1
|
Woytash JA, Kumar R, Chaudhary AK, Donnelly C, Wojtulski A, Bethu M, Wang J, Spernyak J, Bross P, Yadav N, Inigo JR, Chandra D. Mitochondrial unfolded protein response-dependent β-catenin signaling promotes neuroendocrine prostate cancer. Oncogene 2024:10.1038/s41388-024-03261-4. [PMID: 39690273 DOI: 10.1038/s41388-024-03261-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
The mitochondrial unfolded protein response (UPRmt) maintains mitochondrial quality control and proteostasis under stress conditions. However, the role of UPRmt in aggressive and resistant prostate cancer is not clearly defined. We show that castration-resistant neuroendocrine prostate cancer (CRPC-NE) harbored highly dysfunctional oxidative phosphorylation (OXPHOS) Complexes. However, biochemical and protein analyses of CRPC-NE tumors showed upregulation of nuclear-encoded OXPHOS proteins and UPRmt in this lethal subset of prostate cancer suggestive of compensatory upregulation of stress signaling. Genetic deletion and pharmacological inhibition of the main chaperone of UPRmt heat shock protein 60 (HSP60) reduced neuroendocrine prostate cancer (NEPC) growth in vivo as well as reverted NEPC cells to a more epithelial-like state. HSP60-dependent aggressive NEPC phenotypes was associated with upregulation of β-catenin signaling both in cancer cells and in vivo tumors. HSP60 expression rendered enrichment of aggressive prostate cancer signatures and metastatic potential were inhibited upon suppression of UPRmt. We discovered that UPRmt promoted OXPHOS functions including mitochondrial bioenergetics in CRPC-NE via regulation of β-catenin signaling. Mitochondrial biogenesis facilitated cisplatin resistance and inhibition of UPRmt resensitizes CRPC-NE cells to cisplatin. Together, our findings demonstrated that UPRmt promotes mitochondrial health via upregulating β-catenin signaling and UPRmt represents viable therapeutic target for NEPC.
Collapse
Affiliation(s)
- Jordan Alyse Woytash
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Rahul Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Ajay K Chaudhary
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Cullan Donnelly
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Adam Wojtulski
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Murali Bethu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Joseph Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Peter Bross
- Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, 8200, Aarhus N, Denmark
| | - Neelu Yadav
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Joseph R Inigo
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
2
|
Taniue K, Sugawara A, Zeng C, Han H, Gao X, Shimoura Y, Ozeki AN, Onoguchi-Mizutani R, Seki M, Suzuki Y, Hamada M, Akimitsu N. The MTR4/hnRNPK complex surveils aberrant polyadenylated RNAs with multiple exons. Nat Commun 2024; 15:8684. [PMID: 39419981 PMCID: PMC11487169 DOI: 10.1038/s41467-024-51981-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 08/21/2024] [Indexed: 10/19/2024] Open
Abstract
RNA surveillance systems degrade aberrant RNAs that result from defective transcriptional termination, splicing, and polyadenylation. Defective RNAs in the nucleus are recognized by RNA-binding proteins and MTR4, and are degraded by the RNA exosome complex. Here, we detect aberrant RNAs in MTR4-depleted cells using long-read direct RNA sequencing and 3' sequencing. MTR4 destabilizes intronic polyadenylated transcripts generated by transcriptional read-through over one or more exons, termed 3' eXtended Transcripts (3XTs). MTR4 also associates with hnRNPK, which recognizes 3XTs with multiple exons. Moreover, the aberrant protein translated from KCTD13 3XT is a target of the hnRNPK-MTR4-RNA exosome pathway and forms aberrant condensates, which we name KCTD13 3eXtended Transcript-derived protein (KeXT) bodies. Our results suggest that RNA surveillance in human cells inhibits the formation of condensates of a defective polyadenylated transcript-derived protein.
Collapse
Affiliation(s)
- Kenzui Taniue
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
- Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa, Hokkaido, 078-8510, Japan.
| | - Anzu Sugawara
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Chao Zeng
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Han Han
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Xinyue Gao
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Yuki Shimoura
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Atsuko Nakanishi Ozeki
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Rena Onoguchi-Mizutani
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Michiaki Hamada
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Nobuyoshi Akimitsu
- Isotope Science Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
3
|
Bhattacharya S, Harris HL, Islam R, Bodas S, Polavaram N, Mishra J, Das D, Seshacharyulu P, Kalluchi A, Pal A, Kohli M, Lele SM, Muders M, Batra SK, Ghosh PM, Datta K, Rowley MJ, Dutta S. Understanding the function of Pax5 in development of docetaxel-resistant neuroendocrine-like prostate cancers. Cell Death Dis 2024; 15:617. [PMID: 39183332 PMCID: PMC11345443 DOI: 10.1038/s41419-024-06916-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/27/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Abstract
Resistance to the current Androgen Receptor Signaling Inhibitor (ARSI) therapies has led to higher incidences of therapy-induced neuroendocrine-like prostate cancer (t-NEPC). This highly aggressive subtype with predominant small-cell-like characteristics is resistant to taxane chemotherapies and has a dismal overall survival. t-NEPCs are mostly treated with platinum-based drugs with a combination of etoposide or taxane and have less selectivity and high systemic toxicity, which often limit their clinical potential. During t-NEPC transformation, adenocarcinomas lose their luminal features and adopt neuro-basal characteristics. Whether the adaptive neuronal characteristics of t-NEPC are responsible for such taxane resistance remains unknown. Pathway analysis from patient gene-expression databases indicates that t-NEPC upregulates various neuronal pathways associated with enhanced cellular networks. To identify transcription factor(s) (TF) that could be important for promoting the gene expression for neuronal characters in t-NEPC, we performed ATAC-Seq, acetylated-histone ChIP-seq, and RNA-seq in our NE-like cell line models and analyzed the promoters of transcriptionally active and significantly enriched neuroendocrine-like (NE-like) cancer-specific genes. Our results indicate that Pax5 could be an important transcription factor for neuronal gene expression and specific to t-NEPC. Pathway analysis revealed that Pax5 expression is involved in axonal guidance, neurotransmitter regulation, and neuronal adhesion, which are critical for strong cellular communications. Further results suggest that depletion of Pax5 disrupts neurite-mediated cellular communication in NE-like cells and reduces surface growth factor receptor activation, thereby, sensitizing them to docetaxel therapies. Moreover, t-NEPC-specific hydroxymethylation of Pax5 promoter CpG islands favors Pbx1 binding to induce Pax5 expression. Based on our study, we concluded that continuous exposure to ARSI therapies leads to epigenetic modifications and Pax5 activation in t-NEPC, which promotes the expression of genes necessary to adopt taxane-resistant NE-like cancer. Thus, targeting the Pax5 axis can be beneficial for reverting their taxane sensitivity.
Collapse
MESH Headings
- Humans
- Male
- Docetaxel/pharmacology
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/drug therapy
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Cell Line, Tumor
- PAX5 Transcription Factor/metabolism
- PAX5 Transcription Factor/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Antineoplastic Agents/pharmacology
- Carcinoma, Neuroendocrine/metabolism
- Carcinoma, Neuroendocrine/drug therapy
- Carcinoma, Neuroendocrine/pathology
- Carcinoma, Neuroendocrine/genetics
- Promoter Regions, Genetic/genetics
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
Collapse
Affiliation(s)
- Sreyashi Bhattacharya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hannah L Harris
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ridwan Islam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanika Bodas
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Navatha Polavaram
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Juhi Mishra
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Dipanwita Das
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Achyuth Kalluchi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Manish Kohli
- School of Medicine, Division of Oncology, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Subodh M Lele
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael Muders
- MVZ Pathology Bethesda, Heerstrasse 219, Duisburg, Germany
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paramita M Ghosh
- Department of Urological Surgery, University of California Davis, School of Medicine, Sacramento, CA, USA
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
4
|
Dutta S, Bhattacharya S, Harris H, Islam R, Bodas S, Polavaram N, Mishra J, Das D, Seshacharyulu P, Kalluchi A, Pal A, Kohli M, Lele S, Muders M, Batra S, Ghosh P, Datta K, Rowley M. Understanding the role of Pax5 in development of taxane-resistant neuroendocrine like prostate cancers. RESEARCH SQUARE 2023:rs.3.rs-3464475. [PMID: 38168280 PMCID: PMC10760218 DOI: 10.21203/rs.3.rs-3464475/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Resistance to the current Androgen Receptor Signaling Inhibitor (ARSI) therapies has led to higher incidences of therapy-induced neuroendocrine-like prostate cancer (t-NEPC). This highly aggressive subtype with predominant small cell-like characteristics is resistant to taxane chemotherapies and has a dismal overall survival. t-NEPCs are mostly treated with platinum-based drugs with a combination of etoposide or taxane and have less selectivity and high systemic toxicity, which often limit their clinical potential. During t-NEPC transformation, adenocarcinomas lose their luminal features and adopt neuro-basal characteristics. Whether the adaptive neuronal characteristics of t-NEPC are responsible for such taxane resistance remains unknown. Pathway analysis from patient gene-expression databases indicates that t-NEPC upregulates various neuronal pathways associated with enhanced cellular networks. To identify transcription factor(s) (TF) that could be important for promoting the gene expression for neuronal characters in t-NEPC, we performed ATAC-Seq, acetylated-histone ChIP-seq, and RNA-seq in our NE-like cell line models and analyzed the promoters of transcriptionally active and significantly enriched neuroendocrine-like (NE-like) cancer-specific genes. Our results indicate that Pax5 could be an important transcription factor for neuronal gene expression and specific to t-NEPC. Pathway analysis revealed that Pax5 expression is involved in axonal guidance, neurotransmitter regulation, and neuronal adhesion, which are critical for strong cellular communications. Further results suggest that depletion of Pax5 disrupts cellular interaction in NE-like cells and reduces surface growth factor receptor activation, thereby, sensitizing them to taxane therapies. Moreover, t-NEPC specific hydroxymethylation of Pax5 promoter CpG islands favors Pbx1 binding to induce Pax5 expression. Based on our study, we concluded that continuous exposure to ARSI therapies leads to epigenetic modifications and Pax5 activation in t-NEPC, which promotes the expression of genes necessary to adopt taxane-resistant NE-like cancer. Thus, targeting the Pax5 axis can be beneficial for reverting their taxane sensitivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Michael Muders
- Rudolf Becker Laboratory for Prostate Cancer Research, Center of Pathology, University of Bonn Medical Center
| | - Surinder Batra
- University of Nebraska Medical Center, Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases
| | | | | | | |
Collapse
|
5
|
Liu S, Duan Y, You R, Chen D, Tan J. HnRNP K regulates inflammatory gene expression by mediating splicing pattern of transcriptional factors. Exp Biol Med (Maywood) 2023; 248:1479-1491. [PMID: 35866661 PMCID: PMC10666726 DOI: 10.1177/15353702221110649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/07/2022] [Indexed: 11/15/2022] Open
Abstract
HnRNP K is a heterogeneous nuclear ribonucleoprotein and has been identified as an oncogene in most solid tumors via regulating gene expression or alternative splicing of genes by binding both DNA and pre-mRNA. However, how hnRNP K affects tumorigenesis and regulates the gene expression in cervical cancer (CESC) remains to be elucidated. In these data, higher expression of hnRNP K was observed in CESC and was negatively correlated with the patient survival time. We then overexpressed hnRNP K (hnRNP K-OE) and found that its overexpression promoted cell proliferation in HeLa cells (P = 0.0052). Next, global transcriptome sequencing (RNA-seq) experiments were conducted to explore gene expression and alternative splicing profiles regulated by hnRNP K. It is shown that upregulated genes by hnRNP K-OE were associated with inflammatory response and an apoptotic process of neuron cells, which involves in cancer. In addition, the alternative splicing of those genes regulated by hnRNP K-OE was associated with transcriptional regulation. Analysis of the binding features of dysregulated transcription factors (TFs) in the promoter region of the inflammatory response genes regulated by hnRNP K revealed that hnRNP K may modulate the expression level of genes related to inflammatory response by influencing the alternative splicing of TFs. Among these hnRNP K-TFs-inflammatory gene regulatory networks, quantitative reverse transcription polymerase chain reaction (RT-qPCR) experiments and gene silencing were conducted to verify the hnRNP K-IRF1-CCL5 axis. In conclusion, the hnRNP K-TFs-inflammatory gene regulatory axis provides a novel molecular mechanism for hnRNP K in promoting CESC and offers a new therapeutic target.
Collapse
Affiliation(s)
- Siyi Liu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuchang District, Hubei 430071, China
| | - Yong Duan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuchang District, Hubei 430071, China
| | - Ran You
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuchang District, Hubei 430071, China
| | - Dong Chen
- ABLife BioBigData Institute, Wuhan, Hubei 430075, China
| | - Jinhai Tan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuchang District, Hubei 430071, China
| |
Collapse
|
6
|
Li B, Yao B, Guo X, Wang Z, Xie W, Wu X, Wang F, Mei Y. c-Myc-induced long noncoding RNA MIRE cooperates with hnRNPK to stabilize ELF2 mRNA and promotes clear cell renal cell carcinogenesis. Cancer Gene Ther 2023; 30:1215-1226. [PMID: 37248433 DOI: 10.1038/s41417-023-00631-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Elevated expression of c-Myc is associated with a variety of human cancers including clear cell renal cell carcinoma (ccRCC). Increasing evidence suggests that long noncoding RNAs (lncRNAs) are an important class of molecules that regulate both tumor initiation and progression. Here, we report the lncRNA c-Myc-induced regulator of ELF2 (MIRE) as a transcriptional target of c-Myc. MIRE functions as an oncogenic molecule in ccRCC by increasing ELF2 expression. Mechanistically, MIRE promotes phase separation of the RNA binding protein hnRNPK and facilitates the binding of hnRNPK to ELF2 mRNA, thereby resulting in the stabilization of ELF2 mRNA. Interestingly, MIRE is also under transcriptional control by ELF2, establishing an ELF2-MIRE positive feedback loop. Together, these findings provide new insights into the mechanisms by which c-Myc promotes tumorigenesis. They also implicate MIRE as an important regulator of ccRCC carcinogenesis.
