1
|
Cheng OJ, Lebish EJ, Jensen O, Jacenik D, Trivedi S, Cacioppo JG, Aubé J, Beswick EJ, Leung DT. Mucosal-associated invariant T cells modulate innate immune cells and inhibit colon cancer growth. Scand J Immunol 2024; 100:e13391. [PMID: 38773691 PMCID: PMC11315626 DOI: 10.1111/sji.13391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/16/2024] [Accepted: 05/05/2024] [Indexed: 05/24/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells that can be activated by microbial antigens and cytokines and are abundant in mucosal tissues including the colon. MAIT cells have cytotoxic and pro-inflammatory functions and have potentials for use as adoptive cell therapy. However, studies into their anti-cancer activity, including their role in colon cancer, are limited. Using an animal model of colon cancer, we showed that peritumoral injection of in vivo-expanded MAIT cells into RAG1-/- mice with MC38-derived tumours inhibits tumour growth compared to control. Multiplex cytokine analyses showed that tumours from the MAIT cell-treated group have higher expression of markers for eosinophil-activating cytokines, suggesting a potential association between eosinophil recruitment and tumour inhibition. In a human peripheral leukocyte co-culture model, we showed that leukocytes stimulated with MAIT ligand showed an increase in eotaxin-1 production and activation of eosinophils, associated with increased cancer cell killing. In conclusion, we showed that MAIT cells have a protective role in a murine colon cancer model, associated with modulation of the immune response to cancer, potentially involving eosinophil-associated mechanisms. Our results highlight the potential of MAIT cells for non-donor restricted colon cancer immunotherapy.
Collapse
Affiliation(s)
- Olivia J. Cheng
- Division of Microbiology & Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Eric J. Lebish
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Owen Jensen
- Division of Microbiology & Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Damian Jacenik
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Shubhanshi Trivedi
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Jackson G. Cacioppo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Jeffrey Aubé
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Ellen J. Beswick
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Daniel T. Leung
- Division of Microbiology & Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
2
|
Kitelinger LE, Thim EA, Zipkowitz SY, Price RJ, Bullock TNJ. Tissue- and Temporal-Dependent Dynamics of Myeloablation in Response to Gemcitabine Chemotherapy. Cells 2024; 13:1317. [PMID: 39195207 PMCID: PMC11352862 DOI: 10.3390/cells13161317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
For triple-negative breast cancer (TNBC), the most aggressive subset of breast cancer, immune cell infiltrates have prognostic implications. The presence of myeloid-derived suppressor cells supports tumor progression, while tumor-infiltrating lymphocytes (TILs) correlate with improved survival and responsiveness to immunotherapy. Manipulating the abundance of these populations may enhance tumor immunity. Gemcitabine (GEM), a clinically employed chemotherapeutic, is reported to be systemically myeloablative, and thus it is a potentially useful adjunct therapy for promoting anti-tumor immunity. However, knowledge about the immunological effects of GEM intratumorally is limited. Thus, we directly compared the impact of systemic GEM on immune cell presence and functionality in the tumor microenvironment (TME) to its effects in the periphery. We found that GEM is not myeloablative in the TME; rather, we observed sustained, significant reductions in TILs and dendritic cells-crucial components in initiating an adaptive immune response. We also performed bulk-RNA sequencing to identify immunological alterations transcriptionally induced by GEM. While we found evidence of upregulation in the interferon-gamma (IFN-γ) response pathway, we determined that GEM-mediated growth control is not dependent on IFN-γ. Overall, our findings yield new insights into the tissue- and temporal-dependent immune ablative effects of GEM, contrasting the paradigm that this therapy is specifically myeloablative.
Collapse
Affiliation(s)
- Lydia E. Kitelinger
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA; (L.E.K.); (S.Y.Z.)
| | - Eric A. Thim
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA;
| | - Sarah Y. Zipkowitz
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA; (L.E.K.); (S.Y.Z.)
| | - Richard J. Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA;
| | - Timothy N. J. Bullock
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA; (L.E.K.); (S.Y.Z.)
| |
Collapse
|
3
|
Ahmadi S, Ambite I, Brisuda A, Háček J, Haq F, Sabari S, Vanarsa K, Mohan C, Babjuk M, Svanborg C. Similar immune responses to alpha1-oleate and Bacillus Calmette-Guérin treatment in patients with bladder cancer. Cancer Med 2024; 13:e7091. [PMID: 38553868 PMCID: PMC10980842 DOI: 10.1002/cam4.7091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND The molecular content of urine is defined by filtration in the kidneys and by local release from tissues lining the urinary tract. Pathological processes and different therapies change the molecular composition of urine and a variety of markers have been analyzed in patients with bladder cancer. The response to BCG immunotherapy and chemotherapy has been extensively studied and elevated urine concentrations of IL-1RA, IFN-α, IFN-γ TNF-α, and IL-17 have been associated with improved outcome. METHODS In this study, the host response to intravesical alpha 1-oleate treatment was characterized in patients with non-muscle invasive bladder cancer by proteomic and transcriptomic analysis. RESULTS Proteomic profiling detected a significant increase in multiple cytokines in the treatment group compared to placebo. The innate immune response was strongly activated, including IL-1RA and pro-inflammatory cytokines in the IL-1 family (IL-1α, IL-1β, IL-33), chemokines (MIP-1α, IL-8), and interferons (IFN-α2, IFN-γ). Adaptive immune mediators included IL-12, Granzyme B, CD40, PD-L1, and IL-17D, suggesting broad effects of alpha 1-oleate treatment on the tumor tissues. CONCLUSIONS The cytokine response profile in alpha 1-oleate treated patients was similar to that reported in BCG treated patients, suggesting a significant overlap. A reduction in protein levels at the end of treatment coincided with inhibition of cancer-related gene expression in tissue biopsies, consistent with a positive treatment effect. Thus, in addition to killing tumor cells and inducing cell detachment, alpha 1-oleate is shown to activate a broad immune response with a protective potential.
Collapse
Affiliation(s)
- Shahram Ahmadi
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of MedicineLund UniversityLundSweden
| | - Ines Ambite
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of MedicineLund UniversityLundSweden
| | - Antonín Brisuda
- Department of UrologyMotol University Hospital, 2nd Faculty of Medicine, Charles University PrahaPragueCzech Republic
| | - Jaromír Háček
- Department of Pathology and Molecular MedicineMotol University Hospital, 2nd Faculty of Medicine, Charles University PrahaPragueCzech Republic
| | - Farhan Haq
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of MedicineLund UniversityLundSweden
| | - Samudra Sabari
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of MedicineLund UniversityLundSweden
| | - Kamala Vanarsa
- Department of Biomedical EngineeringUniversity of HoustonHoustonTexasUSA
| | - Chandra Mohan
- Department of Biomedical EngineeringUniversity of HoustonHoustonTexasUSA
| | - Marek Babjuk
- Department of UrologyMotol University Hospital, 2nd Faculty of Medicine, Charles University PrahaPragueCzech Republic
| | - Catharina Svanborg
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of MedicineLund UniversityLundSweden
| |
Collapse
|
4
|
Cheng OJ, Lebish EJ, Jensen O, Jacenik D, Trivedi S, Cacioppo J, Aubé J, Beswick EJ, Leung DT. MAIT Cells Modulate Innate Immune Cells and Inhibit Colon Cancer Growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575894. [PMID: 38293128 PMCID: PMC10827136 DOI: 10.1101/2024.01.16.575894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells that can be activated by microbial antigens and cytokines and are abundant in mucosal tissues including the colon. MAIT cells have cytotoxic and pro-inflammatory functions and have potentials for use as adoptive cell therapy. However, studies into their anti-cancer activity, including their role in colon cancer, are limited. Using an animal model of colon cancer, we show that peritumoral injection of in vivo-expanded MAIT cells into RAG1-/- mice with MC38-derived tumors inhibits tumor growth compared to control. Multiplex cytokine analyses show that tumors from the MAIT cell-treated group have higher expression of markers for eosinophil-activating cytokines, suggesting an association between eosinophil recruitment and tumor inhibition. In a human peripheral leukocyte co-culture model, we show that leukocytes stimulated with MAIT ligand show an increase in eotaxin-1 production and activation of eosinophils, associated with increased cancer cell killing. In conclusion, we show that MAIT cells have a protective role in a murine colon cancer model, associated with modulation of the immune response to cancer, potentially involving eosinophil-associated mechanisms. Our results highlight the potential of MAIT cells for non-donor restricted colon cancer immunotherapy.
Collapse
Affiliation(s)
- Olivia J. Cheng
- Division of Microbiology & Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Eric J. Lebish
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Owen Jensen
- Division of Microbiology & Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Damian Jacenik
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Shubhanshi Trivedi
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Jackson Cacioppo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Jeffrey Aubé
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Ellen J. Beswick
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Daniel T. Leung
- Division of Microbiology & Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
5
|
Hoekstra ME, Slagter M, Urbanus J, Toebes M, Slingerland N, de Rink I, Kluin RJC, Nieuwland M, Kerkhoven R, Wessels LFA, Schumacher TN. Distinct spatiotemporal dynamics of CD8 + T cell-derived cytokines in the tumor microenvironment. Cancer Cell 2024; 42:157-167.e9. [PMID: 38194914 PMCID: PMC10783802 DOI: 10.1016/j.ccell.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 10/13/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
Cells in the tumor microenvironment (TME) influence each other through secretion and sensing of soluble mediators, such as cytokines and chemokines. While signaling of interferon γ (IFNγ) and tumor necrosis factor α (TNFα) is integral to anti-tumor immune responses, our understanding of the spatiotemporal behavior of these cytokines is limited. Here, we describe a single cell transcriptome-based approach to infer which signal(s) an individual cell has received. We demonstrate that, contrary to expectations, CD8+ T cell-derived IFNγ is the dominant modifier of the TME relative to TNFα. Furthermore, we demonstrate that cell pools that show abundant IFNγ sensing are characterized by decreased expression of transforming growth factor β (TGFβ)-induced genes, consistent with IFNγ-mediated TME remodeling. Collectively, these data provide evidence that CD8+ T cell-secreted cytokines should be categorized into local and global tissue modifiers, and describe a broadly applicable approach to dissect cytokine and chemokine modulation of the TME.
Collapse
Affiliation(s)
- Mirjam E Hoekstra
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Maarten Slagter
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jos Urbanus
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mireille Toebes
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Nadine Slingerland
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Iris de Rink
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roelof J C Kluin
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marja Nieuwland
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ron Kerkhoven
- Genomics Core Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of EEMCS, Delft University of Technology, Delft, the Netherlands
| | - Ton N Schumacher
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
6
|
Zhou W, Lin L, Chen D, Wang J, Chen J. Construction of a Liver Cancer Prognostic Model Based on Interferon-Gamma-Related Genes for Revealing the Immune Landscape. J Environ Pathol Toxicol Oncol 2024; 43:25-42. [PMID: 39016139 DOI: 10.1615/jenvironpatholtoxicoloncol.2024049848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Inferferon-gamma (LFN-γ) exerts anti-tumor effects, but there is currently no reliable and comprehensive study on prognostic function of IFN-γ-related genes in liver cancer. In this study, IFN-γ-related differentially expressed genes (DEGs) in liver cancer were identified through GO/KEGG databases and open-access literature. Based on these genes, individuals with liver cancer were clustered. A prognostic model was built based on the intersection genes between differential genes in clusters and in liver cancer. Then, model predictive performance was analyzed and validated in GEO dataset. Regression analysis was fulfilled on the model, and a nomogram was utilized to evaluate model ability as an independent prognostic factor and its clinical application value. An immune-related analysis was conducted on both the H- and L-groups, with an additional investigation into link of model genes to drug sensitivity. Significant differential expression of IFN-γ-related genes was observed between the liver cancer and control groups. Subsequently, individuals with liver cancer were classified into two subtypes based on these genes, which displayed a notable difference in survival between the two subtypes. A 10-gene liver cancer prognostic model was constructed, with good prognostic performance and was an independent prognosticator for patient analysis. L-group patients possessed higher immune infiltration levels, immune checkpoint expression levels, and immunophenoscore, as well as lower TIDE scores. Drugs that had high correlations with the feature genes included SPANXB1: PF-04217903, SGX-523, MMP1: PF-04217903, DUSP13: Imatinib, TFF1: KHK-Indazole, and Fulvestrant. We built a 10-gene liver cancer prognostic model. It was found that L-group patients were more suitable for immunotherapy. This study provided valuable information on the prognosis of liver cancer.
