1
|
Walton B, Kaplan N, Hrdlicka B, Mehta K, Arendt LM. Obesity Induces DNA Damage in Mammary Epithelial Cells Exacerbated by Acrylamide Treatment through CYP2E1-Mediated Oxidative Stress. TOXICS 2024; 12:484. [PMID: 39058136 PMCID: PMC11281187 DOI: 10.3390/toxics12070484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Obesity and environmental toxins are risk factors for breast cancer; however, there is limited knowledge on how these risk factors interact to promote breast cancer. Acrylamide, a probable carcinogen and obesogen, is a by-product in foods prevalent in the obesity-inducing Western diet. Acrylamide is metabolized by cytochrome P450 2E1 (CYP2E1) to the genotoxic epoxide, glycidamide, and is associated with an increased risk for breast cancer. To investigate how acrylamide and obesity interact to increase breast cancer risk, female mice were fed a low-fat (LFD) or high-fat diet (HFD) and control water or water supplemented with acrylamide at levels similar to the average daily exposure in humans. While HFD significantly enhanced weight gain in mice, the addition of acrylamide did not significantly alter body weights compared to respective controls. Mammary epithelial cells from obese, acrylamide-treated mice had increased DNA strand breaks and oxidative DNA damage compared to all other groups. In vitro, glycidamide-treated COMMA-D cells showed significantly increased DNA strand breaks, while acrylamide-treated cells demonstrated significantly higher levels of intracellular reactive oxygen species. The knockdown of CYP2E1 rescued the acrylamide-induced oxidative stress. These studies suggest that long-term acrylamide exposure through foods common in the Western diet may enhance DNA damage and the CYP2E1-induced generation of oxidative stress in mammary epithelial cells, potentially enhancing obesity-induced breast cancer risk.
Collapse
Affiliation(s)
- Brenna Walton
- Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Noah Kaplan
- Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Brooke Hrdlicka
- Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Kavi Mehta
- Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Lisa M. Arendt
- Molecular and Environmental Toxicology, University of Wisconsin-Madison, Madison, WI 53715, USA
- Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53715, USA
| |
Collapse
|
2
|
Kurtz DM, Whiteside TE, Caviness G, Lih FB. Dry Heat Sterilization of a Pelleted, Natural Ingredient Rodent Diet. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63:377-384. [PMID: 38684361 PMCID: PMC11270041 DOI: 10.30802/aalas-jaalas-24-000005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/19/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024]
Abstract
Sterilization of rodent feed is recommended to eliminate potential murine pathogens and minimize microbial variability between batches. Most research institutions sterilize feed using steam/pressure (autoclave) or irradiation. Both methods have advantages and disadvantages that contribute to their suitability, including cost, maintenance, availability, and alterations to the exposed product. Dry heat sterilization, which has been in use for over 75 y, uses higher temperatures and longer sterilization times than steam autoclave and is most often used for delicate instruments or products that would be damaged by water such as powders or oil-based liquids. Dry heat sterilization in vivaria has been limited to date but is gaining popularity due to lower initial purchase and ongoing operational costs as compared with steam autoclaves. Little published information exists on the effects of dry heat sterilization on animal feed. We evaluated the sterility and chemical alterations of a natural ingredient, pelleted, rodent diet (NIH-31) after exposure to dry heat. Feed sterility was achieved using a dry heat exposure temperature of 160 °C (320 °F) for 4 h. This exposure resulted in a significant loss of heat-labile vitamins and significantly more acrylamide production as compared with the nonsterile, irradiated, and autoclaved feed.
Collapse
Affiliation(s)
- David M Kurtz
- Quality Assurance Laboratory, Comparative Medicine Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Tanya E Whiteside
- Quality Assurance Laboratory, Comparative Medicine Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Gordan Caviness
- Animal Resources Section, Comparative Medicine Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina; and
| | - Fred B Lih
- Mass Spectrometry Research and Support, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
3
|
Yan F, Wang L, Zhao L, Wang C, Lu Q, Liu R. Acrylamide in food: Occurrence, metabolism, molecular toxicity mechanism and detoxification by phytochemicals. Food Chem Toxicol 2023; 175:113696. [PMID: 36870671 DOI: 10.1016/j.fct.2023.113696] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/16/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Acrylamide (ACR) is a common pollutant formed during food thermal processing such as frying, baking and roasting. ACR and its metabolites can cause various negative effects on organisms. To date, there have been some reviews summarizing the formation, absorption, detection and prevention of ACR, but there is no systematic summary on the mechanism of ACR-induced toxicity. In the past five years, the molecular mechanism for ACR-induced toxicity has been further explored and the detoxification of ACR by phytochemicals has been partly achieved. This review summarizes the ACR level in foods and its metabolic pathways, as well as highlights the mechanisms underlying ACR-induced toxicity and ACR detoxification by phytochemicals. It appears that oxidative stress, inflammation, apoptosis, autophagy, biochemical metabolism and gut microbiota disturbance are involved in various ACR-induced toxicities. In addition, the effects and possible action mechanisms of phytochemicals, including polyphenols, quinones, alkaloids, terpenoids, as well as vitamins and their analogs on ACR-induced toxicities are also discussed. This review provides potential therapeutic targets and strategies for addressing various ACR-induced toxicities in the future.
Collapse
Affiliation(s)
- Fangfang Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Li Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Chengming Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
4
|
Gu W, Zhang J, Ren C, Gao Y, Zhang T, Long Y, Wei W, Hou S, Sun C, Wang C, Jiang W, Zhao J. The association between biomarkers of acrylamide and cancer mortality in U.S. adult population: Evidence from NHANES 2003-2014. Front Oncol 2022; 12:970021. [PMID: 36249016 PMCID: PMC9554530 DOI: 10.3389/fonc.2022.970021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
The association between acrylamide (AA) and the development of cancer has been extensively discussed but the results remained controversial, especially in population studies. Large prospective epidemiological studies on the relationship of AA exposure with cancer mortality were still lacking. Therefore, we aimed to assess the association between AA biomarkers and cancer mortality in adult population from National Health and Nutrition Examination Survey (NHANES) 2003-2014. We followed 3717 participants for an average of 10.3 years. Cox regression models with multivariable adjustments were performed to determine the relationship of acrylamide hemoglobin adduct (HbAA) and glycidamide hemoglobin adduct (HbGA) with cancer mortality. Mediation analysis was conducted to demonstrate the mediated role of low-grade inflammation score (INFLA-score) in this correlation. Compared with the lowest quintile, participants with the highest quintile of HbAA, HbGA and HbAA+HbGA had increased cancer mortality risk, and the hazard ratios(HRs) were 2.07 (95%CI:1.04-4.14) for HbAA, 2.39 (95%CI:1.29-4.43) for HbGA and 2.48 (95%CI:1.28-4.80) for HbAA+HbGA, respectively. And there was a considerable non-linearity association between HbAA and cancer mortality (pfor non-linearity = 0.0139). We further found that increased INFLA-score significantly mediated 71.67% in the effect of HbGA exposure on increased cancer mortality risk. This study demonstrates that hemoglobin biomarkers of AA are positively associated with cancer mortality in adult American population and INFLA-score plays a mediated role in this process. Our findings can raise public awareness of environmental and dietary exposure to acrylamide and remind people to refrain from smoking or having acrylamide-rich foods.
Collapse
Affiliation(s)
- Wenbo Gu
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Jiacheng Zhang
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Chunling Ren
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Yang Gao
- Comprehensive Test Center of Chinese Academy of Inspection and Quarantine, Gao Bei Dian North Rd A3, Chao Yang District, Beijing, China
| | - Tongfang Zhang
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Yujia Long
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Wei Wei
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Shaoying Hou
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Changhong Wang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenbo Jiang
- Department of Nutrition and Food Hygiene, The National Key Discipline, School of Public Health, Harbin Medical University, Harbin, China
| | - Junfei Zhao
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| |
Collapse
|
5
|
Yuan Y, Yucai L, Lu L, Hui L, Yong P, Haiyang Y. Acrylamide induces ferroptosis in HSC-T6 cells by causing antioxidant imbalance of the XCT-GSH-GPX4 signaling and mitochondrial dysfunction. Toxicol Lett 2022; 368:24-32. [PMID: 35963425 DOI: 10.1016/j.toxlet.2022.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022]
Abstract
Acrylamide (AA) is a heat-induced food contaminant, mainly metabolized by the liver. Increasing evidences have proved that ferroptosis is linked to the pathogenesis of liver disease. In the current study, the underlying mechanism of AA-induced rat hepatic stellate (HSC-T6) cells ferroptosis was investigated by detecting changes in iron levels, expressions of ferroptosis-related proteins and indicators of mitochondrial dysfunction. The results showed that AA treatment led to iron levels increased and expressions of long-chain acyl-CoA synthase 4 (ACSL4), cyclooxygenase 2 (COX2) and ferritin heavy chain 1 (FTH1) proteins in HSC-T6 cells were all altered. Treatment with the ferroptosis inhibitor ferrostatin-1 (Fer-1) markedly reversed the impact of AA, suggesting that AA induced ferroptosis in HSC-T6 cells. Mechanistically, AA induced the onset of ferroptosis by affecting XCT-GSH-GPX4 antioxidant signaling. Moreover, AA created a peroxidative environment for ferroptosis by inducing oxidative stress in HSC-T6 cells through mitochondrial dysfunction, as evidenced by increased mitochondrial ROS (mtROS) release, mitochondrial membrane potential (MMP) depolarization, and decreased mitochondrial ATP. Our results indicated that AA resulted in mitochondrial dysfunction and ferroptosis, and dysregulation of XCT-GSH-GPX4 antioxidant signaling was a key factor in AA-induced ferroptosis.
