1
|
Zhang J, Tian Z, Qin C, Momeni MR. The effects of exercise on epigenetic modifications: focus on DNA methylation, histone modifications and non-coding RNAs. Hum Cell 2024; 37:887-903. [PMID: 38587596 DOI: 10.1007/s13577-024-01057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/10/2024] [Indexed: 04/09/2024]
Abstract
Physical activity on a regular basis has been shown to bolster the overall wellness of an individual; research is now revealing that these changes are accompanied by epigenetic modifications. Regular exercise has been proven to make intervention plans more successful and prolong adherence to them. When it comes to epigenetic changes, there are four primary components. This includes changes to the DNA, histones, expression of particular non-coding RNAs and DNA methylation. External triggers, such as physical activity, can lead to modifications in the epigenetic components, resulting in changes in the transcription process. This report pays attention to the current knowledge that pertains to the epigenetic alterations that occur after exercise, the genes affected and the resulting characteristics.
Collapse
Affiliation(s)
- Junxiong Zhang
- Xiamen Academy of Art and Design, Fuzhou University, Xiamen, 361024, Fujian, China.
| | - Zhongxin Tian
- College of Physical Education, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China.
| | - Chao Qin
- College of Physical Education, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| | | |
Collapse
|
2
|
Xu J, Chi P, Qin K, Li B, Cheng Z, Yu Z, Jiang C, Yu Y. Association between lifestyle and dietary preference factors and conventional adenomas and serrated polyps. Front Nutr 2024; 10:1269629. [PMID: 38268677 PMCID: PMC10806101 DOI: 10.3389/fnut.2023.1269629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction Both conventional adenoma (AD) and serrated polyp (SP) were known precursor lesions of colorectal cancer (CRC). Modifiable lifestyle factors were significantly associated with CRC risk, but whether these factors were related to the risk of different precursors of CRC needed to be clarified. This study aimed to evaluate the risks of AD and SP caused by lifestyle factors and compare the risk differences between AD and SP. Methods The study population was from the CRC screening cohort in Hangzhou, China. A total of 458,457 eligible individuals volunteered to undergo initial screening including the fecal immunochemical test (FIT) and the CRC risk assessment. Finally, 13,993 participants who had undergone colonoscopy tests and had been diagnosed at designated hospitals were selected in this study. All participants were required to fill out a questionnaire during the initial screening for collecting their information. The generalized estimate equation (GEE) model was used to assess the association between lifestyle factors/dietary preferences and AD/SP. Results The body mass index (BMI) and smoking were positively associated with the risks of only SP (BMI: OR = 1.50, 95%CI: 1.23-1.84; smoking: OR = 1.29, 95%CI: 1.07-1.55), only AD (BMI: OR = 1.53, 95%CI: 1.28-1.82; OR = 1.24, 95%CI: 1.11-1.39), and synchronous SP and AD (BMI: OR = 1.97, 95%CI: 1.40-2.75; smoking: OR = 1.53, 95%CI: 1.27-1.85). In the case-group comparison, smoking was more strongly associated with the risk of synchronous SP and AD than only AD. Alcohol drinking was positively associated with the risk of AD (OR = 1.28, 95%CI: 1.14-1.44), but no statistically significant difference was observed in risks in the case-group comparison. Furthermore, whole-grain intake was associated with a decreased risk of only AD (OR = 0.78, 95%CI: 0.65-0.93). However, white meat intake was positively associated with risks of only SP when compared with AD cases (OR = 1.60, 95%CI: 1.15-2.23). Conclusion The current study identified common risk factors such as BMI and smoking as well as different risks of certain factors (e.g., alcohol drinking and whole-grain intake) for SP and AD. However, there were still some factors, especially diet-related factors, that have not been fully elucidated in their association with the two lesions. Further research is needed in future to confirm and develop prevention strategies for different lesions.
Collapse
Affiliation(s)
- Jue Xu
- HangZhou Center for Disease Control and Prevention, Hangzhou, China
| | - Peihan Chi
- Department of Epidemiology and Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kang Qin
- HangZhou Center for Disease Control and Prevention, Hangzhou, China
| | - Biao Li
- HangZhou Center for Disease Control and Prevention, Hangzhou, China
| | - Zhongxue Cheng
- HangZhou Center for Disease Control and Prevention, Hangzhou, China
| | - Zhecong Yu
- HangZhou Center for Disease Control and Prevention, Hangzhou, China
| | - Caixia Jiang
- HangZhou Center for Disease Control and Prevention, Hangzhou, China
| | - Yunxian Yu
- Department of Epidemiology and Health Statistics, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Chávez-Hidalgo LP, Martín-Fernández-de-Labastida S, M de Pancorbo M, Arroyo-Izaga M. Influence of methyl donor nutrients as epigenetic regulators in colorectal cancer: A systematic review of observational studies. World J Gastroenterol 2023; 29:1219-1234. [PMID: 36926668 PMCID: PMC10011952 DOI: 10.3748/wjg.v29.i7.1219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/26/2022] [Accepted: 02/14/2023] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Dietary methyl donors might influence DNA methylation during carcinogenesis of colorectal cancer (CRC). However, whether the influence of methyl donor intake is modified by polymorphisms in such epigenetic regulators is still unclear.
AIM To improve the current understanding of the molecular basis of CRC.
METHODS A literature search in the Medline database, Reference Citation Analysis (https://www.referencecitationanalysis.com/), and manual reference screening were performed to identify observational studies published from inception to May 2022.
RESULTS A total of fourteen case-control studies and five cohort studies were identified. These studies included information on dietary methyl donors, dietary components that potentially modulate the bioavailability of methyl groups, genetic variants of methyl metabolizing enzymes, and/or markers of CpG island methylator phenotype and/or microsatellite instability, and their possible interactions on CRC risk.
CONCLUSION Several studies have suggested interactions between methylenetetrahydrofolate reductase polymorphisms, methyl donor nutrients (such as folate) and alcohol on CRC risk. Moreover, vitamin B6, niacin, and alcohol may affect CRC risk through not only genetic but also epigenetic regulation. Identification of specific mechanisms in these interactions associated with CRC may assist in developing targeted prevention strategies for individuals at the highest risk of developing CRC.
Collapse
Affiliation(s)
- Lourdes Pilar Chávez-Hidalgo
- Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Araba/Álava, Spain
| | - Silvia Martín-Fernández-de-Labastida
- Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Araba/Álava, Spain
| | - Marian M de Pancorbo
- Department of Z. and Cellular Biology A., University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Araba/Álava, Spain
- BIOMICs Research Group, MICROFLUIDICs and BIOMICs Cluster UPV/EHU, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Araba/Álava, Spain
| | - Marta Arroyo-Izaga
- Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Araba/Álava, Spain
- BIOMICs Research Group, MICROFLUIDICs and BIOMICs Cluster UPV/EHU, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Araba/Álava, Spain
| |
Collapse
|
4
|
Murphy N, Newton CC, Song M, Papadimitriou N, Hoffmeister M, Phipps AI, Harrison TA, Newcomb PA, Aglago EK, Berndt SI, Brenner H, Buchanan DD, Cao Y, Chan AT, Chen X, Cheng I, Chang-Claude J, Dimou N, Drew D, Farris AB, French AJ, Gallinger S, Georgeson P, Giannakis M, Giles GG, Gruber SB, Harlid S, Hsu L, Huang WY, Jenkins MA, Laskar RS, Le Marchand L, Limburg P, Lin Y, Mandic M, Nowak JA, Obón-Santacana M, Ogino S, Qu C, Sakoda LC, Schoen RE, Southey MC, Stadler ZK, Steinfelder RS, Sun W, Thibodeau SN, Toland AE, Trinh QM, Tsilidis KK, Ugai T, Van Guelpen B, Wang X, Woods MO, Zaidi SH, Gunter MJ, Peters U, Campbell PT. Body mass index and molecular subtypes of colorectal cancer. J Natl Cancer Inst 2023; 115:165-173. [PMID: 36445035 PMCID: PMC9905970 DOI: 10.1093/jnci/djac215] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/21/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Obesity is an established risk factor for colorectal cancer (CRC), but the evidence for the association is inconsistent across molecular subtypes of the disease. METHODS We pooled data on body mass index (BMI), tumor microsatellite instability status, CpG island methylator phenotype status, BRAF and KRAS mutations, and Jass classification types for 11 872 CRC cases and 11 013 controls from 11 observational studies. We used multinomial logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) adjusted for covariables. RESULTS Higher BMI was associated with increased CRC risk (OR per 5 kg/m2 = 1.18, 95% CI = 1.15 to 1.22). The positive association was stronger for men than women but similar across tumor subtypes defined by individual molecular markers. In analyses by Jass type, higher BMI was associated with elevated CRC risk for types 1-4 cases but not for type 5 CRC cases (considered familial-like/Lynch syndrome microsatellite instability-H, CpG island methylator phenotype-low or negative, BRAF-wild type, KRAS-wild type, OR = 1.04, 95% CI = 0.90 to 1.20). This pattern of associations for BMI and Jass types was consistent by sex and design of contributing studies (cohort or case-control). CONCLUSIONS In contrast to previous reports with fewer study participants, we found limited evidence of heterogeneity for the association between BMI and CRC risk according to molecular subtype, suggesting that obesity influences nearly all major pathways involved in colorectal carcinogenesis. The null association observed for the Jass type 5 suggests that BMI is not a risk factor for the development of CRC for individuals with Lynch syndrome.
Collapse
Affiliation(s)
- Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Christina C Newton
- Population Science Department, American Cancer Society (ACS), Atlanta, GA, USA
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nikos Papadimitriou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Elom K Aglago
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
- Alvin J. Siteman Cancer Center, St Louis, MO, USA
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Xuechen Chen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Niki Dimou
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - David Drew
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alton B Farris
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Amy J French
- Division of Laboratory Genetics, Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Stephen B Gruber
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Ruhina S Laskar
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Loic Le Marchand
- University of Hawaii Cancer Center, Epidemiology Program, Honolulu, HI, USA
| | | | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Marko Mandic
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johnathan A Nowak
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mereia Obón-Santacana
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Melissa C Southey
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert S Steinfelder
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Wei Sun
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Amanda E Toland
- Departments of Cancer Biology and Genetics and Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Quang M Trinh
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Kostas K Tsilidis
- Department of Epidemiology and Biostatistics, Imperial College London, School of Public Health, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Tomotaka Ugai
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Program in Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Xiaoliang Wang
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, NL, Canada
| | - Syed H Zaidi
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, Lyon, France
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
5
|
Amirsasan R, Akbarzadeh M, Akbarzadeh S. Exercise and colorectal cancer: prevention and molecular mechanisms. Cancer Cell Int 2022; 22:247. [PMID: 35945569 PMCID: PMC9361674 DOI: 10.1186/s12935-022-02670-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/02/2022] [Indexed: 12/16/2022] Open
Abstract
Exercise and physical activity have been shown to be strongly associated with a decreased incidence rate of various chronic diseases especially numerous human malignancies. A huge number of clinical trials and meta-analysis have demonstrated that exercise is significantly effective in lowering the risk of colorectal cancer. In addition, it is suggested as an effective therapeutic modality against this cancer type. Therefore, in this review, we will review comprehensibly the effects of exercise in preventing, treating, and alleviating the adverse effects of conventional therapeutic options in colorectal cancer. Moreover, the possible mechanisms underlying the positive effects of exercise and physical activity in colorectal cancer, including regulation of inflammation, apoptosis, growth factor axis, immunity, epigenetic, etc. will be also discussed. Exercise is an effective post-treatment management program in colorectal cancer survivals Exercise improves muscle strength, cardiorespiratory fitness, emotional distress, physical activity, fatigue, and sleep quality in colorectal patients undergoing chemotherapy Targeting and modulating insulin-like growth factor (IGF) system, inflammation, apoptosis, immunity, epigenetic, Leptin and Ghrelin, and signaling pathways are major underlying mechanisms for preventive effects of exercise in colorectal cancer
Collapse
Affiliation(s)
- Ramin Amirsasan
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran
| | - Maryam Akbarzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Shabnam Akbarzadeh
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
6
|
Paul S, Ruiz-Manriquez LM, Ambriz-Gonzalez H, Medina-Gomez D, Valenzuela-Coronado E, Moreno-Gomez P, Pathak S, Chakraborty S, Srivastava A. Impact of smoking-induced dysregulated human miRNAs in chronic disease development and their potential use in prognostic and therapeutic purposes. J Biochem Mol Toxicol 2022; 36:e23134. [PMID: 35695328 DOI: 10.1002/jbt.23134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 04/20/2022] [Accepted: 05/29/2022] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are evolutionary conserved small noncoding RNA molecules with a significant ability to regulate gene expression at the posttranscriptional level either through translation repression or messenger RNA degradation. miRNAs are differentially expressed in various pathophysiological conditions, affecting the course of the disease by modulating several critical target genes. As the persistence of irreversible molecular changes caused by cigarette smoking is central to the pathogenesis of various chronic diseases, several studies have shown its direct correlation with the dysregulation of different miRNAs, affecting numerous essential biological processes. This review provides an insight into the current status of smoking-induced miRNAs dysregulation in chronic diseases such as COPD, atherosclerosis, pulmonary hypertension, and different cancers and explores the diagnostic/prognostic potential of miRNA-based biomarkers and their efficacy as therapeutic targets.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Luis M Ruiz-Manriquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Hector Ambriz-Gonzalez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Daniel Medina-Gomez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Estefania Valenzuela-Coronado
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Paloma Moreno-Gomez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, San Pablo, Queretaro, Mexico
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, India
| | - Samik Chakraborty
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aashish Srivastava
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
7
|
Jenniskens JCA, Offermans K, Simons CCJM, Samarska I, Fazzi GE, van der Meer JRM, Smits KM, Schouten LJ, Weijenberg MP, Grabsch HI, van den Brandt PA. Energy balance-related factors and risk of colorectal cancer based on KRAS, PIK3CA, and BRAF mutations and MMR status. J Cancer Res Clin Oncol 2022; 148:2723-2742. [PMID: 35546360 PMCID: PMC9470639 DOI: 10.1007/s00432-022-04019-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Abstract
Introduction KRAS mutations (KRASmut), PIK3CAmut, BRAFmut, and mismatch repair deficiency (dMMR) have been associated with the Warburg-effect. We previously observed differential associations between energy balance-related factors (BMI, clothing-size, physical activity) and colorectal cancer (CRC) subtypes based on the Warburg-effect. We now investigated whether associations between energy balance-related factors and risk of CRC differ between subgroups based on mutation and MMR status. Methods Information on molecular features was available for 2349 incident CRC cases within the Netherlands Cohort Study (NLCS), with complete covariate data available for 1934 cases and 3911 subcohort members. Multivariable-adjusted Cox-regression was used to estimate associations of energy balance-related factors with risk of CRC based on individual molecular features (KRASmut; PIK3CAmut; BRAFmut; dMMR) and combinations thereof (all-wild-type + MMR-proficient (pMMR); any-mutation/dMMR). Results In men, BMI and clothing-size were positively associated with risk of colon, but not rectal cancer, regardless of molecular features subgroups; the strongest associations were observed for PIK3CAmut colon cancer. In women, however, BMI and clothing-size were only associated with risk of KRASmut colon cancer (p-heterogeneityKRASmut versus all-wild-type+pMMR = 0.008). Inverse associations of non-occupational physical activity with risk of colon cancer were strongest for any-mutation/dMMR tumors in men and women, and specifically for PIK3CAmut tumors in women. Occupational physical activity was inversely associated with both combination subgroups of colon cancer in men. Conclusion In men, associations did not vary according to molecular features. In women, a role of KRAS mutations in the etiological pathway between adiposity and colon cancer is suggested, and of PIK3CA mutations between physical activity and colon cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-022-04019-9.
