1
|
Han L, Xu S, Zhou D, Chen R, Ding Y, Zhang M, Bao M, He B, Li S. Unveiling the causal link between metabolic factors and ovarian cancer risk using Mendelian randomization analysis. Front Endocrinol (Lausanne) 2024; 15:1401648. [PMID: 38899007 PMCID: PMC11185996 DOI: 10.3389/fendo.2024.1401648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Background Metabolic abnormalities are closely tied to the development of ovarian cancer (OC), yet the relationship between anthropometric indicators as risk indicators for metabolic abnormalities and OC lacks consistency. Method The Mendelian randomization (MR) approach is a widely used methodology for determining causal relationships. Our study employed summary statistics from the genome-wide association studies (GWAS), and we used inverse variance weighting (IVW) together with MR-Egger and weighted median (WM) supplementary analyses to assess causal relationships between exposure and outcome. Furthermore, additional sensitivity studies, such as leave-one-out analyses and MR-PRESSO were used to assess the stability of the associations. Result The IVW findings demonstrated a causal associations between 10 metabolic factors and an increased risk of OC. Including "Basal metabolic rate" (OR= 1.24, P= 6.86×10-4); "Body fat percentage" (OR= 1.22, P= 8.20×10-3); "Hip circumference" (OR= 1.20, P= 5.92×10-4); "Trunk fat mass" (OR= 1.15, P= 1.03×10-2); "Trunk fat percentage" (OR= 1.25, P= 8.55×10-4); "Waist circumference" (OR= 1.23, P= 3.28×10-3); "Weight" (OR= 1.21, P= 9.82×10-4); "Whole body fat mass" (OR= 1.21, P= 4.90×10-4); "Whole body fat-free mass" (OR= 1.19, P= 4.11×10-3) and "Whole body water mass" (OR= 1.21, P= 1.85×10-3). Conclusion Several metabolic markers linked to altered fat accumulation and distribution are significantly associated with an increased risk of OC.
Collapse
Affiliation(s)
- Li Han
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, China
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
| | - Shuling Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Dongqi Zhou
- Department of Traditional Chinese Medicine, Sichuan Taikang Hospital, Chengdu, Sichuan, China
| | - Rumeng Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yining Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Mengling Zhang
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Meihua Bao
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparations, School of Pharmaceutical Science, Changsha Medical University, Changsha, China
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Binsheng He
- The Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Shea AA, Heffron CL, Grieco JP, Roberts PC, Schmelz EM. Obesity modulates the cellular and molecular microenvironment in the peritoneal cavity: implication for ovarian cancer risk. Front Immunol 2024; 14:1323399. [PMID: 38264656 PMCID: PMC10803595 DOI: 10.3389/fimmu.2023.1323399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Abdominal obesity increases the risk of developing ovarian cancer but the molecular mechanisms of how obesity supports ovarian cancer development remain unknown. Here we investigated the impact of obesity on the immune cell and gene expression profiles of distinct abdominal tissues, focusing on the peritoneal serous fluid (PSF) and the omental fat band (OFB) as critical determinants for the dissemination of ovarian metastases and early metastatic events within the peritoneal cavity. Methods Female C57BL/6 mice were fed a low-fat (LFD) or a high-fat diet (HFD) for 12 weeks until the body weights in the HFD group were significantly higher and the mice displayed an impaired glucose tolerance. Then the mice were injected with the murine ovarian cancer cells (MOSE-LTICv) while remaining on their diets. After 21 days, the mice were sacrificed, tumor burden was evaluated and tissues were harvested. The immune cell composition of abdominal tissues and changes in gene expression in the PSF and OFB were evaluated by flow cytometry and qPCR RT2-profiler PCR arrays and confirmed by qRT-PCR, respectively. Other peritoneal adipose tissues including parametrial and retroperitoneal white adipose tissues as well as blood were also investigated. Results While limited effects were observed in the other peritoneal adipose tissues, feeding mice the HFD led to distinct changes in the immune cell composition in the PSF and the OFB: a depletion of B cells but an increase in myeloid-derived suppressor cells (MDSC) and mono/granulocytes, generating pro-inflammatory environments with increased expression of cyto- and chemokines, and genes supporting adhesion, survival, and growth, as well as suppression of apoptosis. This was associated with a higher peritoneal tumor burden compared to mice fed a LFD. Changes in cellular and genetic profiles were often exacerbated by the HFD. There was a large overlap in genes that were modulated by both the HFD and the cancer cells, suggesting that this 'genetic fingerprint' is important for ovarian metastases to the OFB. Discussion In accordance with the 'seed and soil' theory, our studies show that obesity contributes to the generation of a pro-inflammatory peritoneal environment that supports the survival of disseminating ovarian cancer cells in the PSF and the OFB and enhances the early metastatic adhesion events in the OFB through an increase in extracellular matrix proteins and modulators such as fibronectin 1 and collagen I expression as well as in genes supporting growth and invasion such as Tenacin C. The identified genes could potentially be used as targets for prevention strategies to lower the ovarian cancer risk in women with obesity.
Collapse
Affiliation(s)
- Amanda A. Shea
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Connie Lynn Heffron
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Joseph P. Grieco
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - Paul C. Roberts
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Eva M. Schmelz
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
3
|
Liu S, Wu D, Fan Z, Yang J, Li Y, Meng Y, Gao C, Zhan H. FABP4 in obesity-associated carcinogenesis: Novel insights into mechanisms and therapeutic implications. Front Mol Biosci 2022; 9:973955. [PMID: 36060264 PMCID: PMC9438896 DOI: 10.3389/fmolb.2022.973955] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
The increasing prevalence of obesity worldwide is associated with an increased risk of various diseases, including multiple metabolic diseases, cardiovascular diseases, and malignant tumors. Fatty acid binding proteins (FABPs) are members of the adipokine family of multifunctional proteins that are related to fatty acid metabolism and are divided into 12 types according to their tissue origin. FABP4 is mainly secreted by adipocytes and macrophages. Under obesity, the synthesis of FABP4 increases, and the FABP4 content is higher not only in tissues but also in the blood, which promotes the occurrence and development of various cancers. Here, we comprehensively investigated obesity epidemiology and the biological mechanisms associated with the functions of FABP4 that may explain this effect. In this review, we explore the molecular mechanisms by which FABP4 promotes carcinoma development and the interaction between fat and cancer cells in obese circumstances here. This review leads us to understand how FABP4 signaling is involved in obesity-associated tumors, which could increase the potential for advancing novel therapeutic strategies and molecular targets for the systematic treatment of malignant tumors.
Collapse
|
4
|
Baumeister SE, Schlecht I, Trabert B, Nolde M, Meisinger C, Leitzmann MF. Anthropometric risk factors for ovarian cancer in the NIH-AARP Diet and Health Study. Cancer Causes Control 2021; 32:231-239. [PMID: 33481137 PMCID: PMC7870624 DOI: 10.1007/s10552-020-01377-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/25/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Identifying potentially modifiable risk factors for ovarian cancer is essential for prevention because this cancer is predominantly detected at a late stage. Here, we estimated the relations of general adiposity and measures reflecting body fat distribution to the risk of epithelial ovarian cancer. METHODS We ascertained 683 ovarian epithelial cancers (343 high-grade serous, 141 non-high grade serous) among 145,575 women, aged 50-72 years (median follow-up 12.6 years), from the National Institutes of Health-American Association of Retired Persons (NIH-AARP) Diet and Health Study. Using Cox models, we estimated confounder-adjusted hazard ratios (HRs) and 95% confidence intervals (CI) for associations of overall ovarian cancer, high-grade serous and non-high-grade serous carcinoma with body mass index, waist circumference, hip circumference, waist-hip ratio, waist-height ratio, body adiposity index, body shape index, and abdominal volume index. RESULTS Anthropometric measures were unrelated to overall ovarian cancer, high-grade serous cancer, and non-high-grade serous cancer. For example, the HR for overall ovarian cancer per standard deviation increment of body mass index at baseline was 0.98 (95% CI 0.88-1.10). Similar associations were observed with measurements of body fat distribution. CONCLUSION These results do not indicate that adult adiposity is associated with ovarian cancer risk in post-menopausal women.
Collapse
Affiliation(s)
- Sebastian E Baumeister
- Chair of Epidemiology, Ludwig-Maximilians-Universität München, UNIKA-T Augsburg, Neusässer Str. 47, 86156, Augsburg, Germany. .,Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany. .,University of Münster, Münster, Germany.
| | - Inga Schlecht
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Britton Trabert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael Nolde
- Chair of Epidemiology, Ludwig-Maximilians-Universität München, UNIKA-T Augsburg, Neusässer Str. 47, 86156, Augsburg, Germany.,Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christa Meisinger
- Chair of Epidemiology, Ludwig-Maximilians-Universität München, UNIKA-T Augsburg, Neusässer Str. 47, 86156, Augsburg, Germany.,Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael F Leitzmann
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Zhang X, Sheng Y, Li B, Wang Q, Liu X, Han J. Ovarian cancer derived PKR1 positive exosomes promote angiogenesis by promoting migration and tube formation in vitro. Cell Biochem Funct 2020; 39:308-316. [PMID: 32876972 DOI: 10.1002/cbf.3583] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/16/2020] [Accepted: 08/01/2020] [Indexed: 12/15/2022]
Abstract
Cancer cell derived exosomes play important roles in cancer progression and modulation of the tumour microenvironment. This study aims to investigate the role of prokineticin receptor 1 (PKR1) positive exosomes on angiogenesis. In the present study, PKR1 expression in tumour samples from ovarian cancer patients were examined firstly. Then, two ovarian cancer cell lines, namely A2780 and HO-8910 cells, were used to isolate and obtain the PKR1 positive exosomes from the serum free medium. The function analysis of PKR1 positive exosomes on angiogenesis was conducted by cell proliferation and migration assay, tube formation analysis, and tumour volume assay. The results showed that PKR1 expression was down regulated in tumour samples of ovarian cancer patients compared with adjacent normal tissues. The intracellular expression of PKR1 could be detected in A2780 and HO-8910 cells. And, the isolated exosomes from the serum free medium were confirmed by transmission electron microscopic and NTA analysis, as well as the co-presence of PKR1 with exosome marker CD63. The function analysis of PKR1 positive exosomes on angiogenesis demonstrated the uptake of PKR1 positive exosomes by human umbilical vein endothelial cells through immunofluorescence staining. The angiogenesis assays in vitro indicated that PKR1 positive exosomes promoted migration and tube formation of HUVECs but not proliferation. The endogenous PKR1 was also verified to help to enhance migration and promote tube formation of vascular endothelial cells, which might involved in the phosphorylation of STAT3. Additionally, The tumour volume from exosomes treated A2780 tumour-bearing mice was significantly increased compared with the control group, accompanied with the induced PKR1 expression and phosphorylation of STAT3 level. SIGNIFICANCE OF THE STUDY: This study proved the important role of PKR1 positive exosomes released from ovarian cancer cells on promoting angiogenesis. The data indicated that PKR1 derived from ovarian cancer cells could act as an important tumour associated antigen and biomolecular factor for cellular communication in tumour microenvironment.
Collapse
Affiliation(s)
- XiaoYan Zhang
- Laboratory of Microvascular Biopathology, Institute of Microcirculation, Chinese Academy of Sciences, Peking Union Medical College, Beijing, China
| | - YouMing Sheng
- Microhemodynamics Laboratory, Institute of Microcirculation, Chinese Academy of Sciences, Peking Union Medical College, Beijing, China
| | - BingWei Li
- Laboratory of Microvascular Biopathology, Institute of Microcirculation, Chinese Academy of Sciences, Peking Union Medical College, Beijing, China
| | - Qin Wang
- Microhemodynamics Laboratory, Institute of Microcirculation, Chinese Academy of Sciences, Peking Union Medical College, Beijing, China
| | - XueTing Liu
- Laboratory of Microvascular Biopathology, Institute of Microcirculation, Chinese Academy of Sciences, Peking Union Medical College, Beijing, China
| | - JianQun Han
- Microhemodynamics Laboratory, Institute of Microcirculation, Chinese Academy of Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Qian F, Rookus MA, Leslie G, Risch HA, Greene MH, Aalfs CM, Adank MA, Adlard J, Agnarsson BA, Ahmed M, Aittomäki K, Andrulis IL, Arnold N, Arun BK, Ausems MGEM, Azzollini J, Barrowdale D, Barwell J, Benitez J, Białkowska K, Bonadona V, Borde J, Borg A, Bradbury AR, Brunet J, Buys SS, Caldés T, Caligo MA, Campbell I, Carter J, Chiquette J, Chung WK, Claes KBM, Collée JM, Collonge-Rame MA, Couch FJ, Daly MB, Delnatte C, Diez O, Domchek SM, Dorfling CM, Eason J, Easton DF, Eeles R, Engel C, Evans DG, Faivre L, Feliubadaló L, Foretova L, Friedman E, Frost D, Ganz PA, Garber J, Garcia-Barberan V, Gehrig A, Glendon G, Godwin AK, Gómez Garcia EB, Hamann U, Hauke J, Hopper JL, Hulick PJ, Imyanitov EN, Isaacs C, Izatt L, Jakubowska A, Janavicius R, John EM, Karlan BY, Kets CM, Laitman Y, Lázaro C, Leroux D, Lester J, Lesueur F, Loud JT, Lubiński J, Łukomska A, McGuffog L, Mebirouk N, Meijers-Heijboer HEJ, Meindl A, Miller A, Montagna M, Mooij TM, Mouret-Fourme E, Nathanson KL, Nehoray B, Neuhausen SL, Nevanlinna H, Nielsen FC, Offit K, Olah E, Ong KR, Oosterwijk JC, Ottini L, Parsons MT, Peterlongo P, Pfeiler G, Pradhan N, Radice P, Ramus SJ, Rantala J, Rennert G, Robson M, Rodriguez GC, Salani R, Scheuner MT, Schmutzler RK, Shah PD, Side LE, Simard J, Singer CF, Steinemann D, Stoppa-Lyonnet D, Tan YY, Teixeira MR, Terry MB, Thomassen M, Tischkowitz M, Tognazzo S, Toland AE, Tung N, van Asperen CJ, van Engelen K, van Rensburg EJ, Venat-Bouvet L, Vierstraete J, Wagner G, Walker L, Weitzel JN, Yannoukakos D, Antoniou AC, Goldgar DE, Olopade OI, Chenevix-Trench G, Rebbeck TR, Huo D. Mendelian randomisation study of height and body mass index as modifiers of ovarian cancer risk in 22,588 BRCA1 and BRCA2 mutation carriers. Br J Cancer 2019; 121:180-192. [PMID: 31213659 PMCID: PMC6738050 DOI: 10.1038/s41416-019-0492-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/03/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Height and body mass index (BMI) are associated with higher ovarian cancer risk in the general population, but whether such associations exist among BRCA1/2 mutation carriers is unknown. METHODS We applied a Mendelian randomisation approach to examine height/BMI with ovarian cancer risk using the Consortium of Investigators for the Modifiers of BRCA1/2 (CIMBA) data set, comprising 14,676 BRCA1 and 7912 BRCA2 mutation carriers, with 2923 ovarian cancer cases. We created a height genetic score (height-GS) using 586 height-associated variants and a BMI genetic score (BMI-GS) using 93 BMI-associated variants. Associations were assessed using weighted Cox models. RESULTS Observed height was not associated with ovarian cancer risk (hazard ratio [HR]: 1.07 per 10-cm increase in height, 95% confidence interval [CI]: 0.94-1.23). Height-GS showed similar results (HR = 1.02, 95% CI: 0.85-1.23). Higher BMI was significantly associated with increased risk in premenopausal women with HR = 1.25 (95% CI: 1.06-1.48) and HR = 1.59 (95% CI: 1.08-2.33) per 5-kg/m2 increase in observed and genetically determined BMI, respectively. No association was found for postmenopausal women. Interaction between menopausal status and BMI was significant (Pinteraction < 0.05). CONCLUSION Our observation of a positive association between BMI and ovarian cancer risk in premenopausal BRCA1/2 mutation carriers is consistent with findings in the general population.
