1
|
Ren X, Sun D, Lv J, Gao B, Jia S, Bian X, Zhao K, Li J, Liu P, Li J. Chromosome-level genome of the long-tailed marine-living ornate spiny lobster, Panulirus ornatus. Sci Data 2024; 11:662. [PMID: 38909031 PMCID: PMC11193758 DOI: 10.1038/s41597-024-03512-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024] Open
Abstract
Recent conservation efforts to protect rare and endangered aquatic species have intensified. Nevertheless, the ornate spiny lobster (Panulirus ornatus), which is prevalent in the Indo-Pacific waters, has been largely ignored. In the absence of a detailed genomic reference, the conservation and population genetics of this crustacean are poorly understood. Here, We assembled a comprehensive chromosome-level genome for P. ornatus. This genome-among the most detailed for lobsters-spans 2.65 Gb with a contig N50 of 51.05 Mb, and 99.11% of the sequences with incorporated to 73 chromosomes. The ornate spiny lobster genome comprises 65.67% repeat sequences and 22,752 protein-coding genes with 99.20% of the genes functionally annotated. The assembly of the P. ornatus genome provides valuable insights into comparative crustacean genomics and endangered species conservation, and lays the groundwork for future research on the speciation, ecology, and evolution of the ornate spiny lobster.
Collapse
Affiliation(s)
- Xianyun Ren
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, 266237, China
| | - Dongfang Sun
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, 266237, China
| | - Jianjian Lv
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, 266237, China
| | - Baoquan Gao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, 266237, China
| | - Shaoting Jia
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, 266237, China
| | - Xueqiong Bian
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, 266237, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, PR China
| | - Kuangcheng Zhao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, 266237, China
| | - Jitao Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, 266237, China
| | - Ping Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, 266237, China.
| | - Jian Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, Shandong, 266237, China.
| |
Collapse
|
2
|
Tavares CPDS, Cibulski SP, Castilho-Westphal GG, Zhao M, Silva UDAT, Schott EJ, Ostrensky A. Virus discovery in cultured portunid crabs: Genomic, phylogenetic, histopathological and microscopic characterization of a reovirus and a new bunyavirus. J Invertebr Pathol 2024; 204:108118. [PMID: 38679369 DOI: 10.1016/j.jip.2024.108118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Portunid crabs are distributed worldwide and highly valued in aquaculture. Viral infections are the main limiting factor for the survival of these animals and, consequently, for the success of commercial-scale cultivation. However, there is still a lack of knowledge about the viruses that infect cultured portunid crabs worldwide. Herein, the genome sequence and phylogeny of Callinectes sapidus reovirus 2 (CsRV2) are described, and the discovery of a new bunyavirus in Callinectes danae cultured in southern Brazil is reported. The CsRV2 genome sequence consists of 12 dsRNA segments (20,909 nt) encode 13 proteins. The predicted RNA-dependent RNA polymerase (RdRp) shows a high level of similarity with that of Eriocheir sinensis reovirus 905, suggesting that CsRV2 belongs to the genus Cardoreovirus. The CsRV2 particles are icosahedral, measuring approximately 65 nm in diameter, and exhibit typical non-turreted reovirus morphology. High throughput sequencing data revealed the presence of an additional putative virus genome similar to bunyavirus, called Callinectes danae Portunibunyavirus 1 (CdPBV1). The CdPBV1 genome is tripartite, consisting of 6,654 nt, 3,120 nt and 1,656 nt single-stranded RNA segments that each encode a single protein. Each segment has a high identity with European shore crab virus 1, suggesting that CdPBV1 is a new representative of the family Cruliviridae. The putative spherical particles of CdPBV1 measure ∼120 nm in diameter and present a typical bunyavirus morphology. The results of the histopathological analysis suggest that these new viruses can affect the health and, consequently, the survival of C. danae in captivity. Therefore, the findings reported here should be used to improve prophylactic and pathogen control practices and contribute to the development and optimization of the production of soft-shell crabs on a commercial scale in Brazil.
Collapse
Affiliation(s)
- Camila Prestes Dos Santos Tavares
- Graduate Program in Zoology of the Federal University of Paraná, Curitiba, Paraná 80035-050, Brazil; Integrated Group of Aquaculture and Environmental Studies, Federal University of Paraná, Curitiba, Paraná 80035-050, Brazil.
| | - Samuel Paulo Cibulski
- Biotechnology Center, Cellular and Molecular Biotechnology Laboratory, Federal University of Paraíba, João Pessoa, Paraíba 58051-900, Brazil.
| | - Gisela Geraldine Castilho-Westphal
- Integrated Group of Aquaculture and Environmental Studies, Federal University of Paraná, Curitiba, Paraná 80035-050, Brazil; Universidade Positivo, Curitiba, Paraná 81290-000, Brazil
| | - Mingli Zhao
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA.
| | | | - Eric J Schott
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA.
| | - Antonio Ostrensky
- Integrated Group of Aquaculture and Environmental Studies, Federal University of Paraná, Curitiba, Paraná 80035-050, Brazil.