Collapse
Affiliation(s)
- Josien C A Jenniskens
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 616, 6200 MD, Maastricht, The Netherlands
| | - Kelly Offermans
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 616, 6200 MD, Maastricht, The Netherlands
| | - Colinda C J M Simons
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 616, 6200 MD, Maastricht, The Netherlands
| | - Iryna Samarska
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 5800, 6202 AZ, Maastricht, The Netherlands
| | - Gregorio E Fazzi
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 5800, 6202 AZ, Maastricht, The Netherlands
| | - Jaleesa R M van der Meer
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 5800, 6202 AZ, Maastricht, The Netherlands
| | - Kim M Smits
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 5800, 6202 AZ, Maastricht, The Netherlands
| | - Leo J Schouten
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 616, 6200 MD, Maastricht, The Netherlands
| | - Matty P Weijenberg
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 616, 6200 MD, Maastricht, The Netherlands
| | - Heike I Grabsch
- Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 5800, 6202 AZ, Maastricht, The Netherlands.
- Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK.
| | - Piet A van den Brandt
- Department of Epidemiology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, P.O. BOX 616, 6200 MD, Maastricht, The Netherlands.
- Department of Epidemiology, Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Center+, Maastricht, The Netherlands.
| |
Collapse
|
8
|
Xu T, Wu K, Shi J, Ji L, Song X, Tao G, Zheng S, Zhang L, Jiang B. LINC00858 promotes colon cancer progression through activation of STAT3/5 signaling by recruiting transcription factor RAD21 to upregulate PCNP. Cell Death Dis 2022; 8:228. [PMID: 35468892 PMCID: PMC9038718 DOI: 10.1038/s41420-022-00832-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 12/02/2022]
Abstract
The purpose of our investigation is to explore the putative molecular mechanisms underpinning LINC00858 involvement in colon cancer. The expression of LINC00858 in TCGA data was identified using the GEPIA website. Colon cancer cancerous tissues were clinically collected. The expression of LINC00858, RAD21, and PCNP in colon tissues or cells was determined using RT-qPCR. The interactions among LINC00858, RAD21, and PCNP promoter region were determined by means of RNA pull down, RIP, and ChIP assays. Cell proliferative, apoptotic, invasive, and migrated capabilities were evaluated. Western blot was conducted to determine RAD21, PCNP, phosphorylated (p)-STAT3, STAT3, p-STAT5 and STAT5 and apoptosis related proteins. A nude mouse model of colon cancer was constructed and tumorigenesis of colon cancer cells was observed. LINC00858 was upregulated in cancerous tissues and cells. LINC00858 recruited the transcription factor RAD21. Overexpression of LINC00858 promoted the binding of RAD21 and PCNP promoter region, which increased the expression of PCNP. Silencing of RAD21 or PCNP reversed the promoting effect of LINC00858 on the disease initiation and development. PCNP silencing inhibited proliferative ability and promoted apoptotic ability of cancerous cells via STAT3/5 inhibition, which was reversed by colivelin-activated STAT3. In vivo experiments further verified that LINC00858 enhanced the tumorigenicity of colon cancer cells in vivo by regulating the RAD21/PCNP/STAT3/5 axis. It indicated the promoting role of LINC00858 in colon cancer progression though activating PCNP-mediated STAT3/5 pathway by recruiting RAD21.
Collapse
Affiliation(s)
- Ting Xu
- The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, P. R. China
| | - Kun Wu
- Department of Gastrointestinal Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, P. R. China
| | - Jin Shi
- Department of Gastrointestinal Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, P. R. China
| | - Lindong Ji
- Department of Gastrointestinal Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, P. R. China
| | - Xudong Song
- Department of Gastrointestinal Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, P. R. China
| | - Guoquan Tao
- Department of Gastrointestinal Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, P. R. China.
| | - Shutao Zheng
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P. R. China
| | - Li Zhang
- VIP Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P. R. China
| | - Baofei Jiang
- Department of Gastrointestinal Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, P. R. China.
| |
Collapse
|
9
|
Haupt S, Niedrist T, Sourij H, Schwarzinger S, Moser O. The Impact of Exercise on Telomere Length, DNA Methylation and Metabolic Footprints. Cells 2022; 11:153. [PMID: 35011715 PMCID: PMC8750279 DOI: 10.3390/cells11010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/05/2023] Open
Abstract
Aging as a major risk factor influences the probability of developing cancer, cardiovascular disease and diabetes, amongst others. The underlying mechanisms of disease are still not fully understood, but research suggests that delaying the aging process could ameliorate these pathologies. A key biological process in aging is cellular senescence which is associated with several stressors such as telomere shortening or enhanced DNA methylation. Telomere length as well as DNA methylation levels can be used as biological age predictors which are able to detect excessive acceleration or deceleration of aging. Analytical methods examining aging are often not suitable, expensive, time-consuming or require a high level of technical expertise. Therefore, research focusses on combining analytical methods which have the potential to simultaneously analyse epigenetic, genomic as well as metabolic changes.
Collapse
Affiliation(s)
- Sandra Haupt
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany;
| | - Tobias Niedrist
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8010 Graz, Austria;
| | - Harald Sourij
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria;
| | - Stephan Schwarzinger
- NBNC—North Bavarian NMR-Centre, University of Bayreuth, 95440 Bayreuth, Germany;
| | - Othmar Moser
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany;
- Interdisciplinary Metabolic Medicine Trials Unit, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria;
| |
Collapse
|
10
|
Sikavi DR, Nguyen LH, Haruki K, Ugai T, Ma W, Wang DD, Thompson KN, Yan Y, Branck T, Wilkinson JE, Akimoto N, Zhong R, Lau MC, Mima K, Kosumi K, Morikawa T, Rimm EB, Garrett WS, Izard J, Cao Y, Song M, Huttenhower C, Ogino S, Chan AT. The Sulfur Microbial Diet and Risk of Colorectal Cancer by Molecular Subtypes and Intratumoral Microbial Species in Adult Men. Clin Transl Gastroenterol 2021; 12:e00338. [PMID: 34333506 PMCID: PMC8323793 DOI: 10.14309/ctg.0000000000000338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/05/2021] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION We recently described the sulfur microbial diet, a pattern of intake associated with increased gut sulfur-metabolizing bacteria and incidence of distal colorectal cancer (CRC). We assessed whether this risk differed by CRC molecular subtypes or presence of intratumoral microbes involved in CRC pathogenesis (Fusobacterium nucleatum and Bifidobacterium spp.). METHODS We performed Cox proportional hazards modeling to examine the association between the sulfur microbial diet and incidence of overall and distal CRC by molecular and microbial subtype in the Health Professionals Follow-Up Study (1986-2012). RESULTS We documented 1,264 incident CRC cases among 48,246 men, approximately 40% of whom had available tissue data. After accounting for multiple hypothesis testing, the relationship between the sulfur microbial diet and CRC incidence did not differ by subtype. However, there was a suggestion of an association by prostaglandin synthase 2 (PTGS2) status with a multivariable adjusted hazard ratio for highest vs lowest tertile of sulfur microbial diet scores of 1.31 (95% confidence interval: 0.99-1.74, Ptrend = 0.07, Pheterogeneity = 0.04) for PTGS2-high CRC. The association of the sulfur microbial diet with distal CRC seemed to differ by the presence of intratumoral Bifidobacterium spp. with an adjusted hazard ratio for highest vs lowest tertile of sulfur microbial diet scores of 1.65 (95% confidence interval: 1.14-2.39, Ptrend = 0.01, Pheterogeneity = 0.03) for Bifidobacterium-negative distal CRC. We observed no apparent heterogeneity by other tested molecular markers. DISCUSSION Greater long-term adherence to the sulfur microbial diet could be associated with PTGS2-high and Bifidobacterium-negative distal CRC in men. Additional studies are needed to further characterize the role of gut microbial sulfur metabolism and CRC.
Collapse
Affiliation(s)
- Daniel R. Sikavi
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Long H. Nguyen
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Koichiro Haruki
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tomotaka Ugai
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Wenjie Ma
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Dong D. Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kelsey N. Thompson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Yan Yan
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Tobyn Branck
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jeremy E. Wilkinson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Naohiko Akimoto
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rong Zhong
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mai Chan Lau
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kosuke Mima
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Keisuke Kosumi
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Teppei Morikawa
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Eric B. Rimm
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Wendy S. Garrett
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jacques Izard
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, Missouri, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri, USA
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cancer Immunology and Cancer Epidemiology Programs, Dana-Farber Harvard Cancer Center, Boston, Massachusetts, USA
| | - Andrew T. Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Advani SM, Swartz MD, Loree J, Davis JS, Sarsashek AM, Lam M, Lee MS, Bressler J, Lopez DS, Daniel CR, Morris V, Shureqi I, Kee B, Dasari A, Vilar E, Overman M, Hamilton S, Maru D, Braithwaite D, Kopetz S. Epidemiology and Molecular-Pathologic Characteristics of CpG Island Methylator Phenotype (CIMP) in Colorectal Cancer. Clin Colorectal Cancer 2021; 20:137-147.e1. [PMID: 33229221 DOI: 10.1016/j.clcc.2020.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND CpG island methylator phenotype (CIMP) forms a distinct epigenetic phenotype in colorectal cancer (CRC). Though associated with distinct clinicopathologic characteristics, limited evidence exists of the association of CIMP with patient's reported lifestyle factors and tumor molecular characteristics. We assessed the associations of these characteristics in a pooled analysis of CRC patients. PATIENTS AND METHODS We pooled data from 3 CRC patient cohorts: Assessment of Targeted Therapies Against Colorectal Cancer (ATTACC), biomarker-based protocol (Integromics), and The Cancer Genome Atlas (TCGA). CIMP was measured using the classical 6-gene methylated-in-tumor (MINT) marker panel (MINT1, MINT2, MINT31, p14, p16, and MLH1) in ATTACC and genome-wide human methylation arrays in Integromics and TCGA, respectively. CIMP-High (CIMP-H) was defined as ≥ 3 of 6 methylated markers in ATTACC. In TCGA and Integromics, CIMP-H group was defined on the basis of clusters of methylation profiles and high levels of methylation in tumor samples. Baseline comparisons of characteristics across CIMP groups (CIMP-H vs. CIMP-0) were performed by Student t test or chi-square test for continuous or categorical variables, respectively. Further logistic regression analyses were performed to compute the odds ratio (OR) of these associations. RESULTS Pooled prevalence of CIMP-H was 22% across 3 data sets. CIMP-H CRC tumors were associated with older age at diagnosis (OR, 1.02; 95% confidence interval [CI], 1.01, 1.03), microsatellite instability-high (MSI-H) status (OR, 9.15; 95% CI, 4.45, 18.81), BRAF mutation (OR, 7.70; 95% CI, 4.98, 11.87), right-sided tumor location (OR, 2.40; 95% CI, 1.78, 3.22), poor differentiation (OR, 2.94; 95% CI, 1.95, 4.45), and mucinous histology (OR, 2.47; 95% CI, 1.77, 3.47), as reported previously in the literature. CIMP-H tumors were also found to be associated with self-reported history of alcohol consumption (OR, ever vs. never, 1.58; 95% CI, 1.07, 2.34). Pathologically, CIMP-H tumors were associated with the presence of intraepithelial lymphocytes (OR, 3.31; 95% CI, 1.41, 7.80) among patients in the Integromics cohort. CONCLUSION CIMP-H tumors were associated with history of alcohol consumption and presence of intraepithelial lymphocytes. In addition, we confirmed the previously known association of CIMP with age, MSI-H status, BRAF mutation, sidedness, and mucinous histology. Molecular pathologic epidemiology associations help us explore the underlying association of lifestyle and clinical factors with molecular subsets like CIMP and help guide cancer prevention and treatment strategies.
