1
|
Müller J, Boubaker G, Müller N, Uldry AC, Braga-Lagache S, Heller M, Hemphill A. Investigating Antiprotozoal Chemotherapies with Novel Proteomic Tools-Chances and Limitations: A Critical Review. Int J Mol Sci 2024; 25:6903. [PMID: 39000012 PMCID: PMC11241152 DOI: 10.3390/ijms25136903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Identification of drug targets and biochemical investigations on mechanisms of action are major issues in modern drug development. The present article is a critical review of the classical "one drug"-"one target" paradigm. In fact, novel methods for target deconvolution and for investigation of resistant strains based on protein mass spectrometry have shown that multiple gene products and adaptation mechanisms are involved in the responses of pathogens to xenobiotics rather than one single gene or gene product. Resistance to drugs may be linked to differential expression of other proteins than those interacting with the drug in protein binding studies and result in complex cell physiological adaptation. Consequently, the unraveling of mechanisms of action needs approaches beyond proteomics. This review is focused on protozoan pathogens. The conclusions can, however, be extended to chemotherapies against other pathogens or cancer.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Norbert Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Sophie Braga-Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| |
Collapse
|
2
|
Imbaby S, Elkholy SE, Faisal S, Abdelmaogood AKK, Mehana AE, Mansour BSA, Abd El-Moneam SM, Elaidy SM. The GSTP1/MAPKs/BIM/SMAC modulatory actions of nitazoxanide: Bioinformatics and experimental evidence in subcutaneous solid Ehrlich carcinoma-inoculated mice. Life Sci 2023; 319:121496. [PMID: 36822315 DOI: 10.1016/j.lfs.2023.121496] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023]
Abstract
AIMS Ehrlich ascites carcinoma and its subcutaneous inoculated solid tumour form (SEC) are reliable models for chemotherapeutic molecular targets exploration. Novel chemotherapeutic approaches are identified as molecular targets for intrinsic apoptosis, like the modulation of the second mitochondria-derived activator of caspases (SMAC). SMAC is a physiological substrate of mitogen-activated protein kinases (MAPKs). Glutathione-S-transferase P1 (GSTP1) and its close association with MAPKs play an important role in malignant cell proliferation, metastasis, and resistance to chemotherapeutics. Nitazoxanide (NTZ) is an emerging cancer therapy and its targeted GSTP1 evidence remains a knowledge need. MAIN METHODS In the present mice-established SEC, the chemotherapeutic roles of oral NTZ (200 mg/kg/day) and 5-fluorouracil (5-FU; 20 mg/kg/day, intraperitoneally) regimens were evaluated by measuring changes in tumour mass, the tumour MAPKs, cytochrome c, Bcl-2 interacting mediator of cell death (BIM), and SMAC signalling pathway in addition to its molecular downstream; caspases 3 and 9. KEY FINDINGS Computational analysis for these target protein interactions showed direct-ordered interactions. After individual therapy with NTZ and 5-FU regimens, the histological architecture of the extracted tumour discs revealed decreases in viable tumour regions with significant necrosis surrounds. These findings were consistent with gross tumour sizes. Each separate regimen lowered the remarkable GSTP1 and elevated the low MAPKs expressions, cytochrome c, BIM, SMAC, and caspases 3, and 9 in EST tissues. SIGNIFICANCE The chemotherapeutic activity of NTZ in SEC was proven. Additionally, NTZ possesses a SMAC modulatory activity that, following thorough research, should be taken into consideration as a chemotherapeutic approach in solid tumours.
Collapse
Affiliation(s)
- Samar Imbaby
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt.
| | - Shereen E Elkholy
- Department of Clinical Pharmacology, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Salwa Faisal
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Asmaa K K Abdelmaogood
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Amir E Mehana
- Department of Zoology, Faculty of Science, Suez Canal University, 41522 Ismailia, Egypt
| | - Basma S A Mansour
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Samar M Abd El-Moneam
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Samah M Elaidy
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt.
| |
Collapse
|
3
|
Memedovski R, Preza M, Müller J, Kämpfer T, Rufener R, de Souza MVN, da Silva ET, de Andrade GF, Braga S, Uldry AC, Buchs N, Heller M, Lundström-Stadelmann B. Investigation of the mechanism of action of mefloquine and derivatives against the parasite Echinococcus multilocularis. Int J Parasitol Drugs Drug Resist 2023; 21:114-124. [PMID: 36921443 PMCID: PMC10025029 DOI: 10.1016/j.ijpddr.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
Alveolar echinococcosis (AE) is caused by infection with the fox tapeworm E. multilocularis. The disease affects humans, dogs, captive monkeys, and other mammals, and it is caused by the metacestode stage of the parasite growing invasively in the liver. The current drug treatment is based on non-parasiticidal benzimidazoles. Thus, they are only limitedly curative and can cause severe side effects. Therefore, novel and improved treatment options for AE are needed. Mefloquine (MEF), an antimalarial agent, was previously shown to be effective against E. multilocularis in vitro and in experimentally infected mice. However, MEF is not parasiticidal and needs improvement for successful treatment of patients, and it can induce strong neuropsychiatric side-effects. In this study, the structure-activity relationship and mode of action of MEF was investigated by comparative analysis of 14 MEF derivatives. None of them showed higher activity against E. multilocularis metacestodes compared to MEF, but four compounds caused limited damage. In order to identify molecular targets of MEF and effective derivatives, differential affinity chromatography combined with mass spectrometry was performed with two effective compounds (MEF, MEF-3) and two ineffective compounds (MEF-13, MEF-22). 1'681 proteins were identified that bound specifically to MEF or derivatives. 216 proteins were identified as binding only to MEF and MEF-3. GO term enrichment analysis of these proteins and functional grouping of the 25 most abundant MEF and MEF-3 specific binding proteins revealed the key processes energy metabolism and cellular transport and structure, as well as stress responses and nucleic acid binding to be involved. The previously described ferritin was confirmed as an exclusively MEF-binding protein that could be relevant for its efficacy against E. multilocularis. The here identified potential targets of MEF will be further investigated in the future for a clear understanding of the pleiotropic effects of MEF, and improved therapeutic options against AE.
Collapse
Affiliation(s)
- Roman Memedovski
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Matías Preza
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tobias Kämpfer
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Reto Rufener
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Emerson Teixeira da Silva
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos - Far Manguinhos, 21041-250, Rio de Janeiro, Brazil
| | | | - Sophie Braga
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Natasha Buchs
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Britta Lundström-Stadelmann
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland.
| |
Collapse
|
4
|
Ribeiro E, Araújo D, Pereira M, Lopes B, Sousa P, Sousa AC, Coelho A, Rêma A, Alvites R, Faria F, Oliveira C, Porto B, Maurício AC, Amorim I, Vale N. Repurposing Benztropine, Natamycin, and Nitazoxanide Using Drug Combination and Characterization of Gastric Cancer Cell Lines. Biomedicines 2023; 11:799. [PMID: 36979779 PMCID: PMC10044866 DOI: 10.3390/biomedicines11030799] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Gastric cancer (GC) ranked as the fifth most incident cancer in 2020 and the third leading cause of cancer mortality. Surgical prevention and radio/chemotherapy are the main approaches used in GC treatment, and there is an urgent need to explore and discover innovative and effective drugs to better treat this disease. A new strategy arises with the use of repurposed drugs. Drug repurposing coupled with drug combination schemes has been gaining interest in the scientific community. The main objective of this project was to evaluate the therapeutic effects of alternative drugs in GC. For that, three GC cell lines (AGS, MKN28, and MKN45) were used and characterized. Cell viability assays were performed with the reference drug 5-fluororacil (5-FU) and three repurposed drugs: natamycin, nitazoxanide, and benztropine. Nitazoxanide displayed the best results, being active in all GC cells. Further, 5-FU and nitazoxanide in combination were tested in MKN28 GC cells, and the results obtained showed that nitazoxanide alone was the most promising drug for GC therapy. This work demonstrated that the repurposing of drugs as single agents has the ability to decrease GC cell viability in a concentration-dependent manner.
Collapse
Affiliation(s)
- Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Departamento de Patologia e Imunologia Molecular, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Diana Araújo
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Departamento de Patologia e Imunologia Molecular, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Mariana Pereira
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Departamento de Patologia e Imunologia Molecular, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Alexandra Rêma
- Departamento de Clínicas Veterinárias, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Fátima Faria
- Departamento de Patologia e Imunologia Molecular, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Cláudia Oliveira
- Laboratório de Citogenética, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Beatriz Porto
- Laboratório de Citogenética, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Irina Amorim
- Departamento de Patologia e Imunologia Molecular, ICBAS—School of Medicine and Biomedical Sciences—University of Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
5
|
Müller J, Boubaker G, Imhof D, Hänggeli K, Haudenschild N, Uldry AC, Braga-Lagache S, Heller M, Ortega-Mora LM, Hemphill A. Differential Affinity Chromatography Coupled to Mass Spectrometry: A Suitable Tool to Identify Common Binding Proteins of a Broad-Range Antimicrobial Peptide Derived from Leucinostatin. Biomedicines 2022; 10:biomedicines10112675. [PMID: 36359195 PMCID: PMC9687860 DOI: 10.3390/biomedicines10112675] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 11/28/2022] Open
Abstract
Leucinostatins are antimicrobial peptides with a broad range of activities against infectious agents as well as mammalian cells. The leucinostatin-derivative peptide ZHAWOC_6027 (peptide 6027) was tested in vitro and in vivo for activity against the intracellular apicomplexan parasite Toxoplasma gondii. While highly efficacious in vitro (EC50 = 2 nM), subcutaneous application of peptide 6027 (3 mg/kg/day for 5 days) in mice experimentally infected with T. gondii oocysts exacerbated the infection, caused mild clinical signs and elevated cerebral parasite load. Peptide 6027 also impaired the proliferation and viability of mouse splenocytes, most notably LPS-stimulated B cells, in vitro. To identify common potential targets in Toxoplasma and murine splenocytes, we performed differential affinity chromatography (DAC) with cell-free extracts from T. gondii tachyzoites and mouse spleens using peptide 6027 or an ineffective analogue (peptide 21,358) coupled to N-hydroxy-succinimide sepharose, followed by mass spectrometry. Proteins specifically binding to peptide 6027 were identified in eluates from the peptide 6027 column but not in peptide 21,358 nor the mock column eluates. In T. gondii eluates, 269 proteins binding specifically to peptide 6027 were identified, while in eluates from mouse spleen extracts 645 proteins specifically binding to this peptide were detected. Both datasets contained proteins involved in mitochondrial energy metabolism and in protein processing and secretion. These results suggest that peptide 6027 interacts with common targets in eukaryotes involved in essential pathways. Since this methodology can be applied to various compounds as well as target cell lines or organs, DAC combined with mass spectrometry and proteomic analysis should be considered a smart and 3R-relevant way to identify drug targets in pathogens and hosts, thereby eliminating compounds with potential side effects before performing tedious and costly safety and efficacy assessments in animals or humans.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Dennis Imhof
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Kai Hänggeli
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Noé Haudenschild
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland
| | - Sophie Braga-Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland
| | - Luis-Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
- Correspondence:
| |
Collapse
|
6
|
Khan SA, Lee TKW. Investigations of nitazoxanide molecular targets and pathways for the treatment of hepatocellular carcinoma using network pharmacology and molecular docking. Front Pharmacol 2022; 13:968148. [PMID: 35959427 PMCID: PMC9358010 DOI: 10.3389/fphar.2022.968148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Nitazoxanide has been investigated for colorectal cancer and breast cancer. However, its molecular targets and pathways have not yet been explored for hepatocellular carcinoma (HCC) treatment. Utilizing a network pharmacology approach, nitazoxanide’s potential targets and molecular pathways for HCC treatment were investigated. HCC targets were extracted from the GeneCards database. Potential targets of nitazoxanide were predicted using Swiss Target Prediction and Super Pred. Intersecting targets were analyzed with VENNY online tool. Using Cytoscape, a protein-protein interaction (PPI), cluster, and core targets-pathways networks were constructed. Using the Database for Annotation, Visualization and Integrated Discovery (DAVID), gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted. The nitazoxanide was molecularly docked with anti-HCC core targets by employing Auto Dock Vina. A total of 168 potential targets of nitazoxanide, 13,415 HCC-related targets, and 153 intersecting targets were identified. The top eight anti-HCC core targets were identified: SRC, EGFR, CASP3, MMP9, mTOR, HIF1A, ERBB2, and PPARG. GO enrichment analysis showed that nitazoxanide might have anti-HCC effects by affecting gene targets involved in multiple biological processes (BP) (protein phosphorylation, transmembrane receptor protein tyrosine kinase (RTKs) signaling pathway, positive regulation of MAP kinase activity, etc.). KEGG pathways and core targets-pathways network analysis indicated that pathways in cancer and proteoglycans in cancer are two key pathways that significantly contribute to the anti-HCC effects of nitazoxanide. Results of molecular docking demonstrated the potential for active interaction between the top eight anti-HCC core targets and nitazoxanide. Our research offers a theoretical basis for the notion that nitazoxanide may have distinct therapeutic effects in HCC, and the identified pharmacological targets and pathways might function as biomarkers for HCC therapy.