| |
Collapse
|
3
|
Cox N, De Swaef E, Corteel M, Van Den Broeck W, Bossier P, Nauwynck HJ, Dantas-Lima JJ. Experimental Infection Models and Their Usefulness for White Spot Syndrome Virus (WSSV) Research in Shrimp. Viruses 2024; 16:813. [PMID: 38793694 PMCID: PMC11125927 DOI: 10.3390/v16050813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
White spot syndrome virus (WSSV) is marked as one of the most economically devastating pathogens in shrimp aquaculture worldwide. Infection of cultured shrimp can lead to mass mortality (up to 100%). Although progress has been made, our understanding of WSSV's infection process and the virus-host-environment interaction is far from complete. This in turn hinders the development of effective mitigation strategies against WSSV. Infection models occupy a crucial first step in the research flow that tries to elucidate the infectious disease process to develop new antiviral treatments. Moreover, since the establishment of continuous shrimp cell lines is a work in progress, the development and use of standardized in vivo infection models that reflect the host-pathogen interaction in shrimp is a necessity. This review critically examines key aspects of in vivo WSSV infection model development that are often overlooked, such as standardization, (post)larval quality, inoculum type and choice of inoculation procedure, housing conditions, and shrimp welfare considerations. Furthermore, the usefulness of experimental infection models for different lines of WSSV research will be discussed with the aim to aid researchers when choosing a suitable model for their research needs.
Collapse
Affiliation(s)
- Natasja Cox
- IMAQUA, 9080 Lochristi, Belgium; (E.D.S.); (M.C.); (J.J.D.-L.)
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | | | - Mathias Corteel
- IMAQUA, 9080 Lochristi, Belgium; (E.D.S.); (M.C.); (J.J.D.-L.)
| | - Wim Van Den Broeck
- Department of Morphology, Medical Imaging, Orthopedics, Physiotherapy and Nutrition, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Hans J. Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | | |
Collapse
|
4
|
Karam Q, Guermazi W, Subrahmanyam MNV, Al-Enezi Y, Ali M, Leignel V, Annabi-Trabelsi N. Portunus pelagicus (Linnaeus, 1758) as a Sentinel Species to Assess Trace Metal Occurrence: A Case Study of Kuwait Waters (Northwestern Arabian Gulf). TOXICS 2023; 11:toxics11050426. [PMID: 37235241 DOI: 10.3390/toxics11050426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023]
Abstract
Heavy metal pollution can adversely impact marine life, such as crabs, which can accumulate it in different organs and potentially transfer and biomagnify along the food chain in aquatic ecosystems. This study aimed to examine the concentrations of heavy metals (Cd, Cu, Pb, and Zn) in sediment, water, and crab tissues (gills, hepatopancreas, and carapace) of the blue swimmer crab Portunus pelagicus in the coastal areas of Kuwait, northwestern Arabian Gulf. Samples were collected from Shuwaikh Port, Shuaiba Port, and Al-Khiran areas. The accumulation of metals in crabs were higher in the carapace > gill > digestive gland, and the highest metal concentration was found in crabs collected from Shuwaikh > Shuaiba > Al-Khiran. The metal concentrations in the sediments were in the order Zn > Cu > Pb > Cd. Zn was the highest metal concentration detected in marine water sampled from the Al-Khiran Area, whereas the lowest metal was Cd sampled in water from the Shuwaikh Area. The results of this study validate the marine crab P. pelagicus as a relevant sentinel and prospective bioindicator for evaluating heavy metal pollution in marine ecosystems.
Collapse
Affiliation(s)
- Qusaie Karam
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Kuwait City 13109, Kuwait
| | - Wassim Guermazi
- Université de Sfax, Biodiversité Marine et Environnement (LR18ES30), Route Soukra Km 3.5, B.P. 1171, Sfax 3000, Tunisia
| | - M N V Subrahmanyam
- Department of Biological Sciences, Faculty of Science, Kuwait University, P.O. Box 5969, Kuwait City 13060, Kuwait
| | - Yousef Al-Enezi
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Kuwait City 13109, Kuwait
| | - Mohammad Ali
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Kuwait City 13109, Kuwait
| | - Vincent Leignel
- Laboratoire BIOSSE, Le Mans Université, 72000 Avenue O Messiaen, France
| | - Neila Annabi-Trabelsi
- Université de Sfax, Biodiversité Marine et Environnement (LR18ES30), Route Soukra Km 3.5, B.P. 1171, Sfax 3000, Tunisia
| |
Collapse
|
5
|
Miroliubov AA, Lianguzova AD, Krupenko DY, Kremnev GA, Enshina IC. Cancer spares no one: first record of neoplasm in parasitic barnacles (Arthropoda: Rhizocephala). J Invertebr Pathol 2023; 198:107913. [PMID: 36940868 DOI: 10.1016/j.jip.2023.107913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023]
Abstract
Cancer-like neoplasms are extremely rarely present in arthropods, particularly in crustaceans. Thus, it is assumed that these animals have some efficient cancer-preventing mechanisms. However, several cases of cancer-like neoplasms are described in crustaceans, though only for the Decapoda. We identified a tumor in the parasitic barnacle Peltogaster paguri (Cirripedia: Rhizocephala), and described its histological structure. A spherical cell mass, consisting mostly of roundish cells with big translucent nuclei, prominent nucleoli, and sparse chromatin, and of cells with condensed chromosomes, was found in the main trunk of the P. paguri rootlet system. Numerous mitoses were observed in this area. Such tissue organization is utterly uncharacteristic of the Rhizocephala. Based on acquired histological data, we assume that this tumor is a cancer-like neoplasm. This is the first report of a tumor identified in the rhizocephalans, as well as in non-decapod crustaceans as a whole.