Collapse
Affiliation(s)
- Yuan Yuan
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Li Yucai
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Li Lu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Liu Hui
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Pang Yong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yan Haiyang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
6
|
Gouveia-Fernandes S, Rodrigues A, Nunes C, Charneira C, Nunes J, Serpa J, Antunes AMM. Glycidamide and cis-2-butene-1,4-dial (BDA) as potential carcinogens and promoters of liver cancer - An in vitro study. Food Chem Toxicol 2022; 166:113251. [PMID: 35750087 DOI: 10.1016/j.fct.2022.113251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 10/18/2022]
Abstract
Acrylamide and furan are environmental and food contaminants that are metabolized by cytochrome P450 2E1 (CYP2E1), giving rise to glycidamide and cis-2-butene-1,4-dial (BDA) metabolites, respectively. Both glycidamide and BDA are electrophilic species that react with nucleophilic groups, being able to introduce mutations in DNA and perform epigenetic remodeling. However, whereas these carcinogens are primarily metabolized in the liver, the carcinogenic potential of acrylamide and furan in this organ is still controversial, based on findings from experimental animal studies. With the ultimate goal of providing further insights into this issue, we explored in vitro, using a hepatocyte cell line and a hepatocellular carcinoma cell line, the putative effect of these metabolites as carcinogens and cancer promoters. Molecular alterations were investigated in cells that survive glycidamide and BDA toxicity. We observed that those cells express CD133 stemness marker, present a high proliferative capacity and display an adjusted expression profile of genes encoding enzymes involved in oxidative stress control, such as GCL-C, GSTP1, GSTA3 and CAT. These molecular changes seem to be underlined, at least in part, by epigenetic remodeling involving histone deacetylases (HDACs). Although more studies are needed, here we present more insights towards the carcinogenic capacity of glycidamide and BDA and also point out their effect in favoring hepatocellular carcinoma progression.
Collapse
Affiliation(s)
- Sofia Gouveia-Fernandes
- NOVA Medical School Research, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Armanda Rodrigues
- NOVA Medical School Research, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Carolina Nunes
- NOVA Medical School Research, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Catarina Charneira
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049 001, Lisboa, Portugal
| | - João Nunes
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049 001, Lisboa, Portugal
| | - Jacinta Serpa
- NOVA Medical School Research, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal.
| | - Alexandra M M Antunes
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049 001, Lisboa, Portugal.
| |
Collapse
|
7
|
Zhang H, Shan L, Aniagu S, Jiang Y, Chen T. Paternal acrylamide exposure induces transgenerational effects on sperm parameters and learning capability in mice. Food Chem Toxicol 2022; 161:112817. [PMID: 35032568 DOI: 10.1016/j.fct.2022.112817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 11/26/2022]
Abstract
Acrylamide (AA) has been shown to have neurological and reproductive toxicities, but little is known about transgenerational effects of AA. In this study, male C57BL/6 mice were exposed to AA (0.01, 1, 10 μg/mL) and its metabolite glycidamide (GA, 10 μg/mL) in drinking water, which were then mated with unexposed female mice to produce F1 and F2 generations. We found that both AA and GA at high concentrations decreased sperm motility in F0 mice and increased sperm malformation rates in mice from all the three generations. In addition, AA and GA increased sperm reactive oxygen species as well as decreased serum testosterone levels, and increased the escape latency time in exposed mice and their offspring. We further found that AA-induced mRNA expression changes in the hippocampus of F0 mice persist to the F2 generation. In the sperm of F0 mice, AA induced significant DNA methylation changes in genes involved in neural and reproduction; the mRNA expression levels of Dnmt3b, a DNA methyltransferase, were dramatically decreased in the testes of F0 and F1 mice. In conclusion, our study indicates that paternal AA exposure leads to DNA methylation-mediated transgenerational adverse effects on sperm parameters and leaning capability in mice.
Collapse
Affiliation(s)
- Hang Zhang
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Lidong Shan
- Medical College of Soochow University, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment, and Research Division, Texas Commission on Environmental Quality, 12015, Park 35 Cir, Austin, TX, USA
| | - Yan Jiang
- Medical College of Soochow University, Suzhou, China.
| | - Tao Chen
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
8
|
Iyer AM, Dadlani V, Pawar HA. Review on Acrylamide: A Hidden Hazard in
Fried Carbohydrate-Rich Food. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666220104124753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Acrylamide is classified as a hazard whose formation in carbohydrate-rich food cooked at a high temperature has created much interest in the scientific community. The review attempts to comprehend the chemistry and mechanisms of formation of acrylamide and its levels in popular foods. A detailed study of the toxicokinetic and biochemistry, carcinogenicity, neurotoxicity, genotoxicity, interaction with biomolecules, and its effects on reproductive health has been presented. The review outlines the various novel and low-cost conventional as well as newer analytical techniques for the detection of acrylamide in foods with the maximum permissible limits. Various effective approaches that can be undertaken in industries and households for the mitigation of levels of acrylamide in foods have also been discussed. This review will assist to provide in depth understanding about acrylamide that will make it simpler to assess the risk to human health from the consumption of foods containing low amounts of acrylamide.
Collapse
Affiliation(s)
- Aditya Manivannan Iyer
- Department of Pharmaceutical Chemistry, Dr. L. H. Hiranandani College of Pharmacy, University of Mumbai, Ulhasnagar, Maharashtra, India
| | - Vedika Dadlani
- Department of Pharmaceutical Chemistry, Dr. L. H. Hiranandani College of Pharmacy, University of Mumbai, Ulhasnagar, Maharashtra, India
| | - Harshal Ashok Pawar
- Department of Quality Assurance, Dr. L. H. Hiranandani College of Pharmacy, University of Mumbai, Ulhasnagar, Maharashtra, India
| |
Collapse
|
9
|
Zhang Y, Wang Q, Li Y, Cheng J, Chen X, Zhang Y. Comprehensive profile of DNA adducts as both tissue and urinary biomarkers of exposure to acrylamide and chemo-preventive effect of catechins in rats. CHEMOSPHERE 2022; 286:131852. [PMID: 34416594 DOI: 10.1016/j.chemosphere.2021.131852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Two representative DNA adducts from acrylamide exposure, N7-(2-carbamoyl-2-hydroxyethyl) guanine (N7-GA-Gua) and N3-(2-carbamoyl-2-hydroxyethyl) adenine (N3-GA-Ade), are important long-term exposure biomarkers for evaluating genotoxicity of acrylamide. Catechins as natural antioxidants present in tea possess multiple health benefits, and may also have the potential to protect against acrylamide-induced DNA damage. The current study developed an ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous analysis of N7-GA-Gua and N3-GA-Ade in tissues and urine. The validated UHPLC-MS/MS method showed high sensitivity, with limit of detection and limit of quantification ranging 0.2-0.8 and 0.5-1.5 ng/mL, respectively, and achieved qualified precision (RSD<14.0%) and spiking recovery (87.2%-110.0%) with elution within 6 min, which was suitable for the analysis of the two DNA adducts in different matrices. The levels of N7-GA-Gua and N3-GA-Ade ranged 0.9-11.9 and 0.6-3.5 μg/g creatinine in human urine samples, respectively. To investigate the interventional effects of catechins on the two DNA adducts from acrylamide exposure, rats were supplemented with three types of catechins (tea polyphenols, epigallocatechin gallate, and epicatechin) 30 min before administration with acrylamide. Our results showed that catechins effectively inhibited the formation of DNA adducts from acrylamide exposure in both urine and tissues of rats. Among three catechins, epicatechin performed the best inhibitory effect. The current study provided evidence for the chemo-preventive effect of catechins, indicating that dietary supplement of catechins may contribute to health protection against exposure to acrylamide.