Collapse
Affiliation(s)
- Shakeel Ahmad Khan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- *Correspondence: Shakeel Ahmad Khan, ; Terence Kin Wah Lee,
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- *Correspondence: Shakeel Ahmad Khan, ; Terence Kin Wah Lee,
| |
Collapse
|
7
|
Karlsson H, Fryknäs M, Senkowski W, Larsson R, Nygren P. Selective radiosensitization by nitazoxanide of quiescent clonogenic colon cancer tumour cells. Oncol Lett 2022; 23:123. [PMID: 35261637 PMCID: PMC8867181 DOI: 10.3892/ol.2022.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/31/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Henning Karlsson
- Department of Medical Sciences, Genetics and Pathology, Uppsala University, Uppsala S‑751 85, Sweden
| | - Mårten Fryknäs
- Department of Medical Sciences, Genetics and Pathology, Uppsala University, Uppsala S‑751 85, Sweden
| | - Wojciech Senkowski
- Department of Medical Sciences, Genetics and Pathology, Uppsala University, Uppsala S‑751 85, Sweden
| | - Rolf Larsson
- Department of Medical Sciences, Genetics and Pathology, Uppsala University, Uppsala S‑751 85, Sweden
| | - Peter Nygren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala S‑751 85, Sweden
| |
Collapse
|
8
|
Lü Z, Li X, Li K, Ripani P, Shi X, Xu F, Wang M, Zhang L, Brunner T, Xu P, Niu Y. Nitazoxanide and related thiazolides induce cell death in cancer cells by targeting the 20S proteasome with novel binding modes. Biochem Pharmacol 2022; 197:114913. [PMID: 35032461 DOI: 10.1016/j.bcp.2022.114913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 11/02/2022]
Abstract
Nitazoxanide and related thiazolides are a novel class of anti-infectious agents against protozoan parasites, bacteria and viruses. In recent years, it is demonstrated thatthiazolides also can induced cell cycle arrest and apoptotic cell death in cancer cells. Due to their fast proliferating nature, cancer cells highly depend on the proteasome system to remove aberrant proteins. Many of these aberrant proteins are regulators of cell cycle progression and apoptosis, such as the cyclins, BCL2 family members and nuclear factor of κB (NF-κB). Here, we demonstrate at both molecular and cellular levels that the 20S proteasome is a direct target of NTZ and other thiazolides. By concurrently inhibiting the multiple catalytic subunits of 20S proteasome, NTZ promotes cell cycle arrest and triggers cell death in colon cancer cells, either directly or a sensitizer to other anti-tumor agents, especially doxorubicin. We further show that the binding mode of NTZ in the β5 subunit of the 20S proteasome is different from that of bortezomib and other existing proteasome inhibitors. These findings provide new insights in the design of novel small molecular proteasome inhibitors as anti-tumor agents suitable for solid tumor treatment in an oral dosing form.
Collapse
Affiliation(s)
- Zirui Lü
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Xueyuan Road 38, Beijing, 100191, China
| | - Xiaona Li
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Xueyuan Road 38, Beijing, 100191, China
| | - Kebin Li
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Xueyuan Road 38, Beijing, 100191, China
| | - Paola Ripani
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Xiaomeng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Xueyuan Road 38, Beijing, 100191, China
| | - Fengrong Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Xueyuan Road 38, Beijing, 100191, China
| | - Mopei Wang
- Department of Tumor Chemotherapy and Radiation Sickness, Peking University Third Hospital, Beijing, 100191, China
| | - Liangren Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Xueyuan Road 38, Beijing, 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Xueyuan Road 38, Beijing, 100191, China
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Ping Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Xueyuan Road 38, Beijing, 100191, China.
| | - Yan Niu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Xueyuan Road 38, Beijing, 100191, China.
| |
Collapse
|
9
|
Hemmati-Dinarvand M, Ahmadvand H, Seghatoleslam A. Nitazoxanide and Cancer Drug Resistance: Targeting Wnt/β-catenin Signaling Pathway. Arch Med Res 2021; 53:263-270. [DOI: 10.1016/j.arcmed.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/24/2021] [Accepted: 12/07/2021] [Indexed: 11/02/2022]
|
10
|
Diawara EH, François A, Stachulski AV, Razakandrainibe R, Costa D, Favennec L, Rossignol JF, Gargala G. Systemic efficacy on Cryptosporidium parvum infection of aminoxanide (RM-5061), a new amino-acid ester thiazolide prodrug of tizoxanide. Parasitology 2021; 148:975-984. [PMID: 33775260 PMCID: PMC11010128 DOI: 10.1017/s0031182021000524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/13/2021] [Accepted: 03/21/2021] [Indexed: 11/05/2022]
Abstract
Cryptosporidiosis is a gastrointestinal illness with profuse diarrhoea. Although there are no other Food and Drug Administration (FDA)-approved alternatives for the treatment of cryptosporidiosis, nitazoxanide (NTZ) can be qualified as partially effective. In immunosuppressed conditions, severe and/or disseminated cryptosporidiosis may occur and patients should be treated parenterally. To achieve the goal of developing parenteral treatment for cryptosporidiosis, the current study was undertaken to investigate the in vitro and in vivo anticryptosporidial activity of aminoxanide. This new l-tert-leucyl thiazolide is a soluble prodrug of tizoxanide (TIZ), the main metabolite of NTZ. Confirming the good efficacy of aminoxanide in Cryptosporidium parvum-infected HCT-8 cells with a 50% inhibitory concentration of 1.55 μm (±0.21), in immunosuppressed C. parvum-infected Mongolian gerbils (Meriones unguiculatus), a 5-day treatment with a daily intramuscular dose of 100 mg kg−1 aminoxanide resulted in a 72.5% oocyst excretion inhibition, statistically equivalent to 75.5% in gerbils treated with a 4-fold lower oral dose of NTZ. Cryptosporidium parvum-induced intestinal pathology and inflammation were improved. Aminoxanide provides an injectable form of TIZ that NTZ was unable to do and is a promising drug for which optimization of the formulation should be further explored. These results represent a first promising step towards the goal of developing a parenteral treatment for cryptosporidiosis.
Collapse
Affiliation(s)
- El Hadji Diawara
- Laboratoire de Parasitologie-Mycologie, Rouen University Hospital and EA7510, University of Rouen, Rouen, France
| | - Arnaud François
- Laboratoire d'Anatomo-Pathologie, Rouen University Hospital, Rouen, France
| | - Andrew V. Stachulski
- Robert Robinson Laboratories, Department of Chemistry, University of Liverpool, LiverpoolL69 7ZD, UK
| | - Romy Razakandrainibe
- Laboratoire de Parasitologie-Mycologie, Rouen University Hospital and EA7510, University of Rouen, Rouen, France
| | - Damien Costa
- Laboratoire de Parasitologie-Mycologie, Rouen University Hospital and EA7510, University of Rouen, Rouen, France
| | - Loïc Favennec
- Laboratoire de Parasitologie-Mycologie, Rouen University Hospital and EA7510, University of Rouen, Rouen, France
| | | | - Gilles Gargala
- Laboratoire de Parasitologie-Mycologie, Rouen University Hospital and EA7510, University of Rouen, Rouen, France
| |
Collapse
|
11
|
Repurposing of Antimicrobial Agents for Cancer Therapy: What Do We Know? Cancers (Basel) 2021; 13:cancers13133193. [PMID: 34206772 PMCID: PMC8269327 DOI: 10.3390/cancers13133193] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
The substantial costs of clinical trials, the lengthy timelines of new drug discovery and development, along the high attrition rates underscore the need for alternative strategies for finding quickly suitable therapeutics agents. Given that most approved drugs possess more than one target tightly linked to other diseases, it encourages promptly testing these drugs in patients. Over the past decades, this has led to considerable attention for drug repurposing, which relies on identifying new uses for approved or investigational drugs outside the scope of the original medical indication. The known safety of approved drugs minimizes the possibility of failure for adverse toxicology, making them attractive de-risked compounds for new applications with potentially lower overall development costs and shorter development timelines. This latter case is an exciting opportunity, specifically in oncology, due to increased resistance towards the current therapies. Indeed, a large body of evidence shows that a wealth of non-cancer drugs has beneficial effects against cancer. Interestingly, 335 drugs are currently being evaluated in different clinical trials for their potential activities against various cancers (Redo database). This review aims to provide an extensive discussion about the anti-cancer activities exerted by antimicrobial agents and presents information about their mechanism(s) of action and stage of development/evaluation.
