. In this model, single bolus doses up to 36 mCi/kg alpha-PAI-2 did not reach the maximum tolerated dose (MTD). The MTD for a multiple fractionated (once daily for 5 days) administration schedule was determined to lie between 4.8 and 6.0 mCi/kg/d x 5. Comparison of the tumor growth rates and survival using sub-MTD single and multiple-dose schedules in an orthotopic human breast carcinoma xenograft murine model indicated that 4.8 mCi/kg/d x 5 was the most efficacious schedule. In conclusion, we have determined a safe dose and schedule of alpha-PAI-2 administration in mice, thus confirming that it is an efficacious therapeutic modality against tumor growth. This will allow detailed safety evaluation in a second species and for the initiation of human studies.
Collapse
Affiliation(s)
- Tamantha K Stutchbury
- School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Killeen SD, Andrews EJ, Wang JH, Wu T, Schmalix W, Muehlenweg B, Redmond HP. Inhibition of urokinase plasminogen activator with a novel enzyme inhibitor, WXC-340, ameliorates endotoxin and surgery-accelerated growth of murine metastases. Br J Cancer 2007; 96:262-8. [PMID: 17242699 PMCID: PMC2360002 DOI: 10.1038/sj.bjc.6603550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The urokinase plasminogen activator (u-PA) is intimately associated with tumour invasion and metastases. Surgery facilitates accelerated metastatic tumour growth in murine models, a phenomenon related to elevated perioperative bacterial lipopolysaccaride (LPS) and inflammatory cytokine levels. The objectives of the study were to examine the role of u-PA in cytokine-enhanced tumour cell invasion in vitro and surgery-induced accelerated metastatic tumour growth in vivo and to assess the potential benefit of a novel selective u-PA inhibitor WXC-340 in this setting. CT-26 murine colorectal carcinoma cells were stimulated with LPS, tumour necrosis factor alpha (TNF-alpha) and interleukin 6 (IL-6). Cell supernatant u-PA expression and activity were determined using a colorimetric assay and Western blot analysis, respectively. Baseline and cytokine-stimulated in vitro invasion were assessed using ECmatrix invasion chambers. Two established murine models of accelerated metastatic tumour growth were used to investigate the consequences of u-PA inhibition on postoperative metastatic tumour burden. The effect of u-PA inhibition in vitro and in vivo was examined using the novel selective u-PA inhibitor, WXC-340. Proinflammatory cytokine stimulation significantly enhanced in vitro u-PA expression, activity and extracellular matrix invasion by approximately 50% compared to controls (P<0.05). This was abrogated by WXC-340. In vivo WXC-340 almost completely ameliorated both LPS- and surgery-induced, metastatic tumour growth compared to controls (P>0.05). In conclusion, u-PA cascade is actively involved in cytokine-mediated enhanced tumour cell invasion and LPS and surgery-induced metastatic tumour growth. Perioperative u-PA inhibition with WXC-340 may represent a novel therapeutic paradigm.
Collapse
Affiliation(s)
- S D Killeen
- Department of Surgery, Cork University Hospital, Cork, Ireland [2] 2Department of Surgery, University College Cork, Cork, Ireland.
| | | | | | | | | | | | | |
Collapse
|
35
|
Decaestecker C, Debeir O, Van Ham P, Kiss R. Can anti-migratory drugs be screened in vitro? A review of 2D and 3D assays for the quantitative analysis of cell migration. Med Res Rev 2007; 27:149-76. [PMID: 16888756 DOI: 10.1002/med.20078] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The aim of the present review is to detail and analyze the pros and cons of in vitro tests available to quantify the anti-migratory effects of anti-cancer drugs for their eventual use in combating the dispersal of tumor cells, a clinical need which currently remains unsatisfied. We therefore briefly sum up why anti-migratory drugs constitute a promising approach in oncology while at the same time emphasizing that migrating cancer cells are resistant to apoptosis. To analyze the pros and cons of the various in vitro tests under review we also briefly sum up the molecular and cellular stages of cancer cell migration, an approach that enables us to argue both that no single in vitro test is sufficient to characterize the anti-migratory potential of a drug and that standardization is needed for the efficient quantitative analysis of cell locomotion in a 3D environment. Before concluding our review we devote the final two parts (i) to the description of new prototypes which, in the near future, could enter the screening process with a view to identifying novel anti-migratory compounds, and (ii) to the anti-migratory compounds currently developed against cancer, with particular emphasis on how these compounds were selected before entering the clinical trial phase.