Collapse
Grants
- R01 CA063682 NCI NIH HHS
- R01 CA176785 NCI NIH HHS
- U10 CA027469 NCI NIH HHS
- 11174 Cancer Research UK
- C1287/A 10710 Cancer Research UK
- P50 CA116201 NCI NIH HHS
- N02CP65504 NCI NIH HHS
- U19 CA148065 NCI NIH HHS
- C1281/A12014 Cancer Research UK
- N02CP11019 NCI NIH HHS
- U10 CA180868 NCI NIH HHS
- R03 CA130065 NCI NIH HHS
- RC4 CA153828 NCI NIH HHS
- R01 CA142996 NCI NIH HHS
- R01 CA140323 NCI NIH HHS
- P50 CA125183 NCI NIH HHS
- UM1 CA164920 NCI NIH HHS
- UL1 TR001863 NCATS NIH HHS
- P30 CA168524 NCI NIH HHS
- U01 CA161032 NCI NIH HHS
- 20861 Cancer Research UK
- UL1 TR000124 NCATS NIH HHS
- P20 CA233307 NCI NIH HHS
- U01 CA116167 NCI NIH HHS
- C5047/A8384 Cancer Research UK
- P30 CA008748 NCI NIH HHS
- 23382 Cancer Research UK
- R01 CA214545 NCI NIH HHS
- R01 CA128978 NCI NIH HHS
- U19 CA148537 NCI NIH HHS
- P30 CA051008 NCI NIH HHS
- R01 CA116167 NCI NIH HHS
- U10 CA037517 NCI NIH HHS
- P20 GM130423 NIGMS NIH HHS
- R25 CA112486 NCI NIH HHS
- C5047/A15007 Cancer Research UK
- 10118 Cancer Research UK
- U19 CA148112 NCI NIH HHS
- R01 CA149429 NCI NIH HHS
- R01 CA228198 NCI NIH HHS
- UL1 TR001881 NCATS NIH HHS
- C8197/A16565 Cancer Research UK
- R01 CA192393 NCI NIH HHS
- U10 CA180822 NCI NIH HHS
- MR/P012930/1 Medical Research Council
- Cancer Research UK (CRUK)
- CIMBA: The CIMBA data management and data analysis were supported by Cancer Research – UK grants C12292/A20861, C12292/A11174. ACA is a Cancer Research -UK Senior Cancer Research Fellow. GCT and ABS are NHMRC Research Fellows. iCOGS: the European Community's Seventh Framework Programme under grant agreement No. 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, C8197/A16565), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112 - the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer (CRN-87521), and the Ministry of Economic Development, Innovation and Export Trade (PSR-SIIRI-701), Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund. The PERSPECTIVE project was supported by the Government of Canada through Genome Canada and the Canadian Institutes of Health Research, the Ministry of Economy, Science and Innovation through Genome Québec, and The Quebec Breast Cancer Foundation. BCFR: UM1 CA164920 from the National Cancer Institute. The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the Breast Cancer Family Registry (BCFR), nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government or the BCFR. BFBOCC: Lithuania (BFBOCC-LT): Research Council of Lithuania grant SEN-18/2015. BIDMC: Breast Cancer Research Foundation. BMBSA: Cancer Association of South Africa (PI Elizabeth J. van Rensburg). CNIO: Spanish Ministry of Health PI16/00440 supported by FEDER funds, the Spanish Ministry of Economy and Competitiveness (MINECO) SAF2014-57680-R and the Spanish Research Network on Rare diseases (CIBERER). COH-CCGCRN: Research reported in this publication was supported by the National Cancer Institute of the National Institutes of Health under grant number R25CA112486, and RC4CA153828 (PI: J. Weitzel) from the National Cancer Institute and the Office of the Director, National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. CONSIT: Associazione Italiana Ricerca sul Cancro (AIRC; IG2014 no.15547) to P. Radice. Italian Association for Cancer Research (AIRC; grant no.16933) to L. Ottini. Associazione Italiana Ricerca sul Cancro (AIRC; IG2015 no.16732) to P. Peterlongo. Jacopo Azzollini is supported by funds from Italian citizens who allocated the 5x1000 share of their tax payment in support of the Fondazione IRCCS Istituto Nazionale Tumori, according to Italian laws (INT-Institutional strategic projects ‘5x1000’). DEMOKRITOS: European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program of the General Secretariat for Research & Technology: SYN11_10_19 NBCA. Investing in knowledge society through the European Social Fund. DFKZ: German Cancer Research Center. EMBRACE: Cancer Research UK Grants C1287/A10118 and C1287/A11990. D. Gareth Evans and Fiona Lalloo are supported by an NIHR grant to the Biomedical Research Centre, Manchester. The Investigators at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust are supported by an NIHR grant to the Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust. Ros Eeles and Elizabeth Bancroft are supported by Cancer Research UK Grant C5047/A8385. Ros Eeles is also supported by NIHR support to the Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust. FCCC: The University of Kansas Cancer Center (P30 CA168524) and the Kansas Bioscience Authority Eminent Scholar Program. A.K.G. was funded by R0 1CA140323, R01 CA214545, and by the Chancellors Distinguished Chair in Biomedical Sciences Professorship. FPGMX: FISPI05/2275 and Mutua Madrileña Foundation (FMMA). GC-HBOC: German Cancer Aid (grant no 110837, Rita K. Schmutzler) and the European Regional Development Fund and Free State of Saxony, Germany (LIFE - Leipzig Research Centre for Civilization Diseases, project numbers 713-241202, 713-241202, 14505/2470, 14575/2470). GEMO: Ligue Nationale Contre le Cancer; the Association “Le cancer du sein, parlons-en!” Award, the Canadian Institutes of Health Research for the "CIHR Team in Familial Risks of Breast Cancer" program and the French National Institute of Cancer (INCa grants 2013-1-BCB-01-ICH-1 and SHS-E-SP 18-015). GEORGETOWN: the Non-Therapeutic Subject Registry Shared Resource at Georgetown University (NIH/NCI grant P30-CA051008), the Fisher Center for Hereditary Cancer and Clinical Genomics Research, and Swing Fore the Cure. G-FAST: Bruce Poppe is a senior clinical investigator of FWO. Mattias Van Heetvelde obtained funding from IWT. HCSC: Spanish Ministry of Health PI15/00059, PI16/01292, and CB-161200301 CIBERONC from ISCIII (Spain), partially supported by European Regional Development FEDER funds. HEBCS: Helsinki University Hospital Research Fund, Academy of Finland (266528), the Finnish Cancer Society and the Sigrid Juselius Foundation. HEBON: the Dutch Cancer Society grants NKI1998-1854, NKI2004-3088, NKI2007-3756, the Netherlands Organisation of Scientific Research grant NWO 91109024, the Pink Ribbon grants 110005 and 2014-187.WO76, the BBMRI grant NWO 184.021.007/CP46 and the Transcan grant JTC 2012 Cancer 12-054. HRBCP: Hong Kong Sanatorium and Hospital, Dr Ellen Li Charitable Foundation, The Kerry Group Kuok Foundation, National Institute of Health1R 03CA130065, and North California Cancer Center. HUNBOCS: Hungarian Research Grants KTIA-OTKA CK-80745 and OTKA K-112228. ICO: The authors would like to particularly acknowledge the support of the Asociación Española Contra el Cáncer (AECC), the Instituto de Salud Carlos III (organismo adscrito al Ministerio de Economía y Competitividad) and “Fondo Europeo de Desarrollo Regional (FEDER), una manera de hacer Europa” (PI10/01422, PI13/00285, PIE13/00022, PI15/00854, PI16/00563 and CIBERONC) and the Institut Català de la Salut and Autonomous Government of Catalonia (2009SGR290, 2014SGR338 and PERIS Project MedPerCan). IHCC: PBZ_KBN_122/P05/2004. ILUH: Icelandic Association “Walking for Breast Cancer Research” and by the Landspitali University Hospital Research Fund. INHERIT: Canadian Institutes of Health Research for the “CIHR Team in Familial Risks of Breast Cancer” program – grant # CRN-87521 and the Ministry of Economic Development, Innovation and Export Trade – grant # PSR-SIIRI-701. IOVHBOCS: Ministero della Salute and “5x1000” Istituto Oncologico Veneto grant. IPOBCS: Liga Portuguesa Contra o Cancro. kConFab: The National Breast Cancer Foundation, and previously by the National Health and Medical Research Council (NHMRC), the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia, and the Cancer Foundation of Western Australia. MAYO: NIH grants CA116167, CA192393 and CA176785, an NCI Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA116201),and a grant from the Breast Cancer Research Foundation. MCGILL: Jewish General Hospital Weekend to End Breast Cancer, Quebec Ministry of Economic Development, Innovation and Export Trade. Marc Tischkowitz is supported by the funded by the European Union Seventh Framework Program (2007Y2013)/European Research Council (Grant No. 310018). MODSQUAD: MH CZ - DRO (MMCI, 00209805), MEYS - NPS I - LO1413 to LF and by the European Regional Development Fund and the State Budget of the Czech Republic (RECAMO, CZ.1.05/2.1.00/03.0101) to LF, and by Charles University in Prague project UNCE204024 (MZ). MSKCC: the Breast Cancer Research Foundation, the Robert and Kate Niehaus Clinical Cancer Genetics Initiative, the Andrew Sabin Research Fund and a Cancer Center Support Grant/Core Grant (P30 CA008748). NAROD: 1R01 CA149429-01. NCI: the Intramural Research Program of the US National Cancer Institute, NIH, and by support services contracts NO2-CP-11019-50, N02-CP-21013-63 and N02-CP-65504 with Westat, Inc, Rockville, MD. NICCC: Clalit Health Services in Israel, the Israel Cancer Association and the Breast Cancer Research Foundation (BCRF), NY. NNPIO: the Russian Foundation for Basic Research (grants 17-54-12007, 17-00-00171 and 18-515-12007). NRG Oncology: U10 CA180868, NRG SDMC grant U10 CA180822, NRG Administrative Office and the NRG Tissue Bank (CA 27469), the NRG Statistical and Data Center (CA 37517) and the Intramural Research Program, NCI. OSUCCG: Ohio State University Comprehensive Cancer Center. PBCS: Italian Association of Cancer Research (AIRC) [IG 2013 N.14477] and Tuscany Institute for Tumors (ITT) grant 2014-2015-2016. SEABASS: Ministry of Science, Technology and Innovation, Ministry of Higher Education (UM.C/HlR/MOHE/06) and Cancer Research Initiatives Foundation. SMC: the Israeli Cancer Association. SWE-BRCA: the Swedish Cancer Society. UCHICAGO: NCI Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA125183), R01 CA142996, 1U01CA161032, P20CA233307, American Cancer Society (MRSG-13-063-01-TBG, CRP-10-119-01-CCE), Breast Cancer Research Foundation, Susan G. Komen Foundation (SAC110026), and Ralph and Marion Falk Medical Research Trust, the Entertainment Industry Fund National Women's Cancer Research Alliance. Mr. Qian was supported by the Alpha Omega Alpha Carolyn L. Cuckein Student Research Fellowship. UCLA: Jonsson Comprehensive Cancer Center Foundation; Breast Cancer Research Foundation. UCSF: UCSF Cancer Risk Program and Helen Diller Family Comprehensive Cancer Center. UKFOCR: Cancer Research UK. UPENN: Breast Cancer Research Foundation; Susan G. Komen Foundation for the cure, Basser Center for BRCA. UPITT/MWH: Hackers for Hope Pittsburgh. VFCTG: Victorian Cancer Agency, Cancer Australia, National Breast Cancer Foundation. WCP: Dr Karlan is funded by the American Cancer Society Early Detection Professorship (SIOP-06-258-01-COUN) and the National Center for Advancing Translational Sciences (NCATS), Grant UL1TR000124.