Collapse
Affiliation(s)
- Yiju Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Qiao Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yaoran Li
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jun Cheng
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xinyu Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
10
|
Liu S, Ben X, Liang H, Fei Q, Guo X, Weng X, Wu Y, Wen L, Wang R, Chen J, Jing C. Association of acrylamide hemoglobin biomarkers with chronic obstructive pulmonary disease in the general population in the US: NHANES 2013-2016. Food Funct 2021; 12:12765-12773. [PMID: 34851334 DOI: 10.1039/d1fo02612g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background: Acrylamide is a well-known potential carcinogenic compound formed as an intermediate in the Maillard reaction during heat treatment, mainly from high-temperature frying, and is found in baked goods and coffee, as well as resulting from water treatment, textiles and paper processing. The effects of acrylamide on lung disease in humans remains unclear. We aimed to investigate the association between blood acrylamide and glycidamide and chronic obstructive pulmonary disease (COPD) in the United States of America (U.S.) population using PROC logistic regression models. Results: 2744 participants aged 20 to 80 from the 2013-2016 National Health and Nutrition Examination Survey (NHANES) were enrolled. After adjusting for demographic data, health factors and serum cotinine, the ratio of HbGA to HbAA (HbGA/HbAA) significantly increased the risk of COPD (P for trend = 0.022). The odds ratio (OR) with a 95% confidence interval (95% CI) for HbGA/HbAA in the third tile was 2.45 (1.12-5.31), compared with the lowest tile. The restricted cubic spline (RCS) curve showed a positive linear correlation between the log (HbGA/HbAA) and the risk of COPD (P = 0.030). Conclusion: The ratio of glycidamide and acrylamide (HbGA/HbAA) was associated with COPD. This association was more prominent in males, obese individuals, people with a poverty income ratio (PIR) < 1.85 or people who never exercise. However, null associations were observed between HbAA, HbGA and HbAA + HbGA, and COPD.
Collapse
Affiliation(s)
- Shan Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China.
| | - Xiaosong Ben
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huanzhu Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China.
| | - Qiaoyuan Fei
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China.
| | - Xinrong Guo
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China.
| | - Xueqiong Weng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China.
| | - Yingying Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China.
| | - Lin Wen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China.
| | - Ruihua Wang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China.
| | - Jingmin Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China.
| | - Chunxia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, Guangdong, China. .,Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
11
|
Komiya M, Ishigamori R, Naruse M, Ochiai M, Miyoshi N, Imai T, Totsuka Y. Establishment of Novel Genotoxicity Assay System Using Murine Normal Epithelial Tissue-Derived Organoids. Front Genet 2021; 12:768781. [PMID: 34868254 PMCID: PMC8638810 DOI: 10.3389/fgene.2021.768781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Short-/middle-term and simple prediction studies for carcinogenesis are needed for the safety assessment of chemical substances. To establish a novel genotoxicity assay with an in vivo mimicking system, we prepared murine colonic/pulmonary organoids from gpt delta mice according to the general procedure using collagenase/dispase and cultured them in a 3D environment. When the organoids were exposed to foodborne carcinogens—2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP) and acrylamide (AA)—in the presence of metabolic activation systems, mutation frequencies (MFs) occurring in the gpt gene dose-dependently increased. Moreover, the mutation spectrum analysis indicated predominant G:C to T:A transversion with PhIP, and A:T to C:G and A:T to T:A transversion with AA. These data correspond to those of a previous study describing in vivo mutagenicity in gpt delta mice. However, organoids derived from the liver, a non-target tissue of PhIP-carcinogenesis, also demonstrated genotoxicity with a potency comparable to colonic organoids. Organoids and PhIP were directly incubated in the presence of metabolic activation systems; therefore, there was a lack of organ specificity, as observed in vivo. Additionally, PhIP-DNA adduct levels were comparable in hepatic and colonic organoids after PhIP exposure. Taken together, the organoids prepared in the present study may be helpful to predict chemical carcinogenesis.
Collapse
Affiliation(s)
- Masami Komiya
- Department of Cancer Model Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Rikako Ishigamori
- Department of Animal Experimentation, National Cancer Center Research Institute, Tokyo, Japan
| | - Mie Naruse
- Department of Animal Experimentation, National Cancer Center Research Institute, Tokyo, Japan
| | - Masako Ochiai
- Food Environment Research Center, Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Toshio Imai
- Department of Cancer Model Development, National Cancer Center Research Institute, Tokyo, Japan.,Department of Animal Experimentation, National Cancer Center Research Institute, Tokyo, Japan
| | - Yukari Totsuka
- Department of Cancer Model Development, National Cancer Center Research Institute, Tokyo, Japan.,Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba, Japan
| |
Collapse
|
12
|
Mojska H, Gielecińska I, Winiarek J, Sawicki W. Acrylamide Content in Breast Milk: The Evaluation of the Impact of Breastfeeding Women's Diet and the Estimation of the Exposure of Breastfed Infants to Acrylamide in Breast Milk. TOXICS 2021; 9:298. [PMID: 34822689 PMCID: PMC8618077 DOI: 10.3390/toxics9110298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/27/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022]
Abstract
Acrylamide in food is formed by the Maillard reaction. Numerous studies have shown that acrylamide is a neurotoxic and carcinogenic compound. The aim of this study was to determine the level of acrylamide in breast milk at different lactation stages and to evaluate the impact of breastfeeding women's diet on the content of this compound in breast milk. The acrylamide level in breast milk samples was determined by LC-MS/MS. Breastfeeding women's diet was evaluated based on the 24 h dietary recall. The median acrylamide level in colostrum (n = 47) was significantly (p < 0.0005) lower than in the mature milk (n = 26)-0.05 µg/L and 0.14 µg/L, respectively. The estimated breastfeeding women's acrylamide intake from the hospital diet was significantly (p < 0.0001) lower than that from the home diet. We found positive-although modest and borderline significant-correlation between acrylamide intake by breastfeeding women from the hospital diet µg/day) and acrylamide level in the colostrum (µg/L). Acrylamide has been detected in human milk samples, and a positive correlation between dietary acrylamide intake by breastfeeding women and its content in breast milk was observed, which suggests that the concentration can be reduced. Breastfeeding women should avoid foods that may be a source of acrylamide in their diet.
Collapse
Affiliation(s)
- Hanna Mojska
- Department of Nutrition and the Nutritive Value of Food, National Institute of Public Health-NIH-National Research Institute, Chocimska 24, 00-791 Warsaw, Poland
- Department of Dietetics and Food Studies, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Waszyngtona 4/8, 42-200 Częstochowa, Poland
| | - Iwona Gielecińska
- Department of Food Safety, National Institute of Public Health, NIH-National Research Institute, Chocimska 24, 00-791 Warsaw, Poland;
| | - Joanna Winiarek
- Chair and Department of Obstetrics, Gynecology and Gynecological Oncology of Medical University of Warsaw, Kondratowicza 8, 03-242 Warsaw, Poland; (J.W.); (W.S.)
| | - Włodzimierz Sawicki
- Chair and Department of Obstetrics, Gynecology and Gynecological Oncology of Medical University of Warsaw, Kondratowicza 8, 03-242 Warsaw, Poland; (J.W.); (W.S.)
| |
Collapse
|
13
|
The Utilisation of Acrylamide by Selected Microorganisms Used for Fermentation of Food. TOXICS 2021; 9:toxics9110295. [PMID: 34822686 PMCID: PMC8618435 DOI: 10.3390/toxics9110295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/09/2021] [Accepted: 11/03/2021] [Indexed: 12/28/2022]
Abstract
Acrylamide (AA) present in food is considered a harmful compound for humans, but it exerts an impact on microorganisms too. The aim of this study was to evaluate the impact of acrylamide (at conc. 0–10 µg/mL) on the growth of bacteria (Leuconostoc mesenteroides, Lactobacillus acidophilus LA-5) and yeasts (Saccharomyces cerevisiae, Kluyveromyces lactis var. lactis), which are used for food fermentation. Moreover, we decided to verify whether these microorganisms could utilise acrylamide as a nutritional compound. Our results proved that acrylamide can stimulate the growth of L. acidophilus and K. lactis. We have, to the best of our knowledge, reported for the first time that the probiotic strain of bacteria L. acidophilus LA-5 is able to utilise acrylamide as a source of carbon and nitrogen if they lack them in the environment. This is probably due to acrylamide degradation by amidases. The conducted response surface methodology indicated that pH as well as incubation time and temperature significantly influenced the amount of ammonia released from acrylamide by the bacteria. In conclusion, our studies suggest that some strains of bacteria present in milk fermented products can exert additional beneficial impact by diminishing the acrylamide concentration and hence helping to prevent against its harmful impact on the human body and other members of intestinal microbiota.
Collapse
|
14
|
Salimi A, Pashaei R, Bohlooli S, Vaghar-Moussavi M, Pourahmad J. Analysis of the acrylamide in breads and evaluation of mitochondrial/lysosomal protective agents to reduce its toxicity in vitro model. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1859543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Rafat Pashaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Faculty of Pharmacy, Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Shahab Bohlooli
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mehrdad Vaghar-Moussavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Fang Y, Wang Y, Peng M, Xu J, Fan Z, Liu C, Zhao K, Zhang H. Effect of paternal age on offspring birth defects: a systematic review and meta-analysis. Aging (Albany NY) 2020; 12:25373-25394. [PMID: 33229621 PMCID: PMC7803514 DOI: 10.18632/aging.104141] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/20/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE This systematic review and meta-analysis was aimed at determining whether paternal age is a risk factor for offspring birth defects. RESULTS A total of 38 and 11 studies were included in the systematic review and meta-analysis, respectively. Compared with reference, fathers aged 25 to 29, young fathers (< 20 years) could increase the risk of urogenital abnormalities (OR: 1.50, 95 % CI: 1.03-2.19) and chromosome disorders (OR: 1.38, 95 % CI: 1.12-1.52) in their offsprings; old fathers (≥ 40 years) could increase the risk of cardiovascular abnormalities (OR: 1.10, 95 % CI: 1.01-1.20), facial deformities (OR: 1.08, 95 % CI: 1.00-1.17), urogenital abnormalities (OR: 1.28, 95 % CI: 1.07-1.52), and chromosome disorders (OR: 1.30, 95 % CI: 1.12-1.52). CONCLUSIONS Our study indicated that paternal age is associated with a moderate increase in the incidence of urogenital and cardiovascular abnormalities, facial deformities, and chromosome disorders. METHODS PubMed, Web of Science, the Cochrane Library, and Embase were searched for relevant literatures from 1960 to February 2020. The systematic review follows PRISMA guidelines. Relevant meta-analyses were performed.
