1
|
Wu Y, Sun B, Tang Y, Shen A, Lin Y, Zhao X, Li J, Monteiro MJ, Gu W. Bone targeted nano-drug and nano-delivery. Bone Res 2024; 12:51. [PMID: 39231955 PMCID: PMC11375042 DOI: 10.1038/s41413-024-00356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 09/06/2024] Open
Abstract
There are currently no targeted delivery systems to satisfactorily treat bone-related disorders. Many clinical drugs consisting of small organic molecules have a short circulation half-life and do not effectively reach the diseased tissue site. This coupled with repeatedly high dose usage that leads to severe side effects. With the advance in nanotechnology, drugs contained within a nano-delivery device or drugs aggregated into nanoparticles (nano-drugs) have shown promises in targeted drug delivery. The ability to design nanoparticles to target bone has attracted many researchers to develop new systems for treating bone related diseases and even repurposing current drug therapies. In this review, we shall summarise the latest progress in this area and present a perspective for future development in the field. We will focus on calcium-based nanoparticle systems that modulate calcium metabolism and consequently, the bone microenvironment to inhibit disease progression (including cancer). We shall also review the bone affinity drug family, bisphosphonates, as both a nano-drug and nano-delivery system for bone targeted therapy. The ability to target and release the drug in a controlled manner at the disease site represents a promising safe therapy to treat bone diseases in the future.
Collapse
Affiliation(s)
- Yilun Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Bing Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Ying Tang
- Science and Technology Innovation Centre, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aining Shen
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Yanlin Lin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Xiaohui Zhao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jingui Li
- School of Veterinary Medicine, Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
2
|
Wang Y, Wang C, Xia M, Tian Z, Zhou J, Berger JM, Zhang XHF, Xiao H. Engineering small-molecule and protein drugs for targeting bone tumors. Mol Ther 2024; 32:1219-1237. [PMID: 38449313 PMCID: PMC11081876 DOI: 10.1016/j.ymthe.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/06/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
Bone cancer is common and severe. Both primary (e.g., osteosarcoma, Ewing sarcoma) and secondary (e.g., metastatic) bone cancers lead to significant health problems and death. Currently, treatments such as chemotherapy, hormone therapy, and radiation therapy are used to treat bone cancer, but they often only shrink or slow tumor growth and do not eliminate cancer completely. The bone microenvironment contributes unique signals that influence cancer growth, immunogenicity, and metastasis. Traditional cancer therapies have limited effectiveness due to off-target effects and poor distribution on bones. As a result, therapies with improved specificity and efficacy for treating bone tumors are highly needed. One of the most promising strategies involves the targeted delivery of pharmaceutical agents to the site of bone cancer by introduction of bone-targeting moieties, such as bisphosphonates or oligopeptides. These moieties have high affinities to the bone hydroxyapatite matrix, a structure found exclusively in skeletal tissue, and can enhance the targeting ability and efficacy of anticancer drugs when combating bone tumors. This review focuses on the engineering of small molecules and proteins with bone-targeting moieties for the treatment of bone tumors.
Collapse
Affiliation(s)
- Yixian Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Chenhang Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Meng Xia
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Zeru Tian
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Joseph Zhou
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Julian Meyer Berger
- Osteologic Therapeutics, Inc., 228 Park Ave S PMB 35546, New York, NY 10003, USA
| | - Xiang H-F Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA; SynthX Center, Rice University, 6100 Main Street, Houston, TX 77005, USA; Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005, USA; Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, USA.
| |
Collapse
|
3
|
Zhou X, He R, Hu WX, Luo S, Hu J. Targeting myeloma metabolism: How abnormal metabolism contributes to multiple myeloma progression and resistance to proteasome inhibitors. Neoplasia 2024; 50:100974. [PMID: 38364355 PMCID: PMC10881428 DOI: 10.1016/j.neo.2024.100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
Multiple myeloma is a hematological malignancy that has evolved from antibody-secreting B lymphocytes. Like other types of cancers, myeloma cells have acquired functional capabilities which are referred to as "Hallmarks of Cancer", and one of their most important features is the metabolic disorders. Due to the high secretory load of the MM cells, the first-line medicine proteasome inhibitors have found their pronounced effects in MM cells for blocking the degradation of misfolded proteins, leading to their accumulation in the ER and overwhelming ER stress. Moreover, proteasome inhibitors have been reported to be effective in myeloma by targeting glucose, lipid, amino acid metabolism of MM cells. In this review, we have described the abnormal metabolism of the three major nutrients, such as glucose, lipid and amino acids, which participate in the cellular functions. We have described their roles in myeloma progression, how they could be exploited for therapeutic purposes, and current therapeutic strategies targeting these metabolites, hoping to uncover potential novel therapeutic targets and promote the development of future therapeutic approaches.
Collapse
Affiliation(s)
- Xiang Zhou
- Molecular Biology Research Center, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, China
| | - Rui He
- Molecular Biology Research Center, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, China
| | - Wei-Xin Hu
- Molecular Biology Research Center, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, China
| | - Saiqun Luo
- Molecular Biology Research Center, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, China.
| | - Jingping Hu
- Molecular Biology Research Center, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, China.
| |
Collapse
|
4
|
Weight-Based Bisphosphonate Administration for Multiple Myeloma Patients and the Risks of Skeletal Complications. J Clin Med 2023; 12:jcm12041637. [PMID: 36836169 PMCID: PMC9961848 DOI: 10.3390/jcm12041637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
High-dose bisphosphonate for multiple myeloma patients might elevate risks of skeletal complications earlier than general expectations. This study aims to find incidences of atypical femoral fracture (AFF) and medication-related osteonecrosis of the jaw (MRONJ), elucidate their risk factors, and suggest cut-off values for the safer dosing of high-dose bisphosphonate treatment. By using the clinical data warehouse of a single institute, retrospective cohort data of multiple myeloma-diagnosed patients with high-dose bisphosphonate (pamidronate or zoledronate) treatment from 2009 to 2019 was extracted. Among 644 patients, the incidence of prominent AFF requiring surgery was 0.93% (6/644) and MRONJ was diagnosed in 11.8% (76/644) of the study population. For both AFF and MRONJ, the total potency-weighted sum of total dose per body weight (OR = 1.010, p = 0.005) were significant on logistic regression. Cutoffs of the potency-weighted total dose (mg) per body weight (kg) for AFF and MRONJ were 77.00 and 57.70 mg/kg, respectively. After roughly one year of treatment with high-dose zoledronate (about four years for pamidronate), an earlier thorough re-evaluation of skeletal complications should be taken. Body weight adjustments for accumulative dose calculation in terms of permissible dosing should be taken into consideration.
Collapse
|
5
|
Khedr MA, Al-Wabli RI, Almutairi MS, Zaghary WA. Design, Synthesis, Molecular Docking, Dynamics and in vitro Evaluation of Novel 2-substituted-1-hydroxyethane-1, 1-bis(phosphonic acid) Derivatives as Human Farnesyl Pyrophosphate Synthase Inhibitors with Expected Anticancer Activity. Curr Pharm Des 2023; 29:48-59. [PMID: 36476435 DOI: 10.2174/1381612829666221202114947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nitrogenous bisphosphonates (NBPs) are the major class of drugs that are used to treat osteoporosis. Recently, bisphosphonates (BPs) were reported to have an anticancer effect. These agents feature a high affinity that enables them to bind strongly to the human farnesyl pyrophosphate synthase enzyme. The correlation between this affinity and their anticancer effect was confirmed. OBJECTIVE To date, the use of an oxygen atom as an isosteric replacement for the electronegative nitrogen atom in NBPs has not been reported, and its ability to retain the linker length and bisphosphonate pharmacophore remains unknown. The main aim of this work was to design some isosteric bisphosphonate analogs with oxygen atoms and evaluation of their binding affinity and anticancer activity. METHODS The binding mode and stability of the designed compounds were achieved using human farnesyl pyrophosphate synthase (HFPPS) by docking and dynamic simulations. The compounds were synthesized, characterized, and screened for their anticancer activity against the breast cancer MCF-7 cell line and lung cancer A-549 cell line. The inhibitory activity of the tested compounds against HFPPS was evaluated. RESULTS The compounds under investigation showed potential anticancer activity against the lung cell line with IC50 values of 41.7, 47.4, and 34.8 μg/ml in comparison to that of Risedronic acid (115 μg/ml). However, they do not exhibit potential activity against the breast cancer cell line. CONCLUSION Compounds VII and VIII showed in vitro inhibition of human farnesyl pyrophosphate synthase with IC50 values of 82.2 and 98.8 μg/ml, respectively. Further optimization may be required in the future.
Collapse
Affiliation(s)
- Mohammed A Khedr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat, 13110, Kuwait
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11790, Egypt
| | - Reem I Al-Wabli
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Maha S Almutairi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Wafaa A Zaghary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11790, Egypt
| |
Collapse
|
6
|
Haney SL, Holstein SA. Targeting the Isoprenoid Biosynthetic Pathway in Multiple Myeloma. Int J Mol Sci 2022; 24:ijms24010111. [PMID: 36613550 PMCID: PMC9820492 DOI: 10.3390/ijms24010111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy for which there is currently no cure. While treatment options for MM have expanded over the last two decades, all patients will eventually become resistant to current therapies. Thus, there is an urgent need for novel therapeutic strategies to treat MM. The isoprenoid biosynthetic pathway (IBP) is responsible for the post-translational modification of proteins belonging to the Ras small GTPase superfamily, such as Ras, Rho and Rab family members. Given the important roles these GTPase proteins play in various cellular processes, there is significant interest in the development of inhibitors that disturb their prenylation and consequently their activity in MM cells. Numerous preclinical studies have demonstrated that IBP inhibitors have anti-MM effects, including the induction of apoptosis in MM cells and inhibition of osteoclast activity. Some IBP inhibitors have made their way into the clinic. For instance, nitrogenous bisphosphonates are routinely prescribed for the management MM bone disease. Other IBP inhibitors, including statins and farnesyltransferase inhibitors, have been evaluated in clinical trials for MM, while there is substantial preclinical investigation into geranylgeranyl diphosphate synthase inhibitors. Here we discuss recent advances in the development of IBP inhibitors, assess their mechanism of action and evaluate their potential as anti-MM agents.
Collapse
|
7
|
Gau YC, Yeh TJ, Hsu CM, Hsiao SY, Hsiao HH. Pathogenesis and Treatment of Myeloma-Related Bone Disease. Int J Mol Sci 2022; 23:ijms23063112. [PMID: 35328533 PMCID: PMC8951013 DOI: 10.3390/ijms23063112] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma is a hematologic malignancy of plasma cells that causes bone-destructive lesions and associated skeletal-related events (SREs). The pathogenesis of myeloma-related bone disease (MBD) is the imbalance of the bone-remodeling process, which results from osteoclast activation, osteoblast suppression, and the immunosuppressed bone marrow microenvironment. Many important signaling cascades, including the RANKL/RANK/OPG axis, Notch signaling, the Wnt/β-Catenin signaling pathways, and signaling molecules, such as DKK-1, sclerostin, osteopontin, activin A, chemokines, and interleukins are involved and play critical roles in MBD. Currently, bisphosphonate and denosumab are the gold standard for MBD prevention and treatment. As the molecular mechanisms of MBD become increasingly well understood, novel agents are being thoroughly explored in both preclinical and clinical settings. Herein, we will provide an updated overview of the pathogenesis of MBD, summarize the clinical management and guidelines, and discuss novel bone-modifying therapies for further management of MBD.
Collapse
Affiliation(s)
- Yuh-Ching Gau
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (Y.-C.G.); (T.-J.Y.); (C.-M.H.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tsung-Jang Yeh
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (Y.-C.G.); (T.-J.Y.); (C.-M.H.)
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chin-Mu Hsu
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (Y.-C.G.); (T.-J.Y.); (C.-M.H.)
| | - Samuel Yien Hsiao
- Department of Biology, University of Rutgers-Camden, Camden, NJ 08102, USA;
| | - Hui-Hua Hsiao
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (Y.-C.G.); (T.-J.Y.); (C.-M.H.)