Collapse
Affiliation(s)
- Frank Qian
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Matti A Rookus
- Department of Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Goska Leslie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Harvey A Risch
- Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Cora M Aalfs
- Department of Clinical Genetics, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Muriel A Adank
- Family Cancer Clinic, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Julian Adlard
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds, UK
| | - Bjarni A Agnarsson
- Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
- School of Medicine, University of Iceland, Reykjavik, Iceland
| | - Munaza Ahmed
- North East Thames Regional Genetics Service, Great Ormond Street Hospital, London, UK
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Norbert Arnold
- Department of Gynaecology and Obstetrics, University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel, Germany
- Institute of Clinical Molecular Biology, University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel, Germany
| | - Banu K Arun
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Margreet G E M Ausems
- Division Laboratories, Pharmacy and Biomedical Genetics, Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jacopo Azzollini
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Daniel Barrowdale
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Julian Barwell
- Leicestershire Clinical Genetics Service, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Javier Benitez
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Katarzyna Białkowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Valérie Bonadona
- Unité de Prévention et d'Epidémiologie Génétique, Centre Léon Bérard, Lyon, France
| | - Julika Borde
- Center for Integrated Oncology (CIO), University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Center for Hereditary Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
| | - Ake Borg
- Department of Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Angela R Bradbury
- Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Joan Brunet
- Genetic Counseling Unit, Hereditary Cancer Program, IDIBGI (Institut d'Investigació Biomèdica de Girona), Catalan Institute of Oncology, CIBERONC, Girona, Spain
| | - Saundra S Buys
- Department of Medicine, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Trinidad Caldés
- Medical Oncology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maria A Caligo
- Section of Molecular Genetics, Dept. of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Ian Campbell
- Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jonathan Carter
- Department of Gynaecological Oncology, Chris O'Brien Lifehouse and The University of Sydney, Camperdown, NSW, Australia
| | - Jocelyne Chiquette
- CRCHU de Québec- oncologie, Centre des maladies du sein Deschênes-Fabia, Hôpital du Saint-Sacrement, Québec, QC, Canada
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA
| | | | - J Margriet Collée
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Mary B Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Capucine Delnatte
- Unité d'Oncogénétique, ICO-Centre René Gauducheau, Saint Herblain, France
| | - Orland Diez
- Oncogenetics Group, Clinical and Molecular Genetics Area, Vall d'Hebron Institute of Oncology (VHIO), University Hospital Vall d'Hebron, Barcelona, Spain
| | - Susan M Domchek
- Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jacqueline Eason
- Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Ros Eeles
- Oncogenetics Team, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, UK
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - D Gareth Evans
- Division of Evolution and Genomic Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Laurence Faivre
- Unité d'oncogénétique, Centre de Lutte Contre le Cancer, Centre Georges-François Leclerc, Dijon, France
- Centre de Génétique, CHU Dijon, Dijon, France
| | - Lidia Feliubadaló
- Molecular Diagnostic Unit, Hereditary Cancer Program, ICO-IDIBELL (Bellvitge Biomedical Research Institute, Catalan Institute of Oncology), CIBERONC, Barcelona, Spain
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Eitan Friedman
- The Susanne Levy Gertner Oncogenetics Unit, Chaim Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Debra Frost
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Patricia A Ganz
- Schools of Medicine and Public Health, Division of Cancer Prevention & Control Research, Jonsson Comprehensive Cancer Centre, UCLA, Los Angeles, CA, USA
| | - Judy Garber
- Cancer Risk and Prevention Clinic, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Andrea Gehrig
- Centre of Familial Breast and Ovarian Cancer, Department of Medical Genetics, Institute of Human Genetics, University Würzburg, Würzburg, Germany
| | - Gord Glendon
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, Kansas University Medical Center, Kansas City, KS, USA
| | - Encarna B Gómez Garcia
- Department of Clinical Genetics and GROW, School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Hauke
- Unité de Prévention et d'Epidémiologie Génétique, Centre Léon Bérard, Lyon, France
- Center for Integrated Oncology (CIO), University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Peter J Hulick
- Center for Medical Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- The University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | | | - Claudine Isaacs
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Louise Izatt
- Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Anna Jakubowska
- Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Ramunas Janavicius
- Hematology, oncology and transfusion medicine center, Dept. of Molecular and Regenerative Medicine, Vilnius University Hospital Santariskiu Clinics, Vilnius, Lithuania
- State Research Institute, Innovative Medicine Center, Vilnius, CA, Lithuania
| | - Esther M John
- Department of Medicine, Division of Oncology, and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Beth Y Karlan
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Carolien M Kets
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yael Laitman
- The Susanne Levy Gertner Oncogenetics Unit, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Conxi Lázaro
- Molecular Diagnostic Unit, Hereditary Cancer Program, ICO-IDIBELL (Bellvitge Biomedical Research Institute, Catalan Institute of Oncology), CIBERONC, Barcelona, Spain
| | | | - Jenny Lester
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Fabienne Lesueur
- Genetic Epidemiology of Cancer team, Inserm U900, Paris, France
- Institut Curie, Paris, France
| | - Jennifer T Loud
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Alicja Łukomska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Lesley McGuffog
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Noura Mebirouk
- Genetic Epidemiology of Cancer team, Inserm U900, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
| | - Hanne E J Meijers-Heijboer
- Department of Clinical Genetics, Amsterdam UMC, Location VU University Medical Center, Amsterdam, The Netherlands
| | - Alfons Meindl
- Department of Gynecology and Obstetrics, Ludwig Maximilian University of Munich, Munich, Germany
| | - Austin Miller
- NRG Oncology, Statistics and Data Management Center, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Marco Montagna
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Thea M Mooij
- Department of Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Katherine L Nathanson
- Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Bita Nehoray
- Clinical Cancer Genomics, City of Hope, Duarte, CA, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Finn C Nielsen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kenneth Offit
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Edith Olah
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Kai-Ren Ong
- West Midlands Regional Genetics Service, Birmingham Women's Hospital Healthcare NHS Trust, Birmingham, UK
| | - Jan C Oosterwijk
- Department of Genetics, University Medical Center Groningen, University Groningen, Groningen, The Netherlands
| | - Laura Ottini
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - Michael T Parsons
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM - the FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology, Milan, Italy
| | - Georg Pfeiler
- Department of OB/GYN and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nisha Pradhan
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Susan J Ramus
- School of Women's and Children's Health, Faculty of Medicine, University of NSW Sydney, Sydney, NSW, Australia
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | - Gad Rennert
- Clalit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Mark Robson
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Gustavo C Rodriguez
- Division of Gynecologic Oncology, NorthShore University HealthSystem, University of Chicago, Evanston, IL, USA
| | - Ritu Salani
- Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Maren T Scheuner
- Cancer Genetics and Prevention Program, University of California San Francisco, San Francisco, CA, USA
| | - Rita K Schmutzler
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Center for Hereditary Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
| | - Payal D Shah
- Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Lucy E Side
- Wessex Clinical Genetics Service, University Hospitals Southampton NHS Trust, Southampton, UK
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval, Research Center, Québec City, QC, Canada
| | - Christian F Singer
- Department of OB/GYN and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Doris Steinemann
- Institute of Cell and Molecular Pathology, Hannover Medical School, Hannover, Germany
| | - Dominique Stoppa-Lyonnet
- Service de Génétique, Institut Curie, Paris, France
- Department of Tumour Biology, INSERM U830, Paris, France
- Université Paris Descartes, Paris, France
| | - Yen Yen Tan
- Department of OB/GYN and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
- Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odence C, Denmark
| | - Marc Tischkowitz
- Program in Cancer Genetics, Departments of Human Genetics and Oncology, McGill University, Montréal, QC, Canada
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Silvia Tognazzo
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Amanda E Toland
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Nadine Tung
- Department of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Klaartje van Engelen
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | | | | | - Gabriel Wagner
- Department of OB/GYN and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Lisa Walker
- Oxford Regional Genetics Service, Churchill Hospital, Oxford, UK
| | | | - Drakoulis Yannoukakos
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - David E Goldgar
- Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Timothy R Rebbeck
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Dezheng Huo
- Center for Clinical Cancer Genetics, The University of Chicago, Chicago, IL, USA.
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Anastasi E, Filardi T, Tartaglione S, Lenzi A, Angeloni A, Morano S. Linking type 2 diabetes and gynecological cancer: an introductory overview. Clin Chem Lab Med 2018; 56:1413-1425. [PMID: 29427549 DOI: 10.1515/cclm-2017-0982] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/03/2018] [Indexed: 01/03/2025]
Abstract
Type 2 diabetes (T2D) is a chronic disease with a growing prevalence and a leading cause of death in many countries. Several epidemiological studies observed an association between T2D and increased risk of many types of cancer, such as gynecologic neoplasms (endometrial, cervical, ovarian and vulvar cancer). Insulin resistance, chronic inflammation and high free ovarian steroid hormones are considered the possible mechanisms behind this complex relationship. A higher risk of endometrial cancer was observed in T2D, even though this association largely attenuated after adjusting for obesity. A clear relationship between the incidence of cervical cancer (CC) and T2D has still not be determined; however T2D might have an impact on prognosis in patients with CC. To date, studies on the association between T2D and ovarian cancer (OC) are limited. The effect of pre-existing diabetes on cancer-specific mortality has been evaluated in several studies, with less clear results. Other epidemiological and experimental studies focused on the potential role of diabetes medications, mainly metformin, in cancer development in women. The correct understanding of the link between T2D and gynecologic cancer risk and mortality is currently imperative to possibly modify screening and diagnostic-therapeutic protocols in the future.
Collapse
Affiliation(s)
- Emanuela Anastasi
- Department of Molecular Medicine, University "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy, Phone: +39 064472347, Fax: +39 064478381
| | - Tiziana Filardi
- Department of Experimental Medicine, "Sapienza" University of Rome, Policlinico Umberto I, Rome, Italy
| | - Sara Tartaglione
- Department of Molecular Medicine, "Sapienza" University of Rome, Policlinico Umberto I, Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, "Sapienza" University of Rome, Policlinico Umberto I, Rome, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, "Sapienza" University of Rome, Policlinico Umberto I, Rome, Italy
| | - Susanna Morano
- Department of Experimental Medicine, "Sapienza" University of Rome, Policlinico Umberto I, Rome, Italy
| |
Collapse
|
8
|
Minlikeeva AN, Moysich KB, Mayor PC, Etter JL, Cannioto RA, Ness RB, Starbuck K, Edwards RP, Segal BH, Lele S, Odunsi K, Diergaarde B, Modugno F. Anthropometric characteristics and ovarian cancer risk and survival. Cancer Causes Control 2018; 29:201-212. [PMID: 29327114 DOI: 10.1007/s10552-017-0997-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/18/2017] [Indexed: 11/28/2022]
Abstract
PURPOSE Multiple studies have examined the role of anthropometric characteristics in ovarian cancer risk and survival; however, their results have been conflicting. We investigated the associations between weight change, height and height change and risk and outcome of ovarian cancer using data from a large population-based case-control study. METHODS Data from 699 ovarian cancer cases and 1,802 controls who participated in the HOPE study were included. We used unconditional logistic regression adjusted for age, race, number of pregnancies, use of oral contraceptives, and family history of breast or ovarian cancer to examine the associations between self-reported height and weight and height change with ovarian cancer risk. Cox proportional hazards regression models adjusted for age and stage were used to examine the association between the exposure variables and overall and progression-free survival among ovarian cancer cases. RESULTS We observed an increased risk of ovarian cancer mortality and progression for gaining more than 20 pounds between ages 18-30, HR 1.36; 95% CI 1.05-1.76, and HR 1.31; 95% CI 1.04-1.66, respectively. Losing weight and gaining it back multiple times was inversely associated with both ovarian cancer risk, OR 0.78; 95% CI 0.63-0.97 for 1-4 times and OR 0.73; 95% CI 0.54-0.99 for 5-9 times, and mortality, HR 0.63; 95% CI 0.40-0.99 for 10-14 times. Finally, being taller during adolescence and adulthood was associated with increased risk of mortality. Taller stature and weight gain over lifetime were not related to ovarian cancer risk. CONCLUSIONS Our results suggest that height and weight and their change over time may influence ovarian cancer risk and survival. These findings suggest that biological mechanisms underlying these associations may be hormone driven and may play an important role in relation to ovarian carcinogenesis and tumor progression.
Collapse
Affiliation(s)
- Albina N Minlikeeva
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, A-352 Carlton House, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Kirsten B Moysich
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, A-352 Carlton House, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| | - Paul C Mayor
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - John L Etter
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, A-352 Carlton House, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Rikki A Cannioto
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, A-352 Carlton House, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Roberta B Ness
- The University of Texas School of Public Health, Houston, TX, USA
| | - Kristen Starbuck
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Robert P Edwards
- Ovarian Cancer Center of Excellence, Womens Cancer Research Program, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Brahm H Segal
- Department of Medicine and Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Sashikant Lele
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Brenda Diergaarde
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, and University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Francesmary Modugno
- Ovarian Cancer Center of Excellence, Womens Cancer Research Program, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| |
Collapse
|
9
|
The effect of celecoxib on tumor growth in ovarian cancer cells and a genetically engineered mouse model of serous ovarian cancer. Oncotarget 2018; 7:39582-39594. [PMID: 27074576 PMCID: PMC5129955 DOI: 10.18632/oncotarget.8659] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/28/2016] [Indexed: 12/20/2022] Open
Abstract
Our objective was to evaluate the effect of the COX-2 inhibitor, celecoxib, on (1) proliferation and apoptosis in human ovarian cancer cell lines and primary cultures of ovarian cancer cells, and (2) inhibition of tumor growth in a genetically engineered mouse model of serous ovarian cancer under obese and non-obese conditions. Celecoxib inhibited cell proliferation in three ovarian cancer cell lines and five primary cultures of human ovarian cancer after 72 hours of exposure. Treatment with celecoxib resulted in G1 cell cycle arrest, induction of apoptosis, inhibition of cellular adhesion and invasion and reduction of expression of hTERT mRNA and COX-2 protein in all of the ovarian cancer cell lines. In the KpB mice fed a high fat diet (obese) and treated with celecoxib, tumor weight decreased by 66% when compared with control animals. Among KpB mice fed a low fat diet (non-obese), tumor weight decreased by 46% after treatment with celecoxib. In the ovarian tumors from obese and non-obese KpB mice, treatment with celecoxib as compared to control resulted in decreased proliferation, increased apoptosis and reduced COX-2 and MMP9 protein expression, as assessed by immunohistochemistry. Celecoxib strongly decreased the serum level of VEGF and blood vessel density in the tumors from the KpB ovarian cancer mouse model under obese and non-obese conditions. This work suggests that celecoxib may be a novel chemotherapeutic agent for ovarian cancer prevention and treatment and be potentially beneficial in both obese and non-obese women.
Collapse
|
10
|
Jackson AL, Sun W, Kilgore J, Guo H, Fang Z, Yin Y, Jones HM, Gilliam TP, Zhou C, Bae-Jump VL. Phenformin has anti-tumorigenic effects in human ovarian cancer cells and in an orthotopic mouse model of serous ovarian cancer. Oncotarget 2017; 8:100113-100127. [PMID: 29245964 PMCID: PMC5725006 DOI: 10.18632/oncotarget.22012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 09/30/2017] [Indexed: 01/07/2023] Open
Abstract
Obesity and diabetes have been associated with increased risk and worse outcomes in ovarian cancer (OC). The biguanide metformin is used in the treatment of type 2 diabetes and is also believed to have anti-tumorigenic benefits. Metformin is highly hydrophilic and requires organic cation transporters (OCTs) for entry into human cells. Phenformin, another biguanide, was taken off the market due to an increased risk of lactic acidosis over metformin. However, phenformin is not reliant on transporters for cell entry; and thus, may have increased potency as both an anti-diabetic and anti-tumorigenic agent than metformin. Thus, our goal was to evaluate the effect of phenformin on established OC cell lines, primary cultures of human OC cells and in an orthotopic mouse model of high grade serous OC. In three OC cell lines, phenformin significantly inhibited cellular proliferation, induced cell cycle G1 arrest and apoptosis, caused cellular stress, inhibited adhesion and invasion, and activation of AMPK and inhibition of the mTOR pathway. Phenformin also exerted anti-proliferative effects in seven primary cell cultures of human OC. Lastly, phenformin inhibited tumor growth in an orthotopic mouse model of serous OC, coincident with decreased Ki-67 staining and phosphorylated-S6 expression and increased expression of caspase 3 and phosphorylated-AMPK. Our findings demonstrate that phenformin has anti-tumorigenic effects in OC as previously demonstrated by metformin but it is yet to be determined if it is superior to metformin for the potential treatment of this disease.
Collapse
Affiliation(s)
- Amanda L. Jackson
- Division of Gynecologic Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Wenchuan Sun
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joshua Kilgore
- Houston Methodist Gynecologic Oncology Associates, Houston, TX, USA
| | - Hui Guo
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Gynecologic Oncology, Shandong Cancer Hospital & Institute, Jinan, P.R. China
| | - Ziwei Fang
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, P.R. China
| | - Yajie Yin
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hannah M. Jones
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy P. Gilliam
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victoria L. Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Han J, Wysham WZ, Zhong Y, Guo H, Zhang L, Malloy KM, Dickens HK, Huh G, Lee D, Makowski L, Zhou C, Bae-Jump VL. Increased efficacy of metformin corresponds to differential metabolic effects in the ovarian tumors from obese versus lean mice. Oncotarget 2017; 8:110965-110982. [PMID: 29340030 PMCID: PMC5762298 DOI: 10.18632/oncotarget.20754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/03/2017] [Indexed: 12/21/2022] Open
Abstract
Obesity is a significant risk factor for ovarian cancer (OC) and associated with worse outcomes for this disease. We assessed the anti-tumorigenic effects of metformin in human OC cell lines and a genetically engineered mouse model of high grade serous OC under obese and lean conditions. Metformin potently inhibited growth in a dose-dependent manner in all four human OC cell lines through AMPK/mTOR pathways. Treatment with metformin resulted in G1 arrest, induction of apoptosis, reduction of invasion and decreased hTERT expression. In the K18-gT121+/-; p53fl/fl; Brca1fl/fl (KpB) mouse model, metformin inhibited tumor growth in both lean and obese mice. However, in the obese mice, metformin decreased tumor growth by 60%, whereas tumor growth was only decreased by 32% in the lean mice (p=0.003) compared to vehicle-treated mice. The ovarian tumors from obese mice had evidence of impaired mitochondrial complex 2 function and energy supplied by omega fatty acid oxidation rather than glycolysis as compared to lean mice, as assessed by metabolomic profiling. The improved efficacy of metformin in obesity corresponded with inhibition of mitochondrial complex 1 and fatty acid oxidation, and stimulation of glycolysis in only the OCs of obese versus lean mice. In conclusion, metformin had anti-tumorigenic effects in OC cell lines and the KpB OC pre-clinical mouse model, with increased efficacy in obese versus lean mice. Detected metabolic changes may underlie why ovarian tumors in obese mice have heightened susceptibility to metformin.