Collapse
Affiliation(s)
- Yiwei Fang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongfeng Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meilin Peng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zunpan Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Mojska H, Gielecińska I, Jasińska-Melon E, Winiarek J, Sawicki W. Are AAMA and GAMA Levels in Urine after Childbirth a Suitable Marker to Assess Exposure to Acrylamide from Passive Smoking during Pregnancy?-A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207391. [PMID: 33050564 PMCID: PMC7599647 DOI: 10.3390/ijerph17207391] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 11/30/2022]
Abstract
Introduction: Acrylamide (AA) is a “probably carcinogenic to humans” monomer that can form in heated starchy food and in tobacco smoke. N-Acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA) and N-Acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine (GAMA), acrylamide metabolites in urine, are recognized as good markers of exposure to acrylamide. Aim: The aim of the study is a preliminary assessment whether the levels of AAMA and GAMA in urine after childbirth are good markers of acrylamide exposure due to passive smoking during pregnancy. Material and method: The study group consisted 67 non-smokers and 10 passive-smoker women during pregnancy. AAMA and GAMA levels in urine samples were determined using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Results: The median AAMA levels in urine of non-smoking and passively smoking women were 30.7 μg/g creatinine and 25.2 μg/g creatinine, respectively. Much lower values were determined for GAMA: 11.4 μg/g creatinine and 10.3 μg/g creatinine, respectively. There is no significant difference between AAMA and GAMA content in urine samples between both groups of women as well as in the anthropometric parameters of newborns between those two groups of mothers. Conclusion: Our pilot study did not confirm that postpartum AAMA and GAMA concentrations in urine are good markers of exposure to acrylamide from passive smoking during pregnancy. It is probably due to the different ways of acrylamide absorption from tobacco smoke by active and passive smokers. Exposure of pregnant women to acrylamide from passive smoking requires further research.
Collapse
Affiliation(s)
- Hanna Mojska
- Department of Nutrition and the Nutritional Value of Food, National Institute of Public Health-National Instutute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland;
- Correspondence:
| | - Iwona Gielecińska
- Department of Food Safety National Institute of Public Health—National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland;
| | - Edyta Jasińska-Melon
- Department of Nutrition and the Nutritional Value of Food, National Institute of Public Health-National Instutute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland;
| | - Joanna Winiarek
- Chair and Department of Obstetrics, Gynecology and Gynecological Oncology of Medical University of Warsaw, Kondratowicza 8, 03-242 Warsaw, Poland; (J.W.); (W.S.)
| | - Włodzimierz Sawicki
- Chair and Department of Obstetrics, Gynecology and Gynecological Oncology of Medical University of Warsaw, Kondratowicza 8, 03-242 Warsaw, Poland; (J.W.); (W.S.)
| |
Collapse
|
17
|
Tachibana K, Kass GE, Ono A, Yamada T, Tong W, Doerge DR, Yamazoe Y. A Summary Report of FSCJ Workshop "Future Challenges and Opportunities in Developing Methodologies for Improved Human Risk Assessments". Food Saf (Tokyo) 2019; 7:83-89. [PMID: 31998592 PMCID: PMC6957455 DOI: 10.14252/foodsafetyfscj.2018017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/08/2019] [Indexed: 11/21/2022] Open
Abstract
This is a summary report of FSCJ (Food Safety Commission of Japan) workshop entitled "Future Challenges and Opportunities in Developing Methodologies for Improved Human Risk Assessments, which held in November 2018. Scientific advancements have facilitated the development of new methods for chemical risk assessments with the expansion of toxicological databases. They are promising tools to overcome challenges, such as situations of data insufficiency, estimation of internal exposure and prediction of hazard, and enable us to improve our human health risk assessment in food safety. In this review, current understandings on developments in chemical risk assessments, especially focusing on Threshold of Toxicological Concern (TTC) approach, non-testing and in-silico approaches (e.g. read-across), and physiologically based pharmacokinetics (PBPK) modeling are discussed as possible promising tools. It also discusses future challenges and opportunities regarding social environment buildings in which all stakeholders including scientific experts, risk managers and consumers are able to accept these new risk assessment technologies. International collaboration would increase and enhance the efficiency in forming innovative ideas and in translating them into regulatory practices. It would strengthen technical capacity of experts who contribute to regulatory decisions and also promote acceptance of new methodologies among stakeholders. Cross-sectional collaboration such as making good use of human data of pharmaceutical drugs will facilitate a development of fresh tools for food safety domains. Once a new methodology is recognized in risk assessment agencies as implementable, it needs to be acknowledged and accepted by wider range of different stakeholders. Such stakeholders include scientific experts who conduct risk assessment for the risk assessment agencies, food industries and consumers. Transparency in the risk assessment work performed by regulatory agencies should strengthen their credibility and promote the acceptance of risk assessment including the new methodologies used in it. At the same time, efforts should be continued by regulatory agencies to further communicate with consumers about the concept of risk-based assessment as well as the concept of uncertainty.
Collapse
Affiliation(s)
- Kaoruko Tachibana
- Department of Environmental Medicine, Kochi Medical School, Kohasu, Oko-cho, Nankoku-shi, Kochi
783-8505, Japan
- Food Safety Commission of Japan, Cabinet Office, Government of Japan, Akasaka Park Bldg, 22F, 5-2-20 Akasaka, Minatoku, Tokyo 107-6122, Japan
| | - George E.N. Kass
- European Food Safety Authority, Via Carlo Magno 1A, 43126 Parma, Italy
| | - Atsushi Ono
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1 Tsushimanaka Kita-ku, Okayama-shi, Okayama 700-8530, Japan
| | - Takashi Yamada
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kanagawa 210-0821, Japan
| | - Weida Tong
- National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, United States of America
| | - Daniel R. Doerge
- National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, United States of America
| | - Yasushi Yamazoe
- Food Safety Commission of Japan, Cabinet Office, Government of Japan, Akasaka Park Bldg, 22F, 5-2-20 Akasaka, Minatoku, Tokyo 107-6122, Japan
| |
Collapse
|
18
|
Xavier MJ, Roman SD, Aitken RJ, Nixon B. Transgenerational inheritance: how impacts to the epigenetic and genetic information of parents affect offspring health. Hum Reprod Update 2019; 25:518-540. [DOI: 10.1093/humupd/dmz017] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/19/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022] Open
Abstract
Abstract
BACKGROUND
A defining feature of sexual reproduction is the transmission of genomic information from both parents to the offspring. There is now compelling evidence that the inheritance of such genetic information is accompanied by additional epigenetic marks, or stable heritable information that is not accounted for by variations in DNA sequence. The reversible nature of epigenetic marks coupled with multiple rounds of epigenetic reprogramming that erase the majority of existing patterns have made the investigation of this phenomenon challenging. However, continual advances in molecular methods are allowing closer examination of the dynamic alterations to histone composition and DNA methylation patterns that accompany development and, in particular, how these modifications can occur in an individual’s germline and be transmitted to the following generation. While the underlying mechanisms that permit this form of transgenerational inheritance remain unclear, it is increasingly apparent that a combination of genetic and epigenetic modifications plays major roles in determining the phenotypes of individuals and their offspring.
OBJECTIVE AND RATIONALE
Information pertaining to transgenerational inheritance was systematically reviewed focusing primarily on mammalian cells to the exclusion of inheritance in plants, due to inherent differences in the means by which information is transmitted between generations. The effects of environmental factors and biological processes on both epigenetic and genetic information were reviewed to determine their contribution to modulating inheritable phenotypes.
SEARCH METHODS
Articles indexed in PubMed were searched using keywords related to transgenerational inheritance, epigenetic modifications, paternal and maternal inheritable traits and environmental and biological factors influencing transgenerational modifications. We sought to clarify the role of epigenetic reprogramming events during the life cycle of mammals and provide a comprehensive review of how the genomic and epigenomic make-up of progenitors may determine the phenotype of its descendants.
OUTCOMES
We found strong evidence supporting the role of DNA methylation patterns, histone modifications and even non-protein-coding RNA in altering the epigenetic composition of individuals and producing stable epigenetic effects that were transmitted from parents to offspring, in both humans and rodent species. Multiple genomic domains and several histone modification sites were found to resist demethylation and endure genome-wide reprogramming events. Epigenetic modifications integrated into the genome of individuals were shown to modulate gene expression and activity at enhancer and promoter domains, while genetic mutations were shown to alter sequence availability for methylation and histone binding. Fundamentally, alterations to the nuclear composition of the germline in response to environmental factors, ageing, diet and toxicant exposure have the potential to become hereditably transmitted.