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Faculty of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +816-7-3162429
| |
Collapse
|
8
|
Lee HF, Lacbay CM, Boutin R, Matralis AN, Park J, Waller DD, Guan TL, Sebag M, Tsantrizos YS. Synthesis and Evaluation of Structurally Diverse C-2-Substituted Thienopyrimidine-Based Inhibitors of the Human Geranylgeranyl Pyrophosphate Synthase. J Med Chem 2022; 65:2471-2496. [PMID: 35077178 DOI: 10.1021/acs.jmedchem.1c01913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Novel analogues of C-2-substituted thienopyrimidine-based bisphosphonates (C2-ThP-BPs) are described that are potent inhibitors of the human geranylgeranyl pyrophosphate synthase (hGGPPS). Members of this class of compounds induce target-selective apoptosis of multiple myeloma (MM) cells and exhibit antimyeloma activity in vivo. A key structural element of these inhibitors is a linker moiety that connects their (((2-phenylthieno[2,3-d]pyrimidin-4-yl)amino)methylene)bisphosphonic acid core to various side chains. The structural diversity of this linker moiety, as well as the side chains attached to it, was investigated and found to significantly impact the toxicity of these compounds in MM cells. The most potent inhibitor identified was evaluated in mouse and rat for liver toxicity and systemic exposure, respectively, providing further optimism for the potential value of such compounds as human therapeutics.
Collapse
Affiliation(s)
- Hiu-Fung Lee
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Cyrus M Lacbay
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Rebecca Boutin
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Alexios N Matralis
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Jaeok Park
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Daniel D Waller
- Department of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
- Division of Hematology, McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Tian Lai Guan
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Michael Sebag
- Department of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
- Division of Hematology, McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Youla S Tsantrizos
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
9
|
Teixeira S, Santos MM, Branco LC, Costa-Rodrigues J. Etidronate-based organic salts and ionic liquids: In vitro effects on bone metabolism. Int J Pharm 2021; 610:121262. [PMID: 34748807 DOI: 10.1016/j.ijpharm.2021.121262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 11/26/2022]
Abstract
Bisphosphonates are a class of drugs widely used for the treatment of several pathologies associated with increased bone resorption. Although displaying low oral bioavailability, these drugs have the ability to accumulate in bone matrix, where the biological effects are exerted. In the present work, four mono- and dianionic Etidronate-based Organic Salts and Ionic Liquids (Eti-OSILs) were developed by combination of this drug with the superbases 1,1,3,3-tetramethylguanidine (TMG) and 1,5-diazabicyclo(4.3.0)non-5-ene (DBN) as cations, aiming to improve not only the physicochemical properties of this seminal bisphosphonate, but also its efficacy in the modulation of cellular behavior, particularly on human osteoclasts and osteoblasts. It was observed that some of the developed compounds, in particular the dianionic ones, presented very high water solubility and diminished or absent polymorphism. Also, several of them appeared to be more cytotoxic against human breast and osteosarcoma cancer cell lines while retaining low toxicity to normal cells. Regarding bone cells, a promotion of an anabolic state was observed for all Eti-OSILs, primarily for the dianionic ones, which leads to an inhibition of osteoclastogenesis and an increase in osteoblastogenesis. The observed effects resulted from differential modulation of intracellular signaling pathways by the Eti-OSILs in comparison with Etidronate. Hence, these results pave the way for the development of more efficient and bioavailable ionic formulations of bisphosphonates aiming to effectively modulate bone metabolism, particularly in the case of increased bone resorption.
Collapse
Affiliation(s)
- Sónia Teixeira
- Instituto de Ciências Biomédicas Abel Salazar, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Miguel M Santos
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Luís C Branco
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - João Costa-Rodrigues
- ESS - Escola Superior de Saúde, Politécnico do Porto, R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; Instituto Politécnico de Viana do Castelo, Escola Superior de Saúde, Rua D. Moisés Alves Pinho 190, 4900-314 Viana do Castelo, Portugal; i3S, Instituto de Inovação e Investigação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal.
| |
Collapse
|
10
|
Terpos E, Raje N, Croucher P, Garcia-Sanz R, Leleu X, Pasteiner W, Wang Y, Glennane A, Canon J, Pawlyn C. Denosumab compared with zoledronic acid on PFS in multiple myeloma: exploratory results of an international phase 3 study. Blood Adv 2021; 5:725-736. [PMID: 33560384 PMCID: PMC7876889 DOI: 10.1182/bloodadvances.2020002378] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/23/2020] [Indexed: 02/02/2023] Open
Abstract
An exploratory end point from a recent trial in patients with newly diagnosed multiple myeloma showed that median progression-free survival (PFS) was increased by 10.7 months with denosumab vs zoledronic acid. We performed additional analyses to identify factors that may have contributed to the favorable PFS with denosumab. Ad hoc analyses were performed for patients intending to undergo autologous stem cell transplantation (ASCT; ASCT intent), not intending to undergo ASCT (ASCT no intent), and intent-to-treat according to age (<70 or ≥70 years) and baseline renal function (≤60 mL/min or >60 mL/min creatinine clearance [CrCl]). Of 1718 patients, 930 (54.1%) were in the ASCT-intent subgroup, and 788 (45.9%) were in the ASCT-no-intent subgroup. In the ASCT-intent subgroup, frontline triplet (median PFS, not estimable vs 35.7 months; hazard ratio [HR] [95% confidence interval (CI)], 0.65 [0.47-0.90]; descriptive P = .009) or bortezomib-only (median PFS, not estimable vs not estimable; HR [95% CI], 0.61 [0.39-0.95]; descriptive P = .029) induction regimens demonstrated the strongest PFS benefit favoring denosumab vs zoledronic acid. In the ASCT-no-intent subgroup, no benefit with denosumab vs zoledronic acid was observed. PFS favored denosumab vs zoledronic acid in patients with CrCl >60 mL/min and in patients <70 years old, but no difference was observed in patients with CrCl ≤60 mL/min or patients ≥70 years old. The PFS difference observed with denosumab is one of the notable benefits reported in newly diagnosed multiple myeloma and was most pronounced in patients intending to undergo ASCT and those who received proteasome inhibitor (PI)-based triplet regimens. This study was registered at www.clinicaltrials.gov as #NCT01345019.
Collapse
Affiliation(s)
- Evangelos Terpos
- Department of Clinical Therapeutics, Alexandra General Hospital, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Noopur Raje
- Harvard Medical School, Boston, MA
- Center for Multiple Myeloma, Massachusetts General Hospital, Boston, MA
| | - Peter Croucher
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Ramon Garcia-Sanz
- Department of Hematology, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Xavier Leleu
- Department of Hematology, Hôpital La Mileterie, Poitiers, France
| | | | | | | | | | - Charlotte Pawlyn
- The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
11
|
Terpos E, Zamagni E, Lentzsch S, Drake MT, García-Sanz R, Abildgaard N, Ntanasis-Stathopoulos I, Schjesvold F, de la Rubia J, Kyriakou C, Hillengass J, Zweegman S, Cavo M, Moreau P, San-Miguel J, Dimopoulos MA, Munshi N, Durie BGM, Raje N. Treatment of multiple myeloma-related bone disease: recommendations from the Bone Working Group of the International Myeloma Working Group. Lancet Oncol 2021; 22:e119-e130. [PMID: 33545067 DOI: 10.1016/s1470-2045(20)30559-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022]
Abstract
In this Policy Review, the Bone Working Group of the International Myeloma Working Group updates its clinical practice recommendations for the management of multiple myeloma-related bone disease. After assessing the available literature and grading recommendations using the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) method, experts from the working group recommend zoledronic acid as the preferred bone-targeted agent for patients with newly diagnosed multiple myeloma, with or without multiple myeloma-related bone disease. Once patients achieve a very good partial response or better, after receiving monthly zoledronic acid for at least 12 months, the treating physician can consider decreasing the frequency of or discontinuing zoledronic acid treatment. Denosumab can also be considered for the treatment of multiple myeloma-related bone disease, particularly in patients with renal impairment. Denosumab might prolong progression-free survival in patients with newly diagnosed multiple myeloma who have multiple myeloma-related bone disease and who are eligible for autologous stem-cell transplantation. Denosumab discontinuation is challenging due to the rebound effect. The Bone Working Group of the International Myeloma Working Group also found cement augmentation to be effective for painful vertebral compression fractures. Radiotherapy is recommended for uncontrolled pain, impeding or symptomatic spinal cord compression, or pathological fractures. Surgery should be used for the prevention and restoration of long-bone pathological fractures, vertebral column instability, and spinal cord compression with bone fragments within the spinal route.
Collapse
Affiliation(s)
- Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Elena Zamagni
- Seràgnoli Institute of Hematology, Department of Experimental, Diagnostic and Specialty Medicine, Bologna University School of Medicine, S Orsola Malpighi Hospital, Bologna, Italy
| | - Suzanne Lentzsch
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Matthew T Drake
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition and Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ramón García-Sanz
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | - Niels Abildgaard
- Hematology Research Unit, Department of Clinical Research, and Department of Hematology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Fredrik Schjesvold
- Oslo Myeloma Center, Oslo University Hospital, and KG Jebsen Center for B Cell Malignancies, University of Oslo, Oslo, Norway
| | - Javier de la Rubia
- Department of Hematology, University Hospital Doctor Peset, School of Medicine and Dentistry, Catholic University of Valencia, Valencia, Spain
| | | | - Jens Hillengass
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sonja Zweegman
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Michele Cavo
- Seràgnoli Institute of Hematology, Department of Experimental, Diagnostic and Specialty Medicine, Bologna University School of Medicine, S Orsola Malpighi Hospital, Bologna, Italy
| | - Philippe Moreau
- Department of Hematology, University Hospital Hotel-Dieu, Nantes, France
| | - Jesus San-Miguel
- Center for Applied Medical Research, Clínica Universidad de Navarra, University of Navarra, and Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikhil Munshi
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Brian G M Durie
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Noopur Raje
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
12
|
Park J, Pandya VR, Ezekiel SJ, Berghuis AM. Phosphonate and Bisphosphonate Inhibitors of Farnesyl Pyrophosphate Synthases: A Structure-Guided Perspective. Front Chem 2021; 8:612728. [PMID: 33490038 PMCID: PMC7815940 DOI: 10.3389/fchem.2020.612728] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Phosphonates and bisphosphonates have proven their pharmacological utility as inhibitors of enzymes that metabolize phosphate and pyrophosphate substrates. The blockbuster class of drugs nitrogen-containing bisphosphonates represent one of the best-known examples. Widely used to treat bone-resorption disorders, these drugs work by inhibiting the enzyme farnesyl pyrophosphate synthase. Playing a key role in the isoprenoid biosynthetic pathway, this enzyme is also a potential anticancer target. Here, we provide a comprehensive overview of the research efforts to identify new inhibitors of farnesyl pyrophosphate synthase for various therapeutic applications. While the majority of these efforts have been directed against the human enzyme, some have been targeted on its homologs from other organisms, such as protozoan parasites and insects. Our particular focus is on the structures of the target enzymes and how the structural information has guided the drug discovery efforts.
Collapse
Affiliation(s)
- Jaeok Park
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Vishal R Pandya
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sean J Ezekiel
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | | |
Collapse
|
13
|
Terpos E, Ntanasis-Stathopoulos I. Controversies in the use of new bone-modifying therapies in multiple myeloma. Br J Haematol 2020; 193:1034-1043. [PMID: 33249579 DOI: 10.1111/bjh.17256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/22/2022]
Abstract
Bone-modifying therapies are essential in the treatment of patients with multiple myeloma. Zoledronic acid is preferred over other bisphosphonates due to its superiority in reducing the incidence of skeletal-related events and improving survival. The anti-receptor activator of nuclear factor-κΒ ligand (RANKL)-targeted agent denosumab has shown its non-inferiority compared to bisphosphonates in preventing skeletal-related events among newly diagnosed patients with myeloma bone disease. Denosumab may confer a survival benefit in patients eligible for autologous transplantation. Denosumab may present a safer profile for patients with renal impairment. Discontinuation of bone-directed therapies can be considered for patients with deep responses and after an adequate time period on treatment; however, a rebound effect may become evident especially in the case of denosumab. Three-monthly infusions of zoledronic acid or at-home denosumab administration should be considered during the coronavirus disease 2019 (COVID-19) pandemic. Measures to prevent hypocalcaemia, renal toxicity and osteonecrosis of the jaw are important for all bone-modifying agents.