Collapse
Affiliation(s)
- Bingyan Li
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Bo Yao
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Xiaorui Guo
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Zhongyu Wang
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Wei Xie
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- DeepBio Technology Ltd Co., 515 ShenNan Road, Shanghai, 201612, China
| | - Xianning Wu
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| | - Fang Wang
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| | - Yide Mei
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| |
Collapse
|
7
|
Jin L, Li T, Hong Y, Mao R, Li X, Zhu C, Mu J, Zhou J, Pan L, Que Y, Xia Y, Zhang Y, Li S. Activation of NLRP2 in Triple-Negative Breast Cancer sensitizes chemotherapeutic therapy through facilitating hnRNPK function. Biochem Pharmacol 2023; 215:115703. [PMID: 37499769 DOI: 10.1016/j.bcp.2023.115703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptor type 2 protein (NLRP2) was reported to inhibit NF-κB in response to inflammatory stimuli, but its role in tumors remains elusive. We screened out NLRP2 from mouse models of breast cancer metastasis. Bioinformatics analysis showed NLRP2 expression was positively correlated with survival rate and negatively correlated with the potential of cancer metastasis. Its significance in Triple-Negative Breast Cancer (TNBC) was investigated by gain- and loss-of-function studies in vivo and vitro. Re-expression of NLRP2 dramatically inhibited the growth and metastasis of the xenograft model of MDA-MB-231 cells. Mechanically, NLRP2 confined hnRNPK within cytoplasm, which in turn blocked vimentin mRNA production. Not only that, NLRP2 further enhanced the H2O2-induced high level of p53&Bax and hence dramatically increased the apoptosis rate (fivefold). Likewise, carboplatin-treated cells showed decreased cell viability, suggesting that patients of TNBC with high level of NLRP2 respond well to chemotherapeutics. Under the stimulus of H2O2, NLRP2-hnRNPK no longer stayed in the cytoplasm, but entered the nucleus to increase the expression of p53 and hence enhanced corresponding apoptosis effect, increasing Bax expression. It suggested that NLRP2 helps p53 enter the nucleus to induce apoptosis. This study revealed a novel function of NLRP2 that modulated oncogenic and anti-oncogenic characteristics of hnRNPK, and provided a new biomarker for TNBC chemotherapy.
Collapse
Affiliation(s)
- Lai Jin
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China.
| | - Tiantian Li
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Yali Hong
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Rongchen Mao
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Xu Li
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Chao Zhu
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Junyu Mu
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Jun Zhou
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Lihua Pan
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Yuhui Que
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Yidong Xia
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Yuheng Zhang
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China
| | - Shengnan Li
- Department of Pharmacology, Nanjing Medical University, Nanjing 211116, PR China.
| |
Collapse
|
8
|
Chen L, Ji Y, Li A, Liu B, Shen K, Su R, Ma Z, Zhang W, Wang Q, Zhu Y, Xue W. High-throughput drug screening identifies fluoxetine as a potential therapeutic agent for neuroendocrine prostate cancer. Front Oncol 2023; 13:1085569. [PMID: 36994207 PMCID: PMC10042075 DOI: 10.3389/fonc.2023.1085569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
IntroductionNeuroendocrine prostate cancer (NEPC) is an aggressive subtype of prostate cancer with poor prognosis and resistance to hormone therapy, which has limited therapeutic approaches. Therefore, this study aimed to identify a novel treatment for NEPC and provide evidence of its inhibitory effects.MethodsWe performed a high-throughput drug screening and identified fluoxetine, originally an FDA-approved antidepressant, as candidate therapeutic agent for NEPC. We carried out both in vitro and in vivo experiments to demonstrate the inhibitory effects of fluoxetine on NEPC models and its mechanism in detail.ResultsOur results demonstrated that fluoxetine effectively curbed the neuroendocrine differentiation and inhibited cell viability by targeting the AKT pathway. Preclinical test in NEPC mice model (PBCre4: Ptenf/f; Trp53f/f; Rb1f/f) showed that fluoxetine effectively prolonged the overall survival and reduced the risk of tumor distant metastases.DiscussionThis work repurposed fluoxetine for antitumor application, and supported its clinical development for NEPC therapy, which may provide a promising therapeutic strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qi Wang
- *Correspondence: Qi Wang, ; Yinjie Zhu,
| | | | | |
Collapse
|
9
|
Raith F, O’Donovan DH, Lemos C, Politz O, Haendler B. Addressing the Reciprocal Crosstalk between the AR and the PI3K/AKT/mTOR Signaling Pathways for Prostate Cancer Treatment. Int J Mol Sci 2023; 24:ijms24032289. [PMID: 36768610 PMCID: PMC9917236 DOI: 10.3390/ijms24032289] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
The reduction in androgen synthesis and the blockade of the androgen receptor (AR) function by chemical castration and AR signaling inhibitors represent the main treatment lines for the initial stages of prostate cancer. Unfortunately, resistance mechanisms ultimately develop due to alterations in the AR pathway, such as gene amplification or mutations, and also the emergence of alternative pathways that render the tumor less or, more rarely, completely independent of androgen activation. An essential oncogenic axis activated in prostate cancer is the phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, as evidenced by the frequent alterations of the negative regulator phosphatase and tensin homolog (PTEN) and by the activating mutations in PI3K subunits. Additionally, crosstalk and reciprocal feedback loops between androgen signaling and the PI3K/AKT/mTOR signaling cascade that activate pro-survival signals and play an essential role in disease recurrence and progression have been evidenced. Inhibitors addressing different players of the PI3K/AKT/mTOR pathway have been evaluated in the clinic. Only a limited benefit has been reported in prostate cancer up to now due to the associated side effects, so novel combination approaches and biomarkers predictive of patient response are urgently needed. Here, we reviewed recent data on the crosstalk between AR signaling and the PI3K/AKT/mTOR pathway, the selective inhibitors identified, and the most advanced clinical studies, with a focus on combination treatments. A deeper understanding of the complex molecular mechanisms involved in disease progression and treatment resistance is essential to further guide therapeutic approaches with improved outcomes.
Collapse
Affiliation(s)
- Fabio Raith
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Daniel H. O’Donovan
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Clara Lemos
- Bayer Research and Innovation Center, Bayer US LLC, 238 Main Street, Cambridge, MA 02142, USA
| | - Oliver Politz
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
| | - Bernard Haendler
- Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany
- Correspondence: ; Tel.: +49-30-2215-41198
| |
Collapse
|
10
|
Xie Y, Ning S, Hu J. Molecular mechanisms of neuroendocrine differentiation in prostate cancer progression. J Cancer Res Clin Oncol 2022; 148:1813-1823. [PMID: 35633416 PMCID: PMC9189092 DOI: 10.1007/s00432-022-04061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 12/03/2022]
Abstract
Background Rapid evolution of the therapeutic management of prostate cancer, especially in in second-generation androgen inhibitors, has increased the opportunity of transformation from prostate cancer (PCa) to neuroendocrine prostate cancer (NEPC). NEPC still lacks effective diagnostic and therapeutic interventions. Researches into the molecular characteristics of neuroendocrine differentiation is undoubtedly crucial to the discovery of new target genes for accurate diagnostic and therapeutic targets. Purpose In this review, we focus on the relevant genes and molecular mechanisms that have contributed to the transformation in the progression of PCa and discuss the potential targeted molecule that might improve diagnostic accuracy and therapeutic effectiveness. Methods The relevant literatures from PubMed have been reviewed for this article. Conclusion Several molecular characteristics influence the progression of neuroendocrine differentiation of prostate cancer which will provide a novel sight for accurate diagnosis and target therapeutic intervention for patients with NEPC.
Collapse
Affiliation(s)
- Yuchen Xie
- Affiliated Renmin Hospital of Jiangsu University, Zhenjiang First People's Hospital, Zhenjiang, 212002, China
| | - Songyi Ning
- Jiangsu University, Zhenjiang, 212013, China
| | - Jianpeng Hu
- Affiliated Renmin Hospital of Jiangsu University, Zhenjiang First People's Hospital, Zhenjiang, 212002, China.
| |
Collapse
|
11
|
Li M, Yang X, Zhang G, Wang L, Zhu Z, Zhang W, Huang H, Gao R. Heterogeneous nuclear ribonucleoprotein K promotes the progression of lung cancer by inhibiting the p53‐dependent signaling pathway. Thorac Cancer 2022; 13:1311-1321. [PMID: 35352475 PMCID: PMC9058298 DOI: 10.1111/1759-7714.14387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/04/2022] Open
Abstract
Background Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is a nucleic acid‐binding protein. Reportedly, hnRNPK is overexpressed in many human tumors, and such overexpression is associated with poor prognosis, implicating the role of hnRNPK as an oncogene during tumorigenesis. In this study, hnRNPK expression in lung cancer tissues was investigated. Methods Briefly, hnRNPK was knocked down in lung cancer cell lines, and effects of knockdown on the cell proliferation, migration, and cell cycle were assessed using a cell counting kit‐8 (CCK‐8) assay, colony formation assay, transwell assay and flow cytometry. The effects of hnRNPK knockdown on the p53‐dependent signaling pathway were examined using western blotting. Finally, the effect of hnRNPK knockdown on tumor growth was verified in vivo using a lung cancer xenograft mouse model. Results hnRNPK knockdown inhibited the cell proliferation, migration and cell cycle. In addition to phenotypic changes, hnRNPK knockdown upregulated expressions of pCHK1, pCHK2, and p53,p21,cyclin D1, thereby mediating the DNA damage response (DDR). The regulatory function of hnRNPK during p53/p21/cyclin D1 signaling in hnRNPK‐knockdown A549 cells was confirmed by suppressed the protein expression of associated signaling pathways, which inhibited DDR. Conclusion hnRNPK plays a crucial role in the progression of lung cancer, ultimately affecting survival rate. Inhibition of progression of lung cancer cells induced by hnRNPK‐knockdown is dependent on activation of p53 by the p53/p21/cyclin D1 pathway.
Collapse
Affiliation(s)
- Mengyuan Li
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
- NHC Key Laboratory of Human Disease Comparative Medicine Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
| | - Xingjiu Yang
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
- NHC Key Laboratory of Human Disease Comparative Medicine Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
| | - Guoxin Zhang
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
- NHC Key Laboratory of Human Disease Comparative Medicine Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
| | - Le Wang
- NHC Key Laboratory of Human Disease Comparative Medicine Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
| | - Ziwei Zhu
- NHC Key Laboratory of Human Disease Comparative Medicine Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
| | - Wenlong Zhang
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
- NHC Key Laboratory of Human Disease Comparative Medicine Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
| | - Hao Huang
- NHC Key Laboratory of Human Disease Comparative Medicine Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
| | - Ran Gao
- National Human Diseases Animal Model Resource Center, The Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Peking Union Medical College Beijing China
- NHC Key Laboratory of Human Disease Comparative Medicine Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases Beijing China
| |
Collapse
|
12
|
Wu HL, Li SM, Huang YC, Xia QD, Zhou P, Li XM, Yu X, Wang SG, Ye ZQ, Hu J. Transcriptional regulation and ubiquitination-dependent regulation of HnRNPK oncogenic function in prostate tumorigenesis. Cancer Cell Int 2021; 21:641. [PMID: 34857003 PMCID: PMC8641147 DOI: 10.1186/s12935-021-02331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Heterogeneous nuclear ribonucleoprotein K (HnRNPK) is a nucleic acid-binding protein that regulates diverse biological events. Pathologically, HnRNPK proteins are frequently overexpressed and clinically correlated with poor prognosis in various types of human cancers and are therefore pursued as attractive therapeutic targets for select patients. However, both the transcriptional regulation and degradation of HnRNPK in prostate cancer remain poorly understood. METHODS qRT-PCR was used to detect the expression of HnRNPK mRNA and miRNA; Immunoblots and immunohistochemical assays were used to determine the levels of HnRNPK and other proteins. Flow cytometry was used to investigate cell cycle stage. MTS and clonogenic assays were used to investigate cell proliferation. Immunoprecipitation was used to analyse the interaction between SPOP and HnRNPK. A prostate carcinoma xenograft mouse model was used to detect the in vivo effects of HnRNPK and miRNA. RESULTS In the present study, we noted that HnRNPK emerged as an important player in the carcinogenesis process of prostate cancer. miR-206 and miR-613 suppressed HnRNPK expression by targeting its 3'-UTR in PrCa cell lines in which HnRNPK is overexpressed. To explore the potential biological function, proliferation and colony formation of PrCa cells in vitro and tumor growth in vivo were also dramatically suppressed upon reintroduction of miR-206/miR-613. We have further provided evidence that Cullin 3 SPOP is a novel upstream E3 ubiquitin ligase complex that governs HnRNPK protein stability and oncogenic functions by promoting the degradation of HnRNPK in polyubiquitination-dependent proteolysis in the prostate cancer setting. Moreover, prostate cancer-associated SPOP mutants fail to interact with and promote the destruction of HnRNPK proteins. CONCLUSION Our findings reveal new posttranscriptional and posttranslational modification mechanisms of HnRNPK regulation via miR-206/miR-613 and SPOP, respectively. More importantly, given the critical oncogenic role of HnRNPK and the high frequency of SPOP mutations in prostate cancer, our results provide a molecular rationale for the clinical investigation of novel strategies to combat prostate cancer based on SPOP genetic status.