Collapse
Affiliation(s)
- Shailesh M Advani
- Social Behavioral Research Branch, National Human Genome Research Institute, National Institute of Health, Bethesda, MD; Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Oncology, Georgetown University School of Medicine, Washington, DC.
| | - Michael D Swartz
- Department of Biostatistics and Data Science, University of Texas Health Science Center at Houston, Houston, TX
| | - Jonathan Loree
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jennifer S Davis
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Amir Mehvarz Sarsashek
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Lam
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Sangmin Lee
- Division of Gastrointestinal Oncology, University of North Carolina Chapel Hill, Chapel Hill, NC
| | - Jan Bressler
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston, School of Public Health, Houston, TX
| | - David S Lopez
- Department of Preventive Medicine and Population Health, UTMB School of Medicine, Galveston, TX
| | - Carrie R Daniel
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Van Morris
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Imad Shureqi
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bryan Kee
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Arvind Dasari
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael Overman
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Stanley Hamilton
- Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dipen Maru
- Division of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dejana Braithwaite
- Department of Oncology, Georgetown University School of Medicine, Washington, DC
| | - Scott Kopetz
- Division of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
12
|
Long non-coding RNA DPP10-AS1 exerts anti-tumor effects on colon cancer via the upregulation of ADCY1 by regulating microRNA-127-3p. Aging (Albany NY) 2021; 13:9748-9765. [PMID: 33744851 PMCID: PMC8064199 DOI: 10.18632/aging.202729] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023]
Abstract
Herein we hypothesized that DPP10-AS1 could affect the development of colon cancer via the interaction with miR-127-3p and adenylate cyclase 1 (ADCY1). After sorting of CD133 positive cells, sphere formation, colony formation, proliferation, invasion, migration, and apoptosis were detected to explore the involvement of DPP10-AS1 and miR-127-3p in the colon cancer stem cell (CCSC) properties through gain- and loss-of function approaches. Furthermore, tumor xenograft in nude mice was conducted to investigate the effect of DPP10-AS1 and miR-127-3p on tumor growth in vivo. Poorly expressed DPP10-AS1 and ADCY1, while highly expressed miR-127-3p were found in CCSCs. Low expression of DPP10-AS1 was correlated with TNM stage, lymphatic node metastasis, and tumor differentiation. Upregulation of DPP10-AS1 increased ADCY1 protein expression, decreased the protein expression of CCSC-related factors, inhibited sphere formation, colony formation, proliferation, invasion and migration, and accelerated apoptosis of HT-29 and SW480 cells by suppressing the expression of miR-127-3p. Further, the above in vitro findings were also confirmed by in vivo assays. Taken together, this study demonstrates that DPP10-AS1 inhibits CCSC proliferation by regulating miR-127-3p and ADCY1, providing fresh insight into a promising novel treatment strategy for colon cancer.
Collapse
|
13
|
Yari A, Afzali A, Aalipour M, Nakheai M, Zahedi MJ. KRAS and BRAF mutations in Iranian colorectal cancer patients: A systematic review and meta-analysis. CASPIAN JOURNAL OF INTERNAL MEDICINE 2021; 11:355-369. [PMID: 33680376 PMCID: PMC7911761 DOI: 10.22088/cjim.11.4.355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background: Mutations in the EGFR signaling pathway play an important role in the development of colorectal cancer (CRC). Mutations in these genes, like KRAS and BRAF, affect the treatment strategies and associated with poor prognosis and relative resistance to anti-EGFR therapies. Our aim was to conduct a systematic and meta-analysis on all studies that have been conducted on the prevalence of these gene mutations in Iranian CRC patients. Methods: Four science citation index databases (MEDLINE, EMBASE, Web of Science and Cochrane library) and local databases were searched up to March 2018 with related keywords. Two reviewers independently screened and extracted the data. Quality of all included studies was assessed using an adapted checklist from STROBE. A random-effect model was used to calculate the total prevalence of KRAS and BRAF mutations in CRC subjects by the event rate (ER). Meta-regression was utilized to explore heterogeneity causes. Results: In total, from 573 records, 23 eligible studies (2662 patients) were included for data extraction and analysis. In 18 of 23 included studies, the prevalence of KRAS mutations was 33.9% (95% CI=30.1-37.9) with I2=65.17 (p<0.001). The occurrence of KRAS mutations in codon 12 and 13 was 76.9% (95% CI = 70.4-82.3%) with I2=84.88 (p<0.001) and 23.5% (95% CI=17.9-30.3) with I2=85.85 (p<0.001), respectively. In 9 of 23 studies, the BRAF mutation rate was 3.2% (95% CI=0.003-13.6) with I2=88.61 (p<0.001). Conclusion: The prevalence of these mutations in CRC patients shows a significant difference in the different regions of Iran, which is probably due to environmental and racial factors.
Collapse
Affiliation(s)
- Abolfazl Yari
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.,Department of Medical Genetics, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Asiyeh Afzali
- Department of Medical Laboratory of Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mostafa Aalipour
- Department of Immunology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehran Nakheai
- Department of Epidemiology and Biostatistics, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Javad Zahedi
- Gastroenterology and Hepatology Research Center, Department of Internal Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
14
|
Hidaka A, Harrison TA, Cao Y, Sakoda LC, Barfield R, Giannakis M, Song M, Phipps AI, Figueiredo JC, Zaidi SH, Toland AE, Amitay EL, Berndt SI, Borozan I, Chan AT, Gallinger S, Gunter MJ, Guinter MA, Harlid S, Hampel H, Jenkins MA, Lin Y, Moreno V, Newcomb PA, Nishihara R, Ogino S, Obón-Santacana M, Parfrey PS, Potter JD, Slattery ML, Steinfelder RS, Um CY, Wang X, Woods MO, Van Guelpen B, Thibodeau SN, Hoffmeister M, Sun W, Hsu L, Buchanan DD, Campbell PT, Peters U. Intake of Dietary Fruit, Vegetables, and Fiber and Risk of Colorectal Cancer According to Molecular Subtypes: A Pooled Analysis of 9 Studies. Cancer Res 2020; 80:4578-4590. [PMID: 32816852 PMCID: PMC7572895 DOI: 10.1158/0008-5472.can-20-0168] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/12/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022]
Abstract
Protective associations of fruits, vegetables, and fiber intake with colorectal cancer risk have been shown in many, but not all epidemiologic studies. One possible reason for study heterogeneity is that dietary factors may have distinct effects by colorectal cancer molecular subtypes. Here, we investigate the association of fruit, vegetables, and fiber intake with four well-established colorectal cancer molecular subtypes separately and in combination. Nine observational studies including 9,592 cases with molecular subtypes for microsatellite instability (MSI), CpG island methylator phenotype (CIMP), and somatic mutations in BRAF and KRAS genes, and 7,869 controls were analyzed. Both case-only logistic regression analyses and polytomous logistic regression analyses (with one control set and multiple case groups) were used. Higher fruit intake was associated with a trend toward decreased risk of BRAF-mutated tumors [OR 4th vs. 1st quartile = 0.82 (95% confidence interval, 0.65-1.04)] but not BRAF-wildtype tumors [1.09 (0.97-1.22); P difference as shown in case-only analysis = 0.02]. This difference was observed in case-control studies and not in cohort studies. Compared with controls, higher fiber intake showed negative association with colorectal cancer risk for cases with microsatellite stable/MSI-low, CIMP-negative, BRAF-wildtype, and KRAS-wildtype tumors (P trend range from 0.03 to 3.4e-03), which is consistent with the traditional adenoma-colorectal cancer pathway. These negative associations were stronger compared with MSI-high, CIMP-positive, BRAF-mutated, or KRAS-mutated tumors, but the differences were not statistically significant. These inverse associations for fruit and fiber intake may explain, in part, inconsistent findings between fruit or fiber intake and colorectal cancer risk that have previously been reported. SIGNIFICANCE: These analyses by colorectal cancer molecular subtypes potentially explain the inconsistent findings between dietary fruit or fiber intake and overall colorectal cancer risk that have previously been reported.
Collapse
Affiliation(s)
- Akihisa Hidaka
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Richard Barfield
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mingyang Song
- Departments of Epidemiology and Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Syed H Zaidi
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Amanda E Toland
- Departments of Cancer Biology and Genetics and Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Efrat L Amitay
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ivan Borozan
- Ontario Institute for Cancer Research, Toronto, Canada
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Mark A Guinter
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Heather Hampel
- Departments of Cancer Biology and Genetics and Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- School of Public Health, University of Washington, Seattle, Washington
| | - Reiko Nishihara
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Shuji Ogino
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mireia Obón-Santacana
- Oncology Data Analytics Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | | | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Robert S Steinfelder
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Caroline Y Um
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Xiaoliang Wang
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John's, Canada
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wei Sun
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Daniel D Buchanan
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
- Genetic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| |
Collapse
|
15
|
Hwang S, Kang D, Lee M, Byeon JY, Park H, Park D, Kim K, Lee S, Chu SH, Kim NK, Jeon JY. Changes in DNA methylation after 6‐week exercise training in colorectal cancer survivors: A preliminary study. Asia Pac J Clin Oncol 2020; 18:52-60. [DOI: 10.1111/ajco.13482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/04/2020] [Indexed: 01/16/2023]
Affiliation(s)
- Seo‐Hyeon Hwang
- Exercise Medicine Center for Diabetes and Cancer Patients Institute of Convergence of Science (ICONS) Yonsei University Seoul South Korea
- Department of Sport Industry Studies Yonsei University Seoul South Korea
| | - Dong‐Woo Kang
- Behavioural Medicine Laboratory, Faculty of Kinesiology, Sport, and Recreation University of Alberta Edmonton AB Canada
| | - Mi‐Kyung Lee
- Exercise Medicine Center for Diabetes and Cancer Patients Institute of Convergence of Science (ICONS) Yonsei University Seoul South Korea
- Department of Sport Industry Studies Yonsei University Seoul South Korea
| | - Ji Yong Byeon
- Department of Sport Industry Studies Yonsei University Seoul South Korea
| | - Hanui Park
- Department of Sport Industry Studies Yonsei University Seoul South Korea
| | - Dong‐Hyuk Park
- Department of Sport Industry Studies Yonsei University Seoul South Korea
| | - Kyung‐Chul Kim
- Department of healthy aging Gangnam Major Clinic Seoul South Korea
| | - Seung‐Tae Lee
- Department of Laboratory Medicine Yonsei University College of Medicine Seoul South Korea
| | - Sang Hui Chu
- Department of Clinical Nursing Science, College of Nursing, Biobehavioural Research Center Yonsei University Nursing Policy Research Institute Seoul South Korea
| | - Nam Kyu Kim
- Department of Surgery Yonsei University College of Medicine Seoul South Korea
| | - Justin Y. Jeon
- Exercise Medicine Center for Diabetes and Cancer Patients Institute of Convergence of Science (ICONS) Yonsei University Seoul South Korea
- Department of Sport Industry Studies Yonsei University Seoul South Korea
- Cancer Prevention Center Shinchon Severance Hospital Seoul South Korea
| |
Collapse
|
16
|
Maugeri A, Barchitta M. How Dietary Factors Affect DNA Methylation: Lesson from Epidemiological Studies. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E374. [PMID: 32722411 PMCID: PMC7466216 DOI: 10.3390/medicina56080374] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Abstract
Over the past decades, DNA methylation has been proposed as a molecular mechanism underlying the positive or negative effects of diet on human health. Despite the number of studies on this topic is rapidly increasing, the relationship between dietary factors, changes in DNA methylation and health outcomes remains unclear. In this review, we summarize the literature from observational studies (cross-sectional, retrospective, or prospective) which examined the association of dietary factors (nutrients, foods, and dietary patterns) with DNA methylation markers among diseased or healthy people during the lifetime. Next, we discuss the methodological pitfalls by examining strengths and limitations of published studies. Finally, we close with a discussion on future challenges of this field of research, raising the need for large-size prospective studies evaluating the association between diet and DNA methylation in health and diseases for appropriate public health strategies.