Collapse
Affiliation(s)
- Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
14
|
Rogers MJ, Mönkkönen J, Munoz MA. Molecular mechanisms of action of bisphosphonates and new insights into their effects outside the skeleton. Bone 2020; 139:115493. [PMID: 32569873 DOI: 10.1016/j.bone.2020.115493] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/09/2020] [Accepted: 06/11/2020] [Indexed: 12/27/2022]
Abstract
Bisphosphonates (BP) are a class of calcium-binding drug used to prevent bone resorption in skeletal disorders such as osteoporosis and metastatic bone disease. They act by selectively targeting bone-resorbing osteoclasts and can be grouped into two classes depending on their intracellular mechanisms of action. Simple BPs cause osteoclast apoptosis after cytoplasmic conversion into toxic ATP analogues. In contrast, nitrogen-containing BPs potently inhibit FPP synthase, an enzyme of the mevalonate (cholesterol biosynthesis) pathway. This results in production of a toxic metabolite (ApppI) and the loss of long-chain isoprenoid lipids required for protein prenylation, a process necessary for the function of small GTPase proteins essential for the survival and activity of osteoclasts. In this review we provide a state-of-the-art overview of these mechanisms of action and a historical perspective of how they were discovered. Finally, we challenge the long-held dogma that BPs act only in the skeleton and highlight recent studies that reveal insights into hitherto unknown effects on tumour-associated and tissue-resident macrophages.
Collapse
Affiliation(s)
- Michael J Rogers
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, UNSW Sydney, Australia.
| | - Jukka Mönkkönen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Finland.
| | - Marcia A Munoz
- Garvan Institute of Medical Research, Sydney, Australia; St Vincent's Clinical School, UNSW Sydney, Australia.
| |
Collapse
|
15
|
Migliorini F, Maffulli N, Trivellas A, Eschweiler J, Tingart M, Driessen A. Bone metastases: a comprehensive review of the literature. Mol Biol Rep 2020; 47:6337-6345. [PMID: 32749632 DOI: 10.1007/s11033-020-05684-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/26/2020] [Indexed: 12/17/2022]
Abstract
The last report of the World Health Organization (WHO) stated that approximately four million people experience bone pain due to malignant diseases. Among them, metastatic bone pain is one of the most important sources of complaint. The estimated median survival in the presence of bone metastases ranks from 10 to 12 weeks. Bone represents a potential target of distant metastases for the majority of malignant tumours. However, the exact incidence of bone metastases is unknown. Bone metastases have an important socio-economic impact, and due to the enhancement of the overall survivorship, their incidence is increasing. Malignant neoplasms such as lung, thyroid, renal cancer, multiple myeloma, and melanoma often metastasize to the bone. Bone metastases commonly localize to the spinal column, pelvis, shoulder, and distal femur. The proper treatment for painful skeletal metastases is still unknown. Hence, the purpose of this review of the literature was to update current evidence concerning the aetiogenesis, biological behaviour, and treatment algorithms for painful skeletal metastases.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedics, University Clinic Aachen, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy.,Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London, E1 4DG, England.,School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Thornburrow Drive, Stoke on Trent, England
| | - Andromahi Trivellas
- Department of Orthopaedics, David Geffen School of Medicine At UCLA, Suite 755, Los Angeles, CA, 90095, USA
| | - Jörg Eschweiler
- Department of Orthopaedics, University Clinic Aachen, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Markus Tingart
- Department of Orthopaedics, University Clinic Aachen, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Arne Driessen
- Department of Orthopaedics, University Clinic Aachen, RWTH Aachen University Clinic, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
16
|
New insights into molecular and cellular mechanisms of zoledronate in human osteosarcoma. Pharmacol Ther 2020; 214:107611. [PMID: 32565177 DOI: 10.1016/j.pharmthera.2020.107611] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023]
Abstract
Osteosarcoma is the most common primary malignant tumor of the skeleton in teenagers and young adults and continues to confer a generally poor prognosis in patients who do not respond to chemotherapy or who present with metastatic diseases at diagnosis. The nitrogen-containing zoledronate, the third generation bisphosphonate (BP), effectively inhibits osteoclastic bone resorption and is widely utilized in the treatment of metabolic and metastatic bone diseases nowadays. Owing to an acceptable safety profile and tolerability, zoledronate is the only BP currently approved for the prevention and treatment of skeletal relevant events in patients with metastatic bone lesions, especially bone metastases from advanced renal cell carcinoma and prostate cancer, and breast cancer, due to all solid malignancy. Moreover, zoledronate possesses diverse anti-osteosarcoma properties and may have potential to become an adjunctive treatment for high-grade osteosarcoma to enhance survival rates and to obliterate complications of the chemotherapy. Herein we highlighted the pharmacology of BPs and its underlying molecular mechanisms in osteoclasts and various cancer cells. We further provided the available literature on in vitro studies to illustrate the new insights into the intracellular molecular mechanisms of zoledronate in human osteosarcoma cell lines and in vivo animal models that led to the development and regulatory approval of zoledronate in patients with human osteosarcoma. This review also addresses clinical trials to focus on the efficacy of zoledronate on human osteosarcoma.
Collapse
|
17
|
Chiarella E, Codispoti B, Aloisio A, Cosentino EG, Scicchitano S, Montalcini Y, Lico D, Morrone G, Mesuraca M, Bond HM. Zoledronic acid inhibits the growth of leukemic MLL-AF9 transformed hematopoietic cells. Heliyon 2020; 6:e04020. [PMID: 32529062 PMCID: PMC7283156 DOI: 10.1016/j.heliyon.2020.e04020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
A leukemic in vitro model produced by transducing Cord Blood derived-hematopoietic CD34+ cells with the MLL-AF9 translocation resulting in the oncogenic fusion protein, is used to assess for sensitivity to Zoledronic acid. These cells are practically immortalized and are of myeloid origin. Proliferation, clonogenic and stromal co-culture assays showed that the MLL-AF9 cells were considerably more sensitive to Zoledronic acid than normal hematopoietic CD34+ cells or MS-5 stromal cells. The MLL-AF9 cells were notably more inhibited by Zoledronic acid when cultured as colonies in 3 dimensions, requiring cell-cell contacts compared to suspension expansion cultures. This is coherent with the mechanism of action of Zoledronic acid inhibiting farnesyl diphosphate synthase which results in a block in prenylation of GTPases such that their role in the membrane is compromised for cell-cell contacts. Zoledronic acid can be proposed to target the MLL-AF9 leukemic stem cells before they emerge from the hematopoietic niche, which being in proximity to bone osteoclasts where Zoledronic acid is sequestered can be predicted to result in sufficient levels to result in an anti-leukemic action.
Collapse
Affiliation(s)
- Emanuela Chiarella
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy
| | - Bruna Codispoti
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.,Tecnologica Research Institute-Marrelli Health, 88900 Crotone, Italy
| | - Annamaria Aloisio
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy
| | - Emanuela G Cosentino
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy.,Exiris S.r.l., 00128 Roma, Italy
| | - Stefania Scicchitano
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy
| | - Ylenia Montalcini
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy
| | - Daniela Lico
- Department of Obstetrics & Ginecology, University Magna Græcia, 88100 Catanzaro, Italy
| | - Giovanni Morrone
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy
| | - Maria Mesuraca
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy
| | - Heather M Bond
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
18
|
Abstract
Bone is one of the most common distant organs in which tumor cells tend to metastasize depending on complicated immune system and bone microenvironments. Clinical symptoms such as severe pain and bone fractures associated with bone metastases severely affect patients' quality of life. According to the pathological types of bone destruction caused by the biological characteristics of different primary cancer cells, bone metastases are classified as osteolytic, osteoblastic and mixed types. Herein, we discuss the molecular mechanisms of bone metastasis and the therapeutic strategy with focus on bone metabolism.
Collapse
Affiliation(s)
- Fang He
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| | - Yoshinori Matsumoto
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Okayama, Japan
| |
Collapse
|
19
|
Manaswiyoungkul P, de Araujo ED, Gunning PT. Targeting prenylation inhibition through the mevalonate pathway. RSC Med Chem 2020; 11:51-71. [PMID: 33479604 PMCID: PMC7485146 DOI: 10.1039/c9md00442d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/10/2019] [Indexed: 12/13/2022] Open
Abstract
Protein prenylation is a critical mediator in several diseases including cancer and acquired immunodeficiency syndrome (AIDS). Therapeutic intervention has focused primarily on directly targeting the prenyltransferase enzymes, FTase and GGTase I and II. To date, several drugs have advanced to clinical trials and while promising, they have yet to gain approval in a medical setting due to off-target effects and compensatory mechanisms activated by the body which results in drug resistance. While the development of dual inhibitors has mitigated undesirable side effects, potency remains sub-optimal for clinical development. An alternative approach involves antagonizing the upstream mevalonate pathway enzymes, FPPS and GGPPS, which mediate prenylation as well as cholesterol synthesis. The development of these inhibitors presents novel opportunities for dual inhibition of cancer-driven prenylation as well as cholesterol accumulation. Herein, we highlight progress towards the development of inhibitors against the prenylation machinery.
Collapse
Affiliation(s)
- Pimyupa Manaswiyoungkul
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Elvin D de Araujo
- Department of Chemical and Physical Sciences , University of Toronto Mississauga , 3359 Mississauga Rd N. , Mississauga , Ontario L5L 1C6 , Canada .
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences , University of Toronto Mississauga , 3359 Mississauga Rd N. , Mississauga , Ontario L5L 1C6 , Canada .
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| |
Collapse
|
20
|
Abstract
Leukemia is a common hematological malignancy with overall poor prognosis. Novel therapies are needed to improve the outcome of leukemia patients. Cholesterol metabolism reprogramming is a featured alteration in leukemia. Many metabolic-related genes and metabolites are essential to the progress and drug resistance of leukemia. Exploring potential therapeutical targets related to cholesterol homeostasis is a promising area. This review summarized the functions of cholesterol and its derived intermediate metabolites, and also discussed potential agents targeting this metabolic vulnerability in leukemia.