Collapse
Affiliation(s)
- Aleksei A Miroliubov
- Laboratory of Parasitic Worms, Zoological Institute, Russian Academy of Science, Universitetskaya Embankment, 1, St Petersburg, Russia.
| | - Anastasia D Lianguzova
- Laboratory of Parasitic Worms, Zoological Institute, Russian Academy of Science, Universitetskaya Embankment, 1, St Petersburg, Russia; Department of Invertebrate Zoology, St-Petersburg State University, Universitetskaya Embankment, 7/9, St Petersburg, Russia.
| | - Darya Y Krupenko
- Department of Invertebrate Zoology, St-Petersburg State University, Universitetskaya Embankment, 7/9, St Petersburg, Russia.
| | - Georgii A Kremnev
- Department of Invertebrate Zoology, St-Petersburg State University, Universitetskaya Embankment, 7/9, St Petersburg, Russia.
| | - Irina C Enshina
- Department of Invertebrate Zoology, St-Petersburg State University, Universitetskaya Embankment, 7/9, St Petersburg, Russia.
| |
Collapse
|
6
|
Mengal K, Kor G, Kozák P, Niksirat H. Effects of environmental factors on the cellular and molecular parameters of the immune system in decapods. Comp Biochem Physiol A Mol Integr Physiol 2023; 276:111332. [PMID: 36241042 DOI: 10.1016/j.cbpa.2022.111332] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 12/28/2022]
Abstract
Crustaceans and in particular decapods (i.e. shrimp, crabs and lobsters) are a diverse, commercially and ecologically important group of organisms. They are exposed to a range of environmental factors whose abiotic and biotic components are prone to fluctuate beyond their optimum ranges and, in doing so, affect crustaceans' immune system and health. Changes in key environmental factors such as temperature, pH, salinity, dissolved oxygen, ammonia concentrations and pathogens can provoke stress and immune responses due to alterations in immune parameters. The mechanisms through which stressors mediate effects on immune parameters are not fully understood in decapods. Improved knowledge of the environmental factors - above all, their abiotic components - that influence the immune parameters of decapods could help mitigate or constrain their harmful effects that adversely affect the production of decapod crustaceans. The first part of this overview examines current knowledge and information gaps regarding the basic components and functions of the innate immune system of decapods. In the second part, we discuss various mechanisms provoked by environmental factors and categorize cellular and molecular immune responses to each environmental factor with special reference to decapods.
Collapse
Affiliation(s)
- Kifayatullah Mengal
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic
| | - Golara Kor
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic
| | - Pavel Kozák
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic
| | - Hamid Niksirat
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic.
| |
Collapse
|
7
|
Evo-devo perspectives on cancer. Essays Biochem 2022; 66:797-815. [PMID: 36250956 DOI: 10.1042/ebc20220041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022]
Abstract
The integration of evolutionary and developmental approaches into the field of evolutionary developmental biology has opened new areas of inquiry- from understanding the evolution of development and its underlying genetic and molecular mechanisms to addressing the role of development in evolution. For the last several decades, the terms 'evolution' and 'development' have been increasingly linked to cancer, in many different frameworks and contexts. This mini-review, as part of a special issue on Evolutionary Developmental Biology, discusses the main areas in cancer research that have been addressed through the lenses of both evolutionary and developmental biology, though not always fully or explicitly integrated in an evo-devo framework. First, it briefly introduces the current views on carcinogenesis that invoke evolutionary and/or developmental perspectives. Then, it discusses the main mechanisms proposed to have specifically evolved to suppress cancer during the evolution of multicellularity. Lastly, it considers whether the evolution of multicellularity and development was shaped by the threat of cancer (a cancer-evo-devo perspective), and/or whether the evolution of developmental programs and life history traits can shape cancer resistance/risk in various lineages (an evo-devo-cancer perspective). A proper evolutionary developmental framework for cancer, both as a disease and in terms of its natural history (in the context of the evolution of multicellularity and development as well as life history traits), could bridge the currently disparate evolutionary and developmental perspectives and uncover aspects that will provide new insights for cancer prevention and treatment.
Collapse
|
8
|
Vogt G. Cytology, function and dynamics of stem and progenitor cells in decapod crustaceans. Biol Rev Camb Philos Soc 2021; 97:817-850. [PMID: 34914163 DOI: 10.1111/brv.12824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
Stem cells play key roles in development, tissue homeostasis, regeneration, ageing and diseases. Comprehensive reviews on stem cells are available for the determinately growing mammals and insects and some lower invertebrates like hydra but are rare for larger, indeterminately growing invertebrates that can live for many decades. This paper reviews the cytology, function and dynamics of stem and progenitor cells in the decapod crustaceans, a species-rich and ecologically and economically important animal group that includes mainly indeterminate growers but also some determinate growers. Further advantages of decapods for stem cell research are almost 1000-fold differences in body size and longevity, the regeneration of damaged appendages and the virtual absence of age-related diseases and tumours in the indeterminately growing species. The available data demonstrate that the Decapoda possess a remarkable variety of structurally and functionally different stem cells in embryos and larvae, and in the epidermis, musculature, haematopoietic tissue, heart, brain, hepatopancreas, olfactory