Collapse
Affiliation(s)
- Wuhan Zhou
- Department of Hepatobiliary Surgery, The First Hospital of Putian City, Putian, Fujian 351100, P.R. China
| | - Liang Lin
- Department of Hepatobiliary Surgery, The First Hospital of Putian City, Putian, Fujian 351100, P.R. China
| | - Dongxing Chen
- Department of Hepatobiliary Surgery, The First Hospital of Putian City, Putian, Fujian 351100, P.R. China
| | - Jingui Wang
- Department of Hepatobiliary Surgery, The First Hospital of Putian City, Putian, Fujian 351100, P.R. China; Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian 350122, P.R. China
| | | |
Collapse
|
7
|
Boutin L, Roger E, Gayat E, Depret F, Blot-Chabaud M, Chadjichristos CE. The role of CD146 in renal disease: from experimental nephropathy to clinics. J Mol Med (Berl) 2024; 102:11-21. [PMID: 37993561 DOI: 10.1007/s00109-023-02392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 11/24/2023]
Abstract
Vascular endothelial dysfunction is a major risk factor in the development of renal diseases. Recent studies pointed out a major interest for the inter-endothelial junction protein CD146, as its expression is modulated during renal injury. Indeed, some complex mechanisms involving this adhesion molecule and its multiple ligands are observed in a large number of renal diseases in fundamental or clinical research. The purpose of this review is to summarize the most recent literature on the role of CD146 in renal pathophysiology, from experimental nephropathy to clinical trials.
Collapse
Affiliation(s)
- Louis Boutin
- FHU PROMICE AP-HP, Saint Louis and DMU Parabol, Critical Care Medicine and Burn Unit, AP-HP, Department of Anesthesiology, University Paris Cité, 75010, Paris, France
- INSERM, UMR-942, MASCOT, Cardiovascular Markers in Stress Condition, University Paris Cité, 75010, Paris, France
- INSERM, UMR-S1155, Bâtiment Recherche, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France
| | - Elena Roger
- INSERM, UMR-S1155, Bâtiment Recherche, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France
- Faculty of Medicine, Sorbonne University, 75013, Paris, France
| | - Etienne Gayat
- FHU PROMICE AP-HP, Saint Louis and DMU Parabol, Critical Care Medicine and Burn Unit, AP-HP, Department of Anesthesiology, University Paris Cité, 75010, Paris, France
- INSERM, UMR-942, MASCOT, Cardiovascular Markers in Stress Condition, University Paris Cité, 75010, Paris, France
| | - François Depret
- FHU PROMICE AP-HP, Saint Louis and DMU Parabol, Critical Care Medicine and Burn Unit, AP-HP, Department of Anesthesiology, University Paris Cité, 75010, Paris, France
- INSERM, UMR-942, MASCOT, Cardiovascular Markers in Stress Condition, University Paris Cité, 75010, Paris, France
| | | | - Christos E Chadjichristos
- INSERM, UMR-S1155, Bâtiment Recherche, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France.
- Faculty of Medicine, Sorbonne University, 75013, Paris, France.
| |
Collapse
|
8
|
Portillo AL, Monteiro JK, Rojas EA, Ritchie TM, Gillgrass A, Ashkar AA. Charting a killer course to the solid tumor: strategies to recruit and activate NK cells in the tumor microenvironment. Front Immunol 2023; 14:1286750. [PMID: 38022679 PMCID: PMC10663242 DOI: 10.3389/fimmu.2023.1286750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
The ability to expand and activate natural Killer (NK) cells ex vivo has dramatically changed the landscape in the development of novel adoptive cell therapies for treating cancer over the last decade. NK cells have become a key player for cancer immunotherapy due to their innate ability to kill malignant cells while not harming healthy cells, allowing their potential use as an "off-the-shelf" product. Furthermore, recent advancements in NK cell genetic engineering methods have enabled the efficient generation of chimeric antigen receptor (CAR)-expressing NK cells that can exert both CAR-dependent and antigen-independent killing. Clinically, CAR-NK cells have shown promising efficacy and safety for treating CD19-expressing hematologic malignancies. While the number of pre-clinical studies using CAR-NK cells continues to expand, it is evident that solid tumors pose a unique challenge to NK cell-based adoptive cell therapies. Major barriers for efficacy include low NK cell trafficking and infiltration into solid tumor sites, low persistence, and immunosuppression by the harsh solid tumor microenvironment (TME). In this review we discuss the barriers posed by the solid tumor that prevent immune cell trafficking and NK cell effector functions. We then discuss promising strategies to enhance NK cell infiltration into solid tumor sites and activation within the TME. This includes NK cell-intrinsic and -extrinsic mechanisms such as NK cell engineering to resist TME-mediated inhibition and use of tumor-targeted agents such as oncolytic viruses expressing chemoattracting and activating payloads. We then discuss opportunities and challenges for using combination therapies to extend NK cell therapies for the treatment of solid tumors.
Collapse
Affiliation(s)
- Ana L. Portillo
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Jonathan K. Monteiro
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Eduardo A. Rojas
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Tyrah M. Ritchie
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Amy Gillgrass
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Ali A. Ashkar
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
9
|
Chen X, Yuan Q, Guan H, Shi X, Sun J, Wu Z, Ren J, Xia S, Shang D. Identification and characterization of interferon-γ signaling-based personalized heterogeneity and therapeutic strategies in patients with pancreatic cancer. Front Oncol 2023; 13:1227606. [PMID: 37941546 PMCID: PMC10628740 DOI: 10.3389/fonc.2023.1227606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
Background Interferon-γ (IFN-γ) is a key cytokine with diverse biological functions, including antiviral defense, antitumor activity, immune regulation, and modulation of cellular processes. Nonetheless, its role in pancreatic cancer (PC) therapy remains debated. Therefore, it is worthwhile to explore the role of Interferon-γ related genes (IFN-γGs) in the progression of PC development. Methodology Transcriptomic data from 930 PC were sourced from TCGA, GEO, ICGC, and ArrayExpress, and 93 IFN-γGs were obtained from the MSigDB. We researched the characteristics of IFN-γGs in pan-cancer. Subsequently, the cohort of 930 PC was stratified into two distinct subgroups using the NMF algorithm. We then examined disparities in the activation of cancer-associated pathways within these subpopulations through GSVA analysis. We scrutinized immune infiltration in both subsets and probed classical molecular target drug sensitivity variations. Finally, we devised and validated a novel IFN-γ related prediction model using LASSO and Cox regression analyses. Furthermore, we conducted RT-qPCR and immunohistochemistry assays to validate the expression of seven target genes included in the prediction model. Results We demonstrated the CNV, SNV, methylation, expression levels, and prognostic characteristics of IFN-γGs in pan-cancers. Notably, Cluster 2 demonstrated superior prognostic outcomes and heightened immune cell infiltration compared to Clusters 1. We also assessed the IC50 values of classical molecular targeted drugs to establish links between IFN-γGs expression levels and drug responsiveness. Additionally, by applying our prediction model, we segregated PC patients into high-risk and low-risk groups, identifying potential benefits of cisplatin, docetaxel, pazopanib, midostaurin, epothilone.B, thapsigargin, bryostatin.1, and AICAR for high-risk PC patients, and metformin, roscovitine, salubrinal, and cyclopamine for those in the low-risk group. The expression levels of these model genes were further verified through HPA website data and qRT-PCR assays in PC cell lines and tissues. Conclusion This study unveils IFN-γGs related molecular subsets in pancreatic cancer for the first time, shedding light on the pivotal role of IFN-γGs in the progression of PC. Furthermore, we establish an IFN-γGs related prognostic model for predicting the survival of PC, offering a theoretical foundation for exploring the precise mechanisms of IFN-γGs in PC.
Collapse
Affiliation(s)
- Xu Chen
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qihang Yuan
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hewen Guan
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xueying Shi
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jiaao Sun
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhiqiang Wu
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jie Ren
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shilin Xia
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Dong Shang
- Department of General Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
10
|
Thuner J, Coutant F. IFN-γ: An overlooked cytokine in dermatomyositis with anti-MDA5 antibodies. Autoimmun Rev 2023; 22:103420. [PMID: 37625674 DOI: 10.1016/j.autrev.2023.103420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Dermatomyositis with anti-melanoma differentiation-associated gene 5 antibody (anti-MDA5 DM) is a rare autoimmune disease, often complicated by life-threatening, rapidly progressive interstitial lung disease. Additional manifestations of the disease include skin lesions, vascular abnormalities, joints and muscles pain. Despite its clinical significance, the pathogenesis of anti-MDA5 DM remains largely unknown. Currently, the disease is perceived as driven by type I interferon (IFN) whose expression is increased in most of the patients. Importantly, the regulation of IFN-γ is also altered in anti-MDA5 DM as evidenced by the presence of IFN-γ positive histiocytes in the lungs of patients, and the identification of autoantibodies that directly stimulate the production of IFN-γ by mononuclear cells. This review critically examines the pathogenesis of the disease, shedding light on recent findings that emphasize a potential role of IFN-γ. A novel conceptual framework is proposed, which integrates the molecular mechanisms altering IFN-γ regulation in anti-MDA5 DM with the known functional effects of IFN-γ on key tissues affected during the disease, such as the lungs, skin, and vessels. Understanding the precise role and relevance of IFN-γ in the pathogenesis of the disease will not only enhance the selection of available therapies for anti-MDA5 DM patients but also pave the way for the development of new therapeutic approaches targeting the altered molecular pathways.
Collapse
Affiliation(s)
- Jonathan Thuner
- Immunogenomics and Inflammation Research Team, University of Lyon, Edouard Herriot Hospital, Lyon, France; Internal medicine Department, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Frédéric Coutant
- Immunogenomics and Inflammation Research Team, University of Lyon, Edouard Herriot Hospital, Lyon, France; Immunology Department, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre-Bénite, France.
| |
Collapse
|
11
|
Staudt S, Ziegler-Martin K, Visekruna A, Slingerland J, Shouval R, Hudecek M, van den Brink M, Luu M. Learning from the microbes: exploiting the microbiome to enforce T cell immunotherapy. Front Immunol 2023; 14:1269015. [PMID: 37799719 PMCID: PMC10548881 DOI: 10.3389/fimmu.2023.1269015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
The opportunities genetic engineering has created in the field of adoptive cellular therapy for cancer are accelerating the development of novel treatment strategies using chimeric antigen receptor (CAR) and T cell receptor (TCR) T cells. The great success in the context of hematologic malignancies has made especially CAR T cell therapy a promising approach capable of achieving long-lasting remission. However, the causalities involved in mediating resistance to treatment or relapse are still barely investigated. Research on T cell exhaustion and dysfunction has drawn attention to host-derived factors that define both the immune and tumor microenvironment (TME) crucially influencing efficacy and toxicity of cellular immunotherapy. The microbiome, as one of the most complex host factors, has become a central topic of investigations due to its ability to impact on health and disease. Recent findings support the hypothesis that commensal bacteria and particularly microbiota-derived metabolites educate and modulate host immunity and TME, thereby contributing to the response to cancer immunotherapy. Hence, the composition of microbial strains as well as their soluble messengers are considered to have predictive value regarding CAR T cell efficacy and toxicity. The diversity of mechanisms underlying both beneficial and detrimental effects of microbiota comprise various epigenetic, metabolic and signaling-related pathways that have the potential to be exploited for the improvement of CAR T cell function. In this review, we will discuss the recent findings in the field of microbiome-cancer interaction, especially with respect to new trajectories that commensal factors can offer to advance cellular immunotherapy.