Collapse
|
21
|
Xu J, Pan Q, Ju W. Ras inhibition by zoledronic acid effectively sensitizes cervical cancer to chemotherapy. Anticancer Drugs 2019; 30:821-827. [PMID: 30882399 DOI: 10.1097/cad.0000000000000779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aberrant activation of Ras is common in several human cancers, including cervical cancer. In this study, we show that Ras function can be inhibited by zoledronic acid (ZA) owing to its ability in inhibiting protein prenylation. Using in-vitro cell culture system and an in-vivo xenograft mouse model, the effects of ZA on cervical cancer cell growth and survival were determined. The molecular mechanisms of ZA's action were analyzed focusing on prenylation and its downstream signaling pathways. ZA inhibited proliferation and induced apoptosis of multiple cervical cancer cell lines regardless of their cellular origin and genetic profiling. The combination of ZA with paclitaxel or doxorubicin was superior to a single drug alone in cervical cancer in vitro and in vivo. Notably, complete inhibition of cervical cancer growth was observed in the combination groups. Mechanistically, ZA inhibited prenylation of oncoproteins. Ras activity was largely affected by ZA in a prenylation-dependent manner. Consistently, Ras-mediated signaling pathways such as Raf/ERK and AKt/mTOR were deactivated in cervical cancer cells exposed to ZA. Overexpression of constitutively active Ras reversed the inhibitory effects of ZA, confirming that Ras inhibition was required for the action of ZA in cervical cancer. Despite extensive efforts, there has been limited progress in the development of direct Ras inhibitors. Our findings suggest that ZA inhibits Ras activity. Our work provides fundamental evidence to repurpose ZA for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Jiazhen Xu
- Department of Obstetrics and Gynecology, Jingzhou Central Hospital, the Clinical Second Clinical Medical College of Yangtze University, Jingzhou, Hubei, People's Republic of China
| | | | | |
Collapse
|
22
|
Dewulf J, Vangestel C, Verhoeven Y, van Dam P, Elvas F, Van den Wyngaert T, Clézardin P. Bone metastases in the era of targeted treatments: insights from molecular biology. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2019; 63:98-111. [PMID: 31298015 DOI: 10.23736/s1824-4785.19.03203-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bone metastases remain a common feature of advanced cancers and are associated with significant morbidity and mortality. Recent research has identified promising novel treatment targets to improve current treatment strategies for bone metastatic disease. This review summarizes the well-known and recently discovered molecular biology pathways in bone that govern normal physiological remodeling or drive the pathophysiological changes observed when bone metastases are present. In the rapidly changing world of targeted cancer treatments, it is important to recognize the specific treatment effects induced in bone by these agents and the potential impact on common imaging strategies. The osteoclastic targets (bisphosphonates, LGR4, RANKL, mTOR, MET-VEGFR, cathepsin K, Src, Dock 5) and the osteoblastic targets (Wnt and endothelin) are discussed, and the emerging field of osteo-immunity is introduced as potential future therapeutic target. Finally, a summary is provided of available trial data for agents that target these pathways and that have been assessed in patients. The ultimate goal of research into novel pathways and targets involved in the tumor-bone microenvironment is to tackle one of the great remaining unmet needs in oncology, that is finding a cure for bone metastatic disease.
Collapse
Affiliation(s)
- Jonatan Dewulf
- Molecular Imaging Center Antwerp (MICA), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Christel Vangestel
- Molecular Imaging Center Antwerp (MICA), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Yannick Verhoeven
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium
| | - Peter van Dam
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium.,Multidisciplinary Oncologic Center Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| | - Filipe Elvas
- Molecular Imaging Center Antwerp (MICA), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Tim Van den Wyngaert
- Molecular Imaging Center Antwerp (MICA), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium - .,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Philippe Clézardin
- INSERM Laboratory Pathophysiology, Diagnosis and Treatments of Bone Diseases, Lyon, France.,INSERM European Associated Laboratory Cancer and Bone Metastasis, University of Sheffield, Medical School, Sheffield, UK
| |
Collapse
|
23
|
You Y, Wang Q, Li H, Ma Y, Deng Y, Ye Z, Bai F. Zoledronic acid exhibits radio-sensitizing activity in human pancreatic cancer cells via inactivation of STAT3/NF-κB signaling. Onco Targets Ther 2019; 12:4323-4330. [PMID: 31239706 PMCID: PMC6556542 DOI: 10.2147/ott.s202516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/09/2019] [Indexed: 01/28/2023] Open
Abstract
Background: Although pancreatic cancer is typically radio-sensitive, local treatment failure and metastasis are commonly caused by the development of resistance to radiotherapy. In the current study, the radio-sensitizing actions of zoledronic acid (ZOL) on pancreatic cancer cells were investigated. Materials and methods: Three human pancreatic cancer cell lines were exposed to ZOL, ionizing radiation (IR), or a combination of both, and the effects of the respective drug regimens on cell proliferation and invasion were examined. Results: Combined treatment with low doses of ZOL plus IR efficiently increased cell death and attenuated cell invasion compared with the individual use of ZOL or IR. These effects of ZOL were associated with inactivation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor-κB (NF-κB). Conclusion: Collectively, these data suggest that ZOL in combination with IR is a promising therapeutic strategy for enhancing radio-sensitivity in pancreatic cancer cells via downregulation of the STAT3/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yanjie You
- Department of Gastroenterology, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, People's Republic of China
| | - Qiang Wang
- Department of Science and Education, Ningxia Hui Autonomous Region People's Hospital, Yinchuan 750021, People's Republic of China
| | - Haijun Li
- Department of Radiation Oncology, The Second People's Hospital of Neijiang, Neijiang, Sichuan 641003, People's Republic of China
| | - Yuhong Ma
- Department of Gastroenterology, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, People's Republic of China
| | - Yanhong Deng
- Department of Gastroenterology, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, People's Republic of China
| | - Zhengcai Ye
- Endoscopy Center, Ningxia Hui Autonomous Region People's Hospital, Yinchuan 750021, People's Republic of China
| | - Feihu Bai
- Department of Gastroenterology, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, People's Republic of China
| |
Collapse
|
24
|
Waller DD, Park J, Tsantrizos YS. Inhibition of farnesyl pyrophosphate (FPP) and/or geranylgeranyl pyrophosphate (GGPP) biosynthesis and its implication in the treatment of cancers. Crit Rev Biochem Mol Biol 2019; 54:41-60. [DOI: 10.1080/10409238.2019.1568964] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Jaeok Park
- Department of Chemistry, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Youla S. Tsantrizos
- Department of Chemistry, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| |
Collapse
|
25
|
Myeloma bone disease: from biology findings to treatment approaches. Blood 2019; 133:1534-1539. [PMID: 30760454 DOI: 10.1182/blood-2018-11-852459] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/10/2019] [Indexed: 12/16/2022] Open
Abstract
Bone disease is a cardinal complication of multiple myeloma that affects quality of life and survival. Osteocytes have emerged as key players in the development of myeloma-related bone disease. Along with other factors, they participate in increased osteoclast activity, decreased osteoblast function, and immunosuppressed marrow microenvironment, which deregulate bone turnover and result in bone loss and skeletal-related events. Denosumab is a novel alternative to bisphosphonates against myeloma bone disease. Special considerations in this constantly evolving field are thoroughly discussed.
Collapse
|
26
|
Scala R, Maqoud F, Angelelli M, Latorre R, Perrone MG, Scilimati A, Tricarico D. Zoledronic Acid Modulation of TRPV1 Channel Currents in Osteoblast Cell Line and Native Rat and Mouse Bone Marrow-Derived Osteoblasts: Cell Proliferation and Mineralization Effect. Cancers (Basel) 2019; 11:cancers11020206. [PMID: 30754651 PMCID: PMC6406412 DOI: 10.3390/cancers11020206] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/28/2022] Open
Abstract
Bisphosphonates (BPs) reduce bone pain and fractures by balancing the osteoblast/osteoclast ratio. The behavior of ion channels in the presence of BPs is not known. To investigate this, the effect of zoledronic acid BP (ZOL) (3 × 10−8 to 5 × 10−4 M) treatment, on ion channels, cell proliferation, and mineralization, has been investigated on preosteoclast-like cells, RAW264.7, preosteoblast-like cells MC3T3-E1, and rat/mouse native bone marrow-derived osteoblasts. In whole-cell patch clamp on cell line- and bone marrow-derived osteoblasts, ZOL potentiated outward currents. On RAW264.7, ZOL (10−4 M)-evoked current was reduced by the Kv channel blocker tetraethylammonium hydrochloride (TEA), but not by the selective TRPV1-channel antagonist capsazepine. On MC3T3-E1 cells and bone marrow-derived osteoblasts, ZOL-evoked current (5 × 10−8 to 10−4 M) was reduced by capsazepine, whereas the selective TRPV1-channel agonist capsaicin potentiated the control current. In the cell proliferation assay, 72 h incubation of RAW264.7 and MC3T3-E1 cells with ZOL reduced proliferation, with IC50 values of 2.62 × 10−7 M and 2.02 × 10−5 M, respectively. Mineralization of MC3T3-E1 cells and bone marrow-derived osteoblasts was observed in the presence of capsaicin and ZOL (5 × 10−8–10−7 M); ZOL effects were antagonized by capsazepine. In summary, the ZOL-induced activation of TRPV1 channel mediates the mineralization of osteoblasts and counterbalances the antiproliferative effects, increasing the IC50. This mechanism is not operative in osteoclasts lacking the TRPV1 channel.
Collapse
Affiliation(s)
- Rosa Scala
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, I-70125 Bari, Italy.
| | - Fatima Maqoud
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, I-70125 Bari, Italy.
| | - Mariacristina Angelelli
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, I-70125 Bari, Italy.
| | - Ramon Latorre
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso 2366103, Chile.
| | - Maria Grazia Perrone
- Medicinal Chemistry Section, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, I-70125 Bari, Italy.
| | - Antonio Scilimati
- Medicinal Chemistry Section, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, I-70125 Bari, Italy.
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, I-70125 Bari, Italy.
| |
Collapse
|
27
|
Kanellias N, Gavriatopoulou M, Terpos E, Dimopoulos MA. Management of multiple myeloma bone disease: impact of treatment on renal function. Expert Rev Hematol 2018; 11:881-888. [DOI: 10.1080/17474086.2018.1531702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Nikolaos Kanellias
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Meletios Athanasios Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Alexandra General Hospital, Athens, Greece
| |
Collapse
|
28
|
Lacbay CM, Waller DD, Park J, Gómez Palou M, Vincent F, Huang XF, Ta V, Berghuis AM, Sebag M, Tsantrizos YS. Unraveling the Prenylation-Cancer Paradox in Multiple Myeloma with Novel Geranylgeranyl Pyrophosphate Synthase (GGPPS) Inhibitors. J Med Chem 2018; 61:6904-6917. [PMID: 30016091 DOI: 10.1021/acs.jmedchem.8b00886] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Post-translational prenylation of the small GTP-binding proteins (GTPases) is vital to a plethora of biological processes, including cellular proliferation. We have identified a new class of thienopyrimidine-based bisphosphonate (ThP-BP) inhibitors of the human geranylgeranyl pyrophosphate synthase (hGGPPS) that block protein prenylation in multiple myeloma (MM) cells leading to cellular apoptosis. These inhibitors are also effective in blocking the proliferation of other types of cancer cells. We confirmed intracellular target engagement, demonstrated the mechanism of action leading to apoptosis, and determined a direct correlation between apoptosis and intracellular inhibition of hGGPPS. Administration of a ThP-BP inhibitor to a MM mouse model confirmed in vivo downregulation of Rap1A geranylgeranylation and reduction of monoclonal immunoglobulins (M-protein, a biomarker of disease burden) in the serum. These results provide the first proof-of-principle that hGGPPS is a valuable therapeutic target in oncology and more specifically for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Cyrus M Lacbay
- Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada
| | - Daniel D Waller
- Department of Medicine , McGill University , Montreal , QC H3A 1A1 , Canada
| | - Jaeok Park
- Department of Biochemistry , McGill University , Montreal , QC H3G 1Y6 , Canada
| | - Mònica Gómez Palou
- Department of Medicine , McGill University , Montreal , QC H3A 1A1 , Canada
| | - Félix Vincent
- Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada
| | - Xian Fang Huang
- Department of Medicine , McGill University , Montreal , QC H3A 1A1 , Canada
| | - Viviane Ta
- Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada
| | - Albert M Berghuis
- Department of Biochemistry , McGill University , Montreal , QC H3G 1Y6 , Canada
| | - Michael Sebag
- Department of Medicine , McGill University , Montreal , QC H3A 1A1 , Canada.,Division of Hematology , McGill University Health Center , Montreal , QC H4A 3J1 , Canada
| | - Youla S Tsantrizos
- Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada.,Department of Biochemistry , McGill University , Montreal , QC H3G 1Y6 , Canada
| |
Collapse
|
29
|
Farrell KB, Karpeisky A, Thamm DH, Zinnen S. Bisphosphonate conjugation for bone specific drug targeting. Bone Rep 2018; 9:47-60. [PMID: 29992180 PMCID: PMC6037665 DOI: 10.1016/j.bonr.2018.06.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/26/2022] Open
Abstract
Bones provide essential functions and are sites of unique biochemistry and specialized cells, but can also be sites of disease. The treatment of bone disorders and neoplasia has presented difficulties in the past, and improved delivery of drugs to bone remains an important goal for achieving effective treatments. Drug targeting strategies have improved drug localization to bone by taking advantage of the high mineral concentration unique to the bone hydroxyapatite matrix, as well as tissue-specific cell types. The bisphosphonate molecule class binds specifically to hydroxyapatite and inhibits osteoclast resorption of bone, providing direct treatment for degenerative bone disorders, and as emerging evidence suggests, cancer. These bone-binding molecules also provide the opportunity to deliver other drugs specifically to bone by bisphosphonate conjugation. Bisphosphonate bone-targeted therapies have been successful in treatment of osteoporosis, primary and metastatic neoplasms of the bone, and other bone disorders, as well as refining bone imaging. In this review, we focus upon the use of bisphosphonate conjugates with antineoplastic agents, and overview bisphosphonate based imaging agents, nanoparticles, and other drugs. We also discuss linker design potential and the current state of bisphosphonate conjugate research progress. Ongoing investigations continue to expand the possibilities for bone-targeted therapeutics and for extending their reach into clinical practice.