sense organs and gonads of adults. Some of these seem to be rather continuously active over a lifetime but others are cyclically activated and silenced in periods of days, weeks and years, depending on the specific organ and function. Stem cell proliferation is triggered by signals related to development, moulting, feeding, reproduction, injury, infection, environmental enrichment and social status. Some regulatory pathways have already been identified, including the evolutionarily conserved GATA-binding and runt-domain transcription factors, the widespread neurotransmitter serotonin, the arthropod-specific hormone 20-hydroxyecdysone and the novel astakine growth factors. Knowledge of stem cells in decapods primarily refines our picture on the development, growth and maintenance of tissues and organs in this animal group. Cultured decapod stem cells have good potential for toxicity testing and virus research with practical relevance for aquaculture. Knowledge of stem cells in decapods also broadens our understanding of the evolution of stem cells and regeneration in the animal kingdom. The stem cells of long-lived, indeterminately growing decapods may hold the key to understanding how stem and progenitor cells function into old age without adverse side effects, possibly evoking new ideas for the development of anti-ageing and anti-cancer treatments in humans.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Polinski JM, Zimin AV, Clark KF, Kohn AB, Sadowski N, Timp W, Ptitsyn A, Khanna P, Romanova DY, Williams P, Greenwood SJ, Moroz LL, Walt DR, Bodnar AG. The American lobster genome reveals insights on longevity, neural, and immune adaptations. SCIENCE ADVANCES 2021; 7:7/26/eabe8290. [PMID: 34162536 PMCID: PMC8221624 DOI: 10.1126/sciadv.abe8290] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/07/2021] [Indexed: 05/30/2023]
Abstract
The American lobster, Homarus americanus, is integral to marine ecosystems and supports an important commercial fishery. This iconic species also serves as a valuable model for deciphering neural networks controlling rhythmic motor patterns and olfaction. Here, we report a high-quality draft assembly of the H. americanus genome with 25,284 predicted gene models. Analysis of the neural gene complement revealed extraordinary development of the chemosensory machinery, including a profound diversification of ligand-gated ion channels and secretory molecules. The discovery of a novel class of chimeric receptors coupling pattern recognition and neurotransmitter binding suggests a deep integration between the neural and immune systems. A robust repertoire of genes involved in innate immunity, genome stability, cell survival, chemical defense, and cuticle formation represents a diversity of defense mechanisms essential to thrive in the benthic marine environment. Together, these unique evolutionary adaptations contribute to the longevity and ecological success of this long-lived benthic predator.
Collapse
Affiliation(s)
| | - Aleksey V Zimin
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - K Fraser Clark
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, Nova Scotia B2N 5E3, Canada
| | - Andrea B Kohn
- The Whitney Laboratory for Marine Bioscience and Department of Neuroscience, University of Florida, Gainesville and St. Augustine, FL 32080-8623, USA
| | - Norah Sadowski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Winston Timp
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Andrey Ptitsyn
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, USA
| | - Prarthana Khanna
- Genetics Program, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow 117485, Russia
| | - Peter Williams
- The Whitney Laboratory for Marine Bioscience and Department of Neuroscience, University of Florida, Gainesville and St. Augustine, FL 32080-8623, USA
| | - Spencer J Greenwood
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Leonid L Moroz
- The Whitney Laboratory for Marine Bioscience and Department of Neuroscience, University of Florida, Gainesville and St. Augustine, FL 32080-8623, USA
| | - David R Walt
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Andrea G Bodnar
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, USA.
| |
Collapse
|
10
|
Bouallegui Y. A Comprehensive Review on Crustaceans' Immune System With a Focus on Freshwater Crayfish in Relation to Crayfish Plague Disease. Front Immunol 2021; 12:667787. [PMID: 34054837 PMCID: PMC8155518 DOI: 10.3389/fimmu.2021.667787] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/27/2021] [Indexed: 12/21/2022] Open
Abstract
Freshwater crayfish immunity has received great attention due to the need for urgent conservation. This concern has increased the understanding of the cellular and humoral defense systems, although the regulatory mechanisms involved in these processes need updating. There are, however, aspects of the immune response that require clarification and integration. The particular issues addressed in this review include an overall description of the oomycete Aphanomyces astaci, the causative agent of the pandemic plague disease, which affects freshwater crayfish, and an overview of crustaceans' immunity with a focus on freshwater crayfish. It includes a classification system of hemocyte sub-types, the molecular factors involved in hematopoiesis and the differential role of the hemocyte subpopulations in cell-mediated responses, including hemocyte infiltration, inflammation, encapsulation and the link with the extracellular trap cell death pathway (ETosis). In addition, other topics discussed include the identity and functions of hyaline cells, the generation of neoplasia, and the emerging topic of the role of sessile hemocytes in peripheral immunity. Finally, attention is paid to the molecular execution of the immune response, from recognition by the pattern recognition receptors (PRRs), the role of the signaling network in propagating and maintaining the immune signals, to the effector elements such as the putative function of the Down syndrome adhesion molecules (Dscam) in innate immune memory.