Collapse
|
12
|
Abd El-Fadeal NM, Nafie MS, K. El-kherbetawy M, El-mistekawy A, Mohammad HMF, Elbahaie AM, Hashish AA, Alomar SY, Aloyouni SY, El-dosoky M, Morsy KM, Zaitone SA. Antitumor Activity of Nitazoxanide against Colon Cancers: Molecular Docking and Experimental Studies Based on Wnt/β-Catenin Signaling Inhibition. Int J Mol Sci 2021; 22:5213. [PMID: 34069111 PMCID: PMC8156814 DOI: 10.3390/ijms22105213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/29/2022] Open
Abstract
In colon cancer, wingless (Wnt)/β-catenin signaling is frequently upregulated; however, the creation of a molecular therapeutic agent targeting this pathway is still under investigation. This research aimed to study how nitazoxanide can affect Wnt/β-catenin signaling in colon cancer cells (HCT-116) and a mouse colon cancer model. Our study included 2 experiments; the first was to test the cytotoxic activity of nitazoxanide in an in vitro study on a colon cancer cell line (HCT-116) versus normal colon cells (FHC) and to highlight the proapoptotic effect by MTT assay, flow cytometry and real-time polymerase chain reaction (RT-PCR). The second experiment tested the in vivo cytotoxic effect of nitazoxanide against 1,2-dimethylhydrazine (DMH) prompted cancer in mice. Mice were grouped as saline, DMH control and DMH + nitazoxanide [100 or 200 mg per kg]. Colon levels of Wnt and β-catenin proteins were assessed by Western blotting while proliferation was measured via immunostaining for proliferating cell nuclear antigen (PCNA). Treating HCT-116 cells with nitazoxanide (inhibitory concentration 50 (IC50) = 11.07 µM) revealed that it has a more cytotoxic effect when compared to 5-flurouracil (IC50 = 11.36 µM). Moreover, it showed relatively high IC50 value (non-cytotoxic) against the normal colon cells. Nitazoxanide induced apoptosis by 15.86-fold compared to control and arrested the cell cycle. Furthermore, nitazoxanide upregulated proapoptotic proteins (P53 and BAX) and caspases but downregulated BCL-2. Nitazoxanide downregulated Wnt/β-catenin/glycogen synthase kinase-3β (GSK-3β) signaling and PCNA staining in the current mouse model. Hence, our findings highlighted the cytotoxic effect of nitazoxanide and pointed out the effect on Wnt/β-catenin/GSK-3β signaling.
Collapse
Affiliation(s)
- Noha M. Abd El-Fadeal
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Mohamed S. Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | | | - Amr El-mistekawy
- Department of Internal Medicine, Gastroenterology Division, Faculty of Medicine, Al-azhar University, Cairo 11651, Egypt;
| | - Hala M. F. Mohammad
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Central Laboratory, Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Alaaeldeen M. Elbahaie
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Abdullah A. Hashish
- Basic Medical Sciences Department, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia;
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Suliman Y. Alomar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Sheka Yagub Aloyouni
- Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh 36285, Saudi Arabia;
| | - Mohamed El-dosoky
- Department of Neuroscience Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman Bin Faisal University, Jubail 35816, Saudi Arabia;
| | - Khaled M. Morsy
- Department of Anesthesia Technology, College of Applied Medical Science in Jubail, Imam Abdulrahman Bin Faisal University, Jubail 35816, Saudi Arabia;
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 714, Saudi Arabia
| |
Collapse
|
13
|
Lü Z, Li X, Li K, Wang C, Du T, Huang W, Ji M, Li C, Xu F, Xu P, Niu Y. Structure-Activity Study of Nitazoxanide Derivatives as Novel STAT3 Pathway Inhibitors. ACS Med Chem Lett 2021; 12:696-703. [PMID: 34055214 DOI: 10.1021/acsmedchemlett.0c00544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
We identified nitazoxanide (NTZ) as a moderate STAT3 pathway inhibitor through immunoblot analysis and a cell-based IL-6/JAK/STAT3 pathway activation assay. A series of thiazolide derivatives were designed and synthesized to further validate the thiazolide scaffold as STAT3 inhibitors. Eight out of 25 derivatives displayed potencies greater than that of NTZ, and their STAT3 pathway inhibitory activities were found to be significantly correlated with their antiproliferative activities in HeLa cells. Derivatives 15 and 24 were observed to be more potent than the positive control WP1066, which is under phase I clinical trials. Compared with NTZ, 15 also exhibited much improved in vivo pharmacokinetic parameters in rats and efficacies against proliferations in multiple cancer cell lines, indicating a broad-spectrum effect of these thiazolides as antitumor agents targeted on STAT3.
Collapse
Affiliation(s)
- Zirui Lü
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, P. R. China
| | - Xiaona Li
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, P. R. China
| | - Kebin Li
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, P. R. China
| | - Cong Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, P. R. China
| | - Tingting Du
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100050, P. R. China
| | - Wei Huang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100050, P. R. China
| | - Ming Ji
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100050, P. R. China
| | - Changhong Li
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Fengrong Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, P. R. China
| | - Ping Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, P. R. China
| | - Yan Niu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, P. R. China
| |
Collapse
|
14
|
Lokhande AS, Devarajan PV. A review on possible mechanistic insights of Nitazoxanide for repurposing in COVID-19. Eur J Pharmacol 2021; 891:173748. [PMID: 33227285 PMCID: PMC7678434 DOI: 10.1016/j.ejphar.2020.173748] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
The global pandemic of Coronavirus Disease 2019 (COVID-19) has brought the world to a grinding halt. A major cause of concern is the respiratory distress associated mortality attributed to the cytokine storm. Despite myriad rapidly approved clinical trials with repurposed drugs, and time needed to develop a vaccine, accelerated search for repurposed therapeutics is still ongoing. In this review, we present Nitazoxanide a US-FDA approved antiprotozoal drug, as one such promising candidate. Nitazoxanide which is reported to exert broad-spectrum antiviral activity against various viral infections, revealed good in vitro activity against SARS-CoV-2 in cell culture assays, suggesting potential for repurposing in COVID-19. Furthermore, nitazoxanide displays the potential to boost host innate immune responses and thereby tackle the life-threatening cytokine storm. Possibilities of improving lung, as well as multiple organ damage and providing value addition to COVID-19 patients with comorbidities, are other important facets of the drug. The review juxtaposes the role of nitazoxanide in fighting COVID-19 pathogenesis at multiple levels highlighting the great promise the drug exhibits. The in silico data and in vitro efficacy in cell lines confirms the promise of nitazoxanide. Several approved clinical trials world over further substantiate leveraging nitazoxanide for COVID-19 therapy.
Collapse
Affiliation(s)
- Amit S Lokhande
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai, 400019, Maharashtra, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai, 400019, Maharashtra, India.
| |
Collapse
|
15
|
Lei K, Gu X, Alvarado AG, Du Y, Luo S, Ahn EH, Kang SS, Ji B, Liu X, Mao H, Fu H, Kornblum HI, Jin L, Li H, Ye K. Discovery of a dual inhibitor of NQO1 and GSTP1 for treating glioblastoma. J Hematol Oncol 2020; 13:141. [PMID: 33087132 PMCID: PMC7579906 DOI: 10.1186/s13045-020-00979-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a universally lethal tumor with frequently overexpressed or mutated epidermal growth factor receptor (EGFR). NADPH quinone oxidoreductase 1 (NQO1) and glutathione-S-transferase Pi 1 (GSTP1) are commonly upregulated in GBM. NQO1 and GSTP1 decrease the formation of reactive oxygen species (ROS), which mediates the oxidative stress and promotes GBM cell proliferation. METHODS High-throughput screen was used for agents selectively active against GBM cells with EGFRvIII mutations. Co-crystal structures were revealed molecular details of target recognition. Pharmacological and gene knockdown/overexpression approaches were used to investigate the oxidative stress in vitro and in vivo. RESULTS We identified a small molecular inhibitor, "MNPC," that binds to both NQO1 and GSTP1 with high affinity and selectivity. MNPC inhibits NQO1 and GSTP1 enzymes and induces apoptosis in GBM, specifically inhibiting the growth of cell lines and primary GBM bearing the EGFRvIII mutation. Co-crystal structures between MNPC and NQO1, and molecular docking of MNPC with GSTP1 reveal that it binds the active sites and acts as a potent dual inhibitor. Inactivation of both NQO1 and GSTP1 with siRNA or MNPC results in imbalanced redox homeostasis, leading to apoptosis and mitigated cancer proliferation in vitro and in vivo. CONCLUSIONS Thus, MNPC, a dual inhibitor for both NQO1 and GSTP1, provides a novel lead compound for treating GBM via the exploitation of specific vulnerabilities created by mutant EGFR.
Collapse
Affiliation(s)
- Kecheng Lei
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, People's Republic of China
| | - Xiaoxia Gu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Alvaro G Alvarado
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory Chemical Biology Discovery Center, Atlanta, USA
| | - Shilin Luo
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Eun Hee Ahn
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Bing Ji
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory Chemical Biology Discovery Center, Atlanta, USA
| | - Harley I Kornblum
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Lingjing Jin
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, People's Republic of China.
| | - Hua Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
16
|
The immuno-oncological challenge of COVID-19. ACTA ACUST UNITED AC 2020; 1:946-964. [DOI: 10.1038/s43018-020-00122-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
|
17
|
A CRAF/glutathione-S-transferase P1 complex sustains autocrine growth of cancers with KRAS and BRAF mutations. Proc Natl Acad Sci U S A 2020; 117:19435-19445. [PMID: 32719131 PMCID: PMC7430992 DOI: 10.1073/pnas.2000361117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A strategy to overcome therapeutic obstacles of mKRAS and mBRAF cancers is devised based on the finding, here, that the RAF/MEK/ERK cascade is by-passed by an autocrine signal loop established by interaction of CRAF with GSTP1. The interaction evokes stabilization of CRAF from proteosomal degradation and facilitation of RAF-dimer formation. Thus, blocking CRAF/GSTP1 interactions should generate additive antiproliferative effects. The Ras/RAF/MEK/ERK pathway is an essential signaling cascade for various refractory cancers, such as those with mutant KRAS (mKRAS) and BRAF (mBRAF). However, there are unsolved ambiguities underlying mechanisms for this growth signaling thereby creating therapeutic complications. This study shows that a vital component of the pathway CRAF is directly impacted by an end product of the cascade, glutathione transferases (GST) P1 (GSTP1), driving a previously unrecognized autocrine cycle that sustains proliferation of mKRAS and mBRAF cancer cells, independent of oncogenic stimuli. The CRAF interaction with GSTP1 occurs at its N-terminal regulatory domain, CR1 motif, resulting in its stabilization, enhanced dimerization, and augmented catalytic activity. Consistent with the autocrine cycle scheme, silencing GSTP1 brought about significant suppression of proliferation of mKRAS and mBRAF cells in vitro and suppressed tumorigenesis of the xenografted mKRAS tumor in vivo. GSTP1 knockout mice showed significantly impaired carcinogenesis of mKRAS colon cancer. Consequently, hindering the autocrine loop by targeting CRAF/GSTP1 interactions should provide innovative therapeutic modalities for these cancers.
Collapse
|
18
|
Laudisi F, Marônek M, Di Grazia A, Monteleone G, Stolfi C. Repositioning of Anthelmintic Drugs for the Treatment of Cancers of the Digestive System. Int J Mol Sci 2020; 21:ijms21144957. [PMID: 32668817 PMCID: PMC7404055 DOI: 10.3390/ijms21144957] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/20/2022] Open
Abstract
Tumors of the digestive system, when combined together, account for more new cases and deaths per year than tumors arising in any other system of the body and their incidence continues to increase. Despite major efforts aimed at discovering and validating novel and effective drugs against these malignancies, the process of developing such drugs remains lengthy and costly, with high attrition rates. Drug repositioning (also known as drug repurposing), that is, the process of finding new uses for approved drugs, has been gaining popularity in oncological drug development as it provides the opportunity to expedite promising anti-cancer agents into clinical trials. Among the drugs considered for repurposing in oncology, compounds belonging to some classes of anthelmintics—a group of agents acting against infections caused by parasitic worms (helminths) that colonize the mammalian intestine—have shown pronounced anti-tumor activities and attracted particular attention due to their ability to target key oncogenic signal transduction pathways. In this review, we summarize and discuss the available experimental and clinical evidence about the use of anthelmintic drugs for the treatment of cancers of the digestive system.