Collapse
Affiliation(s)
- Kristen B Farrell
- MBC Pharma Inc., 12635 East Montview Blvd., Aurora, CO 80045-0100, United States of America
| | - Alexander Karpeisky
- MBC Pharma Inc., 12635 East Montview Blvd., Aurora, CO 80045-0100, United States of America
| | - Douglas H Thamm
- Flint Animal Cancer Center, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523-1620, United States of America
| | - Shawn Zinnen
- MBC Pharma Inc., 12635 East Montview Blvd., Aurora, CO 80045-0100, United States of America
| |
Collapse
|
30
|
Macedo F, Ladeira K, Pinho F, Saraiva N, Bonito N, Pinto L, Goncalves F. Bone Metastases: An Overview. Oncol Rev 2017; 11:321. [PMID: 28584570 PMCID: PMC5444408 DOI: 10.4081/oncol.2017.321] [Citation(s) in RCA: 379] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 04/14/2017] [Accepted: 05/03/2017] [Indexed: 02/06/2023] Open
Abstract
Bone is a frequent site of metastases and typically indicates a short-term prognosis in cancer patients. Once cancer has spread to the bones it can rarely be cured, but often it can still be treated to slow its growth. The majority of skeletal metastases are due to breast and prostate cancer. Bone metastasis is actually much more common than primary bone cancers, especially in adults. The diagnosis is based on signs, symptoms and imaging. New classes of drugs and new interventions are given a better quality of life to these patients and improved the expectancy of life. It is necessary a multidisciplinary approach to treat patients with bone metastasis. In this paper we review the types, clinical approach and treatment of bone metastases.
Collapse
Affiliation(s)
- Filipa Macedo
- Medical Oncology Department, Portuguese Oncology Institute, Coimbra, Portugal
| | - Katia Ladeira
- Internal Medicine Department, Braga Hospital, Braga, Portugal
| | - Filipa Pinho
- Internal Medicine Department, Braga Hospital, Braga, Portugal
| | - Nadine Saraiva
- Medical Oncology Department, Portuguese Oncology Institute, Coimbra, Portugal
| | - Nuno Bonito
- Medical Oncology Department, Portuguese Oncology Institute, Coimbra, Portugal
| | - Luisa Pinto
- Internal Medicine Department, Braga Hospital, Braga, Portugal
| | | |
Collapse
|
31
|
Nadar RA, Margiotta N, Iafisco M, van den Beucken JJJP, Boerman OC, Leeuwenburgh SCG. Bisphosphonate-Functionalized Imaging Agents, Anti-Tumor Agents and Nanocarriers for Treatment of Bone Cancer. Adv Healthc Mater 2017; 6. [PMID: 28207199 DOI: 10.1002/adhm.201601119] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/23/2016] [Indexed: 12/14/2022]
Abstract
Bone metastases result from the invasion of primary tumors to bone. Current treatment modalities include local treatments such as surgery and radiotherapy, while systemic treatments include chemotherapy and (palliative) treatment of skeletal metastases. Nevertheless, once bone metastases have been established they remain incurable leading to morbidity and mortality. Bisphosphonates are a well-established class of drugs, which are increasingly applied in the treatment of bone cancers owing to their effective inhibition of tumor cells and suppression of bone metastases. The increased understanding of the mechanism of action of bisphosphonates on bone and tumor cells has prompted the development of novel bisphosphonate-functionalized imaging and therapeutic agents. This review provides an update on the preclinical efficacy of bisphosphonate-functionalized fluorophore, anti-tumor agents and nanocarriers for the treatment of bone metastases. After an overview of the general characteristics of bisphosphonates and their mechanisms of action, an outline is provided on the various conjugation strategies that have become available to functionalize imaging agents, anti-tumor agents and nanocarriers with bisphosphonates. Finally, the efficacy of these bisphosphonate-modified agents and carriers in preclinical studies is evaluated by reviewing their potential to target tumors and inhibit tumor growth in clinically relevant animal models for the treatment of bone cancer.
Collapse
Affiliation(s)
- Robin A. Nadar
- Department of Biomaterials; Radboud University Medical Center; Philips van Leydenlaan 25 6525 EX Nijmegen The Netherlands
| | - Nicola Margiotta
- Dipartimento di Chimica; Università degli Studi di Bari Aldo Moro; Via E. Orabona 4 70125 Bari Italy
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics (ISTEC); National Research Council (CNR); Via Granarolo 64 48018 Faenza Italy
| | | | - Otto C. Boerman
- Department of Nuclear Medicine; Radboud University Medical Center; Geert Grooteplein Zuid 10 6525 AG Nijmegen The Netherlands
| | - Sander C. G. Leeuwenburgh
- Department of Biomaterials; Radboud University Medical Center; Philips van Leydenlaan 25 6525 EX Nijmegen The Netherlands
| |
Collapse
|
32
|
Agabiti SS, Li J, Wiemer AJ. Geranylgeranyl diphosphate synthase inhibition induces apoptosis that is dependent upon GGPP depletion, ERK phosphorylation and caspase activation. Cell Death Dis 2017; 8:e2678. [PMID: 28300835 PMCID: PMC5386513 DOI: 10.1038/cddis.2017.101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/26/2017] [Accepted: 02/15/2017] [Indexed: 02/08/2023]
Abstract
Bisphosphonates are diphosphate analogs that inhibit the intermediate enzymes of the mevalonate pathway. Here, we compared the effects of a farnesyl diphosphate synthase inhibitor, zoledronate, and a geranylgeranyl diphosphate synthase (GGDPS) inhibitor, digeranyl bisphosphonate (DGBP), on lymphocytic leukemia cell proliferation and apoptosis. Both zoledronate and DGBP inhibited proliferation with DGBP doing so more potently. DGBP was markedly less toxic than zoledronate toward the viability of healthy human peripheral blood mononuclear cells. Addition of GGPP, but not farnesyl diphosphate (FPP), prevented the anti-proliferative effects of DGBP. Both GGPP and FPP partially rescued the effects of zoledronate. Co-treatment with DGBP and zoledronate was antagonistic. To further assess the effects of the bisphosphonates, we analyzed annexin V and propidium iodide staining via flow cytometry and found that DGBP induced apoptosis more potently than zoledronate. Western blots show that DGBP treatment altered expression and membrane affinity of some but not all geranylgeranylated small GTPases, activated caspases and increased ERK phosphorylation. Importantly, the anti-proliferative effects of DGBP were blocked by treatment with a caspase inhibitor and by treatment with a MEK inhibitor. Together, our findings indicate that DGBP is a more potent and selective compound than zoledronate in inducing apoptosis mediated through pathways that include caspases and MEK/ERK. These findings support the further development of GGDPS inhibitors as anticancer therapeutics.
Collapse
Affiliation(s)
- Sherry S Agabiti
- Department of Pharmaceutical Sciences, University of Connecticut, School of Pharmacy, Storrs, CT, USA
| | - Jin Li
- Department of Pharmaceutical Sciences, University of Connecticut, School of Pharmacy, Storrs, CT, USA
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, School of Pharmacy, Storrs, CT, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
33
|
Schem C, Tower RJ, Kneissl P, Rambow AC, Campbell GM, Desel C, Damm T, Heilmann T, Fuchs S, Zuhayra M, Trauzold A, Glüer CC, Schott S, Tiwari S. Pharmacologically Inactive Bisphosphonates as an Alternative Strategy for Targeting Osteoclasts: In Vivo Assessment of 5-Fluorodeoxyuridine-Alendronate in a Preclinical Model of Breast Cancer Bone Metastases. J Bone Miner Res 2017; 32:536-548. [PMID: 27714838 DOI: 10.1002/jbmr.3012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 09/23/2016] [Accepted: 10/02/2016] [Indexed: 12/17/2022]
Abstract
Bisphosphonates have effects that are antiresorptive, antitumor, and antiapoptotic to osteoblasts and osteocytes, but an effective means of eliciting these multiple activities in the treatment of bone metastases has not been identified. Antimetabolite-bisphosphonate conjugates have potential for improved performance as a class of bone-specific antineoplastic drugs. The primary objective of the study was to determine whether an antimetabolite-bisphosphonate conjugate will preserve bone formation concomitant with antiresorptive and antitumor activity. 5-FdU-ale, a highly stable conjugate between the antimetabolite 5-fluoro-2'-deoxyuridine and the bisphosphonate alendronate, was tested for its therapeutic efficacy in a mouse model of MDA-MB231 breast cancer bone metastases. In vitro testing revealed osteoclasts to be highly sensitive to 5-FdU-ale. In contrast, osteoblasts had significantly reduced sensitivity. Tumor cells were resistant in vitro but in vivo tumor burden was nevertheless significantly reduced compared with untreated mice. Sensitivity to 5-FdU-ale was not mediated through inhibition of farnesyl diphosphate synthase activity, but cell cycle arrest was observed. Although serum tartrate-resistant acid phosphatase (TRAP) levels were greatly reduced by both drugs, there was no significant decrease in the serum bone formation marker osteocalcin with 5-FdU-ale treatment. In contrast, there was more than a fivefold decrease in serum osteocalcin levels with alendronate treatment (p < 0.001). This finding is supported by time-lapse micro-computed tomography analyses, which revealed bone formation volume to be on average 1.6-fold higher with 5-FdU-ale treatment compared with alendronate (p < 0.001). We conclude that 5-FdU-ale, which is a poor prenylation inhibitor but maintains potent antiresorptive activity, does not reduce bone formation and has cytostatic antitumor efficacy. These results document that conjugation of an antimetabolite with bisphosphonates offers flexibility in creating potent bone-targeting drugs with cytostatic, bone protection properties that show limited nephrotoxicity. This unique class of drugs may offer distinct advantages in the setting of targeted adjuvant therapy and chemoprevention of bone diseases. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Christian Schem
- Department of Gynecology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Robert J Tower
- Section of Biomedical Imaging, Department of Radiology and Neuroradiology, MOIN CC, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Philipp Kneissl
- Department of Gynecology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Anna-Christina Rambow
- Department of Gynecology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Graeme M Campbell
- Section of Biomedical Imaging, Department of Radiology and Neuroradiology, MOIN CC, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Institute of Biomechanics, TUHH Hamburg University of Technology, Hamburg, Germany
| | - Christine Desel
- Section of Biomedical Imaging, Department of Radiology and Neuroradiology, MOIN CC, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Timo Damm
- Section of Biomedical Imaging, Department of Radiology and Neuroradiology, MOIN CC, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Thorsten Heilmann
- Department of Gynecology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Division of Molecular Oncology, Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sabine Fuchs
- Department of Trauma Surgery, Section Experimental Trauma Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Maaz Zuhayra
- Department of Nuclear Medicine, Section Radiopharmaceutical Chemistry, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Anna Trauzold
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Claus C Glüer
- Section of Biomedical Imaging, Department of Radiology and Neuroradiology, MOIN CC, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sarah Schott
- Department of Obstetrics and Gynecology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sanjay Tiwari
- Section of Biomedical Imaging, Department of Radiology and Neuroradiology, MOIN CC, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
34
|
Park J, Leung CY, Matralis AN, Lacbay CM, Tsakos M, Fernandez De Troconiz G, Berghuis AM, Tsantrizos YS. Pharmacophore Mapping of Thienopyrimidine-Based Monophosphonate (ThP-MP) Inhibitors of the Human Farnesyl Pyrophosphate Synthase. J Med Chem 2017; 60:2119-2134. [PMID: 28208018 DOI: 10.1021/acs.jmedchem.6b01888] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The human farnesyl pyrophosphate synthase (hFPPS), a key regulatory enzyme in the mevalonate pathway, catalyzes the biosynthesis of the C-15 isoprenoid farnesyl pyrophosphate (FPP). FPP plays a crucial role in the post-translational prenylation of small GTPases that perform a plethora of cellular functions. Although hFPPS is a well-established therapeutic target for lytic bone diseases, the currently available bisphosphonate drugs exhibit poor cellular uptake and distribution into nonskeletal tissues. Recent drug discovery efforts have focused primarily on allosteric inhibition of hFPPS and the discovery of non-bisphosphonate drugs for potentially treating nonskeletal diseases. Hit-to-lead optimization of a new series of thienopyrimidine-based monosphosphonates (ThP-MPs) led to the identification of analogs with nanomolar potency in inhibiting hFPPS. Their interactions with the allosteric pocket of the enzyme were characterized by crystallography, and the results provide further insight into the pharmacophore requirements for allosteric inhibition.