Collapse
Affiliation(s)
- Christine Decaestecker
- Laboratory of Toxicology, Institute of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium.
| | | | | | | |
Collapse
|
36
|
Nozaki S, Endo Y, Nakahara H, Yoshizawa K, Ohara T, Yamamoto E. Targeting urokinase-type plasminogen activator and its receptor for cancer therapy. Anticancer Drugs 2006; 17:1109-17. [PMID: 17075310 DOI: 10.1097/01.cad.0000231483.09439.3a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cancer invasion and metastasis are highly complex processes and a serine protease urokinase-type plasminogen activator/urokinase-type plasminogen activator receptor system has been postulated to play a central role in the mediation of cancer progression. Of note, malignant tumor urokinase-type plasminogen activator and urokinase-type plasminogen activator receptor levels have been found to vary considerably, and to be related to patient prognosis. In mouse models, the urokinase-type plasminogen activator/urokinase-type plasminogen activator receptor system has been studied extensively as a target for anticancer therapy using a variety of approaches. In this review, we discuss the advances in the various modalities that have been used to target the urokinase-type plasminogen activator/urokinase-type plasminogen activator receptor system, including protein-based and peptide-based drugs, antisense therapy, and RNA interference technology. In particular, preclinical mouse model studies that used human tumor xenografts are reviewed.
Collapse
Affiliation(s)
- Shinichi Nozaki
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Li DQ, Hou YF, Wu J, Chen Y, Lu JS, Di GH, Ou ZL, Shen ZZ, Ding J, Shao ZM. Gene expression profile analysis of an isogenic tumour metastasis model reveals a functional role for oncogene AF1Q in breast cancer metastasis. Eur J Cancer 2006; 42:3274-86. [PMID: 16979889 DOI: 10.1016/j.ejca.2006.07.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2005] [Revised: 07/04/2006] [Accepted: 07/07/2006] [Indexed: 10/24/2022]
Abstract
To study the molecular mechanisms underlying breast cancer metastasis, gene expression profile analysis was performed on two well-established breast cancer cell lines with high and low metastatic potentials: MDA-MB-435HM and MDA-MB-435LM. The analysis was conducted using cDNA microarrays containing 8000 genes. Of 60 differentially expressed genes, ALL1-fused gene from chromosome 1q (AF1Q), a putative oncogene not described previously in breast cancer, was identified and found to be over-expressed in MDA-MB-435HM cells compared with MDA-MB-435LM cells. The results indicate that AF1Q may play an important role in breast cancer metastasis. To test this hypothesis, we generated an AF1Q high-expression cell line by stable transfection of AF1Q cDNA into MDA-MB-435LM cells. Results showed that over-expression of AF1Q led to a marked increase in the invasive and metastatic potential of MDA-MB-435LM cells in vitro and in vivo, accompanied by the up-regulation of matrix metalloproteinase-2 (MMP-2), MMP-9, transcription factor Ets-1, and RhoC expression in both mRNA and protein levels. Consistent with this observation, reduced AF1Q expression in MDA-MB-435HM cells by small interfering RNA (siRNA) resulted in a significant decrease in the invasive potential of MDA-MB-435HM cells in vitro and in the protein expression of MMP-2, MMP-9, Ets-1, and RhoC, compared with either parental or non-silencing control cells. These data provide functional evidence that oncogene AF1Q may be a novel mediator of metastasis promotion in human breast cancer through regulation of the MMP pathway and RhoC expression.
