1
|
Bowen CM, Sinha KM, Vilar E. Immunoprevention Strategies for Colorectal Cancer in Lynch Syndrome Carriers. Cancer J 2024; 30:352-356. [PMID: 39312455 PMCID: PMC11424018 DOI: 10.1097/ppo.0000000000000738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
ABSTRACT The immune revolution that swept the field of oncology in the mid-2010s with the advent of checkpoint inhibitors has led to a paradigm shift in approaches toward adapting new cancer prevention modalities. Cancer vaccines have emerged from this era with astounding potential as a durable intervention to prevent cancers especially for patients with hereditary susceptibilities such as Lynch syndrome carriers. This review covers new insights in the immunoprevention landscape for patients living with Lynch syndrome including highlights ranging from clinical trials exploring the use of chemoprevention agents to boost immune cellularity to investigative studies using novel vaccine approaches to induce long-term antitumor immunity.
Collapse
Affiliation(s)
- Charles M. Bowen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Krishna M. Sinha
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
2
|
Chong X, Madeti Y, Cai J, Li W, Cong L, Lu J, Mo L, Liu H, He S, Yu C, Zhou Z, Wang B, Cao Y, Wang Z, Shen L, Wang Y, Zhang X. Recent developments in immunotherapy for gastrointestinal tract cancers. J Hematol Oncol 2024; 17:65. [PMID: 39123202 PMCID: PMC11316403 DOI: 10.1186/s13045-024-01578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
The past few decades have witnessed the rise of immunotherapy for Gastrointestinal (GI) tract cancers. The role of immune checkpoint inhibitors (ICIs), particularly programmed death protein 1 (PD-1) and PD ligand-1 antibodies, has become increasingly pivotal in the treatment of advanced and perioperative GI tract cancers. Currently, anti-PD-1 plus chemotherapy is considered as first-line regimen for unselected advanced gastric/gastroesophageal junction adenocarcinoma (G/GEJC), mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal cancer (CRC), and advanced esophageal cancer (EC). In addition, the encouraging performance of claudin18.2-redirected chimeric antigen receptor T-cell (CAR-T) therapy in later-line GI tract cancers brings new hope for cell therapy in solid tumour treatment. Nevertheless, immunotherapy for GI tumour remains yet precise, and researchers are dedicated to further maximising and optimising the efficacy. This review summarises the important research, latest progress, and future directions of immunotherapy for GI tract cancers including EC, G/GEJC, and CRC.
Collapse
Affiliation(s)
- Xiaoyi Chong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yelizhati Madeti
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jieyuan Cai
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Wenfei Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Cong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jialin Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Liyang Mo
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Huizhen Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Siyi He
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Chao Yu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhiruo Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Boya Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yanshuo Cao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yakun Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| |
Collapse
|
3
|
Schwarz S, Su Z, Krohn M, Löffler MW, Schlosser A, Linnebacher M. Peptide-stimulated T cells bypass immune checkpoint inhibitor resistance and eliminate autologous microsatellite instable colorectal cancer cells. NPJ Precis Oncol 2024; 8:163. [PMID: 39075115 PMCID: PMC11286882 DOI: 10.1038/s41698-024-00645-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024] Open
Abstract
Two hypermutated colon cancer cases with patient-derived cell lines, peripheral and tumor-infiltrating T cells available were selected for detailed investigation of immunological response.T cells co-cultured with autologous tumor cells showed only low levels of pro-inflammatory cytokines and failed at tumor recognition. Similarly, treatment of co-cultures with immune checkpoint inhibitors (ICI) did not boost antitumor immune responses. Since proteinase inhibitor 9 (PI-9) was detected in tumor cells, a specific inhibitor (PI-9i) was used in addition to ICI in T cell cytotoxicity testing. However, only pre-stimulation with tumor-specific peptides (cryptic and neoantigenic) significantly increased recognition and elimination of tumor cells by T cells independently of ICI or PI-9i.We showed, that ICI resistant tumor cells can be targeted by tumor-primed T cells and also demonstrated the superiority of tumor-naïve peripheral blood T cells compared to highly exhausted tumor-infiltrating T cells. Future precision immunotherapeutic approaches should include multimodal strategies to successfully induce durable anti-tumor immune responses.
Collapse
Affiliation(s)
- Sandra Schwarz
- Department of General Surgery, Molecular Oncology and Immunotherapy, University Medicine Rostock, Rostock, Germany
| | - Zhaoran Su
- Department of General Surgery, Molecular Oncology and Immunotherapy, University Medicine Rostock, Rostock, Germany
| | - Mathias Krohn
- Department of General Surgery, Molecular Oncology and Immunotherapy, University Medicine Rostock, Rostock, Germany
| | - Markus W Löffler
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
- Institute of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Schlosser
- Rudolf-Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology and Immunotherapy, University Medicine Rostock, Rostock, Germany.
| |
Collapse
|
4
|
Lee SH, Pankaj A, Rickelt S, Ting D, Ferrone C, Patil DT, Yilmaz O, Berger D, Deshpande V, Yilmaz O. β2-microglobulin expression is associated with aggressive histology, activated tumor immune milieu, and outcome in colon carcinoma. Am J Clin Pathol 2024:aqae066. [PMID: 38869306 DOI: 10.1093/ajcp/aqae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024] Open
Abstract
OBJECTIVES We sought to assess the expression of human leukocyte antigen (HLA) proteins and β2-microglobulin (B2M) in tumor cells and the relationship with immune microenvironment and outcome in colorectal cancer (CRC). METHODS A total of 953 CRC cases were evaluated by immunohistochemistry for HLA class I, HLA class II, and B2M. The expression level of these biomarkers was correlated with clinicopathologic information, BRAF V600E and mismatch repair (MMR) proteins, and the quantitated expression levels of immune cells (CD8 and CD163) and immune regulatory proteins (FoxP3, programmed cell death 1 ligand 1 [PD-L1], and LAG3). RESULTS We found that B2M-low tumors were statistically correlated with aggressive histologic features, including higher stage, higher grade, extramural venous invasion, perineural invasion, and distant metastasis. Expression of B2M was positively correlated (R2 = 0.3) and significantly associated with MMR-deficient tumors (P < .001); B2M-low tumors were also associated with an "immune cold"' microenvironment, including a reduced number of immune cells (CD8 and CD163), reduced expression of immune regulatory proteins by immune cells (PD-L1, FoxP3, and LAG3), and reduced tumor cell expression of PD-L1. These B2M-low tumors correlated with lower disease-specific survival (P = .018), a finding that maintained significance only for the proficient MMR cohort (P = .037). CONCLUSIONS Our findings suggest that B2M expression may support predictive models for both outcome and checkpoint inhibitor therapy treatment response for colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Soo Hyun Lee
- Department of Pathology, Boston Medical Center, Boston, MA, US
| | - Amaya Pankaj
- Departments of Pathology, Massachusetts General Hospital, Boston, MA, US
| | - Steffen Rickelt
- Department of Medicine, Massachusetts Institute of Technology, Cambridge, MA, US
| | - David Ting
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, US
- Departments of Medicine, Harvard Medical School, Boston, US
| | - Cristina Ferrone
- Departments of Surgery, Massachusetts General Hospital, Boston, MA, US
| | - Deepa T Patil
- Departments of Medicine, Harvard Medical School, Boston, US
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, US
| | - Omer Yilmaz
- Departments of Pathology, Massachusetts General Hospital, Boston, MA, US
- Departments of Medicine, Harvard Medical School, Boston, US
| | - David Berger
- Division of General Surgery, Massachusetts General Hospital, Boston, MA, US
| | - Vikram Deshpande
- Departments of Medicine, Harvard Medical School, Boston, US
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, US
| | - Osman Yilmaz
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, US
- Departments of Pathology, Harvard Medical School, Boston, US
| |
Collapse
|
5
|
Bowen CM, Sinha KM, Vilar E. Current Trends in Vaccine Development for Hereditary Colorectal Cancer Syndromes. Clin Colon Rectal Surg 2024; 37:146-156. [PMID: 38606044 PMCID: PMC11006444 DOI: 10.1055/s-0043-1770383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The coming of age for cancer treatment has experienced exponential growth in the last decade with the addition of immunotherapy as the fourth pillar to the fundamentals of cancer treatment-chemotherapy, surgery, and radiation-taking oncology to an astounding new frontier. In this time, rapid developments in computational biology coupled with immunology have led to the exploration of priming the host immune system through vaccination to prevent and treat certain subsets of cancer such as melanoma and hereditary colorectal cancer. By targeting the immune system through tumor-specific antigens-namely, neoantigens (neoAgs)-the future of cancer prevention may lie within arm's reach by employing neoAg vaccines as an immune-preventive modality for hereditary cancer syndromes like Lynch syndrome. In this review, we discuss the history, current trends, utilization, and future direction of neoAg-based vaccines in the setting of hereditary colorectal cancer.
Collapse
Affiliation(s)
- Charles M. Bowen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Krishna M. Sinha
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
6
|
Challoner BR, Woolston A, Lau D, Buzzetti M, Fong C, Barber LJ, Anandappa G, Crux R, Assiotis I, Fenwick K, Begum R, Begum D, Lund T, Sivamanoharan N, Sansano HB, Domingo-Arada M, Tran A, Pandha H, Church D, Eccles B, Ellis R, Falk S, Hill M, Krell D, Murugaesu N, Nolan L, Potter V, Saunders M, Shiu KK, Guettler S, Alexander JL, Lázare-Iglesias H, Kinross J, Murphy J, von Loga K, Cunningham D, Chau I, Starling N, Ruiz-Bañobre J, Dhillon T, Gerlinger M. Genetic and immune landscape evolution in MMR-deficient colorectal cancer. J Pathol 2024; 262:226-239. [PMID: 37964706 DOI: 10.1002/path.6228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/17/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023]
Abstract
Mismatch repair-deficient (MMRd) colorectal cancers (CRCs) have high mutation burdens, which make these tumours immunogenic and many respond to immune checkpoint inhibitors. The MMRd hypermutator phenotype may also promote intratumour heterogeneity (ITH) and cancer evolution. We applied multiregion sequencing and CD8 and programmed death ligand 1 (PD-L1) immunostaining to systematically investigate ITH and how genetic and immune landscapes coevolve. All cases had high truncal mutation burdens. Despite pervasive ITH, driver aberrations showed a clear hierarchy. Those in WNT/β-catenin, mitogen-activated protein kinase, and TGF-β receptor family genes were almost always truncal. Immune evasion (IE) drivers, such as inactivation of genes involved in antigen presentation or IFN-γ signalling, were predominantly subclonal and showed parallel evolution. These IE drivers have been implicated in immune checkpoint inhibitor resistance or sensitivity. Clonality assessments are therefore important for the development of predictive immunotherapy biomarkers in MMRd CRCs. Phylogenetic analysis identified three distinct patterns of IE driver evolution: pan-tumour evolution, subclonal evolution, and evolutionary stasis. These, but neither mutation burdens nor heterogeneity metrics, significantly correlated with T-cell densities, which were used as a surrogate marker of tumour immunogenicity. Furthermore, this revealed that genetic and T-cell infiltrates coevolve in MMRd CRCs. Low T-cell densities in the subgroup without any known IE drivers may indicate an, as yet unknown, IE mechanism. PD-L1 was expressed in the tumour microenvironment in most samples and correlated with T-cell densities. However, PD-L1 expression in cancer cells was independent of T-cell densities but strongly associated with loss of the intestinal homeobox transcription factor CDX2. This explains infrequent PD-L1 expression by cancer cells and may contribute to a higher recurrence risk of MMRd CRCs with impaired CDX2 expression. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | - Andrew Woolston
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - David Lau
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Marta Buzzetti
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Louise J Barber
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Richard Crux
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | | | | | - Dipa Begum
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Tom Lund
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Nanna Sivamanoharan
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | | | - Amina Tran
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | - David Church
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Bryony Eccles
- University Hospitals Dorset NHS Foundation Trust, Bournemouth, UK
| | | | - Stephen Falk
- University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Mark Hill
- Maidstone and Tunbridge Wells NHS Trust, Maidstone, UK
| | - Daniel Krell
- Royal Free London NHS Foundation Trust, London, UK
| | - Nirupa Murugaesu
- St George's University Hospitals NHS Foundation Trust, London, UK
- Genomics England, London, UK
| | - Luke Nolan
- Hampshire Hospitals NHS Foundation Trust, Winchester, UK
| | - Vanessa Potter
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | | | - Kai-Keen Shiu
- University College London Hospitals NHS Foundation Trust, London, UK
| | | | | | | | | | - Jamie Murphy
- Imperial College Healthcare NHS Trust, London, UK
| | - Katharina von Loga
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Ian Chau
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Juan Ruiz-Bañobre
- University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
- University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tony Dhillon
- Royal Surrey Hospital NHS Foundation Trust, Guildford, UK
| | - Marco Gerlinger
- Barts Cancer Institute, Queen Mary University of London, London, UK
- St Bartholomew's Hospital Cancer Centre, London, UK
| |
Collapse
|
7
|
Brooksbank K, Martin SA. DNA mismatch repair deficient cancer - Emerging biomarkers of resistance to immune checkpoint inhibition. Int J Biochem Cell Biol 2023; 164:106477. [PMID: 37862741 DOI: 10.1016/j.biocel.2023.106477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/22/2023]
Abstract
The DNA mismatch repair pathway is involved in the identification, excision, and repair of base-base mismatches and indel loops in the genome. Mismatch repair deficiency occurs in approximately 20% of all cancers and results in a type of DNA damage called microsatellite instability. In 2017, the immune checkpoint inhibitor, Pembrolizumab, an anti-PD-1 therapy, was approved for use in all unresectable or metastatic tumours that were mismatch repair deficient or had high microsatellite instability regardless of tissue origin. This landmark approval was the first time a drug had been approved in a site agnostic way, but accumulating data has revealed that up to 50% of mismatch repair deficient tumours are refractory to treatment and there is a huge amount of variability in the therapeutic benefit amongst responders. Several mechanisms of resistance to immune checkpoint blockade for mismatch repair deficient cancers have been identified but our understanding of what is driving resistance in a proportion of patients remains lacking. In this review article, we discuss the emerging mechanisms of resistance which may enable optimal stratification of patients for treatment with immune checkpoint inhibitors in the future.