Collapse
Affiliation(s)
- Younes Bouallegui
- LR01ES14 Laboratory of Environmental Biomonitoring, Faculty of Sciences of Bizerte, University of Carthage, Bizerte, Tunisia
| |
Collapse
|
11
|
LaDouceur EEB, Gray JL, Smolowitz R, Schleiderer M, Murray M. Hemocytic sarcoma of the body wall in a California king crab Paralithodes californiensis. DISEASES OF AQUATIC ORGANISMS 2021; 143:13-18. [PMID: 33506811 DOI: 10.3354/dao03551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Neoplasia is rarely reported in decapod crustaceans, and sarcoma has not been previously reported in any crab species. A California king crab Paralithodes californiensis with a recent history of autotomy (4 legs lost) and anorexia was found dead. Grossly, the crab had a pigmented ulcer on the right cheliped merus. Necropsy tissue samples were placed in 10% neutral buffered formalin and processed routinely for histology. Both histochemical (i.e. Brown and Brenn Gram, Fite-Faraco acid fast, Fontana-Masson, Giemsa, hematoxylin and eosin, Masson's trichrome, periodic acid-Schiff [PAS], phosphotungstic acid-hematoxylin, and von Kossa) and immunohistochemical (i.e. cytokeratin, vimentin, and lysozyme) stains were performed. The body wall (presumably of the right cheliped merus) was ulcerated and subtended by a densely cellular, unencapsulated, invasive neoplasm composed of spindle cells arranged in intersecting streams and bundles embedded in a small to moderate amount of fibromatous stroma. Neoplastic cells were oval to elongate with fibrillar, pale eosinophilic cytoplasm that occasionally contained moderate numbers of small, spherical, brightly eosinophilic granules that were highlighted with PAS and Giemsa stains. Neoplastic cells had mild atypia and no evident mitoses. Immunohistochemical stains were noncontributory. This neoplasm is consistent with hemocytic sarcoma of semi-granulocytic origin. Decapod crustaceans have 3 types of hemocytes: hyalinocytes, granulocytes, and semi-granulocytes. Neoplastic cells had PAS- and Giemsa-positive granules, which are present in both semi-granulocytes and granulocytes. Semi-granulocytes can elongate and are associated with deposition of extracellular matrix during some immune responses. Neoplastic cells were elongate and associated with deposition of matrix. These findings suggest neoplastic cells were of semi-granulocytic origin.
Collapse
Affiliation(s)
- E E B LaDouceur
- Joint Pathology Center, 606 Stephen Sitter Ave., Silver Spring, MD 20910, USA
| | | | | | | | | |
Collapse
|
12
|
Vogt G. Cytopathology and immune response in the hepatopancreas of decapod crustaceans. DISEASES OF AQUATIC ORGANISMS 2020; 138:41-88. [PMID: 32103822 DOI: 10.3354/dao03443] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The hepatopancreas of decapod crustaceans is used as an example to illustrate the range of cytopathologies, detoxification mechanisms, and immune responses that environmental toxicants and pathogens can induce in a single organ. The hepatopancreas is the central metabolic organ of decapods and consists of hundreds of blindly-ending tubules and intertubular spaces. The tubular epithelium contains 5 structurally and functionally different cell types, and the interstitium contains haemolymph, haemocytes, connective tissue, and fixed phagocytes. Some physiological conditions such as moulting and starvation cause marked but reversible ultrastructural alterations of the epithelial cells. Environmental toxicants induce either detoxification mechanisms or structural damage in cells, depending on toxicant and concentration. The hepatopancreas is also a main target organ for pathogens, mainly viruses, bacteria, and protists that enter the body via the digestive tract and gills and replicate in the hepatopancreatocytes. The cytopathologies caused by toxicants and pathogens affect single cell types specifically or, more often, several cell types simultaneously. Pathogenesis often begins in a certain cell organelle such as the nucleus, mitochondrion, or endoplasmic reticulum, spreads to other organelles, and ends with death of the infected cell. Fixed phagocytes in the interstitium capture and degrade pathogens that move from the infected tubules into the intertubular spaces or enter the hepatopancreas via circulation. Relatively few disease agents elicit the melanisation and encapsulation reaction that encloses infected tubules by a rigid melanised capsule and kills the entrapped pathogens.
Collapse
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
|
14
|
Vogt G. Investigating the genetic and epigenetic basis of big biological questions with the parthenogenetic marbled crayfish: A review and perspectives. J Biosci 2018. [DOI: 10.1007/s12038-018-9741-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Cervellione F, McGurk C, Berger Eriksen T, Van den Broeck W. Effect of starvation and refeeding on the hepatopancreas of whiteleg shrimp Penaeus vannamei (Boone) using computer-assisted image analysis. JOURNAL OF FISH DISEASES 2017; 40:1707-1715. [PMID: 28493487 DOI: 10.1111/jfd.12639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 06/07/2023]
Abstract
Under normal farming conditions, shrimp can experience starvation periods attributable to disease outbreaks or adverse environmental conditions. Starvation leads to significant morphological changes in the hepatopancreas (HP), being the main organ for absorption and storage of nutrients. In the literature, limited research has described the effect on the HP of periods of starvation followed by refeeding and none in whiteleg shrimp (Penaeus vannamei) using computer-assisted image analysis (CAIA). This study describes the effect of starvation and starvation followed by refeeding on the HP of whiteleg shrimp using CAIA. Visiopharm® software was used to quantify the following morphological parameters, measured as ratio to the total tissue area (TLA): total lumen area (TLA:TTA), haemocytic infiltration area in the intertubular spaces (HIA:TTA), B-cell vacuole area (VBA:TTA), lipid droplet area within R cells (LDA:TTA) and F-cell area (FCA:TTA). Significant changes were measured for HIA:TTA and LDA:TTA during starvation (increase in HIA:TTA associated with decrease in LDA:TTA) and starvation followed by refeeding (decrease in HIA:TTA associated with increase in LDA:TTA). In the future, HIA:TTA and LDA:TTA have the potential to be used in a pre-emptive manner to monitor the health of the HP, facilitate early diagnosis of diseases and study the pathophysiology of the organ.