Collapse
Affiliation(s)
- Sarah Staudt
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Kai Ziegler-Martin
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - John Slingerland
- Department of Immunology, Sloan Kettering Institute, New York, NY, United States
| | - Roni Shouval
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Michael Hudecek
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Marcel van den Brink
- Department of Immunology, Sloan Kettering Institute, New York, NY, United States
| | - Maik Luu
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Zhang W, He Y, Tang Y, Dai W, Si Y, Mao F, Xu J, Yu C, Sun X. A meta-analysis of application of PD-1/PD-L1 inhibitor-based immunotherapy in unresectable locally advanced triple-negative breast cancer. Immunotherapy 2023; 15:1073-1088. [PMID: 37337734 DOI: 10.2217/imt-2023-0023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Aims: The purpose of this study was to explore the efficacy of immunotherapy for patients with triple-negative breast cancer (TNBC). Materials & methods: Randomized clinical trials comparing immunotherapy with chemotherapy for advanced TNBC patients were included. Results: A total of six articles (3183 patients) were eligible for this meta-analysis. PD-1/PD-L1 inhibitor-based immunotherapy combined with chemotherapy can significantly increase the progression-free survival (hazard ratio [HR] = 0.82; 95% CI = 0.76-1.14; p < 0.001) of unresectable locally advanced or metastatic TNBC patients without effect on overall survival, compared with chemotherapy. Conclusion: PD-1/PD-L1 inhibitors-based immunotherapy can safely improve progression-free survival in patients with unresectable locally advanced or metastatic TNBC, but has no effect on overall survival.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Breast Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China
| | - Yujing He
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yuning Tang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Wei Dai
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yuexiu Si
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Feiyan Mao
- Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China
| | - Jiaxuan Xu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Chiyuan Yu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Xing Sun
- Department of General Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315010, China
| |
Collapse
|
13
|
Increase in the Immune Response in Balb/c Mice after the Co-Administration of a Vector-Based COVID-19 Vaccine with Cytosine Phosphoguanine Oligodeoxynucleotide. Vaccines (Basel) 2022; 11:vaccines11010053. [PMID: 36679896 PMCID: PMC9864427 DOI: 10.3390/vaccines11010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
The effects of cytosine phosphoguanine oligodeoxynucleotides (CPG ODNs) on immune response have been demonstrated for different vaccines; however, such information is limited for the vector-based Coronavirus disease 2019 (COVID-19). This paper aims to demonstrate the potential effect of CPG ODNs on immunological response against the vector-based COVID-19 vaccine on Balb/c mice using a JNJ-78436735 Ad26.COV2-S recombinant as a model vaccine. A total of 18 BALB/c mice clustered into six groups were used. All groups were observed for 14- and 28-days post immunization. Qualitative determination of IgG was performed using indirect Enzyme-Linked Immunosorbent Assay (ELISA) and qPCR for cytokine profiling. A significant (p ≤ 0.001) rise in antibody response was observed for groups 3 and 4, who also showed increased expression levels of Tumor Necrosis Factor (TNF) and Interferon Gamma (IFN-γ). Immunological parameters for toxicity were normal in all treatment groups. We conclude that supplementing vector-based COVID-19 vaccines with CpG ODNs has the potential to boost the body's immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.
Collapse
|
14
|
Impact of the selective A2 AR and A2 BR dual antagonist AB928/etrumadenant on CAR T cell function. Br J Cancer 2022; 127:2175-2185. [PMID: 36266575 PMCID: PMC9726885 DOI: 10.1038/s41416-022-02013-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/13/2022] [Accepted: 10/04/2022] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cell therapy has been successfully translated to clinical practice for the treatment of B cell malignancies. The suppressive microenvironment of many malignancies is a bottleneck preventing treatment success of CAR T cells in a broader range of tumours. Among others, the immunosuppressive metabolite adenosine is present in high concentrations within many tumours and dampens anti-tumour function of immune cells and consequently therapeutic response. METHODS Here, we present the impact of the selective adenosine A2A and A2B receptor antagonist AB928/etrumadenant on CAR T cell cytokine secretion, proliferation, and cytotoxicity. Using phosphorylation-specific flow cytometry, we evaluated the capability of AB928 to shield CAR T cells from adenosine-mediated signalling. The effect of orally administered AB928 on CAR T cells was assessed in a syngeneic mouse model of colon carcinoma. RESULTS We found that immunosuppressive signalling in CAR T cells in response to adenosine was fully blocked by the small molecule inhibitor. AB928 treatment enhanced CAR T cell cytokine secretion and proliferation, granted efficient cytolysis of tumour cells in vitro and augmented CAR T cell activation in vivo. CONCLUSIONS Together our results suggest that combination therapy with AB928 represents a promising approach to improve adoptive cell therapy.
Collapse
|
15
|
Liu J, Ma J, Xing N, Ji Z, Li J, Zhang S, Guo Z. Interferon-γ predicts the treatment efficiency of immune checkpoint inhibitors in cancer patients. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04201-z. [DOI: 10.1007/s00432-022-04201-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/09/2022] [Indexed: 11/25/2022]
|
16
|
Wu B, Song M, Dong Q, Xiang G, Li J, Ma X, Wei F. UBR5 promotes tumor immune evasion through enhancing IFN-γ-induced PDL1 transcription in triple negative breast cancer. Am J Cancer Res 2022; 12:5086-5102. [PMID: 35836797 PMCID: PMC9274738 DOI: 10.7150/thno.74989] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/07/2022] [Indexed: 01/12/2023] Open
Abstract
Background: The up-regulation of PD-L1 is recognized as an adaption of cancer cells to evade immune surveillance and attack. However, the intrinsic mechanisms of the induction of PD-L1 by interferon-γ (IFN-γ) in tumor microenvironment remain incompletely characterized. Ubiquitin ligase E3 component N-recognition protein 5 (UBR5) has a critical role in tumorigenesis of triple negative breast cancer (TNBC) by triggering specific immune responses to the tumor. Dual targeting of UBR5 and PD-L1 exhibited superior therapeutic benefits in a preclinical TNBC model in short term. Methods: The regulation of UBR5 to PD-L1 upon IFN-γ stimulation was evaluated through in UBR5 deficiency, reconstitution or overexpression cell line models by quantitative PCR, immunohistochemistry and RNA-seq. The effects of PD-L1 regulation by UBR5 and double blockade of both genes were evaluated in mouse TNBC model. Luciferase reporter assay, chromatin immunoprecipitation-qPCR and bioinformatics analysis were performed to explore the transcription factors involved in the regulation of UBR5 to PD-L1. Results: E3 ubiquitin ligase UBR5 plays a key role in IFN-γ-induced PDL1 transcription in TNBC in an E3 ubiquitination activity-independent manner. RNA-seq-based transcriptomic analyses reveal that UBR5 globally affects the genes in the IFN-γ-induced signaling pathway. Through its poly adenylate binding (PABC) domain, UBR5 enhances the transactivation of PDL1 by upregulating protein kinase RNA-activated (PKR), and PKR's downstream factors including signal transducers and activators of transcription 1 (STAT1) and interferon regulatory factor 1 (IRF1). Restoration of PD-L1 expression in UBR5-deficient tumor cells recoups their malignancy in vivo, whereas CRISPR/Cas9-mediated simultaneous abrogation of UBR5 and PD-L1 expression yields synergistic therapeutic benefits than either blockade alone, with a strong impact on the tumor microenvironment. Conclusions: This study identifies a novel regulator of PDL1 transcription, elucidates the underlying molecular mechanisms and provides a strong rationale for combination cancer immunotherapies targeting UBR5 and PD-L1.
Collapse
Affiliation(s)
- Bingbing Wu
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mei Song
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York
| | - Qun Dong
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Xiang
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Li
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojing Ma
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York.,✉ Corresponding author: Fang Wei, 800 Dongchuan Road, Minghang, Shanghai 200240, China. Phone: 86-21-34205287; Fax: 86-21-34205287; E-mail: ; Xiaojing Ma,
| | - Fang Wei
- Sheng Yushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,✉ Corresponding author: Fang Wei, 800 Dongchuan Road, Minghang, Shanghai 200240, China. Phone: 86-21-34205287; Fax: 86-21-34205287; E-mail: ; Xiaojing Ma,
| |
Collapse
|
17
|
Cao X, Lai SWT, Chen S, Wang S, Feng M. Targeting tumor-associated macrophages for cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:61-108. [PMID: 35636930 DOI: 10.1016/bs.ircmb.2022.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tumor-associated macrophages (TAMs) are one of the most abundant immune components in the tumor microenvironment and play a plethora of roles in regulating tumorigenesis. Therefore, the therapeutic targeting of TAMs has emerged as a new paradigm for immunotherapy of cancer. Herein, the review summarizes the origin, polarization, and function of TAMs in the progression of malignant diseases. The understanding of such knowledge leads to several distinct therapeutic strategies to manipulate TAMs to battle cancer, which include those to reduce TAM abundance, such as depleting TAMs or inhibiting their recruitment and differentiation, and those to harness or boost the anti-tumor activities of TAMs such as blocking phagocytosis checkpoints, inducing antibody-dependent cellular phagocytosis, and reprogramming TAM polarization. In addition, modulation of TAMs may reshape the tumor microenvironment and therefore synergize with other cancer therapeutics. Therefore, the rational combination of TAM-targeting therapeutics with conventional therapies including radiotherapy, chemotherapy, and other immunotherapies is also reviewed. Overall, targeting TAMs presents itself as a promising strategy to add to the growing repertoire of treatment approaches in the fight against cancer, and it is hopeful that these approaches currently being pioneered will serve to vastly improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Xu Cao
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States.
| | - Seigmund W T Lai
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Siqi Chen
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Sadira Wang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States.
| |
Collapse
|
18
|
Haegebaert RM, Kempers M, Ceelen W, Lentacker I, Remaut K. Nanoparticle mediated targeting of toll-like receptors to treat colorectal cancer. Eur J Pharm Biopharm 2022; 172:16-30. [PMID: 35074555 DOI: 10.1016/j.ejpb.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
|
19
|
Hauptstein N, Meinel L, Lühmann T. Bioconjugation strategies and clinical implications of Interferon-bioconjugates. Eur J Pharm Biopharm 2022; 172:157-167. [PMID: 35149191 DOI: 10.1016/j.ejpb.2022.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/24/2022] [Accepted: 02/05/2022] [Indexed: 02/08/2023]
Abstract
Interferons (IFN) are immunomodulating, antiviral and antiproliferative cytokines for treatment of multiple indications, including cancer, hepatitis, and autoimmune disease. The first IFNs were discovered in 1957, first approved in 1986, and are nowadays listed in the WHO model list of essential Medicines. Three classes of IFNs are known; IFN-α2a and IFN-β belonging to type-I IFNs, IFN-γ a type-II IFN approved for some hereditary diseases and IFN-λs, which form the newest class of type-III IFNs. IFN-λs were discovered in the last decade with fascinating yet under discovered pharmaceutical potential. This article reviews available IFN drugs, their field and route of application, while also outlining available and future strategies for bioconjugation to further optimize pharmaceutical and clinical performances of all three available IFN classes.