Collapse
Affiliation(s)
- Kirsten Brooksbank
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Sarah A Martin
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
8
|
Heregger R, Huemer F, Steiner M, Gonzalez-Martinez A, Greil R, Weiss L. Unraveling Resistance to Immunotherapy in MSI-High Colorectal Cancer. Cancers (Basel) 2023; 15:5090. [PMID: 37894457 PMCID: PMC10605634 DOI: 10.3390/cancers15205090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related deaths. Incidences of early CRC cases are increasing annually in high-income countries, necessitating effective treatment strategies. Immune checkpoint inhibitors (ICIs) have shown significant clinical efficacy in various cancers, including CRC. However, their effectiveness in CRC is limited to patients with mismatch-repair-deficient (dMMR)/microsatellite instability high (MSI-H) disease, which accounts for about 15% of all localized CRC cases and only 3% to 5% of metastatic CRC cases. However, the varied response among patients, with some showing resistance or primary tumor progression, highlights the need for a deeper understanding of the underlying mechanisms. Elements involved in shaping the response to ICIs, such as tumor microenvironment, immune cells, genetic changes, and the influence of gut microbiota, are not fully understood thus far. This review aims to explore potential resistance or immune-evasion mechanisms to ICIs in dMMR/MSI-H CRC and the cell types involved, as well as possible pitfalls in the diagnosis of this particular subtype.
Collapse
Affiliation(s)
- Ronald Heregger
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
| | - Florian Huemer
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
| | - Markus Steiner
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Alejandra Gonzalez-Martinez
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Lukas Weiss
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
9
|
Lee SH, Pankaj A, Neyaz A, Ono Y, Rickelt S, Ferrone C, Ting D, Patil DT, Yilmaz O, Berger D, Deshpande V, Yılmaz O. Immune microenvironment and lymph node yield in colorectal cancer. Br J Cancer 2023; 129:917-924. [PMID: 37507544 PMCID: PMC10491581 DOI: 10.1038/s41416-023-02372-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Lymph node (LN) harvesting is associated with outcomes in colonic cancer. We sought to interrogate whether a distinctive immune milieu of the primary tumour is associated with LN yield. METHODS A total of 926 treatment-naive patients with colorectal adenocarcinoma with more than 12 LNs (LN-high) were compared with patients with 12 or fewer LNs (LN-low). We performed immunohistochemistry and quantification on tissue microarrays for HLA class I/II proteins, beta-2-microglobulin (B2MG), CD8, CD163, LAG3, PD-L1, FoxP3, and BRAF V600E. RESULTS The LN-high group was comprised of younger patients, longer resections, larger tumours, right-sided location, and tumours with deficient mismatch repair (dMMR). The tumour microenvironment showed higher CD8+ cells infiltration and B2MG expression on tumour cells in the LN-high group compared to the LN-low group. The estimated mean disease-specific survival was higher in the LN-high group than LN-low group. On multivariate analysis for prognosis, LN yield, CD8+ cells, extramural venous invasion, perineural invasion, and AJCC stage were independent prognostic factors. CONCLUSION Our findings corroborate that higher LN yield is associated with a survival benefit. LN yield is associated with an immune high microenvironment, suggesting that tumour immune milieu influences the LN yield.
Collapse
Affiliation(s)
- Soo Hyun Lee
- Department of Pathology, Boston Medical Center, Boston, MA, USA
| | - Amaya Pankaj
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Azfar Neyaz
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Yuho Ono
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Steffen Rickelt
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cristina Ferrone
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - David Ting
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Deepa T Patil
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Omer Yilmaz
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - David Berger
- Harvard Medical School, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Vikram Deshpande
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Osman Yılmaz
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Wang Y, Jasinski-Bergner S, Wickenhauser C, Seliger B. Cancer Immunology: Immune Escape of Tumors-Expression and Regulation of HLA Class I Molecules and Its Role in Immunotherapies. Adv Anat Pathol 2023; 30:148-159. [PMID: 36517481 DOI: 10.1097/pap.0000000000000389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The addition of "avoiding immune destruction" to the hallmarks of cancer demonstrated the importance of cancer immunology and in particular the role of immune surveillance and escape from malignancies. However, the underlying mechanisms contributing to immune impairment and immune responses are diverse. Loss or reduced expression of the HLA class I molecules are major characteristics of human cancers resulting in an impaired recognition of tumor cells by CD8 + cytotoxic T lymphocytes. This is of clinical relevance and associated with worse patients outcome and limited efficacy of T-cell-based immunotherapies. Here, we summarize the role of HLA class I antigens in cancers by focusing on the underlying molecular mechanisms responsible for HLA class I defects, which are caused by either structural alterations or deregulation at the transcriptional, posttranscriptional, and posttranslational levels. In addition, the influence of HLA class I abnormalities to adaptive and acquired immunotherapy resistances will be described. The in-depth knowledge of the different strategies of malignancies leading to HLA class I defects can be applied to design more effective cancer immunotherapies.
Collapse
Affiliation(s)
| | - Simon Jasinski-Bergner
- Institute of Medical Immunology
- Institute for Translational Immunology, Medical School "Theodor Fontane", Brandenburg, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale)
| | - Barbara Seliger
- Institute of Medical Immunology
- Department of Good Manufacturing Practice (GMP) Development & Advanced Therapy Medicinal Products (ATMP) Design, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, GermanyLeipzig, Germany
- Institute for Translational Immunology, Medical School "Theodor Fontane", Brandenburg, Germany
| |
Collapse
|
11
|
Conte M, Di Mauro A, Capasso L, Montella L, De Simone M, Nebbioso A, Altucci L. Targeting HDAC2-Mediated Immune Regulation to Overcome Therapeutic Resistance in Mutant Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15071960. [PMID: 37046620 PMCID: PMC10093005 DOI: 10.3390/cancers15071960] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/08/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
A large body of clinical and experimental evidence indicates that colorectal cancer is one of the most common multifactorial diseases. Although some useful prognostic biomarkers for clinical therapy have already been identified, it is still difficult to characterize a therapeutic signature that is able to define the most appropriate treatment. Gene expression levels of the epigenetic regulator histone deacetylase 2 (HDAC2) are deregulated in colorectal cancer, and this deregulation is tightly associated with immune dysfunction. By interrogating bioinformatic databases, we identified patients who presented simultaneous alterations in HDAC2, class II major histocompatibility complex transactivator (CIITA), and beta-2 microglobulin (B2M) genes based on mutation levels, structural variants, and RNA expression levels. We found that B2M plays an important role in these alterations and that mutations in this gene are potentially oncogenic. The dysregulated mRNA expression levels of HDAC2 were reported in about 5% of the profiled patients, while other specific alterations were described for CIITA. By analyzing immune infiltrates, we then identified correlations among these three genes in colorectal cancer patients and differential infiltration levels of genetic variants, suggesting that HDAC2 may have an indirect immune-related role in specific subgroups of immune infiltrates. Using this approach to carry out extensive immunological signature studies could provide further clinical information that is relevant to more resistant forms of colorectal cancer.
Collapse
Affiliation(s)
- Mariarosaria Conte
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.M.); (L.C.); (A.N.); (L.A.)
- Correspondence: ; Tel.: +39-081-5667564
| | - Annabella Di Mauro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.M.); (L.C.); (A.N.); (L.A.)
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Lucia Capasso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.M.); (L.C.); (A.N.); (L.A.)
| | - Liliana Montella
- ASL NA2 NORD, Oncology Operative Unit, “Santa Maria delle Grazie” Hospital, 80078 Pozzuoli, Italy;
| | - Mariacarla De Simone
- Stem Cell Transplantation Unit, Division of Hematology, Cardarelli Hospital, 80131 Naples, Italy;
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.M.); (L.C.); (A.N.); (L.A.)
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.D.M.); (L.C.); (A.N.); (L.A.)
- BIOGEM, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy
- IEOS, Institute for Endocrinology and Experimental Oncology, CNRs, 80131 Napoli, Italy
| |
Collapse
|
12
|
Liu F, Zhong F, Wu H, Che K, Shi J, Wu N, Fu Y, Wang Y, Hu J, Qian X, Fan X, Wang W, Wei J. Prevalence and Associations of Beta2-Microglobulin Mutations in MSI-H/dMMR Cancers. Oncologist 2023; 28:e136-e144. [PMID: 36724040 PMCID: PMC10020813 DOI: 10.1093/oncolo/oyac268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/29/2022] [Indexed: 02/02/2023] Open
Abstract
Microsatellite instability (MSI) has emerged as an important predictor of sensitivity for immunotherapy-based strategies. β-2-Microglobulin (B2M) contains microsatellites within the coding regions and is prone to somatic changes in MSI/mismatch repair deficiency (MSI/dMMR) tumors. To delineate prevalence and associations of B2M mutations in MSI-H/dMMR cancers, we investigated the mutational profile of B2M and clinical and pathological features in gastric cancer (GC), colorectal cancer (CRC), and endometrial cancer (EC) with a high incidence of microsatellite instability-high (MSI-H)/dMMR. Formalin-fixed paraffin-embedded (FFPE) tumor tissues along with matched normal tissues were collected from 108 MSI/dMMR patients with GC, CRC, and EC. Genomic profiling of tissue and blood samples were assessed next-generation sequencing (NGS). Immunohistochemistry (IHC) was used to examine the presence or absence of B2M protein. Alternations in the exonic microsatellite regions of B2M were observed at various but high frequencies (57.5% in CRC, 23.9% in GC, and 13.6% in EC) and in different forms. NGS assay revealed that genes involved in chromatin regulation, the PI3K pathway, the WNT pathway, and mismatch repair were extensively altered in the MSI-H cohort. Signature 6 and 26, 2 of 4 mutational signatures associated with defective DNA mismatch repair, featured with high numbers of small insertion/deletions (INDEL) dominated in all 3 types of cancer. Alternations in the exonic microsatellite regions of B2M were observed at various but high frequencies (57.5% in CRC, 23.9% in GC, and 13.6% in EC) and in different forms. Tumor mutational burden (TMB) was significantly higher in the patients carrying MSI-H/dMMR tumors with B2M mutation than that in patients with wild-type B2M (P = .026).The frame shift alteration occurring at the exonic microsatellite sties caused loss of function of B2M gene. In addition, a case with CRC carrying indels in B2M gene resisted the ICI treatment was reported. In conclusion, patients carrying MSI-H/dMMR tumors with B2M mutation showed significantly higher TMB. Prescription of ICIs should be thoroughly evaluated for these patients.
Collapse
Affiliation(s)
- Fangcen Liu
- Department of Pathology, Affiliated Drum Tower Hospital to Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Fangfang Zhong
- Department of Pathology, Margaret Williamson Red House Hospital, Shanghai, People’s Republic of China
| | - Huan Wu
- Department of R&D, OrigiMed, Shanghai, People’s Republic of China
| | - Keying Che
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Jiaochun Shi
- Department of R&D, OrigiMed, Shanghai, People’s Republic of China
| | - Nandie Wu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Yao Fu
- Department of Pathology, Affiliated Drum Tower Hospital to Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Yue Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Jing Hu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Xiaoping Qian
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Xiangshan Fan
- Department of Pathology, Affiliated Drum Tower Hospital to Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Weifeng Wang
- Department of R&D, OrigiMed, Shanghai, People’s Republic of China
| | - Jia Wei
- Corresponding author: Jia Wei, MD, The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China. Tel: +86 13951785234; Fax: +86 25 83317016; E-mail:
| |
Collapse
|
13
|
Grolmusz VK, Nagy P, Likó I, Butz H, Pócza T, Bozsik A, Papp J, Oláh E, Patócs A. A common genetic variation in GZMB may associate with cancer risk in patients with Lynch syndrome. Front Oncol 2023; 13:1005066. [PMID: 36890824 PMCID: PMC9986427 DOI: 10.3389/fonc.2023.1005066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Lynch syndrome (LS), also known as hereditary nonpolyposis colorectal cancer syndrome (HNPCC) is a common genetic predisposition to cancer due to germline mutations in genes affecting DNA mismatch repair. Due to mismatch repair deficiency, developing tumors are characterized by microsatellite instability (MSI-H), high frequency of expressed neoantigens and good clinical response to immune checkpoint inhibitors. Granzyme B (GrB) is the most abundant serine protease in the granules of cytotoxic T-cells and natural killer cells, mediating anti-tumor immunity. However, recent results confirm a diverse range of physiological functions of GrB including that in extracellular matrix remodelling, inflammation and fibrosis. In the present study, our aim was to investigate whether a frequent genetic variation of GZMB, the gene encoding GrB, constituted by three missense single nucleotide polymorphisms (rs2236338, rs11539752 and rs8192917) has any association with cancer risk in individuals with LS. In silico analysis and genotype calls from whole exome sequencing data in the Hungarian population confirmed that these SNPs are closely linked. Genotyping results of rs8192917 on a cohort of 145 individuals with LS demonstrated an association of the CC genotype with lower cancer risk. In silico prediction proposed likely GrB cleavage sites in a high proportion of shared neontigens in MSI-H tumors. Our results propose the CC genotype of rs8192917 as a potential disease-modifying genetic factor in LS.
