1
|
Qin Q, Feng M, Zhang K, Mo Z, Liu Y, Ma Y, Liu X. Basigin in cerebrovascular diseases: roles, mechanisms, and therapeutic target potential. Eur J Pharmacol 2024:177232. [PMID: 39734038 DOI: 10.1016/j.ejphar.2024.177232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/24/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Cerebrovascular diseases are major global health issues, responsible for significant morbidity and mortality. Basigin (additionally called CD147 or EMMPRIN) is a glycosylated transmembrane protein that facilitates intercellular communication. Recent research has highlighted the critical role of Basigin in inducing matrix metalloproteinases (MMPs), which contribute to the progression of cerebrovascular diseases. Consequently, Basigin has emerged as a promising therapeutic target for these conditions. However, inhibiting the pivotal role of Basigin in mediating cerebrovascular disease is an urgent area of investigation. In this review, we systematically examine the pathological mechanisms by which Basigin contributes to the development of cerebrovascular diseases. We present evidence demonstrating the protective effect of targeted inhibition of Basigin in these conditions and suggest future research directions.
Collapse
Affiliation(s)
- Qi Qin
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou City, Henan Province, 450000, China
| | - Mengzhao Feng
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou City, Henan Province, 450000, China
| | - Kaiyuan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou City, Henan Province, 450000, China
| | - Zhizhun Mo
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No.1 Fuhua Road, Shenzhen City, Guangdong Province, 518033, China
| | - Yuxiang Liu
- Emergency Department, Shenzhen Traditional Chinese Medicine Hospital, The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No.1 Fuhua Road, Shenzhen City, Guangdong Province, 518033, China
| | - Yinzhong Ma
- Institute of Medicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen City, Guangdong Province, 518055, China.
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou City, Henan Province, 450000, China.
| |
Collapse
|
2
|
Suliman S, Ellaithi M. Immunohistochemical Detection of CD147 Expression in Adenocarcinoma of the Prostate: A Case-Control Study. Prostate Cancer 2024; 2024:4406057. [PMID: 39735939 PMCID: PMC11682863 DOI: 10.1155/proc/4406057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/22/2024] [Indexed: 12/31/2024] Open
Abstract
Prostate cancer is the most common noncutaneous malignancy among men worldwide, including in Sudan, where it represents a significant public health challenge. CD147, a transmembrane glycoprotein implicated in tumor progression, invasion, and metastasis, has shown potential as a prognostic biomarker in various cancers. This retrospective case-control study aimed to evaluate CD147 expression in prostate adenocarcinoma among Sudanese men and its association with tumor grade. A total of 80 paraffin-embedded tissue samples, including 40 cases of prostate adenocarcinoma and 40 benign prostatic hyperplasia (BPH) controls, were analyzed using immunohistochemistry. CD147 expression was observed in 22.5% of adenocarcinoma cases compared to 7% of controls; however, the association was not statistically significant (p=0.07). Low-grade tumors were predominant in the cohort, consistent with early-stage diagnoses. The findings revealed no clear link between CD147 expression and tumor grade, diverging from prior studies that associate CD147 with advanced tumor stages. The nonsignificant results may be attributed to the small sample size, emphasizing the need for future research with larger, more diverse cohorts, advanced molecular techniques, and functional studies to better elucidate the role of CD147 in prostate cancer pathogenesis and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Sara Suliman
- Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, Al-Neelain University, Khartoum, Sudan
| | - Mona Ellaithi
- Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, Al-Neelain University, Khartoum, Sudan
| |
Collapse
|
3
|
Kandav G, Chandel A. Revolutionizing cancer treatment: an in-depth exploration of CAR-T cell therapies. Med Oncol 2024; 41:275. [PMID: 39400611 DOI: 10.1007/s12032-024-02491-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
Cancer is a leading cause of fatality worldwide. Due to the heterogeneity of cancer cells the effectiveness of various conventional cancer treatment techniques is constrained. Thus, researchers are diligently investigating therapeutic approaches like immunotherapy for effective tumor managements. Immunotherapy harnesses the inherent potential of patient's immune system to achieve desired outcomes. Within the realm of immunotherapy, CAR-T (Chimeric Antigen Receptor T) cells, emerges as a revolutionary innovation for cancer therapy. The process of CAR-T cell therapy entails extracting the patient's T cells, altering them with customized receptors designed to specifically recognize and eradicate the tumor cells, and then reinfusing the altered cells into the patient's body. Although there has been significant progress with CAR-T cell therapy in certain cases of specific B-cell leukemia and lymphoma, its effectiveness is hindered in hematological and solid tumors due to the challenges such as severe toxicities, restricted tumor infiltration, cytokine release syndrome and antigen escape. Overcoming these obstacles requires innovative approaches to design more effective CAR-T cells, which require a competent and diverse team to develop and implement. This comprehensive review addresses numerous therapeutic issues and provides a strategic solution while providing a deep understanding of the structural intricacies and production processes of CAR-T cells. In addition, this review explores the practical aspects of CAR-T cell therapy in clinical settings.
Collapse
Affiliation(s)
- Gurpreet Kandav
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Sahibzada Ajit Singh Nagar, Punjab, 140307, India.
| | - Akash Chandel
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Sahibzada Ajit Singh Nagar, Punjab, 140307, India
| |
Collapse
|
4
|
Besli N, Bulut Hİ, Onaran İ, Carmena-Bargueño M, Pérez-Sánchez H. Comparative assessment of different anti-CD147/Basigin 2 antibodies as a potential therapeutic anticancer target by molecular modeling and dynamic simulation. Mol Divers 2024:10.1007/s11030-024-10832-w. [PMID: 38587771 DOI: 10.1007/s11030-024-10832-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024]
Abstract
Cluster of differentiation 147 (CD147) is an attractive target for anticancer therapy since it is pivotal in developing and progressing several of malignant tumors in the context of its high expression levels. Although anti-CD147 antibodies by different laboratories are designed for the Ig-like domains of CD147, there is a demand to provide priority among these anti-CD147 antibodies for developing of therapeutic anti-CD147 antibody before experimental validations. This study uses molecular docking and dynamic simulation techniques to compare the binding modes and affinities of nine antibody models against the Ig-like domains of CD147. After obtaining the model antibodies by homology modeling via Robetta, we predicted the CDRs of nine antibodies and the epitopes of CD147 to reach more accurate results for antigen affinity in molecular docking. Next, from HADDOCK 2.4., we meticulously handpicked the most superior model clusters (Z-Score: - 2.5 to - 1.2) and identified that meplazumab had higher affinities according to the success rate as the percentage of a scoring scale. We achieved stable simulations of CD147-antibody interaction. Our outcomes hold hypothetical importance for further experimental cancer research on the design and development of the relevant model antibodies.
Collapse
Affiliation(s)
- Nail Besli
- Department of Medical Biology, Hamidiye School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Halil İbrahim Bulut
- Faculty of Medicine, Medical Program, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - İlhan Onaran
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Miguel Carmena-Bargueño
- Computer Engineering Department, Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), UCAM Universidad Católica de Murcia, Guadalupe, Spain
| | - Horacio Pérez-Sánchez
- Computer Engineering Department, Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), UCAM Universidad Católica de Murcia, Guadalupe, Spain.
| |
Collapse
|
5
|
Shi MY, Wang Y, Shi Y, Tian R, Chen X, Zhang H, Wang K, Chen Z, Chen R. SETDB1-mediated CD147-K71 di-methylation promotes cell apoptosis in non-small cell lung cancer. Genes Dis 2024; 11:978-992. [PMID: 37692516 PMCID: PMC10491884 DOI: 10.1016/j.gendis.2023.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 09/12/2023] Open
Abstract
Protein post-translational modifications (PTMs) are at the heart status of cellular signaling events and broadly involved in tumor progression. CD147 is a tumor biomarker with various PTMs, promoting tumor metastasis and metabolism reprogramming. Nevertheless, the relationship between the PTMs of CD147 and apoptosis has not been reported. In our study, we produced a specific anti-CD147-K71 di-methylation (CD147-K71me2) antibody by immunizing with a di-methylated peptide and observed that the level of CD147-K71me2 in non-small cell lung cancer (NSCLC) tissues were lower than that in NSCLC adjacent tissues. SETDB1 was identified as the methyltransferase catalyzing CD147 to generate CD147-K71me2. RNA-seq showed that FOSB was the most significant differentially expressed gene (DEG) between wild-type CD147 (CD147-WT) and K71-mutant CD147 (CD147-K71R) groups. Subsequently, we found that CD147-K71me2 promoted the expression of FOSB by enhancing the phosphorylation of p38, leading to tumor cell apoptosis. In vivo experiments showed that CD147-K71me2 significantly inhibited tumor progression by promoting cell apoptosis. Taken together, our findings indicate the inhibitory role of CD147-K71me2 in tumor progression from the perspective of post-translational modification, which is distinct from the pro-cancer function of CD147 itself, broadening our perspective on tumor-associated antigen CD147.
Collapse
Affiliation(s)
| | | | | | - Ruofei Tian
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaohong Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hai Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ke Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhinan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ruo Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
6
|
Talvi S, Jokinen J, Sipilä K, Rappu P, Zhang FP, Poutanen M, Rantakari P, Heino J. Embigin deficiency leads to delayed embryonic lung development and high neonatal mortality in mice. iScience 2024; 27:108914. [PMID: 38318368 PMCID: PMC10839689 DOI: 10.1016/j.isci.2024.108914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/20/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Embigin (Gp70), a receptor for fibronectin and an ancillary protein for monocarboxylate transporters, is known to regulate stem cell niches in sebaceous gland and bone marrow. Here, we show that embigin expression is at high level during early mouse embryogenesis and that embigin is essential for lung development. Markedly increased neonatal mortality of Emb-/- mice can be explained by the compromised lung maturation: in Emb-/- mice (E17.5) the number and the size of the small airways and distal airspace are significantly smaller, there are fewer ATI and ATII cells, and the alkaline phosphatase activity in amniotic fluid is lower. Emb-/- lungs show less peripheral branching already at E12.5, and embigin is highly expressed in lung primordium. Thus, embigin function is essential at early pseudoglandular stage or even earlier. Furthermore, our RNA-seq analysis and Ki67 staining results support the idea that the development of Emb-/- lungs is rather delayed than defected.
Collapse
Affiliation(s)
- Salli Talvi
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
- Medicity Research Laboratory, University of Turku, 20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Johanna Jokinen
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
- Medicity Research Laboratory, University of Turku, 20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Kalle Sipilä
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London WC2R2LS, UK
| | - Pekka Rappu
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Fu-Ping Zhang
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, 20014 Turku, Finland
- Turku Center for Disease Modeling, University of Turku, 20014 Turku, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Matti Poutanen
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, 20014 Turku, Finland
- Turku Center for Disease Modeling, University of Turku, 20014 Turku, Finland
| | - Pia Rantakari
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
- Institute of Biomedicine, University of Turku, 20014 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20014 Turku, Finland
| | - Jyrki Heino
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
- Medicity Research Laboratory, University of Turku, 20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| |
Collapse
|
7
|
Zisis V, Anastasiadou PA, Poulopoulos A, Vahtsevanos K, Paraskevopoulos K, Andreadis D. A Preliminary Study of the Role of Endothelial-Mesenchymal Transitory Factor SOX 2 and CD147 in the Microvascularization of Oral Squamous Cell Carcinoma. Cureus 2024; 16:e52265. [PMID: 38352102 PMCID: PMC10863931 DOI: 10.7759/cureus.52265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2024] [Indexed: 02/16/2024] Open
Abstract
INTRODUCTION The aim of this study was to detect the possible endothelial expression of embryonic-type cancer stem cells (CSC) marker SOX2 and the stemness-type CSC marker CD147 in oral potential malignant disorders (OPMDs), oral leukoplakia (OL) in particular, and oral squamous cell carcinoma (OSCC). METHODS This study focuses on the immunohistochemical pattern of expression of CSC protein-biomarkers SOX2 and CD147 in paraffin-embedded samples of 21 OSCCs of different grades of differentiation and 30 cases of OLs with different grades of dysplasia, compared to normal oral mucosa. RESULTS The protein biomarker SOX2 was expressed in the endothelial cells, but without establishing any statistically significant correlation among OSCC, OL, and normal tissue specimens. However, SOX endothelial staining was noticed in 7/30 (23.3%) cases of OL (one non-dysplastic, one mildly dysplastic, one moderately dysplastic, and four severely dysplastic cases) and 5/21 (23.8%) cases of OSCC (two well-differentiated, one moderately differentiated, and two poorly differentiated cases). Although CD147 is expressed in normal oral epithelium, OL, and OSCC neoplastic cells, its vascular-endothelial expression was noticed in only 2/5 (40%) cases of normal oral epithelium, 1/30 (3.3%) cases of OL (one severely dysplastic case), and 4/21 (19%) cases of OSCC (two well-differentiated, one moderately differentiated, and one poorly differentiated case). Therefore, no statistically significant correlation among OSCC, OL, and normal tissue specimens was established. CONCLUSION The endothelial presence of SOX2 both in oral potentially malignant and malignant lesions suggests that SOX2 may be implicated in the microvascularization process and associated with the degree of dysplasia in OL. The expression of CD147 may be attributed both to local inflammation and tumorigenesis. The implementation of CD147 in larger groups of tissue samples will shed some light on its role in cancer and inflammation. The evidence so far supports the need for more studies, which may support the clinical significance of these novel cancer stem cell biomarkers.