Collapse
Affiliation(s)
- Niklas Hauptstein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074, Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074, Würzburg, Germany; Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), DE-97080 Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074, Würzburg, Germany.
| |
Collapse
|
20
|
Wang C, Cui A, Bukenya M, Aung A, Pradhan D, Whittaker CA, Agarwal Y, Thomas A, Liang S, Amlashi P, Suh H, Spranger S, Hacohen N, Irvine DJ. Reprogramming NK cells and macrophages via combined antibody and cytokine therapy primes tumors for elimination by checkpoint blockade. Cell Rep 2021; 37:110021. [PMID: 34818534 PMCID: PMC8653865 DOI: 10.1016/j.celrep.2021.110021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/29/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
Treatments aiming to augment immune checkpoint blockade (ICB) in cancer often focus on T cell immunity, but innate immune cells may have important roles to play. Here, we demonstrate a single-dose combination treatment (termed AIP) using a pan-tumor-targeting antibody surrogate, half-life-extended interleukin-2 (IL-2), and anti-programmed cell death 1 (PD-1), which primes tumors to respond to subsequent ICB and promotes rejection of large established tumors in mice. Natural killer (NK) cells and macrophages activated by AIP treatment underwent transcriptional reprogramming; rapidly killed cancer cells; governed the recruitment of cross-presenting dendritic cells (DCs) and other leukocytes; and induced normalization of the tumor vasculature, facilitating further immune infiltration. Thus, innate cell-activating therapies can initiate critical steps leading to a self-sustaining cycle of T cell priming driven by ICB. Wang et al. report an immune priming therapy based on a single dose of anti-tumor antibodies, IL-2, and anti-PD-1, which engages natural killer cells and macrophages, promotes lymphocyte recruitment and activation, and elicits vascular normalization. This priming strategy allows subsequent immune checkpoint blockade (ICB) to eradicate large, established tumors.
Collapse
Affiliation(s)
- Chensu Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ang Cui
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Maurice Bukenya
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aereas Aung
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dikshant Pradhan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles A Whittaker
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yash Agarwal
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ayush Thomas
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Simon Liang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Parastoo Amlashi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Heikyung Suh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
21
|
Kurebayashi Y, Olkowski CP, Lane KC, Vasalatiy OV, Xu BC, Okada R, Furusawa A, Choyke PL, Kobayashi H, Sato N. Rapid Depletion of Intratumoral Regulatory T Cells Induces Synchronized CD8 T- and NK-cell Activation and IFNγ-Dependent Tumor Vessel Regression. Cancer Res 2021; 81:3092-3104. [PMID: 33574087 PMCID: PMC8178213 DOI: 10.1158/0008-5472.can-20-2673] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/08/2020] [Accepted: 02/10/2021] [Indexed: 11/16/2022]
Abstract
Regulatory T cells (Tregs) are known to inhibit antitumor immunity, yet the specific mechanism by which intratumoral Tregs promote tumor growth remains unclear. To better understand the roles of intratumoral Tregs, we selectively depleted tumor-infiltrating Tregs using anti-CD25-F(ab')2 near-infrared photoimmunotherapy. Depletion of tumor-infiltrating Tregs induced transient but synchronized IFNγ expression in CD8 T and natural killer (NK) cells. Despite the small fraction of CD8 T and NK cells contained within examined tumors, IFNγ produced by these CD8 T and NK cells led to efficient and rapid tumor vessel regression, intratumoral ischemia, and tumor necrosis/apoptosis and growth suppression. IFNγ receptor expression on vascular endothelial cells was required for these effects. Similar findings were observed in the early phase of systemic Treg depletion in tumor-bearing Foxp3DTR mice; combination with IL15 therapy further inhibited tumor growth and achieved increased complete regression. These results indicate the pivotal roles of intratumoral Tregs in maintaining tumor vessels and tumor growth by suppressing CD8 T and NK cells from producing IFNγ, providing insight into the mechanism of Treg-targeting therapies. SIGNIFICANCE: Intratumoral Treg depletion induces synchronized intratumoral CD8 T- and NK-cell activation, IFNγ-dependent tumor vessel regression, and ischemic tumor necrosis/apoptosis, indicating the roles of intratumoral Tregs to support the tumor vasculature. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/11/3092/F1.large.jpg.
Collapse
Affiliation(s)
- Yutaka Kurebayashi
- Molecular Imaging Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Colleen P Olkowski
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research Sponsored by the NCI, Frederick, Maryland
| | - Kelly C Lane
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, Maryland
| | - Olga V Vasalatiy
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, Maryland
| | - Biying C Xu
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, Maryland
| | - Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
22
|
Lotfinejad P, Kazemi T, Safaei S, Amini M, Roshani Asl E, Baghbani E, Sandoghchian Shotorbani S, Jadidi Niaragh F, Derakhshani A, Abdoli Shadbad M, Silvestris N, Baradaran B. PD-L1 silencing inhibits triple-negative breast cancer development and upregulates T-cell-induced pro-inflammatory cytokines. Biomed Pharmacother 2021; 138:111436. [PMID: 33667790 DOI: 10.1016/j.biopha.2021.111436] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/22/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an invasive tumor with a high incidence of distant metastasis and poor prognosis. In TNBC cells, high PD-L1 expression can induce an immunosuppressive tumor microenvironment, repressing the anti-tumoral immune responses. Although FDA-approved agents targeting the PD-1/PD-L1 axis are potent to eliminate tumoral cells, their immune-related adverse events have become worrisome. As the regulator of gene expression, siRNAs can directly target PD-L1 in breast cancer cells. The gene modification of tumoral PD-L1 can reduce our reliance on the current method of targeting the PD-L1/PD-1 axis. We initiated the study with bioinformatics analysis; the results indicated that TNBC and the MDA-MB-231 cells significantly overexpressed PD-L1 compared to other breast cancer subtypes and cell lines. Our results demonstrated that PD-L1 silencing substantially reduced PD-L1 expression at mRNA and protein levels in MDA-MB-231 cells. Moreover, our results demonstrated that PD-L1 knockdown reduced cancer cell proliferation and induced apoptosis via intrinsic and extrinsic apoptosis pathways. We observed that PD-L1 silencing effectively inhibited the migration of TNBC cells. Further investigation also displayed that silencing of PD-L1 in breast cancer cells induced T-cell cytotoxic function by upregulating the gene expression of pro-inflammatory cytokines, i.e., IL-2, IFN-γ, and TNF-α, and downregulating the gene expression of anti-inflammatory cytokines, i.e., IL-10, and TGF-β, in a co-culture system.
Collapse
Affiliation(s)
- Parisa Lotfinejad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elmira Roshani Asl
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Italy
| | - Mahdi Abdoli Shadbad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nicola Silvestris
- IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Italy; Department of Biomedical Sciences and Human Oncology DIMO-University of Bari, Bari, Italy.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Jorgovanovic D, Song M, Wang L, Zhang Y. Roles of IFN-γ in tumor progression and regression: a review. Biomark Res 2020; 8:49. [PMID: 33005420 PMCID: PMC7526126 DOI: 10.1186/s40364-020-00228-x] [Citation(s) in RCA: 626] [Impact Index Per Article: 125.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Interferon-γ (IFN-γ) plays a key role in activation of cellular immunity and subsequently, stimulation of antitumor immune-response. Based on its cytostatic, pro-apoptotic and antiproliferative functions, IFN-γ is considered potentially useful for adjuvant immunotherapy for different types of cancer. Moreover, it IFN-γ may inhibit angiogenesis in tumor tissue, induce regulatory T-cell apoptosis, and/or stimulate the activity of M1 proinflammatory macrophages to overcome tumor progression. However, the current understanding of the roles of IFN-γ in the tumor microenvironment (TME) may be misleading in terms of its clinical application. MAIN BODY Some researchers believe it has anti-tumorigenic properties, while others suggest that it contributes to tumor growth and progression. In our recent work, we have shown that concentration of IFN-γ in the TME determines its function. Further, it was reported that tumors treated with low-dose IFN-γ acquired metastatic properties while those infused with high dose led to tumor regression. Pro-tumorigenic role may be described through IFN-γ signaling insensitivity, downregulation of major histocompatibility complexes, upregulation of indoleamine 2,3-dioxygenase, and checkpoint inhibitors such as programmed cell death ligand 1. CONCLUSION Significant research efforts are required to decipher IFN-γ-dependent pro- and anti-tumorigenic effects. This review discusses the current knowledge concerning the roles of IFN-γ in the TME as a part of the complex immune response to cancer and highlights the importance of identifying IFN-γ responsive patients to improve their sensitivity to immuno-therapies.
Collapse
Affiliation(s)
- Dragica Jorgovanovic
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052 Henan China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052 China
| | - Mengjia Song
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangzhou, 510060 China
| | - Liping Wang
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052 Henan China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052 Henan China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052 China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052 Henan China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052 China
| |
Collapse
|
24
|
Jansons J, Bayurova E, Skrastina D, Kurlanda A, Fridrihsone I, Kostyushev D, Kostyusheva A, Artyuhov A, Dashinimaev E, Avdoshina D, Kondrashova A, Valuev-Elliston V, Latyshev O, Eliseeva O, Petkov S, Abakumov M, Hippe L, Kholodnyuk I, Starodubova E, Gorodnicheva T, Ivanov A, Gordeychuk I, Isaguliants M. Expression of the Reverse Transcriptase Domain of Telomerase Reverse Transcriptase Induces Lytic Cellular Response in DNA-Immunized Mice and Limits Tumorigenic and Metastatic Potential of Murine Adenocarcinoma 4T1 Cells. Vaccines (Basel) 2020; 8:vaccines8020318. [PMID: 32570805 PMCID: PMC7350266 DOI: 10.3390/vaccines8020318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) is a classic tumor-associated antigen overexpressed in majority of tumors. Several TERT-based cancer vaccines are currently in clinical trials, but immune correlates of their antitumor activity remain largely unknown. Here, we characterized fine specificity and lytic potential of immune response against rat TERT in mice. BALB/c mice were primed with plasmids encoding expression-optimized hemagglutinin-tagged or nontagged TERT or empty vector and boosted with same DNA mixed with plasmid encoding firefly luciferase (Luc DNA). Injections were followed by electroporation. Photon emission from booster sites was assessed by in vivo bioluminescent imaging. Two weeks post boost, mice were sacrificed and assessed for IFN-γ, interleukin-2 (IL-2), and tumor necrosis factor alpha (TNF-α) production by T-cells upon their stimulation with TERT peptides and for anti-TERT antibodies. All TERT DNA-immunized mice developed cellular and antibody response against epitopes at the N-terminus and reverse transcriptase domain (rtTERT) of TERT. Photon emission from mice boosted with TERT/TERT-HA+Luc DNA was 100 times lower than from vector+Luc DNA-boosted controls. Bioluminescence loss correlated with percent of IFN-γ/IL-2/TNF-α producing CD8+ and CD4+ T-cells specific to rtTERT, indicating immune clearance of TERT/Luc-coexpressing cells. We made murine adenocarcinoma 4T1luc2 cells to express rtTERT by lentiviral transduction. Expression of rtTERT significantly reduced the capacity of 4T1luc2 to form tumors and metastasize in mice, while not affecting in vitro growth. Mice which rejected the tumors developed T-cell response against rtTERT and low/no response to the autoepitope of TERT. This advances rtTERT as key component of TERT-based therapeutic vaccines against cancer.