Collapse
Affiliation(s)
- Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy;
| | | |
Collapse
|
17
|
Amitay EL, Carr PR, Jansen L, Walter V, Roth W, Herpel E, Kloor M, Bläker H, Chang-Claude J, Brenner H, Hoffmeister M. Association of Aspirin and Nonsteroidal Anti-Inflammatory Drugs With Colorectal Cancer Risk by Molecular Subtypes. J Natl Cancer Inst 2020; 111:475-483. [PMID: 30388256 DOI: 10.1093/jnci/djy170] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/21/2018] [Accepted: 08/24/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Regular use of aspirin and nonsteroidal anti-inflammatory drugs (NSAIDs) for a longer period has been inversely associated with colorectal cancer (CRC) risk. However, CRC is a heterogenic disease, and little is known regarding the associations with molecular pathological subtypes. METHODS Analyses included 2444 cases with a first diagnosis of CRC and 3130 healthy controls from a German population-based case control study. Tumor tissue samples were analyzed for major molecular pathological features: microsatellite instability (MSI), CpG island methylator phenotype, B-Raf proto-oncogene serine/threonine kinase (BRAF) mutation, and Kirsten rat sarcoma viral oncogene homolog gene (KRAS) mutation. Information on past and current use of NSAIDs, including aspirin, was obtained by standardized interviews. Multinomial logistic regression models were used to calculate adjusted odds ratios (ORs) and 95% confidence intervals (CIs). All statistical tests were two-sided. RESULTS Regular use of NSAIDs was associated with a reduced CRC risk if tumors were MSS (OR = 0.66, 95% CI = 0.57 to 0.77), BRAF wildtype (OR = 0.67, 95% CI = 0.58 to 0.78), or KRAS wildtype (OR = 0.68, 95% CI = 0.58 to 0.80). Regular NSAID use was less clearly and mostly not statistically significantly associated with CRC risk reduction for MSI-high, BRAF-mutated, or KRAS-mutated CRC. In more specific analyses on MSI-high CRC, regular use of NSAIDs was associated with much stronger risk reduction in the absence of BRAF or KRAS mutations (OR = 0.34, 95% CI = 0.18 to 0.65) but not with KRAS- or BRAF-mutated MSI-high CRC (Pheterogeneity < .001). Results for just aspirin use were similar. CONCLUSION Our study suggests variation in risk reduction of CRC subtypes following regular use of NSAIDs and aspirin. Regular use of NSAIDs and aspirin may be more strongly associated with risk reduction of MSI-high CRC without KRAS or BRAF mutation.
Collapse
Affiliation(s)
- Efrat L Amitay
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Prudence R Carr
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Lina Jansen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Viola Walter
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Esther Herpel
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,NCT Tissue Bank, National Center for Tumor Diseases, Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hendrik Bläker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany.,Division of Preventive Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany.,German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Hermann Brenner
- Institute of Pathology, Charité University Medicine, Berlin, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
18
|
Grape pomace inhibits colon carcinogenesis by suppressing cell proliferation and inducing epigenetic modifications. J Nutr Biochem 2020; 84:108443. [PMID: 32629240 DOI: 10.1016/j.jnutbio.2020.108443] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/23/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Grape pomace (GP), a by-product of the wine and juice industry, is rich in bioflavonoids and dietary fibers. We hypothesized that GP has protective effects against colitis-associated colorectal cancer (CRC). Nine-week-old female mice were fed a control diet (CON) or CON with 5% grape pomace (GP) for 2 weeks, when mice were subjected to azoxymethane (AOM)/dextran sulfate sodium (DSS) induced-CRC induction. GP supplementation ameliorated the disease activity index (DAI) score, reduced tumor number, tumor size and pathological scores in AOM/DSS treated mice. Furthermore, dietary GP suppressed colonic expression of inflammatory cytokines, IL-1β and TNF-α, and inhibited NF-κB inflammatory signaling, while increased anti-inflammatory cytokine TGF-β mRNA expression. Colorectal inflammation is known to enhance Wnt signaling and cell proliferation. In agreement, the content of β-catenin, a key downstream mediator of Wnt signaling, was reduced as was the expression of Cyclin D1, phosphorylation and content of p53 and PCNA level in GP-fed mice. In addition, GP reduced the expression of ALDH1, a marker of cell stemness, and increased the expression of Cdx2, a key transcription factor initiating epithelial cell differentiation, DNA methylation of the promoter region of Cdx2 gene and hypermethylation of CpG island methylator phenotype (CIMP), which commonly occurs during CRC carcinogenesis, was alleviated in the GP group. In conclusion, GP supplementation suppressed colitis-associated CRC carcinogenesis, which was associated with the suppression of inflammation and cell proliferation and the enhancement of DNA demethylation in Cdx2 and CIMP genes in the colon. These data suggest that dietary GP supplementation has preventive effects against colorectal carcinogenesis.
Collapse
|
19
|
Barry EL, Fedirko V, Baron JA. NSAIDs and Colorectal Cancer Phenotypes: What Now? J Natl Cancer Inst 2020; 111:440-441. [PMID: 30388268 DOI: 10.1093/jnci/djy174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Elizabeth L Barry
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Veronika Fedirko
- Department of Epidemiology, Rollins School of Public Health, Winship Cancer Institute, Emory University, Atlanta, GA
| | - John A Baron
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH.,Department of Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC
| |
Collapse
|
20
|
Amitay EL, Carr PR, Jansen L, Roth W, Alwers E, Herpel E, Kloor M, Bläker H, Chang-Claude J, Brenner H, Hoffmeister M. Smoking, alcohol consumption and colorectal cancer risk by molecular pathological subtypes and pathways. Br J Cancer 2020; 122:1604-1610. [PMID: 32225169 PMCID: PMC7250912 DOI: 10.1038/s41416-020-0803-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
Background Smoking and alcohol increase risk for colorectal malignancies. However, colorectal cancer (CRC) is a heterogenic disease and associations with the molecular pathological pathways are unclear. Methods This population-based case–control study includes 2444 cases with first-diagnosis CRC and 2475 controls. Tumour tissue was analysed for MSI (microsatellite instability), CIMP (CpG island methylator phenotype), BRAF (B-Raf proto-oncogene serine/threonine kinase gene) and KRAS (Kirsten rat sarcoma viral oncogene homologue gene) mutations. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were estimated for associations between alcohol and smoking and CRC molecular subtypes and pathways. Results Current smoking showed higher ORs for MSI-high (OR = 2.79, 95% CI: 1.86–4.18) compared to MSS (OR = 1.41, 1.14–1.75, p-heterogeneity (p-het) = 0.001), BRAF-mutated (mut) (OR = 2.40, 1.41–4.07) compared to BRAF-wild type (wt) (OR = 1.52, 1.24–1.88, p-het = 0.074), KRAS-wt (OR = 1.70, 1.36–2.13) compared to KRAS-mut (OR = 1.26, 0.95–1.68, p-het = 0.039) and CIMP-high (OR = 2.01, 1.40–2.88) compared to CIMP-low/negative CRC (OR = 1.50, 1.22–1.85, p-het=0.101). Current smoking seemed more strongly associated with sessile serrated pathway (CIMP-high + BRAF-mut; OR = 2.39, 1.27–4.52) than with traditional pathway CRC (MSS + CIMP-low/negative + BRAF-wt; OR = 1.50, 1.16–1.94) and no association was observed with alternate pathway CRC (MSS + CIMP-low/negative + KRAS-wt; OR = 1.08, 0.77–1.43). No heterogeneity was observed in alcohol consumption association by molecular subtypes. Conclusions In this large case–control study, smoking was more strongly associated with MSI-high and KRAS-wt CRC and with cases showing features of the sessile serrated pathway. Association patterns were less clear for alcohol consumption.
Collapse
Affiliation(s)
- Efrat L Amitay
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Prudence R Carr
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lina Jansen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Elizabeth Alwers
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Esther Herpel
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,NCT Tissue Bank, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hendrik Bläker
- Institute of Pathology, University hospital Leipzig, Leipzig, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
21
|
Carr PR, Amitay EL, Jansen L, Alwers E, Roth W, Herpel E, Kloor M, Schneider M, Bläker H, Chang-Claude J, Brenner H, Hoffmeister M. Association of BMI and major molecular pathological markers of colorectal cancer in men and women. Am J Clin Nutr 2020; 111:562-569. [PMID: 31897467 DOI: 10.1093/ajcn/nqz315] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Observational studies have consistently shown that a high BMI is associated with increased risk of colorectal cancer (CRC). However, the underlying mechanisms linking obesity to CRC remain unclear. OBJECTIVES To investigate the associations of BMI and CRC by major molecular pathological subtypes of CRC. METHODS This analysis included 2407 cases and 2454 controls from a large German population-based case-control study. Information on recent weight and height as well as other demographic and lifestyle data were obtained by standardized interviews. Multinomial logistic regression was used to estimate ORs and 95% CIs for the associations between BMI and risk of CRC by major molecular pathological features: microsatellite instability (MSI), CpG island methylator phenotype (CIMP), B-Raf proto-oncogene serine/threonine kinase (BRAF) mutation, and Kirsten rat sarcoma viral oncogene homolog gene (KRAS) mutation. RESULTS Among women, a higher BMI was differentially and more strongly associated with risk of MSI CRC (OR per 5 kg/m2: 1.69; 95% CI: 1.34, 2.12; Pheterogeneity ≤ 0.001), CIMP-high CRC (OR per 5 kg/m2: 1.57; 95% CI: 1.30, 1.89; Pheterogeneity ≤ 0.001), BRAF-mutated CRC (OR per 5 kg/m2: 1.56; 95% CI: 1.22, 1.99; Pheterogeneity = 0.04), and KRAS-wildtype CRC (OR per 5 kg/m2: 1.35; 95% CI: 1.17, 1.54; Pheterogeneity = 0.01), compared with the risk of CRC in subjects with the molecular feature counterpart. In men, no meaningful differences in CRC risk were observed for the investigated molecular feature pairs. For the association of BMI with MSI CRC, we observed effect modification by sex (Pinteraction = 0.04). Also, in women, the risk of CRC with the serrated pathway features was more strongly increased with higher BMI than risk of CRC with the traditional pathway features (OR per 5 kg/m2: 1.73; 95% CI: 1.28, 2.34; Pheterogeneity = 0.01). CONCLUSIONS In women, the relation between BMI and MSI-high CRC seems to be stronger than that between BMI and microsatellite-stable CRC. However, a validation in an independent cohort is needed. This observational study was registered at the German Clinical Trials Register (http://www.drks.de; study ID: DRKS00011793), an approved primary register in the WHO network.
Collapse
Affiliation(s)
- Prudence R Carr
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Efrat L Amitay
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Lina Jansen
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Elizabeth Alwers
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany.,Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Esther Herpel
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,NCT Tissue Bank, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Schneider
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Hendrik Bläker
- Institute of Pathology, Charité University Medicine, Berlin, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany.,Genetic Tumor Epidemiology Group, University Medical Center Hamburg-Eppendorf, University Cancer Center Hamburg, Hamburg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany.,Division of Preventive Oncology, German Cancer Research Center, Heidelberg, Germany.,German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
22
|
Celarain N, Tomas-Roig J. Aberrant DNA methylation profile exacerbates inflammation and neurodegeneration in multiple sclerosis patients. J Neuroinflammation 2020; 17:21. [PMID: 31937331 PMCID: PMC6961290 DOI: 10.1186/s12974-019-1667-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune and demyelinating disease of the central nervous system characterised by incoordination, sensory loss, weakness, changes in bladder capacity and bowel function, fatigue and cognitive impairment, creating a significant socioeconomic burden. The pathogenesis of MS involves both genetic susceptibility and exposure to distinct environmental risk factors. The gene x environment interaction is regulated by epigenetic mechanisms. Epigenetics refers to a complex system that modifies gene expression without altering the DNA sequence. The most studied epigenetic mechanism is DNA methylation. This epigenetic mark participates in distinct MS pathophysiological processes, including blood-brain barrier breakdown, inflammatory response, demyelination, remyelination failure and neurodegeneration. In this study, we also accurately summarised a list of environmental factors involved in the MS pathogenesis and its clinical course. A literature search was conducted using MEDLINE through PubMED and Scopus. In conclusion, an exhaustive study of DNA methylation might contribute towards new pharmacological interventions in MS by use of epigenetic drugs.