Collapse
Affiliation(s)
- Huan-Lei Wu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sen-Mao Li
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Ave, No. 1095, Wuhan, 430030, P.R. China.,Department of Urology, Peking University First Hospital, Peking University, BeijingBeijing, 100034, China
| | - Yao-Chen Huang
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Ave, No. 1095, Wuhan, 430030, P.R. China
| | - Qi-Dong Xia
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Ave, No. 1095, Wuhan, 430030, P.R. China
| | - Peng Zhou
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Ave, No. 1095, Wuhan, 430030, P.R. China
| | - Xian-Miao Li
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Ave, No. 1095, Wuhan, 430030, P.R. China
| | - Xiao Yu
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Ave, No. 1095, Wuhan, 430030, P.R. China
| | - Shao-Gang Wang
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Ave, No. 1095, Wuhan, 430030, P.R. China
| | - Zhang-Qun Ye
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Ave, No. 1095, Wuhan, 430030, P.R. China
| | - Jia Hu
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Liberalization Ave, No. 1095, Wuhan, 430030, P.R. China.
| |
Collapse
|
13
|
Puvvula PK, Buczkowski S, Moon AM. hnRNPK-derived cell-penetrating peptide inhibits cancer cell survival. Mol Ther Oncolytics 2021; 23:342-354. [PMID: 34820504 PMCID: PMC8586514 DOI: 10.1016/j.omto.2021.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022] Open
Abstract
hnRNPK is a multifunctional protein that plays an important role in cancer cell proliferation and metastasis via its RNA- and DNA-binding properties. Previously we showed that cell-penetrating peptides derived from the RGG RNA-binding domain of SAFA (hnRNPU) disrupt cancer cell proliferation and survival. Here we explore the efficacy of a peptide derived from the RGG domain of hnRNPK. This peptide acts in a dominant-negative manner on several hnRNPK functions to induce death of multiple types of cancer cells. The peptide phenocopies the effect of hnRNPK knockdown on its mRNA-stability targets such as KLF4 and EGR1 and alters the levels and locations of long non-coding RNAs (lncRNAs) and proteins required for nuclear and paraspeckle formation and function. The RGG-derived peptide also decreases euchromatin as evidenced by loss of active marks and polymerase II occupancy. Our findings reveal the potential therapeutic utility of the hnRNPK RGG-derived peptide in a range of cancers.
Collapse
Affiliation(s)
- Pavan Kumar Puvvula
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA
- Corresponding author: Pavan Kumar Puvvula, PhD, Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA.
| | - Stephanie Buczkowski
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA
| | - Anne M. Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- The Mindich Child Health and Development Institute, Hess Center for Science and Medicine at Mount Sinai, New York, NY, USA
- Corresponding author: Anne M. Moon, MD, PhD, Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA, USA.
| |
Collapse
|
14
|
Wu J, Li S, Li C, Cui L, Ma J, Hui Y. The non-canonical effects of heme oxygenase-1, a classical fighter against oxidative stress. Redox Biol 2021; 47:102170. [PMID: 34688156 PMCID: PMC8577501 DOI: 10.1016/j.redox.2021.102170] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 12/30/2022] Open
Abstract
The role of heme oxygenase-1 in resisting oxidative stress and cell protection has always been a hot research topic. With the continuous deepening of research, in addition to directly regulating redox by catalyzing the degradation of heme, HO-1 protein also participates in the gene expression level in a great diversity of methods, thereby initiating cell defense. Particularly the non-canonical nuclear-localized HO-1 and HO-1 protein interactions play the role of a warrior against oxidative stress. Besides, HO-1 may be a promising marker for disease prediction and detection in many clinical trials. Especially for malignant diseases, there may be new advances in the treatment of HO-1 by regulating abnormal ROS and metabolic signaling. The purpose of this review is to systematically sort out and describe several aspects of research to facilitate further detailed mechanism research and clinical application promotion in the future. The different subcellular localizations ofHO-1 implies that it has special functions. Nuclear HO-1 plays an indispensable role in gene regulation and other aspects. The interactions between HO-1 and others provide the possibility to participate in vital physiological processes. HO-1 may become a potential disease assessment marker.
Collapse
Affiliation(s)
- Jiajia Wu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Siyu Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Cheng Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Liying Cui
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Jiajia Ma
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China
| | - Yang Hui
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, PR China; Basic Medical Institute of Heilongjiang Medical Science Academy, PR China; Translational Medicine Center of Northern China, PR China.
| |
Collapse
|
15
|
You HJ, You BC, Kim JK, Park JM, Song BS, Myung JK. Characterization of Proteins Regulated by Androgen and Protein Kinase a Signaling in VCaP Prostate Cancer Cells. Biomedicines 2021; 9:biomedicines9101404. [PMID: 34680521 PMCID: PMC8533394 DOI: 10.3390/biomedicines9101404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/25/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Androgen signaling via the androgen receptor (AR) is involved in normal prostate development and prostate cancer progression. In addition to androgen binding, a variety of protein kinases, including cyclic AMP-dependent protein kinase A (PKA), can activate the AR. Although hormone deprivation, especially that of androgen, continues to be an important strategy for treating prostate cancer patients, the disease ultimately progresses to castration-resistant prostate cancer (CRPC), despite a continuous hormone-deprived environment. To date, it remains unclear which pathways in this progression are active and targetable. Here, we performed a proteomic analysis of VCaP cells stimulated with androgen or forskolin to identify proteins specific for androgen-induced and androgen-bypassing signaling, respectively. Patterns of differentially expressed proteins were quantified, and eight proteins showing significant changes in expression were identified. Functional information, including a Gene Ontology analysis, revealed that most of these proteins are involved in metabolic processes and are associated with cancer. The mRNA and protein expression of selected proteins was validated, and functional correlations of identified proteins with signaling in VCaP cells were assessed by measuring metabolites related to each enzyme. These analyses offered new clues regarding effector molecules involved in prostate cancer development, insights that are supported by the demonstration of increased expression levels of the eight identified proteins in prostate cancer patients and assessments of the progression-free interval. Taken together, our findings show that aberrant levels of eight proteins reflect molecular changes that are significantly regulated by androgen and/or PKA signaling pathways, suggesting possible molecular mechanisms of CRPC.
Collapse
Affiliation(s)
- Hye-Jin You
- Division of Translational Science, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea; (H.-J.Y.); (B.-C.Y.)
- Department of Cancer Biomedical Science, National Cancer Center-Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea; (J.-M.P.); (B.-S.S.)
| | - Byong-Chul You
- Division of Translational Science, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea; (H.-J.Y.); (B.-C.Y.)
- Department of Cancer Biomedical Science, National Cancer Center-Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea; (J.-M.P.); (B.-S.S.)
| | - Jong-Kwang Kim
- Research Core Center, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea;
| | - Jae-Min Park
- Department of Cancer Biomedical Science, National Cancer Center-Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea; (J.-M.P.); (B.-S.S.)
| | - Bo-Seul Song
- Department of Cancer Biomedical Science, National Cancer Center-Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea; (J.-M.P.); (B.-S.S.)
| | - Jae-Kyung Myung
- Department of Cancer Biomedical Science, National Cancer Center-Graduate School of Cancer Science and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si 10408, Korea; (J.-M.P.); (B.-S.S.)
- Correspondence: ; Tel.: +82-31-920-2746
| |
Collapse
|
16
|
Zhang M, Sun Y, Huang CP, Luo J, Zhang L, Meng J, Liang C, Chang C. Targeting the Lnc-OPHN1-5/androgen receptor/hnRNPA1 complex increases Enzalutamide sensitivity to better suppress prostate cancer progression. Cell Death Dis 2021; 12:855. [PMID: 34545067 PMCID: PMC8452728 DOI: 10.1038/s41419-021-03966-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been found to play critical roles in regulating gene expression, but their function in translational control is poorly understood. We found lnc-OPHN1-5, which lies close to the androgen receptor (AR) gene on chromosome X, increased prostate cancer (PCa) Enzalutamide (Enz) sensitivity via decreasing AR protein expression and associated activity. Mechanism dissection revealed that lnc-OPHN1-5 interacted with AR-mRNA to minimize its interaction with the RNA binding protein (RBP) hnRNPA1. Suppressing lnc-OPHN1-5 expression promoted the interaction between AR-mRNA and hnRNPA1, followed by an increase of ribosome association with AR-mRNA and translation. This effect was reversed by increasing lnc-OPHN1-5 expression. Consistently, the in vivo mice model confirmed that knocking down lnc-OPHN1-5 expression in tumors significantly increased the tumor formation rate and AR protein expression compared with the control group. Furthermore, knocking down hnRNPA1 blocked/reversed shlnc-OPHN1-5-increased AR protein expression and re-sensitized cells to Enz treatment efficacy. Evidence from Enz-resistant cell lines, patient-derived xenograft (PDX) models, clinical samples, and a human PCa study accordantly suggested that patients with low expression of lnc-OPHN1-5 likely have unfavorable prognoses and probably are less sensitive to Enz treatment. In summary, targeting this newly identified lnc-OPHN1-5/AR/hnRNPA1 complex may help develop novel therapies to increase Enz treatment sensitivity for suppressing the PCa at an advanced stage.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.,George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.,Institute of Urology, Shenzhen University, Shenzhen, China
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Chi-Ping Huang
- Department of Urology, China Medical University, Taichung, Taiwan
| | - Jie Luo
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, & Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA. .,Department of Urology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
17
|
Crowley F, Sterpi M, Buckley C, Margetich L, Handa S, Dovey Z. A Review of the Pathophysiological Mechanisms Underlying Castration-resistant Prostate Cancer. Res Rep Urol 2021; 13:457-472. [PMID: 34235102 PMCID: PMC8256377 DOI: 10.2147/rru.s264722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Androgen deprivation therapy or ADT is one of the cornerstones of management of locally advanced or metastatic prostate cancer, alongside radiation therapy. However, despite early response, most advanced prostate cancers progress into an androgen unresponsive or castrate resistant state, which hitherto remains an incurable entity and the second leading cause of cancer-related mortality in men in the US. Recent advances have uncovered multiple complex and intermingled mechanisms underlying this transformation. While most of these mechanisms revolve around androgen receptor (AR) signaling, novel pathways which act independently of the androgen axis are also being discovered. The aim of this article is to review the pathophysiological mechanisms that help bypass the apoptotic effects of ADT to create castrate resistance. The article discusses castrate resistance mechanisms under two categories: 1. Direct AR dependent pathways such as amplification or gain of function mutations in AR, development of functional splice variants, posttranslational regulation, and pro-oncogenic modulation in the expression of coactivators vs corepressors of AR. 2. Ancillary pathways involving RAS/MAP kinase, TGF-beta/SMAD pathway, FGF signaling, JAK/STAT pathway, Wnt-Beta catenin and hedgehog signaling as well as the role of cell adhesion molecules and G-protein coupled receptors. miRNAs are also briefly discussed. Understanding the mechanisms involved in the development and progression of castration-resistant prostate cancer is paramount to the development of targeted agents to overcome these mechanisms. A number of targeted agents are currently in development. As we strive for more personalized treatment across oncology care, treatment regimens will need to be tailored based on the type of CRPC and the underlying mechanism of castration resistance.
Collapse
Affiliation(s)
- Fionnuala Crowley
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Michelle Sterpi
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Conor Buckley
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Lauren Margetich
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Shivani Handa
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West, New York, NY, USA
| | - Zach Dovey
- Department of Urology, Icahn School of Medicine, Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
18
|
Iwabuchi E, Miki Y, Suzuki T, Hirakawa H, Ishida T, Sasano H. Heterogeneous Nuclear Ribonucleoprotein K Is Involved in the Estrogen-Signaling Pathway in Breast Cancer. Int J Mol Sci 2021; 22:ijms22052581. [PMID: 33806648 PMCID: PMC7962001 DOI: 10.3390/ijms22052581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 01/22/2023] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNPK) transcripts are abundant in estrogen receptor (ER)- or progesterone receptor (PR)-positive breast cancer. However, the biological functions of hnRNPK in the ER-mediated signaling pathway have remained largely unknown. Therefore, this study analyzes the functions of hnRNPK expression in the ER-mediated signaling pathway in breast cancer. We initially evaluated hnRNPK expression upon treatment with estradiol (E2) and ICI 182,780 in the ERα-positive breast carcinoma cell line MCF-7. The results revealed that E2 increased hnRNPK; however, hnRNPK expression was decreased with ICI 182,780 treatment, indicating estrogen dependency. We further evaluated the effects of hnRNPK knockdown in the ER-mediated signaling pathway in MCF-7 cells using small interfering RNAs. The results revealed that hnRNPK knockdown decreased ERα expression and ERα target gene pS2 by E2 treatment. As hnRNPK interacts with several other proteins, we explored the interaction between hnRNPK and ERα, which was demonstrated using immunoprecipitation and proximity ligation assay. Subsequently, we immunolocalized hnRNPK in patients with breast cancer, which revealed that hnRNPK immunoreactivity was significantly higher in ERα-positive carcinoma cells and significantly lower in Ki67-positive or proliferative carcinoma cells. These results indicated that hnRNPK directly interacted with ERα and was involved in the ER-mediated signaling pathway in breast carcinoma. Furthermore, hnRNPK expression could be an additional target of endocrine therapy in patients with ERα-positive breast cancer.