Collapse
Affiliation(s)
- F Cervellione
- Skretting Aquaculture Research Centre, Stavanger, Norway
| | - C McGurk
- Skretting Aquaculture Research Centre, Stavanger, Norway
| | | | | |
Collapse
|
16
|
Affiliation(s)
- Frank Lyko
- Deutsches Krebsforschungszentrum; Abteilung Epigenetik; Im Neuenheimer Feld 580 69120 Heidelberg
| |
Collapse
|
17
|
Meyer-Rochow VB. Therapeutic arthropods and other, largely terrestrial, folk-medicinally important invertebrates: a comparative survey and review. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2017; 13:9. [PMID: 28173820 PMCID: PMC5296966 DOI: 10.1186/s13002-017-0136-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/11/2017] [Indexed: 05/24/2023]
Abstract
Traditional healing methods involving hundreds of insect and other invertebrate species are reviewed. Some of the uses are based on the tenet of "similia similibus" (let likes be cured by likes), but not all non-conventional health promoting practices should be dismissed as superstition or wishful thinking, for they have stood the test of time. Two questions are addressed: how can totally different organ systems in a human possibly benefit from extracts, potions, powders, secretions, ashes, etc. of a single species and how can different target organs, e.g. bronchi, lungs, the urinary bladder, kidneys, etc. apparently respond to a range of taxonomically not even closely related species? Even though therapeutically used invertebrates are generally small, they nevertheless possess organs for specific functions, e.g. digestion, gas exchange, reproduction. They have a nervous system, endocrine glands, a heart and muscle tissue and they contain a multitude of different molecules like metabolites, enzymes, hormones, neurotransmitters, secretions, etc. that have come under increased scientific scrutiny for pharmacological properties. Bearing that in mind it seems likely that a single species prepared and used in different ways could have a multitude of uses. But how, for example, can there be remedies for breathing and other problems, involving earthworms, molluscs, termites, beetles, cockroaches, bugs, and dragonflies? Since invertebrates themselves can suffer from infections and cancers, common defence reactions are likely to have evolved in all invertebrates, which is why it would be far more surprising to find that each species had evolved its own unique disease fighting system. To obtain a more comprehensive picture, however, we still need information on folk medicinal uses of insects and other invertebrates from a wider range of regions and ethnic groups, but this task is hampered by western-based medicines becoming increasingly dominant and traditional healers being unable and sometimes even unwilling to transmit their knowledge to the younger generation. However, collecting and uncontrolled uses of therapeutic invertebrates can put undue pressure on certain highly sought after species and this is something that has to be borne in mind as well.
Collapse
Affiliation(s)
- V Benno Meyer-Rochow
- Department of Genetics and Physiology, Oulu University, Oulu, SF-90140, Finland.
- Research Institute of Luminous Organisms, Hachijo, Nakanogo, Hachijojima, Tokyo, 100-1623, Japan.
| |
Collapse
|
18
|
Banach M, Robert J. Tumor immunology viewed from alternative animal models-the Xenopus story. CURRENT PATHOBIOLOGY REPORTS 2017; 5:49-56. [PMID: 28944105 DOI: 10.1007/s40139-017-0125-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A PURPOSE OF REVIEW Nonmammalian comparative animal models are important not only to gain fundamental evolutionary understanding of the complex interactions of tumors with the immune system, but also to better predict the applicability of novel immunotherapeutic approaches to humans. After reviewing recent advances in developing alternative models, we focus on the amphibian Xenopus laevis and its usefulness in deciphering the perplexing roles of MHC class I-like molecules and innate (i)T cells in tumor immunity. B RECENT FINDINGS Experiments using MHC-defined inbred and cloned animals, tumor cell lines, effective reagents, sequenced genomes, and adapted gene editing techniques in Xenopus, have revealed that the critical involvement of class I-like molecules and iT cells in tumor immunity has been conserved during evolution. C SUMMARY Comparative studies with the X. laevis tumor immunity model can contribute to the development of better and more efficient cancer immunotherapies.
Collapse
Affiliation(s)
- Maureen Banach
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, USA
| |
Collapse
|
19
|
Conidiogenesis: Its Evolutionary Aspects in the Context of a Philosophy of Opportunity (Lectics). ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-29137-6_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
20
|
Matić S, Katanić J, Stanić S, Mladenović M, Stanković N, Mihailović V, Boroja T. In vitro and in vivo assessment of the genotoxicity and antigenotoxicity of the Filipendula hexapetala and Filipendula ulmaria methanol extracts. JOURNAL OF ETHNOPHARMACOLOGY 2015; 174:287-292. [PMID: 26303017 DOI: 10.1016/j.jep.2015.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/24/2015] [Accepted: 08/20/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The two species of Filipendula genus, Filipendula hexapetala Gilib. and Filipendula ulmaria (L.) Maxim are a traditional herbal medicine widely used to treat haemorrhoids, diarrhoea, fever, rheumatism and arthritic pain, kidney problems, to stop bleeding, and the common cold, as well as food supplements. However, no scientific study has been performed to validate genotoxic and/or antigenotoxic potentials of these two Filipendula species. AIM OF THE STUDY The aim of the present study was to examine the genotoxic and possible in vitro and in vivo DNA protection potential of methanol extracts of F. hexapetala and F. ulmaria. MATERIALS AND METHODS The genotoxicity of different concentrations of F. hexapetala and F. ulmaria methanol extracts from roots and aerial parts (20, 40 and 80 mg/ml), mixed with standard food for Drosophila, was evaluated in vivo in the anterior midgut of Drosophila melanogaster using a modified alkaline comet assay. The protective effects of the highest dose of extracts were observed in somatic cells of third-instar larvae against ethyl methanesulphonate (EMS)-induced genotoxicity. Also, DNA protection activity of methanol extracts from F. hexapetala and F. ulmaria (100, 200, and 400 μg/ml) against hydroxyl radical-induced DNA damage was determined under in vitro conditions. RESULTS The results showed that methanol extracts from the root and aerial part of F. hexapetala at a concentration of 20mg/ml indicated the absence of genotoxicity. Also, there were no statistically significant differences in total scores between any of the groups treated with F. ulmaria root extract and the negative control group, while F. ulmaria aerial part extract possess weak genotoxic effects depending on the concentrations. The percentage reduction in DNA damage was more evident in the group of larvae simultaneously treated with EMS and the highest dose of F. hexapetala root or aerial part extracts and F. ulmaria root extract (91.02, 80.21, and 87.5%, respectively) and less expressive in the group simultaneously treated with F. ulmaria aerial part extract (54.7%). F. hexapetala root and aerial part extracts and F. ulmaria root extract possess strong capabilities to protect DNA from being damaged by hydroxyl radicals. CONCLUSIONS It can be concluded that F. hexapetala root and aerial part extracts and F. ulmaria root extract demonstrated the absence of genotoxic activity. The extracts appeared to have antigenotoxic effect, reducing the levels of DNA damage induced by EMS by more than 80%. Also, F. hexapetala root and aerial part extracts and F. ulmaria root extracts could effectively protect against hydroxyl radical-induced DNA damage.