Collapse
Affiliation(s)
- Jianjun Han
- Department of Surgical Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Postdoctoral Mobile Station of Tianjin Medical University, Tianjin, P.R. China.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, USA
| | - Weiya Z Wysham
- Legacy Medical Group, Gynecologic Oncology, Portland, OR, USA
| | - Yan Zhong
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, USA.,Department of Gynecologic Oncology, Linyi Cancer Hospital, Linyi, Shandong, P.R. China
| | - Hui Guo
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, USA.,Department of Gynecologic Oncology, Shandong Cancer Hospital & Institute, Jinan, P.R. China
| | - Lu Zhang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, USA.,Department of Gynecologic Oncology, Shandong Cancer Hospital & Institute, Jinan, P.R. China
| | - Kim M Malloy
- Virginia Tech/Carilion Clinic, Department of Obstetrics and Gynecology, Blacksburg, VA, USA
| | - Hallum K Dickens
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, USA
| | - Gene Huh
- Seoul National University College of Medicine, Seoul, South Korea
| | | | - Liza Makowski
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Victoria L Bae-Jump
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
12
|
Abstract
Ovarian cancer is the most fatal gynecologic cancer and is an important source of cancer-related mortality, particularly in developed countries. Despite substantial research examining adiposity (primarily adult body mass index [BMI]), the overall evidence suggests only a weak positive association between adiposity and risk of ovarian cancer, with stronger associations observed for population-based case-control studies compared to prospective studies. Ovarian cancer is not one disease and emerging data suggest that higher BMI may only be associated with risk of certain histologic subtypes, including low-grade serous and invasive mucinous tumors. Interestingly, some larger studies and meta-analyses have reported a stronger relationship with premenopausal ovarian cancers, which are more likely to be of these subtypes. Relatively few studies have conducted detailed examinations of other adiposity-related factors such as measures of abdominal adiposity, early-life body size and weight change. While the underlying mechanisms that may relate adiposity to risk are unclear, increased inflammatory biomarkers have been associated with risk and hormonal factors, including androgen levels, may be important for the development of mucinous tumors. Future research should leverage the large sample sizes of consortia to evaluate associations by key tumor characteristics as well as consider patterns of weight change over the life course with both ovarian cancer risk and survival.
Collapse
|
13
|
Brenner DR, Poirier AE, Grundy A, Khandwala F, McFadden A, Friedenreich CM. Cancer incidence attributable to excess body weight in Alberta in 2012. CMAJ Open 2017; 5:E330-E336. [PMID: 28455439 PMCID: PMC5510285 DOI: 10.9778/cmajo.20160039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Excess body weight has been consistently associated with colorectal, breast, endometrial, esophageal, gall bladder, pancreatic and kidney cancers. The objective of this analysis was to estimate the proportion of total and site-specific cancers attributable to excess body weight in adults in Alberta in 2012. METHODS We estimated the proportions of attributable cancers using population attributable risk. Risk estimates were obtained from recent meta-analyses, and exposure prevalence estimates were obtained from the Canadian Community Health Survey. People with a body mass index of 25.00-29.99 kg/m2 and of 30 kg/m2 or more were categorized as overweight and obese, respectively. RESULTS About 14%-47% of men and 9%-35% of women in Alberta were classified as either overweight or obese; the proportion increased with increasing age for both sexes. We estimate that roughly 17% and 12% of obesity-related cancers among men and women, respectively, could be attributed to excess body weight in Alberta in 2012. The heaviest absolute burden in terms of number of cases was seen for breast cancer among women and for colorectal cancer among men. Overall, about 5% of all cancers in adults in Alberta in 2012 were estimated to be attributable to excess body weight in 2000-2003. INTERPRETATION Excess body weight contributes to a substantial proportion of cases of cancers associated with overweight and obesity annually in Alberta. Strategies to improve energy imbalance and reduce the proportion of obese and overweight Albertans may have a notable impact on cancer incidence in the future.
Collapse
Affiliation(s)
- Darren R Brenner
- Affiliations: Department of Cancer Epidemiology and Prevention Research (Brenner, Poirier, Grundy, Khandwala, McFadden, Friedenreich), CancerControl Alberta, Alberta Health Services; Department of Oncology (Brenner, Friedenreich), Cumming School of Medicine; Department of Community Health Sciences (Brenner, Friedenreich), Cumming School of Medicine, University of Calgary, Calgary, Alta
| | - Abbey E Poirier
- Affiliations: Department of Cancer Epidemiology and Prevention Research (Brenner, Poirier, Grundy, Khandwala, McFadden, Friedenreich), CancerControl Alberta, Alberta Health Services; Department of Oncology (Brenner, Friedenreich), Cumming School of Medicine; Department of Community Health Sciences (Brenner, Friedenreich), Cumming School of Medicine, University of Calgary, Calgary, Alta
| | - Anne Grundy
- Affiliations: Department of Cancer Epidemiology and Prevention Research (Brenner, Poirier, Grundy, Khandwala, McFadden, Friedenreich), CancerControl Alberta, Alberta Health Services; Department of Oncology (Brenner, Friedenreich), Cumming School of Medicine; Department of Community Health Sciences (Brenner, Friedenreich), Cumming School of Medicine, University of Calgary, Calgary, Alta
| | - Farah Khandwala
- Affiliations: Department of Cancer Epidemiology and Prevention Research (Brenner, Poirier, Grundy, Khandwala, McFadden, Friedenreich), CancerControl Alberta, Alberta Health Services; Department of Oncology (Brenner, Friedenreich), Cumming School of Medicine; Department of Community Health Sciences (Brenner, Friedenreich), Cumming School of Medicine, University of Calgary, Calgary, Alta
| | - Alison McFadden
- Affiliations: Department of Cancer Epidemiology and Prevention Research (Brenner, Poirier, Grundy, Khandwala, McFadden, Friedenreich), CancerControl Alberta, Alberta Health Services; Department of Oncology (Brenner, Friedenreich), Cumming School of Medicine; Department of Community Health Sciences (Brenner, Friedenreich), Cumming School of Medicine, University of Calgary, Calgary, Alta
| | - Christine M Friedenreich
- Affiliations: Department of Cancer Epidemiology and Prevention Research (Brenner, Poirier, Grundy, Khandwala, McFadden, Friedenreich), CancerControl Alberta, Alberta Health Services; Department of Oncology (Brenner, Friedenreich), Cumming School of Medicine; Department of Community Health Sciences (Brenner, Friedenreich), Cumming School of Medicine, University of Calgary, Calgary, Alta
| |
Collapse
|
14
|
Reid BM, Permuth JB, Sellers TA. Epidemiology of ovarian cancer: a review. Cancer Biol Med 2017. [PMID: 28443200 DOI: 10.20892/j.issn.2095-3941.2016.0084]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer (OC) is the seventh most commonly diagnosed cancer among women in the world and the tenth most common in China. Epithelial OC is the most predominant pathologic subtype, with five major histotypes that differ in origination, pathogenesis, molecular alterations, risk factors, and prognosis. Genetic susceptibility is manifested by rare inherited mutations with high to moderate penetrance. Genome-wide association studies have additionally identified 29 common susceptibility alleles for OC, including 14 subtype-specific alleles. Several reproductive and hormonal factors may lower risk, including parity, oral contraceptive use, and lactation, while others such as older age at menopause and hormone replacement therapy confer increased risks. These associations differ by histotype, especially for mucinous OC, likely reflecting differences in etiology. Endometrioid and clear cell OC share a similar, unique pattern of associations with increased risks among women with endometriosis and decreased risks associated with tubal ligation. OC risks associated with other gynecological conditions and procedures, such as hysterectomy, pelvic inflammatory disease, and polycystic ovarian syndrome, are less clear. Other possible risk factors include environmental and lifestyle factors such as asbestos and talc powder exposures, and cigarette smoking. The epidemiology provides clues on etiology, primary prevention, early detection, and possibly even therapeutic strategies.
Collapse
Affiliation(s)
- Brett M Reid
- Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, Tampa 33612, FL, USA
| | - Jennifer B Permuth
- Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, Tampa 33612, FL, USA
| | - Thomas A Sellers
- Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, Tampa 33612, FL, USA
| |
Collapse
|
15
|
Abstract
Ovarian cancer (OC) is the seventh most commonly diagnosed cancer among women in the world and the tenth most common in China. Epithelial OC is the most predominant pathologic subtype, with five major histotypes that differ in origination, pathogenesis, molecular alterations, risk factors, and prognosis. Genetic susceptibility is manifested by rare inherited mutations with high to moderate penetrance. Genome-wide association studies have additionally identified 29 common susceptibility alleles for OC, including 14 subtype-specific alleles. Several reproductive and hormonal factors may lower risk, including parity, oral contraceptive use, and lactation, while others such as older age at menopause and hormone replacement therapy confer increased risks. These associations differ by histotype, especially for mucinous OC, likely reflecting differences in etiology. Endometrioid and clear cell OC share a similar, unique pattern of associations with increased risks among women with endometriosis and decreased risks associated with tubal ligation. OC risks associated with other gynecological conditions and procedures, such as hysterectomy, pelvic inflammatory disease, and polycystic ovarian syndrome, are less clear. Other possible risk factors include environmental and lifestyle factors such as asbestos and talc powder exposures, and cigarette smoking. The epidemiology provides clues on etiology, primary prevention, early detection, and possibly even therapeutic strategies.
Collapse
Affiliation(s)
- Brett M Reid
- Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, Tampa 33612, FL, USA
| | - Jennifer B Permuth
- Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, Tampa 33612, FL, USA
| | - Thomas A Sellers
- Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, Tampa 33612, FL, USA
| |
Collapse
|
16
|
Abstract
Ovarian cancer (OC) is the seventh most commonly diagnosed cancer among women in the world and the tenth most common in China. Epithelial OC is the most predominant pathologic subtype, with five major histotypes that differ in origination, pathogenesis, molecular alterations, risk factors, and prognosis. Genetic susceptibility is manifested by rare inherited mutations with high to moderate penetrance. Genome-wide association studies have additionally identified 29 common susceptibility alleles for OC, including 14 subtype-specific alleles. Several reproductive and hormonal factors may lower risk, including parity, oral contraceptive use, and lactation, while others such as older age at menopause and hormone replacement therapy confer increased risks. These associations differ by histotype, especially for mucinous OC, likely reflecting differences in etiology. Endometrioid and clear cell OC share a similar, unique pattern of associations with increased risks among women with endometriosis and decreased risks associated with tubal ligation. OC risks associated with other gynecological conditions and procedures, such as hysterectomy, pelvic inflammatory disease, and polycystic ovarian syndrome, are less clear. Other possible risk factors include environmental and lifestyle factors such as asbestos and talc powder exposures, and cigarette smoking. The epidemiology provides clues on etiology, primary prevention, early detection, and possibly even therapeutic strategies.
Collapse
Affiliation(s)
- Brett M Reid
- Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, Tampa 33612, FL, USA
| | - Jennifer B Permuth
- Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, Tampa 33612, FL, USA
| | - Thomas A Sellers
- Department of Cancer Epidemiology, Division of Population Sciences, Moffitt Cancer Center, Tampa 33612, FL, USA
| |
Collapse
|
17
|
Alberg AJ, Moorman PG, Crankshaw S, Wang F, Bandera EV, Barnholtz-Sloan JS, Bondy M, Cartmell KB, Cote ML, Ford ME, Funkhouser E, Kelemen LE, Peters ES, Schwartz AG, Sterba KR, Terry P, Wallace K, Schildkraut JM. Socioeconomic Status in Relation to the Risk of Ovarian Cancer in African-American Women: A Population-Based Case-Control Study. Am J Epidemiol 2016; 184:274-83. [PMID: 27492896 DOI: 10.1093/aje/kwv450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/22/2015] [Indexed: 11/13/2022] Open
Abstract
We investigated the association between socioeconomic status and ovarian cancer in African-American women. We used a population-based case-control study design that included case patients with incident ovarian cancer (n = 513) and age- and area-matched control participants (n = 721) from 10 states who were recruited into the African American Cancer Epidemiology Study from December 2010 through December 2014. Questionnaires were administered via telephone, and study participants responded to questions about several characteristics, including years of education, family annual income, and risk factors for ovarian cancer. After adjustment for established ovarian cancer risk factors, women with a college degree or more education had an odds ratio of 0.71 (95% confidence interval (CI): 0.51, 0.99) when compared with those with a high school diploma or less (P for trend = 0.02); women with family annual incomes of $75,000 or more had an odds ratio of 0.74 (95% CI: 0.47, 1.16) when compared with those with incomes less than $10,000 (P for trend = 0.055). When these variables were dichotomized, compared with women with a high school diploma or less, women with more education had an adjusted odds ratio of 0.72 (95% CI: 0.55, 0.93), and compared with women with an income less than $25,000, women with higher incomes had an adjusted odds ratio of 0.86 (95% CI: 0.66, 1.12). These findings suggest that ovarian cancer risk may be inversely associated with socioeconomic status among African-American women and highlight the need for additional evidence to more thoroughly characterize the association between socioeconomic status and ovarian cancer.
Collapse
|
18
|
Huang YK, Kang WM, Ma ZQ, Liu YQ, Zhou L, Yu JC. Body mass index, serum total cholesterol, and risk of gastric high-grade dysplasia: A case-control study among Chinese adults. Medicine (Baltimore) 2016; 95:e4730. [PMID: 27583914 PMCID: PMC5008598 DOI: 10.1097/md.0000000000004730] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Obesity is related to an increased risk of gastric cardia cancer. However, the influences of excess body weight and serum total cholesterol on the risk of gastric high-grade dysplasia have not been fully characterized.A case-control study was conducted to explore the relationships between body mass index (BMI), serum total cholesterol level, and the risk of gastric high-grade dysplasia in Chinese adults. A total of 893 consecutive patients with gastric high-grade dysplasia (537 men and 356 women) and 902 controls (543 men and 359 women) were enrolled from January 2000 to October 2015. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated, and a multivariate analysis was conducted.After adjusting for age, alcohol consumption, smoking status, family history of gastric cancer or esophageal cancer, and serum total cholesterol level, a BMI ranging from 27.5 to 29.9 was significantly related to an increased risk of gastric high-grade dysplasia in both men (adjusted OR = 1.87, 95% CI = 1.24-2.81) and women (adjusted OR = 2.72, 95% CI = 1.44-5.16). The 2 highest BMI categories (27.5-29.9 and ≥30.0) were identified as risk factors for gastric cardia high-grade dysplasia in both men (BMI = 27.5-29.9: adjusted OR = 1.78, 95% CI = 1.02-3.10; BMI ≥ 30.0: adjusted OR = 2.54, 95% CI = 1.27-5.08) and women (BMI = 27.5-29.9: adjusted OR = 2.88, 95% CI = 1.27-6.55; BMI ≥ 30.0: adjusted OR = 2.77, 95% CI = 1.36-5.64), whereas only a BMI ranging from 27.5 to 29.9 was a risk factor for gastric noncardia high-grade dysplasia in both men (adjusted OR = 1.98, 95% CI = 1.25-3.14) and women (adjusted OR = 2.88, 95% CI = 1.43-5.81). In addition, higher serum total cholesterol was associated with an increased risk of gastric noncardia high-grade dysplasia (adjusted OR = 1.83, 95% CI = 1.25-2.69) in women.Increased BMI was associated with an increased risk of gastric high-grade dysplasia in both men and women, and higher serum total cholesterol increased the risk of gastric noncardia high-grade dysplasia in women.