Collapse
Affiliation(s)
- Vince Kornél Grolmusz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Eötvös Loránd Research Network - Semmelweis University, Budapest, Hungary.,Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.,National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Petra Nagy
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - István Likó
- Hereditary Cancers Research Group, Eötvös Loránd Research Network - Semmelweis University, Budapest, Hungary.,National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Henriett Butz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Eötvös Loránd Research Network - Semmelweis University, Budapest, Hungary.,Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.,National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary.,National Oncology Biobank Center, National Institute of Oncology, Budapest, Hungary
| | - Tímea Pócza
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Anikó Bozsik
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Eötvös Loránd Research Network - Semmelweis University, Budapest, Hungary.,National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - János Papp
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Eötvös Loránd Research Network - Semmelweis University, Budapest, Hungary.,National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Edit Oláh
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Attila Patócs
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Eötvös Loránd Research Network - Semmelweis University, Budapest, Hungary.,Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.,National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
| |
Collapse
|
14
|
Ding Y, Wang Z, Zhou F, Chen C, Qin Y. Associating resistance to immune checkpoint inhibitors with immunological escape in colorectal cancer. Front Oncol 2022; 12:987302. [PMID: 36248998 PMCID: PMC9561929 DOI: 10.3389/fonc.2022.987302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer is a common malignant tumor that ranks third in incidence and second in mortality worldwide, and surgery in conjunction with chemotherapy and radiotherapy remains the most common treatment option. As a result of radiotherapy’s severe side effects and dismal survival rates, it is anticipated that more alternatives may emerge. Immunotherapy, a breakthrough treatment, has made significant strides in colorectal cancer over the past few years, overcoming specialized therapy, which has more selectivity and a higher survival prognosis than chemoradiotherapy. Among these, immune checkpoint inhibitor therapy has emerged as the primary immunotherapy for colorectal cancer nowadays. Nonetheless, as the use of immune checkpoint inhibitor has expanded, resistance has arisen inevitably. Immune escape is the primary cause of non-response and resistance to immune checkpoint inhibitors. That is the development of primary and secondary drug resistance. In this article, we cover the immune therapy-related colorectal cancer staging, the specific immune checkpoint inhibitors treatment mechanism, and the tumor microenvironment and immune escape routes of immunosuppressive cells that may be associated with immune checkpoint inhibitors resistance reversal. The objective is to provide better therapeutic concepts for clinical results and to increase the number of individuals who can benefit from colorectal cancer immunotherapy.
Collapse
Affiliation(s)
- Yi Ding
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zehua Wang
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fengmei Zhou
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chen Chen
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanru Qin
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yanru Qin,
| |
Collapse
|
15
|
Lynch Syndrome: From Carcinogenesis to Prevention Interventions. Cancers (Basel) 2022; 14:cancers14174102. [PMID: 36077639 PMCID: PMC9454739 DOI: 10.3390/cancers14174102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Promoting proper preventive interventions to reduce morbidity and mortality is one of the most important challenges pertaining to inherited conditions. Lynch syndrome (LS) is an inherited disorder that predisposes to several kinds of tumor and is responsible for a relevant proportion of human colorectal and endometrial cancers. Recent knowledge has allowed for a better understanding of the genetic cause, pathogenesis, underlying immunological mechanisms, epidemiological distribution, and prevalence of this disease. This opens up unpredictable perspectives of translating such knowledge into validated programs for prevention and surveillance, in order to reduce the health impact of this disease through medical interventions before cancer development. In our review, we summarize the updated guidelines of the screening, surveillance, and risk-reducing strategies for LS patients. Moreover, we present novel opportunities in the treatment and prevention of LS patients through harnessing the immune system using immunocheckpoint inhibitors and vaccines. Abstract Lynch syndrome (LS) is the most common inherited disorder responsible for an increased risk of developing cancers at different sites, most frequently in the gastrointestinal and genitourinary tracts, caused by a germline pathogenic variant affecting the DNA mismatch repair system. Surveillance and risk-reducing procedures are currently available and warranted for LS patients, depending on underlying germline mutation, and are focused on relevant targets for early cancer diagnosis or primary prevention. Although pharmacological approaches for preventing LS-associated cancer development were started many years ago, to date, aspirin remains the most studied drug intervention and the only one suggested by the main surveillance guidelines, despite the conflicting findings. Furthermore, we also note that remarkable advances in anticancer drug discovery have given a significant boost to the application of novel immunological strategies such as immunocheckpoint inhibitors and vaccines, not only for cancer treatment, but also in a preventive setting. In this review, we outline the clinical, biologic, genetic, and morphological features of LS as well as the recent three-pathways carcinogenesis model. Furthermore, we provide an update on the dedicated screening, surveillance, and risk-reducing strategies for LS patients and describe emerging opportunities of harnessing the immune system.
Collapse
|
16
|
Iranzo J, Gruenhagen G, Calle-Espinosa J, Koonin EV. Pervasive conditional selection of driver mutations and modular epistasis networks in cancer. Cell Rep 2022; 40:111272. [PMID: 36001960 DOI: 10.1016/j.celrep.2022.111272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/18/2022] [Accepted: 08/05/2022] [Indexed: 11/19/2022] Open
Abstract
Cancer driver mutations often display mutual exclusion or co-occurrence, underscoring the key role of epistasis in carcinogenesis. However, estimating the magnitude of epistasis and quantifying its effect on tumor evolution remains a challenge. We develop a method (Coselens) to quantify conditional selection on the excess of nonsynonymous substitutions in cancer genes. Coselens infers the number of drivers per gene in different partitions of a cancer genomics dataset using covariance-based mutation models and determines whether coding mutations in a gene affect selection for drivers in any other gene. Using Coselens, we identify 296 conditionally selected gene pairs across 16 cancer types in the TCGA dataset. Conditional selection affects 25%-50% of driver substitutions in tumors with >2 drivers. Conditionally co-selected genes form modular networks, whose structures challenge the traditional interpretation of within-pathway mutual exclusivity and across-pathway synergy, suggesting a more complex scenario where gene-specific across-pathway epistasis shapes differentiated cancer subtypes.
Collapse
Affiliation(s)
- Jaime Iranzo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain; Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain.
| | - George Gruenhagen
- Institute of Bioengineering and Biosciences, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jorge Calle-Espinosa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
Tumor Antigenicity and a Pre-Existing Adaptive Immune Response in Advanced BRAF Mutant Colorectal Cancers. Cancers (Basel) 2022; 14:cancers14163951. [PMID: 36010943 PMCID: PMC9405961 DOI: 10.3390/cancers14163951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary BRAF mutant metastatic CRCs (BRAF-mCRCs) are considered a unique clinical entity characterized by a dismal prognosis and that do not respond efficiently to both standard chemotherapy and to orally selective inhibitors of BRAFV600E. In this study, the gene expression profiles of 89 immunotherapy-naïve BRAF-CRCs were generated using the PanCancer IO 360 gene expression panel to improve the knowledge of the mechanisms involved in tumor-suppressive immune functions in BRAF-mCRCs. A significant fraction of BRAF-mCRCs shows a hot/inflamed profile and may be potential candidates for responding to immunotherapy. Only a partial overlap between these hot signatures and the presence of microsatellite instability (MSI) was observed, demonstrating that MSI tumors showed a not differential expression of MHC Class I antigen presentation pathway compared with microsatellite-stable tumors. The analysis of gene expression profiles is a promising strategy both for immune profiling of primary tumors before any treatment and for following the evolution of metastatic disease during therapy. Abstract The main hypothesis of this study is that gene expression profiles (GEPs) integrating both tumor antigenicity and a pre-existing adaptive immune response can be used to generate distinct immune-related signatures of BRAF mutant colorectal cancers (BRAF-CRCs) to identify actionable biomarkers predicting response to immunotherapy. GEPs of 89 immunotherapy-naïve BRAF-CRCs were generated using the Pan-Cancer IO 360 gene expression panel and the NanoString nCounter platform and were correlated with microsatellite instability (MSI) status and with CD8+ tumor-infiltrating lymphocyte (TIL) content. Hot/inflamed profiles were found in 52% of all cases, and high scores of Tumor Inflammation Signature were observed in 42% of the metastatic BRAF-CRCs. A subset of MSI tumors showed a cold profile. Antigen Processing Machinery (APM) signature was not differentially expressed in MSI tumors compared with MSS cases. By contrast, the APM signature was significantly upregulated in CD8+ BRAF-CRCs versus CD8− tumors. Our study demonstrates that a significant fraction of BRAF-CRCs may be a candidate for immunotherapy and that the simultaneous analysis of MSI status and CD8+ TIL content increases accuracy in identifying patients who can potentially benefit from immune checkpoint inhibitors. GEPs may be very useful in expanding the spectrum of patients with BRAF-CRCs who can benefit from immune checkpoint blockade.
Collapse
|
18
|
Analysis of the B2M Expression in Colon Adenocarcinoma and Its Correlation with Patient Prognosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7264503. [PMID: 35982994 PMCID: PMC9381202 DOI: 10.1155/2022/7264503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
Colon adenocarcinoma (COAD) is one of the most common malignant tumors in clinics. It is often found at an advanced stage, with high incidence and poor prognosis; early diagnosis is difficult and treatment methods are limited. In order to find new methods for diagnosis and treatment of COAD, people pay more and more attention to the discovery and functional research of new oncogenes and tumor suppressor genes of COAD. β2-microglobulin (B2M) plays different physiological and pathological roles in tumor cells and nontumor cells. At present, there is no public report on the expression of B2M in COAD. In this study, the expression of B2M mRNA in COAD tissues was compared with that in normal tissues. The relationship between the expression of B2M mRNA and the stage, histological subtype, lymph node metastasis, TP53 mutation, and survival time of COAD was discussed. It was found that B2M is a potential tumor suppressor gene in COAD. The decreased expression of B2M after mutation can cause immune escape of COAD cells, thus affecting the therapeutic effect and prognosis. This study provides a new idea for the prevention and treatment of COAD.
Collapse
|
19
|
Yılmaz O, Crabbe A, Neyaz A, Pankaj A, Lee SH, Hosseini S, Rickelt S, Cerda S, Zhao G, Leijsen L, Dineaux A, Shroff SG, Crotty R, Zhang ML, Yilmaz OH, Patil DT, Berger D, Deshpande V. Clinical, Pathologic, Genetics and Intratumoral Immune Milieu of Serrated Adenocarcinoma of the Colon. Histopathology 2022; 81:380-388. [PMID: 35789111 DOI: 10.1111/his.14719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/21/2022] [Accepted: 07/02/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Serrated adenocarcinoma (SAC), a recognized WHO variant of colonic adenocarcinoma, is the purported end-product of serrated neoplasia. Yet, the diagnosis of SAC is infrequently rendered, and little is known about its prognosis, immune microenvironment, and molecular alterations. MATERIALS AND METHODS We assessed 903 consecutive colon carcinomas and recognized tumors with ≥5% (n=77) serrated pattern, and ≥50% serrated pattern (n=13). We assessed precursor polyps and synchronous polyps. We recorded demographic/clinical parameters, histological features, and MMR status. We performed immunohistochemistry and quantification on tissue microarray for HLA class I/II proteins, beta-2-microglobulin (B2MG), CD8, CD163, LAG3, PD-L1, FoxP3, PD-L1and BRAF V600E. RESULTS We identified ≥ 5% epithelial serration prevalence in 8.5% of cases, and ≥50% epithelial serration prevalence in 1.4% of cases. Precursor lesions were present in 21.4% of cases; these were mostly tubular adenomas with two traditional serrated adenoma identified. SAC with ≥ 5% serrations exhibited lower numbers of CD8 positive lymphocytes (p=0.002) and lower B2MG expression (p=0.048), although neither value was significant at ≥50% serration threshold. There was no difference in HLA class I/II, or PD-L1 expression on tumor cells and no difference in PD-L1, LAG3, FOXP3 and CD163 expression on immune cells. There was no association with MMR status, or BRAFV600E relative to conventional adenocarcinoma. There was improved disease-specific survival on univariate (but not multivariate) analysis between carcinomas with serrated pattern and non-mucinous conventional colonic carcinomas at ≥5% epithelial serrations (p=0.04). CONCLUSION SAC category shows a limited impact on survival, and this phenotype may harbor a unique immunologic milieu.
Collapse
Affiliation(s)
- Osman Yılmaz
- Department of Pathology, Boston Medical Center, Boston
| | - Andrew Crabbe
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Azfar Neyaz
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Amaya Pankaj
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Soo Hyun Lee
- Department of Pathology, Boston Medical Center, Boston
| | - Sahar Hosseini
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Steffen Rickelt
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sandra Cerda
- Department of Pathology, Boston Medical Center, Boston
| | - Grace Zhao
- Department of Pathology, Boston Medical Center, Boston
| | - Lieve Leijsen
- Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Anne Dineaux
- Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Stuti G Shroff
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Rory Crotty
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - M Lisa Zhang
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Omer H Yilmaz
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Deepa T Patil
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - David Berger
- Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| |
Collapse
|
20
|
Hernandez-Sanchez A, Grossman M, Yeung K, Sei SS, Lipkin S, Kloor M. Vaccines for immunoprevention of DNA mismatch repair deficient cancers. J Immunother Cancer 2022; 10:e004416. [PMID: 35732349 PMCID: PMC9226910 DOI: 10.1136/jitc-2021-004416] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 12/16/2022] Open
Abstract
The development of cancer vaccines to induce tumor-antigen specific immune responses was sparked by the identification of antigens specific to or overexpressed in cancer cells. However, weak immunogenicity and the mutational heterogeneity in many cancers have dampened cancer vaccine successes. With increasing information about mutational landscapes of cancers, mutational neoantigens can be predicted computationally to elicit strong immune responses by CD8 +cytotoxic T cells as major mediators of anticancer immune response. Neoantigens are potentially more robust immunogens and have revived interest in cancer vaccines. Cancers with deficiency in DNA mismatch repair have an exceptionally high mutational burden, including predictable neoantigens. Lynch syndrome is the most common inherited cancer syndrome and is caused by DNA mismatch repair gene mutations. Insertion and deletion mutations in coding microsatellites that occur during DNA replication include tumorigenesis drivers. The induced shift of protein reading frame generates neoantigens that are foreign to the immune system. Mismatch repair-deficient cancers and Lynch syndrome represent a paradigm population for the development of a preventive cancer vaccine, as the mutations induced by mismatch repair deficiency are predictable, resulting in a defined set of frameshift peptide neoantigens. Furthermore, Lynch syndrome mutation carriers constitute an identifiable high-risk population. We discuss the pathogenesis of DNA mismatch repair deficient cancers, in both Lynch syndrome and sporadic microsatellite-unstable cancers. We review evidence for pre-existing immune surveillance, the three mechanisms of immune evasion that occur in cancers and assess the implications of a preventive frameshift peptide neoantigen-based vaccine. We consider both preclinical and clinical experience to date. We discuss the feasibility of a cancer preventive vaccine for Lynch syndrome carriers and review current antigen selection and delivery strategies. Finally, we propose RNA vaccines as having robust potential for immunoprevention of Lynch syndrome cancers.