Collapse
Affiliation(s)
- Vasileios Zisis
- Oral Medicine and Pathology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | | | | | - Konstantinos Vahtsevanos
- Oral and Maxillofacial Surgery, Papanikolaou Hospital, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | | | - Dimitrios Andreadis
- Oral Medicine and Pathology, Aristotle University of Thessaloniki, Thessaloniki, GRC
| |
Collapse
|
8
|
Gupta R, Ponangi R, Indresh KG. Role of glycosylation in breast cancer progression and metastasis: implications for miRNA, EMT and multidrug resistance. Glycobiology 2023; 33:545-555. [PMID: 37283470 DOI: 10.1093/glycob/cwad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 04/18/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023] Open
Abstract
Breast cancer (BC) is one of the leading causes of death in women, globally. A variety of biological processes results in metastasis, a poorly understood pathological phenomenon, causing a high relapse rate. Glycosylation, microribonucleic acids (miRNAs) and epithelial to mesenchymal transition (EMT), have been shown to regulate this cascade where tumor cells detach from their primary site, enter the circulatory system and colonize distant sites. Integrated proteomics and glycomics approaches have been developed to probe the molecular mechanism regulating such metastasis. In this review, we describe specific aspects of glycosylation and its interrelation with miRNAs, EMT and multidrug resistance during BC progression and metastasis. We explore various approaches that determine the role of proteomes and glycosylation in BC diagnosis, therapy and drug discovery.
Collapse
Affiliation(s)
- Rohitesh Gupta
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 Telangana, India
| | - Rohan Ponangi
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 Telangana, India
| | - Kuppanur G Indresh
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007 Telangana, India
| |
Collapse
|
9
|
Gu C, Shang A, Liu G, Zhu J, Zhang W, Jin L, Sun Z, Li D. Identification of CD147-positive extracellular vesicles as novel non-invasive biomarkers for the diagnosis and prognosis of colorectal cancer. Clin Chim Acta 2023; 548:117510. [PMID: 37562522 DOI: 10.1016/j.cca.2023.117510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND The mortality rate of colorectal cancer (CRC) can be decreased with effective screening and early diagnosis. Exosomes are released from cancer cells into the bloodstream, and circulating exosomes may serve as novel biomarkers. This study aimed to identify a sensitive and rapid method of exosome collection and measurement using specific antibodies. METHODS ExoCounter, a high-sensitive exosome-counting system, allows the identification of exosomes without enrichment or purification, based on the identification of the transmembrane protein-CD147-on serum exosomes that are associated with CRC. RESULTS Receiver operating characteristic curves between healthy donors and CRC patients were described and assessed by CD147-specific exosomes (exo-CD147), CEA, and CA19-9. And area under curves for exo-CD147, CEA, and CA19-9 were 0.827 (95%CI: 0.764-0.891), 0.630 (95%CI: 0.536-0.724), and 0.659 (95%CI: 0.559-0.759), respectively. Drawing a clinical decision curve of exo-CD147 for the diagnosis of CRC metastases showed that when the threshold probability of exo-CD147 was between 20% and 92%, the net clinical utilization rate was higher than for all patients with or without metastases. A nomogram was constructed using multivariate COX regression analysis to select significant variables such as the high CD147 group (>34 × 105 particles). Calibration curves for 1-, 3-, and 5-year survival rates of CRC patients showed that the actual 1-, 3-, and 5-year survival rates were in excellent agreement with the survival rates predicted by the nomogram. CONCLUSIONS The increased CD147 expression in exosomes could serve as a diagnostic and prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Chenzheng Gu
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, PR China
| | - Anquan Shang
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang & The Oncology Hospital of Lianyungang, Lianyungang, 222006, China
| | - Gege Liu
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, PR China
| | - Jichao Zhu
- Department of Laboratory Medicine, Huzhou Central Hospital, Huzhou, 313099, PR China
| | - Wei Zhang
- Department of Laboratory Medicine, Jiaozuo Fifth People's Hospital, Jiaozuo, 454000, PR China
| | - Limin Jin
- Laboratory Department, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, 314001, PR China.
| | - Zujun Sun
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, PR China.
| | - Dong Li
- Department of Laboratory Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, PR China.
| |
Collapse
|
10
|
Firpo MA, Boucher KM, Bleicher J, Khanderao GD, Rosati A, Poruk KE, Kamal S, Marzullo L, De Marco M, Falco A, Genovese A, Adler JM, De Laurenzi V, Adler DG, Affolter KE, Garrido-Laguna I, Scaife CL, Turco MC, Mulvihill SJ. Multianalyte Serum Biomarker Panel for Early Detection of Pancreatic Adenocarcinoma. JCO Clin Cancer Inform 2023; 7:e2200160. [PMID: 36913644 PMCID: PMC10530881 DOI: 10.1200/cci.22.00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/10/2023] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
PURPOSE We determined whether a large, multianalyte panel of circulating biomarkers can improve detection of early-stage pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS We defined a biologically relevant subspace of blood analytes on the basis of previous identification in premalignant lesions or early-stage PDAC and evaluated each in pilot studies. The 31 analytes that met minimum diagnostic accuracy were measured in serum of 837 subjects (461 healthy, 194 benign pancreatic disease, and 182 early-stage PDAC). We used machine learning to develop classification algorithms using the relationship between subjects on the basis of their changes across the predictors. Model performance was subsequently evaluated in an independent validation data set from 186 additional subjects. RESULTS A classification model was trained on 669 subjects (358 healthy, 159 benign, and 152 early-stage PDAC). Model evaluation on a hold-out test set of 168 subjects (103 healthy, 35 benign, and 30 early-stage PDAC) yielded an area under the receiver operating characteristic curve (AUC) of 0.920 for classification of PDAC from non-PDAC (benign and healthy controls) and an AUC of 0.944 for PDAC versus healthy controls. The algorithm was then validated in 146 subsequent cases presenting with pancreatic disease (73 benign pancreatic disease and 73 early- and late-stage PDAC cases) and 40 healthy control subjects. The validation set yielded an AUC of 0.919 for classification of PDAC from non-PDAC and an AUC of 0.925 for PDAC versus healthy controls. CONCLUSION Individually weak serum biomarkers can be combined into a strong classification algorithm to develop a blood test to identify patients who may benefit from further testing.
Collapse
Affiliation(s)
- Matthew A. Firpo
- Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT
| | - Kenneth M. Boucher
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT
| | - Josh Bleicher
- Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT
| | - Gayatri D. Khanderao
- Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT
| | - Alessandra Rosati
- BIOUNIVERSA s.r.l., Baronissi, Italy
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana” University of Salerno, Baronissi, Italy
| | - Katherine E. Poruk
- Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT
| | - Sama Kamal
- Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT
| | - Liberato Marzullo
- BIOUNIVERSA s.r.l., Baronissi, Italy
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana” University of Salerno, Baronissi, Italy
| | - Margot De Marco
- BIOUNIVERSA s.r.l., Baronissi, Italy
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana” University of Salerno, Baronissi, Italy
| | - Antonia Falco
- BIOUNIVERSA s.r.l., Baronissi, Italy
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana” University of Salerno, Baronissi, Italy
| | - Armando Genovese
- University Hospital “San Giovanni di Dio e Ruggi D'Aragona,” Salerno, Italy
| | - Jessica M. Adler
- Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT
| | - Vincenzo De Laurenzi
- BIOUNIVERSA s.r.l., Baronissi, Italy
- Department of Medicine and Biotechnology, University G d'Annunzio and CeSI-MeT, Chieti, Italy
| | - Douglas G. Adler
- Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT
| | - Kajsa E. Affolter
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT
| | - Ignacio Garrido-Laguna
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT
| | - Courtney L. Scaife
- Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT
| | - M. Caterina Turco
- BIOUNIVERSA s.r.l., Baronissi, Italy
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana” University of Salerno, Baronissi, Italy
| | - Sean J. Mulvihill
- Department of Surgery, School of Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
11
|
Zhang Z, Liu X, Yang X, Jiang Y, Li A, Cong J, Li Y, Xie Q, Xu C, Liu D. Identification of faecal extracellular vesicles as novel biomarkers for the non-invasive diagnosis and prognosis of colorectal cancer. J Extracell Vesicles 2023; 12:e12300. [PMID: 36604402 DOI: 10.1002/jev2.12300] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/22/2022] [Accepted: 12/26/2022] [Indexed: 01/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies that is usually detected late in the clinic. The currently available diagnostic tools for CRC are either invasive or insensitive to early lesions due to the dearth of reliable biomarkers. In this study, we discovered that the extracellular vesicles (EVs) in the faeces of CRC patients can act as a potent biomarker for the non-invasive diagnosis and prognosis of CRC. This finding is based on the identification of two transmembrane proteins-CD147 and A33-on faeces-derived EVs (fEVs) that are intrinsically associated with CRC. The detection results show that the levels of CD147 and A33 on fEVs were upregulated in the CRC patients (n = 48), dramatically distinguishing them from the healthy donors (n = 16). The CD147/A33-enriched EVs offer a clinical sensitivity of 89%, much higher than that (40%) of carcinoembryonic antigen (CEA), a clinically-established serum biomarker for CRC diagnosis. In addition, the analysis of longitudinal faeces samples (n = 29) demonstrated that the CD147/A33-enriched fEVs can be utilized to track the prognosis of CRC. Due to the high compliance of faeces-based detection, the CD147/A33-enriched fEVs could serve as new-generation CRC biomarkers for large-scale, non-invasive CRC screening as well as real-time monitoring of patient outcomes during clinical interventions.
Collapse
Affiliation(s)
- Zhaowei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, China
| | - Xuehui Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, China.,College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiaoqing Yang
- Tianjin Institute of Urology, the 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Ying Jiang
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, China
| | - Ang Li
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, China
| | - Jiying Cong
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, School of Medicine, Nankai University, Tianjin, China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, School of Medicine, Nankai University, Tianjin, China
| | - Qinjian Xie
- Gansu Corps Hospital of CAPF, Lanzhou, China
| | - Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, School of Medicine, Nankai University, Tianjin, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
12
|
Pomlok K, Pata S, Kulaphisit M, Pangnuchar R, Wipasa J, Smith DR, Kasinrerk W, Lithanatudom P. An IgM monoclonal antibody against domain 1 of CD147 induces non-canonical RIPK-independent necroptosis in a cell type specific manner in hepatocellular carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119295. [PMID: 35598753 DOI: 10.1016/j.bbamcr.2022.119295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
CD147/Basigin/EMMPRIN is overexpressed in several cancerous tissues and it has been shown to induce matrix metalloproteinases (MMPs) whose expression is associated with cancer metastasis. Thus, targeting CD147 with monoclonal antibodies (mAbs) potentially has therapeutic applications in cancer immunotherapy. Here, we report the use of anti-CD147 mAbs targeting domain 1 of CD147, namely M6-1D4 (IgM), M6-1F3 (IgM), M6-2F9 (IgM) and M6-1E9 (IgG2a), against several human cancer cell lines. Strikingly, IgM but not IgG mAbs against CD147, especially clone M6-1D4, induced acute cellular swelling, and this phenomenon appeared to be specifically found with hepatocellular carcinoma (HCC) cells. Furthermore, molecular investigation upon treating HepG2 cells with M6-1D4 showed unfolded protein response (UPR) activation, autophagosome accumulation, and cell cycle arrest, but without classic apoptosis related features. More interestingly, prolonged M6-1D4 treatment (24 h) resulted in irreversible oncosis leading to necroptosis. Furthermore, treatment with a mixed lineage kinase domain-like psuedokinase (MLKL) inhibitor and partial knockout of MLKL resulted in reduced sensitivity to necroptosis in M6-1D4-treated HepG2 cells. Surprisingly however, the observed necroptotic signaling axis appeared to be non-canonical as it was independent of receptor-interacting serine/threonine-protein kinase (RIPK) phosphorylation. In addition, no cytotoxic effect on human dermal fibroblast (HDF) was observed after incubation with M6-1D4. Taken together, this study provides clues to target CD147 in HCC using mAbs, as well as sheds new light on a novel strategy to kill cancerous cells by the induction of necroptosis.