Collapse
Affiliation(s)
- Ya-Kai Huang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Wei-Ming Kang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Zhi-Qiang Ma
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Yu-Qin Liu
- Cell Culture Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Jian-Chun Yu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
- Correspondence: Jian-Chun Yu, Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing 100730, China (e-mail: )
| |
Collapse
|
19
|
Obón-Santacana M, Freisling H, Peeters PH, Lujan-Barroso L, Ferrari P, Boutron-Ruault MC, Mesrine S, Baglietto L, Turzanski-Fortner R, Katzke VA, Boeing H, Quirós JR, Molina-Portillo E, Larrañaga N, Chirlaque MD, Barricarte A, Khaw KT, Wareham N, Travis RC, Merritt MA, Gunter MJ, Trichopoulou A, Lagiou P, Naska A, Palli D, Sieri S, Tumino R, Fiano V, Galassom R, Bueno-de-Mesquita HBA, Onland-Moret NC, Idahl A, Lundin E, Weiderpass E, Vesper H, Riboli E, Duell EJ. Acrylamide and glycidamide hemoglobin adduct levels and endometrial cancer risk: A nested case-control study in nonsmoking postmenopausal women from the EPIC cohort. Int J Cancer 2016; 138:1129-38. [PMID: 26376083 PMCID: PMC4716289 DOI: 10.1002/ijc.29853] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 12/11/2022]
Abstract
Acrylamide, classified in 1994 by IARC as "probably carcinogenic to humans," was discovered in 2002 in some heat-treated, carbohydrate-rich foods. Four prospective studies have evaluated the association between dietary acrylamide intake and endometrial cancer (EC) risk with inconsistent results. The purpose of this nested case-control study, based on the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, was to evaluate, for the first time, the association between hemoglobin adducts of acrylamide (HbAA) and glycidamide (HbGA) and the risk of developing EC in non-smoking postmenopausal women. Hemoglobin adducts were measured in red blood cells by HPLC/MS/MS. Four exposure variables were evaluated: HbAA, HbGA, their sum (HbAA+HbGA), and their ratio (HbGA/HbAA). The association between hemoglobin adducts and EC was evaluated using unconditional multivariable logistic regression models, and included 383 EC cases (171 were type-I EC), and 385 controls. Exposure variables were analyzed in quintiles based on control distributions. None of the biomarker variables had an effect on overall EC (HRHbAA;Q5vsQ1 : 0.84, 95%CI: 0.49-1.48; HRHbGA;Q5vsQ1 : 0.94, 95%CI: 0.54-1.63) or type-I EC risk. Additionally, none of the subgroups investigated (BMI < 25 vs. ≥25 kg m(-2) , alcohol drinkers vs. never drinkers, oral contraceptive users vs. non-users) demonstrated effect measure modification. Hemoglobin adducts of acrylamide or glycidamide were not associated with EC or type-I EC risk in 768 nonsmoking postmenopausal women from the EPIC cohort.
Collapse
Affiliation(s)
- Mireia Obón-Santacana
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Heinz Freisling
- Dietary Exposure Assessment Group, International Agency for Research on Cancer, Lyon, France
| | - Petra H Peeters
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Leila Lujan-Barroso
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Pietro Ferrari
- Dietary Exposure Assessment Group, International Agency for Research on Cancer, Lyon, France
| | - Marie-Christine Boutron-Ruault
- Inserm, CESP Centre for Research in Epidemiology and Population Health, Lifestyle, Genes and Health: Integrative Trans-Generational Epidemiology, Villejuif, France
- Universite Paris Sud, Villejuif, France
- Institut Gustave-Roussy (IGR), Villejuif, France
| | - Sylvie Mesrine
- Inserm, CESP Centre for Research in Epidemiology and Population Health, Lifestyle, Genes and Health: Integrative Trans-Generational Epidemiology, Villejuif, France
- Universite Paris Sud, Villejuif, France
- Institut Gustave-Roussy (IGR), Villejuif, France
| | - Laura Baglietto
- Cancer Council of Victoria, Cancer Epidemiology Centre, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | | | - Verena A Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany
| | | | - Elena Molina-Portillo
- Escuela Andaluza De Salud Pública, Instituto De Investigación Biosanitaria Ibs, GRANADA, Hospitales Universitarios De Granada/Universidad De Granada, Granada, Spain
- CIBER, Epidemiology and Public Health CIBERESP, Madrid, Spain
| | - Nerea Larrañaga
- CIBER, Epidemiology and Public Health CIBERESP, Madrid, Spain
- Public Health Division of Gipuzkoa, Regional Government of the Basque Country, Gipuzkoa, Spain
| | - María-Dolores Chirlaque
- CIBER, Epidemiology and Public Health CIBERESP, Madrid, Spain
- Department of Epidemiology, Regional Health Council, Murcia, Spain
- Department of Health and Social Sciences, Murcia University, Murcia, Spain
| | - Aurelio Barricarte
- CIBER, Epidemiology and Public Health CIBERESP, Madrid, Spain
- Navarra Public Health Institute, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Kay-Tee Khaw
- University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Nick Wareham
- Nuffield Department of Population Health University of Oxford, Cancer Epidemiology Unit, Oxford, United Kingdom
| | - Ruth C Travis
- Nuffield Department of Population Health University of Oxford, Cancer Epidemiology Unit, Oxford, United Kingdom
| | - Melissa A Merritt
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Marc J Gunter
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | | | - Pagona Lagiou
- Hellenic Health Foundation, Athens, Greece
- Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Athens, Greece
| | - Androniki Naska
- Hellenic Health Foundation, Athens, Greece
- Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Athens, Greece
| | - Domenico Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute-ISPO, Florence, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, "Civic - M.P.Arezzo" Hospital, ASP Ragusa, Italy
| | - Valentina Fiano
- Department of Medical Sciences University of Turin, Unit of Cancer Epidemiology-CERMS, Turin, Italy
| | - Rocco Galassom
- Biostatistics and Cancer Registry, IRCCS Centro Di Riferimento Oncologico Di Basilicata, Unit of Clinical Epidemiology, Rionero in Vulture, Potenza, Italy
| | - H B As Bueno-de-Mesquita
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annika Idahl
- Department of Clinical Sciences, Obstetrics and Gynecology, Nutritional Research Umeå University, Umeå, Sweden
- Department of Public Health and Clinical Medicine, Nutritional Research Umeå University, Umeå, Sweden
| | - Eva Lundin
- Department of Medical Biosciences, Pathology Umeå University, Umeå, Sweden
| | - Elisabete Weiderpass
- Department of Community Medicine, Faculty of Health Sciences, the Arctic University of Norway, University of Tromsø, Tromsø, Norway
- Department of Research, Cancer Registry of Norway, Oslo, Norway
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland
| | - Hubert Vesper
- Centers for Disease Control and Prevention, Atlanta, GA
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Eric J Duell
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| |
Collapse
|
20
|
Vici P, Pizzuti L, Di Lauro L, Conti L, Mandoj C, Antenucci A, Digiesi G, Sergi D, Amodio A, Marchetti P, Sperati F, Valle M, Garofalo A, Vizza E, Corrado G, Vincenzoni C, Tomao F, Kayal R, Marsella A, Carosi M, Antoniani B, Giordano A, Maugeri-Saccà M, Barba M. Metabolic Determinants and Anthropometric Indicators Impact Clinical-pathological Features in Epithelial Ovarian Cancer Patients. J Cancer 2016; 7:516-22. [PMID: 26958087 PMCID: PMC4780127 DOI: 10.7150/jca.13578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/08/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Over the last twenty years, the efforts of the scientific community devoted to the comprehension and treatment of ovarian cancer have remained poorly remunerative, with the case-fatality ratio of this disease remaining disappointedly high. Limited knowledge of the basic principles regulating ovarian carcinogenesis and factors impacting the course of disease may significantly impair our ability to intervene in early stages and lessen our expectations in terms of treatment outcomes. In the present study, we sought to assess whether metabolic factors and anthropometric indicators, i.e., pre-treatment fasting glucose and body mass index, are associated with renown cancer related prognostic factors such as tumour stage and grade at diagnosis. MATERIALS AND METHODS Study participants were 147 women diagnosed with epithelial ovarian cancer and treated with platinum based regimens and/or surgery at the Regina Elena National Cancer Institute of Rome, Italy. Glucose levels were assessed at the institutional laboratories on venous blood collected in overnight fasting conditions and prior to any therapeutic procedure. Stage was coded according to the FIGO staging system based on the results of the diagnostic workup, while tumour grade was locally assessed by an expert pathologist. Participants' characteristics were descriptively analyzed for the overall study population and in a subgroup of 70 patients for whom data on body mass index (BMI) were available. FIGO stage and grade were compared by categories of pre-treatment fasting glucose defined upon the median value, i.e., 89 mg/dl. The association of interest was tested in regression models including BMI. RESULTS For the overall study population, patients in the lowest category of fasting glucose were significantly more likely to exhibit a FIGO stage III-IV at diagnosis compared with their counterpart in the highest glucose category (81.3 vs 66.7%, p: 0.021). Subgroup analysis in 70 patients with BMI data confirmed this association (81.5 vs 55.8, p: 0.049), which remained significant when tested in regression models including BMI (OR: 0.28 95% CI 0.086-0.89, p: 0.031). No relevant evidence emerged when testing the association between fasting glucose and tumour grade. CONCLUSIONS In patients diagnosed with epithelial ovarian cancer, pre-treatment glucose levels appear to be inversely associated with FIGO stage. Further studies are warranted to eventually confirm and correctly interpret the implications of this novel finding.
Collapse
Affiliation(s)
- Patrizia Vici
- 1. Division of Medical Oncology 2, Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Pizzuti
- 1. Division of Medical Oncology 2, Regina Elena National Cancer Institute, Rome, Italy
| | - Luigi Di Lauro
- 1. Division of Medical Oncology 2, Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Conti
- 2. Division of Clinical Pathology, Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Mandoj
- 2. Division of Clinical Pathology, Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Antenucci
- 2. Division of Clinical Pathology, Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanna Digiesi
- 2. Division of Clinical Pathology, Regina Elena National Cancer Institute, Rome, Italy
| | - Domenico Sergi
- 1. Division of Medical Oncology 2, Regina Elena National Cancer Institute, Rome, Italy
| | - Antonella Amodio
- 1. Division of Medical Oncology 2, Regina Elena National Cancer Institute, Rome, Italy
| | - Paolo Marchetti
- 3. Oncology Unit, Sant'Andrea Hospital, La Sapienza University of Rome, Italy
| | - Francesca Sperati
- 4. Biostatistics Unit-Scientific Direction, Regina Elena National Cancer Institute, Rome, Italy
| | - Mario Valle
- 5. General Surgery, Regina Elena National Institute, Rome, Italy
| | - Alfredo Garofalo
- 5. General Surgery, Regina Elena National Institute, Rome, Italy
| | - Enrico Vizza
- 6. Gynecological Oncology, Regina Elena National Cancer Institute, Rome, Italy
| | - Giacomo Corrado
- 6. Gynecological Oncology, Regina Elena National Cancer Institute, Rome, Italy
| | - Cristina Vincenzoni
- 6. Gynecological Oncology, Regina Elena National Cancer Institute, Rome, Italy
| | - Federica Tomao
- 7. Department of Gynecologic Oncology, University “Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy
| | - Ramy Kayal
- 8. Department of Radiology, Regina Elena National Cancer Institute, Rome, Italy
| | - Annalise Marsella
- 8. Department of Radiology, Regina Elena National Cancer Institute, Rome, Italy
| | - Mariantonia Carosi
- 9. Department of Pathology, Regina Elena National Cancer Institute, Rome, Italy
| | - Barbara Antoniani
- 9. Department of Pathology, Regina Elena National Cancer Institute, Rome, Italy
| | - Antonio Giordano
- 10. Sbarro Institute for Cancer Research and Molecular Medicine e del Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
- 11. Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Marcello Maugeri-Saccà
- 1. Division of Medical Oncology 2, Regina Elena National Cancer Institute, Rome, Italy
- 12. Scientific Direction, Regina Elena National Cancer Institute, Rome, Italy
| | - Maddalena Barba
- 1. Division of Medical Oncology 2, Regina Elena National Cancer Institute, Rome, Italy
- 12. Scientific Direction, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
21
|
Obón-Santacana M, Lujan-Barroso L, Travis RC, Freisling H, Ferrari P, Severi G, Baglietto L, Boutron-Ruault MC, Fortner RT, Ose J, Boeing H, Menéndez V, Sánchez-Cantalejo E, Chamosa S, Castaño JMH, Ardanaz E, Khaw KT, Wareham N, Merritt MA, Gunter MJ, Trichopoulou A, Papatesta EM, Klinaki E, Saieva C, Tagliabue G, Tumino R, Sacerdote C, Mattiello A, Bueno-de-Mesquita HB, Peeters PH, Onland-Moret NC, Idahl A, Lundin E, Weiderpass E, Vesper HW, Riboli E, Duell EJ. Acrylamide and Glycidamide Hemoglobin Adducts and Epithelial Ovarian Cancer: A Nested Case-Control Study in Nonsmoking Postmenopausal Women from the EPIC Cohort. Cancer Epidemiol Biomarkers Prev 2016; 25:127-34. [PMID: 26598536 PMCID: PMC5699214 DOI: 10.1158/1055-9965.epi-15-0822] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/28/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Acrylamide was classified as "probably carcinogenic to humans (group 2A)" by the International Agency for Research on Cancer. Epithelial ovarian cancer (EOC) is the fourth cause of cancer mortality in women. Five epidemiological studies have evaluated the association between EOC risk and dietary acrylamide intake assessed using food frequency questionnaires, and one nested case-control study evaluated hemoglobin adducts of acrylamide (HbAA) and its metabolite glycidamide (HbGA) and EOC risk; the results of these studies were inconsistent. METHODS A nested case-control study in nonsmoking postmenopausal women (334 cases, 417 controls) was conducted within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Unconditional logistic regression models were used to estimate ORs and 95% confidence intervals (CI) for the association between HbAA, HbGA, HbAA+HbGA, and HbGA/HbAA and EOC and invasive serous EOC risk. RESULTS No overall associations were observed between biomarkers of acrylamide exposure analyzed in quintiles and EOC risk; however, positive associations were observed between some middle quintiles of HbGA and HbAA+HbGA. Elevated but nonstatistically significant ORs for serous EOC were observed for HbGA and HbAA+HbGA (ORQ5vsQ1, 1.91; 95% CI, 0.96-3.81 and ORQ5vsQ1, 1.90; 95% CI, 0.94-3.83, respectively); however, no linear dose-response trends were observed. CONCLUSION This EPIC nested case-control study failed to observe a clear association between biomarkers of acrylamide exposure and the risk of EOC or invasive serous EOC. IMPACT It is unlikely that dietary acrylamide exposure increases ovarian cancer risk; however, additional studies with larger sample size should be performed to exclude any possible association with EOC risk.