Collapse
Affiliation(s)
- Alejandro Hernandez-Sanchez
- Department of Applied Tumor Biology, University Hospital Heidelberg Institute of Pathology, Heidelberg, Germany
| | - Mark Grossman
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Kevin Yeung
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Shizuko S Sei
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland, USA
| | - Steven Lipkin
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Matthias Kloor
- University Hospital Heidelberg, Institute of Pathology, Department of Applied Tumor Biology, Heidelberg, Germany
| |
Collapse
|
21
|
Gallois C, Taieb J, Sabouret A, Broudin C, Karoui M, Garinet S, Zaanan A. Upfront progression under pembrolizumab followed by a complete response after encorafenib and cetuximab treatment in BRAF V600E-mutated and microsatellite unstable metastatic colorectal cancer patient: A case report. Genes Chromosomes Cancer 2021; 61:114-118. [PMID: 34773327 DOI: 10.1002/gcc.23012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/05/2022] Open
Abstract
Two new treatments have recently become standard care for patients with metastatic colorectal cancer (mCRC): encorafenib (BRAF inhibitor) associated with cetuximab (anti-EGFR) in the second or third line of chemotherapy for BRAF V600E tumors, and pembrolizumab (an anti PD-1 immune checkpoint inhibitor) for tumors harboring microsatellite instability (MSI)-high and/or deficient mismatch repair (dMMR). Furthermore, 30% of BRAF V600E mutated mCRC are MSI/dMMR through a sporadic hypermethylation of the promoter of hMLH1. We report here, for the first time, the case of a patient with BRAF V600E, PIK3CA, and SMAD4 mutated and dMMR/MSI mCRC, in whom we observed an atypical response pattern under the sequence of pembrolizumab followed by the doublet encorafenib and cetuximab treatment. The patient was progressive after a single cycle of pembrolizumab followed by a rapid complete response after only 2 months of treatment with encorafenib and cetuximab, discovered during R0 cytoreduction surgery for peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Claire Gallois
- Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris University; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Julien Taieb
- Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris University; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Annabelle Sabouret
- Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris University; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Chloé Broudin
- Department of Pathology, Hôpital Européen Georges Pompidou, Paris University; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Mehdi Karoui
- Department of General and Digestive Surgery, Hôpital Européen Georges Pompidou, Paris University; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Simon Garinet
- Department of Biochemistry, Unit of Pharmacogenetics and Molecular Oncology, Hôpital Européen Georges Pompidou, Paris University; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Aziz Zaanan
- Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris University; Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
22
|
Zaborowski AM, Winter DC, Lynch L. The therapeutic and prognostic implications of immunobiology in colorectal cancer: a review. Br J Cancer 2021; 125:1341-1349. [PMID: 34302062 PMCID: PMC8575924 DOI: 10.1038/s41416-021-01475-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/13/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer represents the second leading cause of cancer-related death worldwide. The therapeutic field of immuno-oncology has rapidly gained momentum, with strikingly promising results observed in clinical practice. Increasing emphasis has been placed on the role of the immune response in tumorigenesis, therapy and predicting prognosis. Enhanced understanding of the dynamic and complex tumour-immune microenvironment has enabled the development of molecularly directed, individualised treatment. Analysis of intra-tumoural lymphocyte infiltration and the dichotomisation of colorectal cancer into microsatellite stable and unstable disease has important therapeutic and prognostic implications, with potential to capitalise further on this data. This review discusses the latest evidence surrounding the tumour biology and immune landscape of colorectal cancer, novel immunotherapies and the interaction of the immune system with each apex of the tripartite of cancer management (oncotherapeutics, radiotherapy and surgery). By utilising the synergy of chemotherapeutic agents and immunotherapies, and identifying prognostic and predictive immunological biomarkers, we may enter an era of unprecedented disease control, survivorship and cure rates.
Collapse
Affiliation(s)
- Alexandra M. Zaborowski
- grid.412751.40000 0001 0315 8143Centre for Colorectal Disease, St. Vincent’s University Hospital, Dublin 4, Ireland ,grid.8217.c0000 0004 1936 9705School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Des C. Winter
- grid.412751.40000 0001 0315 8143Centre for Colorectal Disease, St. Vincent’s University Hospital, Dublin 4, Ireland ,grid.7886.10000 0001 0768 2743School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Lydia Lynch
- grid.8217.c0000 0004 1936 9705School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland ,grid.38142.3c000000041936754XHarvard Institutes of Medicine, Harvard Medical School, Boston, MA USA
| |
Collapse
|
23
|
Olkinuora AP, Peltomäki PT, Aaltonen LA, Rajamäki K. From APC to the genetics of hereditary and familial colon cancer syndromes. Hum Mol Genet 2021; 30:R206-R224. [PMID: 34329396 PMCID: PMC8490010 DOI: 10.1093/hmg/ddab208] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/12/2022] Open
Abstract
Hereditary colorectal cancer (CRC) syndromes attributable to high penetrance mutations represent 9-26% of young-onset CRC cases. The clinical significance of many of these mutations is understood well enough to be used in diagnostics and as an aid in patient care. However, despite the advances made in the field, a significant proportion of familial and early-onset cases remains molecularly uncharacterized and extensive work is still needed to fully understand the genetic nature of CRC susceptibility. With the emergence of next-generation sequencing and associated methods, several predisposition loci have been unraveled, but validation is incomplete. Individuals with cancer-predisposing mutations are currently enrolled in life-long surveillance, but with the development of new treatments, such as cancer vaccinations, this might change in the not so distant future for at least some individuals. For individuals without a known cause for their disease susceptibility, prevention and therapy options are less precise. Herein, we review the progress achieved in the last three decades with a focus on how CRC predisposition genes were discovered. Furthermore, we discuss the clinical implications of these discoveries and anticipate what to expect in the next decade.
Collapse
Affiliation(s)
- Alisa P Olkinuora
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
| | - Päivi T Peltomäki
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, 00014 Helsinki, Finland
| | - Kristiina Rajamäki
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
24
|
Rasmussen M, Lim K, Rambech E, Andersen MH, Svane IM, Andersen O, Jensen LH, Nilbert M, Therkildsen C. Lynch syndrome-associated epithelial ovarian cancer and its immunological profile. Gynecol Oncol 2021; 162:686-693. [PMID: 34275654 DOI: 10.1016/j.ygyno.2021.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Lynch syndrome is a multi-tumor syndrome characterized by mismatch repair deficiency (MMR-d), microsatellite instability (MSI), and increased tumor-infiltrating lymphocytes (TILs) making these tumors candidates for treatment with immune checkpoint inhibitors. However, response may depend on tumor-induced immune evasion mechanisms, e.g. loss of Beta-2-Microglobulin (B2M) or upregulation of programmed death protein ligand 1 (PD-L1). We investigated the immune response and B2M and PD-L1 expression in Lynch syndrome-associated ovarian cancers. METHODS We successfully analyzed 30 Lynch syndrome-associated epithelial ovarian cancers collected through the Danish Hereditary Non-Polyposis Colorectal Cancer (HNPCC) register. MMR-d, MSI, immune response (CD3, CD8, and CD68), and immune evasion mechanisms (B2M and PD-L1) were investigated. Statistical associations between these markers were evaluated in addition to survival in relation to B2M/PD-L1. RESULTS Of the 29 evaluable tumors, 27 were MMR-d (93.1%). Likewise of 26 evaluable tumors, 14 were MSI (53.8%). MMR-d/MMR-proficiency associated with MSI/MSS in 60.0%. Half of the ovarian tumors presented with high levels of TILs. Loss of B2M expression was observed in 46.7% of the tumors, while expression of PD-L1 was seen in 28.0% of the cases. There was no association between B2M/PD-L1 and MSI/TILs/survival. Loss of B2M was often seen in tumors with low TILs (p = 0.056 or p = 0.059 for CD3 and CD8 positive cells, respectively). CONCLUSION MMR-d, MSI, and TILs are also seen in Lynch syndrome-associated ovarian cancers making these potential candidates for checkpoint-based immunotherapy. The clinical impact from immune evasion through loss of B2M needs to be investigated further in larger cohorts.
Collapse
Affiliation(s)
- Maria Rasmussen
- Department of Clinical Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark.
| | - Kevin Lim
- Department of Clinical Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Eva Rambech
- Institute of Clinical Sciences, Division of Oncology and Pathology, Lund University, Sweden
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Ove Andersen
- Department of Clinical Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Lars Henrik Jensen
- Department of Oncology, University Hospital of Southern Denmark, Vejle, Denmark
| | - Mef Nilbert
- Department of Clinical Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Institute of Clinical Sciences, Division of Oncology and Pathology, Lund University, Sweden; Danish Cancer Society Research Center, The Danish Cancer Society, Copenhagen, Denmark
| | - Christina Therkildsen
- Department of Clinical Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; The Danish HNPCC Register, Gastro Unit, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Patients with Lynch syndrome have a high probability of developing colorectal and other carcinomas. This review provides a comprehensive assessment of the immunologic aspects of Lynch syndrome pathogenesis and provides an overview of potential immune interventions for patients with Lynch syndrome polyps and Lynch syndrome-associated carcinomas. RECENT FINDINGS Immunogenic properties of the majority of Lynch syndrome polyps and associated cancers include microsatellite instability leading to a high mutational burden and the development of novel frameshift peptides, i.e., neoantigens. In addition, patients with Lynch syndrome develop T cell responses in the periphery and in the tumor microenvironment (TME) to tumor-associated antigens, and a proinflammatory cytokine TME has also been identified. However, Lynch syndrome lesions also possess immunosuppressive entities such as alterations in MHC class I antigen presentation, TGFβ receptor mutations, regulatory T cells, and upregulation of PD-L1 on tumor-associated lymphocytes. The rich immune microenvironment of Lynch syndrome polyps and associated carcinomas provides an opportunity to employ the spectrum of immune-mediating agents now available to induce and enhance host immune responses and/or to also reduce immunosuppressive entities. These agents can be employed in the so-called prevention trials for the treatment of patients with Lynch syndrome polyps and for trials in patients with Lynch syndrome-associated cancers.
Collapse
Affiliation(s)
- Danielle M Pastor
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- NIH Hematology Oncology Fellowship Program, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
26
|
Beta2-microglobulin(B2M) in cancer immunotherapies: Biological function, resistance and remedy. Cancer Lett 2021; 517:96-104. [PMID: 34129878 DOI: 10.1016/j.canlet.2021.06.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 12/30/2022]
Abstract
Cancer immunotherapies have made much headway during the past decades. Techniques including the immune checkpoint inhibition (ICI) and adoptive cell therapy (ACT) have harvested impressive efficacy and provided far-reaching tools for treating cancer patients. However, due to inadequate priming of the immune system, a certain subgroup of patients remains resistant to cancer immunotherapies during or after the treatment. β2-microglobulin (B2M) is an important subunit of major histocompatibility complex (MHC) class I which exerts substantive biological functions in tumorigenesis and immune control. Accumulating evidence has shown that alterations of B2M gene and B2M proteins contribute to poor reaction to cancer immunotherapies by dampening antigen presentation. Here, we discuss the basic biological functions of B2M, its distribution in a spectrum of cancers, and current understanding of its role in ICI, cancer vaccines and chimeric antigen receptor T cell (CAR-T) therapies. Furthermore, we summarize some promising therapeutic strategies to improve the efficacy inhibited by B2M defects.