Collapse
Affiliation(s)
- Jaeok Park
- Department of Biochemistry, McGill University , 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1, Canada
| | - Chun Yuen Leung
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Alexios N Matralis
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Cyrus M Lacbay
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Michail Tsakos
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | | | - Albert M Berghuis
- Department of Biochemistry, McGill University , 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1, Canada.,Groupe de Recherche Axé sur la Structure des Protéines, McGill University , 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1, Canada
| | - Youla S Tsantrizos
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada.,Department of Biochemistry, McGill University , 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1, Canada.,Groupe de Recherche Axé sur la Structure des Protéines, McGill University , 3649 Promenade Sir William Osler, Montreal, QC H3G 0B1, Canada
| |
Collapse
|
35
|
Ibandronate concomitantly blocks immobilization-induced bone and muscle atrophy. Biochem Biophys Res Commun 2016; 480:662-668. [PMID: 27983979 DOI: 10.1016/j.bbrc.2016.10.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 10/26/2016] [Indexed: 12/12/2022]
Abstract
Both bone and muscle volume is concomitantly reduced under immobilization conditions; however, no single drug is currently available to block these outcomes simultaneously. Bisphosphonates are utilized clinically to inhibit osteoclast-dependent bone resorption, but their effects on muscle are largely unknown. Here we show that skeletal muscle is a direct target of the bisphosphonate ibandronate (IBN) and that reduced muscle volume and induction of Atrogin-1 and MuRF1, both atrogenes, are significantly inhibited by IBN administration in vivo using a mouse model of muscle atrophy. IBN treatment also significantly blocked immobilization-induced bone loss in vivo. We also report that expression of Atrogin-1 and MuRF1 and accumulation of Smad2/3 proteins, which are upstream of atrogines, occurred following serum starvation of myogenic C2C12 cells in vitro, effects significantly inhibited by IBN treatment. Interestingly, IBN effects on C2C12 cells were abrogated by MG132, an ubiquitin/proteasome inhibitor, suggesting that IBN functions via the ubiquitin-proteasome system. Our findings lend new insight into the role of IBN in preventing muscle atrophy.
Collapse
|
36
|
Sanfilippo KM, Keller J, Gage BF, Luo S, Wang TF, Moskowitz G, Gumbel J, Blue B, O'Brian K, Carson KR. Statins Are Associated With Reduced Mortality in Multiple Myeloma. J Clin Oncol 2016; 34:4008-4014. [PMID: 27646948 DOI: 10.1200/jco.2016.68.3482] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Purpose The 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) have activity in one of the pathways influenced by nitrogen-containing bisphosphonates, which are associated with improved survival in multiple myeloma (MM). To understand the benefit of statins in MM, we evaluated the association between statin use and mortality in a large cohort of patients with MM. Patients and Methods From the Veterans Administration Central Cancer Registry, we identified patients diagnosed with MM between 1999 and 2013. We defined statin use as the presence of any prescription for a statin within 3 months before or any time after MM diagnosis. Cox proportional hazards regression assessed the association of statin use with mortality, while controlling for known MM prognostic factors. Results We identified a cohort of 4,957 patients, of whom 2,294 received statin therapy. Statin use was associated with a 21% decrease in all-cause mortality (adjusted hazard ratio, 0.79; 95% CI, 0.73 to 0.86; P < .001) as well as a 24% decrease in MM-specific mortality (adjusted hazard ratio, 0.76; 95% CI, 0.67 to 0.86; P < .001). This association remained significant across all sensitivity analyses. In addition to reductions in mortality, statin use was associated with a 31% decreased risk of developing a skeletal-related event. Conclusion In this cohort study of US veterans with MM, statin therapy was associated with a reduced risk of both all-cause and MM-specific mortality. Our findings suggest a potential role for statin therapy in patients with MM. The putative benefit of statin therapy in MM should be corroborated in prospective studies.
Collapse
Affiliation(s)
- Kristen Marie Sanfilippo
- Kristen Marie Sanfilippo, Suhong Luo, Jason Gumbel, and Kenneth R. Carson, St Louis Veterans Health Administration Medical Center; Kristen Marie Sanfilippo, Jesse Keller, Brian F. Gage, Gerald Moskowitz, Katiuscia O'Brian, and Kenneth R. Carson, Washington University School of Medicine; Brandon Blue, St Louis University, St Louis, MO; and Tzu-Fei Wang, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Jesse Keller
- Kristen Marie Sanfilippo, Suhong Luo, Jason Gumbel, and Kenneth R. Carson, St Louis Veterans Health Administration Medical Center; Kristen Marie Sanfilippo, Jesse Keller, Brian F. Gage, Gerald Moskowitz, Katiuscia O'Brian, and Kenneth R. Carson, Washington University School of Medicine; Brandon Blue, St Louis University, St Louis, MO; and Tzu-Fei Wang, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Brian F Gage
- Kristen Marie Sanfilippo, Suhong Luo, Jason Gumbel, and Kenneth R. Carson, St Louis Veterans Health Administration Medical Center; Kristen Marie Sanfilippo, Jesse Keller, Brian F. Gage, Gerald Moskowitz, Katiuscia O'Brian, and Kenneth R. Carson, Washington University School of Medicine; Brandon Blue, St Louis University, St Louis, MO; and Tzu-Fei Wang, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Suhong Luo
- Kristen Marie Sanfilippo, Suhong Luo, Jason Gumbel, and Kenneth R. Carson, St Louis Veterans Health Administration Medical Center; Kristen Marie Sanfilippo, Jesse Keller, Brian F. Gage, Gerald Moskowitz, Katiuscia O'Brian, and Kenneth R. Carson, Washington University School of Medicine; Brandon Blue, St Louis University, St Louis, MO; and Tzu-Fei Wang, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Tzu-Fei Wang
- Kristen Marie Sanfilippo, Suhong Luo, Jason Gumbel, and Kenneth R. Carson, St Louis Veterans Health Administration Medical Center; Kristen Marie Sanfilippo, Jesse Keller, Brian F. Gage, Gerald Moskowitz, Katiuscia O'Brian, and Kenneth R. Carson, Washington University School of Medicine; Brandon Blue, St Louis University, St Louis, MO; and Tzu-Fei Wang, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Gerald Moskowitz
- Kristen Marie Sanfilippo, Suhong Luo, Jason Gumbel, and Kenneth R. Carson, St Louis Veterans Health Administration Medical Center; Kristen Marie Sanfilippo, Jesse Keller, Brian F. Gage, Gerald Moskowitz, Katiuscia O'Brian, and Kenneth R. Carson, Washington University School of Medicine; Brandon Blue, St Louis University, St Louis, MO; and Tzu-Fei Wang, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Jason Gumbel
- Kristen Marie Sanfilippo, Suhong Luo, Jason Gumbel, and Kenneth R. Carson, St Louis Veterans Health Administration Medical Center; Kristen Marie Sanfilippo, Jesse Keller, Brian F. Gage, Gerald Moskowitz, Katiuscia O'Brian, and Kenneth R. Carson, Washington University School of Medicine; Brandon Blue, St Louis University, St Louis, MO; and Tzu-Fei Wang, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Brandon Blue
- Kristen Marie Sanfilippo, Suhong Luo, Jason Gumbel, and Kenneth R. Carson, St Louis Veterans Health Administration Medical Center; Kristen Marie Sanfilippo, Jesse Keller, Brian F. Gage, Gerald Moskowitz, Katiuscia O'Brian, and Kenneth R. Carson, Washington University School of Medicine; Brandon Blue, St Louis University, St Louis, MO; and Tzu-Fei Wang, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Katiuscia O'Brian
- Kristen Marie Sanfilippo, Suhong Luo, Jason Gumbel, and Kenneth R. Carson, St Louis Veterans Health Administration Medical Center; Kristen Marie Sanfilippo, Jesse Keller, Brian F. Gage, Gerald Moskowitz, Katiuscia O'Brian, and Kenneth R. Carson, Washington University School of Medicine; Brandon Blue, St Louis University, St Louis, MO; and Tzu-Fei Wang, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Kenneth R Carson
- Kristen Marie Sanfilippo, Suhong Luo, Jason Gumbel, and Kenneth R. Carson, St Louis Veterans Health Administration Medical Center; Kristen Marie Sanfilippo, Jesse Keller, Brian F. Gage, Gerald Moskowitz, Katiuscia O'Brian, and Kenneth R. Carson, Washington University School of Medicine; Brandon Blue, St Louis University, St Louis, MO; and Tzu-Fei Wang, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|
37
|
Nerdal PT, Peters C, Oberg HH, Zlatev H, Lettau M, Quabius ES, Sousa S, Gonnermann D, Auriola S, Olive D, Määttä J, Janssen O, Kabelitz D. Butyrophilin 3A/CD277-Dependent Activation of Human γδ T Cells: Accessory Cell Capacity of Distinct Leukocyte Populations. THE JOURNAL OF IMMUNOLOGY 2016; 197:3059-3068. [PMID: 27619996 DOI: 10.4049/jimmunol.1600913] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/18/2016] [Indexed: 01/07/2023]
Abstract
Human Vγ9Vδ2 T cells recognize in a butyrophilin 3A/CD277-dependent way microbial (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) or endogenous pyrophosphates (isopentenyl pyrophosphate [IPP]). Nitrogen-bisphosphonates such as zoledronic acid (ZOL) trigger selective γδ T cell activation because they stimulate IPP production in monocytes by inhibiting the mevalonate pathway downstream of IPP synthesis. We performed a comparative analysis of the capacity of purified monocytes, neutrophils, and CD4 T cells to serve as accessory cells for Vγ9Vδ2 T cell activation in response to three selective but mechanistically distinct stimuli (ZOL, HMBPP, agonistic anti-CD277 mAb). Only monocytes supported γδ T cell expansion in response to all three stimuli, whereas both neutrophils and CD4 T cells presented HMBPP but failed to induce γδ T cell expansion in the presence of ZOL or anti-CD277 mAb. Preincubation of accessory cells with the respective stimuli revealed potent γδ T cell-stimulating activity of ZOL- or anti-CD277 mAb-pretreated monocytes, but not neutrophils. In comparison with monocytes, ZOL-pretreated neutrophils produced little, if any, IPP and expressed much lower levels of farnesyl pyrophosphate synthase. Exogenous IL-18 enhanced the γδ T cell expansion with all three stimuli, remarkably also in response to CD4 T cells and neutrophils preincubated with anti-CD277 mAb or HMBPP. Our study uncovers unexpected differences between monocytes and neutrophils in their accessory function for human γδ T cells and underscores the important role of IL-18 in driving γδ T cell expansion. These results may have implications for the design of γδ T cell-based immunotherapeutic strategies.