Collapse
Affiliation(s)
- Federica Laudisi
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy; (F.L.); (A.D.G.); (G.M.)
| | - Martin Marônek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
| | - Antonio Di Grazia
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy; (F.L.); (A.D.G.); (G.M.)
| | - Giovanni Monteleone
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy; (F.L.); (A.D.G.); (G.M.)
| | - Carmine Stolfi
- Department of Systems Medicine, University of “Tor Vergata”, 00133 Rome, Italy; (F.L.); (A.D.G.); (G.M.)
- Division of Clinical Biochemistry and Clinical Molecular Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-06-72596163
| |
Collapse
|
19
|
Lei K, Xia Y, Wang XC, Ahn EH, Jin L, Ye K. C/EBPβ mediates NQO1 and GSTP1 anti-oxidative reductases expression in glioblastoma, promoting brain tumor proliferation. Redox Biol 2020; 34:101578. [PMID: 32526700 PMCID: PMC7287278 DOI: 10.1016/j.redox.2020.101578] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/10/2020] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most common and most aggressive brain tumor, associated with high levels of reactive oxidative species (ROS) due to metabolic and signaling aberrations. High ROS levels are detrimental to cells, but it remains incompletely understood how cancer cells cope with the adverse effects. Here we show that C/EBPβ, a ROS responsive transcription factor, regulates the transcription of NQO1 and GSTP1, two antioxidative reductases, which neutralize ROS in the GBM and mediates their proliferation. C/EBPβ is upregulated in EGFR overexpressed GBM cells, inversely correlated with the survival rates of brain tumor patients. Interestingly, C/EBPβ binds the promoters of NQO1 and GSTP1 and escalates their expression. Overexpression of C/EBPβ selectively decreases the ROS in EGFR-overexpressed U87MG cells and promotes cell proliferation via upregulating NQO1 and GSTP1; whereas knocking down C/EBPβ elevates the ROS and reduces proliferation by repressing the reductases. Accordingly, C/EBPβ mediates the brain tumor growth in vivo, coupling with NQO1 and GSTP1 expression and ROS levels. Hence, C/EBPβ regulates the expression of antioxidative reductases and balances the ROS, promoting brain tumor proliferation.
Collapse
Affiliation(s)
- Kecheng Lei
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
| | - Yiyuan Xia
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Chuan Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Eun Hee Ahn
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Lingjing Jin
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
20
|
Tantawy MA, El-Sherbeeny NA, Helmi N, Alazragi R, Salem N, Elaidy SM. Synthetic antiprotozoal thiazolide drug induced apoptosis in colorectal cancer cells: implications of IL-6/JAK2/STAT3 and p53/caspases-dependent signaling pathways based on molecular docking and in vitro study. Mol Cell Biochem 2020; 469:143-157. [PMID: 32356241 DOI: 10.1007/s11010-020-03736-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is a global pressing healthcare priority. Dysregulation of the IL6/JAK2/STAT3 and p53/caspase downstreaming pathways are significantly involved in the progression of CRC, and mainly affecting apoptosis. Discovery of new anti-cancer agents is laborious, time consuming, and costly with obvious socioeconomic burden. In the present study, we are proposing new molecular insights on the anti-proliferative and apoptotic therapeutic effects of nitazoxanide (NTZ) on CRC. NTZ is FDA-approved thiazolide antiparasitic agent, which has excellent safety and pharmacokinetic profiles. The molecular docking study revealed that NTZ has better binding affinity and docking score against JAK2 and BCL2 proteins compared to 5-Fluorouracil, which is the standard drug for treatment of CRC. The current in vitro work on a human HCT116 cell line displayed that NTZ had lower IC50 value (11.20 µM) than 5-flurouracil (23.78 µM), and NTZ induced a statistically significant down-regulation of IL6/JAK2/STAT3. NTZ also modulated significantly the p53/caspases-dependent signaling pathways, leading to enhancement of apoptosis and an increase of DNA fragmentation. Moreover, NTZ regulated the Bcl-2 gene family and promoted the loss of mitochondrial function which was depicted by release of cytochrome c (Cyt c), and caspase activation in apoptotic HCT116 cells. Additionally, NTZ was able to reduce the expression of VEGF in CRC cell line, which needs future thorough molecular investigations. In conclusion, our findings provided a novel evidence that NTZ could be a dual potential IL6/JAK2/STAT3 signaling inhibitor and p53/caspases-dependent pathway activator in CRC cell line. These potentials support further exploratory molecular researches targeting the therapeutic roles of NTZ in CRC; individually and simultaneously with current approved chemotherapeutic regimens.
Collapse
Affiliation(s)
- Mohamed A Tantawy
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, 12622, Egypt. .,Hormones Department, Medical Research Division, National Research Centre, Dokki, Giza, 12622, Egypt. .,Medical School of Hannover, Hannover, Germany.
| | - Nagla A El-Sherbeeny
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Nawal Helmi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Reem Alazragi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Neveen Salem
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia.,Narcotics, Ergogenic Aids and Poisons Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Samah M Elaidy
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
21
|
Shou J, Wang M, Cheng X, Wang X, Zhang L, Liu Y, Fei C, Wang C, Gu F, Xue F, Li J, Zhang K. Tizoxanide induces autophagy by inhibiting PI3K/Akt/mTOR pathway in RAW264.7 macrophage cells. Arch Pharm Res 2020; 43:257-270. [PMID: 31894502 DOI: 10.1007/s12272-019-01202-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/06/2019] [Indexed: 12/25/2022]
Abstract
As the main metabolite of nitazoxanide, tizoxanide (TIZ) has a broad-spectrum anti-infective effect against parasites, bacteria, and virus. In this study, we investigated the effects of TIZ on autophagy by regulating the PI3K/Akt/mTOR signaling pathway. RAW264.7 macrophage cells were treated with various TIZ concentrations. Cell viability assay, transmission electron microscope, and immunofluorescence staining were used to detect the biological function of the macrophage cells, and the expression levels of the autophagy pathway-related proteins were measured by Western blot. Results revealed that TIZ promoted the conversion of LC3-I to LC3-II, the formation of autophagy vacuoles, and the degradation of SQSTM1/p62 in a concentration- and time-dependent manner in RAW264.7 cells. Treatment with TIZ increased the Beclin-1 expression level and inhibited PI3K, Akt, mTOR, and ULK1 activation. These effects were enhanced by pretreatment with rapamycin but attenuated by pretreatment with LY294002. In addition, the conversion of LC3-I to LC3-II was observed in Vero, 293T, and HepG2 cells treated with TIZ. These data suggested that TIZ may induce autophagy by inhibiting the Akt/mTOR/ULK1 signaling pathway in macrophages and other cells.
Collapse
Affiliation(s)
- Jiaoqin Shou
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue RD, Minhang District, Shanghai, 200241, China
- College of Chemistry, Xiangtan University, Yuhu District, Xiangtan, 411105, Hunan, China
| | - Mi Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue RD, Minhang District, Shanghai, 200241, China
| | - Xiaolei Cheng
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue RD, Minhang District, Shanghai, 200241, China
| | - Xiaoyang Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue RD, Minhang District, Shanghai, 200241, China
| | - Lifang Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue RD, Minhang District, Shanghai, 200241, China
| | - Yingchun Liu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue RD, Minhang District, Shanghai, 200241, China
| | - Chenzhong Fei
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue RD, Minhang District, Shanghai, 200241, China
| | - Chunmei Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue RD, Minhang District, Shanghai, 200241, China
| | - Feng Gu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue RD, Minhang District, Shanghai, 200241, China
| | - Feiqun Xue
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue RD, Minhang District, Shanghai, 200241, China
| | - Juan Li
- College of Chemistry, Xiangtan University, Yuhu District, Xiangtan, 411105, Hunan, China.
| | - Keyu Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue RD, Minhang District, Shanghai, 200241, China.
| |
Collapse
|
22
|
Ripani P, Delp J, Bode K, Delgado ME, Dietrich L, Betzler VM, Yan N, von Scheven G, Mayer TU, Leist M, Brunner T. Thiazolides promote G1 cell cycle arrest in colorectal cancer cells by targeting the mitochondrial respiratory chain. Oncogene 2019; 39:2345-2357. [PMID: 31844249 DOI: 10.1038/s41388-019-1142-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 01/10/2023]
Abstract
Systemic toxicity and tumor cell resistance still limit the efficacy of chemotherapy in colorectal cancer. Therefore, alternative treatments are desperately needed. The thiazolide Nitazoxanide (NTZ) is an FDA-approved drug for the treatment of parasite-mediated infectious diarrhea with a favorable safety profile. Interestingly, NTZ and the thiazolide RM4819-its bromo-derivative lacking antibiotic activity-are also promising candidates for cancer treatment. Yet the exact anticancer mechanism(s) of these compounds still remains unclear. In this study, we systematically investigated RM4819 and NTZ in 2D and 3D colorectal cancer culture systems. Both compounds strongly inhibited proliferation of colon carcinoma cell lines by promoting G1 phase cell cycle arrest. Thiazolide-induced cell cycle arrest was independent of the p53/p21 axis, but was mediated by inhibition of protein translation via the mTOR/c-Myc/p27 pathway, likely caused by inhibition of mitochondrial respiration. While both thiazolides demonstrated mitochondrial uncoupling activity, only RM4819 inhibited the mitochondrial respiratory chain complex III. Interestingly, thiazolides also potently inhibited the growth of murine colonic tumoroids in a comparable manner with cisplatin, while in contrast to cisplatin thiazolides did not affect the growth of primary intestinal organoids. Thus, thiazolides appear to have a tumor-selective antiproliferative activity, which offers new perspectives in the treatment of colorectal cancer.