Collapse
Affiliation(s)
- Juris Jansons
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia;
| | - Ekaterina Bayurova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 127994, Russia; (D.A.); (A.K.)
| | - Dace Skrastina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia;
| | - Alisa Kurlanda
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
| | - Ilze Fridrihsone
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
| | - Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow 127994, Russia; (D.K.); (A.K.)
| | - Anastasia Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow 127994, Russia; (D.K.); (A.K.)
| | - Alexander Artyuhov
- Center for Precision Genome Editing and Genetic Technologies, Pirogov Russian National Research Medical University, Moscow 127994, Russia; (A.A.); (E.D.)
| | - Erdem Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies, Pirogov Russian National Research Medical University, Moscow 127994, Russia; (A.A.); (E.D.)
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 127994, Russia
| | - Darya Avdoshina
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 127994, Russia; (D.A.); (A.K.)
| | - Alla Kondrashova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 127994, Russia; (D.A.); (A.K.)
| | - Vladimir Valuev-Elliston
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 127994, Russia; (V.V.-E.); (E.S.)
| | - Oleg Latyshev
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
| | - Olesja Eliseeva
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Maxim Abakumov
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology MISIS, Moscow 127994, Russia
- Department of Medical Nanobiotechnologies, Pirogov Russian National Research Medical University, Moscow 127994, Russia
| | - Laura Hippe
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
| | - Irina Kholodnyuk
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
| | - Elizaveta Starodubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 127994, Russia; (V.V.-E.); (E.S.)
| | | | - Alexander Ivanov
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 127994, Russia; (V.V.-E.); (E.S.)
| | - Ilya Gordeychuk
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 127994, Russia; (D.A.); (A.K.)
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia
| | - Maria Isaguliants
- Department of Research, and Department of Pathology, Pathology, Rīga Stradiņš University, LV-1007 Riga, Latvia; (J.J.); (A.K.); (I.F.); (L.H.); (I.K.)
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Moscow 127994, Russia; (E.B.); (O.L.); (O.E.); (M.A.); (A.I.); (I.G.)
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 127994, Russia; (D.A.); (A.K.)
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
- Correspondence:
| |
Collapse
|
25
|
Mirando AC, Patil A, Rafie CI, Christmas BJ, Pandey NB, Stearns V, Jaffee EM, Roussos Torres ET, Popel AS. Regulation of the tumor immune microenvironment and vascular normalization in TNBC murine models by a novel peptide. Oncoimmunology 2020; 9:1760685. [PMID: 32923118 PMCID: PMC7458646 DOI: 10.1080/2162402x.2020.1760685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly metastatic and aggressive disease with limited treatment options. Recently, the combination of the immune checkpoint inhibitor (ICI) atezolizumab (anti-PD-L1) with nab-paclitaxel was approved following a clinical trial that showed response rates in at least 43% of patients. While this approval marks a major advance in the treatment of TNBC it may be possible to improve the efficacy of ICI therapies through further modulation of the suppressive tumor immune microenvironment (TIME). Several factors may limit immune response in TNBC including aberrant growth factor signaling, such as VEGFR2 and cMet signaling, inefficient vascularization, poor delivery of drugs and immune cells, and the skewing of immune cell populations toward immunosuppressive phenotypes. Here we investigate the immune-modulating properties of AXT201, a novel 20 amino-acid integrin-binding peptide in two syngeneic mouse TNBC models: 4T1-BALB/c and NT4-FVB. AXT201 treatment improved survival in the NT4 model by 20% and inhibited the growth of 4T1 tumors by 47% over 22 days post-inoculation. Subsequent immunohistochemical analyses of 4T1 tumors also showed a 53% reduction in vascular density and a 184% increase in pericyte coverage following peptide treatment. Flow cytometry analyses demonstrated evidence of a more favorable anti-tumor immune microenvironment following treatment with AXT201, including significant decreases in the populations of T regulatory cells, monocytic myeloid-derived suppressor cells, and PD-L1 expressing cells and increased expression of T cell functional markers. Together, these findings demonstrate immune-activating properties of AXT201 that could be developed in combination with other immunomodulatory agents in the treatment of TNBC.
Collapse
Affiliation(s)
- Adam C Mirando
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Akash Patil
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christine I Rafie
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian J Christmas
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Niranjan B Pandey
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Research and Development, AsclepiX Therapeutics, Inc, Baltimore, MD, USA
| | - Vered Stearns
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Jaffee
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Evanthia T Roussos Torres
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Norris Comprehensive Cancer Center, Department of Medicine, Division of Hematology/Oncology, University of Southern California, Los Angeles, CA, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Abstract
T cell-secreted IFNγ can exert pleiotropic effects on tumor cells that include induction of immune checkpoints and antigen presentation machinery components, and inhibition of cell growth. Despite its role as key effector molecule, little is known about the spatiotemporal spreading of IFNγ secreted by activated CD8+ T cells within the tumor environment. Using multiday intravital imaging, we demonstrate that T cell recognition of a minor fraction of tumor cells leads to sensing of IFNγ by a large part of the tumor mass. Furthermore, imaging of tumors in which antigen-positive and -negative tumor cells are separated in space reveals spreading of the IFNγ response, reaching distances of >800 µm. Notably, long-range sensing of IFNγ can modify tumor behavior, as both shown by induction of PD-L1 expression and inhibition of tumor growth. Collectively, these data reveal how, through IFNγ, CD8+ T cells modulate the behavior of remote tumor cells, including antigen-loss variants.
Collapse
|
27
|
Khatibi AS, Roodbari NH, Majidzade-A K, Yaghmaei P, Farahmand L. In vivo tumor-suppressing and anti-angiogenic activities of a recombinant anti-CD3ε nanobody in breast cancer mice model. Immunotherapy 2019; 11:1555-1567. [PMID: 31865872 DOI: 10.2217/imt-2019-0068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: Achievements in cancer immunotherapy require augmentation of a host's anti-tumor immune response for anti-cancer modality. Materials & methods: Different concentrations of recombinant anti-CD3 nanobody were administered at predetermined time intervals during a 24-day treatment period and then expression of angiogenic biomarkers including VEGFR2, MMP9 and CD31, as well as tumor cell proliferation marker ki67, was determined in tumor sections by immunohistochemistry. Furthermore, expression of cytokines was examined in peripheral blood of mice. Results: Based on our results, administration of nanobody could reduce biomarker expression in tumor sections. Tumor growth was also delayed and survival rate was increased in response to nanobody treatment. Moreover, expression of pro-inflammatory cytokines was reduced. Conclusion: In conclusion, we demonstrated that administration of nanobody could effectively suppress angiogenesis as well as tumor growth.
Collapse
Affiliation(s)
- Azadeh Sharif Khatibi
- Department of Biology, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Hayati Roodbari
- Department of Biology, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Keivan Majidzade-A
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Parichehreh Yaghmaei
- Department of Biology, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
28
|
Beck RJ, Slagter M, Beltman JB. Contact-Dependent Killing by Cytotoxic T Lymphocytes Is Insufficient for EL4 Tumor Regression In Vivo. Cancer Res 2019; 79:3406-3416. [PMID: 31040155 DOI: 10.1158/0008-5472.can-18-3147] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/08/2019] [Accepted: 04/25/2019] [Indexed: 11/16/2022]
Abstract
Immunotherapies are an emerging strategy for treatment of solid tumors. Improved understanding of the mechanisms employed by cytotoxic T lymphocytes (CTL) to control tumors will aid in the development of immunotherapies. CTLs can directly kill tumor cells in a contact-dependent manner or may exert indirect effects on tumor cells via secretion of cytokines. Here, we aim to quantify the importance of these mechanisms in murine thymoma EL4/EG7 cells. We developed an agent-based model (ABM) and an ordinary differential equation model of tumor regression after adoptive transfer of a population of CTLs. Models were parameterized based on in vivo measurements of CTL infiltration and killing rates applied to EL4/EG7 tumors and OTI T cells. We quantified whether infiltrating CTLs are capable of controlling tumors through only direct, contact-dependent killing. Both models agreed that the low measured killing rate of CTLs in vivo was insufficient to cause tumor regression. In our ABM, we also simulated CTL production of the cytokine IFNγ in order to explore how an antiproliferative effect of IFNγ might aid CTLs in tumor control. In this model, IFNγ substantially reduced tumor growth compared with direct killing alone. Collectively, these data demonstrate that contact-dependent killing is insufficient for EL4 regression in vivo and highlight the potential importance of cytokine-induced antiproliferative effects in T-cell-mediated tumor control. SIGNIFICANCE: Computational modeling highlights the importance of cytokine-induced antiproliferative effects in T-cell-mediated control of tumor progression.
Collapse
Affiliation(s)
- Richard J Beck
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Maarten Slagter
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Joost B Beltman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
29
|
Castro F, Cardoso AP, Gonçalves RM, Serre K, Oliveira MJ. Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Front Immunol 2018; 9:847. [PMID: 29780381 PMCID: PMC5945880 DOI: 10.3389/fimmu.2018.00847] [Citation(s) in RCA: 797] [Impact Index Per Article: 113.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
Interferon-gamma (IFN-γ) is a pleiotropic molecule with associated antiproliferative, pro-apoptotic and antitumor mechanisms. This effector cytokine, often considered as a major effector of immunity, has been used in the treatment of several diseases, despite its adverse effects. Although broad evidence implicating IFN-γ in tumor immune surveillance, IFN-γ-based therapies undergoing clinical trials have been of limited success. In fact, recent reports suggested that it may also play a protumorigenic role, namely, through IFN-γ signaling insensitivity, downregulation of major histocompatibility complexes, and upregulation of indoleamine 2,3-dioxygenase and of checkpoint inhibitors, as programmed cell-death ligand 1. However, the IFN-γ-mediated responses are still positively associated with patient's survival in several cancers. Consequently, major research efforts are required to understand the immune contexture in which IFN-γ induces its intricate and highly regulated effects in the tumor microenvironment. This review discusses the current knowledge on the pro- and antitumorigenic effects of IFN-γ as part of the complex immune response to cancer, highlighting the relevance to identify IFN-γ responsive patients for the improvement of therapies that exploit associated signaling pathways.
Collapse
Affiliation(s)
- Flávia Castro
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana Patrícia Cardoso
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Raquel Madeira Gonçalves
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Karine Serre
- IMM – Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria José Oliveira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Departamento de Patologia e Oncologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
30
|
Shen J, Xiao Z, Zhao Q, Li M, Wu X, Zhang L, Hu W, Cho CH. Anti-cancer therapy with TNFα and IFNγ: A comprehensive review. Cell Prolif 2018; 51:e12441. [PMID: 29484738 DOI: 10.1111/cpr.12441] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/04/2018] [Indexed: 12/21/2022] Open
Abstract
Tumour necrosis factor alpha (TNFα) and interferon gamma (IFNγ) were originally found to be produced by inflammatory cells and play important roles in the immune system and surveillance of tumour growth. By activating distinct signalling pathways of nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), and JAK/STAT, TNFα and IFNγ were reported to effectively trigger cell death and perform powerful anti-cancer effects. In this review, we will discuss the new advancements of TNFα and IFNγ in anti-cancer therapy.