Collapse
Affiliation(s)
- Kumpanat Pomlok
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Ph.D.'s Degree Program in Biology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supansa Pata
- Clinical Immunology Branch, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Mattapong Kulaphisit
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Ph.D.'s Degree Program in Biology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rachan Pangnuchar
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraprapa Wipasa
- Center for Molecular and Cell Biology for Infectious Diseases, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Watchara Kasinrerk
- Clinical Immunology Branch, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pathrapol Lithanatudom
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
13
|
Wang Y, Li C, Qi X, Yao Y, Zhang L, Zhang G, Xie L, Wang Q, Zhu W, Guo X. A Comprehensive Prognostic Analysis of Tumor-Related Blood Group Antigens in Pan-Cancers Suggests That SEMA7A as a Novel Biomarker in Kidney Renal Clear Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23158799. [PMID: 35955933 PMCID: PMC9369114 DOI: 10.3390/ijms23158799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Blood group antigen is a class of heritable antigenic substances present on the erythrocyte membrane. However, the role of blood group antigens in cancer prognosis is still largely unclear. In this study, we investigated the expression of 33 blood group antigen genes and their association with the prognosis of 30 types of cancers in 31,870 tumor tissue samples. Our results revealed that blood group antigens are abnormally expressed in a variety of cancers. The high expression of these antigen genes was mainly related to the activation of the epithelial-mesenchymal transition (EMT) pathway. High expression of seven antigen genes, i.e., FUT7, AQP1, P1, C4A, AQP3, KEL and DARC, were significantly associated with good OS (Overall Survival) in six types of cancers, while ten genes, i.e., AQP1, P1, C4A, AQP3, BSG, CD44, CD151, LU, FUT2, and SEMA7A, were associated with poor OS in three types of cancers. Kidney renal clear cell carcinoma (KIRC) is associated with the largest number (14 genes) of prognostic antigen genes, i.e., CD44, CD151, SEMA7A, FUT7, CR1, AQP1, GYPA, FUT3, FUT6, FUT1, SLC14A1, ERMAP, C4A, and B3GALT3. High expression of SEMA7A gene was significantly correlated with a poor prognosis of KIRC in this analysis but has not been reported previously. SEMA7A might be a putative biomarker for poor prognosis in KIRC. In conclusion, our analysis indicates that blood group antigens may play functional important roles in tumorigenesis, progression, and especially prognosis. These results provide data to support prognostic marker development and future clinical management.
Collapse
Affiliation(s)
- Yange Wang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Chenyang Li
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Xinlei Qi
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Yafei Yao
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Lu Zhang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Guosen Zhang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Longxiang Xie
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Qiang Wang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Wan Zhu
- Department of Anesthesia, Stanford University, Stanford, CA 94305, USA
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Correspondence:
| |
Collapse
|
14
|
Metabolic Pathways as a Novel Landscape in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14153799. [PMID: 35954462 PMCID: PMC9367608 DOI: 10.3390/cancers14153799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolism plays a fundamental role in both human physiology and pathology, including pancreatic ductal adenocarcinoma (PDAC) and other tumors. Anabolic and catabolic processes do not only have energetic implications but are tightly associated with other cellular activities, such as DNA duplication, redox reactions, and cell homeostasis. PDAC displays a marked metabolic phenotype and the observed reduction in tumor growth induced by calorie restriction with in vivo models supports the crucial role of metabolism in this cancer type. The aggressiveness of PDAC might, therefore, be reduced by interventions on bioenergetic circuits. In this review, we describe the main metabolic mechanisms involved in PDAC growth and the biological features that may favor its onset and progression within an immunometabolic context. We also discuss the need to bridge the gap between basic research and clinical practice in order to offer alternative therapeutic approaches for PDAC patients in the more immediate future.
Collapse
|
15
|
Alnefaie A, Albogami S, Asiri Y, Ahmad T, Alotaibi SS, Al-Sanea MM, Althobaiti H. Chimeric Antigen Receptor T-Cells: An Overview of Concepts, Applications, Limitations, and Proposed Solutions. Front Bioeng Biotechnol 2022; 10:797440. [PMID: 35814023 PMCID: PMC9256991 DOI: 10.3389/fbioe.2022.797440] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Adaptive immunity, orchestrated by B-cells and T-cells, plays a crucial role in protecting the body from pathogenic invaders and can be used as tools to enhance the body's defense mechanisms against cancer by genetically engineering these immune cells. Several strategies have been identified for cancer treatment and evaluated for their efficacy against other diseases such as autoimmune and infectious diseases. One of the most advanced technologies is chimeric antigen receptor (CAR) T-cell therapy, a pioneering therapy in the oncology field. Successful clinical trials have resulted in the approval of six CAR-T cell products by the Food and Drug Administration for the treatment of hematological malignancies. However, there have been various obstacles that limit the use of CAR T-cell therapy as the first line of defense mechanism against cancer. Various innovative CAR-T cell therapeutic designs have been evaluated in preclinical and clinical trial settings and have demonstrated much potential for development. Such trials testing the suitability of CARs against solid tumors and HIV are showing promising results. In addition, new solutions have been proposed to overcome the limitations of this therapy. This review provides an overview of the current knowledge regarding this novel technology, including CAR T-cell structure, different applications, limitations, and proposed solutions.
Collapse
Affiliation(s)
- Alaa Alnefaie
- Department of Medical Services, King Faisal Medical Complex, Taif, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Yousif Asiri
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Hisham Althobaiti
- Chief of Medical Department, King Faisal Medical Complex (KFMC), Taif, Saudi Arabia
| |
Collapse
|
16
|
Badeti S, Jiang Q, Naghizadeh A, Tseng HC, Bushkin Y, Marras SAE, Nisa A, Tyagi S, Chen F, Romanienko P, Yehia G, Evans D, Lopez-Gonzalez M, Alland D, Russo R, Gause W, Shi L, Liu D. Development of a novel human CD147 knock-in NSG mouse model to test SARS-CoV-2 viral infection. Cell Biosci 2022; 12:88. [PMID: 35690792 PMCID: PMC9187929 DOI: 10.1186/s13578-022-00822-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An animal model that can mimic the SARS-CoV-2 infection in humans is critical to understanding the rapidly evolving SARS-CoV-2 virus and for development of prophylactic and therapeutic strategies to combat emerging mutants. Studies show that the spike proteins of SARS-CoV and SARS-CoV-2 bind to human angiotensin-converting enzyme 2 (hACE2, a well-recognized, functional receptor for SARS-CoV and SARS-CoV-2) to mediate viral entry. Several hACE2 transgenic (hACE2Tg) mouse models are being widely used, which are clearly invaluable. However, the hACE2Tg mouse model cannot fully explain: (1) low expression of ACE2 observed in human lung and heart, but lung or heart failure occurs frequently in severe COVID-19 patients; (2) low expression of ACE2 on immune cells, but lymphocytopenia occurs frequently in COVID-19 patients; and (3) hACE2Tg mice do not mimic the natural course of SARS-CoV-2 infection in humans. Moreover, one of most outstanding features of coronavirus infection is the diversity of receptor usage, which includes the newly proposed human CD147 (hCD147) as a possible co-receptor for SARS-CoV-2 entry. It is still debatable whether CD147 can serve as a functional receptor for SARS-CoV-2 infection or entry. RESULTS Here we successfully generated a hCD147 knock-in mouse model (hCD147KI) in the NOD-scid IL2Rgammanull (NSG) background. In this hCD147KI-NSG mouse model, the hCD147 genetic sequence was placed downstream of the endogenous mouse promoter for mouse CD147 (mCD147), which creates an in vivo model that may better recapitulate physiological expression of hCD147 proteins at the molecular level compared to the existing and well-studied K18-hACE2-B6 (JAX) model. In addition, the hCD147KI-NSG mouse model allows further study of SARS-CoV-2 in the immunodeficiency condition which may assist our understanding of this virus in the context of high-risk populations in immunosuppressed states. Our data show (1) the human CD147 protein is expressed in various organs (including bronchiolar epithelial cells) in hCD147KI-NSG mice by immunohistochemical staining and flow cytometry; (2) hCD147KI-NSG mice are marginally sensitive to SARS-CoV-2 infection compared to WT-NSG littermates characterized by increased viral copies by qRT-PCR and moderate body weight decline compared to baseline; (3) a significant increase in leukocytes in the lungs of hCD147KI-NSG mice, compared to infected WT-NSG mice. CONCLUSIONS hCD147KI-NSG mice are more sensitive to COVID-19 infection compared to WT-NSG mice. The hCD147KI-NSG mouse model can serve as an additional animal model for further interrogation whether CD147 serve as an independent functional receptor or accessory receptor for SARS-CoV-2 entry and immune responses.
Collapse
Affiliation(s)
- Saiaditya Badeti
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Rutgers University, 205 S. Orange Ave., CC-H1218, Newark, NJ, 07103, USA
- School of Graduate Studies, Biomedical and Health Sciences, Rutgers University, Newark, NJ, 07103, USA
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Qingkui Jiang
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Alireza Naghizadeh
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Rutgers University, 205 S. Orange Ave., CC-H1218, Newark, NJ, 07103, USA
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Hsiang-Chi Tseng
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Rutgers University, 205 S. Orange Ave., CC-H1218, Newark, NJ, 07103, USA
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Yuri Bushkin
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Salvatore A E Marras
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Annuurun Nisa
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Sanjay Tyagi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Fei Chen
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Rutgers University, 205 S. Orange Ave., CC-H1218, Newark, NJ, 07103, USA
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Peter Romanienko
- Genome Editing Shared Resources, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Ghassan Yehia
- Genome Editing Shared Resources, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Deborah Evans
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Rutgers University, 205 S. Orange Ave., CC-H1218, Newark, NJ, 07103, USA
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Moises Lopez-Gonzalez
- Regional Bio-Containment Laboratory, Center for COVID-19 Response and Pandemic Preparedness (CCRP2), Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA
| | - David Alland
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Riccardo Russo
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - William Gause
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Rutgers University, 205 S. Orange Ave., CC-H1218, Newark, NJ, 07103, USA
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Lanbo Shi
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA.
| | - Dongfang Liu
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Rutgers University, 205 S. Orange Ave., CC-H1218, Newark, NJ, 07103, USA.
- School of Graduate Studies, Biomedical and Health Sciences, Rutgers University, Newark, NJ, 07103, USA.
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA.
| |
Collapse
|
17
|
Łacina P, Butrym A, Frontkiewicz D, Mazur G, Bogunia-Kubik K. Soluble CD147 (BSG) as a Prognostic Marker in Multiple Myeloma. Curr Issues Mol Biol 2022; 44:350-359. [PMID: 35723405 PMCID: PMC8929000 DOI: 10.3390/cimb44010026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
CD147 (basigin, BSG) is a membrane-bound glycoprotein involved in energy metabolism that plays a role in cancer cell survival. Its soluble form is a promising marker of some diseases, but it is otherwise poorly studied. CD147 is overexpressed in multiple myeloma (MM) and is known to affect MM progression, while its genetic variants are associated with MM survival. In the present study, we aimed to assess serum soluble CD147 (sCD147) expression as a potential marker in MM. We found that sCD147 level was higher in MM patients compared to healthy individuals. It was also higher in patients with more advanced disease (ISS III) compared to both patients with less advanced MM and healthy individuals, while its level was observed to drop after positive response to treatment. Patients with high sCD147 were characterized by worse overall survival. sCD147 level did not directly correlate with bone marrow CD147 mRNA expression. In conclusion, this study suggests that serum sCD147 may be a prognostic marker in MM.
Collapse
Affiliation(s)
- Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland;
- Correspondence: ; Tel.: +48-713-709-960 (ext. 236)
| | - Aleksandra Butrym
- Department of Cancer Prevention and Therapy, Wroclaw Medical University, 50-556 Wrocław, Poland;
| | - Diana Frontkiewicz
- Department of Haematology, Sokołowski Specialist Hospital, 58-309 Wałbrzych, Poland;
| | - Grzegorz Mazur
- Department of Internal, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wrocław, Poland;
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland;
| |
Collapse
|
18
|
Łacina P, Butrym A, Turlej E, Stachowicz-Suhs M, Wietrzyk J, Mazur G, Bogunia-Kubik K. BSG (CD147) Serum Level and Genetic Variants Are Associated with Overall Survival in Acute Myeloid Leukaemia. J Clin Med 2022; 11:jcm11020332. [PMID: 35054026 PMCID: PMC8779396 DOI: 10.3390/jcm11020332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
Basigin (BSG, CD147) is a multifunctional protein involved in cancer cell survival, mostly by controlling lactate transport through its interaction with monocarboxylate transporters (MCTs) such as MCT1. Previous studies have found that single nucleotide polymorphisms (SNPs) in the gene coding for BSG and MCT1, as well as levels of the soluble form of BSG (sBSG), are potential biomarkers in various diseases. The goal of this study was to confirm BSG and MCT1 RNA overexpression in AML cell lines, as well as to analyse soluble BSG levels and selected BSG/MCT1 genetic variants as potential biomarkers in AML patients. We found that BSG and MCT1 were overexpressed in most AML cell lines. Soluble BSG was increased in AML patients compared to healthy controls, and correlated with various clinical parameters. High soluble BSG was associated with worse overall survival, higher bone marrow blast percentage, and higher white blood cell count. BSG SNPs rs4919859 and rs4682, as well as MCT1 SNP rs1049434, were also associated with overall survival of AML patients. In conclusion, this study confirms the importance of BSG/MCT1 in AML, and suggests that soluble BSG and BSG/MCT1 genetic variants may act as potential AML biomarkers.