Collapse
Affiliation(s)
- Naiara Celarain
- Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEM), Dr. Josep Trueta University Hospital and Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
| | - Jordi Tomas-Roig
- Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEM), Dr. Josep Trueta University Hospital and Girona Biomedical Research Institute (IDIBGI), Girona, Spain.
| |
Collapse
|
23
|
He X, Wu K, Zhang X, Nishihara R, Cao Y, Fuchs CS, Giovannucci EL, Ogino S, Chan AT, Song M. Dietary intake of fiber, whole grains and risk of colorectal cancer: An updated analysis according to food sources, tumor location and molecular subtypes in two large US cohorts. Int J Cancer 2019; 145:3040-3051. [PMID: 31044426 PMCID: PMC7274214 DOI: 10.1002/ijc.32382] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/12/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023]
Abstract
Epidemiologic evidence relating fiber intake to colorectal cancer (CRC) remains inconclusive and data are limited on different food sources of fiber and heterogeneity by tumor subsite and molecular profile. We prospectively followed for CRC incidence 90,869 women from the Nurses' Health Study (1980-2012) and 47,924 men from the Health Professionals Follow-up Study (1986-2012), who completed a validated food frequency questionnaire every 4 years. Cox proportional hazards regression was used to examine the associations with CRC risk for total, cereal, fruit and vegetable fiber and whole grains. We also assessed the associations according to tumor subsites (proximal colon, distal colon and rectum) and molecular markers (microsatellite instability, BRAF mutation, CpG island methylator phenotype and KRAS mutation). We documented 3,178 CRC cases during 3,685,903 person-years of follow-up in the NHS and HPFS. Intake of total dietary fiber was not associated with CRC risk after multivariable adjustment in either women (hazard ratio [HR] comparing extreme deciles, 1.17; 95% CI, 0.92-1.48, ptrend = 0.55) or men (HR, 0.90; 95% CI, 0.67-1.21, ptrend = 0.47). Higher intake of cereal fiber and whole grains was associated with lower CRC risk in men with an HR of 0.75 (95% CI, 0.57-1.00) and 0.72 (95% CI, 0.54-0.96), respectively. No heterogeneity was detected by tumor subsite or molecular markers (pheterogeneity > 0.05). Higher intake of total dietary fiber within the range of a typical American diet is unlikely to substantially reduce CRC risk. The potential benefit of cereal fiber and whole grains in men warrants further confirmation.
Collapse
Affiliation(s)
- Xiaosheng He
- Department of Colorectal Surgery, the Six Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Reiko Nishihara
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yin Cao
- Division of Public Health Sciences, Department of Surgery, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Edward L. Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shuji Ogino
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew T. Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mingyang Song
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
24
|
Advani SM, Advani PS, Brown DW, DeSantis SM, Korphaisarn K, VonVille HM, Bressler J, Lopez DS, Davis JS, Daniel CR, Sarshekeh AM, Braithwaite D, Swartz MD, Kopetz S. Global differences in the prevalence of the CpG island methylator phenotype of colorectal cancer. BMC Cancer 2019; 19:964. [PMID: 31623592 PMCID: PMC6796359 DOI: 10.1186/s12885-019-6144-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023] Open
Abstract
Background CpG Island Methylator Phenotype (CIMP) is an epigenetic phenotype in CRC characterized by hypermethylation of CpG islands in promoter regions of tumor suppressor genes, leading to their transcriptional silencing and loss of function. While the prevalence of CRC differs across geographical regions, no studies have compared prevalence of CIMP-High phenotype across regions. The purpose of this project was to compare the prevalence of CIMP across geographical regions after adjusting for variations in methodologies to measure CIMP in a meta-analysis. Methods We searched PubMed, Medline, and Embase for articles focusing on CIMP published from 2000 to 2018. Two reviewers independently identified 111 articles to be included in final meta-analysis. We classified methods used to quantify CIMP into 4 categories: a) Classical (MINT marker) Panel group b) Weisenberg-Ogino (W-O) group c) Human Methylation Arrays group and d) Miscellaneous group. We compared the prevalence of CIMP across geographical regions after correcting for methodological variations using meta-regression techniques. Results The pooled prevalence of CIMP-High across all studies was 22% (95% confidence interval:21–24%; I2 = 94.75%). Pooled prevalence of CIMP-H across Asia, Australia, Europe, North America and South America was 22, 21, 21, 27 and 25%, respectively. Meta-regression analysis identified no significant differences in the prevalence of CIMP-H across geographical regions after correction for methodological variations. In exploratory analysis, we observed variations in CIMP-H prevalence across countries. Conclusion Although no differences were found for CIMP-H prevalence across countries, further studies are needed to compare the influence of demographic, lifestyle and environmental factors in relation to the prevalence of CIMP across geographical regions.
Collapse
Affiliation(s)
- Shailesh Mahesh Advani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0426, Houston, TX, 77030, USA. .,Cancer Prevention and Control Program, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, 20007, USA. .,Social Behavioral Research Branch, National Human Genome Research Institute, National Institute of Health, Bethesda, MD, 20892, USA.
| | - Pragati Shailesh Advani
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Institutes of Health, National Cancer Institute, Rockville, MD, 20850, USA
| | - Derek W Brown
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Stacia M DeSantis
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Krittiya Korphaisarn
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0426, Houston, TX, 77030, USA
| | - Helena M VonVille
- Library, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jan Bressler
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - David S Lopez
- Division of Urology- UTHealth McGovern Medical School, Houston, TX, 77030, USA.,Department of Preventive Medicine and Community Health, UTMB Health-School of Medicine, Galveston, TX, 77555-1153, USA
| | - Jennifer S Davis
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Carrie R Daniel
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Amir Mehrvarz Sarshekeh
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0426, Houston, TX, 77030, USA
| | - Dejana Braithwaite
- Cancer Prevention and Control Program, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, 20007, USA
| | - Michael D Swartz
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0426, Houston, TX, 77030, USA.
| |
Collapse
|
25
|
Hibler E, Huang L, Andrade J, Spring B. Impact of a diet and activity health promotion intervention on regional patterns of DNA methylation. Clin Epigenetics 2019; 11:133. [PMID: 31506096 PMCID: PMC6737702 DOI: 10.1186/s13148-019-0707-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Studies demonstrate the impact of diet and physical activity on epigenetic biomarkers, specifically DNA methylation. However, no intervention studies have examined the combined impact of dietary and activity changes on the blood epigenome. The objective of this study was to examine the impact of the Make Better Choices 2 (MBC2) healthy diet and activity intervention on patterns of epigenome-wide DNA methylation. The MBC2 study was a 9-month randomized controlled trial among adults aged 18-65 with non-optimal levels of health behaviors. The study compared three 12-week interventions to (1) simultaneously increase exercise and fruit/vegetable intake, while decreasing sedentary leisure screen time; (2) sequentially increase fruit/vegetable intake and decrease leisure screen time first, then increase exercise; (3) increase sleep and decrease stress (control). We collected blood samples at baseline, 3 and 9 months, and measured DNA methylation using the Illumina EPIC (850 k) BeadChip. We examined region-based differential methylation patterns using linear regression models with the false discovery rate of 0.05. We also conducted pathway analysis using gene ontology (GO), KEGG, and IPA canonical pathway databases. RESULTS We found no differences between the MBC2 population (n = 340) and the subsample with DNA methylation measured (n = 68) on baseline characteristics or the impact of the intervention on behavior change. We identified no differentially methylated regions at baseline between the control versus intervention groups. At 3 versus 9 months, we identified 154 and 298 differentially methylated regions, respectively, between controls compared to pooled samples from sequential and simultaneous groups. In the GO database, we identified two gene ontology terms related to hemophilic cell adhesion and cell-cell adhesion. In IPA analysis, we found pathways related to carcinogenesis including PI3K/AKT, Wnt/β-catenin, sonic hedgehog, and p53 signaling. We observed an overlap between 3 and 9 months, including the GDP-L-fucose biosynthesis I, methylmalonyl metabolism, and estrogen-mediated cell cycle regulation pathways. CONCLUSIONS The results demonstrate that the MBC2 diet and physical activity intervention impacts patterns of DNA methylation in gene regions related to cell cycle regulation and carcinogenesis. Future studies will examine DNA methylation as a biomarker to identify populations that may particularly benefit from incorporating health behavior change into plans for precision prevention.
Collapse
Affiliation(s)
- Elizabeth Hibler
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 North Lakeshore Drive, Chicago, IL, 60611, USA.
| | - Lei Huang
- Center for Research Informatics, Biological Sciences Division, University of Chicago, 900 E. 57th. Street, Chicago, IL, 60637, USA
| | - Jorge Andrade
- Center for Research Informatics, Biological Sciences Division, University of Chicago, 900 E. 57th. Street, Chicago, IL, 60637, USA
- Department of Pediatrics, The University of Chicago, 900 E. 57th. Street, Chicago, IL, 60637, USA
| | - Bonnie Spring
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 North Lakeshore Drive, Chicago, IL, 60611, USA
| |
Collapse
|
26
|
Deng W, Lu YF. Methylation of tumor suppressor genes and risk factors of colorectal cancer. Shijie Huaren Xiaohua Zazhi 2018; 26:2088-2095. [DOI: 10.11569/wcjd.v26.i36.2088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although the diagnostic methods and treatment options are continuously optimized, the incidence and mortality of colorectal cancer (CRC) are still rising. Therefore, "preventive treatment of disease" is the key to solving this problem. In recent years, hypermethylation of promoter CpG islands (CGIs) in tumor suppressor genes has been a hot research topic because it is reversible and early events in the development of CRC, and affects drug resistance, disease treatment, and patient prognosis. CRC risk factors such as poor dietary choice, lack of physical activity, excessive drinking, and unhealthy weight can regulate promoter CGI hypermethylation, which will help develop new methylation-related cancer prevention strategies. This article mainly introduces the significance and regulatory mechanism of methylation of tumor suppressor genes and its relationship with risk factors in CRC.
Collapse
Affiliation(s)
- Wei Deng
- Department of Gastroenterology, the Affiliated Hospital of Qinghai University, Xining 810000, Qinghai Province, China
| | - Yong-Fu Lu
- Department of Gastroenterology, the Affiliated Hospital of Qinghai University, Xining 810000, Qinghai Province, China
| |
Collapse
|
27
|
Offermans NSM, Ketcham SM, van den Brandt PA, Weijenberg MP, Simons CCJM. Alcohol intake, ADH1B and ADH1C genotypes, and the risk of colorectal cancer by sex and subsite in the Netherlands Cohort Study. Carcinogenesis 2018; 39:375-388. [PMID: 29390059 DOI: 10.1093/carcin/bgy011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/25/2018] [Indexed: 12/18/2022] Open
Abstract
The alcohol-colorectal cancer (CRC) association may differ by sex and ADH1B and ADH1C genotypes. ADH enzymes oxidize ethanol to acetaldehyde, both of which are human carcinogens. The Netherlands Cohort Study includes 120 852 participants, aged 55-69 years at baseline (1986), and has 20.3 years follow-up (case-cohort: nsubcohort = 4774; ncases = 4597). The baseline questionnaire included questions on alcohol intake at baseline and 5 years before. Using toenail DNA, available for ~75% of the cohort, we successfully genotyped six ADH1B and six ADH1C SNPs (nsubcohort = 3897; ncases = 3558). Sex- and subsite-specific Cox hazard ratios and 95% confidence intervals for CRC were estimated comparing alcohol categories, genotypes within drinkers and alcohol categories within genotype strata. We used a dominant genetic model and adjusted for multiple testing. Alcohol intake increased CRC risk in both sexes, though in women only in the (proximal) colon when in excess of 30 g/day. In male drinkers, ADH1B rs4147536 increased (distal) colon cancer risk. In female drinkers, ADH1C rs283415 increased proximal colon cancer risk. ADH1B rs3811802 and ADH1C rs4147542 decreased CRC risk in heavy (>30 g/day) and stable drinkers (compared to 5 years before baseline), respectively. Rs3811802 and rs4147542 significantly modified the alcohol-colon cancer association in women (Pfor interaction = 0.004 and 0.02, respectively). A difference in associations between genotype strata was generally clearer in men than women. In conclusion, men showed increased CRC risks across subsites and alcohol intake levels, while only colon cancer risk was increased in women at heavy intake levels. ADH1B rs3811802 and ADH1C rs4147542 significantly modified the alcohol-colon cancer association in women.
Collapse
Affiliation(s)
- Nadine S M Offermans
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Shannon M Ketcham
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Piet A van den Brandt
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.,Department of Epidemiology, CAPHRI - School for Public Health and Primary Care, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Matty P Weijenberg
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Colinda C J M Simons
- Department of Epidemiology, GROW - School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
28
|
Dolatkhah R, Somi MH, Shabanloei R, Farassati F, Fakhari A, Dastgiri S. Main Risk Factors Association with Proto-Oncogene Mutations in Colorectal Cancer. Asian Pac J Cancer Prev 2018; 19:2183-2190. [PMID: 30139223 PMCID: PMC6171391 DOI: 10.22034/apjcp.2018.19.8.2183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective: Although several factors have been shown to have etiological roles in colorectal cancer, few investigations
have addressed how and to what extent these factors affect the genetics and pathology of the disease. Precise relationships
with specific genetic mutations that could alter signaling pathways involved in colorectal cancer remain unknown.
We therefore aimed to investigate possible links between lifestyle, dietary habits, and socioeconomic factors and specific
mutations that are common in colorectal cancers. Methods: Data were retrieved from a baseline survey of lifestyle factors,
dietary behavior, and SES, as well as anthropometric evaluations during a physical examination, for 100 confirmed
primary sporadic colorectal cancer patients from Northwest Iran. Results: High socioeconomic status was significantly
associated with higher likelihood of a KRAS gene mutation (P < 0.05) (odds ratio: 3.01; 95% CI: 0.69–13.02). Consuming
carbohydrates and alcohol, working less, and having a sedentary lifestyle also increased the odds of having a KRAS
mutation. Conclusion: Although research has not yet described the exact relationships among genetic mutations with
different known risk factors in colorectal cancer, examples of the latter may have an impact on KRAS gene mutations.