Collapse
Affiliation(s)
- Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong
| | - Wei Hu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong
| | - Chi H Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
31
|
Lopes-Bastos B, Jin L, Ruge F, Owen S, Sanders A, Cogle C, Chester J, Jiang WG, Cai J. Association of breast carcinoma growth with a non-canonical axis of IFNγ/IDO1/TSP1. Oncotarget 2017; 8:85024-85039. [PMID: 29156701 PMCID: PMC5689591 DOI: 10.18632/oncotarget.18781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/29/2017] [Indexed: 01/21/2023] Open
Abstract
Reciprocal interactions between cancers and the surrounding microenvironment have an important role in tumour evolution. In this study, our data suggested that through thrombospondin 1 (TSP1), tumour-associated microvessel provides a dormant niche to sustain inactive status of breast invasive ductal carcinoma (IDC) cells. TSP1 levels in the tumour stroma were negatively correlated with vascular indoleamine 2,3-dioxygenase 1 (IDO1) in IDC tissues. IDO1 is an intracellular enzyme initiating the first and rate-limited step of tryptophan breakdown. Lower stromal TSP1 levels and positive tumour vascular IDO1 staining seems to associate with poor survive of patients with IDC. IDC cells induced a significantly increase in IDO1 expression in endothelial cells (ECs). IFNγ exerts a similar effect on ECs. We hypothesized a tryptophan starvation theory that since tryptophan is essential for the synthesis of TSP1, IDO1 induce a decrease in tryptophan availability and a reduction in TSP1 synthesis in ECs, leading to overcoming the dormancy state of IDC cells and exacerbating conditions such as tumour invasion and metastasis. These findings identify a non-canonical role of IFNγ/IDO1/TSP1 axis in microvascular niche-dominated dormancy of breast invasive ductal carcinoma with a solid foundation for further investigation of therapeutic and prognostic relevance.
Collapse
Affiliation(s)
- Bruno Lopes-Bastos
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Liang Jin
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Fiona Ruge
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Sioned Owen
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Andrew Sanders
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Christopher Cogle
- School of Medicine, University of Florida, Gainesville, Florida 32610-0278, USA
| | - John Chester
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Jun Cai
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| |
Collapse
|
32
|
Kammertoens T, Friese C, Arina A, Idel C, Briesemeister D, Rothe M, Ivanov A, Szymborska A, Patone G, Kunz S, Sommermeyer D, Engels B, Leisegang M, Textor A, Fehling HJ, Fruttiger M, Lohoff M, Herrmann A, Yu H, Weichselbaum R, Uckert W, Hübner N, Gerhardt H, Beule D, Schreiber H, Blankenstein T. Tumour ischaemia by interferon-γ resembles physiological blood vessel regression. Nature 2017; 545:98-102. [PMID: 28445461 PMCID: PMC5567674 DOI: 10.1038/nature22311] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/30/2017] [Indexed: 12/11/2022]
Abstract
The relative contribution of the effector molecules produced by T cells to tumour rejection is unclear, but interferon-γ (IFNγ) is critical in most of the analysed models. Although IFNγ can impede tumour growth by acting directly on cancer cells, it must also act on the tumour stroma for effective rejection of large, established tumours. However, which stroma cells respond to IFNγ and by which mechanism IFNγ contributes to tumour rejection through stromal targeting have remained unknown. Here we use a model of IFNγ induction and an IFNγ-GFP fusion protein in large, vascularized tumours growing in mice that express the IFNγ receptor exclusively in defined cell types. Responsiveness to IFNγ by myeloid cells and other haematopoietic cells, including T cells or fibroblasts, was not sufficient for IFNγ-induced tumour regression, whereas responsiveness of endothelial cells to IFNγ was necessary and sufficient. Intravital microscopy revealed IFNγ-induced regression of the tumour vasculature, resulting in arrest of blood flow and subsequent collapse of tumours, similar to non-haemorrhagic necrosis in ischaemia and unlike haemorrhagic necrosis induced by tumour necrosis factor. The early events of IFNγ-induced tumour ischaemia resemble non-apoptotic blood vessel regression during development, wound healing or IFNγ-mediated, pregnancy-induced remodelling of uterine arteries. A better mechanistic understanding of how solid tumours are rejected may aid the design of more effective protocols for adoptive T-cell therapy.
Collapse
Affiliation(s)
- Thomas Kammertoens
- Institute of Immunology, Charité Campus Buch, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Christian Friese
- Institute of Immunology, Charité Campus Buch, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Ainhoa Arina
- Department of Radiation and Cellular Oncology, Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, USA
| | - Christian Idel
- Department of Pathology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Dana Briesemeister
- Institute of Immunology, Charité Campus Buch, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Michael Rothe
- Institute of Immunology, Charité Campus Buch, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Andranik Ivanov
- Berlin Institute of Health, 10117 Berlin, Germany
- Charité - Universitätsmedizin, 10117 Berlin, Germany
| | - Anna Szymborska
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Giannino Patone
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Severine Kunz
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | | | - Boris Engels
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Matthias Leisegang
- Institute of Immunology, Charité Campus Buch, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute of Health, 10117 Berlin, Germany
| | - Ana Textor
- Institute of Immunology, Charité Campus Buch, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | | | - Marcus Fruttiger
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Michael Lohoff
- Institute for Medical Microbiology, University of Marburg, 35032 Marburg, Germany
| | - Andreas Herrmann
- Beckman Research Institute at the Comprehensive Cancer Center City of Hope, Los Angeles, California 91010-3000, USA
| | - Hua Yu
- Beckman Research Institute at the Comprehensive Cancer Center City of Hope, Los Angeles, California 91010-3000, USA
| | - Ralph Weichselbaum
- Department of Radiation and Cellular Oncology, Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, USA
| | - Wolfgang Uckert
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute of Health, 10117 Berlin, Germany
| | - Norbert Hübner
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- Charité - Universitätsmedizin, 10117 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, 13347 Berlin, Germany
| | - Holger Gerhardt
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute of Health, 10117 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, 13347 Berlin, Germany
| | - Dieter Beule
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute of Health, 10117 Berlin, Germany
| | - Hans Schreiber
- Institute of Immunology, Charité Campus Buch, 13125 Berlin, Germany
- Department of Pathology, The University of Chicago, Chicago, Illinois 60637, USA
- Berlin Institute of Health, 10117 Berlin, Germany
| | - Thomas Blankenstein
- Institute of Immunology, Charité Campus Buch, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
- Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
33
|
Textor A, Schmidt K, Kloetzel PM, Weißbrich B, Perez C, Charo J, Anders K, Sidney J, Sette A, Schumacher TNM, Keller C, Busch DH, Seifert U, Blankenstein T. Preventing tumor escape by targeting a post-proteasomal trimming independent epitope. J Exp Med 2016; 213:2333-2348. [PMID: 27697836 PMCID: PMC5068242 DOI: 10.1084/jem.20160636] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/31/2016] [Indexed: 02/05/2023] Open
Abstract
Blankenstein and colleagues describe a novel strategy to avoid tumor escape from adoptive T cell therapy. Adoptive T cell therapy (ATT) can achieve regression of large tumors in mice and humans; however, tumors frequently recur. High target peptide-major histocompatibility complex-I (pMHC) affinity and T cell receptor (TCR)-pMHC affinity are thought to be critical to preventing relapse. Here, we show that targeting two epitopes of the same antigen in the same cancer cells via monospecific T cells, which have similar pMHC and pMHC-TCR affinity, results in eradication of large, established tumors when targeting the apparently subdominant but not the dominant epitope. Only the escape but not the rejection epitope required postproteasomal trimming, which was regulated by IFN-γ, allowing IFN-γ–unresponsive cancer variants to evade. The data describe a novel immune escape mechanism and better define suitable target epitopes for ATT.
Collapse
Affiliation(s)
- Ana Textor
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Karin Schmidt
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany.,Institute for Biochemistry, Charité, Campus Mitte, 10117 Berlin, Germany
| | - Peter-M Kloetzel
- Institute for Biochemistry, Charité, Campus Mitte, 10117 Berlin, Germany.,Berlin Institute of Health, 10117 Berlin, Germany
| | - Bianca Weißbrich
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University, 81675 Munich, Germany
| | - Cynthia Perez
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Jehad Charo
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Kathleen Anders
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Ton N M Schumacher
- The Division of Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Christin Keller
- Institute for Biochemistry, Charité, Campus Mitte, 10117 Berlin, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University, 81675 Munich, Germany
| | - Ulrike Seifert
- Institute for Biochemistry, Charité, Campus Mitte, 10117 Berlin, Germany.,Institute for Molecular and Clinical Immunology, Otto-von-Guericke-Universität, 39120 Magdeburg, Germany.,Friedrich Loeffler Institute of Medical Microbiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Thomas Blankenstein
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany .,Berlin Institute of Health, 10117 Berlin, Germany.,Institute of Immunology, Charité, Campus Buch, 13125 Berlin, Germany
| |
Collapse
|
34
|
Binder DC, Arina A, Wen F, Tu T, Zhao M, Hoffman RM, Wainwright DA, Schreiber H. Tumor relapse prevented by combining adoptive T cell therapy with Salmonella typhimurium. Oncoimmunology 2016; 5:e1130207. [PMID: 27471609 DOI: 10.1080/2162402x.2015.1130207] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/04/2015] [Accepted: 12/05/2015] [Indexed: 10/22/2022] Open
Abstract
We recently reported that therapeutic vaccination with live tumor antigen-producing Salmonella typhimurium rescues dysfunctional endogenous T cell responses and eradicates long-established tumors refractory to αCTLA-4 and αPD-L1 checkpoint inhibitor blockade. Here, we show that live intravenously injected or heat-killed (HK) intratumorally injected Salmonella typhimurium, even when not producing tumor antigen, synergize with adoptive T cell therapy to eradicate tumors. These data demonstrate that the combination of adoptive T cell transfer with the injection of live or dead Salmonella typhimurium is a promising approach for cancer treatment.
Collapse
Affiliation(s)
- David C Binder
- Committee on Cancer Biology, University of Chicago, Chicago, IL, USA; Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Ainhoa Arina
- Department of Pathology, University of Chicago, Chicago, IL, USA; Committee on Immunology, The University of Chicago, Chicago, IL, USA
| | - Frank Wen
- Department of Pathology, University of Chicago , Chicago, IL, USA
| | - Tony Tu
- Department of Pathology, University of Chicago, Chicago, IL, USA; Committee on Immunology, The University of Chicago, Chicago, IL, USA
| | - Ming Zhao
- AntiCancer Inc. , San Diego, CA, USA
| | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Derek A Wainwright
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Northwestern Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hans Schreiber
- Committee on Cancer Biology, University of Chicago, Chicago, IL, USA; Department of Pathology, University of Chicago, Chicago, IL, USA; Committee on Immunology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
35
|
Leignadier J, Favre S, Luther SA, Luescher IF. CD8 engineered cytotoxic T cells reprogram melanoma tumor environment. Oncoimmunology 2015; 5:e1086861. [PMID: 27141342 DOI: 10.1080/2162402x.2015.1086861] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022] Open
Abstract
Cytotoxic T lymphocytes (CTL) from CD8β-deficient mice have powerful FasL-mediated cytotoxicity and IFNγ responses, but ablated Ca2+ and NFAT signaling, which can be restored by transduction with CD8β. Upon infection with lymphocytic choriomeningitis virus (LCMV), these cells yielded GP33-specific CTL (CD8βR) that exhibited high FasL/Fas-mediated cytotoxicity, IFNγ CXCL9 and 10 chemokine responses. Transfer of these cells in B16-GP33 tumor bearing mice resulted in (i) massive T cell tumor infiltration, (ii) strong reduction of myeloid-derived suppressor cells (MDSCs), regulatory T cells (Treg) and IL-17-expressing T helper cells, (iii) maturation of tumor-associated antigen-presenting cells and (iv) production of endogenous, B16 melanoma-specific CTL that eradicated the tumor long after the transferred CD8βR CTL perished. Our study demonstrates that the synergistic combination of strong Fas/FasL mediated cytotoxicity, IFNγ and CXCL9 and 10 responses endows adoptively transferred CTL to reprogram the tumor environment and to thus enable the generation of endogenous, tumoricidal immunity.