WIDER IMPLICATIONS
The environment influences the health and well-being of progeny by working through the germline to introduce spontaneous genetic mutations as well as a variety of epigenetic changes, including alterations in DNA methylation status and the post-translational modification of histones. In evolutionary terms, these changes create the phenotypic diversity that fuels the fires of natural selection. However, rather than being adaptive, such variation may also generate a plethora of pathological disease states ranging from dominant genetic disorders to neurological conditions, including spontaneous schizophrenia and autism.
Collapse
Affiliation(s)
- Miguel João Xavier
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Shaun D Roman
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Chemical Biology and Clinical Pharmacology, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - R John Aitken
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Brett Nixon
- Reproductive Science Group, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
19
|
Nunes J, Charneira C, Nunes C, Gouveia-Fernandes S, Serpa J, Morello J, Antunes AMM. A Metabolomics-Inspired Strategy for the Identification of Protein Covalent Modifications. Front Chem 2019; 7:532. [PMID: 31417895 PMCID: PMC6684772 DOI: 10.3389/fchem.2019.00532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/11/2019] [Indexed: 11/13/2022] Open
Abstract
Identification of protein covalent modifications (adducts) is a challenging task mainly due to the lack of data processing approaches for adductomics studies. Despite the huge technological advances in mass spectrometry (MS) instrumentation and bioinformatics tools for proteomics studies, these methodologies have very limited success on the identification of low abundant protein adducts. Herein we report a novel strategy inspired on the metabolomics workflows for the identification of covalently-modified peptides that consists on LC-MS data preprocessing followed by statistical analysis. The usefulness of this strategy was evaluated using experimental LC-MS data of histones isolated from HepG2 and THLE2 cells exposed to the chemical carcinogen glycidamide. LC-MS data was preprocessed using the open-source software MZmine and potential adducts were selected based on the m/z increments corresponding to glycidamide incorporation. Then, statistical analysis was applied to reveal the potential adducts as those ions are differently present in cells exposed and not exposed to glycidamide. The results were compared with the ones obtained upon the standard proteomics methodology, which relies on producing comprehensive MS/MS data by data dependent acquisition and analysis with proteomics data search engines. Our novel strategy was able to differentiate HepG2 and THLE2 and to identify adducts that were not detected by the standard methodology of adductomics. Thus, this metabolomics driven approach in adductomics will not only open new opportunities for the identification of protein epigenetic modifications, but also adducts formed by endogenous and exogenous exposure to chemical agents.
Collapse
Affiliation(s)
- João Nunes
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina Charneira
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carolina Nunes
- CEDOC, Chronic Diseases Research Centre, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Unidade de Investigação em Patobiologia Molecular do Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Sofia Gouveia-Fernandes
- CEDOC, Chronic Diseases Research Centre, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Unidade de Investigação em Patobiologia Molecular do Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Unidade de Investigação em Patobiologia Molecular do Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Judit Morello
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Alexandra M M Antunes
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
20
|
Xu Y, Wang P, Xu C, Shan X, Feng Q. Acrylamide induces HepG2 cell proliferation through upregulation of miR-21 expression. J Biomed Res 2019; 33:181-191. [PMID: 28963442 PMCID: PMC6551424 DOI: 10.7555/jbr.31.20170016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acrylamide, a potential carcinogen, exists in carbohydrate-rich foods cooked at a high temperature. It has been reported that acrylamide can cause DNA damage and cytotoxicity. The present study aimed to investigate the potential mechanism of human hepatocarcinoma HepG2 cell proliferation induced by acrylamide and to explore the antagonistic effects of a natural polyphenol curcumin against acrylamide via miR-21. The results indicated that acrylamide (≤100 μmol/L) significantly increased HepG2 cell proliferation and miR-21 expression. In addition, acrylamide reduced the PTEN expression in protein level, while induced the expressions of p-AKT, EGFR and cyclin D1. The PI3K/AKT inhibitor decreased p-AKT protein expression and inhibited the proliferation of HepG2 cells. In addition, curcumin effectively reduced acrylamide-induced HepG2 cell proliferation and induced apoptosis through the expression of miR-21. In conclusion, the results showed that acrylamide increased HepG2 cell proliferation via upregulating miR-21 expression, which may be a new target for the treatment and prevention of cancer.
Collapse
Affiliation(s)
- Yuyu Xu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Pengqi Wang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Station of Sanitary Surveillance of Lianyungang, Lianyungang, Jiangsu 222002, China
| | - Chaoqi Xu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiaoyun Shan
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,University of South China, Hengyang, Hunan 421000, China
| | - Qing Feng
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
21
|
Zhivagui M, Ng AWT, Ardin M, Churchwell MI, Pandey M, Renard C, Villar S, Cahais V, Robitaille A, Bouaoun L, Heguy A, Guyton KZ, Stampfer MR, McKay J, Hollstein M, Olivier M, Rozen SG, Beland FA, Korenjak M, Zavadil J. Experimental and pan-cancer genome analyses reveal widespread contribution of acrylamide exposure to carcinogenesis in humans. Genome Res 2019; 29:521-531. [PMID: 30846532 PMCID: PMC6442384 DOI: 10.1101/gr.242453.118] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/01/2019] [Indexed: 02/06/2023]
Abstract
Humans are frequently exposed to acrylamide, a probable human carcinogen found in commonplace sources such as most heated starchy foods or tobacco smoke. Prior evidence has shown that acrylamide causes cancer in rodents, yet epidemiological studies conducted to date are limited and, thus far, have yielded inconclusive data on association of human cancers with acrylamide exposure. In this study, we experimentally identify a novel and unique mutational signature imprinted by acrylamide through the effects of its reactive metabolite glycidamide. We next show that the glycidamide mutational signature is found in a full one-third of approximately 1600 tumor genomes corresponding to 19 human tumor types from 14 organs. The highest enrichment of the glycidamide signature was observed in the cancers of the lung (88% of the interrogated tumors), liver (73%), kidney (>70%), bile duct (57%), cervix (50%), and, to a lesser extent, additional cancer types. Overall, our study reveals an unexpectedly extensive contribution of acrylamide-associated mutagenesis to human cancers.
Collapse
Affiliation(s)
- Maria Zhivagui
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Alvin W T Ng
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore
| | - Maude Ardin
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Mona I Churchwell
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | - Manuraj Pandey
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Claire Renard
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Stephanie Villar
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Vincent Cahais
- Epigenetics Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Alexis Robitaille
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Liacine Bouaoun
- Environment and Radiation Section, International Agency for Research on Cancer, Lyon 69008, France
| | - Adriana Heguy
- Department of Pathology and Genome Technology Center, New York University, Langone Medical Center, New York, New York 10016, USA
| | - Kathryn Z Guyton
- IARC Monographs Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Martha R Stampfer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - James McKay
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Monica Hollstein
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
- Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
- Faculty of Medicine and Health, University of Leeds, LIGHT Laboratories, Leeds LS2 9JT, United Kingdom
| | - Magali Olivier
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Steven G Rozen
- Centre for Computational Biology, Duke-NUS Medical School, Singapore 169857, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA
| | - Michael Korenjak
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| | - Jiri Zavadil
- Molecular Mechanisms and Biomarkers Group, International Agency for Research on Cancer, Lyon 69008, France
| |
Collapse
|
22
|
Koszucka A, Nowak A, Nowak I, Motyl I. Acrylamide in human diet, its metabolism, toxicity, inactivation and the associated European Union legal regulations in food industry. Crit Rev Food Sci Nutr 2019; 60:1677-1692. [DOI: 10.1080/10408398.2019.1588222] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Agnieszka Koszucka
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Lodz, Poland
| | - Adriana Nowak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Lodz, Poland
| | - Ireneusz Nowak
- Faculty of Law and Administration, University of Lodz, Lodz, Poland
| | - Ilona Motyl
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
23
|
Genotoxic and Epigenotoxic Alterations in the Lung and Liver of Mice Induced by Acrylamide: A 28 Day Drinking Water Study. Chem Res Toxicol 2019; 32:869-877. [PMID: 30807115 DOI: 10.1021/acs.chemrestox.9b00020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acrylamide has been classified as a "Group 2A carcinogen" (probably carcinogenic to humans) by the International Agency for Research on Cancer. The carcinogenicity of acrylamide is attributed to its well-recognized genotoxicity. In the present study, we investigated the effect of acrylamide on epigenetic alterations in mice. Female B6C3F1 mice received acrylamide in drinking water for 28 days, at doses previously used in a 2 year cancer bioassay (0, 0.0875, 0.175, 0.35, and 0.70 mM), and the genotoxic and epigenetic effects were investigated in lungs, a target organ for acrylamide carcinogenicity, and livers, a nontarget organ. Acrylamide exposure resulted in a dose-dependent formation of N7-(2-carbamoyl-2-hydroxyethyl)guanine and N3-(2-carbamoyl-2-hydroxyethyl)adenine in liver and lung DNA. In contrast, the profiles of global epigenetic alterations differed between the two tissues. In the lungs, acrylamide exposure resulted in a decrease of histone H4 lysine 20 trimethylation (H4K20me3), a common epigenetic feature of human cancer, while in the livers, there was increased acetylation of histone H3 lysine 27 (H3K27ac), a gene transcription activating mark. Treatment with 0.70 mM acrylamide also resulted in substantial alterations in the DNA methylation and whole transcriptome in the lungs and livers; however, there were substantial differences in the trends of DNA methylation and gene expression changes between the two tissues. Analysis of differentially expressed genes showed a marked up-regulation of genes and activation of the gene transcription regulation pathway in livers, but not lungs. This corresponded to increased histone H3K27ac and DNA hypomethylation in livers, in contrast to hypermethylation and transcription silencing in lungs. Our results demonstrate that acrylamide induced global epigenetic alterations independent of its genotoxic effects, suggesting that epigenetic events may determine the organ-specific carcinogenicity of acrylamide. Additionally this study provides strong support for the importance of epigenetic alterations, in addition to genotoxic events, in the mechanism of carcinogenesis induced by genotoxic chemical carcinogens.