Collapse
Affiliation(s)
- P Ripani
- Department of Biology, Biochemical Pharmacology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology KORS-CB, University of Konstanz, Konstanz, Germany
| | - J Delp
- Konstanz Research School Chemical Biology KORS-CB, University of Konstanz, Konstanz, Germany.,Chair for In Vitro Toxicology and Biomedicine, inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany
| | - K Bode
- Department of Biology, Biochemical Pharmacology, University of Konstanz, Konstanz, Germany
| | - M E Delgado
- Department of Biology, Biochemical Pharmacology, University of Konstanz, Konstanz, Germany
| | - L Dietrich
- Department of Biology, Biochemical Pharmacology, University of Konstanz, Konstanz, Germany
| | - V M Betzler
- Department of Biology, Biochemical Pharmacology, University of Konstanz, Konstanz, Germany.,Biotechnology Institute Thurgau, University of Konstanz, Konstanz, Germany
| | - N Yan
- Department of Medicinal Chemistry, Peking University Health Science Centre, Beijing, China
| | - G von Scheven
- Department of Biology, Molecular Toxicology Group, University of Konstanz, Konstanz, Germany
| | - T U Mayer
- Konstanz Research School Chemical Biology KORS-CB, University of Konstanz, Konstanz, Germany.,Department of Biology, Molecular Genetics, University of Konstanz, Konstanz, Germany
| | - M Leist
- Konstanz Research School Chemical Biology KORS-CB, University of Konstanz, Konstanz, Germany.,Chair for In Vitro Toxicology and Biomedicine, inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany
| | - T Brunner
- Department of Biology, Biochemical Pharmacology, University of Konstanz, Konstanz, Germany. .,Konstanz Research School Chemical Biology KORS-CB, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
23
|
El-Kowrany SI, El Ghaffar AESA, Shoheib ZS, Mady RF, Gamea GAM. Evaluation of nitazoxanide as a novel drug for the treatment of acute and chronic toxoplasmosis. Acta Trop 2019; 195:145-154. [PMID: 30986380 DOI: 10.1016/j.actatropica.2019.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 01/03/2023]
Abstract
Toxoplasmosis is a widespread, neglected disease with significant morbidity and mortality. In search of an effective treatment, nitazoxanide (NTZ) was evaluated in the treatment of acute and chronic toxoplasmosis in experimental mice. For this purpose, mice were infected with 20 cysts (acute infection model) or 10 cysts (chronic infection model) of Toxoplasma gondii (ME 49 strain). Treated mice received NTZ (at doses of 100 and 150 mg/kg), starting from the third day (acute model) or the fifth week (chronic model) post-infection, which continued for 14 consecutive days. The effects of NTZ were evaluated in comparison to the pyrimethamine/sulfadiazine combination. Evaluation included mortality rates, brain cyst count, inflammatory scoring and immunological studies. The latter included estimation of interferon-gamma (IFN-γ) and induced nitric oxide synthase (iNOS). In the acute infection model, NTZ at 100 and 150 mg/kg significantly reduced the number of brain cysts by 78 and 87% compared to the infected untreated controls and reduced the mortality rate to 24 and 20%, respectively, compared with 44% in the infected untreated control. In the chronic infection model, cyst reduction reached 32 and 38% for 100 and 150 mg/kg NTZ treatments, respectively. NTZ was significantly able to reduce inflammation caused by acute and chronic T. gondii infection with slight necrosis and few infiltrating mononuclear cells. Additionally, the immunological analysis revealed that NTZ significantly increased the production of serum IFN-γ and enhanced iNOS production in brain tissue, suggesting an immunomodulatory role for the drug. Based on the findings of the present study, it can be concluded that NTZ is a potential drug for the treatment of acute and chronic toxoplasmosis.
Collapse
|
24
|
Yuzhalin AE. Citrullination in Cancer. Cancer Res 2019; 79:1274-1284. [PMID: 30894374 DOI: 10.1158/0008-5472.can-18-2797] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/09/2018] [Accepted: 01/11/2019] [Indexed: 11/16/2022]
Abstract
Posttranslational modifications of proteins have been implicated in pathogenesis of numerous diseases. Arginine deimination (also known as citrullination) has a principal role in progression of rheumatoid arthritis through generation of autoantibodies and exacerbation of the inflammatory response. Recently, multiple research groups provided solid evidence of citrullination being in control of cancer progression; however, there is no comprehensive overview of these findings. This article summarizes and critically reviews the influence of citrullination on different aspects of tumor biology, including (i) regulation of apoptosis and differentiation, (ii) promoting EMT and metastasis, and (iii) potential use of citrullinated antigens for immunotherapy. In addition, (iv) the role of citrullination as a cancer biomarker and (v) implication of neutrophil extracellular traps in tumorigenesis are discussed. In summary, current findings testify to the significance of arginine deimination in tumor biology and thus more basic and translational studies are needed to further explore this topic.
Collapse
Affiliation(s)
- Arseniy E Yuzhalin
- CRUK/MRC Oxford Institute for Radiation Oncology, Oxford, United Kingdom.
| |
Collapse
|
25
|
Lundström-Stadelmann B, Rufener R, Ritler D, Zurbriggen R, Hemphill A. The importance of being parasiticidal… an update on drug development for the treatment of alveolar echinococcosis. Food Waterborne Parasitol 2019; 15:e00040. [PMID: 32095613 PMCID: PMC7034016 DOI: 10.1016/j.fawpar.2019.e00040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 02/06/2023] Open
Abstract
The lethal disease alveolar echinococcosis (AE) is caused by the metacestode stage of the fox tapeworm Echinococcus multilocularis. Current chemotherapeutical treatment of AE relies on albendazole and mebendazole, with the caveat that these compounds are not parasiticidal. Drugs have to be taken for a prolonged period of time, often life-long, which can cause adverse effects and reduces the patients' quality of life. In some individuals, benzimidazoles are inactive or cause toxicity, leading to treatment discontinuation. Alternatives to benzimidazoles are urgently needed. Over the recent years, in vivo and in vitro models for low-to-medium throughput drug discovery against AE have been set in place. In vitro drug tests include the phosphoglucose-isomerase (PGI) assay to measure physical damage induced to metacestodes, and viability assays to assess parasiticidal activity against metacestodes and stem cells. In vitro models are also employed for studies on mechanisms of action. In vivo models are thus far based on rodents, mainly mice, and benefits could be gained in future by comparative approaches in naturally infected dogs or captive monkeys. For the identification of novel drugs against AE, a rare disease with a low expected market return, drug-repurposing is the most promising strategy. A variety of chemically synthesized compounds as well as natural products have been analyzed with respect to in vitro and/or in vivo activities against AE. We here review and discuss the most active of these compounds including anti-infective compounds (benzimidazoles, nitazoxanide, amphotericin B, itraconazole, clarithromycin, DB1127, and buparvaquone), the anti-infective anti-malarials (artemisinin, ozonids, mefloquine, and MMV665807) and anti-cancer drugs (isoflavones, 2-methoxyestradiol, methotrexate, navelbine, vincristine, kinase inhibitors, metallo-organic ruthenium complexes, bortezomib, and taxanes). Taking into account the efficacy as well as the potential availability for patients, the most promising candidates are new formulations of benzimidazoles and mefloquine. Future drug-repurposing approaches should also target the energy metabolism of E. multilocularis, in particular the understudied malate dismutation pathway, as this offers an essential target in the parasite, which is not present in mammals. Benzimidazoles are used to treat AE, but new drugs are needed. New drugs against AE can be identified by drug repurposing. Drugs against other infectious diseases and cancer can be repurposed against AE. Most promising are new formulations of benzimidazoles and mefloquine. Future approaches should include targeting the energy metabolism of the parasite.
Collapse
Affiliation(s)
- Britta Lundström-Stadelmann
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Reto Rufener
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Dominic Ritler
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Raphael Zurbriggen
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| |
Collapse
|
26
|
Toychiev A, Abdujapparov S, Imamov A, Navruzov B, Davis N, Badalova N, Osipova S. Intestinal helminths and protozoan infections in patients with colorectal cancer: prevalence and possible association with cancer pathogenesis. Parasitol Res 2018; 117:3715-3723. [PMID: 30220046 DOI: 10.1007/s00436-018-6070-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
The purpose of the present study was to determine the prevalence of intestinal helminths and protozoa in colorectal cancer (CRC) patients and to evaluate the possible association between the prevalence and CRC pathogenesis. A total of 200 CRC patients and 200 residents of Tashkent, who had no complaints related to the gastrointestinal tract, were examined by triple coproscopy using a concentration method and estimations of protozoan infection intensity. Of the CRC patients tested, 144 were classified as T1-4N0M0 (without metastases) and 56 were classified as T1-4N1-2M0-1 (with metastases). Parasitological examination was performed during CRC diagnosis before and after surgery and chemotherapy. A significantly higher prevalence of Blastocystis sp., Chilomastix mesnili, Jodamoeba butschlii, and Endolimax nana was found in CRC patients than in the control population (p < 0.0001), amounting to 80, 20, 22.5, and 11.5%, respectively. The high prevalence of Blastocystis sp., as well as the patterns of infection intensity, was stable at all stages of examination. The ratio of the number of CRC patients with and without Blastocystis sp. in the T1-4N0M0 and T1-4N1-2M0-1 groups amounted to 3.3 and 7.0, respectively. The ratios for C. mesnili, E. coli, J. butschlii, and E. nana in both groups were 0.2 and 0.2, 0.07 and 0.07, 0.3 and 0.16, and 0.18 and 0.01, respectively. The prevalence of helminths and Giardia lamblia in CRC patients and the control population was not significantly different. Taken together, these data indicate a possible role for Blastocystis sp. in CRC pathogenesis. Diagnosis, treatment, and further observation of patients with Blastocystis sp. are necessary at all stages of CRC, including during diagnosis and before and after surgery and chemotherapy.
Collapse
Affiliation(s)
- Abdurakhim Toychiev
- Department of Immunology of Parasitic Diseases, The Research Institute of Epidemiology, Microbiology and Infectious Diseases, Tashkent, Uzbekistan
| | - Sulayman Abdujapparov
- Department of Immunology of Parasitic Diseases, The Research Institute of Epidemiology, Microbiology and Infectious Diseases, Tashkent, Uzbekistan.,Department of Coloproctology, The Research Center of Oncology, Tashkent, Uzbekistan
| | - Alim Imamov
- Department of Chemotherapy, The Research Center of Oncology, Tashkent, Uzbekistan
| | - Behzod Navruzov
- Department of Immunology of Parasitic Diseases, The Research Institute of Epidemiology, Microbiology and Infectious Diseases, Tashkent, Uzbekistan.,Department of Surgery, Tashkent Medical Academy, Tashkent, Uzbekistan
| | - Nikolay Davis
- Department of Immunology of Parasitic Diseases, The Research Institute of Epidemiology, Microbiology and Infectious Diseases, Tashkent, Uzbekistan
| | - Najiya Badalova
- Department of Immunology of Parasitic Diseases, The Research Institute of Epidemiology, Microbiology and Infectious Diseases, Tashkent, Uzbekistan
| | - Svetlana Osipova
- Department of Immunology of Parasitic Diseases, The Research Institute of Epidemiology, Microbiology and Infectious Diseases, Tashkent, Uzbekistan.
| |
Collapse
|
27
|
Small molecule promotes β-catenin citrullination and inhibits Wnt signaling in cancer. Nat Chem Biol 2017; 14:94-101. [PMID: 29083417 DOI: 10.1038/nchembio.2510] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/02/2017] [Indexed: 01/27/2023]
Abstract
Wnt (wingless)/β-catenin signaling is critical for tumor progression and is frequently activated in colorectal cancer as a result of the mutation of adenomatous polyposis coli (APC); however, therapeutic agents targeting this pathway for clinical use are lacking. Here we report that nitazoxanide (NTZ), a clinically approved antiparasitic drug, efficiently inhibits Wnt signaling independent of APC. Using chemoproteomic approaches, we have identified peptidyl arginine deiminase 2 (PAD2) as the functional target of NTZ in Wnt inhibition. By targeting PAD2, NTZ increased the deamination (citrullination) and turnover of β-catenin in colon cancer cells. Replacement of arginine residues disrupted the transcriptional activity, and NTZ induced degradation of β-catenin. In Wnt-activated colon cancer cells, knockout of either PAD2 or β-catenin substantially increased resistance to NTZ treatment. Our data highlight the potential of NTZ as a modulator of β-catenin citrullination for the treatment of cancer patients with Wnt pathway mutations.