Collapse
Affiliation(s)
- Julie Leignadier
- Ludwig Center for Cancer Research, University of Lausanne , Epalinges, Switzerland
| | - Stephanie Favre
- Department of Biochemistry, University of Lausanne , Epalinges, Switzerland
| | - Sanjiv A Luther
- Department of Biochemistry, University of Lausanne , Epalinges, Switzerland
| | - Immanuel F Luescher
- Ludwig Center for Cancer Research, University of Lausanne , Epalinges, Switzerland
| |
Collapse
|
36
|
Lees JR. Interferon gamma in autoimmunity: A complicated player on a complex stage. Cytokine 2014; 74:18-26. [PMID: 25464925 DOI: 10.1016/j.cyto.2014.10.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/23/2014] [Accepted: 10/25/2014] [Indexed: 12/19/2022]
Abstract
Early views of autoimmune disease cast IFNγ as a prototypic pro-inflammatory factor. It is now clear that IFNγ is capable of both pro- and anti-inflammatory activities with the functional outcome dependent on the physiological and pathological setting examined. Here, the major immune modulatory activities of IFNγ are reviewed and current evidence for the impact of IFNγ on pathology and regulation of several autoimmune diseases and disease models is summarized.
Collapse
Affiliation(s)
- Jason R Lees
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
37
|
Textor A, Listopad JJ, Wührmann LL, Perez C, Kruschinski A, Chmielewski M, Abken H, Blankenstein T, Charo J. Efficacy of CAR T-cell therapy in large tumors relies upon stromal targeting by IFNγ. Cancer Res 2014; 74:6796-805. [PMID: 25297631 DOI: 10.1158/0008-5472.can-14-0079] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adoptive T-cell therapy using chimeric antigen receptor-modified T cells (CAR-T therapy) has shown dramatic efficacy in patients with circulating lymphoma. However, eradication of solid tumors with CAR-T therapy has not been reported yet to be efficacious. In solid tumors, stroma destruction, due to MHC-restricted cross-presentation of tumor antigens to T cells, may be essential. However, CAR-Ts recognize antigens in an MHC-independent manner on cancer cells but not stroma cells. In this report, we show how CAR-Ts can be engineered to eradicate large established tumors with provision of a suitable CD28 costimulatory signal. In an HER2-dependent tumor model, tumor rejection by HER2-specific CAR-Ts was associated with sustained influx and proliferation of the adoptively transferred T cells. Interestingly, tumor rejection did not involve natural killer cells but was associated instead with a marked increase in the level of M1 macrophages and a requirement for IFNγ receptor expression on tumor stroma cells. Our results argue that CAR-T therapy is capable of eradicating solid tumors through a combination of antigen-independent stroma destruction and antigen-specific tumor cell targeting.
Collapse
Affiliation(s)
- Ana Textor
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | | | - Cynthia Perez
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | - Markus Chmielewski
- Department I of Internal Medicine, Tumor Genetics, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Hinrich Abken
- Department I of Internal Medicine, Tumor Genetics, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Thomas Blankenstein
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany. Institute of Immunology, Charite Campus Buch, Berlin, Germany
| | - Jehad Charo
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
38
|
Fan L, Yu Z, Li J, Dang X, Wang K. Immunoregulation effects of bone marrow-derived mesenchymal stem cells in xenogeneic acellular nerve grafts transplant. Cell Mol Neurobiol 2014; 34:999-1010. [PMID: 24935408 DOI: 10.1007/s10571-014-0076-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/27/2014] [Indexed: 12/29/2022]
Abstract
This study evaluated whether bone marrow-derived mesenchymal stem cells (BM-MSCs) combined with xenogeneic acellular nerve grafts (xANGs) would reduce the inflammation reaction of xANGs transplantation. BM-MSCs were extracted, separated, purified, and cultured from the bone marrow of rats. Then BM-MSCs were seeded into 5 mm xANGs as experimental group, while xANGs group was chosen as control. Subcutaneous implantation and nerve grafts transplantation were done in this study. Walking-track tests, electrophysiological tests, H&E staining, and immunostaining of CD4, CD8, and CD68 of subcutaneous implantations, cytokine concentrations of IL-2, IL-10, IFN-γ and TNF-α in lymphocytes supernatants and serum of the two groups were evaluated. Walking-track tests and electrophysiological tests suggested the group of BM-MSCs with xANGs obtained better results than xANGs group (P < 0.05). H&E staining and immunostaining of CD4, CD8, and CD68 of subcutaneous implantations showed there were less inflammatory cells in the group of BM-MSCs when compared with the xANGs group. The cytokine concentrations of IL-2, IFN-γ, and TNF-α in BM-MSCs group were lower than xANGs group in lymphocytes supernatants and serum (P < 0.05). However, IL-10 concentrations in BM-MSCs group were higher than xANGs group (P < 0.05). xANG with BM-MSCs showed better nerve repair function when compared with xANG group. Furthermore, xANG with BM-MSCs showed less inflammatory reaction which might indicate the reason of its better nerve regeneration.
Collapse
Affiliation(s)
- Lihong Fan
- The First Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an, Shaanxi, China
| | | | | | | | | |
Collapse
|
39
|
Schadler KL, Crosby EJ, Zhou AY, Bhang DH, Braunstein L, Baek KH, Crawford D, Crawford A, Angelosanto J, Wherry EJ, Ryeom S. Immunosurveillance by antiangiogenesis: tumor growth arrest by T cell-derived thrombospondin-1. Cancer Res 2014; 74:2171-81. [PMID: 24590059 DOI: 10.1158/0008-5472.can-13-0094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent advances in cancer immunotherapy suggest that manipulation of the immune system to enhance the antitumor response may be a highly effective treatment modality. One understudied aspect of immunosurveillance is antiangiogenic surveillance, the regulation of tumor angiogenesis by the immune system, independent of tumor cell lysis. CD4(+) T cells can negatively regulate angiogenesis by secreting antiangiogenic factors such as thrombospondin-1 (TSP-1). In tumor-bearing mice, we show that a Th1-directed viral infection that triggers upregulation of TSP-1 in CD4(+) and CD8(+) T cells can inhibit tumor angiogenesis and suppress tumor growth. Using bone marrow chimeras and adoptive T-cell transfers, we demonstrated that TSP-1 expression in the T-cell compartment was necessary and sufficient to inhibit tumor growth by suppressing tumor angiogenesis after the viral infection. Our results establish that tumorigenesis can be stanched by antiangiogenic surveillance triggered by an acute viral infection, suggesting novel immunologic approaches to achieve antiangiogenic therapy.
Collapse
Affiliation(s)
- Keri L Schadler
- Authors' Affiliations: Department of Cancer Biology, Abramson Family Cancer Research Institute; Department of Microbiology, Institute for Immunology, Perelman School of Medicine; Department of Pathobiology, Veterinary School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Children's Hospital, Boston, Massachusetts; and Department of Molecular and Cellular Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kunert A, Straetemans T, Govers C, Lamers C, Mathijssen R, Sleijfer S, Debets R. TCR-Engineered T Cells Meet New Challenges to Treat Solid Tumors: Choice of Antigen, T Cell Fitness, and Sensitization of Tumor Milieu. Front Immunol 2013; 4:363. [PMID: 24265631 PMCID: PMC3821161 DOI: 10.3389/fimmu.2013.00363] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/24/2013] [Indexed: 01/18/2023] Open
Abstract
Adoptive transfer of T cells gene-engineered with antigen-specific T cell receptors (TCRs) has proven its feasibility and therapeutic potential in the treatment of malignant tumors. To ensure further clinical development of TCR gene therapy, it is necessary to target immunogenic epitopes that are related to oncogenesis and selectively expressed by tumor tissue, and implement strategies that result in optimal T cell fitness. In addition, in particular for the treatment of solid tumors, it is equally necessary to include strategies that counteract the immune-suppressive nature of the tumor micro-environment. Here, we will provide an overview of the current status of TCR gene therapy, and redefine the following three challenges of improvement: “choice of target antigen”; “fitness of T cells”; and “sensitization of tumor milieu.” We will categorize and discuss potential strategies to address each of these challenges, and argue that advancement of clinical TCR gene therapy critically depends on developments toward each of the three challenges.
Collapse
Affiliation(s)
- Andre Kunert
- Laboratory of Experimental Tumor Immunology, Erasmus MC Cancer Institute , Rotterdam , Netherlands ; Department of Medical Oncology, Erasmus MC Cancer Institute , Rotterdam , Netherlands
| | | | | | | | | | | | | |
Collapse
|
41
|
Schietinger A, Arina A, Liu RB, Wells S, Huang J, Engels B, Bindokas V, Bartkowiak T, Lee D, Herrmann A, Piston DW, Pittet MJ, Lin PC, Zal T, Schreiber H. Longitudinal confocal microscopy imaging of solid tumor destruction following adoptive T cell transfer. Oncoimmunology 2013; 2:e26677. [PMID: 24482750 PMCID: PMC3895414 DOI: 10.4161/onci.26677] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 10/02/2013] [Indexed: 01/07/2023] Open
Abstract
A fluorescence-based, high-resolution imaging approach was used to visualize longitudinally the cellular events unfolding during T cell-mediated tumor destruction. The dynamic interplay of T cells, cancer cells, cancer antigen loss variants, and stromal cells-all color-coded in vivo-was analyzed in established, solid tumors that had developed behind windows implanted on the backs of mice. Events could be followed repeatedly within precisely the same tumor region-before, during and after adoptive T cell therapy-thereby enabling for the first time a longitudinal in vivo evaluation of protracted events, an analysis not possible with terminal imaging of surgically exposed tumors. T cell infiltration, stromal interactions, and vessel destruction, as well as the functional consequences thereof, including the elimination of cancer cells and cancer cell variants were studied. Minimal perivascular T cell infiltrates initiated vascular destruction inside the tumor mass eventually leading to macroscopic central tumor necrosis. Prolonged engagement of T cells with tumor antigen-crosspresenting stromal cells correlated with high IFNγ cytokine release and bystander elimination of antigen-negative cancer cells. The high-resolution, longitudinal, in vivo imaging approach described here will help to further a better mechanistic understanding of tumor eradication by T cells and other anti-cancer therapies.