Collapse
|
24
|
Wang P, Ji R, Ji J, Chen F. Changes of metabolites of acrylamide and glycidamide in acrylamide-exposed rats pretreated with blueberry anthocyanins extract. Food Chem 2019; 274:611-619. [DOI: 10.1016/j.foodchem.2018.08.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/17/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022]
|
25
|
Kurtz DM, Glascoe R, Caviness G, Locklear J, Whiteside T, Ward T, Adsit F, Lih F, Deterding LJ, Churchwell MI, Doerge DR, Kissling GE. Acrylamide Production in Autoclaved Rodent Feed. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2018; 57:703-711. [PMID: 30360773 PMCID: PMC6241378 DOI: 10.30802/aalas-jaalas-18-000011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/05/2018] [Accepted: 04/09/2018] [Indexed: 11/05/2022]
Abstract
Sterilization of rodent feed by steam autoclaving is a common practice in many research institutions. Often we only consider the beneficial effects of this process-the reduction of microbial contamination-and forget that the high temperatures and pressures can have negative effects on diet quality. The purpose of our study was to assess both the physical and chemical changes to a standard rodent feed autoclaved at multiple sterilization temperatures and the effects of the treated diets on mice. Pelleted NIH31 rodent feed was autoclaved at 4 sterilization temperatures (230, 250, 260, and 270 °F). Feed pellet hardness and the acrylamide concentrations of the diets were tested and compared with irradiated NIH31 feed. Study diets were fed to mice for 28 d, after which tissue samples were collected for analysis of acrylamide, glycidamide (the active metabolite of acrylamide), and genotoxicity. Both feed pellet hardness and acrylamide concentration increased with increasing sterilization temperatures; however, neither affected feed intake or body weight gain. Plasma acrylamide and glycidamide were significantly elevated only in mice fed NIH31 diet autoclaved at 270 °F compared with the irradiated feed, whereas urine acrylamide and glycidamide metabolites were significantly elevated in most autoclaved diets. Liver DNA adducts, which correlate with genotoxicity, were significantly elevated in all autoclaved diets compared with the irradiated diet. Institutions that autoclave their animal diets should carefully consider the temperatures necessary to achieve feed sterilization and the type of studies in which these autoclaved diets are used.
Collapse
Affiliation(s)
- David M Kurtz
- Quality Assurance Laboratory, Comparative Medicine Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.
| | - Rallene Glascoe
- Food Safety and Inspection Service, USDA, Alameda, California, USA
| | - Gordon Caviness
- Quality Assurance Laboratory, Comparative Medicine Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Jacqueline Locklear
- Quality Assurance Laboratory, Comparative Medicine Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Tanya Whiteside
- Quality Assurance Laboratory, Comparative Medicine Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Toni Ward
- Quality Assurance Laboratory, Comparative Medicine Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Floyd Adsit
- Quality Assurance Laboratory, Comparative Medicine Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Fred Lih
- Mass Spectrometry Research and Support, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Leesa J Deterding
- Mass Spectrometry Research and Support, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Mona I Churchwell
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - Daniel R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - Grace E Kissling
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
26
|
Guo J, Yu D, Lv N, Bai R, Xu C, Chen G, Cao W. Relationships between acrylamide and glycidamide hemoglobin adduct levels and allergy-related outcomes in general US population, NHANES 2005-2006. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:506-513. [PMID: 28325597 DOI: 10.1016/j.envpol.2017.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/22/2017] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Acrylamide-induced immunotoxicity and allergic dermatitis have been reported in animal experiments and clinical reports, respectively. However, epidemiological evidence from the general population is limited. OBJECTIVES The purpose of the present study was to estimate the associations between acrylamide exposure and allergy-related outcomes in the general US population. METHODS A total of 6982 subjects were selected from the National Health and Nutrition Examination Survey 2005-2006 (NHANES). Internal exposure was measured by the hemoglobin adducts of acrylamide (HbAA) and its metabolite glycidamide (HbGA). Allergy-related outcomes including asthma, hay fever, allergy, itchy rash, sneeze, wheeze and eczema were obtained by self-administered questionnaires. Allergic sensitization was assessed by the total immunoglobulin E (IgE) levels. The associations of HbAA and HbGA quartiles with allergy-related outcomes were calculated using logistic regression models with multivariable adjustments. Analyses were additionally stratified according to age, gender and serum cotinine levels. RESULTS When setting quartile 1 of HbAA as reference, the odds ratios (ORs) [95% confidence intervals (CIs)] of quartile 2 to 4 for eczema were 1.18 (0.79-1.76), 1.14 (0.73-1.78) and 1.58 (1.14-2.18), respectively (ptrend = 0.002). Individuals at the highest quartile of HbGA had significantly elevated likelihoods of itchy rash (OR = 1.37, 95% CI = 1.02-1.83, ptrend = 0.032) and eczema (OR = 1.45, 95% CI = 1.06-1.97, ptrend = 0.044). The stratification analyses indicated various results in different subgroups. CONCLUSIONS This study indicated significant associations between HbAA and HbGA levels and the likelihoods of allergy-related outcomes in the general US population, depending on age, gender and smoke exposure status. These findings suggested potential public health concerns for the widespread exposure to acrylamide.
Collapse
Affiliation(s)
- Jing Guo
- Institute of Environmental Health, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongdong Yu
- Institute of Environmental Health, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Na Lv
- Institute of Environmental Health, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Rongpan Bai
- Institute of Environmental Health, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunjing Xu
- Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guangdi Chen
- Institute of Environmental Health, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China.
| | - Weiming Cao
- School of Humanities and Social Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
27
|
Mojska H, Gielecińska I, Zielińska A, Winiarek J, Sawicki W. Estimation of exposure to dietary acrylamide based on mercapturic acids level in urine of Polish women post partum and an assessment of health risk. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2016; 26:288-295. [PMID: 25827310 DOI: 10.1038/jes.2015.12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 06/04/2023]
Abstract
We determined metabolites of acrylamide and glycidamide concentrations (AAMA and GAMA, respectively) in urine of 93 women within the first days after delivery, using LC-MS/MS. The median AAMA and GAMA levels in urine were 20.9 μg/l (2.3÷399.0 μg/l) and 8.6 μg/l (1.3÷85.0 μg/l), respectively. In smokers we found significantly (P<0.01) higher levels of metabolites in comparison with the non-smoking women. As demonstrated by the 24-h dietary recall, acrylamide intake was low (median: 7.04 μg/day). Estimated exposure to acrylamide based on AAMA and GAMA levels in the whole group of women was 0.16 μg/kg b.w./day (1.15 μg/kg b.w./day, P95). We found significantly (P<0.05) higher exposure in women who consumed higher amount of acrylamide in the diet (≥10 μg/day vs <10 μg/day). A weak but significant positive correlation between acrylamide intake calculated on the basis of urinary levels of AAMA and GAMA and estimated on the basis of 24-h dietary recall (r=0.26, P<0.05) was found. The estimated margin of exposure values were below 10 000 and ranged from 156 for 95th percentile to 1938 for median acrylamide intake. Our results have shown that even a low dietary acrylamide intake may be associated with health risk.