Collapse
Affiliation(s)
- Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-713-709-960-236
| | - Aleksandra Butrym
- Department of Cancer Prevention and Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Eliza Turlej
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (E.T.); (M.S.-S.); (J.W.)
- Department of Experimental Biology, Wrocław University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Martyna Stachowicz-Suhs
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (E.T.); (M.S.-S.); (J.W.)
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (E.T.); (M.S.-S.); (J.W.)
| | - Grzegorz Mazur
- Department of Internal, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| |
Collapse
|
19
|
Woodward AM, Feeley MN, Rinaldi J, Argüeso P. CRISPR/Cas9 genome editing reveals an essential role for basigin in maintaining a nonkeratinized squamous epithelium in cornea. FASEB Bioadv 2021; 3:897-908. [PMID: 34761172 PMCID: PMC8565198 DOI: 10.1096/fba.2021-00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/30/2022] Open
Abstract
One of the primary functions of nonkeratinized stratified squamous epithelia is to protect underlying tissues against chemical, microbial, and mechanical insult. Basigin is a transmembrane matrix metalloproteinase inducer commonly overexpressed during epithelial wound repair and cancer but whose physiological significance in normal epithelial tissue has not been fully explored. Here we used a CRISPR/Cas9 system to study the effect of basigin loss in a human cornea model of squamous epithelial differentiation. We find that epithelial cell cultures lacking basigin change shape and fail to produce a flattened squamous layer on the apical surface. This process is associated with the abnormal expression of the transcription factor SPDEF and the decreased biosynthesis of MUC16 and involucrin necessary for maintaining apical barrier function and structural integrity, respectively. Expression analysis of genes encoding tight junction proteins identified a role for basigin in promoting physiological expression of occludin and members of the claudin family. Functionally, disruption of basigin expression led to increased epithelial cell permeability as evidenced by the decrease in transepithelial electrical resistance and increase in rose bengal flux. Overall, these results suggest that basigin plays a distinct role in maintaining the normal differentiation of stratified squamous human corneal epithelium and could have potential implications to therapies targeting basigin function.
Collapse
Affiliation(s)
- Ashley M. Woodward
- Schepens Eye Research Institute of Massachusetts Eye and EarDepartment of OphthalmologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Marissa N. Feeley
- Schepens Eye Research Institute of Massachusetts Eye and EarDepartment of OphthalmologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Jamie Rinaldi
- Schepens Eye Research Institute of Massachusetts Eye and EarDepartment of OphthalmologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Pablo Argüeso
- Schepens Eye Research Institute of Massachusetts Eye and EarDepartment of OphthalmologyHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
20
|
CD147 Promotes Tumor Lymphangiogenesis in Melanoma via PROX-1. Cancers (Basel) 2021; 13:cancers13194859. [PMID: 34638342 PMCID: PMC8508014 DOI: 10.3390/cancers13194859] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/19/2023] Open
Abstract
Simple Summary Melanoma is one of the most aggressive skin cancers, characterized by metastasis to the lymph nodes and a high capacity to develop drug resistance. There is a lack of knowledge on the mechanisms contributing to lymphatic vessel formation and metastasis regulation in malignant melanoma. We previously reported the involvement of CD147, a transmembrane glycoprotein overexpressed in melanoma, in the regulation of the tumor microenvironment and angiogenesis. The aim of our study was to further determine how CD147 is involved in lymphangiogenesis regulation. Our results revealed that high CD147 expression is correlated with the number of lymphatic vessels in the human melanoma lymph nodes and that paracrine CD147 upregulates lymphangiogenesis through lymphangiogenic mediators in vitro and in vivo, suggesting that CD147 could be a promising target for melanoma-associated lymphangiogenesis inhibition. Abstract Malignant melanoma is one of the most aggressive skin cancers and is characterized by early lymph node metastasis and the capacity to develop resistance to therapies. Hence, understanding the regulation of lymphangiogenesis through mechanisms contributing to lymphatic vessel formation represents a treatment strategy for metastatic cancer. We have previously shown that CD147, a transmembrane glycoprotein overexpressed in melanoma, regulates the angiogenic process in endothelial cells. In this study, we show a correlation between high CD147 expression levels and the number of lymphatic vessels expressing LYVE-1, Podoplanin, and VEGFR-3 in human melanoma lymph nodes. CD147 upregulates in vitro lymphangiogenesis and its related mediators through the PROX-1 transcription factor. In vivo studies in a melanoma model confirmed that CD147 is involved in metastasis through a similar mechanism as in vitro. This study, demonstrating the paracrine role of CD147 in the lymphangiogenesis process, suggests that CD147 could be a promising target for the inhibition of melanoma-associated lymphangiogenesis.
Collapse
|
21
|
Montella L, Sarno F, Altucci L, Cioffi V, Sigona L, Di Colandrea S, De Simone S, Marinelli A, Facchini BA, De Vita F, Berretta M, de Falco R, Facchini G. A Root in Synapsis and the Other One in the Gut Microbiome-Brain Axis: Are the Two Poles of Ketogenic Diet Enough to Challenge Glioblastoma? Front Nutr 2021; 8:703392. [PMID: 34422883 PMCID: PMC8378133 DOI: 10.3389/fnut.2021.703392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/29/2021] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma is the most frequent and aggressive brain cancer in adults. While precision medicine in oncology has produced remarkable progress in several malignancies, treatment of glioblastoma has still limited available options and a dismal prognosis. After first-line treatment with surgery followed by radiochemotherapy based on the 2005 STUPP trial, no significant therapeutic advancements have been registered. While waiting that genomic characterization moves from a prognostic/predictive value into therapeutic applications, practical and easy-to-use approaches are eagerly awaited. Medical reports on the role of the ketogenic diet in adult neurological disorders and in glioblastoma suggest that nutritional interventions may condition outcomes and be associated with standard therapies. The acceptable macronutrient distribution of daily calories in a regular diet are 45-65% of daily calories from carbohydrates, 20-35% from fats, and 10-35% from protein. Basically, the ketogenic diet follows an approach based on low carbohydrates/high fat intake. In carbohydrates starvation, body energy derives from fat storage which is used to produce ketones and act as glucose surrogates. The ketogenic diet has several effects: metabolic interference with glucose and insulin and IGF-1 pathways, influence on neurotransmission, reduction of oxidative stress and inflammation, direct effect on gene expression through epigenetic mechanisms. Apart from these central effects working at the synapsis level, recent evidence also suggests a role for microbiome and gut-brain axis induced by a ketogenic diet. This review focuses on rationales supporting the ketogenic diet and clinical studies will be reported, looking at future possible perspectives.
Collapse
Affiliation(s)
- Liliana Montella
- Medical Oncology Complex Unit, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, Naples, Italy
| | - Federica Sarno
- Precision Medicine Department, “Luigi Vanvitelli” University of Campania, Naples, Italy
| | - Lucia Altucci
- Precision Medicine Department, “Luigi Vanvitelli” University of Campania, Naples, Italy
| | - Valentina Cioffi
- Neurosurgery Operative Complex Unit, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, Naples, Italy
| | - Luigi Sigona
- Neurosurgery Operative Complex Unit, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, Naples, Italy
| | - Salvatore Di Colandrea
- Department of Emergency and Critical Care, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, Naples, Italy
| | - Stefano De Simone
- Medical Oncology Complex Unit, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, Naples, Italy
| | - Alfredo Marinelli
- Operative Unit Neuroncology University Federico II, Naples, Italy
- Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Neuromed Istituto Neurologico Mediterraneo (INM), Isernia, Italy
| | - Bianca Arianna Facchini
- Division of Medical Oncology, Precision Medicine Department, “Luigi Vanvitelli” University of Campania, Naples, Italy
| | - Ferdinando De Vita
- Division of Medical Oncology, Precision Medicine Department, “Luigi Vanvitelli” University of Campania, Naples, Italy
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Raffaele de Falco
- Neurosurgery Operative Complex Unit, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, Naples, Italy
| | - Gaetano Facchini
- Medical Oncology Complex Unit, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, Naples, Italy
| |
Collapse
|
22
|
Maggs L, Cattaneo G, Dal AE, Moghaddam AS, Ferrone S. CAR T Cell-Based Immunotherapy for the Treatment of Glioblastoma. Front Neurosci 2021; 15:662064. [PMID: 34113233 PMCID: PMC8185049 DOI: 10.3389/fnins.2021.662064] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain tumor in adults. Current treatment options typically consist of surgery followed by chemotherapy or more frequently radiotherapy, however, median patient survival remains at just over 1 year. Therefore, the need for novel curative therapies for GBM is vital. Characterization of GBM cells has contributed to identify several molecules as targets for immunotherapy-based treatments such as EGFR/EGFRvIII, IL13Rα2, B7-H3, and CSPG4. Cytotoxic T lymphocytes collected from a patient can be genetically modified to express a chimeric antigen receptor (CAR) specific for an identified tumor antigen (TA). These CAR T cells can then be re-administered to the patient to identify and eliminate cancer cells. The impressive clinical responses to TA-specific CAR T cell-based therapies in patients with hematological malignancies have generated a lot of interest in the application of this strategy with solid tumors including GBM. Several clinical trials are evaluating TA-specific CAR T cells to treat GBM. Unfortunately, the efficacy of CAR T cells against solid tumors has been limited due to several factors. These include the immunosuppressive tumor microenvironment, inadequate trafficking and infiltration of CAR T cells and their lack of persistence and activity. In particular, GBM has specific limitations to overcome including acquired resistance to therapy, limited diffusion across the blood brain barrier and risks of central nervous system toxicity. Here we review current CAR T cell-based approaches for the treatment of GBM and summarize the mechanisms being explored in pre-clinical, as well as clinical studies to improve their anti-tumor activity.
Collapse
Affiliation(s)
- Luke Maggs
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | | | | | | | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
23
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
24
|
Discovery and Biological Evaluation of CD147 N-Glycan Inhibitors: A New Direction in the Treatment of Tumor Metastasis. Molecules 2020; 26:molecules26010033. [PMID: 33374805 PMCID: PMC7794696 DOI: 10.3390/molecules26010033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022] Open
Abstract
N-glycosylation is instrumental to the regulation of CD147 functions, including the maturation of CD147, secretion of matrix metalloproteinases (MMPs), and promotion of tumor metastasis. Glycosylated CD147 is highly expressed in various cancer types, participates in metastasis, and is associated with the poor prognosis of malignant tumors. However, to date, there has been little development of target-specific inhibitors for CD147 glycosylation. In this work, we report a strategy for discovering CD147 glycosylation inhibitors through computer-aided screening and inhibition assays. Four compounds were screened as potential CD147 glycosylation inhibitors. Of these, compound 72 was finally identified as the best candidate. Further experiments confirmed that compound 72 inhibited the production of MMPs and the metastasis of cancer cells in the Hela cell line. Results further suggest that compound 72 could promote the expression of E-cadherin by targeting CD147, thereby inhibiting tumor migration. Finally, the structures of the other potential CD147 N-glycosylation inhibitors may eventually provide guidance for future optimization.
Collapse
|
25
|
Mezi S, Pomati G, Botticelli A, De Felice F, Musio D, della Monaca M, Amirhassankhani S, Vullo F, Cerbelli B, Carletti R, Di Gioia C, Catalano C, Valentini V, Tombolini V, Della Rocca C, Marchetti P. Primary squamous cell carcinoma of major salivary gland: "Sapienza Head and Neck Unit" clinical recommendations. Rare Tumors 2020; 12:2036361320973526. [PMID: 33282162 PMCID: PMC7691911 DOI: 10.1177/2036361320973526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/23/2020] [Indexed: 12/03/2022] Open
Abstract
Primary squamous cell carcinoma of salivary gland (SCG) is an extremely rare type of malignant salivary gland tumor, which in turn results in scarcity of data available regarding both its treatment and associated genetic alterations. A retrospective analysis of 12 patients with primary SCG was conducted, along with analysis of the association between treatment, clinical/pathological characteristics, and outcomes. Most patients (8) were staged IVa, with the majority of them (10) having G3 fast growing cancer. Local and systemic recurrence were reported in only three out of nine parotid cases (0 out of 2 submandibular SCGs). In two out of eight patients local relapse occurred after integrated treatment, while recurrence occurred in two out of three patients undergoing exclusive surgery. Five patients eventually died. Treatment of resectable disease must be aggressive and multimodal, with achievement of loco-regional control in order to reduce rate of recurrence and improve outcomes. Metastatic disease would require a therapeutic strategy tailored to the molecular profile in order to improve the currently disappointing results.