Collapse
Affiliation(s)
- Erina Iwabuchi
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
| | - Yasuhiro Miki
- Department of Disaster Obstetrics and Gynecology, International Research Institute of Disaster Science (IRIDes), Tohoku University, Sendai 980-8575, Japan;
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
| | - Hisashi Hirakawa
- Department of Surgery, Tohoku Kosai Hospital, Sendai 980-0803, Japan;
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
- Correspondence: ; Tel.: +81-22-717-8050
| |
Collapse
|
19
|
Pan K, Lee W, Chou C, Yang Y, Chang Y, Chien M, Hsiao M, Hua K. Direct interaction of β-catenin with nuclear ESM1 supports stemness of metastatic prostate cancer. EMBO J 2021; 40:e105450. [PMID: 33347625 PMCID: PMC7883293 DOI: 10.15252/embj.2020105450] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Wnt/β-catenin signaling is frequently activated in advanced prostate cancer and contributes to therapy resistance and metastasis. However, activating mutations in the Wnt/β-catenin pathway are not common in prostate cancer, suggesting alternative regulations may exist. Here, we report that the expression of endothelial cell-specific molecule 1 (ESM1), a secretory proteoglycan, is positively associated with prostate cancer stemness and progression by promoting Wnt/β-catenin signaling. Elevated ESM1 expression correlates with poor overall survival and metastasis. Accumulation of nuclear ESM1, instead of cytosolic or secretory ESM1, supports prostate cancer stemness by interacting with the ARM domain of β-catenin to stabilize β-catenin-TCF4 complex and facilitate the transactivation of Wnt/β-catenin signaling targets. Accordingly, activated β-catenin in turn mediates the nuclear entry of ESM1. Our results establish the significance of mislocalized ESM1 in driving metastasis in prostate cancer by coordinating the Wnt/β-catenin pathway, with implications for its potential use as a diagnostic or prognostic biomarker and as a candidate therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Ke‐Fan Pan
- Graduate Institute of ToxicologyCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Wei‐Jiunn Lee
- Department of UrologySchool of MedicineCollege of MedicineTaipei Medical UniversityTaipeiTaiwan
- Department of Medical Education and ResearchWan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- Cancer CenterWan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
| | - Chun‐Chi Chou
- Department of Obstetrics & GynecologyCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Yi‐Chieh Yang
- Graduate Institute of Clinical MedicineCollege of MedicineTaipei Medical UniversityTaipeiTaiwan
- Department of Medical ResearchTungs’ Taichung Metro Harbor HospitalTaichungTaiwan
| | - Yu‐Chan Chang
- Department of Biomedical Imaging and Radiological ScienceNational Yang‐Ming UniversityTaipeiTaiwan
| | - Ming‐Hsien Chien
- Graduate Institute of Clinical MedicineCollege of MedicineTaipei Medical UniversityTaipeiTaiwan
- Pulmonary Research CenterWan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- TMU Research Center of Cancer Translational MedicineTaipei Medical UniversityTaipeiTaiwan
- Traditional Herbal Medicine Research CenterTaipei Medical University HospitalTaipeiTaiwan
| | - Michael Hsiao
- The Genomics Research CenterAcademia SinicaTaipeiTaiwan
| | - Kuo‐Tai Hua
- Graduate Institute of ToxicologyCollege of MedicineNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
20
|
Escobar-Hoyos LF, Penson A, Kannan R, Cho H, Pan CH, Singh RK, Apken LH, Hobbs GA, Luo R, Lecomte N, Babu S, Pan FC, Alonso-Curbelo D, Morris JP, Askan G, Grbovic-Huezo O, Ogrodowski P, Bermeo J, Saglimbeni J, Cruz CD, Ho YJ, Lawrence SA, Melchor JP, Goda GA, Bai K, Pastore A, Hogg SJ, Raghavan S, Bailey P, Chang DK, Biankin A, Shroyer KR, Wolpin BM, Aguirre AJ, Ventura A, Taylor B, Der CJ, Dominguez D, Kümmel D, Oeckinghaus A, Lowe SW, Bradley RK, Abdel-Wahab O, Leach SD. Altered RNA Splicing by Mutant p53 Activates Oncogenic RAS Signaling in Pancreatic Cancer. Cancer Cell 2020; 38:198-211.e8. [PMID: 32559497 PMCID: PMC8028848 DOI: 10.1016/j.ccell.2020.05.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/17/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is driven by co-existing mutations in KRAS and TP53. However, how these mutations collaborate to promote this cancer is unknown. Here, we uncover sequence-specific changes in RNA splicing enforced by mutant p53 which enhance KRAS activity. Mutant p53 increases expression of splicing regulator hnRNPK to promote inclusion of cytosine-rich exons within GTPase-activating proteins (GAPs), negative regulators of RAS family members. Mutant p53-enforced GAP isoforms lose cell membrane association, leading to heightened KRAS activity. Preventing cytosine-rich exon inclusion in mutant KRAS/p53 PDACs decreases tumor growth. Moreover, mutant p53 PDACs are sensitized to inhibition of splicing via spliceosome inhibitors. These data provide insight into co-enrichment of KRAS and p53 mutations and therapeutics targeting this mechanism in PDAC.
Collapse
Affiliation(s)
- Luisa F Escobar-Hoyos
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Therapeutic Radiology, Yale University, School of Medicine, New Haven, CT 06520, USA; Department of Biology, Research Group Genetic Toxicology and Cytogenetics, School of Natural Sciences and Education, Universidad del Cauca, Popayán, Colombia; Department of Pathology, Renaissance School of Medicine, Stony Brook University, New York, NY 11794, USA.
| | - Alex Penson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ram Kannan
- Howard Hughes Medical Institute, Cancer Biology & Genetics Program, Sloan-Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hana Cho
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chun-Hao Pan
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, New York, NY 11794, USA
| | - Rohit K Singh
- Institute of Biochemistry, University of Münster, Münster, Germany
| | - Lisa H Apken
- Institute of Molecular Tumor Biology, University of Münster, Münster, Germany
| | - G Aaron Hobbs
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Renhe Luo
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nicolas Lecomte
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sruthi Babu
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, New York, NY 11794, USA
| | - Fong Cheng Pan
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Direna Alonso-Curbelo
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John P Morris
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gokce Askan
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Olivera Grbovic-Huezo
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paul Ogrodowski
- Howard Hughes Medical Institute, Cancer Biology & Genetics Program, Sloan-Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jonathan Bermeo
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph Saglimbeni
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cristian D Cruz
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yu-Jui Ho
- Howard Hughes Medical Institute, Cancer Biology & Genetics Program, Sloan-Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sharon A Lawrence
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jerry P Melchor
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Grant A Goda
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karen Bai
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, New York, NY 11794, USA
| | - Alessandro Pastore
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Simon J Hogg
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Srivatsan Raghavan
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Peter Bailey
- Department of General Surgery, University of Heidelberg, Im Neuenheimer Feld 110, Heidelberg, Baden-Württemberg 69120, Germany; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, G61 1Q, Glasgow, UK
| | - David K Chang
- The Kinghorn Cancer Centre, and the Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia; Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, NSW, Australia; South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, NSW, Australia
| | - Andrew Biankin
- Department of General Surgery, University of Heidelberg, Im Neuenheimer Feld 110, Heidelberg, Baden-Württemberg 69120, Germany; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, G61 1Q, Glasgow, UK; The Kinghorn Cancer Centre, and the Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia; Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, NSW, Australia
| | - Kenneth R Shroyer
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, New York, NY 11794, USA
| | - Brian M Wolpin
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Andrea Ventura
- Howard Hughes Medical Institute, Cancer Biology & Genetics Program, Sloan-Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Barry Taylor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Marie-José and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Departments of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel Dominguez
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel Kümmel
- Institute of Biochemistry, University of Münster, Münster, Germany
| | - Andrea Oeckinghaus
- Institute of Molecular Tumor Biology, University of Münster, Münster, Germany
| | - Scott W Lowe
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, Cancer Biology & Genetics Program, Sloan-Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Robert K Bradley
- Fred Hutchinson Cancer Research Center Seattle, Seattle, WA 98109-1024, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Steven D Leach
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Dartmouth Norris Cotton Cancer Center, Lebanon, NH 03766, USA.
| |
Collapse
|
21
|
Bhandari R, Vengaloor Thomas T, Giri S, Kumar PP, Cook-Glenn C. Small Cell Carcinoma of the Prostate: A Case Report and Review of the Literature. Cureus 2020; 12:e7074. [PMID: 32226675 PMCID: PMC7093915 DOI: 10.7759/cureus.7074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Small cell carcinoma of the prostate (SCCP) is a rare malignancy that is considered a lethal entity of prostate cancer. Once it is diagnosed, patients characteristically experience an aggressive clinical course with poor overall survival rates, which unfortunately still holds even with modern treatments. In this report, we discuss the case of a 63-year-old African American male who initially presented to the hospital with an elevated prostate-specific antigen (PSA) level of 9.41 ng/mL and was found to have locally extensive SCCP. After one cycle of chemotherapy, the patient's symptoms worsened, and his disease continued to progress with an increased metastatic burden. In a matter of just a few months, the patient’s disease progressed from a locally advanced entity to a diffusely metastatic one, showcasing the true aggressive nature of this disease. Through an extensive literature review, this case report also sheds further light on SCCP's histological characteristics, its apparent differences from adenocarcinoma of the prostate, and its aggressive nature even through treatment.
Collapse
Affiliation(s)
- Rahul Bhandari
- Radiation Oncology, G.V. (Sonny) Montgomery VA Medical Center, Jackson, USA
| | | | - Shankar Giri
- Radiation Oncology, G.V. (Sonny) Montgomery VA Medical Center, Jackson, USA
| | | | | |
Collapse
|
22
|
Multifocal Signal Modulation Therapy by Celecoxib: A Strategy for Managing Castration-Resistant Prostate Cancer. Int J Mol Sci 2019; 20:ijms20236091. [PMID: 31816863 PMCID: PMC6929142 DOI: 10.3390/ijms20236091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a significant health concern throughout the world. Standard therapy for advanced disease consists of anti-androgens, however, almost all prostate tumors become castration resistant (CRPC). Progression from androgen-sensitive PCa to CRPC is promoted by inflammatory signaling through cyclooxygenase-2 (COX-2) expression and ErbB family receptors/AKT activation, compensating androgen receptor inactivity. METHODS Making use of CRPC cell lines, we investigated the effects of the anti-inflammatory drug celecoxib. Biochemical data obtained using immunoblotting, enzyme-linked immunosorbent assay (ELISA), invasion, and xenografts were further integrated by bioinformatic analyses. RESULTS Celecoxib reduced cell growth and induced apoptosis through AKT blockade, cleavage of poly (ADP-ribose) polymerase-1 (PARP-1), and proteasomal degradation of the anti-apoptotic protein Mcl-1. Epidermal growth factor receptor (EGFR), ErbB2, and ErbB3 degradation, and heterogeneous nuclear ribonucleoprotein K (hnRNP K) downregulation, further amplified the inhibition of androgen signaling. Celecoxib reduced the invasive phenotype of CRPC cells by modulating NF-κB activity and reduced tumor growth in mice xenografts when administered in association with the anti-EGFR receptor antibody cetuximab. Bioinformatic analyses on human prostate cancer datasets support the relevance of these pathways in PCa progression. CONCLUSIONS Signaling nodes at the intersection of pathways implicated in PCa progression are simultaneously modulated by celecoxib treatment. In combination therapies with cetuximab, celecoxib could represent a novel therapeutic strategy to curb signal transduction during CRPC progression.
Collapse
|
23
|
Noble AR, Hogg K, Suman R, Berney DM, Bourgoin S, Maitland NJ, Rumsby MG. Phospholipase D2 in prostate cancer: protein expression changes with Gleason score. Br J Cancer 2019; 121:1016-1026. [PMID: 31673104 PMCID: PMC6964697 DOI: 10.1038/s41416-019-0610-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Phospholipases D1 and D2 (PLD1/2) are implicated in tumorigenesis through their generation of the signalling lipid phosphatidic acid and its downstream effects. Inhibition of PLD1 blocks prostate cell growth and colony formation. Here a role for PLD2 in prostate cancer (PCa), the major cancer of men in the western world, is examined. METHODS PLD2 expression was analysed by immunohistochemistry and western blotting. The effects of PLD2 inhibition on PCa cell viability and cell motility were measured using MTS, colony forming and wound-healing assays. RESULTS PLD2 protein is expressed about equally in luminal and basal prostate epithelial cells. In cells from different Gleason-scored PCa tissue PLD2 protein expression is generally higher than in non-tumorigenic cells and increases in PCa tissue scored Gleason 6-8. PLD2 protein is detected in the cytosol and nucleus and had a punctate appearance. In BPH tissue stromal cells as well as basal and luminal cells express PLD2. PLD2 protein co-expresses with chromogranin A in castrate-resistant PCa tissue. PLD2 inhibition reduces PCa cell viability, colony forming ability and directional cell movement. CONCLUSIONS PLD2 expression correlates with increasing Gleason score to GS8. PLD2 inhibition has the potential to reduce PCa progression.
Collapse
Affiliation(s)
- Amanda R Noble
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, UK
| | - Karen Hogg
- Technology Facility, Department of Biology, University of York, York, YO10 5DD, UK
| | - Rakesh Suman
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, UK
| | - Daniel M Berney
- Department of Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Sylvain Bourgoin
- Centre de Recherche du CHU de Québec, Axe des Maladies Infectieuses et Immunitaires, local T1-58, 2705 boulevard Laurier, Québec, G1V 4G2, QC, Canada
| | - Norman J Maitland
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, UK
| | - Martin G Rumsby
- Cancer Research Unit, Department of Biology, University of York, York, YO10 5DD, UK.
| |
Collapse
|
24
|
Wang Z, Qiu H, He J, Liu L, Xue W, Fox A, Tickner J, Xu J. The emerging roles of hnRNPK. J Cell Physiol 2019; 235:1995-2008. [PMID: 31538344 DOI: 10.1002/jcp.29186] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an DNA/RNA-binding protein and regulates a wide range of biological processes and disease pathogenesis. It contains 3 K-homologous (KH) domains, which are conserved in other RNA-binding proteins, mediate nucleic acid binding activity, and function as an enhancer or repressor of gene transcription. Phosphorylation of the protein alters its regulatory function, which also enables the protein to serve as a docking platform for the signal transduction proteins. In terms of the function of hnRNPK, it is central to many cellular events, including long noncoding RNA (lncRNA) regulation, cancer development and bone homoeostasis. Many studies have identified hnRNPK as an oncogene, where it is overexpressed in cancer tissues compared with the nonneoplastic tissues and its expression level is related to the prognosis of different types of host malignancies. However, hnRNPK has also been identified as a tumour suppressor, as it is important for the activation of the p53/p21 pathway. Recently, the protein is also found to be exclusively related to the regulation of paraspeckles and lncRNAs such as Neat1, Lncenc1 and Xist. Interestingly, hnRNPK has been found to associate with the Kabuki-like syndrome and Au-Kline syndrome with prominent skeletal abnormalities. In vitro study revealed that the hnRNPK protein is essential for the formation of osteoclast, in line with its importance in the skeletal system.