Collapse
Affiliation(s)
- Hanna Mojska
- Department of Food and Food Supplements, National Food and Nutrition Institute, Warsaw, Poland
| | - Iwona Gielecińska
- Department of Food and Food Supplements, National Food and Nutrition Institute, Warsaw, Poland
| | - Aleksandra Zielińska
- Clinic of Obstetrics, Gynaecology and Oncology, 2 Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Winiarek
- Clinic of Obstetrics, Gynaecology and Oncology, 2 Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Włodzimierz Sawicki
- Clinic of Obstetrics, Gynaecology and Oncology, 2 Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
28
|
Dobrovolsky VN, Pacheco-Martinez MM, McDaniel LP, Pearce MG, Ding W. In vivo genotoxicity assessment of acrylamide and glycidyl methacrylate. Food Chem Toxicol 2015; 87:120-7. [PMID: 26686995 DOI: 10.1016/j.fct.2015.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/20/2015] [Accepted: 12/06/2015] [Indexed: 11/25/2022]
Abstract
Acrylamide (ACR) and glycidyl methacrylate (GMA) are structurally related compounds used for making polymers with various properties. Both chemicals can be present in food either as a byproduct of processing or a constituent of packaging. We performed a comprehensive evaluation of ACR and GMA genotoxicity in Fisher 344 rats using repeated gavage administrations. Clastogenicity was measured by scoring micronucleated (MN) erythrocytes from peripheral blood, DNA damage in liver, bone marrow and kidneys was measured using the Comet assay, and gene mutation was measured using the red blood cell (RBC) and reticulocyte Pig-a assay. A limited histopathology evaluation was performed in order to determine levels of cytotoxicity. Doses of up to 20 mg/kg/day of ACR and up to 250 mg/kg/day of GMA were used. ACR treatment resulted in DNA damage in the liver, but not in the bone marrow. While ACR was not a clastogen, it was a weak (equivocal) mutagen in the cells of bone marrow. GMA caused DNA damage in the cells of bone marrow, liver and kidney, and induced MN reticulocytes and Pig-a mutant RBCs in a dose-dependent manner. Collectively, our data suggest that both compounds are in vivo genotoxins, but the genotoxicity of ACR is tissue specific.
Collapse
Affiliation(s)
- Vasily N Dobrovolsky
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA.
| | | | - L Patrice McDaniel
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Mason G Pearce
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Wei Ding
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
29
|
Beland FA, Olson GR, Mendoza MCB, Marques MM, Doerge DR. Carcinogenicity of glycidamide in B6C3F1 mice and F344/N rats from a two-year drinking water exposure. Food Chem Toxicol 2015; 86:104-15. [PMID: 26429628 PMCID: PMC5066397 DOI: 10.1016/j.fct.2015.09.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/24/2015] [Accepted: 09/26/2015] [Indexed: 11/19/2022]
Abstract
Acrylamide is a contaminant in baked and fried starchy foods, roasted coffee, and cigarette smoke. Previously we reported that acrylamide is a multi-organ carcinogen in B6C3F1 mice and F344/N rats, and hypothesized that acrylamide is activated to an ultimate carcinogen through metabolism to the epoxide glycidamide. We have now examined the carcinogenic effects of glycidamide administered at 0, 0.0875, 0.175, 0.35 and 0.70 mM in drinking water to the same strains of rodents for two years. In male and female mice, there were significant increases in tumors of the Harderian gland, lung, forestomach, and skin. Female mice also had an increased incidence of tumors of the mammary gland and ovary. In male and female rats, there were significant increases in thyroid gland and oral cavity neoplasms and mononuclear cell leukemia. Male rats also had increases in tumors of the epididymis/testes and heart, while female rats demonstrated increases in tumors of the mammary gland, clitoral gland, and forestomach. A similar spectrum of tumors was obtained in mice and rats administered acrylamide. These data indicate that, under the conditions of these bioassays, acrylamide is efficiently metabolized to glycidamide and that the carcinogenic activity of acrylamide is due to its conversion into glycidamide.
Collapse
Affiliation(s)
- Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, United States.
| | - Greg R Olson
- Toxicologic Pathology Associates, National Center for Toxicological Research, Jefferson, AR 72079, United States
| | - Maria C B Mendoza
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, Jefferson, AR 72079, United States
| | - M Matilde Marques
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Daniel R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, United States
| |
Collapse
|
30
|
Fennell TR, Snyder R, Hansen B, Friedman M. Dosimetry of Acrylamide and Glycidamide Over the Lifespan in a 2-Year Bioassay of Acrylamide in Wistar Han Rats. Toxicol Sci 2015; 146:386-94. [PMID: 26141391 PMCID: PMC4517054 DOI: 10.1093/toxsci/kfv104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Acrylamide is an industrial chemical used to manufacture polymers, and is produced in foods during cooking at high heat. Hemoglobin adducts provide a long-lived dosimeter for acrylamide and glycidamide. This study determined acrylamide and glycidamide hemoglobin adducts (AAVal and GAVal) during a lifetime carcinogenesis bioassay. Exposure to acrylamide in drinking water began in utero in pregnant rats on gestation day 6. Dams were administered acrylamide until weaning, and male and female F1 rats were exposed for a further 104 weeks. Acrylamide concentration in drinking water was adjusted to provide a constant dose of 0.5, 1.5, and 3 mg/kg/day. Blood was collected from animals euthanized at 2, 60, 90, and 120 days and 53, 79, and 104 weeks after weaning. Low levels of AAVal and GAVal at postnatal day 24 suggested that little exposure to acrylamide occurred by placental or lactational transfer, and extensive metabolism to glycidamide occurred with a GAVal:AAVal ratio of 4. Adduct levels varied somewhat from 60 days to 2 years, with a GAVal:AAVal ratio of approximately 1. Adduct formation/day estimated at each timepoint at 3 mg/kg/day for AAVal was 1293 ± 220 and 1096 ± 338 fmol/mg/day for male and female rats, respectively. Adduct formation per day estimated at each timepoint at 3 mg/kg/day for GAVal was 827 ± 78 fmol/mg/day for male rats, and 982 ± 222 fmol/mg/day for female rats. The study has provided estimates of linearity for dose response, and variability in internal dose throughout an entire 2-year bioassay, including the early phases of pregnancy and lactation.
Collapse
Affiliation(s)
| | - Rodney Snyder
- *RTI International, Research Triangle Park, North Carolina 27709
| | - Benjamin Hansen
- LPT Laboratory of Pharmacology and Toxicology GmbH & Co. KG, Hamburg, Germany; and
| | | |
Collapse
|
31
|
Katen AL, Roman SD. The genetic consequences of paternal acrylamide exposure and potential for amelioration. Mutat Res 2015; 777:91-100. [PMID: 25989052 DOI: 10.1016/j.mrfmmm.2015.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 03/31/2015] [Accepted: 04/08/2015] [Indexed: 06/04/2023]
Abstract
Acrylamide is a toxin that humans are readily exposed to due to its formation in many carbohydrate rich foods cooked at high temperatures. Acrylamide is carcinogenic, neurotoxic and causes reproductive toxicity when high levels of exposure are reached in mice and rats. Acrylamide induced effects on fertility occur predominantly in males. Acrylamide exerts its reproductive toxicity via its metabolite glycidamide, a product which is only formed via the cytochrome P450 detoxifying enzyme CYP2E1. Glycidamide is highly reactive and forms adducts with DNA. Chronic low dose acrylamide exposure in mice relevant to human exposure levels results in significantly increased levels of DNA damage in terms of glycidamide adducts in spermatocytes, the specific germ cell stage where Cyp2e1 is expressed. Since cells in the later stages of spermatogenesis are unable to undergo DNA repair, and this level of acrylamide exposure causes no reduction in fertility, there is potential for this damage to persist until sperm maturation and fertilisation. Cyp2e1 is also present within epididymal cells, allowing for transiting spermatozoa to be exposed to glycidamide. This could have consequences for future generations in terms of predisposition to diseases such as cancer, with growing indications that paternal DNA damage can be propagated across multiple generations. Since glycidamide is the major contributor to DNA damage, a mechanism for preventing these effects is inhibiting the function of Cyp2e1. Resveratrol is an example of an inhibitor of Cyp2e1 which has shown success in reducing damage caused by acrylamide treatment in mice.
Collapse
Affiliation(s)
- Aimee L Katen
- Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Shaun D Roman
- Reproductive Science Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia; The Australian Research Council Centre of Excellence in Biotechnology and Development, Callaghan, New South Wales 2308, Australia; The Priority Research Centres for Reproductive Sciences and Chemical Biology, University of Newcastle, Callaghan, New South Wales 2308, Australia.