Collapse
Affiliation(s)
- Silvia Mezi
- Department of Radiological, Oncological
and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Giulia Pomati
- Department of Radiological, Oncological
and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Andrea Botticelli
- Department of Clinical and Molecular
Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Francesca De Felice
- Department of Radiological, Oncological
and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Daniela Musio
- Department of Radiological, Oncological
and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Marco della Monaca
- Department of Odontostomatological and
Maxillo-Facial Science “Sapienza” University of Rome, Rome, Italy
| | | | - Francesco Vullo
- Department of Radiological, Oncological
and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Bruna Cerbelli
- Department of Radiological, Oncological
and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Raffaella Carletti
- Department of Radiological, Oncological
and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Cira Di Gioia
- Department of Radiological, Oncological
and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Carlo Catalano
- Department of Radiological, Oncological
and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Valentino Valentini
- Department of Odontostomatological and
Maxillo-Facial Science “Sapienza” University of Rome, Rome, Italy
| | - Vincenzo Tombolini
- Department of Radiological, Oncological
and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Carlo Della Rocca
- Department of Medical-Surgical Sciences
and Biotechnologies, “Sapienza” University of Rome, Latina, Italy
| | - Paolo Marchetti
- Department of Clinical and Molecular
Medicine, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
26
|
Chen Y, Luan J, Jiang T, Cai D, Sun C, Wang X, Zhao X, Gou X. Knockdown of EMMPRIN (OX47) in MRMT-1 Carcinoma Cells Inhibits Tumor Growth and Decreases Cancer-Induced Bone Destruction and Pain. Cancer Res Treat 2020; 53:576-583. [PMID: 33138345 PMCID: PMC8053874 DOI: 10.4143/crt.2020.801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/20/2020] [Indexed: 11/29/2022] Open
Abstract
Purpose Bone destruction and pain caused by cancer is one of the most devastating complications of cancer patients with bone metastases, and it seriously affects the quality of patients’ life. Extracellular matrix metalloproteinase inducer (EMMPRIN) is a cell adhesion molecule with increased expression in a variety of tumors. This study focused to clarify the specific function of EMMPRIN in bone metastasis of breast cancer. Materials and Methods Adenovirus with shRNA-EMMPRIN was transfected into MRMT-1 rat breast carcinoma cells, and the MRMT-1 cells with different expression levels of EMMPRIN were implanted into the bone marrow cavity of rat tibia. Next, the effect of down-regulation of EMMPRIN was evaluated as follows: bone damage was detected by X-ray radiological and tartrate-resistant acid phosphatase staining; the tumor burden was evaluated by hematoxylin and eosin staining; the test of pain-related behaviors was assessed used the bilateral paw withdrawal mechanical threshold; and the levels of secretory factors in tumor conditioned medium were determined by using enzyme-linked immunosorbent assay. Results We found that down-regulation of EMMPRIN in tumor cells can simultaneously reduce tumor burden, relieve cancer-induced bone destruction and pain. Conclusion EMMPRIN is expected to be a therapeutic target for relieving bone metastasis of breast cancer and alleviating cancer-induced bone destruction and pain. The method of targeting EMMPRIN may be a promising strategy for the treatment of cancer in the future.
Collapse
Affiliation(s)
- Yanke Chen
- Department of Cell Biology and Genetics and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, China
| | - Jing Luan
- Shaanxi Key Laboratory of Brain Disorders and Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Ting Jiang
- Department of Cell Biology and Genetics and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, China
| | - Donghui Cai
- Department of Cell Biology and Genetics and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, China
| | - Chao Sun
- Department of Obstetrics, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xiaofei Wang
- Department of Cell Biology and Genetics and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoge Zhao
- Department of Cell Biology and Genetics and Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders and Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| |
Collapse
|
27
|
Gromisch C, Qadan M, Machado MA, Liu K, Colson Y, Grinstaff MW. Pancreatic Adenocarcinoma: Unconventional Approaches for an Unconventional Disease. Cancer Res 2020; 80:3179-3192. [PMID: 32220831 PMCID: PMC7755309 DOI: 10.1158/0008-5472.can-19-2731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 02/08/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022]
Abstract
This review highlights current treatments, limitations, and pitfalls in the management of pancreatic cancer and discusses current research in novel targets and drug development to overcome these clinical challenges. We begin with a review of the clinical landscape of pancreatic cancer, including genetic and environmental risk factors, as well as limitations in disease diagnosis and prevention. We next discuss current treatment paradigms for pancreatic cancer and the shortcomings of targeted therapy in this disease. Targeting major driver mutations in pancreatic cancer, such as dysregulation in the KRAS and TGFβ signaling pathways, have failed to improve survival outcomes compared with nontargeted chemotherapy; thus, we describe new advances in therapy such as Ras-binding pocket inhibitors. We then review next-generation approaches in nanomedicine and drug delivery, focusing on preclinical advancements in novel optical probes, antibodies, small-molecule agents, and nucleic acids to improve surgical outcomes in resectable disease, augment current therapies, expand druggable targets, and minimize morbidity. We conclude by summarizing progress in current research, identifying areas for future exploration in drug development and nanotechnology, and discussing future prospects for management of this disease.
Collapse
Affiliation(s)
- Christopher Gromisch
- Departments of Pharmacology and Experimental Therapeutics, Biomedical Engineering, and Chemistry, Boston University, Boston, Massachusetts
| | - Motaz Qadan
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Mariana Albuquerque Machado
- Departments of Pharmacology and Experimental Therapeutics, Biomedical Engineering, and Chemistry, Boston University, Boston, Massachusetts
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology and Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
| | - Yolonda Colson
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Mark W Grinstaff
- Departments of Pharmacology and Experimental Therapeutics, Biomedical Engineering, and Chemistry, Boston University, Boston, Massachusetts.
| |
Collapse
|
28
|
Menck K, Sivaloganathan S, Bleckmann A, Binder C. Microvesicles in Cancer: Small Size, Large Potential. Int J Mol Sci 2020; 21:E5373. [PMID: 32731639 PMCID: PMC7432491 DOI: 10.3390/ijms21155373] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EV) are secreted by all cell types in a tumor and its microenvironment (TME), playing an essential role in intercellular communication and the establishment of a TME favorable for tumor invasion and metastasis. They encompass a variety of vesicle populations, among them the well-known endosomal-derived small exosomes (Exo), but also larger vesicles (diameter > 100 nm) that are shed directly from the plasma membrane, the so-called microvesicles (MV). Increasing evidence suggests that MV, although biologically different, share the tumor-promoting features of Exo in the TME. Due to their larger size, they can be readily harvested from patients' blood and characterized by routine methods such as conventional flow cytometry, exploiting the plethora of molecules expressed on their surface. In this review, we summarize the current knowledge about the biology and the composition of MV, as well as their role within the TME. We highlight not only the challenges and potential of MV as novel biomarkers for cancer, but also discuss their possible use for therapeutic intervention.
Collapse
Affiliation(s)
- Kerstin Menck
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.S.); (A.B.)
| | - Suganja Sivaloganathan
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.S.); (A.B.)
| | - Annalen Bleckmann
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.S.); (A.B.)
- Department of Hematology/Medical Oncology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Claudia Binder
- Department of Hematology/Medical Oncology, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
29
|
Bonzano C, Borroni D, Lancia A, Bonzano E. Doxycycline: From Ocular Rosacea to COVID-19 Anosmia. New Insight Into the Coronavirus Outbreak. Front Med (Lausanne) 2020; 7:200. [PMID: 32574320 PMCID: PMC7225523 DOI: 10.3389/fmed.2020.00200] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Chiara Bonzano
- Eye Clinic, DiNOGMI, University of Genoa and IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Davide Borroni
- Cornea Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - Andrea Lancia
- Department of Radiation Oncology, IRCCS San Matteo Polyclinic Foundation, Pavia, Italy
| | - Elisabetta Bonzano
- Department of Radiation Oncology, IRCCS San Matteo Polyclinic Foundation, Pavia, Italy.,PhD School in Experimental Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
30
|
Zhang Y, Liu J, Sun Y, Yu X, Wang J, Dai D, Zhu Y, Song X, Zhu L, Li X, Xu W. Enhanced glucose metabolism mediated by CD147 is associated with 18 F-FDG PET/CT imaging in lung adenocarcinoma. Thorac Cancer 2020; 11:1245-1257. [PMID: 32162491 PMCID: PMC7180588 DOI: 10.1111/1759-7714.13383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is one of the most deadly thoracic tumors. Reprogrammed glycolytic metabolism is a hallmark of cancer cells and significantly affects several cellular functions. In the current study, we aimed to investigate cluster of differentiation 147 (CD147)‐mediated glucose metabolic regulation in LUAD and its association with 18F‐FDG PET/CT imaging. Methods The expression profile and prognostic potential of CD147 in LUAD were analyzed using UALCAN and a Kaplan‐Meier plotter. Tissue immunohistochemical analyses and PET metabolic parameters were used to identify the relationship between CD147 expression and reprogrammed glycolysis. The role of CD147 in glucose metabolic reprogramming was assessed by radioactive uptake of 18F‐FDG through γ‐radioimmunoassays in vitro and micro‐PET/CT imaging in vivo. Western blotting assays were used to determine the expression level of monocarboxylate transporter 1 (MCT1) and MCT4 in established human LUAD cell lines (ie, HCC827 and H1975) with different CD147 expression levels via lentiviral transduction. Results CD147 was highly expressed in LUAD. A significant positive correlation existed between CD147 expression and PET metabolic parameters(SUVmax,SUVmean, SUVpeak). CD147 could promote radioactive uptake of 18F‐FDG in vitro and in vivo, suggesting the ability of CD147 to enhance glycolytic metabolism. Furthermore, as an obligate chaperone for MCT1 and MCT4, CD147 positively correlated with MCT1 and MCT4 expression in LUAD tissues and established cell lines with different CD147 expression. Conclusions Our study revealed that CD147 is a promising novel target for LUAD treatment and CD147‐mediated glucose metabolism demonstrated its contribution to the predictive role of 18F‐FDG PET/CT imaging for targeted therapeutic efficacy.
Collapse
Affiliation(s)
- Yufan Zhang
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jianjing Liu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yunchuan Sun
- Department of Nuclear Medicine, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Xiaozhou Yu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jian Wang
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Dong Dai
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yanjia Zhu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiuyu Song
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lei Zhu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
31
|
Hull A, Li Y, Bartholomeusz D, Hsieh W, Allen B, Bezak E. Radioimmunotherapy of Pancreatic Ductal Adenocarcinoma: A Review of the Current Status of Literature. Cancers (Basel) 2020; 12:E481. [PMID: 32092952 PMCID: PMC7072553 DOI: 10.3390/cancers12020481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has long been associated with low survival rates. A lack of accurate diagnostic tests and limited treatment options contribute to the poor prognosis of PDAC. Radioimmunotherapy using α- or β-emitting radionuclides has been identified as a potential treatment for PDAC. By harnessing the cytotoxicity of α or β particles, radioimmunotherapy may overcome the anatomic and physiological factors which traditionally make PDAC resistant to most conventional treatments. Appropriate selection of target receptors and the development of selective and cytotoxic radioimmunoconjugates are needed to achieve the desired results of radioimmunotherapy. The aim of this review is to examine the growing preclinical and clinical trial evidence regarding the application of α and β radioimmunotherapy for the treatment of PDAC. A systematic search of MEDLINE® and Scopus databases was performed to identify 34 relevant studies conducted on α or β radioimmunotherapy of PDAC. Preclinical results demonstrated α and β radioimmunotherapy provided effective tumour control. Clinical studies were limited to investigating β radioimmunotherapy only. Phase I and II trials observed disease control rates of 11.2%-57.9%, with synergistic effects noted for combination therapies. Further developments and optimisation of treatment regimens are needed to improve the clinical relevance of α and β radioimmunotherapy in PDAC.