Collapse
|
28
|
Vale N, Correia-Branco A, Patrício B, Duarte D, Martel F. In vitro studies on the inhibition of colon cancer by amino acid derivatives of bromothiazole. Bioorg Med Chem Lett 2017; 27:3507-3510. [DOI: 10.1016/j.bmcl.2017.05.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 01/18/2023]
|
29
|
Akther F, Cheng J, Yang SH, Chung G. Differential anticancer effect of fermented squid jeotgal due to varying concentrations of soymilk additive. ACTA ACUST UNITED AC 2017. [DOI: 10.3839/jabc.2017.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Fahima Akther
- Department of Biomedical and Electronic Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Jinhua Cheng
- Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University, Cheoin-gu, Yongin, Gyeonggi, Republic of Korea
| | - Seung Hwan Yang
- Department of Biomedical and Electronic Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Gyuhwa Chung
- Department of Biomedical and Electronic Engineering, Chonnam National University, Yeosu, Republic of Korea
| |
Collapse
|
30
|
Ashour DS, Abou Rayia DM, Saad AE, El-Bakary RH. Nitazoxanide anthelmintic activity against the enteral and parenteral phases of trichinellosis in experimentally infected rats. Exp Parasitol 2016; 170:28-35. [PMID: 27585500 DOI: 10.1016/j.exppara.2016.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/14/2016] [Accepted: 08/29/2016] [Indexed: 12/26/2022]
Abstract
Most of the drugs used for the treatment of trichinellosis show a limited bioavailability and a high degree of resistance. Therefore, this study aimed to characterize the anthelmintic potential activity of nitazoxanide (NTZ) in a rat model of experimental trichinellosis. Animals were divided into three groups; group I, infected and non-treated; group II, received NTZ for three days post-infection (dpi) and group III, received NTZ 30 dpi for 14 consecutive days. Treatment efficacy was assessed by Trichinella spiralis adult and larval counts, histopathological studies of the small intestine and muscles and inducible nitric oxide synthase (iNOS) expression in the small intestine. T. spiralis adult count was reduced in NTZ -treated group (66.6%) and the larval count decreased to 68.7 and 76.7% in the early and late treatment, respectively. The infected non-treated rats showed massive inflammatory cellular infiltration in the small intestines and muscles. This inflammatory response was minor in the treated groups and was accompanied by a decrease in iNOS expression. Moreover, in group III, the larvae were replaced by homogenized substance with some destructive changes in the capsule. In conclusion, NTZ showed a promising activity against enteral and more effect in parenteral phases of trichinellosis.
Collapse
Affiliation(s)
- Dalia S Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Egypt.
| | - Dina M Abou Rayia
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Egypt
| | - Abeer E Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Egypt
| | - Reda H El-Bakary
- Histology Department, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
31
|
Tjioe KC, Tostes Oliveira D, Gavard J. Luteolin Impacts on the DNA Damage Pathway in Oral Squamous Cell Carcinoma. Nutr Cancer 2016; 68:838-47. [DOI: 10.1080/01635581.2016.1180411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Approaches for the vaccination and treatment of Neospora caninum infections in mice and ruminant models. Parasitology 2015; 143:245-59. [PMID: 26626124 DOI: 10.1017/s0031182015001596] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neospora caninum is a leading cause of abortion in cattle, and is thus an important veterinary health problem of high economic significance. Vaccination has been considered a viable strategy to prevent bovine neosporosis. Different approaches have been investigated, and to date the most promising results have been achieved with live-attenuated vaccines. Subunit vaccines have also been studied, and most of them represented components that are functionally involved in (i) the physical interaction between the parasite and its host cell during invasion or (ii) tachyzoite-to-bradyzoite stage conversion. Drugs have been considered as an option to limit the effects of vertical transmission of N. caninum. Promising results with a small panel of compounds in small laboratory animal models indicate the potential value of a chemotherapeutical approach for the prevention of neosporosis in ruminants. For both, vaccines and drugs, the key for success in preventing vertical transmission lies in the application of bioactive compounds that limit parasite proliferation and dissemination, without endangering the developing fetus not only during an exogenous acute infection but also during recrudescence of a chronic infection. In this review, the current status of vaccine and drug development is presented and novel strategies against neosporosis are discussed.
Collapse
|
33
|
Lee SK, Lee DR, Choi BK, Palaniyandi SA, Yang SH, Suh JW. Glutathione S-transferase pi (GST-pi) inhibition and anti-inflammation activity of the ethyl acetate extract of Streptomyces sp. strain MJM 8637. Saudi J Biol Sci 2015; 22:744-51. [PMID: 26587003 PMCID: PMC4625359 DOI: 10.1016/j.sjbs.2015.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/23/2015] [Accepted: 04/01/2015] [Indexed: 11/30/2022] Open
Abstract
To investigate the anti-cancer properties of soil-borne actinobacteria, MJM 8637, the glutathione S-transferase pi (GST-pi) assay, anti-tumor necrosis factor (TNF)-α assay, the level of antioxidant potential by DPPH radical scavenging activity, NO scavenging activity, and ABTS radical scavenging activity in ethyl acetate extract were determined. The 16S rDNA sequencing analysis revealed that Streptomyces sp. strain MJM 8637, which was isolated from Hambak Mountain, Korea, has 99.5% similarity to Streptomyces atratus strain NBRC 3897. The physiological and the morphological characteristics of the strain MJM 8637 were also identified. The ethyl acetate extract of MJM 8637 inhibited TNF-α production approximately 61.8% at concentration 100 μg/ml. The IC50 value of the strain MJM 8637 extract on GST-pi was identified to be 120.2 ± 1.6 μg/ml. In DPPH, NO, and ABTS radical scavenging assays, the IC50 values of the strain MJM 8637 extract were found to be 977.2 μg/ml, 1143.7 μg/ml, and 454.4 μg/ml, respectively. The ethyl acetate extract of the strain MJM 8637 showed 97.2 ± 1.3% of cell viability at 100 μg/ml in RAW 264.7 cell viability assay. The results obtained from this study suggest that the ethyl acetate extract of Streptomyces sp. strain MJM 8637 could be considered as a potential source of drug for the cancers that have multidrug resistance with its GST-pi inhibition and anti-inflammation activities, and low cytotoxicity.
Collapse
Affiliation(s)
- Sung-Kwon Lee
- Center for Neutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Republic of Korea
| | - Dong-Ryung Lee
- Center for Neutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Republic of Korea ; Division of Bioscience and Bioinformatics, Myongji University, Yongin, Republic of Korea
| | - Bong-Keun Choi
- Center for Neutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Republic of Korea
| | - Sasikumar Arunachalam Palaniyandi
- Center for Neutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Republic of Korea ; Interdisciplinary Program of Biomodulation, Myongji University, Yongin, Republic of Korea
| | - Seung Hwan Yang
- Center for Neutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Republic of Korea ; Interdisciplinary Program of Biomodulation, Myongji University, Yongin, Republic of Korea
| | - Joo-Won Suh
- Center for Neutraceutical and Pharmaceutical Materials, Myongji University, Yongin, Republic of Korea ; Division of Bioscience and Bioinformatics, Myongji University, Yongin, Republic of Korea
| |
Collapse
|
34
|
Küster T, Stadelmann B, Rufener R, Risch C, Müller J, Hemphill A. Oral treatments of Echinococcus multilocularis-infected mice with the antimalarial drug mefloquine that potentially interacts with parasite ferritin and cystatin. Int J Antimicrob Agents 2015; 46:546-51. [DOI: 10.1016/j.ijantimicag.2015.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 11/15/2022]
|
35
|
Thiazolides promote apoptosis in colorectal tumor cells via MAP kinase-induced Bim and Puma activation. Cell Death Dis 2015; 6:e1778. [PMID: 26043078 PMCID: PMC4669824 DOI: 10.1038/cddis.2015.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 12/21/2022]
Abstract
While many anticancer therapies aim to target the death of tumor cells, sophisticated resistance mechanisms in the tumor cells prevent cell death induction. In particular enzymes of the glutathion-S-transferase (GST) family represent a well-known detoxification mechanism, which limit the effect of chemotherapeutic drugs in tumor cells. Specifically, GST of the class P1 (GSTP1-1) is overexpressed in colorectal tumor cells and renders them resistant to various drugs. Thus, GSTP1-1 has become an important therapeutic target. We have recently shown that thiazolides, a novel class of anti-infectious drugs, induce apoptosis in colorectal tumor cells in a GSTP1-1-dependent manner, thereby bypassing this GSTP1-1-mediated drug resistance. In this study we investigated in detail the underlying mechanism of thiazolide-induced apoptosis induction in colorectal tumor cells. Thiazolides induce the activation of p38 and Jun kinase, which is required for thiazolide-induced cell death. Activation of these MAP kinases results in increased expression of the pro-apoptotic Bcl-2 homologs Bim and Puma, which inducibly bind and sequester Mcl-1 and Bcl-xL leading to the induction of the mitochondrial apoptosis pathway. Of interest, while an increase in intracellular glutathione levels resulted in increased resistance to cisplatin, it sensitized colorectal tumor cells to thiazolide-induced apoptosis by promoting increased Jun kinase activation and Bim induction. Thus, thiazolides may represent an interesting novel class of anti-tumor agents by specifically targeting tumor resistance mechanisms, such as GSTP1-1.
Collapse
|
36
|
Eid SY, El-Readi MZ, Fatani SH, Mohamed Nour Eldin EE, Wink M. Natural Products Modulate the Multifactorial Multidrug Resistance of Cancer. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/pp.2015.63017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Hemphill A, Stadelmann B, Rufener R, Spiliotis M, Boubaker G, Müller J, Müller N, Gorgas D, Gottstein B. Treatment of echinococcosis: albendazole and mebendazole--what else? ACTA ACUST UNITED AC 2014; 21:70. [PMID: 25526545 PMCID: PMC4271654 DOI: 10.1051/parasite/2014073] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 12/11/2014] [Indexed: 01/14/2023]
Abstract
The search for novel therapeutic options to cure alveolar echinococcosis (AE), due to the metacestode of Echinococcus multilocularis, is ongoing, and these developments could also have a profound impact on the treatment of cystic echinococcosis (CE), caused by the closely related Echinococcus granulosus s.l. Several options are being explored. A viable strategy for the identification of novel chemotherapeutically valuable compounds includes whole-organism drug screening, employing large-scale in vitro metacestode cultures and, upon identification of promising compounds, verification of drug efficacy in small laboratory animals. Clearly, the current focus is targeted towards broad-spectrum anti-parasitic or anti-cancer drugs and compound classes that are already marketed, or that are in development for other applications. The availability of comprehensive Echinococcus genome information and gene expression data, as well as significant progress on the molecular level, has now opened the door for a more targeted drug discovery approach, which allows exploitation of defined pathways and enzymes that are essential for the parasite. In addition, current in vitro and in vivo models that are used to assess drug efficacy should be optimized and complemented by methods that give more detailed information on the host-parasite interactions that occur during drug treatments. The key to success is to identify, target and exploit those parasite molecules that orchestrate activities essential to parasite survival.