| |
Collapse
|
32
|
|
33
|
Manjanatha MG, Guo LW, Shelton SD, Doerge DR. Acrylamide-induced carcinogenicity in mouse lung involves mutagenicity: cII gene mutations in the lung of big blue mice exposed to acrylamide and glycidamide for up to 4 weeks. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:446-456. [PMID: 25639614 DOI: 10.1002/em.21939] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/10/2015] [Indexed: 06/04/2023]
Abstract
Potential health risks for humans from exposure to acrylamide (AA) and its epoxide metabolite glycidamide (GA) have garnered much attention lately because substantial amounts of AA are present in a variety of fried and baked starchy foods. AA is tumorigenic in rodents, and a large number of in vitro and in vivo studies indicate that AA is genotoxic. A recent cancer bioassay on AA demonstrated that the lung was one of the target organs for tumor induction in mice; however, the mutagenicity of AA in this tissue is unclear. Therefore, to investigate whether or not gene mutation is involved in the etiology of AA- or GA-induced mouse lung carcinogenicity, we screened for cII mutant frequency (MF) in lungs from male and female Big Blue (BB) mice administered 0, 1.4, and 7.0 mM AA or GA in drinking water for up to 4 weeks (19-111 mg/kg bw/days). Both doses of AA and GA produced significant increases in cII MFs, with the high doses producing responses 2.7-5.6-fold higher than the corresponding controls (P ≤ 0.05; control MFs = 17.2 ± 2.2 and 15.8 ± 3.5 × 10(-6) in males and females, respectively). Molecular analysis of the mutants from high doses indicated that AA and GA produced similar mutation spectra and that these spectra were significantly different from the spectra in control mice (P ≤ 0.01). The predominant types of mutations in the lung cII gene from AA- and GA-treated mice were A:T → T:A, and G:C → C:G transversions, and -1/+1 frameshifts at a homopolymeric run of Gs. The MFs and types of mutations induced by AA and GA in the lung are consistent with AA exerting its genotoxicity via metabolism to GA. These results suggest that AA is a mutagenic carcinogen in mouse lungs and therefore further studies on its potential health risk to humans are warranted. Environ. Mol. Mutagen. 56:446-456, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mugimane G Manjanatha
- Division of Genetic and Molecular Toxicology, US FDA, National Center for Toxicological Research, Jefferson, Arkansas
| | - Li-Wu Guo
- Division of Genetic and Molecular Toxicology, US FDA, National Center for Toxicological Research, Jefferson, Arkansas
| | - Sharon D Shelton
- Division of Genetic and Molecular Toxicology, US FDA, National Center for Toxicological Research, Jefferson, Arkansas
| | - Daniel R Doerge
- Division of Biochemical Toxicology, US FDA, National Center for Toxicological Research, Jefferson, Arkansas
| |
Collapse
|
34
|
Krishnapura PR, Belur PD, Subramanya S. A critical review on properties and applications of microbial l-asparaginases. Crit Rev Microbiol 2015; 42:720-37. [PMID: 25865363 DOI: 10.3109/1040841x.2015.1022505] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
l-Asparaginase is one of the main drugs used in the treatment of acute lymphoblastic leukemia (ALL), a commonly diagnosed pediatric cancer. Although several microorganisms are found to produce l-asparaginase, only the purified enzymes from E. coli and Erwinia chrysanthemi are employed in the clinical and therapeutic applications in humans. However, their therapeutic response seldom occurs without some evidence of hypersensitivity and other toxic side effects. l-Asparaginase is also of prospective use in food industry to reduce the formation of acrylamide in fried, roasted or baked food products. This review is an attempt to compile information on the properties of l-asparaginases obtained from different microorganisms. The complications involved with the therapeutic use of the currently available l-asparaginases, and the enzyme's potential application as a food processing aid to mitigate acrylamide formation have also been reviewed. Further, avenues for searching alternate sources of l-asparaginase have been discussed, highlighting the prospects of endophytic microorganisms as a possible source of l-asparaginases with varied biochemical and pharmacological properties.
Collapse
Affiliation(s)
- Prajna Rao Krishnapura
- a Department of Chemical Engineering , National Institute of Technology Karnataka , Surathkal, Mangalore , Karnataka , India and
| | - Prasanna D Belur
- a Department of Chemical Engineering , National Institute of Technology Karnataka , Surathkal, Mangalore , Karnataka , India and
| | - Sandeep Subramanya
- b Department of Physiology , United Arab Emirates University , Al Ain , United Arab Emirates
| |
Collapse
|
35
|
Xu Y, Cui B, Ran R, Liu Y, Chen H, Kai G, Shi J. Risk assessment, formation, and mitigation of dietary acrylamide: current status and future prospects. Food Chem Toxicol 2014; 69:1-12. [PMID: 24713263 DOI: 10.1016/j.fct.2014.03.037] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/23/2014] [Accepted: 03/28/2014] [Indexed: 10/25/2022]
Abstract
Acrylamide (AA) was firstly detected in food in 2002, and since then, studies on AA analysis, occurrence, formation, toxicity, risk assessment and mitigation have been extensively carried out, which have greatly advanced understanding of this particular biohazard at both academic and industrial levels. There is considerable variation in the levels of AA in different foods and different brands of the same food; therefore, so far, a general upper limit for AA in food is not available. In addition, the link of dietary AA to human cancer is still under debate, although AA has been known as a potential cause of various toxic effects including carcinogenic effects in experimental animals. Furthermore, the oxidized metabolite of AA, glycidamide (GA), is more toxic than AA. Both AA and GA can form adducts with protein, DNA, and hemoglobin, and some of those adducts can serve as biomarkers for AA exposure; their potential roles in the linking of AA to human cancer, reproductive defects or other diseases, however, are unclear. This review addresses the state-of-the-art understanding of AA, focusing on risk assessment, mechanism of formation and strategies of mitigation in foods. The potential application of omics to AA risk assessment is also discussed.
Collapse
Affiliation(s)
- Yi Xu
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, PR China
| | - Bo Cui
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China; College of Life Science, Sichuan Agricultural University, 46 Xinkang Road, Yucheng District, Ya'an City, Sichuan Province 625014, PR China
| | - Ran Ran
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Ying Liu
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Huaping Chen
- College of Life Science, Sichuan Agricultural University, 46 Xinkang Road, Yucheng District, Ya'an City, Sichuan Province 625014, PR China
| | - Guoyin Kai
- College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Xuhui District, Shanghai 200234, PR China.
| | - Jianxin Shi
- National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| |
Collapse
|
36
|
Bandarra S, Fernandes AS, Magro I, Guerreiro PS, Pingarilho M, Churchwell MI, Gil OM, Batinic-Haberle I, Goncalves S, Rueff J, Miranda JP, Marques MM, Beland FA, Castro M, Gaspar JF, Oliveira NG. Mechanistic insights into the cytotoxicity and genotoxicity induced by glycidamide in human mammary cells. Mutagenesis 2013; 28:721-9. [DOI: 10.1093/mutage/get052] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
37
|
Raju J, Roberts J, Sondagar C, Kapal K, Aziz SA, Caldwell D, Mehta R. Negligible colon cancer risk from food-borne acrylamide exposure in male F344 rats and nude (nu/nu) mice-bearing human colon tumor xenografts. PLoS One 2013; 8:e73916. [PMID: 24040114 PMCID: PMC3764052 DOI: 10.1371/journal.pone.0073916] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/23/2013] [Indexed: 11/20/2022] Open
Abstract
Acrylamide, a possible human carcinogen, is formed in certain carbohydrate-rich foods processed at high temperature. We evaluated if dietary acrylamide, at doses (0.5, 1.0 or 2.0 mg/kg diet) reflecting upper levels found in human foods, modulated colon tumorigenesis in two rodent models. Male F344 rats were randomized to receive diets without (control) or with acrylamide. 2-weeks later, rats in each group received two weekly subcutaneous injections of either azoxymethane (AOM) or saline, and were killed 20 weeks post-injections; colons were assessed for tumors. Male athymic nude (nu/nu) mice bearing HT-29 human colon adenocarcinoma cells-derived tumor xenografts received diets without (control) or with acrylamide; tumor growth was monitored and mice were killed 4 weeks later. In the F344 rat study, no tumors were found in the colons of the saline-injected rats. However, the colon tumor incidence was 54.2% and 66.7% in the control and the 2 mg/kg acrylamide-treated AOM-injected groups, respectively. While tumor multiplicity was similar across all diet groups, tumor size and burden were higher in the 2 mg/kg acrylamide group compared to the AOM control. These results suggest that acrylamide by itself is not a "complete carcinogen", but acts as a "co-carcinogen" by exacerbating the effects of AOM. The nude mouse study indicated no differences in the growth of human colon tumor xenografts between acrylamide-treated and control mice, suggesting that acrylamide does not aid in the progression of established tumors. Hence, food-borne acrylamide at levels comparable to those found in human foods is neither an independent carcinogen nor a tumor promoter in the colon. However, our results characterize a potential hazard of acrylamide as a colon co-carcinogen in association with known and possibly other environmental tumor initiators/promoters.
Collapse
Affiliation(s)
- Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Jennifer Roberts
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Chandni Sondagar
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Kamla Kapal
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Syed A. Aziz
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Don Caldwell
- Scientific Services Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Rekha Mehta
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
38
|
Ehlers A, Lenze D, Broll H, Zagon J, Hummel M, Lampen A. Dose dependent molecular effects of acrylamide and glycidamide in human cancer cell lines and human primary hepatocytes. Toxicol Lett 2013; 217:111-20. [DOI: 10.1016/j.toxlet.2012.12.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 12/08/2022]
|
39
|
Beland FA, Mellick PW, Olson GR, Mendoza MC, Marques MM, Doerge DR. Carcinogenicity of acrylamide in B6C3F1 mice and F344/N rats from a 2-year drinking water exposure. Food Chem Toxicol 2013; 51:149-59. [DOI: 10.1016/j.fct.2012.09.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 01/29/2023]
|
40
|
Camacho L, Latendresse J, Muskhelishvili L, Patton R, Bowyer J, Thomas M, Doerge D. Effects of acrylamide exposure on serum hormones, gene expression, cell proliferation, and histopathology in male reproductive tissues of Fischer 344 rats. Toxicol Lett 2012; 211:135-43. [DOI: 10.1016/j.toxlet.2012.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
|