Collapse
Affiliation(s)
- Ziyi Wang
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Heng Qiu
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jianbo He
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Langxia Liu
- Key laboratory of functional protein research of Guangdong higher education institutes, Institute of life and health engineering, Jinan University, Guangzhou, China
| | - Wei Xue
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Archa Fox
- School of Human Sciences and Molecular Sciences, The University of Western Australia and Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - Jennifer Tickner
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jiake Xu
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
25
|
Braadland PR, Ramberg H, Grytli HH, Urbanucci A, Nielsen HK, Guldvik IJ, Engedal A, Ketola K, Wang W, Svindland A, Mills IG, Bjartell A, Taskén KA. The β 2-Adrenergic Receptor Is a Molecular Switch for Neuroendocrine Transdifferentiation of Prostate Cancer Cells. Mol Cancer Res 2019; 17:2154-2168. [PMID: 31395667 DOI: 10.1158/1541-7786.mcr-18-0605] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 04/25/2019] [Accepted: 08/06/2019] [Indexed: 11/16/2022]
Abstract
The incidence of treatment-related neuroendocrine prostate cancer (t-NEPC) is rising as more potent drugs targeting the androgen signaling axis are clinically implemented. Neuroendocrine transdifferentiation (NEtD), an putative initial step in t-NEPC development, is induced by androgen-deprivation therapy (ADT) or anti-androgens, and by activation of the β2-adrenergic receptor (ADRB2) in prostate cancer cell lines. Thus, understanding whether ADRB2 is involved in ADT-initiated NEtD may assist in developing treatment strategies that can prevent or reverse t-NEPC emergence, thereby prolonging therapeutic responses. Here we found that in primary, treatment-naïve prostate cancers, ADRB2 mRNA was positively correlated with expression of luminal differentiation markers, and ADRB2 protein levels were inversely correlated with Gleason grade. ADRB2 mRNA was upregulated in metastatic prostate cancer, and progressively downregulated during ADT and t-NEPC emergence. In androgen-deprivated medium, high ADRB2 was required for LNCaP cells to undergo NEtD, measured as increased neurite outgrowth and expression of neuron differentiation and neuroendocrine genes. ADRB2 overexpression induced a neuroendocrine-like morphology in both androgen receptor (AR)-positive and -negative prostate cancer cell lines. ADRB2 downregulation in LNCaP cells increased canonical Wnt signaling, and GSK3α/β inhibition reduced the expression of neuron differentiation and neuroendocrine genes. In LNCaP xenografts, more pronounced castration-induced NEtD was observed in tumors derived from high than low ADRB2 cells. In conclusion, high ADRB2 expression is required for ADT-induced NEtD, characterized by ADRB2 downregulation and t-NEPC emergence. IMPLICATIONS: This data suggest a potential application of β-blockers to prevent cancer cells committed to a neuroendocrine lineage from evolving into t-NEPC.
Collapse
Affiliation(s)
- Peder R Braadland
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Håkon Ramberg
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Helene Hartvedt Grytli
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway.,Department of Core Facilities, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Heidi Kristin Nielsen
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Jenny Guldvik
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Engedal
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kirsi Ketola
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Wanzhong Wang
- Clinical Pathology/Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Aud Svindland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Ian G Mills
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway.,Movember FASTMAN Centre of Excellence, Centre for Cancer Research & Cell Biology, Queen's University Belfast, Belfast, United Kingdom.,Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Anders Bjartell
- Department of Urology, Skåne University Hospital, Malmö, Sweden.,Department of Translational Medicine, Division of Urological Cancers, Lund University, Malmø, Sweden
| | - Kristin Austlid Taskén
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
Nazarov IB, Bakhmet EI, Tomilin AN. KH-Domain Poly(C)-Binding Proteins as Versatile Regulators of Multiple Biological Processes. BIOCHEMISTRY (MOSCOW) 2019; 84:205-219. [PMID: 31221059 DOI: 10.1134/s0006297919030039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Five known members of the family of KH-domain poly(C)-binding proteins (Pcbp1-4, hnRNP-K) have an unusually broad spectrum of cellular functions that include regulation of gene transcription, regulation of pre-mRNA processing, splicing, mRNA stability, translational silencing and enhancement, the control of iron turnover, and many others. Mechanistically, these proteins act via nucleic acid binding and protein-protein interactions. Through performing these multiple tasks, the KH-domain poly(C)-binding family members are involved in a wide variety of biological processes such as embryonic development, cell differentiation, and cancer. Deregulation of KH-domain protein expression is frequently associated with severe developmental defects and neoplasia. This review summarizes progress in studies of the KH-domain proteins made over past two decades. The review also reports our recent finding implying an involvement of the KH-factor Pcbp1 into control of transition from naïve to primed pluripotency cell state.
Collapse
Affiliation(s)
- I B Nazarov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia.
| | - E I Bakhmet
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - A N Tomilin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| |
Collapse
|
27
|
Shen JJ, Wang YF, Yang W. Sex-Interacting mRNA- and miRNA-eQTLs and Their Implications in Gene Expression Regulation and Disease. Front Genet 2019; 10:313. [PMID: 31024623 PMCID: PMC6465513 DOI: 10.3389/fgene.2019.00313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 03/21/2019] [Indexed: 12/26/2022] Open
Abstract
Despite sex being an important epidemiological and physiological factor, not much is known about how sex works to interact with genotypes to result in different phenotypes. Both messenger RNA (mRNA) and microRNA (miRNA) may be differentially expressed between the sexes in different physiological conditions, and both may be differentially regulated between males and females. Using whole transcriptome data on lymphoblastoid cell lines from 338 samples of European origin, we tried to uncover genes differentially expressed between the two sexes and sex-interacting expression quantitative trait loci (ss-eQTLs). Two miRNAs were found to be differentially expressed between the two sexes, both of which were found to be functionally implicated in breast cancer. Using two stage linear regression analysis, 21 mRNA ss-eQTL and 3 miRNA ss-eQTLs were discovered. We replicated two of the mRNA ss-eQTLs (p < 0.1) using a separate dataset of gene expression data derived from monocytes. Three mRNA ss-eQTLs are in high linkage disequilibrium with variants also found to be associated with sexually dimorphic traits. Taken together, we believe the ss-eQTLs presented will assist researchers in uncovering the basis of sex-biased gene expression regulation, and ultimately help us understand the genetic basis of differences in phenotypes between sexes.
Collapse
Affiliation(s)
- Jiangshan J Shen
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China.,Lupus Research Institute, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yong-Fei Wang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
28
|
Puca L, Vlachostergios PJ, Beltran H. Neuroendocrine Differentiation in Prostate Cancer: Emerging Biology, Models, and Therapies. Cold Spring Harb Perspect Med 2019; 9:a030593. [PMID: 29844220 PMCID: PMC6360865 DOI: 10.1101/cshperspect.a030593] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although a de novo clinical presentation of small cell neuroendocrine carcinoma of the prostate is rare, a subset of patients previously diagnosed with prostate adenocarcinoma may develop neuroendocrine features in later stages of castration-resistant prostate cancer (CRPC) progression as a result of treatment resistance. Despite sharing clinical, histologic, and some molecular features with other neuroendocrine carcinomas, including small cell lung cancer, castration-resistant neuroendocrine prostate cancer (CRPC-NE) is clonally derived from prostate adenocarcinoma. CRPC-NE therefore retains early prostate cancer genomic alterations and acquires new molecular changes making them resistant to traditional CRPC therapies. This review focuses on recent advances in our understanding of CRPC-NE biology, the transdifferentiation/plasticity process, and development and characterization of relevant CRPC-NE preclinical models.
Collapse
Affiliation(s)
- Loredana Puca
- Englander Institute for Precision Medicine, Weill Cornell Medicine and New York-Presbyterian Hospital, New York, New York 10021
- Division of Medical Oncology, Weill Cornell Medicine, New York, New York 10021
| | | | - Himisha Beltran
- Englander Institute for Precision Medicine, Weill Cornell Medicine and New York-Presbyterian Hospital, New York, New York 10021
- Division of Medical Oncology, Weill Cornell Medicine, New York, New York 10021
| |
Collapse
|
29
|
Wnt/Beta-Catenin Signaling and Prostate Cancer Therapy Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:351-378. [PMID: 31900917 DOI: 10.1007/978-3-030-32656-2_16] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metastatic or locally advanced prostate cancer (PCa) is typically treated with androgen deprivation therapy (ADT). Initially, PCa responds to the treatment and regresses. However, PCa almost always develops resistance to androgen deprivation and progresses to castrate-resistant prostate cancer (CRPCa), a currently incurable form of PCa. Wnt/β-Catenin signaling is frequently activated in late stage PCa and contributes to the development of therapy resistance. Although activating mutations in the Wnt/β-Catenin pathway are not common in primary PCa, this signaling cascade can be activated through other mechanisms in late stage PCa, including cross talk with other signaling pathways, growth factors and cytokines produced by the damaged tumor microenvironment, release of the co-activator β-Catenin from sequestration after inhibition of androgen receptor (AR) signaling, altered expression of Wnt ligands and factors that modulate the Wnt signaling, and therapy-induced cellular senescence. Research from genetically engineered mouse models indicates that activation of Wnt/β-Catenin signaling in the prostate is oncogenic, enables castrate-resistant PCa growth, induces an epithelial-to-mesenchymal transition (EMT), promotes neuroendocrine (NE) differentiation, and confers stem cell-like features to PCa cells. These important roles of Wnt/β-Catenin signaling in PCa progression underscore the need for the development of drugs targeting this pathway to treat therapy-resistant PCa.
Collapse
|
30
|
Gevariya N, Besançon M, Robitaille K, Picard V, Diabaté L, Alesawi A, Julien P, Fradet Y, Bergeron A, Fradet V. Omega-3 fatty acids decrease prostate cancer progression associated with an anti-tumor immune response in eugonadal and castrated mice. Prostate 2019; 79:9-20. [PMID: 30073695 DOI: 10.1002/pros.23706] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 07/13/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Several lines of evidence suggest effects of dietary fat on prostate cancer (PCa) development and progression. Targeting omega (ω)-3:ω6 fatty acids (FA) ratio could be beneficial against PCa by favorably modulating inflammation. Here, we studied the effects of ω3- and ω6-enriched diets on prostate tumor growth and inflammatory response in androgen-deprived and non-deprived conditions. METHODS Immune-competent eugonadal and castrated C57BL/6 mice were injected with TRAMP-C2 prostate tumor cells and daily fed with ω3- or ω6-enriched diet. FA and cytokine profiles were measured in blood and tumors using gas chromatography and multiplex immunoassay, respectively. Immune cell infiltration in tumors was profiled by multicolor flow cytometry. RESULTS ω3-enriched diet decreased prostate TRAMP-C2 tumor growth in immune-competent eugonadal and castrated mice. Cytokines associated with Th1 immune response (IL-12 [p70], IFN-γ, GM-CSF) and eosinophil recruitment (eotaxin-1, IL-5, and IL-13) were significantly elevated in tumors of ω3-fed mice. Using in vitro experiments, we confirmed ω3 FA-induced eotaxin-1 secretion by tumor cells and that eotaxin-1 secretion was regulated by androgens. Analysis of immune cell infiltrating tumors showed no major difference of immune cells' abundance between ω3- and ω6-enriched diets. CONCLUSIONS ω3-enriched diet reduces prostate tumor growth independently of androgen levels. ω3 FA can inhibit tumor cell growth and induce a local anti-tumor inflammatory response. These findings warrant further examination of dietary ω3's potential to slow down the progression of androgen-sensitive and castrate-resistant PCa by modulating immune cell function in tumors.
Collapse
Affiliation(s)
- Nikunj Gevariya
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| | - Marjorie Besançon
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| | - Karine Robitaille
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Valérie Picard
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Lamoussa Diabaté
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| | - Anwar Alesawi
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
| | - Pierre Julien
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
- Endocrinology and Nephrology Axis, Centre de recherche du CHU de Québec-Université Laval-CHUL, Québec, Quebec, Canada
| | - Yves Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| | - Alain Bergeron
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| | - Vincent Fradet
- Laboratoire d'Uro-Oncologie Expérimentale, Oncology Axis, Centre de Recherche du CHU de Québec-Université Laval, Québec, Quebec, Canada
- Faculté de Medicine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
31
|
Capaia M, Granata I, Guarracino M, Petretto A, Inglese E, Cattrini C, Ferrari N, Boccardo F, Barboro P. A hnRNP K⁻AR-Related Signature Reflects Progression toward Castration-Resistant Prostate Cancer. Int J Mol Sci 2018; 19:ijms19071920. [PMID: 29966326 PMCID: PMC6073607 DOI: 10.3390/ijms19071920] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022] Open
Abstract
The major challenge in castration-resistant prostate cancer (CRPC) remains the ability to predict the clinical responses to improve patient selection for appropriate treatments. The finding that androgen deprivation therapy (ADT) induces alterations in the androgen receptor (AR) transcriptional program by AR coregulators activity in a context-dependent manner, offers the opportunity for identifying signatures discriminating different clinical states of prostate cancer (PCa) progression. Gel electrophoretic analyses combined with western blot showed that, in androgen-dependent PCa and CRPC in vitro models, the subcellular distribution of spliced and serine-phosphorylated heterogeneous nuclear ribonucleoprotein K (hnRNP K) isoforms can be associated with different AR activities. Using mass spectrometry and bioinformatic analyses, we showed that the protein sets of androgen-dependent (LNCaP) and ADT-resistant cell lines (PDB and MDB) co-immunoprecipitated with hnRNP K varied depending on the cell type, unravelling a dynamic relationship between hnRNP K and AR during PCa progression to CRPC. By comparing the interactome of LNCaP, PDB, and MDB cell lines, we identified 51 proteins differentially interacting with hnRNP K, among which KLK3, SORD, SPON2, IMPDH2, ACTN4, ATP1B1, HSPB1, and KHDRBS1 were associated with AR and differentially expressed in normal and tumor human prostate tissues. This hnRNP K–AR-related signature, associated with androgen sensitivity and PCa progression, may help clinicians to better manage patients with CRPC.