Collapse
Affiliation(s)
- Andrew Hemphill
- Vetsuisse Faculty, Institute of Parasitology, University of Berne, Länggass-Strasse 122, 3012 Berne, Switzerland
| | - Britta Stadelmann
- Vetsuisse Faculty, Institute of Parasitology, University of Berne, Länggass-Strasse 122, 3012 Berne, Switzerland
| | - Reto Rufener
- Vetsuisse Faculty, Institute of Parasitology, University of Berne, Länggass-Strasse 122, 3012 Berne, Switzerland
| | - Markus Spiliotis
- Vetsuisse Faculty, Institute of Parasitology, University of Berne, Länggass-Strasse 122, 3012 Berne, Switzerland
| | - Ghalia Boubaker
- Vetsuisse Faculty, Institute of Parasitology, University of Berne, Länggass-Strasse 122, 3012 Berne, Switzerland
| | - Joachim Müller
- Vetsuisse Faculty, Institute of Parasitology, University of Berne, Länggass-Strasse 122, 3012 Berne, Switzerland
| | - Norbert Müller
- Vetsuisse Faculty, Institute of Parasitology, University of Berne, Länggass-Strasse 122, 3012 Berne, Switzerland
| | - Daniela Gorgas
- Department of Clinical Veterinary Medicine, Clinical Radiology, Bremgartenstrasse 109a, 3012 Berne, Switzerland
| | - Bruno Gottstein
- Vetsuisse Faculty, Institute of Parasitology, University of Berne, Länggass-Strasse 122, 3012 Berne, Switzerland
| |
Collapse
|
38
|
A quantitative reverse-transcriptase PCR assay for the assessment of drug activities against intracellular Theileria annulata schizonts. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2014; 4:201-9. [PMID: 25516828 PMCID: PMC4266814 DOI: 10.1016/j.ijpddr.2014.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/01/2014] [Accepted: 09/04/2014] [Indexed: 12/15/2022]
Abstract
Quantitative RT real time PCR was used to assess metabolic impairment of Theileria schizonts. The method was validated with buparvaquone. Buparvaquone acts directly and rapidly on the parasite within 1 h of treatment. Electron microscopy confirmed these findings. A series of anti-parasitic compounds and antibiotics acted primarily on the host cells.
Intracellular schizonts of the apicomplexans Theileria annulata and Theileria parva immortalize bovine leucocytes thereby causing fatal immunoproliferative diseases. Buparvaquone, a hydroxynaphthoquinone related to parvaquone, is the only drug available against Theileria. The drug is only effective at the onset of infection and emerging resistance underlines the need for identifying alternative compounds. Current drug assays employ monitoring of proliferation of infected cells, with apoptosis of the infected host cell as a read-out, but it is often unclear whether active compounds directly impair the viability of the parasite or primarily induce host cell death. We here report on the development of a quantitative reverse transcriptase real time PCR method based on two Theileria genes, tasp and tap104, which are both expressed in schizonts. Upon in vitro treatment of T. annulata infected bovine monocytes with buparvaquone, TaSP and Tap104 mRNA expression levels significantly decreased in relation to host cell actin already within 4 h of drug exposure, while significant differences in host cell proliferation were detectable only after 48–72 h. TEM revealed marked alterations of the schizont ultrastructure already after 2 h of buparvaquone treatment, while the host cell remained unaffected. Expression of TaSP and Tap104 proteins showed a marked decrease only after 24 h. Therefore, the analysis of expression levels of mRNA coding for TaSP and Tap104 allows to directly measuring impairment of parasite viability. We subsequently applied this method using a series of compounds affecting different targets in other apicomplexan parasites, and show that monitoring of TaSP- and Tap104 mRNA levels constitutes a suitable tool for anti-theilerial drug development.
Collapse
|
39
|
Singh S. Cytoprotective and regulatory functions of glutathione S-transferases in cancer cell proliferation and cell death. Cancer Chemother Pharmacol 2014; 75:1-15. [PMID: 25143300 DOI: 10.1007/s00280-014-2566-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/04/2014] [Indexed: 01/05/2023]
Abstract
PURPOSE Glutathione S-transferases (GSTs) family of enzymes is best known for their cytoprotective role and their involvement in the development of anticancer drug resistance. Recently, emergence of non-detoxifying properties of GSTs has provided them with significant biological importance. Addressing the complex interactions of GSTs with regulatory kinases will help in understanding its precise role in tumor pathophysiology and in designing GST-centered anticancer strategies. METHODS We reviewed all published literature addressing the detoxification and regulatory roles of GSTs in the altered biology of cancer and evaluating novel agents targeting GSTs for cancer therapy. RESULTS The role of GSTs, especially glutathione S-transferase P1 isoform in tumoral drug resistance, has been the cause of intense debate. GSTs have been demonstrated to interact with different protein partners and modulate signaling pathways that control cell proliferation, differentiation and apoptosis. These specific functions of GSTs could lead to the development of new therapeutic approaches and to the identification of some interesting candidates for preclinical and clinical development. This review focuses on the crucial role played by GSTs in the development of resistance to anticancer agents and the major findings regarding the different modes of action of GSTs to regulate cell signaling.
Collapse
Affiliation(s)
- Simendra Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Gautam Buddha Nagar, Greater Noida, UP, India,
| |
Collapse
|
40
|
Brockmann A, Strittmatter T, May S, Stemmer K, Marx A, Brunner T. Structure-function relationship of thiazolide-induced apoptosis in colorectal tumor cells. ACS Chem Biol 2014; 9:1520-7. [PMID: 24810314 DOI: 10.1021/cb500209a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thiazolides are a novel class of anti-infectious agents against intestinal intracellular and extracellular protozoan parasites, bacteria, and viruses. While the parent compound nitazoxanide (NTZ; 2-(acetolyloxy)-N-(5-nitro-2-thiazolyl)benzamide) has potent antimicrobial activity, the bromo-thiazolide RM4819 (N-(5-bromothiazol-2-yl)-2-hydroxy-3-methylbenzamide) shows only reduced activity. Interestingly, both molecules are able to induce cell death in colon carcinoma cell lines, indicating that the molecular target in intestinal pathogens and in colon cancer cells is different. The detoxification enzyme glutathione S-transferase of class Pi 1 (GSTP1) is frequently overexpressed in various tumors, including colon carcinomas, and limits the efficacy of antitumor chemotherapeutic drugs due to its detoxifying activities. In colorectal tumor cells RM4819 has been shown to interact with GSTP1, and GSTP1 enzymatic activity is required for thiazolide-induced apoptosis. At present it is unclear which molecular structures of RM4819 are required to interact with GSTP1 and to induce cell death in colon carcinoma cell lines. Here, we demonstrate that novel thiazolide derivatives with variation in their substituents of the benzene ring do not significantly affect apoptosis induction in Caco-2 cells, whereas removal of the bromide atom on the thiazole ring leads to a strong reduction of cell death induction in colon cancer cells. We further show that active thiazolides require caspase activation and GSTP1 expression in order to induce apoptosis. We demonstrate that increased glutathione (GSH) levels sensitize colon cancer cells to thiazolides, indicating that both GSTP1 enzymatic activity as well as GSH levels are critical factors in thiazolide-induced cell death.
Collapse
Affiliation(s)
| | | | | | - Kerstin Stemmer
- Helmholtz
Zentrum
Munich, Ingoldstädter Landstr.
1, 85764 Neuherberg, Germany
| | | | | |
Collapse
|
41
|
Ashiru O, Howe JD, Butters TD. Nitazoxanide, an antiviral thiazolide, depletes ATP-sensitive intracellular Ca(2+) stores. Virology 2014; 462-463:135-48. [PMID: 24971706 DOI: 10.1016/j.virol.2014.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/01/2014] [Accepted: 05/14/2014] [Indexed: 12/31/2022]
Abstract
Nitazoxanide (NTZ) inhibits influenza, Japanese encephalitis, hepatitis B and hepatitis C virus replication but effects on the replication of other members of the Flaviviridae family has yet to be defined. The pestivirus bovine viral diarrhoea virus (BVDV) is a surrogate model for HCV infection and NTZ induced PKR and eIF2α phosphorylation in both uninfected and BVDV-infected cells. This led to the observation that NTZ depletes ATP-sensitive intracellular Ca(2+) stores. In addition to PKR and eIF2α phosphorylation, consequences of NTZ-mediated Ca(2+) mobilisation included induction of chronic sub-lethal ER stress as well as perturbation of viral protein N-linked glycosylation and trafficking. To adapt to NTZ-mediated ER stress, NTZ treated cells upregulated translation of Ca(2+)-binding proteins, including the ER chaperone Bip and the cytosolic pro-survival and anti-viral protein TCTP. Depletion of intracellular Ca(2+) stores is the primary consequence of NTZ treatment and is likely to underpin all antiviral mechanisms attributed to the thiazolide.
Collapse
Affiliation(s)
- Omodele Ashiru
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QU, UK.
| | - Jonathon D Howe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QU, UK.
| | - Terry D Butters
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, Oxfordshire OX1 3QU, UK.
| |
Collapse
|
42
|
Preclinical studies of amixicile, a systemic therapeutic developed for treatment of Clostridium difficile infections that also shows efficacy against Helicobacter pylori. Antimicrob Agents Chemother 2014; 58:4703-12. [PMID: 24890599 DOI: 10.1128/aac.03112-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Amixicile shows efficacy in the treatment of Clostridium difficile infections (CDI) in a mouse model, with no recurrence of CDI. Since amixicile selectively inhibits the action of a B vitamin (thiamine pyrophosphate) cofactor of pyruvate:ferredoxin oxidoreductase (PFOR), it may both escape mutation-based drug resistance and spare beneficial probiotic gut bacteria that do not express this enzyme. Amixicile is a water-soluble derivative of nitazoxanide (NTZ), an antiparasitic therapeutic that also shows efficacy against CDI in humans. In comparative studies, amixicile showed no toxicity to hepatocytes at 200 μM (NTZ was toxic above 10 μM); was not metabolized by human, dog, or rat liver microsomes; showed equivalence or superiority to NTZ in cytochrome P450 assays; and did not activate efflux pumps (breast cancer resistance protein, P glycoprotein). A maximum dose (300 mg/kg) of amixicile given by the oral or intraperitoneal route was well tolerated by mice and rats. Plasma exposure (rats) based on the area under the plasma concentration-time curve was 79.3 h · μg/ml (30 mg/kg dose) to 328 h · μg/ml (100 mg/kg dose), the maximum concentration of the drug in serum was 20 μg/ml, the time to the maximum concentration of the drug in serum was 0.5 to 1 h, and the half-life was 5.6 h. Amixicile did not concentrate in mouse feces or adversely affect gut populations of Bacteroides species, Firmicutes, segmented filamentous bacteria, or Lactobacillus species. Systemic bioavailability was demonstrated through eradication of Helicobacter pylori in a mouse infection model. In summary, the efficacy of amixicile in treating CDI and other infections, together with low toxicity, an absence of mutation-based drug resistance, and excellent drug metabolism and pharmacokinetic metrics, suggests a potential for broad application in the treatment of infections caused by PFOR-expressing microbial pathogens in addition to CDI.