Collapse
|
27
|
Busch E, Ahadova A, Kosmalla K, Bohaumilitzky L, Pfuderer PL, Ballhausen A, Witt J, Wittemann JN, Bläker H, Holinski-Feder E, Jäger D, von Knebel Doeberitz M, Haag GM, Kloor M. Beta-2-microglobulin Mutations Are Linked to a Distinct Metastatic Pattern and a Favorable Outcome in Microsatellite-Unstable Stage IV Gastrointestinal Cancers. Front Oncol 2021; 11:669774. [PMID: 34168989 PMCID: PMC8219238 DOI: 10.3389/fonc.2021.669774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/17/2021] [Indexed: 01/05/2023] Open
Abstract
Immune checkpoint blockade (ICB) shows remarkable clinical effects in patients with metastatic microsatellite-unstable (MSI) cancer. However, markers identifying potential non-responders are missing. We examined the prevalence of Beta-2-microglobulin (B2M) mutations, a common immune evasion mechanism, in stage IV MSI gastrointestinal cancer and its influence on metastatic pattern and patients’ survival under ICB. Twenty-five patients with metastatic, MSI gastrointestinal adenocarcinoma were included. Eighteen patients received ICB with pembrolizumab and one patient with nivolumab/ipilimumab. Sequencing was performed to determine B2M mutation status. B2M mutations and loss of B2M expression were detected in 6 out of 25 stage IV MSI cancers. B2M mutations were strongly associated with exclusively peritoneal/peritoneal and lymph node metastases (p=0.0055). However, no significant differences in therapy response (25% vs. 46.6%, p>0.99) and survival (median PFS: 19.5 vs 33.0 months, p=0.74; median OS 39 months vs. not reached, p>0.99) were observed between B2M-mutant and B2M-wild type tumor patients. Among metastatic MSI GI cancers, B2M-mutant tumors represent a biologically distinct disease with distinct metastatic patterns. To assess ICB response in B2M-mutant MSI cancer patients, future studies need to account for the fact that baseline survival of patients with B2M-mutant MSI cancer may be longer than of patients with B2M-wild type MSI cancer.
Collapse
Affiliation(s)
- Elena Busch
- Department of Medical Oncology, National Centre for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Aysel Ahadova
- Department of Applied Tumor Biology, Heidelberg University Hospital, Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Kosima Kosmalla
- Department of Applied Tumor Biology, Heidelberg University Hospital, Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Lena Bohaumilitzky
- Department of Applied Tumor Biology, Heidelberg University Hospital, Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Pauline L Pfuderer
- Department of Applied Tumor Biology, Heidelberg University Hospital, Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Alexej Ballhausen
- Department of Applied Tumor Biology, Heidelberg University Hospital, Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Johannes Witt
- Department of Applied Tumor Biology, Heidelberg University Hospital, Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Jan-Niklas Wittemann
- Department of Applied Tumor Biology, Heidelberg University Hospital, Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Hendrik Bläker
- Institute of Pathology, University Hospital Leipzig, Leipzig, Germany
| | - Elke Holinski-Feder
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.,MGZ - Medical Genetics Centre, Munich, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Centre for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany.,Department of Applied Tumor Biology, Heidelberg University Hospital, Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumor Biology, Heidelberg University Hospital, Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Georg Martin Haag
- Department of Medical Oncology, National Centre for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Heidelberg University Hospital, Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
28
|
Distinct Mutational Profile of Lynch Syndrome Colorectal Cancers Diagnosed under Regular Colonoscopy Surveillance. J Clin Med 2021; 10:jcm10112458. [PMID: 34206061 PMCID: PMC8198627 DOI: 10.3390/jcm10112458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
Regular colonoscopy even with short intervals does not prevent all colorectal cancers (CRC) in Lynch syndrome (LS). In the present study, we asked whether cancers detected under regular colonoscopy surveillance (incident cancers) are phenotypically different from cancers detected at first colonoscopy (prevalent cancers). We analyzed clinical, histological, immunological and mutational characteristics, including panel sequencing and high-throughput coding microsatellite (cMS) analysis, in 28 incident and 67 prevalent LS CRCs (n total = 95). Incident cancers presented with lower UICC and T stage compared to prevalent cancers (p < 0.0005). The majority of incident cancers (21/28) were detected after previous colonoscopy without any pathological findings. On the molecular level, incident cancers presented with a significantly lower KRAS codon 12/13 (1/23, 4.3% vs. 11/21, 52%; p = 0.0005) and pathogenic TP53 mutation frequency (0/17, 0% vs. 7/21, 33.3%; p = 0.0108,) compared to prevalent cancers; 10/17 (58.8%) incident cancers harbored one or more truncating APC mutations, all showing mutational signatures of mismatch repair (MMR) deficiency. The proportion of MMR deficiency-related mutational events was significantly higher in incident compared to prevalent CRC (p = 0.018). In conclusion, our study identifies a set of features indicative of biological differences between incident and prevalent cancers in LS, which should further be monitored in prospective LS screening studies to guide towards optimized prevention protocols.
Collapse
|
29
|
Therkildsen C, Jensen LH, Rasmussen M, Bernstein I. An Update on Immune Checkpoint Therapy for the Treatment of Lynch Syndrome. Clin Exp Gastroenterol 2021; 14:181-197. [PMID: 34079322 PMCID: PMC8163581 DOI: 10.2147/ceg.s278054] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
During the recent years, immune checkpoint-based therapy has proven highly effective in microsatellite instable (MSI) solid tumors irrespective of organ site. MSI tumors are associated with a defective mismatch repair (MMR) system and a highly immune-infiltrative tumor microenvironment—both characteristics of Lynch syndrome. Lynch syndrome is a multi-tumor syndrome that not only confers a high risk of colorectal and endometrial cancer but also cancer in, eg the upper urinary tract, ovaries, and small bowel. Since the genetic predisposition for Lynch syndrome are pathogenic variants in one of the four MMR genes, MLH1, MSH2, MSH6 or PMS2, most of the Lynch syndrome cancers show MMR deficiency, MSI, and activation of the immune response system. Hence, Lynch syndrome cancer patients may be optimal candidates for immune checkpoint-based therapies. However, molecular differences have been described between sporadic MSI tumors (developed due to MLH1 promoter hypermethylation) and Lynch syndrome tumors, which may result in different treatment responses. Furthermore, the response profile of the rare Lynch syndrome cases may be masked by the more frequent cases of sporadic MSI tumors in large clinical trials. With this review, we systematically collected response data on Lynch syndrome patients treated with FDA- and EMA-approved immune checkpoint-based drugs (pembrolizumab, atezolizumab, durvalumab, avelumab, ipilimumab, and nivolumab) to elucidate the objective response rate and progression-free survival of cancer in Lynch syndrome patients. Herein, we report Lynch syndrome-related objective response rates between 46 and 71% for colorectal cancer and 14–100% for noncolorectal cancer in unselected cohorts as well as an overview of the Lynch syndrome case reports. To date, no difference in the response rates has been reported between Lynch syndrome and sporadic MSI cancer patients.
Collapse
Affiliation(s)
- Christina Therkildsen
- Department of Surgical Gastroenterology, Copenhagen University Hospital, Copenhagen, Denmark.,The Danish HNPCC Register, Department of Clinical Research, Copenhagen University Hospital, Amager and Hvidovre, Copenhagen, Denmark
| | - Lars Henrik Jensen
- Department of Oncology, University Hospital of Southern Denmark, Vejle Hospital, Vejle, Denmark
| | - Maria Rasmussen
- The Danish HNPCC Register, Department of Clinical Research, Copenhagen University Hospital, Amager and Hvidovre, Copenhagen, Denmark
| | - Inge Bernstein
- Department of Gastroenterology, Aalborg Hospital, Aalborg, Denmark.,Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
30
|
Abidi A, Gorris MAJ, Brennan E, Jongmans MCJ, Weijers DD, Kuiper RP, de Voer RM, Hoogerbrugge N, Schreibelt G, de Vries IJM. Challenges of Neoantigen Targeting in Lynch Syndrome and Constitutional Mismatch Repair Deficiency Syndrome. Cancers (Basel) 2021; 13:2345. [PMID: 34067951 PMCID: PMC8152233 DOI: 10.3390/cancers13102345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Lynch syndrome (LS) and constitutional mismatch repair deficiency (CMMRD) are hereditary disorders characterised by a highly increased risk of cancer development. This is due to germline aberrations in the mismatch repair (MMR) genes, which results in a high mutational load in tumours of these patients, including insertions and deletions in genes bearing microsatellites. This generates microsatellite instability and cause reading frameshifts in coding regions that could lead to the generation of neoantigens and opens up avenues for neoantigen targeting immune therapies prophylactically and therapeutically. However, major obstacles need to be overcome, such as the heterogeneity in tumour formation within and between LS and CMMRD patients, which results in considerable variability in the genes targeted by mutations, hence challenging the choice of suitable neoantigens. The machine-learning methods such as NetMHC and MHCflurry that predict neoantigen- human leukocyte antigen (HLA) binding affinity provide little information on other aspects of neoantigen presentation. Immune escape mechanisms that allow MMR-deficient cells to evade surveillance combined with the resistance to immune checkpoint therapy make the neoantigen targeting regimen challenging. Studies to delineate shared neoantigen profiles across patient cohorts, precise HLA binding algorithms, additional therapies to counter immune evasion and evaluation of biomarkers that predict the response of these patients to immune checkpoint therapy are warranted.
Collapse
Affiliation(s)
- Asima Abidi
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (A.A.); (M.A.J.G.); (E.B.); (G.S.)
| | - Mark A. J. Gorris
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (A.A.); (M.A.J.G.); (E.B.); (G.S.)
| | - Evan Brennan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (A.A.); (M.A.J.G.); (E.B.); (G.S.)
| | - Marjolijn C. J. Jongmans
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.C.J.J.); (D.D.W.); (R.P.K.)
- Department of Genetics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Dilys D. Weijers
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.C.J.J.); (D.D.W.); (R.P.K.)
| | - Roland P. Kuiper
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (M.C.J.J.); (D.D.W.); (R.P.K.)
- Department of Genetics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Richarda M. de Voer
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (R.M.d.V.); (N.H.)
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (R.M.d.V.); (N.H.)
| | - Gerty Schreibelt
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (A.A.); (M.A.J.G.); (E.B.); (G.S.)
| | - I. Jolanda M. de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (A.A.); (M.A.J.G.); (E.B.); (G.S.)
- Department of Medical Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
31
|
HLA class I loss in colorectal cancer: implications for immune escape and immunotherapy. Cell Mol Immunol 2021; 18:556-565. [PMID: 33473191 PMCID: PMC8027055 DOI: 10.1038/s41423-021-00634-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/23/2020] [Indexed: 01/30/2023] Open
Abstract
T cell-mediated immune therapies have emerged as a promising treatment modality in different malignancies including colorectal cancer (CRC). However, only a fraction of patients currently respond to treatment. Understanding the lack of responses and finding biomarkers with predictive value is of great importance. There is evidence that CRC is a heterogeneous disease and several classification systems have been proposed that are based on genomic instability, immune cell infiltration, stromal content and molecular subtypes of gene expression. Human leukocyte antigen class I (HLA-I) plays a pivotal role in presenting processed antigens to T lymphocytes, including tumour antigens. These molecules are frequently lost in different types of cancers, including CRC, resulting in tumour immune escape from cytotoxic T lymphocytes during the natural history of cancer development. The aim of this review is to (i) summarize the prevalence and molecular mechanisms behind HLA-I loss in CRC, (ii) discuss HLA-I expression/loss in the context of the newly identified CRC molecular subtypes, (iii) analyze the HLA-I phenotypes of CRC metastases disseminated via blood or the lymphatic system, (iv) discuss strategies to recover/circumvent HLA-I expression/loss and finally (v) review the role of HLA class II (HLA-II) in CRC prognosis.
Collapse
|
32
|
Jin Z, Sinicrope FA. Prognostic and Predictive Values of Mismatch Repair Deficiency in Non-Metastatic Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13020300. [PMID: 33467526 PMCID: PMC7830023 DOI: 10.3390/cancers13020300] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide. Universal MMR/MSI testing is standard of care for all patients with newly diagnosed CRC based on multi-society guidelines in the United States. Such testing is intended to identify patients with Lynch Syndrome due to a germline mutation in an MMR gene, but also detects those with sporadic dMMR/MSI-high CRCs. The prognostic utility of MMR/MSI status in non-metastatic colorectal cancer has been studied extensively, yet more limited data are available for its predictive utility. Results have not been entirely consistent due to potential stage-related differences and limited numbers of dMMR/MSI-H patients included in the studies. In this review, we summarize the current evidence for the prognostic and predictive value of dMMR/MSI-H in non-metastatic CRC, and discuss the use of this biomarker for patient management and treatment decisions in clinical practice.
Collapse
|
33
|
Kloor M, Reuschenbach M, Pauligk C, Karbach J, Rafiyan MR, Al-Batran SE, Tariverdian M, Jäger E, von Knebel Doeberitz M. A Frameshift Peptide Neoantigen-Based Vaccine for Mismatch Repair-Deficient Cancers: A Phase I/IIa Clinical Trial. Clin Cancer Res 2020; 26:4503-4510. [PMID: 32540851 DOI: 10.1158/1078-0432.ccr-19-3517] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/02/2020] [Accepted: 06/10/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE DNA mismatch repair (MMR) deficiency is a hallmark of Lynch syndrome, the most common inherited cancer syndrome. MMR-deficient cancer cells accumulate numerous insertion/deletion mutations at microsatellites. Mutations of coding microsatellites (cMS) lead to the generation of immunogenic frameshift peptide (FSP) neoantigens. As the evolution of MMR-deficient cancers is triggered by mutations inactivating defined cMS-containing tumor suppressor genes, distinct FSP neoantigens are shared by most MMR-deficient cancers. To evaluate safety and immunogenicity of an FSP-based vaccine, we performed a clinical phase I/IIa trial (Micoryx). PATIENTS AND METHODS The trial comprised three cycles of four subcutaneous vaccinations (FSP neoantigens derived from mutant AIM2, HT001, TAF1B genes) mixed with Montanide ISA-51 VG over 6 months. Inclusion criteria were history of MMR-deficient colorectal cancer (UICC stage III or IV) and completion of chemotherapy. Phase I evaluated safety and toxicity as primary endpoint (six patients), phase IIa addressed cellular and humoral immune responses (16 patients). RESULTS Vaccine-induced humoral and cellular immune responses were observed in all patients vaccinated per protocol. Three patients developed grade 2 local injection site reactions. No vaccination-induced severe adverse events occurred. One heavily pretreated patient with bulky metastases showed stable disease and stable CEA levels over 7 months. CONCLUSIONS FSP neoantigen vaccination is systemically well tolerated and consistently induces humoral and cellular immune responses, thus representing a promising novel approach for treatment and even prevention of MMR-deficient cancer.