Collapse
Affiliation(s)
| | - Ainhoa Arina
- Department of Pathology; The University of Chicago; Chicago, IL USA
| | - Rebecca B Liu
- Department of Pathology; The University of Chicago; Chicago, IL USA
| | - Sam Wells
- Department of Physiology and Biophysics; Vanderbilt University School of Medicine; Nashville, TN USA
| | - Jianhua Huang
- Department of Radiation Oncology and The Vanderbilt-Ingram Cancer Center; Vanderbilt University School of Medicine; Nashville, TN USA
| | - Boris Engels
- Department of Pathology; The University of Chicago; Chicago, IL USA
| | - Vytas Bindokas
- Integrated Microscopy Core; The University of Chicago; Chicago, IL USA
| | - Todd Bartkowiak
- Department of Immunology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | - David Lee
- School of Medicine; The University of Chicago; Chicago, IL USA
| | - Andreas Herrmann
- Departments of Cancer Immunotherapeutics & Tumor Immunology; City of Hope; Duarte, CA USA
| | - David W Piston
- Department of Physiology and Biophysics; Vanderbilt University School of Medicine; Nashville, TN USA
| | - Mikael J Pittet
- Center for Systems Biology; Massachusetts General Hospital and Harvard Medical School; Boston, MA USA
| | - P Charles Lin
- Department of Radiation Oncology and The Vanderbilt-Ingram Cancer Center; Vanderbilt University School of Medicine; Nashville, TN USA ; Center for Cancer Research; National Cancer Institute, NIH; Frederick, MD USA
| | - Tomasz Zal
- Department of Immunology; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | - Hans Schreiber
- Department of Pathology; The University of Chicago; Chicago, IL USA
| |
Collapse
|
42
|
Hess Michelini R, Manzo T, Sturmheit T, Basso V, Rocchi M, Freschi M, Listopad J, Blankenstein T, Bellone M, Mondino A. Vaccine-instructed intratumoral IFN-γ enables regression of autochthonous mouse prostate cancer in allogeneic T-cell transplantation. Cancer Res 2013; 73:4641-52. [PMID: 23749644 DOI: 10.1158/0008-5472.can-12-3464] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vaccination can synergize with transplantation of allogeneic hematopoietic stem cells to cure hematologic malignancies, but the basis for this synergy is not understood to the degree where such approaches could be effective for treating solid tumors. We investigated this issue in a transgenic mouse model of prostate cancer treated by transplantation of a nonmyeloablative MHC-matched, single Y chromosome-encoded, or multiple minor histocompatibility antigen-mismatched hematopoietic cell preparation. Here, we report that tumor-directed vaccination after allogeneic hematopoietic stem cell transplantation and donor lymphocyte infusion is essential for acute graft versus tumor responses, tumor regression, and prolonged survival. Vaccination proved essential for generation of CD8(+) IFN-γ(+) tumor-directed effector cells in secondary lymphoid organs and also for IFN-γ(+) upregulation at the tumor site, which in turn instructed local expression of proinflammatory chemokines and intratumoral recruitment of donor-derived T cells for disease regression. Omitting vaccination, transplanting IFN-γ-deficient donor T cells, or depleting alloreactive T cells all compromised intratumoral IFN-γ-driven inflammation and lymphocyte infiltration, abolishing antitumor responses and therapeutic efficacy of the combined approach. Our findings argue that posttransplant tumor-directed vaccination is critical to effectively direct donor T cells to the tumor site in cooperation with allogeneic hematopoietic cell transplantation.
Collapse
Affiliation(s)
- Rodrigo Hess Michelini
- Lymphocyte Activation Unit, Cellular Immunology Unit, Division of Immunology, Transplantation and Infectious Disease, Department of Pathology, San Raffaele Scientific Institute; Università Vita-Salute San Raffaele, Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Listopad JJ, Kammertoens T, Anders K, Silkenstedt B, Willimsky G, Schmidt K, Kuehl AA, Loddenkemper C, Blankenstein T. Fas expression by tumor stroma is required for cancer eradication. Proc Natl Acad Sci U S A 2013; 110:2276-81. [PMID: 23341634 PMCID: PMC3568383 DOI: 10.1073/pnas.1218295110] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The contribution of molecules such as perforin, IFN-γ (IFNγ), and particularly Fas ligand (FasL) by transferred CD8(+) effector T (T(E)) cells to rejection of large, established tumors is incompletely understood. Efficient attack against large tumors carrying a surrogate tumor antigen (mimicking a "passenger" mutation) by T(E) cells requires action of IFNγ on tumor stroma cells to avoid selection of antigen-loss variants. Because "cancer-driving" antigens (CDAs) are rarely counterselected, IFNγ may be expected to be dispensable in elimination of cancers by targeting a CDA. Here, initial regression of large, established tumors required neither IFNγ, FasL, nor perforin by transferred CD8(+) T(E) cells targeting Simian Virus (SV) 40 large T as CDA. However, cytotoxic T(E) cells lacking IFNγ or FasL could not prevent relapse despite retention of the rejection antigen by the cancer cells. Complete tumor rejection required IFNγ-regulated Fas by the tumor stroma. Therefore, T(E) cells lacking IFNγ or FasL cannot prevent progression of antigenic cancer because the tumor stroma escapes destruction if its Fas expression is down-regulated.
Collapse
Affiliation(s)
- Joanna J. Listopad
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; and
- Institute of Immunology
| | - Thomas Kammertoens
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; and
- Institute of Immunology
| | - Kathleen Anders
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; and
| | | | - Gerald Willimsky
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; and
- Institute of Immunology
| | | | - Anja A. Kuehl
- Department of Internal Medicine, Rheumatology and Clinical Immunology, and
| | | | - Thomas Blankenstein
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; and
- Institute of Immunology
| |
Collapse
|
44
|
Anders K, Buschow C, Herrmann A, Milojkovic A, Loddenkemper C, Kammertoens T, Daniel P, Yu H, Charo J, Blankenstein T. Oncogene-targeting T cells reject large tumors while oncogene inactivation selects escape variants in mouse models of cancer. Cancer Cell 2011; 20:755-67. [PMID: 22172721 PMCID: PMC3658305 DOI: 10.1016/j.ccr.2011.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/23/2011] [Accepted: 10/18/2011] [Indexed: 12/22/2022]
Abstract
The genetic instability of cancer cells frequently causes drug resistance. We established mouse cancer models, which allowed targeting of an oncogene by drug-mediated inactivation or monospecific CD8(+) effector T (T(E)) cells. Drug treatment of genetically unstable large tumors was effective but selected resistant clones in the long term. In contrast, T(E) cells completely rejected large tumors (≥500 mm(3)), if the target antigen was cancer-driving and expressed in sufficient amounts. Although drug-mediated oncogene inactivation selectively killed the cancer cells and left the tumor vasculature intact, which likely facilitated survival and growth of resistant clones, T(E) cell treatment led to blood vessel destruction and probably "bystander" elimination of escape variants, which did not require antigen cross-presentation by stromal cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Polyomavirus Transforming/genetics
- Antigens, Polyomavirus Transforming/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- CD8-Positive T-Lymphocytes/physiology
- CD8-Positive T-Lymphocytes/transplantation
- Cell Line, Tumor
- Drug Resistance, Neoplasm/genetics
- Fibrosarcoma/blood supply
- Fibrosarcoma/genetics
- Fibrosarcoma/metabolism
- Fibrosarcoma/therapy
- Genes, Reporter
- Genomic Instability
- Immunotherapy, Adoptive
- Interferon-gamma/metabolism
- Luciferases, Firefly/biosynthesis
- Luciferases, Firefly/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, SCID
- Molecular Sequence Data
- Neoplasm Transplantation
- Oncogenes
- Point Mutation
- Skin Transplantation
- Stomach Neoplasms/therapy
- Trans-Activators/genetics
- Tumor Escape/genetics
Collapse
Affiliation(s)
- Kathleen Anders
- Max-Delbrück-Center for Molecular Medicine, 13092 Berlin, Germany
| | - Christian Buschow
- Institute of Immunology, Charité Campus Benjamin Franklin, 12200 Berlin, Germany
| | - Andreas Herrmann
- Cancer Immunotherapeutics & Tumor Immunology, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA 91010 USA
| | - Ana Milojkovic
- Department of Hematology, Oncology and Tumor Immunology, Charité, Campus Berlin Buch, 13092, Berlin, Germany
| | | | - Thomas Kammertoens
- Institute of Immunology, Charité Campus Benjamin Franklin, 12200 Berlin, Germany
| | - Peter Daniel
- Department of Hematology, Oncology and Tumor Immunology, Charité, Campus Berlin Buch, 13092, Berlin, Germany
| | - Hua Yu
- Cancer Immunotherapeutics & Tumor Immunology, Beckman Research Institute, City of Hope Cancer Center, Duarte, CA 91010 USA
| | - Jehad Charo
- Max-Delbrück-Center for Molecular Medicine, 13092 Berlin, Germany
| | - Thomas Blankenstein
- Max-Delbrück-Center for Molecular Medicine, 13092 Berlin, Germany
- Institute of Immunology, Charité Campus Benjamin Franklin, 12200 Berlin, Germany
- Correspondence:
| |
Collapse
|
45
|
Wilke CM, Wei S, Wang L, Kryczek I, Kao J, Zou W. Dual biological effects of the cytokines interleukin-10 and interferon-γ. Cancer Immunol Immunother 2011; 60:1529-41. [PMID: 21918895 PMCID: PMC11029274 DOI: 10.1007/s00262-011-1104-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/23/2011] [Indexed: 12/21/2022]
Abstract
It is generally thought that each cytokine exerts either immune stimulatory (inflammatory) or immune inhibitory (antiinflammatory or regulatory) biological activities. However, multiple cytokines can enact both inhibitory and stimulatory effects on the immune system. Two of these cytokines are interleukin (IL)-10 and interferon-gamma (IFNγ). IL-10 has demonstrated antitumor immunity even though it has been known for years as an immunoregulatory protein. Generally perceived as an immune stimulatory cytokine, IFNγ can also induce inhibitory molecule expression including B7-H1 (PD-L1), indoleamine 2,3-dioxygenase (IDO), and arginase on multiple cell populations (dendritic cells, tumor cells, and vascular endothelial cells). In this review, we will summarize current knowledge of the dual roles of both of these cytokines and stress the previously underappreciated stimulatory role of IL-10 and inhibitory role of IFNγ in the context of malignancy. Our progressive understanding of the dual effects of these cytokines is important for dissecting cytokine-associated pathology and provides new avenues for developing effective immune therapy against human diseases, including cancer.
Collapse
Affiliation(s)
- Cailin Moira Wilke
- Department of Surgery, University of Michigan School of Medicine, C560B MSRB II/Box 0669, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0669 USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI USA
| | - Shuang Wei
- Department of Surgery, University of Michigan School of Medicine, C560B MSRB II/Box 0669, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0669 USA
| | - Lin Wang
- Department of Surgery, University of Michigan School of Medicine, C560B MSRB II/Box 0669, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0669 USA
- Central Laboratory, Union Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China
| | - Ilona Kryczek
- Department of Surgery, University of Michigan School of Medicine, C560B MSRB II/Box 0669, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0669 USA
| | - John Kao
- Department of Medicine, University of Michigan, Ann Arbor, MI USA
- University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI USA
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, C560B MSRB II/Box 0669, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0669 USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI USA
- University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI USA
- Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
46
|
Lampen MH, van Hall T. Strategies to counteract MHC-I defects in tumors. Curr Opin Immunol 2011; 23:293-8. [PMID: 21295956 DOI: 10.1016/j.coi.2010.12.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/26/2010] [Accepted: 12/08/2010] [Indexed: 11/25/2022]
Abstract
Defects in MHC-I antigen presentation represent a common feature of cancer and allow evasion from T cell recognition. Recent findings from immunotherapy in melanoma suggested that irreversible MHC-I defects enable escape from immune pressure. Although loss of antigen presentation is known for many years, strategies to counteract these defects are scarce and largely unexamined. Now that the first forms of T-cell-based immunotherapy show clinical efficacy and reach FDA approval, this issue deserves urgent awareness. Here we describe possible roads leading to corrections of MHC-I defects in tumors and describe a salvage pathway for CTL by targeting novel tumor antigens that we recently uncovered.
Collapse
Affiliation(s)
- Margit H Lampen
- Department of Clinical Oncology, Leiden University Medical Center, Netherlands
| | | |
Collapse
|