Collapse
Affiliation(s)
- Roya Dolatkhah
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | | | | | | | | |
Collapse
|
29
|
Clinical, Pathological, and Molecular Characteristics of CpG Island Methylator Phenotype in Colorectal Cancer: A Systematic Review and Meta-analysis. Transl Oncol 2018; 11:1188-1201. [PMID: 30071442 PMCID: PMC6080640 DOI: 10.1016/j.tranon.2018.07.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND: CpG island methylator phenotype (CIMP) tumors, comprising 20% of colorectal cancers, are associated with female sex, age, right-sided location, and BRAF mutations. However, other factors potentially associated with CIMP have not been robustly examined. This meta-analysis provides a comprehensive assessment of the clinical, pathologic, and molecular characteristics that define CIMP tumors. METHODS: We conducted a comprehensive search of the literature from January 1999 through April 2018 and identified 122 articles, on which comprehensive data abstraction was performed on the clinical, pathologic, molecular, and mutational characteristics of CIMP subgroups, classified based on the extent of DNA methylation of tumor suppressor genes assessed using a variety of laboratory methods. Associations of CIMP with outcome parameters were estimated using pooled odds ratio or standardized mean differences using random-effects model. RESULTS: We confirmed prior associations including female sex, older age, right-sided tumor location, poor differentiation, and microsatellite instability. In addition to the recognized association with BRAF mutations, CIMP was also associated with PIK3CA mutations and lack of mutations in KRAS and TP53. Evidence of an activated immune response was seen with high rates of tumor-infiltrating lymphocytes (but not peritumoral lymphocytes), Crohn-like infiltrates, and infiltration with Fusobacterium nucleatum bacteria. Additionally, CIMP tumors were associated with advance T-stage and presence of perineural and lymphovascular invasion. CONCLUSION: The meta-analysis highlights key features distinguishing CIMP in colorectal cancer, including molecular characteristics of an active immune response. Improved understanding of this unique molecular subtype of colorectal cancer may provide insights into prevention and treatment.
Collapse
|
30
|
Zhou CB, Fang JY. The regulation of host cellular and gut microbial metabolism in the development and prevention of colorectal cancer. Crit Rev Microbiol 2018; 44:436-454. [PMID: 29359994 DOI: 10.1080/1040841x.2018.1425671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metabolism regulation is crucial in colorectal cancer (CRC) and has emerged as a remarkable field currently. The cellular metabolism of glucose, amino acids and lipids in CRC are all reprogrammed. Each of them changes tumour microenvironment, modulates bacterial composition and activity, and eventually promotes CRC development. Metabolites such as short chain fatty acids, secondary bile acids, N-nitroso compounds, hydrogen sulphide, polyphenols and toxins like fragilysin, FadA, cytolethal distending toxin and colibactin play a dual role in CRC. The relationship of gut microbe-metabolite is essential in remodelling intestinal microbial ecology composition and metabolic activity. It regulates the metabolism of colonic epithelial cells and changes the tumour microenvironment in CRC. Microbial metabolism manipulation has been considered to be potentially preventive in CRC, but more large-scale clinical trials are required before their application in clinical practice in the near future.
Collapse
Affiliation(s)
- Cheng-Bei Zhou
- a Division of Gastroenterology and Hepatology , Shanghai Jiao-Tong University School of Medicine Renji Hospital, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Gene. Shanghai Institute of Digestive Disease , Shanghai , China
| | - Jing-Yuan Fang
- a Division of Gastroenterology and Hepatology , Shanghai Jiao-Tong University School of Medicine Renji Hospital, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, State Key Laboratory of Oncogene and Related Gene. Shanghai Institute of Digestive Disease , Shanghai , China
| |
Collapse
|
31
|
Symvoulakis EK, Zaravinos A, Panutsopulos D, Zoras O, Papalambros E, Sigala F, Spandidos DA. Highly Conserved Sequence of Exon 15 BRAF Gene and KRAS Codon 12 Mutation among Greek Patients with Colorectal Cancer. Int J Biol Markers 2018; 22:12-8. [PMID: 17393356 DOI: 10.1177/172460080702200102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background The RAS/RAF/MEK/MAP kinase pathway is essential to intracellular signaling transduction regulating cell proliferation, differentiation and death. We investigated the occurrence of exon 15 BRAF and KRAS codon 12 mutations among Greek patients with colorectal cancer. Methods Sixty-one samples from patients with sporadic colorectal adenocarcinomas were studied for exon 15 BRAF mutations. DNA from surgically resected specimens was analyzed by a combination of polymerase chain reaction and direct sequencing. KRAS codon 12 mutational analysis was technically possible in 58 samples (58/61) by a combination of polymerase chain reaction and restriction fragment length polymorphism. Results No exon 15 BRAF mutations were detected in any of the colon cancer specimens. The frequency of KRAS codon 12 mutations was 29.3% (17/58). Patients aged <70 years more frequently presented carcinomas harboring KRAS codon 12 mutations than patients aged >70 years (p=0.028). Patients between 61 and 70 years of age were more likely to be carriers of this mutation (p=0.040). Conclusions Despite the limited study sample, our data suggest that BRAF mutations might be present less frequently than KRAS mutations in Greek patients with colorectal carcinomas. Further research involving larger patient series will be necessary to confirm these findings and to assess possible ethnic, environmental and lifestyle influences on BRAF and KRAS mutagenesis.
Collapse
Affiliation(s)
- E K Symvoulakis
- Laboratory of Virology, Medical School, University of Crete, Heraklion, Crete, Greece
| | | | | | | | | | | | | |
Collapse
|
32
|
Lifestyle, Diet, and Colorectal Cancer Risk According to (Epi)genetic Instability: Current Evidence and Future Directions of Molecular Pathological Epidemiology. CURRENT COLORECTAL CANCER REPORTS 2017; 13:455-469. [PMID: 29249914 PMCID: PMC5725509 DOI: 10.1007/s11888-017-0395-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Purpose of Review In this review, we describe molecular pathological epidemiology (MPE) studies from around the world that have studied diet and/or lifestyle factors in relation to molecular markers of (epi)genetic pathways in colorectal cancer (CRC), and explore future perspectives in this realm of research. The main focus of this review is diet and lifestyle factors for which there is evidence for an association with CRC as identified by the World Cancer Research Fund reports. In addition, we review promising hypotheses, that warrant consideration in future studies. Recent Findings Associations between molecular characteristics of CRC have been published in relation to smoking, alcohol consumption; body mass index (BMI); waist:hip ratio; adult attained height; physical activity; early life energy restriction; dietary acrylamide, fiber, fat, methyl donors, omega 3 fatty acids; meat, including total protein, processed meat, and heme iron; and fruit and vegetable intake. Summary MPE studies help identify where associations between diet, lifestyle, and CRC risk may otherwise be masked and also shed light on how timing of exposure can influence etiology. Sample size is often an issue, but this may be addressed in the future by pooling data.
Collapse
|
33
|
Grazioli E, Dimauro I, Mercatelli N, Wang G, Pitsiladis Y, Di Luigi L, Caporossi D. Physical activity in the prevention of human diseases: role of epigenetic modifications. BMC Genomics 2017; 18:802. [PMID: 29143608 PMCID: PMC5688489 DOI: 10.1186/s12864-017-4193-5] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epigenetic modification refers to heritable changes in gene function that cannot be explained by alterations in the DNA sequence. The current literature clearly demonstrates that the epigenetic response is highly dynamic and influenced by different biological and environmental factors such as aging, nutrient availability and physical exercise. As such, it is well accepted that physical activity and exercise can modulate gene expression through epigenetic alternations although the type and duration of exercise eliciting specific epigenetic effects that can result in health benefits and prevent chronic diseases remains to be determined. This review highlights the most significant findings from epigenetic studies involving physical activity/exercise interventions known to benefit chronic diseases such as metabolic syndrome, diabetes, cancer, cardiovascular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Elisa Grazioli
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy
| | - Ivan Dimauro
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy
| | - Neri Mercatelli
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy
| | - Guan Wang
- FIMS Reference Collaborating Centre of Sports Medicine for Anti-Doping Research, University of Brighton, Brighton, UK
| | - Yannis Pitsiladis
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy.,FIMS Reference Collaborating Centre of Sports Medicine for Anti-Doping Research, University of Brighton, Brighton, UK
| | - Luigi Di Luigi
- Department of Movement, Human and Health Sciences, Unit of Endocrinology, University of Rome "Foro Italico", Rome, Italy
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, Unit of Biology, Genetics and Biochemistry, University of Rome "Foro Italico", Rome, Italy.
| |
Collapse
|
34
|
Kozak VN, Kalady MF, Gamaleldin MM, Liang J, Church JM. Colorectal surveillance after segmental resection for young-onset colorectal cancer: is there evidence for extended resection? Colorectal Dis 2017; 19:O386-O392. [PMID: 28865167 DOI: 10.1111/codi.13874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/14/2017] [Indexed: 12/23/2022]
Abstract
AIM Although sporadic colorectal cancer (CRC) usually occurs in patients aged over 50, recent evidence suggests that the incidence is increasing in younger patients. Such patients are theoretically at high risk of metachronous neoplasia and may be candidates for extended prophylactic colectomy. This study aimed to define the risk of metachronous cancer/adenomas during follow-up of younger patients who underwent segmental colectomy for CRC. METHOD A CRC database was used to identify patients aged under 50 who underwent surgery for CRC between 1994 and 2010. Patients diagnosed with hereditary cancer or inflammatory bowel disease were excluded. The primary end-points were frequency of extended resection and the rates of metachronous cancer and high-risk adenomas during follow-up. RESULTS There were 284 young patients with a resectable primary tumour, of whom 280 (98.6%) underwent segmental resection, 3 (1%) extended resection and 1 (0.4%) local resection. Endoscopic follow-up was available for 150 of the patients who had segmental colectomy, with a mean age of 42.6 (±5.8) years at diagnosis and median follow-up time of 68 months (interquartile range 45-105). Out of these 150 patients, 4 (2.7%) developed metachronous colonic adenocarcinoma at 24, 71, 151 and 228 months after index surgery. Thirty additional patients had at least one adenoma identified during surveillance, and three had sessile serrated polyps. Out of the three patients undergoing extended resection, none had metachronous cancer or advanced adenomas at an average follow-up of 17 years. CONCLUSION A segmental colectomy or proctectomy is adequate treatment for patients presenting with CRC under the age of 50.
Collapse
Affiliation(s)
- V N Kozak
- Department of Colorectal Surgery, Digestive Diseases Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - M F Kalady
- Department of Colorectal Surgery, Digestive Diseases Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - M M Gamaleldin
- Department of Colorectal Surgery, Digestive Diseases Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - J Liang
- Department of Colorectal Surgery, Digestive Diseases Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - J M Church
- Department of Colorectal Surgery, Digestive Diseases Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
35
|
Wang Y, He T, Herman JG, Linghu E, Yang Y, Fuks F, Zhou F, Song L, Guo M. Methylation of ZNF331 is an independent prognostic marker of colorectal cancer and promotes colorectal cancer growth. Clin Epigenetics 2017; 9:115. [PMID: 29075358 PMCID: PMC5648453 DOI: 10.1186/s13148-017-0417-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022] Open
Abstract
Background ZNF331 was reported to be a transcriptional repressor. Methylation of the promoter region of ZNF331 has been found frequently in human esophageal and gastric cancers. The function and methylation status of ZNF331 remain to be elucidated in human colorectal cancer (CRC). Methods Six colorectal cancer cell lines, 146 cases of primary colorectal cancer samples, and 10 cases of noncancerous colorectal mucosa were analyzed in this study using the following techniques: methylation specific PCR (MSP), qRT-PCR, siRNA, flow cytometry, xenograft mice, MTT, colony formation, and transfection assays. Results Loss of ZNF331 expression was found in DLD1 and SW48 cells, reduced expression was found in SW480, SW620, and HCT116 cells, and high level expression was detected in DKO cells. Complete methylation of the ZNF331 in the promoter region was found in DLD1 and SW48 cells, partial methylation was found in SW480, SW620, and HCT116 cells, and unmethylation was detected in DKO cells. Loss of/reduced expression of ZNF331 is correlated with promoter region methylation. Restoration of ZNF331 expression was induced by 5-aza-2′-deoxycytidine (DAC) in DLD1 and SW48 cells. These results suggest that ZNF331 expression is regulated by promoter region methylation in CRC cells. ZNF331 was methylated in 67.1% (98/146) of human primary colorectal cancer samples. Methylation of ZNF331 was significantly associated with tumor size, overall survival (OS), and disease-free survival (DFS) (p < 0.01, p < 0.01, p < 0.05). Methylation of ZNF331 was an independent poor prognostic marker for 5-year OS and 5-year DFS (both p < 0.05). ZNF331 suppressed cell proliferation and colony formation in CRC cells and suppressed human CRC cell xenograft growth in mice. Conclusions ZNF331 is frequently methylated in human colorectal cancer, and the expression of ZNF331 is regulated by promoter region methylation. Methylation of ZNF331 is a poor prognostic marker of CRC.