Collapse
Affiliation(s)
- Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany. .,Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center) Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), EMBL Heidelberg, Heidelberg, Germany
| | - Miriam Reuschenbach
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center) Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), EMBL Heidelberg, Heidelberg, Germany
| | - Claudia Pauligk
- Institute of Clinical Cancer Research (IKF), Krankenhaus Nordwest, UCT University Cancer Center, Frankfurt, Germany
| | - Julia Karbach
- Clinic for Oncology and Hematology, Krankenhaus Nordwest, Frankfurt, Germany
| | | | - Salah-Eddin Al-Batran
- Institute of Clinical Cancer Research (IKF), Krankenhaus Nordwest, UCT University Cancer Center, Frankfurt, Germany
| | - Mirjam Tariverdian
- Department of Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Elke Jäger
- Clinic for Oncology and Hematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center) Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), EMBL Heidelberg, Heidelberg, Germany
| |
Collapse
|
34
|
Bohaumilitzky L, von Knebel Doeberitz M, Kloor M, Ahadova A. Implications of Hereditary Origin on the Immune Phenotype of Mismatch Repair-Deficient Cancers: Systematic Literature Review. J Clin Med 2020; 9:E1741. [PMID: 32512823 PMCID: PMC7357024 DOI: 10.3390/jcm9061741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
Microsatellite instability (MSI) represents one of the major types of genomic instability in human cancers and is most common in colorectal cancer (CRC) and endometrial cancer (EC). MSI develops as a consequence of DNA mismatch repair (MMR) deficiency, which can occur sporadically or in the context of Lynch syndrome (LS), the most common inherited tumor syndrome. MMR deficiency triggers the accumulation of high numbers of somatic mutations in the affected cells, mostly indel mutations at microsatellite sequences. MSI tumors are among the most immunogenic human tumors and are often characterized by pronounced local immune responses. However, so far, little is known about immunological differences between sporadic and hereditary MSI tumors. Therefore, a systematic literature search was conducted to comprehensively collect data on the differences in local T cell infiltration and immune evasion mechanisms between sporadic and LS-associated MSI tumors. The vast majority of collected studies were focusing on CRC and EC. Generally, more pronounced T cell infiltration and a higher frequency of B2M mutations were reported for LS-associated compared to sporadic MSI tumors. In addition, phenotypic features associated with enhanced lymphocyte recruitment were reported to be specifically associated with hereditary MSI CRCs. The quantitative and qualitative differences clearly indicate a distinct biology of sporadic and hereditary MSI tumors. Clinically, these findings underline the need for differentiating sporadic and hereditary tumors in basic science studies and clinical trials, including trials evaluating immune checkpoint blockade therapy in MSI tumors.
Collapse
Affiliation(s)
- Lena Bohaumilitzky
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (L.B.); (M.v.K.D.); (M.K.)
- Clinical Cooperation Unit Applied Tumor Biology, DKFZ, 69120 Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (L.B.); (M.v.K.D.); (M.K.)
- Clinical Cooperation Unit Applied Tumor Biology, DKFZ, 69120 Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (L.B.); (M.v.K.D.); (M.K.)
- Clinical Cooperation Unit Applied Tumor Biology, DKFZ, 69120 Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Aysel Ahadova
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; (L.B.); (M.v.K.D.); (M.K.)
- Clinical Cooperation Unit Applied Tumor Biology, DKFZ, 69120 Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
35
|
Cerretelli G, Ager A, Arends MJ, Frayling IM. Molecular pathology of Lynch syndrome. J Pathol 2020; 250:518-531. [PMID: 32141610 DOI: 10.1002/path.5422] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022]
Abstract
Lynch syndrome (LS) is characterised by predisposition to colorectal, endometrial, and other cancers and is caused by inherited pathogenic variants affecting the DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6, and PMS2. It is probably the most common predisposition to cancer, having an estimated prevalence of between 1/100 and 1/180. Resources such as the International Society for Gastrointestinal Hereditary Cancer's MMR gene variant database, the Prospective Lynch Syndrome Database (PLSD), and the Colon Cancer Family Register (CCFR), as well as pathological and immunological studies, are enabling advances in the understanding of LS. These include defined criteria by which to interpret gene variants, the function of MMR in the normal control of apoptosis, definition of the risks of the various cancers, and the mechanisms and pathways by which the colorectal and endometrial tumours develop, including the critical role of the immune system. Colorectal cancers in LS can develop along three pathways, including flat intramucosal lesions, which depend on the underlying affected MMR gene. This gives insights into the limitations of colonoscopic surveillance and highlights the need for other forms of anti-cancer prophylaxis in LS. Finally, it shows that the processes of autoimmunisation and immunoediting fundamentally constrain the development of tumours in LS and explain the efficacy of immune checkpoint blockade therapy in MMR-deficient tumours. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Guia Cerretelli
- Division of Pathology, Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
| | - Ann Ager
- Division of Infection and Immunity, School of Medicine and Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Mark J Arends
- Division of Pathology, Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
| | - Ian M Frayling
- Inherited Tumour Syndromes Research Group, Institute of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
36
|
van de Haar J, Canisius S, Yu MK, Voest EE, Wessels LFA, Ideker T. Identifying Epistasis in Cancer Genomes: A Delicate Affair. Cell 2020; 177:1375-1383. [PMID: 31150618 DOI: 10.1016/j.cell.2019.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/04/2019] [Accepted: 04/30/2019] [Indexed: 12/30/2022]
Abstract
Recent studies of the tumor genome seek to identify cancer pathways as groups of genes in which mutations are epistatic with one another or, specifically, "mutually exclusive." Here, we show that most mutations are mutually exclusive not due to pathway structure but to interactions with disease subtype and tumor mutation load. In particular, many cancer driver genes are mutated preferentially in tumors with few mutations overall, causing mutations in these cancer genes to appear mutually exclusive with numerous others. Researchers should view current epistasis maps with caution until we better understand the multiple cause-and-effect relationships among factors such as tumor subtype, positive selection for mutations, and gross tumor characteristics including mutational signatures and load.
Collapse
Affiliation(s)
- Joris van de Haar
- Division of Molecular Oncology & Immunology, the Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands; Division of Molecular Carcinogenesis, the Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sander Canisius
- Division of Molecular Carcinogenesis, the Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands; Oncode Institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Michael K Yu
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Program in Bioinformatics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emile E Voest
- Division of Molecular Oncology & Immunology, the Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, the Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands; Oncode Institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands; Faculty of EEMCS, Delft University of Technology, Delft, 2628 CD, the Netherlands.
| | - Trey Ideker
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Program in Bioinformatics, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Cancer Cell Map Initiative, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
37
|
Snahnicanova Z, Kasubova I, Kalman M, Grendar M, Mikolajcik P, Gabonova E, Laca L, Caprnda M, Rodrigo L, Ciccocioppo R, Kruzliak P, Plank L, Lasabova Z. Genetic and epigenetic analysis of the beta-2-microglobulin gene in microsatellite instable colorectal cancer. Clin Exp Med 2020; 20:87-95. [PMID: 31853669 DOI: 10.1007/s10238-019-00601-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
One of the most common mechanisms of immune evasion in MSI colorectal cancers (CRCs) is loss of HLA class I expression due to mutations in B2M gene which can become a negative predictor for checkpoint blockade therapy. The aim of this study was the determination of prevalence of B2M somatic mutations in MSI CRC patients and relationship between B2M mutations and lymphocytes infiltration and other clinicopathological features as well as detection of methylation changes in B2M promoter region which can be another mechanism of immune escape. In our study, 37 MSI-H and 5 MSI-L patients were selected for screening of B2M mutational and methylation status. The characterization of patients was based on standard histopathological diagnosis and TNM classification; BRAF, KRAS mutations, tumor-infiltrating lymphocytes and peritumoral lymphoid reaction were also determined. MSI analysis was performed using fragment analysis. B2M mutations were identified by Sanger sequencing, and methylation of CpG islands in promoter region was detected by methylation-specific PCR. Heterozygous mutations in the B2M gene were detected in five MSI-H patients (13.5%), while the mutation c.45_48delTTCT was determined in four patients and mutation c.276delC was found in two patients. One of these five patients was compound heterozygote harboring both mutations. Methylation of the promoter region of the B2M gene was observed in one patient with MSI-H colorectal cancer. Detection of genetic and epigenetic changes in B2M gene could be important in personalized therapy for CRC patients as these changes may be one of the mechanisms of secondary resistance of MSI positive tumors to immunotherapy.
Collapse
Affiliation(s)
- Zuzana Snahnicanova
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia
| | - Ivana Kasubova
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia
| | - Michal Kalman
- Department of Pathological Anatomy, Jessenius Faculty of Medicine and University Hospital in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Marian Grendar
- Department of Bioinformatics, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Mikolajcik
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Eva Gabonova
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Ludovit Laca
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Luis Rodrigo
- Faculty of Medicine, University of Oviedo, Central University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, Azienda Ospedaliera Universitaria, Integrata Policlinico GB Rossi, University of Verona, Verona, Italy
| | - Peter Kruzliak
- Department of Internal Medicine, Brothers of Mercy Hospital, Polní 553/3, 63900, Brno, Czech Republic.
- 2nd Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic.
| | - Lukas Plank
- Department of Pathological Anatomy, Jessenius Faculty of Medicine and University Hospital in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Zora Lasabova
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, 036 01, Martin, Slovakia.
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| |
Collapse
|
38
|
Kloor M. Resistance of the stable-towards more precise prediction of response to immune checkpoint blockade in microsatellite-unstable cancer patients. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:603. [PMID: 32047764 DOI: 10.21037/atm.2019.10.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Applied Tumor Biology, DKFZ (German Cancer Research Center) Heidelberg, Heidelberg, Germany
| |
Collapse
|
39
|
Chang K, Taggart MW, Reyes-Uribe L, Borras E, Riquelme E, Barnett RM, Leoni G, San Lucas FA, Catanese MT, Mori F, Diodoro MG, You YN, Hawk ET, Roszik J, Scheet P, Kopetz S, Nicosia A, Scarselli E, Lynch PM, McAllister F, Vilar E. Immune Profiling of Premalignant Lesions in Patients With Lynch Syndrome. JAMA Oncol 2019; 4:1085-1092. [PMID: 29710228 DOI: 10.1001/jamaoncol.2018.1482] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Importance Colorectal carcinomas in patients with Lynch syndrome (LS) arise in a background of mismatch repair (MMR) deficiency, display a unique immune profile with upregulation of immune checkpoints, and response to immunotherapy. However, there is still a gap in understanding the pathogenesis of MMR-deficient colorectal premalignant lesions, which is essential for the development of novel preventive strategies for LS. Objective To characterize the immune profile of premalignant lesions from a cohort of patients with LS. Design, Setting, and Participants Whole-genome transcriptomic analysis using next-generation sequencing was performed in colorectal polyps and carcinomas of patients with LS. As comparator and model of MMR-proficient colorectal carcinogenesis, we used samples from patients with familial adenomatous polyposis (FAP). In addition, a total of 47 colorectal carcinomas (6 hypermutants and 41 nonhypermutants) were obtained from The Cancer Genome Atlas (TCGA) for comparisons. Samples were obtained from the University of Texas MD Anderson Cancer Center and "Regina Elena" National Cancer Institute, Rome, Italy. All diagnoses were confirmed by genetic testing. Polyps were collected at the time of endoscopic surveillance and tumors were collected at the time of surgical resection. The data were analyzed from October 2016 to November 2017. Main Outcomes and Measures Assessment of the immune profile, mutational signature, mutational and neoantigen rate, and pathway enrichment analysis of neoantigens in LS premalignant lesions and their comparison with FAP premalignant lesions, LS carcinoma, and sporadic colorectal cancers from TCGA. Results The analysis was performed in a total of 28 polyps (26 tubular adenomas and 2 hyperplastic polyps) and 3 early-stage LS colorectal tumors from 24 patients (15 [62%] female; mean [SD] age, 48.12 [15.38] years) diagnosed with FAP (n = 10) and LS (n = 14). Overall, LS polyps presented with low mutational and neoantigen rates but displayed a striking immune activation profile characterized by CD4 T cells, proinflammatory (tumor necrosis factor, interleukin 12) and checkpoint molecules (LAG3 [lymphocyte activation gene 3] and PD-L1 [programmed cell death 1 ligand 1]). This immune profile was independent of mutational rate, neoantigen formation, and MMR status. In addition, we identified a small subset of LS polyps with high mutational and neoantigen rates that were comparable to hypermutant tumors and displayed additional checkpoint (CTLA4 [cytotoxic T-lymphocyte-associated protein 4]) and neoantigens involved in DNA damage response (ATM and BRCA1 signaling). Conclusions and Relevance These findings challenge the canonical model, based on the observations made in carcinomas, that emphasizes a dependency of immune activation on the acquisition of high levels of mutations and neoantigens, thus opening the door to the implementation of immune checkpoint inhibitors and vaccines for cancer prevention in LS.