Collapse
Affiliation(s)
- Ashleigh Hull
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (Y.L.); (W.H.); (E.B.)
| | - Yanrui Li
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (Y.L.); (W.H.); (E.B.)
| | - Dylan Bartholomeusz
- Department of PET, Nuclear Medicine & Bone Densitometry, Royal Adelaide Hospital, SA Medical Imaging, Adelaide, SA 5000, Australia;
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - William Hsieh
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (Y.L.); (W.H.); (E.B.)
- Department of PET, Nuclear Medicine & Bone Densitometry, Royal Adelaide Hospital, SA Medical Imaging, Adelaide, SA 5000, Australia;
| | - Barry Allen
- Faculty of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia;
| | - Eva Bezak
- Cancer Research Institute and School of Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (Y.L.); (W.H.); (E.B.)
- Department of Physics, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
32
|
Colangelo NW, Azzam EI. Extracellular vesicles originating from glioblastoma cells increase metalloproteinase release by astrocytes: the role of CD147 (EMMPRIN) and ionizing radiation. Cell Commun Signal 2020; 18:21. [PMID: 32033611 PMCID: PMC7006136 DOI: 10.1186/s12964-019-0494-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme is an aggressive primary brain tumor that is characterized by local invasive growth and resistance to therapy. The role of the microenvironment in glioblastoma invasiveness remains unclear. While carcinomas release CD147, a protein that signals for increased matrix metalloproteinase (MMP) release by fibroblasts, glioblastoma does not have a significant fibroblast component. We hypothesized that astrocytes release MMPs in response to CD147 contained in glioblastoma-derived extracellular vesicles (EVs) and that ionizing radiation, part of the standard treatment for glioblastoma, enhances this release. METHODS Astrocytes were incubated with EVs released by irradiated or non-irradiated human glioblastoma cells wild-type, knockdown, or knockout for CD147. Levels of CD147 in glioblastoma EVs and MMPs secreted by astrocytes were quantified. Levels of proteins in the mitogen activated protein kinase (MAPK) pathway, which can be regulated by CD147, were measured in astrocytes incubated with EVs from glioblastoma cells wild-type or knockdown for CD147. Immunofluorescence was performed on the glioblastoma cells to identify changes in CD147 localization in response to irradiation, and to confirm uptake of the EVs by astrocytes. RESULTS Immunoblotting and mass spectrometry analyses showed that CD147 levels in EVs were transiently increased when the EVs were from glioblastoma cells that were irradiated with γ rays. Specifically, the highly-glycosylated 45 kDa form of CD147 was preferentially present in the EVs relative to the cells themselves. Immunofluorescence demonstrated that astrocytes incorporate glioblastoma EVs and subsequently increase their secretion of active MMP9. The increase was greater if the EVs were from irradiated glioblastoma cells. Testing MAPK pathway activation, which also regulates MMP expression, showed that JNK signaling, but not ERK1/2 or p38, was increased in astrocytes incubated with EVs from irradiated compared to non-irradiated glioblastoma cells. Knockout of CD147 in glioblastoma cells blocked the increased JNK signaling and the rise in secreted active MMP9 levels. CONCLUSIONS The results support a tumor microenvironment-mediated role of CD147 in glioblastoma invasiveness, and reveal a prominent role for ionizing radiation in enhancing the effect. They provide an improved understanding of glioblastoma intercellular signaling in the context of radiotherapy, and identify pathways that can be targeted to reduce tumor invasiveness. Video abstract.
Collapse
Affiliation(s)
- Nicholas W. Colangelo
- Rutgers Biomedical and Health Sciences, New Jersey Medical School, Department of Radiology, 205 South Orange Avenue - Room, Newark, NJ 07103 USA
| | - Edouard I. Azzam
- Rutgers Biomedical and Health Sciences, New Jersey Medical School, Department of Radiology, 205 South Orange Avenue - Room, Newark, NJ 07103 USA
| |
Collapse
|
33
|
Guo F, Li X, Yao G, Zeng G, Yu L. Correlation between 18F-FDG maximum standardized uptake value with CD147 expression in lung adenocarcinomas: a retrospective study. PeerJ 2019; 7:e7635. [PMID: 31565568 PMCID: PMC6741284 DOI: 10.7717/peerj.7635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 08/06/2019] [Indexed: 11/20/2022] Open
Abstract
Background The pro-tumoral action of the cluster of differentiation 147 (CD147), which is associated with the chemotherapy resistance of lung adenocarcinoma, is partly due to accelerated tumor cell glycolysis. 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) metabolic parameters included maximal standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), metabolic tumor volume (MTV), and total lesion glycolysis (TLG), which are non-invasive markers of the glucose metabolism of tumor cells in vivo. This study aimed to clarify the correlation between PET metabolic parameters and CD147 expression, and to evaluate the prognostic value of CD147 expression in resectable lung adenocarcinoma patients. Methods A total of 89 lung adenocarcinoma chemotherapy-naive patients who underwent 18F-fluorodeoxyglucose positron emission tomography and computerized tomography scan before pulmonary surgery were retrospectively analyzed. The PET metabolic parameters were calculated by 18F-FDG PET imaging, and CD147 expression was analyzed by immunohistochemistry. SUVmax, SUVmean, MTV, and TLG compared for their performance in predicting the expression of CD147 were illustrated with statistical analysis. All patients were then followed-up for survival analysis. Results The SUVmax was significantly correlated with the CD147 expression and was the primary predictor for the CD147 expression of lung adenocarcinoma. A cut-off value of the SUVmax, 9.77 allowed 85.1% sensitivity and 64.3% specificity for predicting the CD147 positive lung adenocarcinoma. CD147 expression was correlated with tumor differentiation and metastasis. Univariate survival analysis showed that CD147 expression was significantly associated with a shorter overall survival (OS) time. Multivariate analysis revealed that CD147 was an independent prognostic factor of lung adenocarcinoma patients. Conclusion The SUVmax of a primary tumor measured with 18F-FDG PET may be a simple and non-invasive marker for predicting CD147 expression in lung adenocarcinoma. CD147 is an independent prognostic factor related to OS of postoperative lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Fei Guo
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xueyan Li
- Department of PET/CT, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guodong Yao
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guangchun Zeng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lijuan Yu
- Department of PET/CT, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
34
|
Yan L, Raj P, Yao W, Ying H. Glucose Metabolism in Pancreatic Cancer. Cancers (Basel) 2019; 11:cancers11101460. [PMID: 31569510 PMCID: PMC6826406 DOI: 10.3390/cancers11101460] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal cancers, with a five-year survival rate of around 5% to 8%. To date, very few available drugs have been successfully used to treat PDAC due to the poor understanding of the tumor-specific features. One of the hallmarks of pancreatic cancer cells is the deregulated cellular energetics characterized by the “Warburg effect”. It has been known for decades that cancer cells have a dramatically increased glycolytic flux even in the presence of oxygen and normal mitochondrial function. Glycolytic flux is the central carbon metabolism process in all cells, which not only produces adenosine triphosphate (ATP) but also provides biomass for anabolic processes that support cell proliferation. Expression levels of glucose transporters and rate-limiting enzymes regulate the rate of glycolytic flux. Intermediates that branch out from glycolysis are responsible for redox homeostasis, glycosylation, and biosynthesis. Beyond enhanced glycolytic flux, pancreatic cancer cells activate nutrient salvage pathways, which includes autophagy and micropinocytosis, from which the generated sugars, amino acids, and fatty acids are used to buffer the stresses induced by nutrient deprivation. Further, PDAC is characterized by extensive metabolic crosstalk between tumor cells and cells in the tumor microenvironment (TME). In this review, we will give an overview on recent progresses made in understanding glucose metabolism-related deregulations in PDAC.
Collapse
Affiliation(s)
- Liang Yan
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Priyank Raj
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Wantong Yao
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
35
|
Flora GK, Anderton RS, Meloni BP, Guillemin GJ, Knuckey NW, MacDougall G, Matthews V, Boulos S. Microglia are both a source and target of extracellular cyclophilin A. Heliyon 2019; 5:e02390. [PMID: 31517118 PMCID: PMC6731207 DOI: 10.1016/j.heliyon.2019.e02390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/17/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) are lethal primary brain tumours whose pathogenesis is aided, at least partly, via a pro-tumorigenic microenvironment. This study investigated whether microglia, a cell component of the GBM microenvironment, mediates pro-tumorigenic properties via the action of cyclophilin A (CypA), a potent secretable chemokine and cytoprotectant that signals via the cell surface receptor, CD147. To this end, intracellular and secreted CypA expression was assessed in human primary microglia and BV2 microglial cells treated with the endotoxin, lipopolysaccharide (LPS) and the oxidative stress inducer, LY83583. We report that human primary microglia and BV2 microglia both express CypA and CD147, and that BV2 microglial cells secrete CypA in response to pro-inflammatory and oxidative stimuli. We also demonstrate for the first time that recombinant CypA (rCypA; 1nM-1000nM) dose-dependently increased wound healing and reduced basal cell death in BV2 microglial cells. To determine the cell-signalling pathways involved, we probed microglial cell lysates for changes in ERK1/2 and AKT phosphorylation, IκB degradation, and IL-6 secretion using Western blot and ELISA analysis. In summary, BV2 microglial cells secrete CypA in response to inflammatory and oxidative stress, and that rCypA increases cell viability and chemotaxis. Our findings suggest that rCypA is a pro-survival chemokine for microglia that may influence the GBM tumour microenvironment.
Collapse
Affiliation(s)
- Gurkiran Kaur Flora
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Australia.,Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Ryan S Anderton
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Australia.,Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Nedlands, Western Australia, Australia.,School of Health Sciences and Institute for Health Research, Fremantle, University of Notre Dame Australia, Australia
| | - Bruno P Meloni
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Australia.,Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Nedlands, Western Australia, Australia.,Department of Neurosurgery, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, 2 Technology Place, Macquarie University, New South Wales, Australia
| | - Neville W Knuckey
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Australia.,Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Nedlands, Western Australia, Australia.,Department of Neurosurgery, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia, Australia
| | - Gabriella MacDougall
- Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Nedlands, Western Australia, Australia.,School of Health Sciences and Institute for Health Research, Fremantle, University of Notre Dame Australia, Australia
| | - Vance Matthews
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Sherif Boulos
- Perron Institute for Neurological and Translational Sciences, QEII Medical Centre, Nedlands, Western Australia, Australia
| |
Collapse
|
36
|
Immunohistochemical analysis of MMP-13 and EMMPRIN in epithelial odontogenic lesions. Eur Arch Otorhinolaryngol 2019; 276:3203-3211. [DOI: 10.1007/s00405-019-05589-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
|
37
|
Nasry WHS, Wang H, Jones K, Tesch M, Rodriguez-Lecompte JC, Martin CK. Cyclooxygenase and CD147 expression in oral squamous cell carcinoma patient samples and cell lines. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 128:400-410.e3. [PMID: 31350224 DOI: 10.1016/j.oooo.2019.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/09/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVES In oral squamous cell carcinoma (OSCC), cyclooxygenases (COX-1 and COX-2) contribute to inflammation, and cluster of differentiation factor 147 (CD147) contributes to invasiveness, but their relationship has not been previously examined within a cohort of patients with OSCC or OSCC cell lines. STUDY DESIGN COX-2 and CD147 expression was determined by using immunohistochemistry on 39 surgical biopsy specimens of OSCC. Expression in tumor cells, stroma, and adjacent oral epithelium was characterized by using a visual grading system. COX-1, COX-2, and CD147 expression was determined in vitro by using OSCC cell lines (SCC25, BHY, and HN) and reverse transcriptase-quantitative polymerase chain reaction. Secretion of prostagladin E2 (PGE2) from OSCC cell lines was determined by using PGE2 enzyme-linked immunosorbent assay. RESULTS Biopsy specimens showed higher COX-2 expression in tumor cells compared with stroma and adjacent epithelium (P < .05). There was no difference in CD147 expression among the tumor cells, stroma, and adjacent epithelium. In OSCC cell lines, there was a trend for COX-2 and CD147 gene expression to be coordinated. Interestingly, PGE2 secretion was more closely related to COX-1 expression than to COX-2 expression. CONCLUSIONS COX-1, COX-2, and CD147 appear to be independently regulated in OSCC, potentially representing 2 therapeutic targets for future investigation. COX-1 expression in OSCC deserves further study because it may be an important determinant of PGE2 secretion from OSCC cells.