Collapse
Affiliation(s)
- Patrik Theodor Nerdal
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Hristo Zlatev
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Marcus Lettau
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Elgar Susanne Quabius
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Sofia Sousa
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Daniel Gonnermann
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Daniel Olive
- Laboratoire d'Immunologie des Tumeurs, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, INSERM, U1068, F-13009 Marseille, France.,CNRS, UMR7258, F-13009 Marseille, France.,Institut Paoli-Calmettes, F-13009 Marseille, France.,Aix-Marseille University, UM 105, F-13284 Marseille, France; and
| | - Jorma Määttä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland.,Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Ottmar Janssen
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein, D-24105 Kiel, Germany;
| |
Collapse
|
38
|
Bizzarro V, Belvedere R, Milone MR, Pucci B, Lombardi R, Bruzzese F, Popolo A, Parente L, Budillon A, Petrella A. Annexin A1 is involved in the acquisition and maintenance of a stem cell-like/aggressive phenotype in prostate cancer cells with acquired resistance to zoledronic acid. Oncotarget 2016; 6:25076-92. [PMID: 26312765 PMCID: PMC4694816 DOI: 10.18632/oncotarget.4725] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/16/2015] [Indexed: 01/09/2023] Open
Abstract
In this study, we have characterized the role of annexin A1 (ANXA1) in the acquisition and maintenance of stem-like/aggressive features in prostate cancer (PCa) cells comparing zoledronic acid (ZA)-resistant DU145R80 with their parental DU145 cells. ANXA1 is over-expressed in DU145R80 cells and its down-regulation abolishes their resistance to ZA. Moreover, ANXA1 induces DU145 and DU145R80 invasiveness acting through formyl peptide receptors (FPRs). Also, ANXA1 knockdown is able to inhibit epithelial to mesenchymal transition (EMT) and to reduce focal adhesion kinase (FAK) and metalloproteases (MMP)-2/9 expression in PCa cells. DU145R80 show a cancer stem cell (CSC)-like signature with a high expression of CSC markers including CD44, CD133, NANOG, Snail, Oct4 and ALDH7A1 and CSC-related genes as STAT3. Interestingly, ANXA1 knockdown induces these cells to revert from a putative prostate CSC to a more differentiated phenotype resembling DU145 PCa cell signature. Similar results are obtained concerning some drug resistance-related genes such as ATP Binding Cassette G2 (ABCG2) and Lung Resistant Protein (LRP). Our study provides new insights on the role of ANXA1 protein in PCa onset and progression.
Collapse
Affiliation(s)
| | | | - Maria Rita Milone
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Biagio Pucci
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Rita Lombardi
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Francesca Bruzzese
- Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | - Ada Popolo
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Luca Parente
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Alfredo Budillon
- Centro Ricerche Oncologiche Mercogliano, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy.,Experimental Pharmacology Unit, Istituto Nazionale Tumori Fondazione G. Pascale - IRCCS, Naples, Italy
| | | |
Collapse
|
39
|
Abstract
Annexin A1 (ANXA1) is a Ca(2+)-regulated phospholipid-binding protein involved in various cell processes. ANXA1 was initially widely studied in inflammation resolution, but its overexpression was later reported in a large number of cancers. Further in-depth investigations have revealed that this protein could have many roles in cancer progression and act at different levels (from cancer initiation to metastasis). This is partly due to the location of ANXA1 in different cell compartments. ANXA1 can be nuclear, cytoplasmic and/or membrane associated. This last location allows ANXA1 to be proteolytically cleaved and/or to become accessible to its cognate partners, the formyl-peptide receptors. Indeed, in some cancers, ANXA1 is found at the cell surface, where it stimulates formyl-peptide receptors to trigger oncogenic pathways. In the present review, we look at the different locations of ANXA1 and their association with the deregulated pathways often observed in cancers. We have specifically detailed the non-classic pathways of ANXA1 externalization, the significance of its cleavage and the role of the ANXA1-formyl-peptide receptor complex in cancer progression.
Collapse
|
40
|
Clark SL, Nystrom EM. A Case of Severe, Prolonged, Refractory Hypophosphatemia After Zoledronic Acid Administration. J Pharm Pract 2016; 29:172-6. [DOI: 10.1177/0897190015624050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Zoledronic acid (ZA) administration has been associated with electrolyte abnormalities, including hypocalcemia, hypomagnesemia, hypokalemia, and hypophosphatemia. We describe a case of severe, refractory hypophosphatemia in a patient who received ZA for hypercalcemia of malignancy (HCM). Little data are available that describe the incidence or degree of severity of hypophosphatemia that can occur following ZA administration. In addition, no formal recommendations exist to guide monitoring for or management of electrolyte derangements in the setting of bisphosphonate use. Our patient required daily, high-dose phosphorus replacement beginning day 4 following ZA administration. The average daily dose of phosphorus, including both intravenous and enteral administration, was highest in the first 2 weeks after ZA, averaging 77 mmol/d days 4 through 15, and does not include sources of phosphorus from the patient’s nutrition support. Despite this high amount of supplementation, which was well beyond what meets normal daily requirements and the amount expected to treat “usual” hypophosphatemia, the patient did not achieve sustained normal serum phosphorus levels for over 30 days after ZA. ZA is a favorable option for treating HCM because of its longer duration of action, potent serum calcium-lowering effects, and favorable safety profile. The risk of hypophosphatemia with ZA use is reviewed.
Collapse
Affiliation(s)
- Sarah L. Clark
- Department of Pharmacy, Mayo Clinic, Mayo College of Medicine, Rochester, MN, USA
| | - Erin M. Nystrom
- Department of Pharmacy, Mayo Clinic, Mayo College of Medicine, Rochester, MN, USA
| |
Collapse
|
41
|
Van Acker HH, Anguille S, Willemen Y, Smits EL, Van Tendeloo VF. Bisphosphonates for cancer treatment: Mechanisms of action and lessons from clinical trials. Pharmacol Ther 2015; 158:24-40. [PMID: 26617219 DOI: 10.1016/j.pharmthera.2015.11.008] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A growing body of evidence points toward an important anti-cancer effect of bisphosphonates, a group of inexpensive, safe, potent, and long-term stable pharmacologicals that are widely used as osteoporosis drugs. To date, they are already used in the prevention of complications of bone metastases. Because the bisphosphonates can also reduce mortality in among other multiple myeloma, breast, and prostate cancer patients, they are now thoroughly studied in oncology. In particular, the more potent nitrogen-containing bisphosphonates have the potential to improve prognosis. The first part of this review will elaborate on the direct and indirect anti-tumoral effects of bisphosphonates, including induction of tumor cell apoptosis, inhibition of tumor cell adhesion and invasion, anti-angiogenesis, synergism with anti-neoplastic drugs, and enhancement of immune surveillance (e.g., through activation of γδ T cells and targeting macrophages). In the second part, we shed light on the current clinical position of bisphosphonates in the treatment of hematological and solid malignancies, as well as on ongoing and completed clinical trials investigating the therapeutic effect of bisphosphonates in cancer. Based on these recent data, the role of bisphosphonates is expected to further expand in the near future outside the field of osteoporosis and to open up new avenues in the treatment of malignancies.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium.
| | - Sébastien Anguille
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Yannick Willemen
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium; Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
42
|
The bisphosphonate zoledronic acid effectively targets lung cancer cells by inhibition of protein prenylation. Biochem Biophys Res Commun 2015; 467:664-9. [DOI: 10.1016/j.bbrc.2015.10.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 10/18/2015] [Indexed: 11/21/2022]
|
43
|
Wolfson B, Eades G, Zhou Q. Adipocyte activation of cancer stem cell signaling in breast cancer. World J Biol Chem 2015; 6:39-47. [PMID: 26009703 PMCID: PMC4436905 DOI: 10.4331/wjbc.v6.i2.39] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/18/2015] [Accepted: 04/20/2015] [Indexed: 02/05/2023] Open
Abstract
Signaling within the tumor microenvironment has a critical role in cancer initiation and progression. Adipocytes, one of the major components of the breast microenvironment, have been shown to provide pro-tumorigenic signals that promote cancer cell proliferation and invasiveness in vitro and tumorigenicity in vivo. Adipocyte secreted factors such as leptin and interleukin-6 (IL-6) have a paracrine effect on breast cancer cells. In adipocyte-adjacent breast cancer cells, the leptin and IL-6 signaling pathways activate janus kinase 2/signal transducer and activator of transcription 5, promoting the epithelial-mesenchymal transition, and upregulating stemness regulators such as Notch, Wnt and the Sex determining region Y-box 2/octamer binding transcription factor 4/Nanog signaling axis. In this review we will summarize the major signaling pathways that regulate cancer stem cells in breast cancer and describe the effects that adipocyte secreted IL-6 and leptin have on breast cancer stem cell signaling. Finally we will introduce a new potential treatment paradigm of inhibiting the adipocyte-breast cancer cell signaling via targeting the IL-6 or leptin pathways.
Collapse
|
44
|
Garay T, Kenessey I, Molnár E, Juhász É, Réti A, László V, Rózsás A, Dobos J, Döme B, Berger W, Klepetko W, Tóvári J, Tímár J, Hegedűs B. Prenylation inhibition-induced cell death in melanoma: reduced sensitivity in BRAF mutant/PTEN wild-type melanoma cells. PLoS One 2015; 10:e0117021. [PMID: 25646931 PMCID: PMC4315579 DOI: 10.1371/journal.pone.0117021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 12/17/2014] [Indexed: 12/23/2022] Open
Abstract
While targeted therapy brought a new era in the treatment of BRAF mutant melanoma, therapeutic options for non-BRAF mutant cases are still limited. In order to explore the antitumor activity of prenylation inhibition we investigated the response to zoledronic acid treatment in thirteen human melanoma cell lines with known BRAF, NRAS and PTEN mutational status. Effect of zoledronic acid on proliferation, clonogenic potential, apoptosis and migration of melanoma cells as well as the activation of downstream elements of the RAS/RAF pathway were investigated in vitro with SRB, TUNEL and PARP cleavage assays and videomicroscopy and immunoblot measurements, respectively. Subcutaneous and spleen-to-liver colonization xenograft mouse models were used to evaluate the influence of zoledronic acid treatment on primary and disseminated tumor growth of melanoma cells in vivo. Zoledronic acid more efficiently decreased short-term in vitro viability in NRAS mutant cells when compared to BRAF mutant and BRAF/NRAS wild-type cells. In line with this finding, following treatment decreased activation of ribosomal protein S6 was found in NRAS mutant cells. Zoledronic acid demonstrated no significant synergism in cell viability inhibition or apoptosis induction with cisplatin or DTIC treatment in vitro. Importantly, zoledronic acid could inhibit clonogenic growth in the majority of melanoma cell lines except in the three BRAF mutant but PTEN wild-type melanoma lines. A similar pattern was observed in apoptosis induction experiments. In vivo zoledronic acid did not inhibit the subcutaneous growth or spleen-to-liver colonization of melanoma cells. Altogether our data demonstrates that prenylation inhibition may be a novel therapeutic approach in NRAS mutant melanoma. Nevertheless, we also demonstrated that therapeutic sensitivity might be influenced by the PTEN status of BRAF mutant melanoma cells. However, further investigations are needed to identify drugs that have appropriate pharmacological properties to efficiently target prenylation in melanoma cells.