Collapse
Affiliation(s)
- Kyle Chang
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston.,Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston
| | - Melissa W Taggart
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston
| | - Laura Reyes-Uribe
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston
| | - Ester Borras
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston
| | - Erick Riquelme
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston
| | - Reagan M Barnett
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston
| | | | - F Anthony San Lucas
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston
| | | | | | - Maria G Diodoro
- Department of Pathology, "Regina Elena" National Cancer Institute, Rome, Italy
| | - Y Nancy You
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston.,Clinical Cancer Genetics Program, University of Texas MD Anderson Cancer Center, Houston
| | - Ernest T Hawk
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston
| | - Jason Roszik
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston.,Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston
| | - Paul Scheet
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston.,Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston
| | - Alfredo Nicosia
- Nouscom SRL, Rome, Italy.,CEINGE, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Patrick M Lynch
- Clinical Cancer Genetics Program, University of Texas MD Anderson Cancer Center, Houston.,Department of Gastroenterology, Hepatology and Nutrition, University of Texas MD Anderson Cancer Center, Houston
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston.,Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston.,Clinical Cancer Genetics Program, University of Texas MD Anderson Cancer Center, Houston.,Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston.,Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston.,Clinical Cancer Genetics Program, University of Texas MD Anderson Cancer Center, Houston.,Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
40
|
Willis JA, Reyes-Uribe L, Chang K, Lipkin SM, Vilar E. Immune Activation in Mismatch Repair-Deficient Carcinogenesis: More Than Just Mutational Rate. Clin Cancer Res 2019; 26:11-17. [PMID: 31383734 DOI: 10.1158/1078-0432.ccr-18-0856] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/26/2019] [Accepted: 07/31/2019] [Indexed: 01/08/2023]
Abstract
Mismatch repair (MMR)-deficient colorectal cancers (dMMR colorectal cancer) are characterized by the expression of highly immunogenic neoantigen peptides, which stimulate lymphocytic infiltration as well as upregulation of inflammatory cytokines. These features are key to understanding why immunotherapy (specifically PD-1 and/or CTLA-4 checkpoint blockade) has proved to be highly effective for the treatment of patients with advanced dMMR colorectal cancer. Importantly, preclinical studies also suggest that this correlation between potent tumor neoantigens and the immune microenvironment is present in early (premalignant) stages of dMMR colorectal tumorigenesis as well, even in the absence of a high somatic mutation burden. Here, we discuss recent efforts to characterize how neoantigens and the tumor immune microenvironment coevolve throughout the dMMR adenoma-to-carcinoma pathway. We further highlight how this preclinical evidence forms the rational basis for developing novel immunotherapy-based colorectal cancer prevention strategies for patients with Lynch syndrome.
Collapse
Affiliation(s)
- Jason A Willis
- Hematology and Oncology Fellowship Program, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Laura Reyes-Uribe
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kyle Chang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas.,MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Steven M Lipkin
- Department of Medicine, Weill-Cornell Medical College, Cornell University, New York, New York
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
41
|
Pfuderer PL, Ballhausen A, Seidler F, Stark HJ, Grabe N, Frayling IM, Ager A, von Knebel Doeberitz M, Kloor M, Ahadova A. High endothelial venules are associated with microsatellite instability, hereditary background and immune evasion in colorectal cancer. Br J Cancer 2019; 121:395-404. [PMID: 31358939 PMCID: PMC6738093 DOI: 10.1038/s41416-019-0514-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Microsatellite-unstable (MSI) tumours show a high load of mutational neoantigens, as a consequence of DNA mismatch repair deficiency. Consequently, MSI tumours commonly present with dense immune infiltration and develop immune evasion mechanisms. Whether improved lymphocyte recruitment contributes to the pronounced immune infiltration in MSI tumours is unknown. We analysed the density of high endothelial venules (HEV) and postcapillary blood vessels specialised for lymphocyte trafficking, in MSI colorectal cancers (CRC). METHODS HEV density was determined by immunohistochemical staining of FFPE tissue sections from MSI (n = 48) and microsatellite-stable (MSS, n = 35) CRCs. Associations with clinical and pathological variables were analysed. RESULTS We found elevated HEV densities in MSI compared with MSS CRCs (median 0.049 vs 0.000 counts/mm2, respectively, p = 0.0002), with the highest densities in Lynch syndrome MSI CRCs. Dramatically elevated HEV densities were observed in B2M-mutant Lynch syndrome CRCs, pointing towards a link between lymphocyte recruitment and immune evasion (median 0.485 vs 0.0885 counts/mm2 in B2M-wild-type tumours, p = 0.0237). CONCLUSIONS Our findings for the first time indicate a significant contribution of lymphocyte trafficking in immune responses against MSI CRC, particularly in the context of Lynch syndrome. High HEV densities in B2M-mutant tumours underline the significance of immunoediting during tumour evolution.
Collapse
Affiliation(s)
- Pauline L Pfuderer
- Department of Applied Tumour Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, DKFZ, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Heidelberg, Germany
| | - Alexej Ballhausen
- Department of Applied Tumour Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, DKFZ, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Heidelberg, Germany
| | - Florian Seidler
- Department of Applied Tumour Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, DKFZ, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Heidelberg, Germany
| | - Hans-Jürgen Stark
- Department of Applied Tumour Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, DKFZ, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Heidelberg, Germany
| | - Niels Grabe
- Hamamatsu Tissue Imaging and Analysis (TIGA) Center, Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumour Diseases (NCT), Heidelberg, Germany
| | - Ian M Frayling
- Inherited Tumour Syndromes Research Group, Institute of Cancer & Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Ann Ager
- Division of Infection and Immunity, School of Medicine and Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumour Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, DKFZ, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumour Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, DKFZ, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Heidelberg, Germany
| | - Aysel Ahadova
- Department of Applied Tumour Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
- Clinical Cooperation Unit Applied Tumour Biology, DKFZ, Heidelberg, Germany.
- Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
42
|
Barrow P, Richman SD, Wallace AJ, Handley K, Hutchins GGA, Kerr D, Magill L, Evans DG, Gray R, Quirke P, Hill J. Confirmation that somatic mutations of beta-2 microglobulin correlate with a lack of recurrence in a subset of stage II mismatch repair deficient colorectal cancers from the QUASAR trial. Histopathology 2019; 75:236-246. [PMID: 31062389 PMCID: PMC6772160 DOI: 10.1111/his.13895] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/16/2019] [Accepted: 05/01/2019] [Indexed: 01/05/2023]
Abstract
Aims Beta2‐microglobulin (B2M) forms part of the HLA class I complex and plays a role in metastatic biology. B2M mutations occur frequently in mismatch repair‐deficient colorectal cancer (dMMR CRC), with limited data suggesting they may protect against recurrence. Our experimental study tested this hypothesis by investigating B2M mutation status and B2M protein expression and recurrence in patients in the stage II QUASAR clinical trial. Methods and results Sanger sequencing was performed for the three coding exons of B2M on 121 dMMR and a subsample of 108 pMMR tumours; 52 with recurrence and 56 without. B2M protein expression was assessed by immunohistochemistry. Mutation status and protein expression were correlated with recurrence and compared to proficient mismatch repair (pMMR) CRCs. Deleterious B2M mutations were detected in 39 of 121 (32%) dMMR tumours. Five contained missense B2M‐variants of unknown significance, so were excluded from further analyses. With median follow‐up of 7.4 years, none of the 39 B2M‐mutant tumours recurred, compared with 14 of 77 (18%) B2M‐wild‐type tumours (P = 0.005); six at local and eight at distant sites. Sensitivity and specificity of IHC in detecting B2M mutations was 87 and 71%, respectively. Significantly (P < 0.0001) fewer (three of 104, 2.9%) of the 108 pMMR CRCs demonstrated deleterious B2M mutations. One pMMR tumour, containing a frameshift mutation, later recurred. Conclusion B2M mutations were detected in nearly one‐third of dMMR cancers, none of which recurred. B2M mutation status has potential clinical utility as a prognostic biomarker in stage II dMMR CRC. The mechanism of protection against recurrence and whether this protection extends to stage III disease remains unclear.
Collapse
Affiliation(s)
- Paul Barrow
- Department of Surgery, Manchester Royal Infirmary, Central Manchester University Hospitals NHS Trust, Manchester, UK
| | - Susan D Richman
- Department of Pathology and Tumour Biology, Leeds Institute of Cancer and Pathology, St James' University Hospital, Leeds, UK
| | - Andrew J Wallace
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University Hospitals NHS Trust, Manchester, UK
| | - Kelly Handley
- Birmingham Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Gordon G A Hutchins
- Department of Pathology and Tumour Biology, Leeds Institute of Cancer and Pathology, St James' University Hospital, Leeds, UK
| | - David Kerr
- Cancer Medicine, University of Oxford, Oxford, UK
| | - Laura Magill
- Birmingham Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - D Gareth Evans
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University Hospitals NHS Trust, Manchester, UK
| | | | - Phil Quirke
- Department of Pathology and Tumour Biology, Leeds Institute of Cancer and Pathology, St James' University Hospital, Leeds, UK
| | - James Hill
- Department of Surgery, Manchester Royal Infirmary, Central Manchester University Hospitals NHS Trust, Manchester, UK
| |
Collapse
|
43
|
Abstract
In this chapter I describe Tumour Immune Escape mechanisms associated with MHC/HLA class I loss in human and experimental tumours. Different altered HLA class-I phenotypes can be observed that are produced by different molecular mechanisms. Experimental and histological evidences are summarized indicating that at the early stages of tumour development there is an enormous variety of tumour clones with different MHC class I expression patterns. This phase is followed by a strong T cell mediated immune-selection of MHC/HLA class-I negative tumour cells in the primary tumour lesion. This transition period results in a formation of a tumour composed only of HLA-class I negative cells. An updated description of this process observed in a large variety of human tumors is included. In the second section I focus on MHC/HLA class I alterations observed in mouse and human metastases, and describe the generation of different tumor cell clones with altered MHC class I phenotypes, which could be similar or different from the original tumor clone. The biological and immunological relevance of these observations is discussed. Finally, the interesting phenomenon of metastatic dormancy is analyzed in association with a particular MHC class I negative tumor phenotype.
Collapse
Affiliation(s)
- Federico Garrido
- Departamento de Analisis Clinicos e Inmunologia, Hospital Universitario Virgen de las Nieves, Facultad de Medicina, Universidad de Granada, Granada, Spain
| |
Collapse
|
44
|
Seth S, Ager A, Arends MJ, Frayling IM. Lynch syndrome - cancer pathways, heterogeneity and immune escape. J Pathol 2018; 246:129-133. [PMID: 30027543 DOI: 10.1002/path.5139] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/03/2018] [Accepted: 07/10/2018] [Indexed: 12/25/2022]
Abstract
Recent work has provided evidence for genetic and molecular heterogeneity in colorectal cancers (CRCs) arising in patients with Lynch syndrome (LS), dividing these into two groups: G1 and G2. In terms of mutation and gene expression profile, G1 CRCs bear resemblance to sporadic CRCs with microsatellite instability (MSI), whereas G2 CRCs are more similar to microsatellite-stable CRCs. Here we review the current state of knowledge on pathways of precursor progression to CRC in LS and how these might tie in with the new findings. Immunotherapies are an active field of research for MSI cancers and their potential use for cancer therapy for both sporadic and LS MSI cancers is discussed. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sidhant Seth
- University of Edinburgh Medical School, Edinburgh, UK
| | - Ann Ager
- Division of Infection and Immunity, School of Medicine, and Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Mark J Arends
- Division of Pathology, Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ian M Frayling
- Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
- Institute of Cancer and Genetics, Cardiff University, Cardiff, UK
| |
Collapse
|
45
|
Walkowska J, Kallemose T, Jönsson G, Jönsson M, Andersen O, Andersen MH, Svane IM, Langkilde A, Nilbert M, Therkildsen C. Immunoprofiles of colorectal cancer from Lynch syndrome. Oncoimmunology 2018; 8:e1515612. [PMID: 30546958 PMCID: PMC6287783 DOI: 10.1080/2162402x.2018.1515612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 02/09/2023] Open
Abstract
Colorectal cancers associated with Lynch syndrome are characterized by defective mismatch repair, microsatellite instability, high mutation rates, and a highly immunogenic environment. These features define a subset of cancer with a favorable prognosis and high likelihood to respond to treatment with anti-programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) drugs. With the aim to define immune-evasive mechanisms and a potential impact hereof in colorectal cancers from Lynch syndrome versus hereditary cases with retained mismatch repair function, we immunohistochemically and transcriptionally profiled 270 tumors. Lynch syndrome-associated tumors showed an overrepresentation of tumor-infiltrating CD3, CD8 and CD68 positive cells, loss of beta-2-microglobulin (B2M) and up-regulation of PD-L1 on tumor cells. The gene expression signature of Lynch syndrome tumors was characterized by upregulation of genes related to antigen processing and presentation, apoptosis, natural killer cell-mediated cytotoxicity, and T cell activation. Tumors with loss of B2M and up-regulation of PD-L1 showed distinctive immunogenic profiles. In summary, our data demonstrate a complex tumor-host interplay where B2M loss and PD-L1 up-regulation influence immunological pathways and clinical outcome in Lynch syndrome tumors. Immunological classification may thus aid in the preselection of colorectal cancers relevant for treatment with anti-PD-1/PD-L1 therapies.