Collapse
|
43
|
A functional perspective of nitazoxanide as a potential anticancer drug. Mutat Res 2014; 768:16-21. [PMID: 25847384 DOI: 10.1016/j.mrfmmm.2014.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/08/2014] [Accepted: 05/12/2014] [Indexed: 01/08/2023]
Abstract
Cancer is a group of diseases characterized by uncontrolled cell proliferation, evasion of cell death and the ability to invade and disrupt vital tissue function. The classic model of carcinogenesis describes successive clonal expansion driven by the accumulation of mutations that eliminate restraints on proliferation and cell survival. It has been proposed that during cancer's development, the loose-knit colonies of only partially differentiated cells display some unicellular/prokaryotic behavior reminiscent of robust ancient life forms. The seeming "regression" of cancer cells involves changes within metabolic machinery and survival strategies. This atavist change in physiology enables cancer cells to behave as selfish "neo-endo-parasites" that exploit the tumor stromal cells in order to extract nutrients from the surrounding microenvironment. In this framework, it is conceivable that anti-parasitic compounds might serve as promising anticancer drugs. Nitazoxanide (NTZ), a thiazolide compound, has shown antimicrobial properties against anaerobic bacteria, as well as against helminths and protozoa. NTZ has also been successfully used to promote Hepatitis C virus (HCV) elimination by improving interferon signaling and promoting autophagy. More compelling however are the potential anti-cancer properties that have been observed. NTZ seems to be able to interfere with crucial metabolic and pro-death signaling such as drug detoxification, unfolded protein response (UPR), autophagy, anti-cytokine activities and c-Myc inhibition. In this article, we review the ability of NTZ to interfere with integrated survival mechanisms of cancer cells and propose that this compound might be a potent addition to the current chemotherapeutic strategy against cancer.
Collapse
|
44
|
Andrews KT, Fisher G, Skinner-Adams TS. Drug repurposing and human parasitic protozoan diseases. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2014; 4:95-111. [PMID: 25057459 PMCID: PMC4095053 DOI: 10.1016/j.ijpddr.2014.02.002] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/17/2014] [Accepted: 02/27/2014] [Indexed: 12/30/2022]
Abstract
Parasitic diseases have an enormous health, social and economic impact and are a particular problem in tropical regions of the world. Diseases caused by protozoa and helminths, such as malaria and schistosomiasis, are the cause of most parasite related morbidity and mortality, with an estimated 1.1 million combined deaths annually. The global burden of these diseases is exacerbated by the lack of licensed vaccines, making safe and effective drugs vital to their prevention and treatment. Unfortunately, where drugs are available, their usefulness is being increasingly threatened by parasite drug resistance. The need for new drugs drives antiparasitic drug discovery research globally and requires a range of innovative strategies to ensure a sustainable pipeline of lead compounds. In this review we discuss one of these approaches, drug repurposing or repositioning, with a focus on major human parasitic protozoan diseases such as malaria, trypanosomiasis, toxoplasmosis, cryptosporidiosis and leishmaniasis.
Collapse
Affiliation(s)
- Katherine T Andrews
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Gillian Fisher
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Tina S Skinner-Adams
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
45
|
Strittmatter T, Brockmann A, Pott M, Hantusch A, Brunner T, Marx A. Expanding the scope of human DNA polymerase λ and β inhibitors. ACS Chem Biol 2014; 9:282-90. [PMID: 24171552 DOI: 10.1021/cb4007562] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The exact biological functions of individual DNA polymerases still await clarification, and therefore appropriate reagents to probe their respective functions are required. In the present study, we report the development of a highly potent series of human DNA polymerase λ and β (pol λ and β) inhibitors based on the rhodanine scaffold. Both enzymes are involved in DNA repair and are thus considered as future drug targets. We expanded the chemical diversity of the small-molecule inhibitors arising from a high content screening and designed and synthesized 30 novel analogues. By biochemical evaluation, we discovered 23 highly active compounds against pol λ. Importantly, 10 of these small-molecules selectively inhibited pol λ and not the homologous pol β. We discovered 14 small-molecules that target pol β and found out that they are more potent than known inhibitors. We also investigated whether the discovered compounds sensitize cancer cells toward DNA-damaging reagents. Thus, we cotreated human colorectal cancer cells (Caco-2) with the small-molecule inhibitors and hydrogen peroxide or the approved drug temozolomide. Interestingly, the tested compounds sensitized Caco-2 cells to both genotoxic agents in a DNA repair pathway-dependent manner.
Collapse
Affiliation(s)
- Tobias Strittmatter
- Departments of Chemistry
and Biology, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Anette Brockmann
- Departments of Chemistry
and Biology, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Moritz Pott
- Departments of Chemistry
and Biology, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Annika Hantusch
- Departments of Chemistry
and Biology, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Thomas Brunner
- Departments of Chemistry
and Biology, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Andreas Marx
- Departments of Chemistry
and Biology, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
46
|
Arnold M, Lang E, Modicano P, Bissinger R, Faggio C, Abed M, Lang F. Effect of nitazoxanide on erythrocytes. Basic Clin Pharmacol Toxicol 2013; 114:421-6. [PMID: 24215285 DOI: 10.1111/bcpt.12171] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 10/31/2013] [Indexed: 12/15/2022]
Abstract
Nitazoxanide, a drug effective against a variety of pathogens, triggers apoptosis and is thus considered to be employed against malignancy. Similar to nucleated cells, erythrocytes may undergo an apoptosis-like suicidal cell death or eryptosis. Hallmarks of eryptosis include cell shrinkage and phospholipid scrambling of the cell membrane with translocation of phosphatidylserine to the erythrocyte surface. Stimulators of eryptosis include increase in cytosolic Ca(2+) -activity ([Ca(2+) ]i ). The Ca(2+) -sensitivity of eryptosis is increased by ceramide. This study explored whether nitazoxanide triggers eryptosis. [Ca(2+) ]i was estimated from Fluo3-fluorescence, cell volume from forward scatter, phosphatidylserine exposure from annexin-V-binding, ceramide abundance utilizing fluorescent antibodies and haemolysis from haemoglobin release. A 48-hr exposure to nitazoxanide (1-50 μg/ml) did not significantly modify [Ca(2+) ]i but significantly increased ceramide formation, decreased forward scatter (≥10 μg/ml), increased the percentage of annexin-V-binding erythrocytes (≥10 μg/ml) and, at higher concentrations (≥20 μg/ml), stimulated haemolysis. The stimulation of annexin-V-binding was significantly blunted in the absence of calcium. Nitazoxanide thus stimulates eryptosis, an effect in part due to ceramide formation.
Collapse
Affiliation(s)
- Markus Arnold
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Research perspective: potential role of nitazoxanide in ovarian cancer treatment. Old drug, new purpose? Cancers (Basel) 2013; 5:1163-76. [PMID: 24202339 PMCID: PMC3795384 DOI: 10.3390/cancers5031163] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 08/29/2013] [Accepted: 09/04/2013] [Indexed: 01/09/2023] Open
Abstract
Among gynecological malignancies epithelial ovarian cancer (EOC) is the leading cause of death. Despite improvements in conventional chemotherapy combinations, the overall cure rate has remained mostly stable over the years, and only 10%–15% of patients maintain a complete response following first-line therapy. To improve the efficacy of ovarian cancer chemotherapy it is essential to develop drugs with new mechanisms of action. Compared to normal tissues, protein disulfide isomerase (PDI) is overexpressed in ovarian tumors. PDI is a cellular enzyme in the lumen of the endoplasmic reticulum (ER) of eukaryotes or the periplasmic region of prokaryotes. This protein catalyzes the formation and breakage of disulphide bonds between cysteine residues in proteins, which affects protein folding. Selective inhibition of PDI activity has been exhibited both in vitro and in vivo anticancer activity in human ovarian cancer models. PDI inhibition caused accumulation of unfolded or misfolded proteins, which led to ER stress and the unfolded protein response (UPR), and in turn resulted in cell death. Nitazoxanide [NTZ: 2-acetyloxy-N-(5-nitro-2-thiazolyl)benzamide] is a thiazolide antiparasitic agent with excellent activity against a wide variety of protozoa and helminths. In this article, we propose that NTZ, acting as PDI inhibitor, may be a new and potent addition to the chemotherapeutic strategy against ovarian cancer.
Collapse
|
48
|
Musdal Y, Hegazy UM, Aksoy Y, Mannervik B. FDA-approved drugs and other compounds tested as inhibitors of human glutathione transferase P1-1. Chem Biol Interact 2013; 205:53-62. [DOI: 10.1016/j.cbi.2013.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/25/2013] [Accepted: 06/03/2013] [Indexed: 11/29/2022]
|
49
|
Tappe D, Müller A, Frosch M, Stich A. Limitations of amphotericin B and nitazoxanide in the treatment of alveolar echinococcosis. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2013; 103:177-81. [DOI: 10.1179/136485909x385036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
50
|
Fan-Minogue H, Bodapati S, Solow-Cordero D, Fan A, Paulmurugan R, Massoud TF, Felsher DW, Gambhir SS. A c-Myc activation sensor-based high-throughput drug screening identifies an antineoplastic effect of nitazoxanide. Mol Cancer Ther 2013; 12:1896-905. [PMID: 23825064 DOI: 10.1158/1535-7163.mct-12-1243] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Deregulation of c-Myc plays a central role in the tumorigenesis of many human cancers. Yet, the development of drugs regulating c-Myc activity has been challenging. To facilitate the identification of c-Myc inhibitors, we developed a molecular imaging sensor-based high-throughput screening (HTS) system. This system uses a cell-based assay to detect c-Myc activation in a HTS format, which is established from a pure clone of a stable breast cancer cell line that constitutively expresses a c-Myc activation sensor. Optimization of the assay performance in the HTS format resulted in uniform and robust signals at the baseline. Using this system, we conducted a quantitative HTS against approximately 5,000 existing bioactive compounds from five different libraries. Thirty-nine potential hits were identified, including currently known c-Myc inhibitors. There are a few among the top potent hits that are not known for anti-c-Myc activity. One of these hits is nitazoxanide, a thiazolide for treating human protozoal infections. Validation of nitazoxanide in different cancer cell lines revealed a high potency for c-Myc inhibition with IC50 ranging between 10 and 500 nmol/L. Oral administration of nitazoxanide in breast cancer xenograft mouse models significantly suppressed tumor growth by inhibition of c-Myc and induction of apoptosis. These findings suggest a potential of nitazoxanide to be repurposed as a new antitumor agent for inhibition of c-Myc-associated neoplasia. Our work also demonstrated the unique advantage of molecular imaging in accelerating discovery of drugs for c-Myc-targeted cancer therapy.
Collapse
Affiliation(s)
- Hua Fan-Minogue
- Corresponding Author: Sanjiv S. Gambhir, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 318 Campus Drive, East Wing, 1st Floor, Stanford, CA 94305-5427.
| | | | | | | | | | | | | | | |
Collapse
|