Collapse
Affiliation(s)
- Tamás Garay
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
- National Koranyi Institute of TB and Pulmonology, Budapest, Hungary
- Department of Biological Physics, Eötvös University, Budapest, Hungary
| | - István Kenessey
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Eszter Molnár
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Éva Juhász
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Andrea Réti
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Viktória László
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Anita Rózsás
- National Koranyi Institute of TB and Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Judit Dobos
- Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - Balázs Döme
- National Koranyi Institute of TB and Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Department of Thoracic Surgery, Semmelweis University-National Institute of Oncology, Budapest, Hungary
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - József Tímár
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary
- MTA-SE Molecular Oncology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balázs Hegedűs
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- MTA-SE Molecular Oncology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| |
Collapse
|
45
|
Bianchi G, Anderson KC. Understanding biology to tackle the disease: Multiple myeloma from bench to bedside, and back. CA Cancer J Clin 2014; 64:422-44. [PMID: 25266555 DOI: 10.3322/caac.21252] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/21/2014] [Accepted: 08/21/2014] [Indexed: 02/01/2023] Open
Abstract
Multiple myeloma (MM) is a cancer of antibody-producing plasma cells. The pathognomonic laboratory finding is a monoclonal immunoglobulin or free light chain in the serum and/or urine in association with bone marrow infiltration by malignant plasma cells. MM develops from a premalignant condition, monoclonal gammopathy of undetermined significance (MGUS), often via an intermediate stage termed smoldering multiple myeloma (SMM), which differs from active myeloma by the absence of disease-related end-organ damage. Unlike MGUS and SMM, active MM requires therapy. Over the past 6 decades, major advancements in the care of MM patients have occurred, in particular, the introduction of novel agents (ie, proteasome inhibitors, immunomodulatory agents) and the implementation of hematopoietic stem cell transplantation in suitable candidates. The effectiveness and good tolerability of novel agents allowed for their combined use in induction, consolidation, and maintenance therapy, resulting in deeper and more sustained clinical response and extended progression-free and overall survival. Previously a rapidly lethal cancer with few therapeutic options, MM is the hematologic cancer with the most novel US Food and Drug Administration-approved drugs in the past 15 years. These advances have resulted in more frequent long-term remissions, transforming MM into a chronic illness for many patients.
Collapse
Affiliation(s)
- Giada Bianchi
- Hematology Oncology Fellow, Jerome Lipper Multiple Myeloma Center and LeBow Institute for Myeloma Therapeutics, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
46
|
Piodi LP, Poloni A, Ulivieri FM. Managing osteoporosis in ulcerative colitis: something new? World J Gastroenterol 2014; 20:14087-98. [PMID: 25339798 PMCID: PMC4202340 DOI: 10.3748/wjg.v20.i39.14087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/12/2014] [Accepted: 06/26/2014] [Indexed: 02/06/2023] Open
Abstract
The authors revise the latest evidence in the literature regarding managing of osteoporosis in ulcerative colitis (UC), paying particular attention to the latest tendency of the research concerning the management of bone damage in the patient affected by UC. It is wise to assess vitamin D status in ulcerative colitis patients to recognize who is predisposed to low levels of vitamin D, whose deficiency has to be treated with oral or parenteral vitamin D supplementation. An adequate dietary calcium intake or supplementation and physical activity, if possible, should be guaranteed. Osteoporotic risk factors, such as smoking and excessive alcohol intake, must be avoided. Steroid has to be prescribed at the lowest possible dosage and for the shortest possible time. Moreover, conditions favoring falling have to been minimized, like carpets, low illumination, sedatives assumption, vitamin D deficiency. It is advisable to assess the fracture risk in all UC patient by the fracture assessment risk tool (FRAX(®) tool), that calculates the ten years risk of fracture for the population aged from 40 to 90 years in many countries of the world. A high risk value could indicate the necessity of treatment, whereas a low risk value suggests a follow-up only. An intermediate risk supports the decision to prescribe bone mineral density (BMD) assessment and a subsequent patient revaluation for treatment. Dual energy X-ray absorptiometry bone densitometry can be used not only for BMD measurement, but also to collect data about bone quality by the means of trabecular bone score and hip structural analysis assessment. These two indices could represent a method of interesting perspectives in evaluating bone status in patients affected by diseases like UC, which may present an impairment of bone quality as well as of bone quantity. In literature there is no strong evidence for instituting pharmacological therapy of bone impairment in UC patients for clinical indications other than those that are also applied to the patients with osteoporosis. Therefore, a reasonable advice is to consider pharmacological treatment for osteoporosis in those UC patients who already present fragility fractures, which bring a high risk of subsequent fractures. Therapy has also to be considered in patients with a high risk of fracture even if it did not yet happen, and particularly when they had long periods of corticosteroid therapy or cumulative high dosages. In patients without fragility fractures or steroid treatment, a medical decision about treatment could be guided by the FRAX tool to determine the intervention threshold. Among drugs for osteoporosis treatment, the bisphosphonates are the most studied ones, with the best and longest evidence of efficacy and safety. Despite this, several questions are still open, such as the duration of treatment, the necessity to discontinue it, the indication of therapy in young patients, particularly in those without previous fractures. Further, it has to be mentioned that a long-term bisphosphonates use in primary osteoporosis has been associated with an increased incidence of dramatic side-effects, even if uncommon, like osteonecrosis of the jaw and atypical sub-trochanteric and diaphyseal femoral fractures. UC is a long-lasting disease and the majority of patients is relatively young. In this scenario primary prevention of fragility fracture is the best cost-effective strategy. Vitamin D supplementation, adequate calcium intake, suitable physical activity (when possible), removing of risk factors for osteoporosis like smoking, and avoiding falling are the best medical acts.
Collapse
|
47
|
Junankar S, Shay G, Jurczyluk J, Ali N, Down J, Pocock N, Parker A, Nguyen A, Sun S, Kashemirov B, McKenna CE, Croucher PI, Swarbrick A, Weilbaecher K, Phan TG, Rogers MJ. Real-time intravital imaging establishes tumor-associated macrophages as the extraskeletal target of bisphosphonate action in cancer. Cancer Discov 2014; 5:35-42. [PMID: 25312016 DOI: 10.1158/2159-8290.cd-14-0621] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Recent clinical trials have shown that bisphosphonate drugs improve breast cancer patient survival independent of their antiresorptive effects on the skeleton. However, because bisphosphonates bind rapidly to bone mineral, the exact mechanisms of their antitumor action, particularly on cells outside of bone, remain unknown. Here, we used real-time intravital two-photon microscopy to show extensive leakage of fluorescent bisphosphonate from the vasculature in 4T1 mouse mammary tumors, where it initially binds to areas of small, granular microcalcifications that are engulfed by tumor-associated macrophages (TAM), but not tumor cells. Importantly, we also observed uptake of radiolabeled bisphosphonate in the primary breast tumor of a patient and showed the resected tumor to be infiltrated with TAMs and to contain similar granular microcalcifications. These data represent the first compelling in vivo evidence that bisphosphonates can target cells in tumors outside the skeleton and that their antitumor activity is likely to be mediated via TAMs. SIGNIFICANCE Bisphosphonates are assumed to act solely in bone. However, mouse models and clinical trials show that they have surprising antitumor effects outside bone. We provide unequivocal evidence that bisphosphonates target TAMs, but not tumor cells, to exert their extraskeletal effects, offering a rationale for use in patients with early disease.
Collapse
Affiliation(s)
- Simon Junankar
- Garvan Institute of Medical Research and St. Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, Australia
| | - Gemma Shay
- Division of Applied Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Julie Jurczyluk
- Garvan Institute of Medical Research and St. Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, Australia
| | - Naveid Ali
- Garvan Institute of Medical Research and St. Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, Australia
| | - Jenny Down
- Garvan Institute of Medical Research and St. Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, Australia
| | - Nicholas Pocock
- Garvan Institute of Medical Research and St. Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, Australia. Department of Nuclear Medicine, St. Vincent's Hospital, Sydney, Australia
| | - Andrew Parker
- Department of Pathology, St. Vincent's Hospital, Sydney, Australia
| | - Akira Nguyen
- Garvan Institute of Medical Research and St. Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, Australia
| | - Shuting Sun
- University of Southern California, Los Angeles, California
| | | | | | - Peter I Croucher
- Garvan Institute of Medical Research and St. Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, Australia
| | - Alexander Swarbrick
- Garvan Institute of Medical Research and St. Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, Australia
| | - Katherine Weilbaecher
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Tri Giang Phan
- Garvan Institute of Medical Research and St. Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, Australia
| | - Michael J Rogers
- Garvan Institute of Medical Research and St. Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, Australia.
| |
Collapse
|
48
|
Schilrreff P, Cervini G, Romero EL, Morilla MJ. Enhanced antimelanoma activity of methotrexate and zoledronic acid within polymeric sandwiches. Colloids Surf B Biointerfaces 2014; 122:19-29. [DOI: 10.1016/j.colsurfb.2014.06.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/08/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
|
49
|
Wang IT, Chou SC, Lin YC. Zoledronic acid induces apoptosis and autophagy in cervical cancer cells. Tumour Biol 2014; 35:11913-20. [PMID: 25142231 DOI: 10.1007/s13277-014-2460-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/06/2014] [Indexed: 01/04/2023] Open
Abstract
Cervical cancer is one of the most common gynecological cancers in association with high mortality and morbidity. The present study was aimed to investigate the in vitro effects of zoledronic acid (ZA) on viability and induction of apoptosis and autophagy as well as inflammatory effects in three human cervical cancer cell lines (HeLa, SiHa, and CaSki). Cell viability was measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. Induction of apoptosis was determined by quantitation of expression level of B cell lymphoma 2 (Bcl-2) and Bax messenger RNA (mRNA) and identification of the proteolytic cleavage of poly (ADP)-ribose polymerase (PARP) and caspase-3. Autophagic effects were examined by quantitation of mRNA expression of autophagy protein 5 (ATG5) and beclin1 and identifying accumulation of microtubule-associated protein 1 light chain 3 (LC3)-II. Inflammatory effect was determined by measuring expression and production of IL-6 and cyclooxygenase-2 (Cox-2). The results showed ZA significantly inhibited cell viability of cervical cancer cells. ZA-induced cell death displayed features characteristic to both apoptosis and autophagy and was associated with different changes in the levels of Bcl-2 and Bax in the various cervical cancer lines. Expression of metastatic cytokines, IL-6 and Cox-2, was upregulated in the presence of ZA at low concentration. Our data revealed that ZA inhibits cervical cancer cells through the synergistic effect of apoptosis induction and autophagy activation.
Collapse
Affiliation(s)
- I-Te Wang
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan
| | | | | |
Collapse
|
50
|
Sanfilippo KM, Gage B, Luo S, Weilbaecher K, Tomasson M, Vij R, Colditz G, Carson K. Comparative effectiveness on survival of zoledronic acid versus pamidronate in multiple myeloma. Leuk Lymphoma 2014; 56:615-21. [PMID: 24844358 DOI: 10.3109/10428194.2014.924117] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Zoledronic acid and pamidronate are the two bisphosphonates approved in the United States to reduce multiple myeloma skeletal complications. Little prior evidence exists comparing survival outcomes between the two. We evaluated the incidence of skeletal-related events and overall survival in patients with myeloma treated with zoledronic acid versus pamidronate using a cohort of 1018 United States veterans. At a median follow-up of 26.9 months, patients receiving zoledronic acid had a 22% reduction in risk of death compared to pamidronate (hazard ratio 0.78; 95% confidence interval, 0.67-0.92). The benefit persisted after controlling for potential confounders. Adjusted Cox modeling with inverse probability weighting and propensity score matching supported these findings. Zoledronic acid was also associated with a 25% decrease in skeletal-related events. Zoledronic acid is associated with increased overall survival and decreased skeletal-related events compared to pamidronate in patients with multiple myeloma and should become the preferred bisphosphonate.
Collapse
Affiliation(s)
- K M Sanfilippo
- Saint Louis Veterans Health Administration Medical Center
| | | | | | | | | | | | | | | |
Collapse
|