Collapse
Affiliation(s)
- Joanna Walkowska
- The Danish HNPCC Register, Clinical Research Centre, Copenhagen University Hospital, Hvidovre Hospital, Hvidovre, Denmark
| | - Thomas Kallemose
- The Danish HNPCC Register, Clinical Research Centre, Copenhagen University Hospital, Hvidovre Hospital, Hvidovre, Denmark
| | - Göran Jönsson
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Mats Jönsson
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Ove Andersen
- The Danish HNPCC Register, Clinical Research Centre, Copenhagen University Hospital, Hvidovre Hospital, Hvidovre, Denmark
| | - Mads Hald Andersen
- Center for Cancer Immune Therapy, Department of Hematology and Oncology, Copenhagen University Hospital, Herlev Hospital, Herlev, Denmark
| | - Inge Marie Svane
- Center for Cancer Immune Therapy, Department of Hematology and Oncology, Copenhagen University Hospital, Herlev Hospital, Herlev, Denmark
| | - Anne Langkilde
- The Danish HNPCC Register, Clinical Research Centre, Copenhagen University Hospital, Hvidovre Hospital, Hvidovre, Denmark
| | - Mef Nilbert
- The Danish HNPCC Register, Clinical Research Centre, Copenhagen University Hospital, Hvidovre Hospital, Hvidovre, Denmark.,Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden.,The Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Christina Therkildsen
- The Danish HNPCC Register, Clinical Research Centre, Copenhagen University Hospital, Hvidovre Hospital, Hvidovre, Denmark
| |
Collapse
|
46
|
Kuang Z, Huang R, Yang Z, Lv Z, Chen X, Xu F, Yi YH, Wu J, Huang RP. Quantitative screening of serum protein biomarkers by reverse phase protein arrays. Oncotarget 2018; 9:32624-32641. [PMID: 30220970 PMCID: PMC6135697 DOI: 10.18632/oncotarget.25976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/19/2018] [Indexed: 12/28/2022] Open
Abstract
Screening biomarkers in serum samples for different diseases has always been of great interest because it presents an early, reliable, and, most importantly, noninvasive means of diagnosis and prognosis. Reverse phase protein arrays (RPPAs) are a high-throughput platform that can measure single or limited sets of proteins from thousands of patients' samples in parallel. They have been widely used for detection of signaling molecules involved in diseases, especially cancers, and related regulation pathways in cell lysates. However, this approach has been difficult to adapt to serum samples. Previously, we developed a sensitive method called the enhanced protein array to quantitatively measure serum protein levels from large numbers of patient samples. Here, we further refine the technology on several fronts: 1. simplifying the experimental procedure; 2. optimizing multiple parameters to make the assay more robust, including the support matrix, signal reporting method, background control, and antibody validation; and 3. establishing a method for more accurate quantification. Using this technology, we quantitatively measured the expression levels of 10 proteins: alpha-fetoprotein (AFP), beta 2 microglobulin (B2M), Carcinoma Antigen 15-3(CA15-3), Carcinoembryonic antigen (CEA), golgi protein 73 (GP73), Growth differentiation factor 15 (GDF15), Human Epididymis Protein 4 (HE4), Insulin Like Growth Factor Binding Protein 2 (IGFBP2), osteopontin (OPN) and Beta-type platelet-derived growth factor receptor (PDGFRB) from serum samples of 132 hepatocellular carcinoma (HCC) patients and 78 healthy volunteers. We found that 6 protein expression levels are significantly increased in HCC patients. Statistical and bioinformatical analysis has revealed decent accuracy rates of individual proteins, ranging from 0.617 (B2M) to 0.908 (AFP) as diagnostic biomarkers to distinguish HCC from healthy controls. The combination of these 6 proteins as a specific HCC signature yielded a higher accuracy of 0.923 using linear discriminant analysis (LDA), logistic regression (LR), random forest (RF) and support vector machine (SVM) predictive model analyses. Our work reveals promise for using reverse phase protein arrays for biomarker discovery and validation in serum samples.
Collapse
Affiliation(s)
- Zhizhou Kuang
- RayBiotech Inc, Guangzhou, China.,RayBiotech Inc, Parkway Lane, Norcross, GA, USA
| | - Ruochun Huang
- RayBiotech Inc, Guangzhou, China.,RayBiotech Inc, Parkway Lane, Norcross, GA, USA
| | - Zhimin Yang
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.,Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | | | - Xinyan Chen
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.,Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Fuping Xu
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China.,Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yu-Hua Yi
- RayBiotech Inc, Guangzhou, China.,South China Biochip Research Center, Guangzhou, China
| | - Jian Wu
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ruo-Pan Huang
- RayBiotech Inc, Guangzhou, China.,RayBiotech Inc, Parkway Lane, Norcross, GA, USA.,South China Biochip Research Center, Guangzhou, China
| |
Collapse
|
47
|
Boland PM, Yurgelun MB, Boland CR. Recent progress in Lynch syndrome and other familial colorectal cancer syndromes. CA Cancer J Clin 2018; 68:217-231. [PMID: 29485237 PMCID: PMC5980692 DOI: 10.3322/caac.21448] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/08/2018] [Accepted: 01/31/2018] [Indexed: 12/16/2022] Open
Abstract
The current understanding of familial colorectal cancer was limited to descriptions of affected pedigrees until the early 1990s. A series of landscape-altering discoveries revealed that there were distinct forms of familial cancer, and most were related to genes previously not known to be involved in human disease. This review largely focuses on advances in our understanding of Lynch syndrome because of the unique relationship of this disease to defective DNA mismatch repair and the clinical implications this has for diagnostics, prevention, and therapy. Recent advances have occurred in our understanding of the epidemiology of this disease, and the advent of broad genetic panels has altered the approach to germline and somatic diagnoses for all of the familial colorectal cancer syndromes. Important advances have been made toward a more complete mechanistic understanding of the pathogenesis of neoplasia in the setting of Lynch syndrome, and these advances have important implications for prevention. Finally, paradigm-shifting approaches to treatment of Lynch-syndrome and related tumors have occurred through the development of immune checkpoint therapies for hypermutated cancers. CA Cancer J Clin 2018;68:217-231. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Patrick M Boland
- Assistant Professor, Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY
| | - Matthew B Yurgelun
- Assistant Professor of Medicine, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - C Richard Boland
- Professor, Department of Medicine, University of California at San Diego School of Medicine, San Diego, CA
| |
Collapse
|
48
|
Ozcan M, Janikovits J, von Knebel Doeberitz M, Kloor M. Complex pattern of immune evasion in MSI colorectal cancer. Oncoimmunology 2018; 7:e1445453. [PMID: 29900056 PMCID: PMC5993484 DOI: 10.1080/2162402x.2018.1445453] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Mismatch repair (MMR)-deficient cancers accumulate multiple insertion/deletion mutations at coding microsatellites (cMS), which give rise to frameshift peptide neoantigens. The high mutational neoantigen load of MMR-deficient cancers is reflected by pronounced anti-tumoral immune responses of the host and high responsiveness towards immune checkpoint blockade. However, immune evasion mechanisms can interfere with the immune response against MMR-deficient tumors. We here performed a comprehensive analysis of immune evasion in MMR-deficient colorectal cancers, focusing on HLA class I-mediated antigen presentation. 72% of MMR-deficient colorectal cancers of the DFCI database harbored alterations affecting genes involved in HLA class I-mediated antigen presentation, and 54% of these mutations were predicted to abrogate function. Mutations affecting the HLA class I transactivator NLRC5 were observed as a potential new immune evasion mechanism in 26% (6% abrogating) of the analyzed tumors. NLRC5 mutations in MMR-deficient cancers were associated with decreased levels of HLA class I antigen expression. In summary, the majority of MMR-deficient cancers display mutations interfering with HLA class I antigen presentation that reflect active immune surveillance and immunoselection during tumor development. Clinical studies focusing on immune checkpoint blockade in MSI cancer should account for the broad variety of immune evasion mechanisms as potential biomarkers of therapy success.
Collapse
Affiliation(s)
- Mine Ozcan
- Department of Applied Tumour Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Germany
| | - Jonas Janikovits
- Department of Applied Tumour Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Germany
| | - Magnus von Knebel Doeberitz
- Department of Applied Tumour Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumour Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany.,Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Germany
| |
Collapse
|
49
|
Hu ZI, Shia J, Stadler ZK, Varghese AM, Capanu M, Salo-Mullen E, Lowery MA, Diaz LA, Mandelker D, Yu KH, Zervoudakis A, Kelsen DP, Iacobuzio-Donahue CA, Klimstra DS, Saltz LB, Sahin IH, O'Reilly EM. Evaluating Mismatch Repair Deficiency in Pancreatic Adenocarcinoma: Challenges and Recommendations. Clin Cancer Res 2018; 24:1326-1336. [PMID: 29367431 PMCID: PMC5856632 DOI: 10.1158/1078-0432.ccr-17-3099] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/17/2017] [Accepted: 01/11/2018] [Indexed: 12/17/2022]
Abstract
Purpose: Immune checkpoint inhibition has been shown to generate profound and durable responses in mismatch repair deficient (MMR-D) solid tumors and has elicited interest in detection tools and strategies to guide therapeutic decision-making. Herein we address questions on the appropriate screening, detection methods, patient selection, and initiation of therapy for MMR-D pancreatic ductal adenocarcinoma (PDAC) and assess the utility of next-generation sequencing (NGS) in providing additional prognostic and predictive information for MMR-D PDAC.Experimental Design: Archival and prospectively acquired samples and matched normal DNA from N = 833 PDAC cases were analyzed using a hybridization capture-based, NGS assay designed to perform targeted deep sequencing of all exons and selected introns of 341 to 468 cancer-associated genes. A computational program using NGS data derived the MSI status from the tumor-normal paired genome sequencing data. Available germline testing, IHC, and microsatellite instability (MSI) PCR results were reviewed to assess and confirm MMR-D and MSI status.Results: MMR-D in PDAC is a rare event among PDAC patients (7/833), occurring at a frequency of 0.8%. Loss of MMR protein expression by IHC, high mutational load, and elevated MSIsensor scores were correlated with MMR-D PDAC. All 7 MMR-D PDAC patients in the study were found to have Lynch syndrome. Four (57%) of the MMR-D patients treated with immune checkpoint blockade had treatment benefit (1 complete response, 2 partial responses, 1 stable disease).Conclusions: An integrated approach of germline testing and somatic analyses of tumor tissues in advanced PDAC using NGS may help guide future development of immune and molecularly directed therapies in PDAC patients. Clin Cancer Res; 24(6); 1326-36. ©2018 AACR.
Collapse
Affiliation(s)
- Zishuo I Hu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Weill Cornell Medical College, New York, New York
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Anna M Varghese
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marinela Capanu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Erin Salo-Mullen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Luis A Diaz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Diana Mandelker
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kenneth H Yu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alice Zervoudakis
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David P Kelsen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christine A Iacobuzio-Donahue
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Weill Cornell Medical College, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - David S Klimstra
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Weill Cornell Medical College, New York, New York
| | - Leonard B Saltz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | | | - Eileen M O'Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
- Department of Medicine, Weill Cornell Medical College, New York, New York
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
50
|
Clendenning M, Huang A, Jayasekara H, Lorans M, Preston S, O'Callaghan N, Pope BJ, Macrae FA, Winship IM, Milne RL, Giles GG, English DR, Hopper JL, Win AK, Jenkins MA, Southey MC, Rosty C, Buchanan DD. Somatic mutations of the coding microsatellites within the beta-2-microglobulin gene in mismatch repair-deficient colorectal cancers and adenomas. Fam Cancer 2018; 17:91-100. [PMID: 28616688 PMCID: PMC6129400 DOI: 10.1007/s10689-017-0013-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In colorectal cancers (CRCs) with tumour mismatch repair (MMR) deficiency, genes involved in the host immune response that contain microsatellites in their coding regions, including beta-2-microglobulin (B2M), can acquire mutations that may alter the immune response, tumour progression and prognosis. We screened the coding microsatellites within B2M for somatic mutations in MMR-deficient CRCs and adenomas to determine associations with tumour subtypes, clinicopathological features and survival. Incident MMR-deficient CRCs from Australasian Colorectal Cancer Family Registry (ACCFR) and the Melbourne Collaborative Cohort Study participants (n = 144) and 63 adenomas from 41 MMR gene mutation carriers from the ACCFR were screened for somatic mutations within five coding microsatellites of B2M. Hazard ratios (HR) and 95% confidence intervals (CI) for overall survival by B2M mutation status were estimated using Cox regression, adjusting for age at CRC diagnosis, sex, AJCC stage and grade. B2M mutations occurred in 30 (20.8%) of the 144 MMR-deficient CRCs (29% of the MLH1-methylated, 17% of the Lynch syndrome and 9% of the suspected Lynch CRCs). No B2M mutations were identified in the 63 adenomas tested. B2M mutations differed by site, stage, grade and lymphocytic infiltration although none reached statistical significance (p > 0.05). The HR for overall survival for B2M mutated CRC was 0.65 (95% CI 0.29-1.48) compared with B2M wild-type. We observed differences in B2M mutation status in MMR-deficient CRC by tumour subtypes, site, stage, grade, immune infiltrate and for overall survival that warrant further investigation in larger studies before B2M mutation status can be considered to have clinical utility.
Collapse
Affiliation(s)
- Mark Clendenning
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alvin Huang
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Harindra Jayasekara
- Cancer Epidemiology Centre, Cancer Council Victoria, St Kilda, VIC, 3182, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre for Alcohol Policy Research, La Trobe University, Melbourne, VIC, 3000, Australia
| | - Marie Lorans
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Susan Preston
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Neil O'Callaghan
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Bernard J Pope
- Melbourne Bioinformatics, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Finlay A Macrae
- Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Parkville, VIC, 3010, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, 3010, Australia
- Genetic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, 3010, Australia
| | - Ingrid M Winship
- Department of Medicine, The University of Melbourne, Parkville, VIC, 3010, Australia
- Genetic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, 3010, Australia
| | - Roger L Milne
- Cancer Epidemiology Centre, Cancer Council Victoria, St Kilda, VIC, 3182, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Graham G Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, St Kilda, VIC, 3182, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dallas R English
- Cancer Epidemiology Centre, Cancer Council Victoria, St Kilda, VIC, 3182, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Epidemiology and Institute of Health and Environment, School of Public Health, Seoul National University, Seoul, South Korea
| | - Aung K Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
- Genetic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, 3010, Australia
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Melissa C Southey
- Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Envoi Specialist Pathologists, Herston, QLD, 4006, Australia
- School of Medicine, University of Queensland, Herston, QLD, 4006, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Genetic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, 3010, Australia.
| |
Collapse
|