Collapse
Affiliation(s)
- Yuzhu Wang
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 China.,Department of Geriatric Digestive System, Chinese PLA Navy General Hospital, 6 Fucheng Road, Beijing, 100048 China
| | - Tao He
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 China
| | - James G Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213 USA
| | - Enqiang Linghu
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 China
| | - Yunsheng Yang
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 China
| | - François Fuks
- Laboratory of Cancer Epigenetics, Free University of Brussels (U.L.B.), 1070 Brussels, Belgium
| | - Fuyou Zhou
- Department of Thoracic Surgery, Anyang Tumor Hospital, Anyang, 455000 China
| | - Linjie Song
- Department of General Surgery, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 China.,Medical College of NanKai University, Tianjin, 300071 China
| | - Mingzhou Guo
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853 China
| |
Collapse
|
36
|
Rhee YY, Kim KJ, Kang GH. CpG Island Methylator Phenotype-High Colorectal Cancers and Their Prognostic Implications and Relationships with the Serrated Neoplasia Pathway. Gut Liver 2017; 11:38-46. [PMID: 27885175 PMCID: PMC5221859 DOI: 10.5009/gnl15535] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/29/2016] [Indexed: 12/20/2022] Open
Abstract
The concept of a CpG island methylator phenotype (CIMP) was first introduced by Toyota and Issa to describe a subset of colorectal cancers (CRCs) with concurrent hypermethylation of multiple CpG island loci. The concept of CIMP as a molecular carcinogenesis mechanism was consolidated by the identification of the serrated neoplasia pathway, in which CIMP participates in the initiation and progression of serrated adenomas. Distinct clinicopathological and molecular features of CIMP-high (CIMP-H) CRCs have been characterized, including proximal colon location, older age of onset, female preponderance, and frequent associations of high-level microsatellite instability and BRAF mutations. CIMP-H CRCs arise in sessile or traditional serrated adenomas and thus tend to display the morphological characteristics of serrated adenomas, including epithelial serration, vesicular nuclei, and abundant cytoplasm. Both the frequent association of CIMP and poor prognosis and different responses of CRCs to adjuvant therapy depending on CIMP status indicate clinical implications. In this review, we present an overview of the literature documenting the relevant findings of CIMP-H CRCs and their relationships with the serrated neoplasia pathway.
Collapse
Affiliation(s)
- Ye-Young Rhee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung-Ju Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
37
|
Slattery ML, Lee FY, Pellatt AJ, Mullany LE, Stevens JR, Samowitz WS, Wolff RK, Herrick JS. Infrequently expressed miRNAs in colorectal cancer tissue and tumor molecular phenotype. Mod Pathol 2017; 30:1152-1169. [PMID: 28548123 PMCID: PMC5537006 DOI: 10.1038/modpathol.2017.38] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 12/16/2022]
Abstract
We have previously shown that commonly expressed miRNAs influenced tumor molecular phenotype in colorectal cancer. We hypothesize that infrequently expressed miRNAs, when showing higher levels of expression, help to define tumor molecular phenotype. In this study, we examine 304 miRNAs expressed in at least 30 individuals, but in <50% of the population and with a mean level of expression above 1.0 relative florescent unit. We examine associations in 1893 individuals who have the tumor molecular phenotype data as well as miRNA expression levels for both carcinoma and normal colorectal tissue. We compare miRNAs uniquely associated with tumor molecular phenotype to the RNAseq data to identify genes associated with these miRNAs. This information is used to further identify unique pathways associated with tumor molecular phenotypes of TP53-mutated, KRAS-mutated, CpG island methylator phenotype and microsatellite instability tumors. Thirty-seven miRNAs were uniquely associated with TP53-mutated tumors; 30 of these miRNAs had higher level of expression in TP53-mutated tumors, while seven had lower levels of expression. Of the 34 miRNAs associated with CpG island methylator phenotype-high tumors, 16 were more likely to have a CpG island methylator phenotype-high tumor and 19 were less likely to be CpG island methylator phenotype-high. For microsatellite instability, 13 of the 22 infrequently expressed miRNAs were significantly less likely to be expressed in microsatellite unstable tumors. KRAS-mutated tumors were not associated with any miRNAs after adjustment for multiple comparisons. Of the dysregulated miRNAs, 17 were more likely to be TP53-mutated tumors while simultaneously being less likely to be CpG island methylator phenotype-high and/or microsatellite instability tumors. Genes regulated by these miRNAs were involved in numerous functions and pathways that influence cancer risk and progression. In summary, some infrequently expressed miRNAs, when expressed at higher levels, appear to have significant biological meaning in terms of tumor molecular phenotype and gene expression profiles.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Medicine, University of Utah, Salt Lake City, UT, USA,Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT 84108, USA. E-mail:
| | | | | | - Lila E Mullany
- Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - John R Stevens
- Department of Mathematics and Statistics, Utah State University, Logan, UT, USA
| | - Wade S Samowitz
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Roger K Wolff
- Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
38
|
Shang M, Sun J. Vitamin D/VDR, Probiotics, and Gastrointestinal Diseases. Curr Med Chem 2017; 24:876-887. [PMID: 27915988 DOI: 10.2174/0929867323666161202150008] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/14/2022]
Abstract
Vitamin D is an important factor in regulating inflammation, immune responses, and carcinoma inhibition via action of its receptor, vitamin D receptor (VDR). Recent studies have demonstrated the role of vitamin D/VDR in regulating host-bacterial interactions. Probiotics are beneficial bacteria with the power of supporting or favoring life on the host. In the current review, we will discuss the recent progress on the roles of vitamin D/VDR in gut microbiome and inflammation. We will summarize evidence of probiotics in modulating vitamin D/VDR and balancing gut microbiota in health and gastrointestinal diseases. Moreover, we will review the clinical application of probiotics in prevention and therapy of IBD or colon cancer. Despite of the gains, there remain several barriers to advocate broad use of probiotics in clinical therapy. We will also discuss the limits and future direction in scientific understanding of probiotics, vitamin D/VDR, and host responses.
Collapse
Affiliation(s)
- Mei Shang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou. China
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, 840 S Wood Street, Room 704 CSB, Chicago, IL, 60612. United States
| |
Collapse
|
39
|
Ferlazzo N, Currò M, Zinellu A, Caccamo D, Isola G, Ventura V, Carru C, Matarese G, Ientile R. Influence of MTHFR Genetic Background on p16 and MGMT Methylation in Oral Squamous Cell Cancer. Int J Mol Sci 2017; 18:ijms18040724. [PMID: 28353639 PMCID: PMC5412310 DOI: 10.3390/ijms18040724] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 02/07/2023] Open
Abstract
Genetic polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) enzyme may influence DNA methylation. Alterations in DNA methylation patterns of genes involved in the regulation of the cell cycle, DNA repair, cell adherence and metastasis process are known to contribute to cancer development. In this study, the influence of the MTHFR C677T and A1298C gene polymorphisms on global DNA methylation and site-specific methylation on p16 and O⁶-methylguanine-DNA methyltransferase (MGMT) gene promoters was investigated in patients with oral squamous cell cancer (OSCC). To this aim, methylation studies were carried out by using genomic DNA isolated from saliva samples of 58 OSCC patients and 90 healthy controls. The frequency of the CT/AC and TT/AA genotypes was significantly higher in patients than in controls. Whereas no difference in global DNA methylation levels was observed between patients and controls, a higher frequency of methylation at both p16 and MGMT gene promoters was detected in patients compared with controls. A significant association between MTHFR gene polymorphisms and p16 and MGMT gene promoter methylation was found. The frequency of p16 and MGMT methylation was around 60% in patients with either the CT/AC or TT/AA genotype. Our results suggest that hypermethylation of cancer-related genes may be affected by MTHFR polymorphisms.
Collapse
Affiliation(s)
- Nadia Ferlazzo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98124 Messina, Italy.
| | - Monica Currò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98124 Messina, Italy.
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy.
| | - Daniela Caccamo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98124 Messina, Italy.
| | - Gaetano Isola
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98124 Messina, Italy.
| | - Valeria Ventura
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98124 Messina, Italy.
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy.
- Control Quality Unit, University Hospital of Sassari (AOU), 07100 Sassari, Italy.
| | - Giovanni Matarese
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98124 Messina, Italy.
| | - Riccardo Ientile
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98124 Messina, Italy.
| |
Collapse
|
40
|
Mullany LE, Herrick JS, Wolff RK, Stevens JR, Slattery ML. Alterations in microRNA expression associated with alcohol consumption in rectal cancer subjects. Cancer Causes Control 2017; 28:545-555. [PMID: 28303484 PMCID: PMC5400787 DOI: 10.1007/s10552-017-0882-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 03/09/2017] [Indexed: 12/24/2022]
Abstract
Purpose Alcohol consumption has been purported to influence many diseases. MicroRNAs (miRNAs) may be influenced by compounds found in alcohol. In this investigation, we test the hypothesis that total alcohol, beer, wine, and hard liquor influence miRNA expression. Methods We studied 1447 colorectal (CR) cancer cases with normal CR mucosa and carcinoma miRNA expression data along with alcohol consumption data. We analyzed long-term and long-term and current (LTC) alcohol use for beer, liquor, and wine with miRNA expression between paired carcinoma and normal colon and rectal tissues, adjusting for multiple comparisons using the positive false discovery rate q-value. MiRNAs associated significantly with alcohol were examined with all-cause mortality (ACM). MiRNAs associated significantly with ACM were examined with RNA-Seq data. Results Expression of 84 miRNAs was associated significantly with LTC wine use in normal rectal mucosa. Higher expression of two of these miRNAs significantly worsened ACM: hsa-miR-210 (Hazard Ratio [HR] 1.12, 95% CI (1.03, 1.21), p-value = 0.004), and hsa-miR-92a-1-5p (HR 1.20, 95% CI (1.04, 1.38), p-value = 0.013). These miRNAs were downregulated across levels of LTC wine consumption. Conclusions Our results suggest that wine influences miRNA expression in rectal cancer, supporting the hypothesis that components in alcohol influence miRNA expression. Electronic supplementary material The online version of this article (doi:10.1007/s10552-017-0882-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lila E Mullany
- Department of Internal Medicine, University of Utah, 383 Colorow Bldg., Salt Lake City, UT, 84108, USA.
| | - Jennifer S Herrick
- Department of Internal Medicine, University of Utah, 383 Colorow Bldg., Salt Lake City, UT, 84108, USA
| | - Roger K Wolff
- Department of Internal Medicine, University of Utah, 383 Colorow Bldg., Salt Lake City, UT, 84108, USA
| | - John R Stevens
- Department of Mathematics and Statistics, Utah State University, 3900 Old Main Hill, Logan, UT, 84322, USA
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, 383 Colorow Bldg., Salt Lake City, UT, 84108, USA
| |
Collapse
|
41
|
Bae JM, Kim JH, Kang GH. Molecular Subtypes of Colorectal Cancer and Their Clinicopathologic Features, With an Emphasis on the Serrated Neoplasia Pathway. Arch Pathol Lab Med 2017; 140:406-12. [PMID: 27128298 DOI: 10.5858/arpa.2015-0310-ra] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
CONTEXT -Colorectal cancer is a heterogeneous disease entity with 3 molecular carcinogenesis pathways and 2 morphologic multistep pathways. Right-sided colon cancers and left-sided colon and rectal cancers exhibit differences in their incidence rates according to geographic region, age, and sex. A linear tendency toward increasing frequencies of microsatellite instability-high or CpG island methylator phenotype-high cancers in subsites along the bowel from the rectum to the cecum or the ascending colon accounts for the differences in tumor phenotypes associated with these subsites. The molecular subtypes of colorectal cancers exhibit different responses to adjuvant therapy, which might be responsible for differences in subtype-specific survival. OBJECTIVES -To review the clinicopathologic and molecular features of the molecular subtypes of colorectal cancer generated by combined CpG island methylator phenotype and microsatellite statuses, to integrate these features with the most recent findings in the context of the prognostic implications of molecular subtypes, and to emphasize the necessity of developing molecular markers that enable the identification of adenocarcinomas involving the serrated neoplasia pathway. DATA SOURCES -Based on the authors' own experimental data and a review of the pertinent literature. CONCLUSIONS -Because colorectal cancers arise from 2 different morphologic multistep carcinogenesis pathways with varying contributions from 3 different molecular carcinogenesis pathways, colorectal cancer is a heterogeneous and complex disease. Thus, molecular subtyping of colorectal cancers is an important approach to characterizing their heterogeneity with respect to not only prognosis and therapeutic response but also biology and natural history.
Collapse
Affiliation(s)
| | | | - Gyeong Hoon Kang
- From the Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
42
|
Dolatkhah R, Somi MH, Kermani IA, Farassati F, Dastgiri S. A novel KRAS gene mutation report in sporadic colorectal cancer, from Northwest of Iran. Clin Case Rep 2017; 5:338-341. [PMID: 28265402 PMCID: PMC5331244 DOI: 10.1002/ccr3.779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/19/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022] Open
Abstract
While the role of KRAS gene mutations has been widely accepted for predicting responses to anti‐EGFR therapy in patients with colorectal cancer, although this study was based on observation of a single case it gives hope that some KRAS gene mutation may have favorable prognosis. More studies are required on patients with similar mutation to validate this finding.