Collapse
Affiliation(s)
- Matteo Capaia
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino-IRCCS, L.go R. Benzi 10, 16132 Genova, Italy.
| | - Ilaria Granata
- Institute for High Performance Computing and Networking (ICAR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Mario Guarracino
- Institute for High Performance Computing and Networking (ICAR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Andrea Petretto
- Core Facilities-Proteomics Laboratory, Giannina Gaslini Institute, L.go G. Gaslini 5, 16147 Genova, Italy.
| | - Elvira Inglese
- Core Facilities-Proteomics Laboratory, Giannina Gaslini Institute, L.go G. Gaslini 5, 16147 Genova, Italy.
| | - Carlo Cattrini
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino-IRCCS, L.go R. Benzi 10, 16132 Genova, Italy.
- Department of Internal Medicine and Medical Specialties, School of Medicine, University of Genova, L.go R. Benzi 10, 16132 Genova, Italy.
| | - Nicoletta Ferrari
- Molecular Oncology and Angiogenesis, Ospedale Policlinico San Martino-IRCCS, L.go R. Benzi 10, 16132 Genova, Italy.
| | - Francesco Boccardo
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino-IRCCS, L.go R. Benzi 10, 16132 Genova, Italy.
- Department of Internal Medicine and Medical Specialties, School of Medicine, University of Genova, L.go R. Benzi 10, 16132 Genova, Italy.
| | - Paola Barboro
- Academic Unit of Medical Oncology, Ospedale Policlinico San Martino-IRCCS, L.go R. Benzi 10, 16132 Genova, Italy.
| |
Collapse
|
32
|
Nam RK, Benatar T, Amemiya Y, Wallis CJ, Romero JM, Tsagaris M, Sherman C, Sugar L, Seth A. MicroRNA-652 induces NED in LNCaP and EMT in PC3 prostate cancer cells. Oncotarget 2018; 9:19159-19176. [PMID: 29721191 PMCID: PMC5922385 DOI: 10.18632/oncotarget.24937] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 03/06/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNA molecules that post-transcriptionally regulate gene expression. Dysregulation of miRNAs is frequently associated with disease and, in particular, is involved in prostate cancer progression. Next generation miRNA sequencing identified a panel of five miRNAs associated with prostate cancer recurrence and metastasis. High expression of one of these five miRNAs, miR-652, correlated significantly with an increased rate of prostate cancer biochemical recurrence. Overexpression of miR-652 in prostate cancer cells, PC3 and LNCaP, resulted in increased growth, migration and invasion. Prostate cancer cell xenografts overexpressing miR-652 showed increased tumorigenicity and metastases. We found that miR-652 directly targets the B" regulatory subunit, PPP2R3A, of the tumor suppressor PP2A, inducing epithelial-mesenchymal transition (EMT) in PC3 cells and neuroendocrine-like differentiation (NED) in LNCaP cells. The mesenchymal marker N-cadherin increased and epithelial marker E-cadherin decreased in PC3 cells overexpressing miR-652. In LNCaP cells and xenografted tumors, overexpression of miR-652 increased markers of NED, including chromogranin A, neuron specific enolase, and synaptophysin. MiR-652 may contribute to prostate tumor progression by promoting NED through decreased PP2A function. MiR-652 expression could serve as a biomarker for aggressive prostate cancer, as well as provide an opportunity for novel therapy in prostate cancer.
Collapse
Affiliation(s)
- Robert K. Nam
- 1 Division of Urology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Tania Benatar
- 2 Platform Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Yutaka Amemiya
- 3 Genomics Facility, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Christopher J.D. Wallis
- 1 Division of Urology, Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Joan Miguel Romero
- 2 Platform Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Melina Tsagaris
- 2 Platform Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Christopher Sherman
- 4 Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- 5 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Linda Sugar
- 4 Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- 5 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Arun Seth
- 2 Platform Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- 3 Genomics Facility, Sunnybrook Research Institute, Toronto, ON, Canada
- 4 Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- 5 Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
Suman S, Das TP, Moselhy J, Pal D, Kolluru V, Alatassi H, Ankem MK, Damodaran C. Oral administration of withaferin A inhibits carcinogenesis of prostate in TRAMP model. Oncotarget 2018; 7:53751-53761. [PMID: 27447565 PMCID: PMC5288218 DOI: 10.18632/oncotarget.10733] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/13/2016] [Indexed: 12/25/2022] Open
Abstract
We previously reported that withaferin A (WA), a natural compound, deters prostate cancer by inhibiting AKT while inducing apoptosis. In the current study, we examined its chemopreventive efficacy against carcinogenesis in the prostate using the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Two distinct sets of experiments were conducted. To determine whether WA delays tumor progression, it was given before cancer onset, at week 6, and until week 44. To determine its effect after the onset of prostate cancer, it was given from weeks 12 to 35. In both strategies, oral administration of WA effectively suppressed tumor burden when compared to vehicle-treated animals. No toxicity was seen in treated animals at gross pathological examination. Western blot analysis and immunohistochemistry of tumor sections revealed that in TRAMP controls, AKT and pAKT were highly expressed while nuclear FOXO3a and Par-4 were downregulated. On the contrary, treated mice showed inhibition of AKT signaling and activation of FOX03a-Par-4-induced cell death. They also displayed inhibition of mesenchymal markers such as β-catenin, vimentin, and snail as well as upregulation of E-cadherin. Because expressions of the angiogenic markers factor VIII and retic were downregulated, an anti-angiogenic role of WA is suggested. Overall, our results suggest that WA could be a promising anti-cancer agent that effectively inhibits carcinogenesis of the prostate.
Collapse
Affiliation(s)
- Suman Suman
- Department of Urology, University of Louisville, KY, USA
| | - Trinath P Das
- Department of Urology, University of Louisville, KY, USA
| | - Jim Moselhy
- Department of Urology, University of Louisville, KY, USA
| | - Deeksha Pal
- Department of Urology, University of Louisville, KY, USA
| | | | - Houda Alatassi
- Department of Pathology, University of Louisville, KY, USA
| | - Murali K Ankem
- Department of Urology, University of Louisville, KY, USA
| | | |
Collapse
|
34
|
Wang C, Peng G, Huang H, Liu F, Kong DP, Dong KQ, Dai LH, Zhou Z, Wang KJ, Yang J, Cheng YQ, Gao X, Qu M, Wang HR, Zhu F, Tian QQ, Liu D, Cao L, Cui XG, Xu CL, Xu DF, Sun YH. Blocking the Feedback Loop between Neuroendocrine Differentiation and Macrophages Improves the Therapeutic Effects of Enzalutamide (MDV3100) on Prostate Cancer. Clin Cancer Res 2017; 24:708-723. [PMID: 29191973 DOI: 10.1158/1078-0432.ccr-17-2446] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/22/2017] [Accepted: 11/20/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Chao Wang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Guang Peng
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hai Huang
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Fei Liu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - De-Pei Kong
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ke-Qin Dong
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Li-He Dai
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhe Zhou
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Kai-Jian Wang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jun Yang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yan-Qiong Cheng
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xu Gao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Min Qu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hong-Ru Wang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Feng Zhu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qin-Qin Tian
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Dan Liu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Li Cao
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of the Ministry of Education, Second Military Medical University, Shanghai, China
| | - Xin-Gang Cui
- Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai, China
| | - Chuan-Liang Xu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Dan-Feng Xu
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Ying-Hao Sun
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
35
|
The ErbB family and androgen receptor signaling are targets of Celecoxib in prostate cancer. Cancer Lett 2017; 400:9-17. [PMID: 28450158 DOI: 10.1016/j.canlet.2017.04.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/06/2017] [Accepted: 04/14/2017] [Indexed: 01/23/2023]
|
36
|
Gallardo M, Hornbaker MJ, Zhang X, Hu P, Bueso-Ramos C, Post SM. Aberrant hnRNP K expression: All roads lead to cancer. Cell Cycle 2017; 15:1552-7. [PMID: 27049467 DOI: 10.1080/15384101.2016.1164372] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The classification of a gene as an oncogene or a tumor suppressor has been a staple of cancer biology for decades. However, as we delve deeper into the biology of these genes, this simple classification has become increasingly difficult for some. In the case of heterogeneous nuclear ribonuclear protein K (hnRNP K), its role as a tumor suppressor has recently been described in acute myeloid leukemia and demonstrated in a haploinsufficient mouse model. In contrast, data from other clinical correlation studies suggest that hnRNP K may be more fittingly described as an oncogene, due to its increased levels in a variety of malignancies. hnRNP K is a multifunctional protein that can regulate both oncogenic and tumor suppressive pathways through a bevy of chromatin-, DNA-, RNA-, and protein-mediated activates, suggesting its aberrant expression may have broad-reaching cellular impacts. In this review, we highlight our current understanding of hnRNP K, with particular emphasis on its apparently dichotomous roles in tumorigenesis.
Collapse
Affiliation(s)
- Miguel Gallardo
- a Department of Leukemia , The University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| | - Marisa J Hornbaker
- a Department of Leukemia , The University of Texas, MD Anderson Cancer Center , Houston , TX , USA.,b The University of Texas Graduate School of Biomedical Sciences at Houston , Houston , TX , USA
| | - Xiaorui Zhang
- a Department of Leukemia , The University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| | - Peter Hu
- c School of Health Professions, The University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| | - Carlos Bueso-Ramos
- d Department of Hematopathology , The University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| | - Sean M Post
- a Department of Leukemia , The University of Texas, MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
37
|
Moujalled D, Grubman A, Acevedo K, Yang S, Ke YD, Moujalled DM, Duncan C, Caragounis A, Perera ND, Turner BJ, Prudencio M, Petrucelli L, Blair I, Ittner LM, Crouch PJ, Liddell JR, White AR. TDP-43 mutations causing amyotrophic lateral sclerosis are associated with altered expression of RNA-binding protein hnRNP K and affect the Nrf2 antioxidant pathway. Hum Mol Genet 2017; 26:1732-1746. [PMID: 28334913 DOI: 10.1093/hmg/ddx093] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is a major disease-associated protein involved in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). Our previous studies found a direct association between TDP-43 and heterogeneous nuclear ribonucleoprotein K (hnRNP K). In this study, utilizing ALS patient fibroblasts harboring a TDP-43M337V mutation and NSC-34 motor neuronal cell line expressing TDP-43Q331K mutation, we show that hnRNP K expression is impaired in urea soluble extracts from mutant TDP-43 cell models. This was confirmed in vivo using TDP-43Q331K and inducible TDP-43A315T murine ALS models. We further investigated the potential pathological effects of mutant TDP-43-mediated changes to hnRNP K metabolism by RNA binding immunoprecipitation analysis. hnRNP K protein was bound to antioxidant NFE2L2 transcripts encoding Nrf2 antioxidant transcription factor, with greater enrichment in TDP-43M337V patient fibroblasts compared to healthy controls. Subsequent gene expression profiling revealed an increase in downstream antioxidant transcript expression of Nrf2 signaling in the spinal cord of TDP-43Q331K mice compared to control counterparts, yet the corresponding protein expression was not up-regulated in transgenic mice. Despite the elevated expression of antioxidant transcripts, we observed impaired levels of glutathione (downstream Nrf2 antioxidant) in TDP-43M337V patient fibroblasts and astrocyte cultures from TDP-43Q331K mice, indicative of elevated oxidative stress and failure of some upregulated antioxidant genes to be translated into protein. Our findings indicate that further exploration of the interplay between hnRNP K (or other hnRNPs) and Nrf2-mediated antioxidant signaling is warranted and may be an important driver for motor neuron degeneration in ALS.
Collapse
Affiliation(s)
- Diane Moujalled
- Department of Pathology, The University of Melbourne, Victoria 3010, Australia
| | - Alexandra Grubman
- Department of Pathology, The University of Melbourne, Victoria 3010, Australia
| | - Karla Acevedo
- Department of Pathology, The University of Melbourne, Victoria 3010, Australia
| | - Shu Yang
- The Australian School of Advanced Medicine, Macquarie University, NSW 2109, Australia
| | - Yazi D Ke
- Dementia Research Unit, Department of Anatomy, Faculty of Medicine, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Donia M Moujalled
- Australian Centre for Blood Diseases (ACBD), The Alfred Centre, Victoria 3004, Australia
| | - Clare Duncan
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
| | | | - Nirma D Perera
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
| | - Bradley J Turner
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
| | | | | | - Ian Blair
- The Australian School of Advanced Medicine, Macquarie University, NSW 2109, Australia
| | - Lars M Ittner
- Dementia Research Unit, Department of Anatomy, Faculty of Medicine, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Peter J Crouch
- Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
| | - Jeffrey R Liddell
- Department of Pathology, The University of Melbourne, Victoria 3010, Australia
| | - Anthony R White
- Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
- Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| |
Collapse
|
38
|
Thymus neuroendocrine tumors with CTNNB1 gene mutations, disarrayed ß-catenin expression, and dual intra-tumor Ki-67 labeling index compartmentalization challenge the concept of secondary high-grade neuroendocrine tumor: a paradigm shift. Virchows Arch 2017; 471:31-47. [PMID: 28451756 DOI: 10.1007/s00428-017-2130-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/09/2017] [Accepted: 04/11/2017] [Indexed: 02/07/2023]
Abstract
We herein report an uncommon association of intimately admixed atypical carcinoid (AC) and large cell neuroendocrine (NE) carcinoma (LCNEC) of the thymus, occurring in two 20- and 39-year-old Caucasian males. Both tumors were treated by maximal thymectomy. The younger patient presented with a synchronous lesion and died of disease after 9 months, while the other patient was associated with a recurrent ectopic adrenocorticotropic hormone Cushing's syndrome and is alive with disease at the 2-year follow-up. MEN1 syndrome was excluded in either case. Immunohistochemically, disarrayed cytoplasmic and nuclear ß-catenin expression was seen alongside an intra-tumor Ki-67 antigen labeling index (LI) ranging from 2 to 80% in the younger patient's tumor and from 3 to 45% in the other. Both exhibited upregulated cyclin D1 and retinoblastoma, while vimentin was overexpressed in the recurrent LCNEC only. Next-generation sequencing revealed CTNNB1, TP53, and JAK3 mutations in the synchronous tumor and CTNNB1 mutation alone in the metachronous tumor (the latter with the same mutation as the first tumor of 17 years prior). None of the 23 T-NET controls exhibited this hallmarking triple alteration (p = 0.003). These findings suggested that LCNEC components developed from pre-existing CTNNB1-mutated AC upon loss-of-function TP53 and gain-of-function JAK3 mutations in one case and an epithelial-mesenchymal transition upon vimentin overexpression in the other case. Both tumors maintained intact cyclin D1-retinoblastoma machinery. Our report challenges the concept of secondary LCNEC as an entity that develops from pre-existing AC as a result of tumor progression, suggesting a paradigm shift to the current pathogenesis of NET.