Collapse
Affiliation(s)
- Walaa Hamed Shaker Nasry
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Haili Wang
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Kathleen Jones
- Diagnostic Services, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Marvin Tesch
- Provincial Health Services, Health PEI, Charlottetown, Prince Edward Island, Canada
| | - Juan Carlos Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Chelsea K Martin
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada.
| |
Collapse
|
38
|
Toole BP. The CD147-HYALURONAN Axis in Cancer. Anat Rec (Hoboken) 2019; 303:1573-1583. [PMID: 31090215 DOI: 10.1002/ar.24147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/08/2018] [Accepted: 11/24/2018] [Indexed: 12/15/2022]
Abstract
CD147 (basigin; EMMPRIN), hyaluronan, and hyaluronan receptors (e.g., CD44) are intimately involved in several phenomena that underlie malignancy. A major avenue whereby they influence tumor progression is most likely their role in the characteristics of cancer stem cells (CSCs), subpopulations of tumor cells that exhibit chemoresistance, invasiveness, and potent tumorigenicity. Both CD147 and hyaluronan have been strongly implicated in chemoresistance and invasiveness, and may be drivers of CSC characteristics, since current evidence indicates that both are involved in epithelial-mesenchymal transition, a crucial process in the acquisition of CSC properties. Hyaluronan is a prominent constituent of the tumor microenvironment whose interactions with cell surface receptors influence several signaling pathways that lead to chemoresistance and invasiveness. CD147 is an integral plasma membrane glycoprotein of the Ig superfamily and cofactor in assembly and activity of monocarboxylate transporters (MCTs). CD147 stimulates hyaluronan synthesis and interaction of hyaluronan with its receptors, in particular CD44 and LYVE-1, which in turn result in activation of multiprotein complexes containing members of the membrane-type matrix metalloproteinase, receptor tyrosine kinase, ABC drug transporter, or MCT families within lipid raft domains. Multivalent hyaluronan-receptor interactions are essential for formation or stabilization of these lipid raft complexes and for downstream signaling pathways or transporter activities. We conclude that stimulation of hyaluronan-receptor interactions by CD147 and the consequent activities of these complexes may be critical to the properties of CSCs and their role in malignancy. Anat Rec, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bryan P Toole
- Department of Regenerative Medicine & Cell Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
39
|
Tang L, Chen X, Zhang X, Guo Y, Su J, Zhang J, Peng C, Chen X. N-Glycosylation in progression of skin cancer. Med Oncol 2019; 36:50. [PMID: 31037368 DOI: 10.1007/s12032-019-1270-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/11/2019] [Indexed: 12/29/2022]
Abstract
Skin cancer can be classified as cutaneous malignant melanoma, basal cell carcinoma, and squamous cell carcinoma. Due to the high level of morbidity and mortality, skin cancer has become a global public health issue worldwide while the pathogenesis of skin cancer is still unclear. It is necessary to further identify the pathogenesis of skin cancer and find candidate targets to diagnose and treat skin cancer. A variety of factors are known to be associated with skin cancer including N-glycosylation, which partly explained the malignant behaviors of skin cancer. In this review, we retrieved databases such as PubMed and Web of Science to elucidate its relationship between glycosylation and skin cancer. We summarized some key glycosyltransferases and proteins during the process of N-glycosylation related to skin cancer, which was helpful to unmask the additional mechanism of skin cancer and find some novel targets of skin cancer.
Collapse
Affiliation(s)
- Ling Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xu Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
| | - Yeye Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
| | - Jianglin Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China.
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, Hunan, China.
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
40
|
Huhe M, Lou J, Zhu Y, Zhao Y, Shi Y, Wang B, Sun X, Zhang X, Zhang Y, Chen ZN. A novel antibody-drug conjugate, HcHAb18-DM1, has potent anti-tumor activity against human non-small cell lung cancer. Biochem Biophys Res Commun 2019; 513:1083-1091. [PMID: 31010682 DOI: 10.1016/j.bbrc.2019.04.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/06/2019] [Indexed: 11/29/2022]
Abstract
Cluster of differentiation 147 (CD147), a transmembrane protein of the immunoglobulin superfamily, is a potential target of treatment against human non-small cell lung cancer (NSCLC). Although there have been exciting advances in epidermal growth factor receptor (EGFR)-targeted therapy for NSCLC in recent years, additional novel targeted agents are needed to improve the efficiency and to offer more options for patients. Antibody-drug conjugates (ADCs) utilize a chemical linker to conjugate cytotoxic drugs to a monoclonal antibody to maximize the delivery to target cells and minimize the delivery to other normal cells. The aim of this study was to prepare a novel anti-CD147 conjugate and examine the tumoricidal effect on NSCLC in vitro and in vivo. HcHAb18 was conjugated to the drug maytansinoid 1 (DM1) via a non-cleavable thioether linker (SMCC) to prepare HcHAb18-DM1 with an appropriate drug-antibody ratio (DAR). NSCLC cell lines expressing different levels of CD147 were tested in vitro to determine internalization, cell cycle arrest and cytotoxicity. In vivo efficacy and safety of HcHAb18-DM1 were evaluated in NSCLC xenograft mouse models. We found that HcHAb18-DM1 displayed an impressive potency in vitro and in vivo with a favorable safety profile. Upon binding to CD147, HcHAb18 could be internalized and delivered the payload DM1 to disturb mitotic spindle formation by microtubules. Target cells were arrested at G2/M phase and HcHAb18-DM1 exerted antiproliferative activity in vitro. Antigen-antibody binding and target cells with high growth rate were two integral prerequisites for exerting anti-tumor activity of HcHAb18-DM1. Therefore, we suggest HcHAb18-DM1 is a promising CD147-targeted therapeutic for NSCLC.
Collapse
Affiliation(s)
- Muren Huhe
- National Translational Science Center for Molecular Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Jiaxin Lou
- National Translational Science Center for Molecular Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Yumeng Zhu
- National Translational Science Center for Molecular Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Yu Zhao
- National Translational Science Center for Molecular Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Ying Shi
- National Translational Science Center for Molecular Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Bo Wang
- National Translational Science Center for Molecular Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Xiuxuan Sun
- Department of Cell Biology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Xiaoqin Zhang
- Department of Cell Biology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Yang Zhang
- National Translational Science Center for Molecular Medicine, Air Force Medical University, Xi'an, 710032, China.
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine, Air Force Medical University, Xi'an, 710032, China; Department of Cell Biology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
41
|
Guindolet D, Gabison EE. Role of CD147 (EMMPRIN/Basigin) in Tissue Remodeling. Anat Rec (Hoboken) 2019; 303:1584-1589. [DOI: 10.1002/ar.24089] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Damien Guindolet
- Fondation Ophtalmologique A. de Rothschild 25 rue Manin, 75019, Paris France
| | - Eric E. Gabison
- Fondation Ophtalmologique A. de Rothschild 25 rue Manin, 75019, Paris France
| |
Collapse
|
42
|
Li X, Fu Q, Zhu Y, Wang J, Liu J, Yu X, Xu W. CD147-mediated glucose metabolic regulation contributes to the predictive role of 18 F-FDG PET/CT imaging for EGFR-TKI treatment sensitivity in NSCLC. Mol Carcinog 2018; 58:247-257. [PMID: 30320488 DOI: 10.1002/mc.22923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/26/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022]
Abstract
The aim of this study is to investigate the role of CD147 in glucose metabolic regulation and its association with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) treatment sensitivity prediction using 18 F-fluorodeoxyglucose (18 F-FDG) PET/CT imaging in non-small cell lung cancer (NSCLC). In this study, four human NSCLC cell lines with different EGFR-TKI responses were used to detect p-EGFR/EGFR and CD147 expression via Western blotting and flow cytometric analyses. Radioactive uptake of 18 F-FDG by established stable NSCLC cell lines (HCC827, H1975) with different levels of CD147 expression and the corresponding xenografts was assessed through γ-radioimmunoassays in vitro and micro-PET/CT imaging in vivo to study the role of CD147 in glucose metabolic reprogramming. Correlation analyses were performed to investigate the association between CD147 expression and PD-L1 expression in stable NSCLC cell lines. Higher CD147 expression was found in EGFR-TKI-sensitive NSCLC cell lines than in relatively resistant NSCLC cell lines (HCC827>PC9>A549>H1975). CD147 could promote 18 F-FDG uptake by HCC827 and H1975 cells in vitro and in vivo through an EGFR-initiated Akt/mTOR-dependent signaling pathway. Programmed cell death-ligand 1 (PD-L1) expression was positively correlated with CD147 expression in human NSCLC cell lines. EGFR-TKI treatment sensitivity prediction in NSCLC using 18 F-FDG PET/CT imaging significantly correlated with CD147-mediated glucose metabolic regulation via the Akt/mTOR-dependent pathway. Moreover, PD-L1 expression in NSCLC cell lines could be regulated by CD147, suggesting a potential immunosuppression induced by the upregulation of tumor glucose metabolism.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qiang Fu
- Department of Molecular Imaging and Nuclear Medicine, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yanjia Zhu
- Department of Molecular Imaging and Nuclear Medicine, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jian Wang
- Department of Molecular Imaging and Nuclear Medicine, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jianjing Liu
- Department of Molecular Imaging and Nuclear Medicine, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaozhou Yu
- Department of Molecular Imaging and Nuclear Medicine, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
43
|
Sugyo A, Tsuji AB, Sudo H, Koizumi M, Ukai Y, Kurosawa G, Kurosawa Y, Saga T, Higashi T. Efficacy Evaluation of Combination Treatment Using Gemcitabine and Radioimmunotherapy with 90Y-Labeled Fully Human Anti-CD147 Monoclonal Antibody 059-053 in a BxPC-3 Xenograft Mouse Model of Refractory Pancreatic Cancer. Int J Mol Sci 2018; 19:ijms19102979. [PMID: 30274301 PMCID: PMC6213240 DOI: 10.3390/ijms19102979] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/06/2018] [Accepted: 09/28/2018] [Indexed: 02/07/2023] Open
Abstract
The poor prognosis of pancreatic cancer requires the development of more effective therapy. CD147 expresses in pancreatic cancer with high incidence and has a crucial role in invasion and metastasis. We developed a fully human monoclonal antibody (059-053) with high affinity for CD147. Here we evaluated the efficacy of combined treatment using radioimmunotherapy (RIT) with 90Y-labeled 059-053 and gemcitabine in a BxPC-3 xenograft mouse model. Expression of CD147 and matrix metalloproteinase-2 (MMP2) in BxPC-3 tumors was evaluated. In vitro and in vivo properties of 059-053 were evaluated using 111In-labeled 059-053 and a pancreatic cancer model BxPC-3. Tumor volume and body weight were periodically measured in mice receiving gemcitabine, RIT, and both RIT and gemcitabine (one cycle and two cycles). High expression of CD147 and MMP2 was observed in BxPC-3 tumors and suppressed by 059-053 injection. Radiolabeled 059-053 bound specifically to BxPC-3 cells and accumulated highly in BxPC-3 tumors but low in major organs. Combined treatment using RIT with gemcitabine (one cycle) significantly suppressed tumor growth and prolonged survival with tolerable toxicity. The two-cycle regimen had the highest anti-tumor effect, but was not tolerable. Combined treatment with 90Y-labeled 059-053 and gemcitabine is a promising therapeutic option for pancreatic cancer.
Collapse
Affiliation(s)
- Aya Sugyo
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Atsushi B Tsuji
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Hitomi Sudo
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Mitsuru Koizumi
- Department of Nuclear Medicine, Cancer Institute Hospital, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| | - Yoshinori Ukai
- Research and Development Division, Perseus Proteomics Inc., 4-7-6 Komaba, Meguro-ku, Tokyo 153-0041, Japan.
| | - Gene Kurosawa
- Innovation Center for Advanced Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Yoshikazu Kurosawa
- Innovation Center for Advanced Medicine, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Tsuneo Saga
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Diagnostic Radiology, Kyoto University Hospital, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST-NIRS), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
44
|
Qiao S, Liu C, Xu W, AZhaTi W, Li C, Wang Z. Up-regulated expression of CD147 gene in malignant bone tumor and the possible induction mechanism during osteoclast formation. ACTA ACUST UNITED AC 2018; 51:e6948. [PMID: 30043854 PMCID: PMC6065812 DOI: 10.1590/1414-431x20186948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/14/2018] [Indexed: 01/17/2023]
Abstract
It is increasingly evident that the microenvironment of bone can influence cancer phenotype in many ways that favor growth in bone. CD147, a transmembrane protein of the immunoglobulin (Ig) superfamily, was identified independently in different species and has many designations across different species. However, expression levels of CD147 mRNA in bone cancer have not been described. In this study, we have used real-time fluorescence quantification (RT-PCR) to demonstrate CD147 expression in malignant bone cancer and benign bone tumor tissues. The results suggested that the expression of CD147 gene was significantly up-regulated in malignant bone cancer. Moreover, we found that over-expressed RANKL progressively enhanced osteoclast formation up to 48 h, which suggested that RANKL could promote the formation of osteoclast, indicating that both CD147 and RANKL play important roles in the formation of osteoclasts. Furthermore, the expressions of four osteoclast specific expression genes, including TRACP, MMP-2, MMP-9 and c-Src, were analyzed using RT-PCR. The results indicated that four osteoclast-specific expression genes were detectable in all osteoclast with different treatments. However, the highest expression level of these four osteoclast-specific expression genes appears in the CD147+ RANKL group and the lowest expression level of these four osteoclast-specific expression genes appears with si-RANKL treatment. Characterization of the role of CD147 in the development of tumors should lead to a better understanding of the changes occurring at the molecular level during the development and progression of primary human bone cancer.