Collapse
Affiliation(s)
- Mireia Obón-Santacana
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Leila Lujan-Barroso
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Heinz Freisling
- Dietary Exposure Assessment Group, International Agency for Research on Cancer, Lyon, France
| | - Pietro Ferrari
- Dietary Exposure Assessment Group, International Agency for Research on Cancer, Lyon, France
| | | | - Laura Baglietto
- Cancer Epidemiology Centre, Cancer Council of Victoria, Melbourne, Australia. Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Marie-Christine Boutron-Ruault
- Inserm, CESP Centre for Research in Epidemiology and Population Health, U1018, Lifestyle, Genes and Health: Integrative Trans-Generational Epidemiology, Villejuif, France. Univ Paris Sud, UMRS 1018, Villejuif, France. Gustave Roussy, Villejuif, France
| | - Renée T Fortner
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Jennifer Ose
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany
| | | | - Emilio Sánchez-Cantalejo
- CIBER Epidemiology and Public Health CIBERESP, Madrid, Spain. Escuela Andaluza de Salud Pública. Instituto de Investigación Biosanitaria ibs.GRANADA. Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
| | - Saioa Chamosa
- Public Health Division of Gipuzkoa-BIODONOSTIA, Basque Regional Health Department, San Sebastian, Spain
| | - José María Huerta Castaño
- CIBER Epidemiology and Public Health CIBERESP, Madrid, Spain. Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
| | - Eva Ardanaz
- CIBER Epidemiology and Public Health CIBERESP, Madrid, Spain. Navarra Public Health Institute, Pamplona, Spain. IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Kay-Tee Khaw
- University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Nick Wareham
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Melissa A Merritt
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Marc J Gunter
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Athens, Greece. WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Greece
| | | | | | - Calogero Saieva
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute - ISPO, Florence, Italy
| | - Giovanna Tagliabue
- Lombardy Cancer Registry Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, "Civic - M.P.Arezzo" Hospital, ASP Ragusa, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Citta' della Salute e della Scienza Hospital-University of Turin and Center for Cancer Prevention (CPO), Torino, Italy
| | - Amalia Mattiello
- Dipartamiento di Medicina Clinica e Chirurgia Federico II University, Naples, Italy
| | - H B Bueno-de-Mesquita
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom. Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands. Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, the Netherlands. Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Petra H Peeters
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom. Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Annika Idahl
- Department of Clinical Sciences, Obstetrics and Gynecology Nutritional Research Umeå University, Umeå, Sweden. Department of Public Health and Clinical Medicine, Nutritional Research Umeå University, Umeå, Sweden
| | - Eva Lundin
- Department of Medical Biosciences, Pathology Umeå University, Umeå, Sweden
| | - Elisabete Weiderpass
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. Department of Research, Cancer Registry of Norway, Oslo, Norway. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland
| | - Hubert W Vesper
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Eric J Duell
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain.
| |
Collapse
|
22
|
Liu Y, Metzinger MN, Lewellen KA, Cripps SN, Carey KD, Harper EI, Shi Z, Tarwater L, Grisoli A, Lee E, Slusarz A, Yang J, Loughran EA, Conley K, Johnson JJ, Klymenko Y, Bruney L, Liang Z, Dovichi NJ, Cheatham B, Leevy WM, Stack MS. Obesity Contributes to Ovarian Cancer Metastatic Success through Increased Lipogenesis, Enhanced Vascularity, and Decreased Infiltration of M1 Macrophages. Cancer Res 2015; 75:5046-57. [PMID: 26573796 PMCID: PMC4668203 DOI: 10.1158/0008-5472.can-15-0706] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/26/2015] [Indexed: 12/14/2022]
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of death from gynecologic malignancy, with high mortality attributable to widespread intraperitoneal metastases. Recent meta-analyses report an association between obesity, ovarian cancer incidence, and ovarian cancer survival, but the effect of obesity on metastasis has not been evaluated. The objective of this study was to use an integrative approach combining in vitro, ex vivo, and in vivo studies to test the hypothesis that obesity contributes to ovarian cancer metastatic success. Initial in vitro studies using three-dimensional mesomimetic cultures showed enhanced cell-cell adhesion to the lipid-loaded mesothelium. Furthermore, in an ex vivo colonization assay, ovarian cancer cells exhibited increased adhesion to mesothelial explants excised from mice modeling diet-induced obesity (DIO), in which they were fed a "Western" diet. Examination of mesothelial ultrastructure revealed a substantial increase in the density of microvilli in DIO mice. Moreover, enhanced intraperitoneal tumor burden was observed in overweight or obese animals in three distinct in vivo models. Further histologic analyses suggested that alterations in lipid regulatory factors, enhanced vascularity, and decreased M1/M2 macrophage ratios may account for the enhanced tumorigenicity. Together, these findings show that obesity potently affects ovarian cancer metastatic success, which likely contributes to the negative correlation between obesity and ovarian cancer survival.
Collapse
Affiliation(s)
- Yueying Liu
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana. Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana
| | - Matthew N Metzinger
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana
| | - Kyle A Lewellen
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana. Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana
| | - Stephanie N Cripps
- University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Kyle D Carey
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana
| | | | - Zonggao Shi
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana. Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana
| | - Laura Tarwater
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana
| | - Annie Grisoli
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana. Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Eric Lee
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana
| | - Ania Slusarz
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri. Department of Medical Physiology and Pharmacology, University of Missouri School of Medicine, Columbia, Missouri
| | - Jing Yang
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana. Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana
| | - Elizabeth A Loughran
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana. Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana
| | - Kaitlyn Conley
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana. Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana
| | - Jeff J Johnson
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana. Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana
| | - Yuliya Klymenko
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana. Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Lana Bruney
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana. Department of Medical Physiology and Pharmacology, University of Missouri School of Medicine, Columbia, Missouri
| | - Zhong Liang
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana. Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana. Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana
| | | | - W Matthew Leevy
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana. Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - M Sharon Stack
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana. Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana.
| |
Collapse
|
23
|
Goday A, Barneto I, García-Almeida JM, Blasco A, Lecube A, Grávalos C, Martínez de Icaya P, de las Peñas R, Monereo S, Vázquez L, Palacio JE, Pérez-Segura P. Obesity as a risk factor in cancer: A national consensus of the Spanish Society for the Study of Obesity and the Spanish Society of Medical Oncology. Clin Transl Oncol 2015; 17:763-71. [PMID: 26036853 DOI: 10.1007/s12094-015-1306-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/18/2015] [Indexed: 01/16/2023]
Abstract
In the last few years, many prospective studies have demonstrated a clear association between obesity and cancers of the colon and rectum, breast in post-menopausal women, endometrium, kidney, oesophagus and pancreas. Obesity is also associated with a high risk of recurrence and cancer-related death. The pathophysiology of obesity involves various changes that may be implicated in the relationship between obesity and cancer, such as excess inflammatory cytokines and chronic inflammation, hyperinsulinaemia, insulin resistance, and raised leptin and oestrogens. The Spanish Society for the Study of Obesity and the Spanish Society of Medical Oncology have signed a cooperation agreement to work together towards reducing the impact of obesity in cancer. Preventing obesity prevents cancer.
Collapse
Affiliation(s)
- A Goday
- Servicio de Endocrinología, Hospital del Mar, Passeig Marítim de la Barceloneta 25-29, 08003, Barcelona, Spain. .,IMIM Institut Mar de Investigacions Mediques, CiberOBN, Passeig Marítim de la Barceloneta 25-29, 08003, Barcelona, Spain.
| | - I Barneto
- Servicio de Oncología Médica, Hospital Universitario Reina Sofía, Córdoba, Spain
| | - J M García-Almeida
- Servicio de Endocrinología, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - A Blasco
- Servicio de Oncología Médica, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - A Lecube
- Servicio de Endocrinología, Hospital Arnau de Vilanova, Lleida, Spain
| | - C Grávalos
- Servicio de Oncología Médica, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - P Martínez de Icaya
- Servicio de Endocrinología, Hospital Universitario Severo Ochoa, Leganés, Madrid, Spain
| | - R de las Peñas
- Servicio de Oncología Médica, Consorcio Hospitalario Provincial de Castellón, Castelló de la Plana, Castellón, Spain
| | - S Monereo
- Servicio de Endocrinología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - L Vázquez
- Servicio de Oncología Médica, Complejo Hospitalario de Pontevedra, Pontevedra, Spain
| | - J E Palacio
- Servicio de Endocrinología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Tenerife, Spain
| | - P Pérez-Segura
- Servicio de Oncología Médica, Hospital Clínico Universitario San Carlos, Madrid, Spain
| |
Collapse
|
24
|
Ose J, Schock H, Tjønneland A, Hansen L, Overvad K, Dossus L, Clavel-Chapelon F, Baglietto L, Boeing H, Trichopolou A, Benetou V, Lagiou P, Masala G, Tagliabue G, Tumino R, Sacerdote C, Mattiello A, Bueno-de-Mesquita HBA, Peeters PHM, Onland-Moret NC, Weiderpass E, Gram IT, Sánchez S, Obon-Santacana M, Sànchez-Pérez MJ, Larrañaga N, Castaño JMH, Ardanaz E, Brändstedt J, Lundin E, Idahl A, Travis RC, Khaw KT, Rinaldi S, Romieu I, Merritt MA, Gunter MJ, Riboli E, Kaaks R, Fortner RT. Inflammatory Markers and Risk of Epithelial Ovarian Cancer by Tumor Subtypes: The EPIC Cohort. Cancer Epidemiol Biomarkers Prev 2015; 24:951-61. [PMID: 25855626 PMCID: PMC4454588 DOI: 10.1158/1055-9965.epi-14-1279-t] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/20/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Evidence suggests an etiologic role for inflammation in ovarian carcinogenesis and heterogeneity between tumor subtypes and anthropometric indices. Prospective studies on circulating inflammatory markers and epithelial invasive ovarian cancer (EOC) have predominantly investigated overall risk; data characterizing risk by tumor characteristics (histology, grade, stage, dualistic model of ovarian carcinogenesis) and anthropometric indices are sparse. METHODS We conducted a nested case-control study in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort to evaluate C-reactive protein (CRP), IL6, and EOC risk by tumor characteristics. A total of 754 eligible EOC cases were identified; two controls (n = 1,497) were matched per case. We used multivariable conditional logistic regression to assess associations. RESULTS CRP and IL6 were not associated with overall EOC risk. However, consistent with prior research, CRP >10 versus CRP ≤1 mg/L was associated with higher overall EOC risk [OR, 1.67 (1.03-2.70)]. We did not observe significant associations or heterogeneity in analyses by tumor characteristics. In analyses stratified by waist circumference, inflammatory markers were associated with higher risk among women with higher waist circumference; no association was observed for women with normal waist circumference [e.g., IL6: waist ≤80: ORlog2, 0.97 (0.81-1.16); waist >88: ORlog2, 1.78 (1.28-2.48), Pheterogeneity ≤ 0.01]. CONCLUSIONS Our data suggest that high CRP is associated with increased risk of overall EOC, and that IL6 and CRP may be associated with EOC risk among women with higher adiposity. IMPACT Our data add to global evidence that ovarian carcinogenesis may be promoted by an inflammatory milieu.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/blood
- Adenocarcinoma, Clear Cell/etiology
- Adenocarcinoma, Clear Cell/pathology
- Adenocarcinoma, Mucinous/blood
- Adenocarcinoma, Mucinous/etiology
- Adenocarcinoma, Mucinous/pathology
- Adult
- Aged
- Biomarkers, Tumor/blood
- Case-Control Studies
- Cystadenocarcinoma, Serous/blood
- Cystadenocarcinoma, Serous/etiology
- Cystadenocarcinoma, Serous/pathology
- Endometrial Neoplasms/blood
- Endometrial Neoplasms/etiology
- Endometrial Neoplasms/pathology
- Female
- Follow-Up Studies
- Humans
- Inflammation/blood
- Inflammation/complications
- Inflammation/pathology
- Inflammation Mediators/blood
- Middle Aged
- Neoplasm Grading
- Neoplasm Invasiveness
- Neoplasm Staging
- Ovarian Neoplasms/blood
- Ovarian Neoplasms/etiology
- Ovarian Neoplasms/pathology
- Prognosis
- Prospective Studies
Collapse
Affiliation(s)
- Jennifer Ose
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Helena Schock
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | | | - Louise Hansen
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Kim Overvad
- Department of Public Health, Section for Epidemiology Danish Cancer, Aarhus University, Aarhus, Denmark
| | - Laure Dossus
- INSERM, Centre for Research in Epidemiology and Population Health (CESP), Nutrition, Hormones and Women's Health Team, Villejuif, France. Univ Paris Sud, UMRS 1018, Villejuif, France. IGR, Villejuif, France
| | - Françoise Clavel-Chapelon
- INSERM, Centre for Research in Epidemiology and Population Health (CESP), Nutrition, Hormones and Women's Health Team, Villejuif, France. Univ Paris Sud, UMRS 1018, Villejuif, France. IGR, Villejuif, France
| | - Laura Baglietto
- Cancer Epidemiology Centre, Cancer Council of Victoria, Melbourne, Australia. Centre for Epidemiology and Biostatistics, School of Population and Global Health, University of Melbourne, Australia
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, Nuthetal, Germany
| | - Antonia Trichopolou
- Hellenic Health Foundation, Athens, Greece. Department of Hygiene, Epidemiology, and Medical Statistics, University of Athens Medical School, Athens, Greece. Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece
| | - Vassiliki Benetou
- Hellenic Health Foundation, Athens, Greece. Department of Hygiene, Epidemiology, and Medical Statistics, University of Athens Medical School, Athens, Greece
| | - Pagona Lagiou
- Department of Hygiene, Epidemiology, and Medical Statistics, University of Athens Medical School, Athens, Greece. Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece. Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Giovanna Masala
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute - ISPO, Florence, Italy
| | - Giovanna Tagliabue
- Lombardy Cancer Registry Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, "Civic - M.P. Arezzo" Hospita, ASP Ragusa, Italy
| | - Carlotta Sacerdote
- Center for Cancer Prevention (CPOPiemonte), Turin, Italy. Human Genetic Foundation, Torino, Italy
| | - Amalia Mattiello
- Department of Clinical and Experimental Medicine, Federico II University, Naples, Italy
| | - H B As Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands. Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, the Netherlands. Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom. Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Petra H M Peeters
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Elisabete Weiderpass
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. Cancer Registry of Norway, Oslo, Norway. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. Department of Genetic Epidemiology, Folkhälsan Research Center, Helsinki, Finland
| | - Inger T Gram
- Faculty of Health Sciences, Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | | | - Mireia Obon-Santacana
- Unit of Nutrition, Environment, and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Maria-José Sànchez-Pérez
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. Andalusian School of Public Health, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
| | - Nerea Larrañaga
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. Public Health Division of Gipuzkoa-BIODONOSTIA, Basque Regional Health Department, Spain
| | - José María Huerta Castaño
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. Department of Epidemiology, Murcia Regional Health Authority, Murcia, Spain
| | - Eva Ardanaz
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. Navarre Public Health Institute, Pamplona, Spain
| | - Jenny Brändstedt
- Department of Surgery, Skåne University Hospital, Malmö, Sweden. Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Eva Lundin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Annika Idahl
- Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University, Umeå, Sweden. Department of Public Health and Clinical Medicine, Nutritional Research, Umeå University, Umeå, Sweden
| | - Ruth C Travis
- Cancer Epidemiology Unit, University of Oxford, Oxford, United Kingdom
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Sabina Rinaldi
- Biomarkers Group, International Agency for Research on Cancer, Lyon, France
| | - Isabelle Romieu
- Biomarkers Group, International Agency for Research on Cancer, Lyon, France
| | - Melissa A Merritt
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Marc J Gunter
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Renée T Fortner
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
25
|
Thomson CA, E Crane T, Wertheim BC, Neuhouser ML, Li W, Snetselaar LG, Basen-Engquist KM, Zhou Y, Irwin ML. Diet quality and survival after ovarian cancer: results from the Women's Health Initiative. J Natl Cancer Inst 2014; 106:dju314. [PMID: 25335480 PMCID: PMC4271032 DOI: 10.1093/jnci/dju314] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/16/2014] [Accepted: 08/21/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Survival after an ovarian cancer diagnosis is poor. Given the high mortality in these patients, efforts to identify modifiable lifestyle behaviors that could influence survival are needed. Earlier evidence suggests a protective role for vegetables, but no prior studies have evaluated overall dietary quality and ovarian cancer survival. The purpose of this analysis was to evaluate the role of prediagnosis diet quality in ovarian cancer survival. METHODS We identified 636 centrally adjudicated cases of ovarian cancer within the Women's Health Initiative Observational Study or Clinical Trials of 161808 postmenopausal women followed from 1995 to 2012. Dietary quality was assessed for the Healthy Eating Index (2005) using a food frequency questionnaire, covariables were obtained from standardized questionnaires, and adiposity was measured by clinic-based measurements of height, weight, and waist circumference. The association between diet quality and mortality was analyzed using Cox proportional hazards regression, adjusted for potential confounders, and stratified by waist circumference, physical activity level, and diabetes status. Tests of statistical significance were two-sided. RESULTS Overall, higher diet quality was associated with lower all-cause mortality after ovarian cancer (hazard ratio [HR] for highest vs lowest tertile = 0.73; 95% confidence interval [CI] = 0.55 to 0.97, P(trend) = .03). The effect was strongest among women with waist circumference of 88 cm or less and with no history of diabetes (HR = 0.73, 95% CI = 0.54 to 0.98). Physical activity level did not modify the association between diet quality and survival. CONCLUSION Our results suggest that overall higher prediagnosis diet quality may protect against mortality after ovarian cancer.