Collapse
|
39
|
Osbun JW, Tatman PD, Kaur S, Parada C, Busald T, Gonzalez-Cuyar L, Shi M, Born DE, Zhang J, Ferreira M. Comparative Proteomic Profiling Using Two-Dimensional Gel Electrophoresis and Identification via LC-MS/MS Reveals Novel Protein Biomarkers to Identify Aggressive Subtypes of WHO Grade I Meningioma. J Neurol Surg B Skull Base 2017; 78:371-379. [PMID: 28875114 DOI: 10.1055/s-0037-1601889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 03/03/2017] [Indexed: 12/26/2022] Open
Abstract
Background Meningomas represent the most common primary intracranial tumor. The majority are benign World Health Organization (WHO) Grade I lesions, but a subset of these behave in an aggressive manner. Protein biomarkers are needed to distinguish aggressive from benign Grade I lesions. Materials and Methods Pooled protein lysates were derived from five clinically aggressive Grade I and five typically benign WHO Grade I tumors snap frozen at the time of surgery. Proteins were separated in each group using two-dimensional gel electrophoresis (2DGE) and protein spots of interest were identified using liquid chromatography-mass spectrometry (LC-MS). Potential biomarker candidates were validated using western blot assays in individual tumor samples and by tissue microarray (TMA). Results Seven candidate biomarkers were obtained from the 2DGE and validated via western blot and TMA. Biomarker validation data allowed for the creation of predictive models using binary logistical regression that correctly identified 85.9% of aggressive tumors within the larger cohort of Grade I meningioma. Conclusion Simple protein separation by 2DGE and identification of candidate biomarkers by LC-MS allowed for the identification of seven candidate biomarkers that when used in predictive models accurately distinguish aggressive from benign behavior in WHO Grade I meningioma.
Collapse
Affiliation(s)
- Joshua W Osbun
- Department of Neurological Surgery, University of Washington, Seattle, Washington, United States
| | - Philip D Tatman
- Department of Neurological Surgery, University of Washington, Seattle, Washington, United States
| | - Sumanpreet Kaur
- Department of Neurological Surgery, University of Washington, Seattle, Washington, United States
| | - Carolina Parada
- Department of Neurological Surgery, University of Washington, Seattle, Washington, United States
| | - Tina Busald
- Department of Neurological Surgery, University of Washington, Seattle, Washington, United States
| | - Luis Gonzalez-Cuyar
- Department of Neuropathology, University of Washington, Seattle, Washington, United States
| | - Min Shi
- Department of Neuropathology, University of Washington, Seattle, Washington, United States
| | - Donald E Born
- Department of Neuropathology, Stanford University, Stanford, California, United States
| | - Jing Zhang
- Department of Neuropathology, University of Washington, Seattle, Washington, United States
| | - Manuel Ferreira
- Department of Neurological Surgery, University of Washington, Seattle, Washington, United States
| |
Collapse
|
40
|
Chen X, Gu P, Xie R, Han J, Liu H, Wang B, Xie W, Xie W, Zhong G, Chen C, Xie S, Jiang N, Lin T, Huang J. Heterogeneous nuclear ribonucleoprotein K is associated with poor prognosis and regulates proliferation and apoptosis in bladder cancer. J Cell Mol Med 2016; 21:1266-1279. [PMID: 27862976 PMCID: PMC5487918 DOI: 10.1111/jcmm.12999] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 08/27/2016] [Indexed: 12/01/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an essential RNA- and DNA-binding protein that regulates diverse biological events, especially DNA transcription. hnRNPK overexpression is related to tumorigenesis in several cancers. However, both the expression patterns and biological mechanisms of hnRNPK in bladder cancer are unclear. We investigated hnRNPK expression by immunohistochemistry in 188 patients with bladder cancer, and found that hnRNPK expression levels were significantly increased in bladder cancer tissues and that high-hnRNPK expression was closely correlated with poor prognosis. Loss- and gain-of-function assays demonstrated that hnRNPK promoted proliferation, anti-apoptosis, and chemoresistance in bladder cancer cells in vitro, and hnRNPK knockdown suppressed tumorigenicity in vivo. Mechanistically, hnRNPK regulated various functions in bladder cancer by directly mediating cyclin D1, G0/G1 switch 2 (G0S2), XIAP-associated factor 1, and ERCC excision repair 4, endonuclease catalytic subunit (ERCC4) transcription. In conclusion, we discovered that hnRNPK plays an important role in bladder cancer, suggesting that it is a potential prognostic marker and a promising target for treating bladder cancer.
Collapse
Affiliation(s)
- Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Peng Gu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ruihui Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinli Han
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weibin Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weijie Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangzheng Zhong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shujie Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ning Jiang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
41
|
Wang L, Xiao J, Gu W, Chen H. Sex Difference of Egfr Expression and Molecular Pathway in the Liver: Impact on Drug Design and Cancer Treatments? J Cancer 2016; 7:671-80. [PMID: 27076848 PMCID: PMC4829553 DOI: 10.7150/jca.13684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/22/2016] [Indexed: 12/23/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) has been used as the target in drug design for cancer treatment including the liver cancer. Men and women have different levels of EGFR expression during the life. The whole genome expression profiles of livers of recombinant inbred (RI) strains derived from C57BL/6J (B6) X DBA/2J (D2) were used to compare three major molecular aspects of Egfr gene: the relative expression levels, gene network and eQTLs that regulate the expression of Egfr between female and male mice. Our data suggest that there is a significant difference in the expression levels in the liver between female and male mice. Several important genes in the gene network of Egfr are differentially expressed between female and male mice. The regulatory elements for the expression levels of Egfr between female and male mice are also different. In summary, our data reveals an important sex difference in the Egfr pathways in the liver of the mice. These data may have substantial impact on drug development and dosage determinant for women and men in the clinical trials.
Collapse
Affiliation(s)
- Lishi Wang
- 1. Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA
- 2. Department of Basic Medical Research, Inner Mongolia Medical University, Inner Mongolia, 010110, China
| | - Jianqi Xiao
- 1. Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA
- 3. Center of integrative research, The first Hospital of Qiqihaer City, 30 Gongyuan Road, Longsha District, Qiqihaer, Heilongjiang, 161005, PR China
| | - Weikuan Gu
- 1. Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA
- ✉ Corresponding authors: Weikuan Gu, 956 Court Ave, Memphis, TN 38163, USA. Tel: 1-901-448-2259; ; Hong Chen, 30 Gongyuan Road, Longsha District, Qiqihaer, Heilongjiang, 161005, PR China. Tel: 86-0452-2425981;
| | - Hong Chen
- 3. Center of integrative research, The first Hospital of Qiqihaer City, 30 Gongyuan Road, Longsha District, Qiqihaer, Heilongjiang, 161005, PR China
- ✉ Corresponding authors: Weikuan Gu, 956 Court Ave, Memphis, TN 38163, USA. Tel: 1-901-448-2259; ; Hong Chen, 30 Gongyuan Road, Longsha District, Qiqihaer, Heilongjiang, 161005, PR China. Tel: 86-0452-2425981;
| |
Collapse
|
42
|
Mikhaylenko DS, Efremov GD, Sivkov AV, Zaletaev DV. Hormone resistance and neuroendocrine differentiation due to accumulation of genetic lesions during clonal evolution of prostate cancer. Mol Biol 2016. [DOI: 10.1134/s0026893315060187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Yates TJ, Lopez LE, Lokeshwar SD, Ortiz N, Kallifatidis G, Jordan A, Hoye K, Altman N, Lokeshwar VB. Dietary supplement 4-methylumbelliferone: an effective chemopreventive and therapeutic agent for prostate cancer. J Natl Cancer Inst 2015; 107:djv085. [PMID: 25868577 DOI: 10.1093/jnci/djv085] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Prevention and treatment of advanced prostate cancer (PCa) by a nontoxic agent can improve outcome, while maintaining quality of life. 4-methylumbelliferone (4-MU) is a dietary supplement that inhibits hyaluronic acid (HA) synthesis. We evaluated the chemopreventive and therapeutic efficacy and mechanism of action of 4-MU. METHODS TRAMP mice (7-28 per group) were gavaged with 4-MU (450mg/kg/day) in a stage-specific treatment design (8-28, 12-28, 22-28 weeks). Efficacy of 4-MU (200-450mg/kg/day) was also evaluated in the PC3-ML/Luc(+) intracardiac injection and DU145 subcutaneous models. PCa cells and tissues were analyzed for HA and Phosphoinositide 3-kinase (PI-3K)/Akt signaling and apoptosis effectors. HA add-back and myristoylated Akt (mAkt) overexpression studies evaluated the mechanism of action of 4-MU. Data were analyzed with one-way analysis of variance and unpaired t test or Tukey's multiple comparison test. All statistical tests were two-sided. RESULTS While vehicle-treated transgenic adenocarcinoma of the prostate (TRAMP) mice developed prostate tumors and metastases at 28 weeks, both were abrogated in treatment groups, without serum/organ toxicity or weight loss; no tumors developed at one year, even after stopping the treatment at 28 weeks. 4-MU did not alter the transgene or neuroendocrine marker expression but downregulated HA levels. However, 4-MU decreased microvessel density and proliferative index (P < .0001,). 4-MU completely prevented/inhibited skeletal metastasis in the PC3-ML/Luc(+) model and DU145-tumor growth (85-90% inhibition, P = .002). 4-MU also statistically significantly downregulated HA receptors, PI-3K/CD44 complex and activity, Akt signaling, and β-catenin levels/activation, but upregulated GSK-3 function, E-cadherin, and apoptosis effectors (P < .001); HA addition or mAkt overexpression rescued these effects. CONCLUSION 4-MU is an effective nontoxic, oral chemopreventive, and therapeutic agent that targets PCa development, growth, and metastasis by abrogating HA signaling.
Collapse
Affiliation(s)
- Travis J Yates
- Sheila and David Fuente Graduate Program in Cancer Biology, Sylvester Comprehensive Cancer Center (TJY, AJ, KH), Department of Urology (LEL, NO, GK, VBL), Honors Program in Medical Education (SDL), Department of Pathology (NA), Department of Cell Biology (VBL), Clinical Translational Science Institute (VBL), University of Miami-Miller School of Medicine, Miami, FL.Current affiliation: Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA (TJY)
| | - Luis E Lopez
- Sheila and David Fuente Graduate Program in Cancer Biology, Sylvester Comprehensive Cancer Center (TJY, AJ, KH), Department of Urology (LEL, NO, GK, VBL), Honors Program in Medical Education (SDL), Department of Pathology (NA), Department of Cell Biology (VBL), Clinical Translational Science Institute (VBL), University of Miami-Miller School of Medicine, Miami, FL.Current affiliation: Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA (TJY)
| | - Soum D Lokeshwar
- Sheila and David Fuente Graduate Program in Cancer Biology, Sylvester Comprehensive Cancer Center (TJY, AJ, KH), Department of Urology (LEL, NO, GK, VBL), Honors Program in Medical Education (SDL), Department of Pathology (NA), Department of Cell Biology (VBL), Clinical Translational Science Institute (VBL), University of Miami-Miller School of Medicine, Miami, FL.Current affiliation: Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA (TJY)
| | - Nicolas Ortiz
- Sheila and David Fuente Graduate Program in Cancer Biology, Sylvester Comprehensive Cancer Center (TJY, AJ, KH), Department of Urology (LEL, NO, GK, VBL), Honors Program in Medical Education (SDL), Department of Pathology (NA), Department of Cell Biology (VBL), Clinical Translational Science Institute (VBL), University of Miami-Miller School of Medicine, Miami, FL.Current affiliation: Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA (TJY)
| | - Georgios Kallifatidis
- Sheila and David Fuente Graduate Program in Cancer Biology, Sylvester Comprehensive Cancer Center (TJY, AJ, KH), Department of Urology (LEL, NO, GK, VBL), Honors Program in Medical Education (SDL), Department of Pathology (NA), Department of Cell Biology (VBL), Clinical Translational Science Institute (VBL), University of Miami-Miller School of Medicine, Miami, FL.Current affiliation: Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA (TJY)
| | - Andre Jordan
- Sheila and David Fuente Graduate Program in Cancer Biology, Sylvester Comprehensive Cancer Center (TJY, AJ, KH), Department of Urology (LEL, NO, GK, VBL), Honors Program in Medical Education (SDL), Department of Pathology (NA), Department of Cell Biology (VBL), Clinical Translational Science Institute (VBL), University of Miami-Miller School of Medicine, Miami, FL.Current affiliation: Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA (TJY)
| | - Kelly Hoye
- Sheila and David Fuente Graduate Program in Cancer Biology, Sylvester Comprehensive Cancer Center (TJY, AJ, KH), Department of Urology (LEL, NO, GK, VBL), Honors Program in Medical Education (SDL), Department of Pathology (NA), Department of Cell Biology (VBL), Clinical Translational Science Institute (VBL), University of Miami-Miller School of Medicine, Miami, FL.Current affiliation: Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA (TJY)
| | - Norman Altman
- Sheila and David Fuente Graduate Program in Cancer Biology, Sylvester Comprehensive Cancer Center (TJY, AJ, KH), Department of Urology (LEL, NO, GK, VBL), Honors Program in Medical Education (SDL), Department of Pathology (NA), Department of Cell Biology (VBL), Clinical Translational Science Institute (VBL), University of Miami-Miller School of Medicine, Miami, FL.Current affiliation: Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA (TJY)
| | - Vinata B Lokeshwar
- Sheila and David Fuente Graduate Program in Cancer Biology, Sylvester Comprehensive Cancer Center (TJY, AJ, KH), Department of Urology (LEL, NO, GK, VBL), Honors Program in Medical Education (SDL), Department of Pathology (NA), Department of Cell Biology (VBL), Clinical Translational Science Institute (VBL), University of Miami-Miller School of Medicine, Miami, FL.Current affiliation: Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA (TJY).