Collapse
Affiliation(s)
- Sanja Matić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia.
| | - Jelena Katanić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Snežana Stanić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Milan Mladenović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Nevena Stanković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Vladimir Mihailović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Tatjana Boroja
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
21
|
Shields JD, Small HJ. An unusual cuticular tumor-like growth on the abdomen of a lobster, Homarus americanus. J Invertebr Pathol 2013; 114:245-9. [PMID: 24021714 DOI: 10.1016/j.jip.2013.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 11/26/2022]
Abstract
Tumors are rare in crustaceans, and whereas a few have been reported from the lobster Homarus americanus none have been adequately described. A lobster with an unusual, large, blue-colored tumor-like growth projecting laterally outward from the first abdominal somite was caught off Stonington, Maine, USA. The growth was rugose and covered by a relatively normal appearing cuticle with dispersed focal melanization. The underlying stroma consisted of an internal area of rescaffolded fibrous connective tissue, restructured muscle fibers, few arterioles, and an epidermal area comprised of columnar, highly vacuolated epithelial cells. No infectious pathogens or unusual inclusions were observed with microscopy and no eukaryotic pathogens were detected via molecular sequencing. Given the nature of the histology and the appearance of the growth, we identify the mass as a benign papilliform hamartoma that likely originated as a result of abnormal wound repair possibly initiated around ecdysis. This represents the first tumor-like hamartoma reported from a lobster, and the second hamartoma reported from a crustacean.
Collapse
Affiliation(s)
- Jeffrey D Shields
- Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062, USA.
| | | |
Collapse
|
22
|
Loram J, Raudonis R, Chapman J, Lortie M, Bodnar A. Sea urchin coelomocytes are resistant to a variety of DNA damaging agents. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 124-125:133-138. [PMID: 22948035 DOI: 10.1016/j.aquatox.2012.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/07/2012] [Accepted: 08/07/2012] [Indexed: 06/01/2023]
Abstract
Increasing anthropogenic activities are creating environmental pressures that threaten marine ecosystems. Effective environmental health assessment requires the development of rapid, sensitive, and cost-effective tools to predict negative impacts at the individual and ecosystem levels. To this end, a number of biological assays using a variety of cells and organisms measuring different end points have been developed for biomonitoring programs. The sea urchin fertilization/development test has been useful for evaluating environmental toxicology and it has been proposed that sea urchin coelomocytes represent a novel cellular biosensor of environmental stress. In this study we investigated the sensitivity of coelomocytes from the sea urchin Lytechinus variegatus to a variety of DNA-damaging agents including ultraviolet (UV) radiation, hydrogen peroxide (H(2)O(2)), methylmethane sulfonate (MMS) and benzo[a]pyrene (BaP). LD(50) values determined for coelomocytes after 24h of exposure to these DNA damaging agents indicated a high level of resistance to all treatments. Significant increases in the formation of apurinic/apyrimidinic (AP or abasic) sites in DNA were only detected using high doses of H(2)O(2), MMS and UV radiation. Comparison of sea urchin coelomocytes with hemocytes from the gastropod mollusk Aplysia dactylomela and the decapod crustacean Panulirus argus indicated that sensitivity to different DNA damaging agents varies between species. The high level of resistance to genotoxic agents suggests that DNA damage may not be an informative end point for environmental health assessment using sea urchin coelomocytes however, natural resistance to DNA damaging agents may have implications for the occurrence of neoplastic disease in these animals.
Collapse
Affiliation(s)
- Jeannette Loram
- Bermuda Institute of Ocean Sciences, St. George's, Bermuda, Bermuda
| | | | | | | | | |
Collapse
|
23
|
Jayesh P, Seena J, Singh ISB. Establishment of shrimp cell lines: perception and orientation. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2012; 23:244-51. [PMID: 23997447 PMCID: PMC3550748 DOI: 10.1007/s13337-012-0089-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 06/26/2012] [Indexed: 12/13/2022]
Abstract
Development of continuous shrimp cell lines for effective investigation on shrimp viruses remains elusive with an arduous history of over 25 years. Despite presenting challenges to researchers in developing a cell line, the billion dollar aquaculture industry is under viral threat. Advances in molecular biology and various gene transfer technologies for immortalization of cells have resulted in the development of hundreds of cell lines from insects and mammals, but yet not a single cell line has been developed from shrimp and other marine invertebrates. Though improved growth and longevity of shrimp cells in vitro could be achieved by using modified growth media this did not make any leap to spontaneous transformation; probably due to the fact that shrimp cells inhibited neoplastic transformations. Oncogenic induction and immortalization are considered as the possible ways, and an exclusive medium for shrimp cell culture and an appropriate mode of transformation are crucial. In this review status of shrimp cell line development and its future orientation are discussed.