Collapse
Affiliation(s)
- Roya Dolatkhah
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Iraj Asvadi Kermani
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Faris Farassati
- The University of Kansas Medical School-Molecular Medicine Laboratory Kansas City Kansas USA
| | - Saeed Dastgiri
- Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran; Tabriz Health Services Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
43
|
Phipps AI, Shi Q, Limburg PJ, Nelson GD, Sargent DJ, Sinicrope FA, Chan E, Gill S, Goldberg RM, Kahlenberg M, Nair S, Shields AF, Newcomb PA, Alberts SR. Alcohol consumption and colon cancer prognosis among participants in north central cancer treatment group phase III trial N0147. Int J Cancer 2016; 139:986-95. [PMID: 27060850 PMCID: PMC4911257 DOI: 10.1002/ijc.30135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/23/2016] [Indexed: 12/16/2022]
Abstract
Alcohol consumption is associated with a modest increased risk of colon cancer, but its relationship with colon cancer survival has not been elucidated. Using data from a phase III randomized adjuvant trial, we assessed the association of alcohol consumption with colon cancer outcomes. Patients completed a risk factor questionnaire before randomization to FOLFOX or FOLFOX + cetuximab (N = 1984). Information was collected on lifestyle factors, including smoking, physical activity and consumption of different types of alcohol. Cox models assessed the association between alcohol consumption and outcomes of disease-free survival (DFS), time-to-recurrence (TTR) and overall survival (OS), adjusting for age, sex, study arm, body mass, smoking, physical activity and performance status. No statistically significant difference in outcomes between ever and never drinkers were noted [hazard ratio (HR)DFS = 0.86, HRTTR = 0.87, HROS = 0.86, p-values = 0.11-0.17]. However, when considering alcohol type, ever consumers of red wine (n = 628) had significantly better outcomes than never consumers (HRDFS = 0.80, HRTTR = 0.81, HROS = 0.78, p-values = 0.01-0.02). Favorable outcomes were confirmed in patients who consumed 1-30 glasses/month of red wine (n = 601, HR = 0.80-0.83, p-values = 0.03-0.049); there was a suggestion of more favorable outcomes in patients who consumed >30 glasses/month of red wine (n = 27, HR = 0.33-0.38, p-values = 0.05-0.06). Beer and liquor consumption were not associated with outcomes. Although alcohol consumption was not associated with colon cancer outcomes overall, mild to moderate red wine consumption was suggestively associated with longer OS, DFS and TTR in stage III colon cancer patients.
Collapse
Affiliation(s)
- Amanda I Phipps
- Epidemiology Department, University of Washington, Seattle, WA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Qian Shi
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, MN
| | - Paul J Limburg
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Garth D Nelson
- Alliance Statistics and Data Center, Mayo Clinic, Rochester, MN
| | | | - Frank A Sinicrope
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Emily Chan
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Sharlene Gill
- Division of Medical Oncology, University of British Columbia, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Richard M Goldberg
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | | | | | - Polly A Newcomb
- Epidemiology Department, University of Washington, Seattle, WA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | |
Collapse
|
44
|
Wroblewski LE, Peek RM, Coburn LA. The Role of the Microbiome in Gastrointestinal Cancer. Gastroenterol Clin North Am 2016; 45:543-56. [PMID: 27546848 PMCID: PMC4994977 DOI: 10.1016/j.gtc.2016.04.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Humans are host to complex microbial communities previously termed normal flora and largely overlooked. However, resident microbes contribute to both health and disease. Investigators are beginning to define microbes that contribute to the development of gastrointestinal malignancies and the mechanisms by which this occurs. Resident microbes can induce inflammation, leading to cell proliferation and altered stem cell dynamics, which can lead to alterations in DNA integrity and immune regulation and promote carcinogenesis. Studies in human patients and rodent models of cancer have identified alterations in the microbiota of the stomach, esophagus, and colon that increase the risk for malignancy.
Collapse
Affiliation(s)
- Lydia E. Wroblewski
- Division of Gastroenterology, Department of Medicine; Vanderbilt University School of Medicine; Nashville, TN USA, T: 615-322-4215
| | - Richard M. Peek
- Division of Gastroenterology, Department of Medicine; Vanderbilt University School of Medicine; Nashville, TN USA, T: 615-343-1596
| | - Lori A. Coburn
- Veterans Affairs Tennessee Valley Healthcare System; Division of Gastroenterology, Department of Medicine; Vanderbilt University School of Medicine; Nashville, TN USA, T: 615-875-4222, F: 615-343-4229
| |
Collapse
|
45
|
Methylation of a panel of genes in peripheral blood leukocytes is associated with colorectal cancer. Sci Rep 2016; 6:29922. [PMID: 27453436 PMCID: PMC4958953 DOI: 10.1038/srep29922] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/23/2016] [Indexed: 12/25/2022] Open
Abstract
The relationship between the DNA methylation status of the CpG islands of multiple genes in blood leukocytes in CRC susceptibility and prognosis, as well as possible interactions with dietary factors on CRC risk are unclear. We carried out a case-control study including 421 CRC patients and 506 controls to examine the associations between six genes (AOX-1, RARB2, RERG, ADAMTS9, IRF4, and FOXE-1), multiple CpG site methylation (MCSM) and susceptibility to CRC. High-level MCSM (MCSM-H) was defined as methylation of greater than or equal to 2 of 5 candidate genes (except for RARB2); low-level MCSM (MCSM-L) was when 1 candidate gene was methylated; non-MCSM was when none of the candidate genes were methylated. Blood cell-derived DNA methylation status was detected using methylation-sensitive high-resolution melting analysis. The hypermethylation status of each individual gene was statistically significantly associated with CRC. MCSM status was also associated with CRC (OR = 1.54, 95% CI: 1.15–2.05, P = 0.004). We observed interactions between a high level of dietary intake of cereals, pungent food, and stewed fish with brown sauce, age (older than 60 yrs), smoking and hypermethylation on risk of CRC. MCSM in peripheral blood DNA may be an important biomarker for susceptibility to CRC.
Collapse
|
46
|
Ranji P, Akbarzadeh A, Rahmati-Yamchi M. Associations of Probiotics with Vitamin D and Leptin Receptors and their Effects on Colon Cancer. Asian Pac J Cancer Prev 2016; 16:3621-7. [PMID: 25987012 DOI: 10.7314/apjcp.2015.16.9.3621] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Colorectal cancer (CRC) is one of most common causes of cancer-related death worldwide. Recent studies have suggested that microbial and environmental factors including diet and lifestyle can impact on colon cancer development. Vitamin D deficiency and dysfunction of vitamin D receptor (VDR) also correlate with colon cancer. Moreover, leptin, a 16-kDa polypeptide, participates in the regulation of food intake and is associated with other environmental factors affecting colon cancer through the leptin receptor. Altered levels of serum leptin and patterns of expression of its receptor (LPR) may be observed in human colon tumours. Furthermore, the collected data from in vitro and in vivo studies have indicated that consuming probiotic non-pathogenic lactic acid bacteria have beneficial effects on colon cancer. Probiotics, inflammation and vitamin D/VDR have been correlated with leptin and its receptor and are also with colon cancer. Thus, in this paper, we review recent progress on the roles of probiotic, vitamin D/VDR and leptin/LPR in inflammation and colon cancer.
Collapse
Affiliation(s)
- Peyman Ranji
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, International Branch of Tabriz University of Medical sciences (Aras), Tabriz, Iran E-mail :
| | | | | |
Collapse
|
47
|
Shi RL, Qu N, Liao T, Wei WJ, Lu ZW, Ma B, Wang YL, Ji QH. Relationship of body mass index with BRAF (V600E) mutation in papillary thyroid cancer. Tumour Biol 2016; 37:8383-90. [PMID: 26733165 DOI: 10.1007/s13277-015-4718-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/21/2015] [Indexed: 12/11/2022] Open
Abstract
Current evidences suggest an influence of overweight body mass index (BMI) on the carcinogenesis in malignancies. However, the role of BMI is unclear in papillary thyroid cancer (PTC). The aim of the present study is to investigate the relationship between BMI and BRAF (V600E) mutation status in PTC. BRAF (V600E) mutation in 108 patients with PTC was analyzed by Sanger sequencing. The cutoff point of BMI was identified by X-tile for predicting mutation by overweight. Odds ratios (OR) and 95 % confidence interval (CI) of BRAF (V600E) mutation according to BMI and clinicopathologic variables were calculated using logistic regression models. Fifty-one patients were positive for BRAF (V600E) mutation. A positive relationship existed between BRAF (V600E) mutation and BMI (p = 0.039). A 24.3 kg/m(2) was identified as cutoff point for differentiating greater than 52.0 % observed probability of mutation for BRAF (V600E) in entire cohort, which was similar to the midpoint between the upper limit of normal BMI and overweight defined by WHO (≥24 kg/m(2)). Multivariate analysis confirmed the association between BRAF (V600E) mutation with overweight BMI range (OR 7.645, 95 % CI 1.275-45.831, p = 0.026). This study suggests an influence of overweight BMI on the status of BRAF (V600E) in patients with PTC, whereas the underlying mechanism need to be further investigated.
Collapse
Affiliation(s)
- Rong-Liang Shi
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of General surgery, Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Ning Qu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wen-Jun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhong-Wu Lu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ben Ma
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yu-Long Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Qing-Hai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
48
|
Wang M, Spiegelman D, Kuchiba A, Lochhead P, Kim S, Chan AT, Poole EM, Tamimi R, Tworoger SS, Giovannucci E, Rosner B, Ogino S. Statistical methods for studying disease subtype heterogeneity. Stat Med 2015; 35:782-800. [PMID: 26619806 DOI: 10.1002/sim.6793] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/08/2015] [Accepted: 10/13/2015] [Indexed: 12/31/2022]
Abstract
A fundamental goal of epidemiologic research is to investigate the relationship between exposures and disease risk. Cases of the disease are often considered a single outcome and assumed to share a common etiology. However, evidence indicates that many human diseases arise and evolve through a range of heterogeneous molecular pathologic processes, influenced by diverse exposures. Pathogenic heterogeneity has been considered in various neoplasms such as colorectal, lung, prostate, and breast cancers, leukemia and lymphoma, and non-neoplastic diseases, including obesity, type II diabetes, glaucoma, stroke, cardiovascular disease, autism, and autoimmune disease. In this article, we discuss analytic options for studying disease subtype heterogeneity, emphasizing methods for evaluating whether the association of a potential risk factor with disease varies by disease subtype. Methods are described for scenarios where disease subtypes are categorical and ordinal and for cohort studies, matched and unmatched case-control studies, and case-case study designs. For illustration, we apply the methods to a molecular pathological epidemiology study of alcohol intake and colon cancer risk by tumor LINE-1 methylation subtypes. User-friendly software to implement the methods is publicly available.
Collapse
Affiliation(s)
- Molin Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A
| | - Donna Spiegelman
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A
| | - Aya Kuchiba
- Department of Biostatistics, National Cancer Center, Tokyo, Japan
| | - Paul Lochhead
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, U.S.A
| | - Sehee Kim
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, U.S.A
| | - Andrew T Chan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A.,Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, U.S.A
| | - Elizabeth M Poole
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A
| | - Rulla Tamimi
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A
| | - Shelley S Tworoger
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A
| | - Edward Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A
| | - Bernard Rosner
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, U.S.A.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, U.S.A.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, U.S.A
| |
Collapse
|
49
|
Epigenetics and Colorectal Neoplasia: the Evidence for Physical Activity and Sedentary Behavior. CURRENT COLORECTAL CANCER REPORTS 2015; 11:388-396. [PMID: 27212896 DOI: 10.1007/s11888-015-0296-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Studies demonstrate that regular physical activity and, more recently, limited sedentary behavior are associated with reduced risk of colorectal neoplasia. However, the biological mechanisms of action for physical activity versus sedentary behavior are not clear. Epigenetic variation is suggested as a potential mechanism that would allow for independent, or possibly even synergistic, effects of activity and inactivity on colorectal epithelium. We describe the evidence for epigenetic variation as a link between physical activity and sedentary behavior in colorectal neoplasia risk. There are few studies that directly evaluate this relationship. However, the growing literature describes a variety of gene targets influenced by activity that are also important to colorectal neoplasia etiology. Future studies may identify epigenetic markers with translational significance in identifying high-risk individuals or those for whom a personalized activity regimen could significantly alter the methylation signature in colon epithelial cells, and thus future risk of colorectal cancer.
Collapse
|
50
|
Abstract
Various clinical and epidemiologic studies show that nonsteroidal anti-inflammatory drugs (NSAIDs), including aspirin and cyclooxygenase inhibitors (COXIBs) help prevent cancer. Since eicosanoid metabolism is the main inhibitory targets of these drugs the resulting molecular and biological impact is generally accepted. As our knowledge base and technology progress we are learning that additional targets may be involved. This review attempts to summarize these new developments in the field.
Collapse
Affiliation(s)
- Asad Umar
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Vernon E Steele
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David G Menter
- The University of Texas MD Anderson Cancer Center, Division of Cancer Prevention and Population Sciences, Houston, TX, USA
| | - Ernest T Hawk
- The University of Texas MD Anderson Cancer Center, Division of Cancer Prevention and Population Sciences, Houston, TX, USA
| |
Collapse
|