| |
Collapse
|
44
|
Moujalled D, James JL, Yang S, Zhang K, Duncan C, Moujalled DM, Parker SJ, Caragounis A, Lidgerwood G, Turner BJ, Atkin JD, Grubman A, Liddell JR, Proepper C, Boeckers TM, Kanninen KM, Blair I, Crouch PJ, White AR. Phosphorylation of hnRNP K by cyclin-dependent kinase 2 controls cytosolic accumulation of TDP-43. Hum Mol Genet 2014; 24:1655-69. [PMID: 25410660 DOI: 10.1093/hmg/ddu578] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cytosolic accumulation of TAR DNA binding protein 43 (TDP-43) is a major neuropathological feature of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). However, the mechanisms involved in TDP-43 accumulation remain largely unknown. Previously, we reported that inhibitors of cyclin-dependent kinases (CDKs) prevented cytosolic stress granule accumulation of TDP-43, correlating with depletion of heterogeneous ribonucleoprotein (hnRNP) K from stress granules. In the present study, we further investigated the relationship between TDP-43 and hnRNP K and their control by CDKs. Inhibition of CDK2 abrogated the accumulation of TDP-43 into stress granules. Phosphorylated CDK2 co-localized with accumulated TDP-43 and phosphorylated hnRNP K in stress granules. Inhibition of CDK2 phosphorylation blocked phosphorylation of hnRNP K, preventing its incorporation into stress granules. Due to interaction between hnRNP K with TDP-43, the loss of hnRNP K from stress granules prevented accumulation of TDP-43. Mutation of Ser216 and Ser284 phosphorylation sites on hnRNP K inhibited hnRNP K- and TDP-43-positive stress granule formation in transfected cells. The interaction between hnRNP K and TDP-43 was further confirmed by the loss of TDP-43 accumulation following siRNA-mediated inhibition of hnRNP K expression. A substantial decrease of CDK2 and hnRNP K expression in spinal cord motor neurons in ALS patients demonstrates a potential key role for these proteins in ALS and TDP-43 accumulation, indicating that further investigation of the association between hnRNP K and TDP-43 is warranted. Understanding how kinase activity modulates TDP-43 accumulation may provide new pharmacological targets for disease intervention.
Collapse
Affiliation(s)
| | | | - Shu Yang
- The Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | - Katharine Zhang
- The Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | | | - Donia M Moujalled
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3010, Australia, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, VIC 3052, Australia
| | | | | | | | - Bradley J Turner
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3010, Australia
| | - Julie D Atkin
- The Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | | | | | - Christian Proepper
- Anatomy and Cell Biology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Tobias M Boeckers
- Anatomy and Cell Biology, University of Ulm, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, Laboratory of Molecular Brain Research, University of Eastern Finland, Kuopio, Finland
| | - Ian Blair
- The Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | | | | |
Collapse
|
45
|
Barboro P, Ferrari N, Balbi C. Emerging roles of heterogeneous nuclear ribonucleoprotein K (hnRNP K) in cancer progression. Cancer Lett 2014; 352:152-9. [DOI: 10.1016/j.canlet.2014.06.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/26/2014] [Accepted: 06/29/2014] [Indexed: 12/18/2022]
|
46
|
Bitting RL, Schaeffer D, Somarelli JA, Garcia-Blanco MA, Armstrong AJ. The role of epithelial plasticity in prostate cancer dissemination and treatment resistance. Cancer Metastasis Rev 2014; 33:441-68. [PMID: 24414193 PMCID: PMC4230790 DOI: 10.1007/s10555-013-9483-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nearly 30,000 men die annually in the USA of prostate cancer, nearly uniformly from metastatic dissemination. Despite recent advances in hormonal, immunologic, bone-targeted, and cytotoxic chemotherapies, treatment resistance and further dissemination are inevitable in men with metastatic disease. Emerging data suggests that the phenomenon of epithelial plasticity, encompassing both reversible mesenchymal transitions and acquisition of stemness traits, may underlie this lethal biology of dissemination and treatment resistance. Understanding the molecular underpinnings of this cellular plasticity from preclinical models of prostate cancer and from biomarker studies of human metastatic prostate cancer has provided clues to novel therapeutic approaches that may delay or prevent metastatic disease and lethality over time. This review will discuss the preclinical and clinical evidence for epithelial plasticity in this rapidly changing field and relate this to clinical phenotype and resistance in prostate cancer while suggesting novel therapeutic approaches.
Collapse
Affiliation(s)
- Rhonda L. Bitting
- Division of Medical Oncology, Duke Cancer Institute, Duke University, DUMC Box 102002, Durham, NC 27710, USA. Department of Medicine, Duke University, Durham, NC, USA. Center for RNA Biology, Duke University, Durham, NC, USA
| | - Daneen Schaeffer
- Center for RNA Biology, Duke University, Durham, NC, USA. Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Jason A. Somarelli
- Center for RNA Biology, Duke University, Durham, NC, USA. Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Mariano A. Garcia-Blanco
- Department of Medicine, Duke University, Durham, NC, USA. Center for RNA Biology, Duke University, Durham, NC, USA. Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Andrew J. Armstrong
- Division of Medical Oncology, Duke Cancer Institute, Duke University, DUMC Box 102002, Durham, NC 27710, USA. Department of Medicine, Duke University, Durham, NC, USA. Center for RNA Biology, Duke University, Durham, NC, USA. Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| |
Collapse
|
47
|
Characterization of prostate neuroendocrine cancers and therapeutic management: a literature review. Prostate Cancer Prostatic Dis 2014; 17:220-6. [DOI: 10.1038/pcan.2014.17] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/25/2014] [Accepted: 03/18/2014] [Indexed: 12/31/2022]
|
48
|
BARBORO PAOLA, SALVI SANDRA, RUBAGOTTI ALESSANDRA, BOCCARDO SIMONA, SPINA BRUNO, TRUINI MAURO, CARMIGNANI GIORGIO, INTROINI CARLO, FERRARI NICOLETTA, BOCCARDO FRANCESCO, BALBI CECILIA. Prostate cancer: Prognostic significance of the association of heterogeneous nuclear ribonucleoprotein K and androgen receptor expression. Int J Oncol 2014; 44:1589-98. [DOI: 10.3892/ijo.2014.2345] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/23/2014] [Indexed: 11/05/2022] Open
|
49
|
Chang PC, Wang TY, Chang YT, Chu CY, Lee CL, Hsu HW, Zhou TA, Wu Z, Kim RH, Desai SJ, Liu S, Kung HJ. Autophagy pathway is required for IL-6 induced neuroendocrine differentiation and chemoresistance of prostate cancer LNCaP cells. PLoS One 2014; 9:e88556. [PMID: 24551118 PMCID: PMC3925144 DOI: 10.1371/journal.pone.0088556] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/07/2014] [Indexed: 12/29/2022] Open
Abstract
Prostate cancer (PCa) cells undergoing neuroendocrine differentiation (NED) are clinically relevant to the development of relapsed castration-resistant PCa. Increasing evidences show that autophagy involves in the development of neuroendocrine (NE) tumors, including PCa. To clarify the effect of autophagy on NED, androgen-sensitive PCa LNCaP cells were examined. Treatment of LNCaP cells with IL-6 resulted in an induction of autophagy. In the absence of androgen, IL-6 caused an even stronger activation of autophagy. Similar result was identified in NED induction. Inhibition of autophagy with chloroquine (CQ) markedly decreased NED. This observation was confirmed by beclin1 and Atg5 silencing experiments. Further supporting the role of autophagy in NED, we found that LC3 was up-regulated in PCa tissue that had relapsed after androgen-deprivation therapy when compared with their primary tumor counterpart. LC3 staining in relapsed PCa tissue showed punctate pattern similar to the staining of chromogranin A (CgA), a marker for NED cells. Moreover, autophagy inhibition induced the apoptosis of IL-6 induced NE differentiated PCa cells. Consistently, inhibition of autophagy by knockdown of beclin1 or Atg5 sensitized NE differentiated LNCaP cells to etoposide, a chemotherapy drug. To identify the mechanisms, phosphorylation of IL-6 downstream targets was analyzed. An increase in phospho-AMPK and a decrease in phospho-mTOR were found, which implies that IL-6 regulates autophagy through the AMPK/mTOR pathway. Most important to this study is the discovery of REST, a neuronal gene-specific transcriptional repressor that is involved in autophagy activation. REST was down-regulated in IL-6 treatment. Knockdown experiments suggest that REST is critical to NED and autophagy activation by IL-6. Together, our studies imply that autophagy is involved in PCa progression and plays a cytoprotective role when NED is induced in PCa cells by IL-6 treatment. These results reveal the potential of targeting autophagy as part of a combined therapeutic regime for NE tumors.
Collapse
Affiliation(s)
- Pei-Ching Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, R.O.C
- * E-mail: (PCC); (HJK)
| | - Tao-Yeuan Wang
- Department of Pathology, Mackay Medical College and Mackay Memorial Hospital, New Taipei City, Taiwan, R.O.C
- Mackay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan, R.O.C
| | - Yi-Ting Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, R.O.C
| | - Cheng-Ying Chu
- Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, R.O.C
| | - Chin-Ling Lee
- Department of Pathology, Mackay Medical College and Mackay Memorial Hospital, New Taipei City, Taiwan, R.O.C
- Mackay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan, R.O.C
| | - Hung-Wei Hsu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, R.O.C
| | - Tyng-An Zhou
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, R.O.C
| | - Zhaoju Wu
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, California, United States of America
- UC Davis Cancer Center, University of California Davis, Davis, California, United States of America
| | - Randie H. Kim
- Department of Dermatology, New York University School of Medicine, New York, New York, United States of America
| | - Sonal J. Desai
- UC Davis Cancer Center, University of California Davis, Davis, California, United States of America
| | - Shangqin Liu
- Department of Hematlogy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hsing-Jien Kung
- Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan, R.O.C
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, California, United States of America
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, R.O.C
- * E-mail: (PCC); (HJK)
| |
Collapse
|
50
|
Barboro P, Borzì L, Repaci E, Ferrari N, Balbi C. Androgen receptor activity is affected by both nuclear matrix localization and the phosphorylation status of the heterogeneous nuclear ribonucleoprotein K in anti-androgen-treated LNCaP cells. PLoS One 2013; 8:e79212. [PMID: 24236111 PMCID: PMC3827347 DOI: 10.1371/journal.pone.0079212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 09/20/2013] [Indexed: 11/19/2022] Open
Abstract
The androgen receptor (AR) plays a central role in the development and progression of prostate cancer (PCa) and anti-androgen therapy is a standard treatment. Unfortunately, after a few years, the majority of patients progress, developing androgen-independent PCa. AR-driven gene transcription recruits a large number of co-activator/co-repressor complexes; among these, the heterogeneous nuclear ribonucleoprotein K (hnRNP K) directly interacts with and regulates the AR translational apparatus. Here we examined AR and hnRNP K expression in response to the treatment of LNCaP cells with anti-androgen cyproterone acetate (CPA) or bicalutamide (BIC). AR and hnRNP K modulation and compartmentalization were studied by Western blot and confocal microscopy. Phosphate-affinity gel electrophoresis was employed to examine how anti-androgens modified hnRNP K phosphorylation. 10(-6) M CPA significantly stimulated LNCaP proliferation, whereas for 10(-4) M CPA or 10(-5) M BIC an antagonistic effect was observed. After anti-androgen treatment, AR expression was remarkably down-regulated within both the cytoplasm and the nucleus; however, when CPA had an agonist activity, the AR associated with the nuclear matrix (NM) increased approximately 2.5 times. This increase was synchronous with a higher PSA expression, indicating that the NM-associated AR represents the active complex. After BIC treatment, hnRNP K expression was significantly lower in the NM, the protein was hypophosphorylated and the co-localization of AR and hnRNP K decreased. In contrast, CPA as an agonist caused hnRNP K hyperphosphorylation and an increase in the co-localization of two proteins. These findings demonstrate that, in vitro, there is a strong relationship between NM-associated AR and both cell viability and PSA levels, indicating that AR transcriptional activity is critically dependent on its subnuclear localization. Moreover, the agonistic/antagonistic activity of anti-androgens is associated with modifications in hnRNP K phosphorylation, indicating an involvement of this protein in the AR transcriptional activity and likely in the onset of the androgen-independent phenotype.
Collapse
Affiliation(s)
- Paola Barboro
- Translational Urologic Research Unit, IRCCS Azienda Ospedaliera Universitaria San Martino IST-Instituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Luana Borzì
- Translational Urologic Research Unit, IRCCS Azienda Ospedaliera Universitaria San Martino IST-Instituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Erica Repaci
- Translational Urologic Research Unit, IRCCS Azienda Ospedaliera Universitaria San Martino IST-Instituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Nicoletta Ferrari
- Molecular Oncology and Angiogenesis Unit, IRCCS Azienda Ospedaliera Universitaria San Martino IST-Istituto Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Cecilia Balbi
- Translational Urologic Research Unit, IRCCS Azienda Ospedaliera Universitaria San Martino IST-Instituto Nazionale per la Ricerca sul Cancro, Genova, Italy
- * E-mail:
| |
Collapse
|