Collapse
Affiliation(s)
- Da-Qiang Li
- Department of Breast Surgery, Breast Cancer Institute, Cancer Hospital/Cancer Institute, Fudan University, Shanghai, 200032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lang S, Picu A, Hofmann T, Andratschke M, Mack B, Moosmann A, Gires O, Tiwari S, Zeidler R. COX-inhibitors relieve the immunosuppressive effect of tumor cells and improve functions of immune effectors. Int J Immunopathol Pharmacol 2006; 19:409-19. [PMID: 16831307 DOI: 10.1177/039463200601900217] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A common phenomenon in cancer patients is a suppressed cell-mediated immunity, characterized by the inability of immune effector cells to mount efficient anti-tumor responses. Immunosuppressive factors, released by the tumor, contribute to this phenomenon and thus to tolerance. Prostaglandins, catalyzed by the cyclooxygenases (COX-1 and COX-2) from arachidonic acid, are one class of these factors. Since at least one of the COX enzymes is often expressed at high level in human cancers, the enzymes were ascribed a causal role in tumor etiology and progression. Non-steroidal antiinflammatory drugs (NSAIDs) like aspirin, which block COX activity, have demonstrated their antitumor effects in preclinical and clinical trials. Pro-apoptotic and anti-angiogenic effects in tumor cells may account for this activity. In addition, by inhibiting the release of prostaglandins from the tumor and by blocking COX activity in immune effector cells, NSAIDs may also bias the function of immune cells towards a more tumoricidal phenotype. We show here that tumor cells inhibit the physiological function of immune cells, and that NSAIDs restore this function. These data contribute to an understanding of the antineoplastic effect ascribed to NSAIDs and support the prophylactic use of these drugs in high-risk patients.
Collapse
Affiliation(s)
- S Lang
- Dept. of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sieńczyk M, Oleksyszyn J. Inhibition of trypsin and urokinase by Cbz-amino(4-guanidinophenyl)methanephosphonate aromatic ester derivatives: The influence of the ester group on their biological activity. Bioorg Med Chem Lett 2006; 16:2886-90. [PMID: 16546384 DOI: 10.1016/j.bmcl.2006.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/01/2006] [Accepted: 03/02/2006] [Indexed: 10/24/2022]
Abstract
The urokinase plasminogen activator is a trypsin-like serine protease, important in tumor development. Here, we report the synthesis and biochemical evaluation of selective and potent diaryl esters of phosphonic-type inhibitors for urokinase. We have found that the substituted phenyl ester ring has a strong influence on the inhibitory activity of these compounds. This led to the most potent phosphonic inhibitor for uPA synthesized to date.
Collapse
Affiliation(s)
- Marcin Sieńczyk
- Division of Medicinal Chemistry and Microbiology, Faculty of Chemistry, Wrocław University of Technology, Wybrzeze Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | |
Collapse
|
40
|
Hsiao JK, Law B, Weissleder R, Tung CH. In-vivo imaging of tumor associated urokinase-type plasminogen activator activity. JOURNAL OF BIOMEDICAL OPTICS 2006; 11:34013. [PMID: 16822063 DOI: 10.1117/1.2204029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The ability to image tumor associated protease in vivo has biological and clinical implications. In the present study, we describe the development and validation of a urokinase-type plasminogen activator (uPA) sensitive fluorescence imaging probe. The activation of our probe is highly specific to uPA in both enzymatic and cellular-based assays. In two distinct in-vivo tumor models (human colon adenocarcinoma HT-29 and human fibrosarcoma HT-1080), the observed fluorescence changes correlate well with tumor associated uPA activity. The signal intensities of the tumors are about three-fold higher in animals with probe injections. Our results suggest a direct detection method for uPA activity in vivo and the approach can be used for monitoring tumor growth and development.
Collapse
Affiliation(s)
- Jong-Kai Hsiao
- Massachusetts General Hospital, Harvard Medical School, Center for Molecular Imaging Research, Charlestown, 02129, USA
| | | | | | | |
Collapse
|