Collapse
Affiliation(s)
- Cynthia A Thomson
- Division of Health Promotion Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ (CAT); University of Arizona Cancer Center, Tucson, AZ (CAT, TEC, BCW); Department of Nutritional Sciences, University of Arizona, Tucson, AZ (CAT, TEC); Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (MLN); Department of Medicine, University of Massachusetts Medical School, Amherst, MA (WL); Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA (LGS); Cancer Prevention and Population Sciences, MD Anderson Cancer Center, Houston, TX (KMBE); Department of Epidemiology (Chronic Diseases), Yale School of Public Health, New Haven, CT (YZ, MLI).
| | - Tracy E Crane
- Division of Health Promotion Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ (CAT); University of Arizona Cancer Center, Tucson, AZ (CAT, TEC, BCW); Department of Nutritional Sciences, University of Arizona, Tucson, AZ (CAT, TEC); Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (MLN); Department of Medicine, University of Massachusetts Medical School, Amherst, MA (WL); Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA (LGS); Cancer Prevention and Population Sciences, MD Anderson Cancer Center, Houston, TX (KMBE); Department of Epidemiology (Chronic Diseases), Yale School of Public Health, New Haven, CT (YZ, MLI)
| | - Betsy C Wertheim
- Division of Health Promotion Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ (CAT); University of Arizona Cancer Center, Tucson, AZ (CAT, TEC, BCW); Department of Nutritional Sciences, University of Arizona, Tucson, AZ (CAT, TEC); Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (MLN); Department of Medicine, University of Massachusetts Medical School, Amherst, MA (WL); Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA (LGS); Cancer Prevention and Population Sciences, MD Anderson Cancer Center, Houston, TX (KMBE); Department of Epidemiology (Chronic Diseases), Yale School of Public Health, New Haven, CT (YZ, MLI)
| | - Marian L Neuhouser
- Division of Health Promotion Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ (CAT); University of Arizona Cancer Center, Tucson, AZ (CAT, TEC, BCW); Department of Nutritional Sciences, University of Arizona, Tucson, AZ (CAT, TEC); Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (MLN); Department of Medicine, University of Massachusetts Medical School, Amherst, MA (WL); Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA (LGS); Cancer Prevention and Population Sciences, MD Anderson Cancer Center, Houston, TX (KMBE); Department of Epidemiology (Chronic Diseases), Yale School of Public Health, New Haven, CT (YZ, MLI)
| | - Wenjun Li
- Division of Health Promotion Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ (CAT); University of Arizona Cancer Center, Tucson, AZ (CAT, TEC, BCW); Department of Nutritional Sciences, University of Arizona, Tucson, AZ (CAT, TEC); Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (MLN); Department of Medicine, University of Massachusetts Medical School, Amherst, MA (WL); Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA (LGS); Cancer Prevention and Population Sciences, MD Anderson Cancer Center, Houston, TX (KMBE); Department of Epidemiology (Chronic Diseases), Yale School of Public Health, New Haven, CT (YZ, MLI)
| | - Linda G Snetselaar
- Division of Health Promotion Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ (CAT); University of Arizona Cancer Center, Tucson, AZ (CAT, TEC, BCW); Department of Nutritional Sciences, University of Arizona, Tucson, AZ (CAT, TEC); Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (MLN); Department of Medicine, University of Massachusetts Medical School, Amherst, MA (WL); Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA (LGS); Cancer Prevention and Population Sciences, MD Anderson Cancer Center, Houston, TX (KMBE); Department of Epidemiology (Chronic Diseases), Yale School of Public Health, New Haven, CT (YZ, MLI)
| | - Karen M Basen-Engquist
- Division of Health Promotion Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ (CAT); University of Arizona Cancer Center, Tucson, AZ (CAT, TEC, BCW); Department of Nutritional Sciences, University of Arizona, Tucson, AZ (CAT, TEC); Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (MLN); Department of Medicine, University of Massachusetts Medical School, Amherst, MA (WL); Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA (LGS); Cancer Prevention and Population Sciences, MD Anderson Cancer Center, Houston, TX (KMBE); Department of Epidemiology (Chronic Diseases), Yale School of Public Health, New Haven, CT (YZ, MLI)
| | - Yang Zhou
- Division of Health Promotion Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ (CAT); University of Arizona Cancer Center, Tucson, AZ (CAT, TEC, BCW); Department of Nutritional Sciences, University of Arizona, Tucson, AZ (CAT, TEC); Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (MLN); Department of Medicine, University of Massachusetts Medical School, Amherst, MA (WL); Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA (LGS); Cancer Prevention and Population Sciences, MD Anderson Cancer Center, Houston, TX (KMBE); Department of Epidemiology (Chronic Diseases), Yale School of Public Health, New Haven, CT (YZ, MLI)
| | - Melinda L Irwin
- Division of Health Promotion Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ (CAT); University of Arizona Cancer Center, Tucson, AZ (CAT, TEC, BCW); Department of Nutritional Sciences, University of Arizona, Tucson, AZ (CAT, TEC); Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA (MLN); Department of Medicine, University of Massachusetts Medical School, Amherst, MA (WL); Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA (LGS); Cancer Prevention and Population Sciences, MD Anderson Cancer Center, Houston, TX (KMBE); Department of Epidemiology (Chronic Diseases), Yale School of Public Health, New Haven, CT (YZ, MLI)
| |
Collapse
|
26
|
Obesity and risks for malignant melanoma and non-melanoma skin cancer: results from a large Danish prospective cohort study. J Invest Dermatol 2014; 135:901-904. [PMID: 25290686 DOI: 10.1038/jid.2014.438] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Wu MM, Chen HC, Chen CL, You SL, Cheng WF, Chen CA, Lee TC, Chen CJ. A prospective study of gynecological cancer risk in relation to adiposity factors: cumulative incidence and association with plasma adipokine levels. PLoS One 2014; 9:e104630. [PMID: 25115836 PMCID: PMC4130554 DOI: 10.1371/journal.pone.0104630] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 07/11/2014] [Indexed: 12/19/2022] Open
Abstract
Background Associations of obesity and obesity-related metabolic factors (adiposity factors) with uterine corpus cancer (UCC) and ovarian cancer (OVC) risk have been described. Still, a cause-effect relationship and the underlying mediators remain unclear, particularly for low-incidence populations. We aimed to prospectively determine whether adiposity factors could predict the development of UCC and OVC in Taiwanese women. To explore the biological mediators linking adiposity factors to cancer risk, we examined the association of two adipokines, leptin and adiponectin, with the gynecological cancers. Methods Totally, 11,258 women, aged 30–65, were recruited into the Community-Based Cancer Screening Program (CBCSP) study during 1991–1993, and were followed for UCC and OVC cases until December 31, 2011. Cox proportional hazard models were used to estimate hazard ratios (HRs). Adiposity factors and risk covariates were assessed at recruitment. Newly-developed cancer cases were determined from data in the government’s National Cancer Registry and Death Certification System. For adipokienes study, a nested case-control study was conducted within the cohort. Baseline plasma samples of 40 incident gynecological cancer cases and 240 age-menopause-matched controls were assayed for adipokines levels. Findings There were 38 and 30 incident cases of UCC and OVC, respectively, diagnosed during a median 19.9 years of follow-up. Multivariate analysis showed that alcohol intake (HR = 16.00, 95% = 4.83–53.00), high triglyceride levels (HR = 2.58, 95% = 1.28–5.17), and years of endogenous estrogen exposure per 5-year increment (HR = 1.91, 95% = 1.08–3.38) were associated with increased UCC risk. High body mass index (BMI≥27 kg/m2, HR = 2.90, 95% = 1.30–6.46) was associated with increased OVC risk. Analysis further showed an independent effect of adipokines on UCC and OVC risk after adjustment of the risk covariates. Conclusion We provided evidence that alcohol intake, high triglyceride levels and long endogenous estrogen exposure increase UCC risk, whereas obesity positively predicts OVC risk. Circulating adipokines may mediate the link of adiposity factors to gynecological cancer risk.
Collapse
Affiliation(s)
- Meei-Maan Wu
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- School of Public Health, Taipei Medical University, Taipei, Taiwan
- * E-mail: (MMW); (WFC)
| | - Hui-Chi Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Ling Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - San-Lin You
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wen-Fang Cheng
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail: (MMW); (WFC)
| | - Chi-An Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Te-Chang Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
28
|
Body mass index and cancer incidence: the FINRISK study. Eur J Epidemiol 2014; 29:477-87. [PMID: 24997743 DOI: 10.1007/s10654-014-9934-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/17/2014] [Indexed: 02/06/2023]
Abstract
The relation between body mass index (BMI) and risk of cancer incidence is controversial. Cancer incidence during 1972-2008 in relation to BMI was investigated in a prospective cohort of 54,725 Finns aged 24-74 years and free of cancer at enrollment. Over a mean follow-up of 20.6 years, 8,429 (15.4%) incident cancers were recorded, 4,208 (49.9%) from men. Both parametric and nonparametric approaches were used to evaluate the shape of the relationship between BMI and incidence of cancer. BMI had a linear positive association with incidence of cancers of the colon, liver, kidney, bladder and all sites combined in men, and of cancers of the stomach, colon, gallbladder and ovary in women, an inverse association with incidence of cancers of the lung in men and the lung and breast in women, a J-shaped association with incidence of all cancers combined in women. High BMI in women was associated with an increased overall cancer risk in never smokers but a reduced risk in smokers. Elevated BMI was associated with an increased risk of incidence of cancers of certain sites.
Collapse
|
29
|
Makowski L, Zhou C, Zhong Y, Kuan PF, Fan C, Sampey BP, Difurio M, Bae-Jump VL. Obesity increases tumor aggressiveness in a genetically engineered mouse model of serous ovarian cancer. Gynecol Oncol 2014; 133:90-7. [PMID: 24680597 DOI: 10.1016/j.ygyno.2013.12.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/10/2013] [Accepted: 12/17/2013] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Obesity is associated with increased risk and worse outcomes for ovarian cancer. Thus, we examined the effects of obesity on ovarian cancer progression in a genetically engineered mouse model of serous ovarian cancer. METHODS We utilized a unique serous ovarian cancer mouse model that specifically deletes the tumor suppressor genes, Brca1 and p53, and inactivates the retinoblastoma (Rb) proteins in adult ovarian surface epithelial cells, via injection of an adenoviral vector expressing Cre (AdCre) into the ovarian bursa cavity of adult female mice (KpB mouse model). KpB mice were subjected to a 60% calories-derived from fat in a high fat diet (HFD) versus 10% calories from fat in a low fat diet (LFD) to mimic diet-induced obesity. Tumors were isolated at 6 months after AdCre injection and evaluated histologically. Untargeted metabolomic and gene expression profiling was performed to assess differences in the ovarian tumors from obese versus non-obese KpB mice. RESULTS At sacrifice, mice on the HFD (obese) were twice the weight of mice on the LFD (non-obese) (51g versus 31g, p=0.0003). Ovarian tumors were significantly larger in the obese versus non-obese mice (3.7cm(2) versus 1.2cm(2), p=0.0065). Gene expression and metabolomic profiling indicated statistically significant differences between the ovarian tumors from the obese versus non-obese mice, including metabolically relevant pathways.
Collapse
Affiliation(s)
- Liza Makowski
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Yan Zhong
- Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Pei Fen Kuan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA; Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - Cheng Fan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | | | - Megan Difurio
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Victoria L Bae-Jump
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA; Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
30
|
Bevers TB, Brown PH, Maresso KC, Hawk ET. Cancer Prevention, Screening, and Early Detection. ABELOFF'S CLINICAL ONCOLOGY 2014:322-359.e12. [DOI: 10.1016/b978-1-4557-2865-7.00023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
31
|
Ma X, Beeghly-Fadiel A, Shu XO, Li H, Yang G, Gao YT, Zheng W. Anthropometric measures and epithelial ovarian cancer risk among Chinese women: results from the Shanghai Women's Health Study. Br J Cancer 2013; 109:751-5. [PMID: 23860524 PMCID: PMC3738128 DOI: 10.1038/bjc.2013.384] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 01/19/2023] Open
Abstract
Background: Studies of anthropometric measures and ovarian cancer risk have predominantly included women of European descent with mixed findings. Methods: Data from the prospective Shanghai Women's Health Study (SWHS) were used to evaluate associations between anthropometric measures and risk of epithelial ovarian cancer (EOC). Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated by Cox proportional hazards regression. Results: A total of 152 EOC cases occurred among 70 258 women. Increasing quartiles of weight, hip circumference, and weight gain during adulthood were associated with significantly increased EOC risks. Body mass index (BMI) was also associated; overweight (25⩽BMI<29.99) and obese women (BMI⩾30.0) had significantly increased risks (HR: 1.49, 95% CI: 1.05, 2.13, and HR: 2.42, 95% CI: 1.37, 4.28, respectively). No significant associations were observed for height, waist circumference, waist-to-hip ratio (WHR), and waist-to-height ratio (WHER). Conclusion: Results from this large prospective study of Chinese women support the hypothesis that general adiposity contributes to the aetiology of ovarian cancer.