Collapse
Affiliation(s)
- Suchi Qiao
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai, China.,Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Chang Liu
- Department of Orthopedics, Fuzhou General Hospital, Fuzhou, China
| | - Weijie Xu
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - WuBuLi AZhaTi
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Cheng Li
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Zhiwei Wang
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
45
|
Knutti N, Huber O, Friedrich K. CD147 (EMMPRIN) controls malignant properties of breast cancer cells by interdependent signaling of Wnt and JAK/STAT pathways. Mol Cell Biochem 2018; 451:197-209. [DOI: 10.1007/s11010-018-3406-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
|
46
|
Hu C, Dong X, Wu J, Xiao F, Shang J, Liu L, Yang Y, Luo D, Li Q, Song Q, Yang J, Zhang C, Shen L, Luo Z. CD147 overexpression may serve as a promising diagnostic and prognostic marker for gastric cancer: evidence from original research and literature. Oncotarget 2018; 8:30888-30899. [PMID: 28427166 PMCID: PMC5458175 DOI: 10.18632/oncotarget.15737] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/06/2017] [Indexed: 01/30/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. The expression of CD147 protein is associated with GC. However, the clinical role of CD147 in GC has not been investigated extensively. Hence, we focused on studying the association between the expression of CD147 and clinicopathological features of GC patients in this study. Firstly, sixteen publications (1752 cases and 391 controls) and one from our own original research (143 cases) were included in the meta-analysis to obtain a more precise estimation of the diagnostic value of CD147. The results showed that expression rate of CD147 in the GC group is higher than that in control group. Moreover, gender, TNM stage, lymph node metastasis, and depth of invasion are all associated with CD147. Further, sections of gastric tissue from 143 cases underwent immunohistochemical staining for evaluation of CD147 protein expression. Our retrospective analysis demonstrated CD147 protein expression was significantly associated with clinical N stage, and tumor stage. Meanwhile, it can also serve as an independent prognosis biomarker. In conclusion, our results support the role of CD147 as a good indicator of diagnosis and prognosis.
Collapse
Affiliation(s)
- Chenghao Hu
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Xiaoxia Dong
- Department of Pharmacology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Junbo Wu
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Feifan Xiao
- First Clinical Academy, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Jun Shang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Liang Liu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, PR China
| | - Yuan Yang
- School of Life Sciences, Fudan University, Shanghai, PR China
| | - Dongmei Luo
- School of Mathematics and Physics, Anhui University of Technology, Maanshan, Anhui, PR China
| | - Qiuting Li
- Department of Clinical Oncology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qian Song
- First Clinical Academy, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Jingcheng Yang
- School of Life Sciences, Fudan University, Shanghai, PR China
| | - Chengdong Zhang
- School of Life Sciences, Fudan University, Shanghai, PR China
| | - Li Shen
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, PR China
| |
Collapse
|
47
|
Kendrick AA, Schafer J, Dzieciatkowska M, Nemkov T, D'Alessandro A, Neelakantan D, Ford HL, Pearson CG, Weekes CD, Hansen KC, Eisenmesser EZ. CD147: a small molecule transporter ancillary protein at the crossroad of multiple hallmarks of cancer and metabolic reprogramming. Oncotarget 2018; 8:6742-6762. [PMID: 28039486 PMCID: PMC5341751 DOI: 10.18632/oncotarget.14272] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/30/2016] [Indexed: 02/07/2023] Open
Abstract
Increased expression of CD147 in pancreatic cancer has been proposed to play a critical role in cancer progression via CD147 chaperone function for lactate monocarboxylate transporters (MCTs). Here, we show for the first time that CD147 interacts with membrane transporters beyond MCTs and exhibits a protective role for several of its interacting partners. CD147 prevents its interacting partner's proteasome-dependent degradation and incorrect plasma membrane localization through the CD147 transmembrane (TM) region. The interactions with transmembrane small molecule and ion transporters identified here indicate a central role of CD147 in pancreatic cancer metabolic reprogramming, particularly with respect to amino acid anabolism and calcium signaling. Importantly, CD147 genetic ablation prevents pancreatic cancer cell proliferation and tumor growth in vitro and in vivo in conjunction with metabolic rewiring towards amino acid anabolism, thus paving the way for future combined pharmacological treatments.
Collapse
Affiliation(s)
- Agnieszka A Kendrick
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, CO, USA
| | - Johnathon Schafer
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, CO, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, CO, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, CO, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, CO, USA
| | - Deepika Neelakantan
- Department of Pharmacology, School of Medicine, University of Colorado Denver, CO, USA
| | - Heide L Ford
- Department of Pharmacology, School of Medicine, University of Colorado Denver, CO, USA
| | - Chad G Pearson
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Denver, CO, USA
| | - Colin D Weekes
- Division of Oncology, Department of Medicine, University of Colorado Denver, CO, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, CO, USA
| | - Elan Z Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, CO, USA
| |
Collapse
|
48
|
Matsumoto T, Nagashio R, Ryuge S, Igawa S, Kobayashi M, Fukuda E, Goshima N, Ichinoe M, Jiang SX, Satoh Y, Masuda N, Murakumo Y, Saegusa M, Sato Y. Basigin expression as a prognostic indicator in stage I pulmonary adenocarcinoma. Pathol Int 2018; 68:232-240. [PMID: 29431238 DOI: 10.1111/pin.12646] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023]
Abstract
We established the KU-Lu-8 monoclonal antibody (MoAb) using a lung cancer cell line as an antigen and a random immunization method. The KU-Lu-8 MoAb recognizes basigin (BSG), which is a transmembrane-type glycoprotein that is strongly expressed on the cell membranes of lung cancer cells. This study aimed to clarify the relationships between BSG expression and clinicopathological parameters and determine the prognostic significance of BSG expression in pulmonary adenocarcinoma (AC) patients. To evaluate the significance of BSG expression in lung cancer, we immunohistochemically analyzed 113 surgically resected pulmonary adenocarcinomas, and the associations between BSG expression and various clinicopathological parameters were evaluated. Kaplan-Meier survival analysis and Cox proportional hazards models were used to investigate the effects of BSG expression on survival. Clinicopathologically, BSG expression was significantly associated with tumor differentiation, vascular invasion, lymphatic invasion, and a poor prognosis. In particular, BSG expression was significantly correlated with poorer survival in patients with stage I AC. The high BSG expression group (compared with the low BSG expression group) exhibited adjusted hazard ratios for mortality of 4.694. BSG expression is indicative of a poor prognosis in AC patients, particularly in those with stage I disease.
Collapse
Affiliation(s)
- Toshihide Matsumoto
- Department of Pathology, School of Medicine, Kitasato University, Kanagawa, Japan
| | - Ryo Nagashio
- Department of Applied Tumor Pathology, Graduate School of Medical Sciences, Kitasato University, Kanagawa, Japan
| | - Shinichiro Ryuge
- Department of Respiratory Medicine, School of Medicine, Kitasato University, Kanagawa, Japan
| | - Satoshi Igawa
- Department of Respiratory Medicine, School of Medicine, Kitasato University, Kanagawa, Japan
| | - Makoto Kobayashi
- Department of Applied Tumor Pathology, Graduate School of Medical Sciences, Kitasato University, Kanagawa, Japan
| | - Eriko Fukuda
- Division of Quantitative Proteomics Team, Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Naoki Goshima
- Division of Quantitative Proteomics Team, Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Masaaki Ichinoe
- Department of Pathology, School of Medicine, Kitasato University, Kanagawa, Japan
| | - Shi-Xu Jiang
- Department of Pathology, School of Medicine, Kitasato University, Kanagawa, Japan
| | - Yukitoshi Satoh
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kitasato University, Kanagawa, Japan
| | - Noriyuki Masuda
- Department of Respiratory Medicine, School of Medicine, Kitasato University, Kanagawa, Japan
| | - Yoshiki Murakumo
- Department of Pathology, School of Medicine, Kitasato University, Kanagawa, Japan
| | - Makoto Saegusa
- Department of Pathology, School of Medicine, Kitasato University, Kanagawa, Japan
| | - Yuichi Sato
- Department of Applied Tumor Pathology, Graduate School of Medical Sciences, Kitasato University, Kanagawa, Japan
| |
Collapse
|
49
|
Xu BQ, Fu ZG, Meng Y, Wu XQ, Wu B, Xu L, Jiang JL, Li L, Chen ZN. Gemcitabine enhances cell invasion via activating HAb18G/CD147-EGFR-pSTAT3 signaling. Oncotarget 2018; 7:62177-62193. [PMID: 27556697 PMCID: PMC5308719 DOI: 10.18632/oncotarget.11405] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/08/2016] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer, one of the most lethal cancers, has very poor 5-year survival partly due to gemcitabine resistance. Recently, it was reported that chemotherapeutic agents may act as stressors to induce adaptive responses and to promote chemoresistance in cancer cells. During long-term drug treatment, the minority of cancer cells survive and acquire an epithelial-mesenchymal transition phenotype with increased chemo-resistance and metastasis. However, the short-term response of most cancer cells remains unclear. This study aimed to investigate the short-term response of pancreatic cancer cells to gemcitabine stress and to explore the corresponding mechanism. Our results showed that gemcitabine treatment for 24 hours enhanced pancreatic cancer cell invasion. In gemcitabine-treated cells, HAb18G/CD147 was up-regulated; and HAb18G/CD147 down-regulation or inhibition attenuated gemcitabine-enhanced invasion. Mechanistically, HAb18G/CD147 promoted gemcitabine-enhanced invasion by activating the EGFR (epidermal growth factor receptor)-STAT3 (signal transducer and activator of transcription 3) signaling pathway. Inhibition of EGFR-STAT3 signaling counteracted gemcitabine-enhanced invasion, and which relied on HAb18G/CD147 levels. In pancreatic cancer tissues, EGFR was highly expressed and positively correlated with HAb18G/CD147. These data indicate that pancreatic cancer cells enhance cell invasion via activating HAb18G/CD147-EGFR-pSTAT3 signaling. Our findings suggest that inhibiting HAb18G/CD147 is a potential strategy for overcoming drug stress-associated resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Bao-Qing Xu
- Department of Cell Biology and Cell Engineering Research Center, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Zhi-Guang Fu
- Department of Cell Biology and Cell Engineering Research Center, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Yao Meng
- Department of Cell Biology and Cell Engineering Research Center, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Xiao-Qing Wu
- Departments of Molecular Biosciences and Radiation Oncology, University of Kansas, Lawrence, Kansas, USA
| | - Bo Wu
- Department of Cell Biology and Cell Engineering Research Center, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Liang Xu
- Departments of Molecular Biosciences and Radiation Oncology, University of Kansas, Lawrence, Kansas, USA
| | - Jian-Li Jiang
- Department of Cell Biology and Cell Engineering Research Center, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Ling Li
- Department of Cell Biology and Cell Engineering Research Center, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Zhi-Nan Chen
- Department of Cell Biology and Cell Engineering Research Center, State Key Laboratory of Cancer Biology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
50
|
Li X, Yu X, Dai D, Song X, Xu W. The altered glucose metabolism in tumor and a tumor acidic microenvironment associated with extracellular matrix metalloproteinase inducer and monocarboxylate transporters. Oncotarget 2018; 7:23141-55. [PMID: 27009812 PMCID: PMC5029616 DOI: 10.18632/oncotarget.8153] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/13/2016] [Indexed: 02/06/2023] Open
Abstract
Extracellular matrix metalloproteinase inducer, also knowns as cluster of differentiation 147 (CD147) or basigin, is a widely distributed cell surface glycoprotein that is involved in numerous physiological and pathological functions, especially in tumor invasion and metastasis. Monocarboxylate transporters (MCTs) catalyze the proton-linked transport of monocarboxylates such as L-lactate across the plasma membrane to preserve the intracellular pH and maintain cell homeostasis. As a chaperone to some MCT isoforms, CD147 overexpression significantly contributes to the metabolic transformation of tumor. This overexpression is characterized by accelerated aerobic glycolysis and lactate efflux, and it eventually provides the tumor cells with a metabolic advantage and an invasive phenotype in the acidic tumor microenvironment. This review highlights the roles of CD147 and MCTs in tumor cell metabolism and the associated molecular mechanisms. The regulation of CD147 and MCTs may prove to be with a therapeutic potential for tumors through the metabolic modification of the tumor microenvironment.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiaozhou Yu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Dong Dai
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiuyu Song
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|