Collapse
Affiliation(s)
- P. Jayesh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Lakeside Campus, Fine Arts Avenue, Cochin, 682016 India
| | - Jose Seena
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Lakeside Campus, Fine Arts Avenue, Cochin, 682016 India
| | - I. S. Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Lakeside Campus, Fine Arts Avenue, Cochin, 682016 India
| |
Collapse
|
24
|
|
25
|
Vogt G. Marmorkrebs: natural crayfish clone as emerging model for various biological disciplines. J Biosci 2011; 36:377-82. [PMID: 21654090 DOI: 10.1007/s12038-011-9070-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Günter Vogt
- Faculty of Biosciences, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.
| |
Collapse
|
26
|
Hidden Treasures in Stem Cells of Indeterminately Growing Bilaterian Invertebrates. Stem Cell Rev Rep 2011; 8:305-17. [DOI: 10.1007/s12015-011-9303-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Gomes NM, Shay JW, Wright WE. Telomere biology in Metazoa. FEBS Lett 2010; 584:3741-51. [PMID: 20655915 PMCID: PMC2928394 DOI: 10.1016/j.febslet.2010.07.031] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 12/22/2022]
Abstract
In this review we present critical overview of some of the available literature on the fundamental biology of telomeres and telomerase in Metazoan. With the exception of Nematodes and Arthropods, the (TTAGGG)(n) sequence is conserved in most Metazoa. Available data show that telomerase-based end maintenance is a very ancient mechanism in unicellular and multicellular organisms. In invertebrates, fish, amphibian, and reptiles persistent telomerase activity in somatic tissues might allow the maintenance of the extensive regenerative potentials of these species. Telomerase repression among birds and many mammals suggests that, as humans, they may use replicative aging as a tumor protection mechanism.
Collapse
Affiliation(s)
- Nuno M.V. Gomes
- Department of Cell Biology. The University of Texas Southwestern Medical Center at Dallas. 5323 Harry Hines Boulevard, Dallas, Texas, 75390-9039
| | - Jerry W. Shay
- Department of Cell Biology. The University of Texas Southwestern Medical Center at Dallas. 5323 Harry Hines Boulevard, Dallas, Texas, 75390-9039
| | - Woodring E. Wright
- Department of Cell Biology. The University of Texas Southwestern Medical Center at Dallas. 5323 Harry Hines Boulevard, Dallas, Texas, 75390-9039
| |
Collapse
|
28
|
Robert J. Comparative study of tumorigenesis and tumor immunity in invertebrates and nonmammalian vertebrates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:915-25. [PMID: 20553753 PMCID: PMC2900388 DOI: 10.1016/j.dci.2010.05.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 05/29/2023]
Abstract
Despite intense study in mammals, the different roles played by the immune system in detecting (immunosurveillance), controlling and remodeling (immunoediting) neoplasia, and perhaps in metastasis are not fully understood. In this review, I will present evidence of neoplasia and invasive malignancy, as well as tumor immunity in invertebrates and nonmammalian vertebrates. I will also present a comparative and evolutionary view of the complex interactions between neoplasia and the host immune system. Overall, I wish to go beyond the too simplistic dichotomy between invertebrates with innate immunity that are only affected with benign neoplasia and vertebrates with adaptive immunity that are affected by metastatic malignancies or cancer.
Collapse
Affiliation(s)
- Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, United States. jacques
| |
Collapse
|
29
|
Vogt G. Suitability of the clonal marbled crayfish for biogerontological research: a review and perspective, with remarks on some further crustaceans. Biogerontology 2010; 11:643-69. [PMID: 20582627 DOI: 10.1007/s10522-010-9291-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 06/11/2010] [Indexed: 12/20/2022]
Abstract
This article examines the suitability of the parthenogenetic marbled crayfish for research on ageing and longevity. The marbled crayfish is an emerging laboratory model for development, epigenetics and toxicology that produces up to 400 genetically identical siblings per batch. It is easily cultured, has an adult size of 4-9 cm, a generation time of 6-7 months and a life span of 2-3 years. Experimental data and biological peculiarities like isogenicity, direct development, indeterminate growth, high regeneration capacity and negligible senescence suggest that the marbled crayfish is particularly suitable to investigate the dependency of ageing and longevity from non-genetic factors such as stochastic developmental variation, allocation of metabolic resources, damage and repair, caloric restriction and social stress. It is also well applicable to examine alterations of the epigenetic code with increasing age and to identify mechanisms that keep stem cells active until old age. As a representative of the sparsely investigated crustaceans and of animals with indeterminate growth and extended brood care the marbled crayfish may even contribute to evolutionary theories of ageing and longevity. Some relatives are recommended as substitutes for investigation of topics, for which the marbled crayfish is less suitable like genetics of ageing and achievement of life spans of decades under conditions of low food and low temperature. Research on ageing in the marbled crayfish and its relatives is of practical relevance for crustacean fisheries and aquaculture and may offer starting points for the development of novel anti-ageing interventions in humans.
Collapse
Affiliation(s)
- Günter Vogt
- Department of Zoology, University of Heidelberg, Germany.
| |
Collapse
|