Collapse
Affiliation(s)
- X Ma
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Lucchiari C, Masiero M, Pravettoni G. Methods for nutrition monitoring in cancer patients: a cognitive perspective. Ecancermedicalscience 2012; 6:259. [PMID: 22837764 PMCID: PMC3404545 DOI: 10.3332/ecancer.2012.259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Indexed: 01/06/2023] Open
Abstract
In the present medical context, the evaluation and the monitoring of factors other than mere physical symptoms are an urgent demand. In particular, the issue of quality of life (QoL) has become a relevant target in the treatment of cancer. However, the approach towards these aspects is not well standardized and the actual applications in a concrete setting are fragmented, left to personal or local initiative. If this is true for QoL in general, it is particularly relevant in the specific field of nutrition. Indeed, though the growing awareness of a correlation between chronic diseases and dietary habits has led to an increased interest in nutrition, both before and after cancer, very little is still known about the methods that measure this important variable of the QoL. Indeed, good nutrition may have a relevant impact on QoL, positively affecting both the physical and psychological well-being. Targeting this issue implies using proper instruments to both monitor and educate the patients. Hence, we argue that it is vital for oncologists to be able to individuate the best tool available in a specified context, so as to achieve an important goal with little effort, also adopting standardized strategies proved to be efficacious. In this framework, we briefly reviewed the tools more frequently reported in the scientific literature. We suggest that through a cognitive approach, it is possible to achieve important clinical targets, initially by understanding the patients' needs, values, and psychosocial factors involved in nutritional behaviour and food-related decisions, in order to develop a personalized approach. Hence, this is the only way to support concrete actions for promoting healthier diets, thus preventing recurrences, monitoring chronic conditions, and supporting a good QoL.
Collapse
Affiliation(s)
- C Lucchiari
- Università degli Studi di Milano, Milan, Italy
| | | | | |
Collapse
|
33
|
|
34
|
Ovarian cancer and body size: individual participant meta-analysis including 25,157 women with ovarian cancer from 47 epidemiological studies. PLoS Med 2012; 9:e1001200. [PMID: 22606070 PMCID: PMC3317899 DOI: 10.1371/journal.pmed.1001200] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 02/24/2012] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Only about half the studies that have collected information on the relevance of women's height and body mass index to their risk of developing ovarian cancer have published their results, and findings are inconsistent. Here, we bring together the worldwide evidence, published and unpublished, and describe these relationships. METHODS AND FINDINGS Individual data on 25,157 women with ovarian cancer and 81,311 women without ovarian cancer from 47 epidemiological studies were collected, checked, and analysed centrally. Adjusted relative risks of ovarian cancer were calculated, by height and by body mass index. Ovarian cancer risk increased significantly with height and with body mass index, except in studies using hospital controls. For other study designs, the relative risk of ovarian cancer per 5 cm increase in height was 1.07 (95% confidence interval [CI], 1.05-1.09; p<0.001); this relationship did not vary significantly by women's age, year of birth, education, age at menarche, parity, menopausal status, smoking, alcohol consumption, having had a hysterectomy, having first degree relatives with ovarian or breast cancer, use of oral contraceptives, or use of menopausal hormone therapy. For body mass index, there was significant heterogeneity (p<0.001) in the findings between ever-users and never-users of menopausal hormone therapy, but not by the 11 other factors listed above. The relative risk for ovarian cancer per 5 kg/m(2) increase in body mass index was 1.10 (95% CI, 1.07-1.13; p<0.001) in never-users and 0.95 (95% CI, 0.92-0.99; p=0.02) in ever-users of hormone therapy. CONCLUSIONS Ovarian cancer is associated with height and, among never-users of hormone therapy, with body mass index. In high-income countries, both height and body mass index have been increasing in birth cohorts now developing the disease. If all other relevant factors had remained constant, then these increases in height and weight would be associated with a 3% increase in ovarian cancer incidence per decade. Please see later in the article for the Editors' Summary.
Collapse
|
35
|
Yang HP, Trabert B, Murphy MA, Sherman ME, Sampson JN, Brinton LA, Hartge P, Hollenbeck A, Park Y, Wentzensen N. Ovarian cancer risk factors by histologic subtypes in the NIH-AARP Diet and Health Study. Int J Cancer 2011; 131:938-48. [PMID: 21960414 DOI: 10.1002/ijc.26469] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 09/19/2011] [Indexed: 12/15/2022]
Abstract
Data suggest that risk factors for ovarian carcinoma vary by histologic type, but findings are inconsistent. We prospectively evaluated risk factors by histological subtypes of incident ovarian cancer (n = 849) in a cohort of 169,391 women in the NIH-AARP Diet and Health Study. We constructed Cox models of individual exposures by comparing case subtypes to the entire non-case group and assessed p-heterogeneity in case-case comparisons using serous as the reference category. Substantial risk differences between histologic subtypes were observed for menopausal hormone therapy (MHT) use, oral contraceptive (OC) use, parity and body mass index (p-heterogeneity = 0.01, 0.03, 0.05, 0.03, respectively). MHT users were at increased risk for all histologic subtypes except for mucinous carcinomas, where risk was reduced (relative risk (RR) = 0.37; 95% confidence interval (CI): 0.18, 0.80). OC users were only at significantly decreased risk for serous cancers (RR = 0.69; 95% CI: 0.55, 0.85). Although parity was inversely associated with risk of all subtypes, the RRs ranged from 0.28 (clear cell) to 0.83 (serous). Obesity was a significant risk factor only for endometrioid cancers (RR = 1.64; 95% CI: 1.00, 2.70). Our findings support a link between etiological factors and histological heterogeneity in ovarian carcinoma.
Collapse
Affiliation(s)
- Hannah P Yang
- Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Brändstedt J, Nodin B, Manjer J, Jirström K. Anthropometric factors and ovarian cancer risk in the Malmö Diet and Cancer Study. Cancer Epidemiol 2011; 35:432-7. [DOI: 10.1016/j.canep.2011.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 12/17/2010] [Accepted: 01/01/2011] [Indexed: 10/18/2022]
|
37
|
Papadatos-Pastos D, Dedes KJ, de Bono JS, Kaye SB. Revisiting the role of antiandrogen strategies in ovarian cancer. Oncologist 2011; 16:1413-21. [PMID: 21948654 DOI: 10.1634/theoncologist.2011-0164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Androgen receptors are frequently expressed in epithelial ovarian cancer (EOC). Their role in the development of EOC is not fully understood. In the present review we first discuss the epidemiological data linking a hyperandrogen state to a higher risk for ovarian cancer, second describe in vitro studies of the role of androgens in influencing the growth of EOC, and finally review the completed clinical trials with compounds that exploit the androgen axis in patients with ovarian cancer. The therapeutic approaches that inhibit androgen signaling have so far produced only modest response rates. In the light of new data regarding the role of androgen stimulation in the evolution of EOC and the emergence of new compounds used for the treatment of other hormone-driven malignancies, such as prostate and breast cancer, we provide suggestions for new studies of antiandrogen therapeutics in the treatment of EOC. A specific example is the new agent abiraterone. In addition, we propose a panel of molecules that could be assessed as potential biomarkers that may aid patient selection for this approach in the future.
Collapse
|
38
|
Yang XR, Chang-Claude J, Goode EL, Couch FJ, Nevanlinna H, Milne RL, Gaudet M, Schmidt MK, Broeks A, Cox A, Fasching PA, Hein R, Spurdle AB, Blows F, Driver K, Flesch-Janys D, Heinz J, Sinn P, Vrieling A, Heikkinen T, Aittomäki K, Heikkilä P, Blomqvist C, Lissowska J, Peplonska B, Chanock S, Figueroa J, Brinton L, Hall P, Czene K, Humphreys K, Darabi H, Liu J, Van 't Veer LJ, van Leeuwen FE, Andrulis IL, Glendon G, Knight JA, Mulligan AM, O'Malley FP, Weerasooriya N, John EM, Beckmann MW, Hartmann A, Weihbrecht SB, Wachter DL, Jud SM, Loehberg CR, Baglietto L, English DR, Giles GG, McLean CA, Severi G, Lambrechts D, Vandorpe T, Weltens C, Paridaens R, Smeets A, Neven P, Wildiers H, Wang X, Olson JE, Cafourek V, Fredericksen Z, Kosel M, Vachon C, Cramp HE, Connley D, Cross SS, Balasubramanian SP, Reed MWR, Dörk T, Bremer M, Meyer A, Karstens JH, Ay A, Park-Simon TW, Hillemanns P, Arias Pérez JI, Menéndez Rodríguez P, Zamora P, Benítez J, Ko YD, Fischer HP, Hamann U, Pesch B, Brüning T, Justenhoven C, Brauch H, Eccles DM, Tapper WJ, Gerty SM, Sawyer EJ, Tomlinson IP, Jones A, Kerin M, Miller N, McInerney N, Anton-Culver H, Ziogas A, Shen CY, Hsiung CN, Wu PE, Yang SL, Yu JC, Chen ST, Hsu GC, Haiman CA, Henderson BE, Le Marchand L, Kolonel LN, Lindblom A, Margolin S, Jakubowska A, Lubiński J, Huzarski T, Byrski T, Górski B, Gronwald J, Hooning MJ, Hollestelle A, van den Ouweland AMW, Jager A, Kriege M, Tilanus-Linthorst MMA, Collée M, Wang-Gohrke S, Pylkäs K, Jukkola-Vuorinen A, Mononen K, Grip M, Hirvikoski P, Winqvist R, Mannermaa A, Kosma VM, Kauppinen J, Kataja V, Auvinen P, Soini Y, Sironen R, Bojesen SE, Ørsted DD, Kaur-Knudsen D, Flyger H, Nordestgaard BG, Holland H, Chenevix-Trench G, Manoukian S, Barile M, Radice P, Hankinson SE, Hunter DJ, Tamimi R, Sangrajrang S, Brennan P, McKay J, Odefrey F, Gaborieau V, Devilee P, Huijts PEA, Tollenaar RAEM, Seynaeve C, Dite GS, Apicella C, Hopper JL, Hammet F, Tsimiklis H, Smith LD, Southey MC, Humphreys MK, Easton D, Pharoah P, Sherman ME, Garcia-Closas M. Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the Breast Cancer Association Consortium studies. J Natl Cancer Inst 2011; 103:250-63. [PMID: 21191117 PMCID: PMC3107570 DOI: 10.1093/jnci/djq526] [Citation(s) in RCA: 529] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Previous studies have suggested that breast cancer risk factors are associated with estrogen receptor (ER) and progesterone receptor (PR) expression status of the tumors. METHODS We pooled tumor marker and epidemiological risk factor data from 35,568 invasive breast cancer case patients from 34 studies participating in the Breast Cancer Association Consortium. Logistic regression models were used in case-case analyses to estimate associations between epidemiological risk factors and tumor subtypes, and case-control analyses to estimate associations between epidemiological risk factors and the risk of developing specific tumor subtypes in 12 population-based studies. All statistical tests were two-sided. RESULTS In case-case analyses, of the epidemiological risk factors examined, early age at menarche (≤12 years) was less frequent in case patients with PR(-) than PR(+) tumors (P = .001). Nulliparity (P = 3 × 10(-6)) and increasing age at first birth (P = 2 × 10(-9)) were less frequent in ER(-) than in ER(+) tumors. Obesity (body mass index [BMI] ≥ 30 kg/m(2)) in younger women (≤50 years) was more frequent in ER(-)/PR(-) than in ER(+)/PR(+) tumors (P = 1 × 10(-7)), whereas obesity in older women (>50 years) was less frequent in PR(-) than in PR(+) tumors (P = 6 × 10(-4)). The triple-negative (ER(-)/PR(-)/HER2(-)) or core basal phenotype (CBP; triple-negative and cytokeratins [CK]5/6(+) and/or epidermal growth factor receptor [EGFR](+)) accounted for much of the heterogeneity in parity-related variables and BMI in younger women. Case-control analyses showed that nulliparity, increasing age at first birth, and obesity in younger women showed the expected associations with the risk of ER(+) or PR(+) tumors but not triple-negative (nulliparity vs parity, odds ratio [OR] = 0.94, 95% confidence interval [CI] = 0.75 to 1.19, P = .61; 5-year increase in age at first full-term birth, OR = 0.95, 95% CI = 0.86 to 1.05, P = .34; obesity in younger women, OR = 1.36, 95% CI = 0.95 to 1.94, P = .09) or CBP tumors. CONCLUSIONS This study shows that reproductive factors and BMI are most clearly associated with hormone receptor-positive tumors and suggest that triple-negative or CBP tumors may have distinct etiology.
Collapse
Affiliation(s)
- Xiaohong R Yang
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Sciences, Rockville, MD 20852, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Canchola AJ, Chang ET, Bernstein L, Largent JA, Reynolds P, Deapen D, Henderson KD, Ursin G, Horn-Ross PL. Body size and the risk of ovarian cancer by hormone therapy use in the California Teachers Study cohort. Cancer Causes Control 2010; 21:2241-8. [PMID: 20924664 PMCID: PMC3120052 DOI: 10.1007/s10552-010-9647-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 09/21/2010] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To investigate whether obesity and hormone therapy (HT) are associated with ovarian cancer risk among women in the California Teachers Study cohort. METHODS Of 56,091 women age ≥ 45 years, 277 developed epithelial ovarian cancer between 1995 and 2007. Multivariate Cox regression was performed. RESULTS Among women who never used HT, greater adult weight gain, waist circumference and waist-to-height ratio, but not adult BMI, increased risk of ovarian cancer. Compared to women who never used HT and had a stable adult weight, risk of ovarian cancer was increased in women who gained ≥ 40 lb (relative risk (RR) 1.8, 95% confidence interval (CI): 1.0-3.0) or used HT for >5 years (RR 2.3 95% CI: 1.3-4.1). Having both exposures (RR 1.9, 95% CI: 0.99-3.5), however, did not increase risk more than having either alone. Results were similar for waist circumference and weight-to-height ratio; however, differences across HT groups were not statistically significant. CONCLUSIONS This study suggests that abdominal adiposity and weight gain, but not overall obesity, increase ovarian cancer risk and that there may be a threshold level beyond which additional hormones, whether exogenous or endogenous, do not result in additional elevation in risk. However, large pooled analyses are needed to confirm these findings.
Collapse
Affiliation(s)
- Alison J Canchola
- Cancer Prevention Institute of California, 2201 Walnut Avenue, Suite 300, Fremont, CA 94538, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|