1
|
Valdivia-Silva J, Chinney-Herrera A. Chemokine receptors and their ligands in breast cancer: The key roles in progression and metastasis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:124-161. [PMID: 39260935 DOI: 10.1016/bs.ircmb.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Chemokines and their receptors are a family of chemotactic cytokines with important functions in the immune response in both health and disease. Their known physiological roles such as the regulation of leukocyte trafficking and the development of immune organs generated great interest when it was found that they were also related to the control of early and late inflammatory stages in the tumor microenvironment. In fact, in breast cancer, an imbalance in the synthesis of chemokines and/or in the expression of their receptors was attributed to be involved in the regulation of disease progression, including invasion and metastasis. Research in this area is progressing rapidly and the development of new agents based on chemokine and chemokine receptor antagonists are emerging as attractive alternative strategies. This chapter provides a snapshot of the different functions reported for chemokines and their receptors with respect to the potential to regulate breast cancer progression.
Collapse
Affiliation(s)
- Julio Valdivia-Silva
- Centro de Investigación en Bioingenieria (BIO), Universidad de Ingenieria y Tecnologia-UTEC, Barranco, Lima, Peru.
| | - Alberto Chinney-Herrera
- Facultad de Medicina, Universidad Nacional Autonoma de Mexico-UNAM, Ciudad Universitaria, Coyoacan, Ciudad de Mexico, Mexico
| |
Collapse
|
2
|
Izraely S, Ben-Menachem S, Malka S, Sagi-Assif O, Bustos MA, Adir O, Meshel T, Chelladurai M, Ryu S, Ramos RI, Pasmanik-Chor M, Hoon DSB, Witz IP. The Vicious Cycle of Melanoma-Microglia Crosstalk: Inter-Melanoma Variations in the Brain-Metastasis-Promoting IL-6/JAK/STAT3 Signaling Pathway. Cells 2023; 12:1513. [PMID: 37296634 PMCID: PMC10253015 DOI: 10.3390/cells12111513] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Previous studies from our lab demonstrated that the crosstalk between brain-metastasizing melanoma cells and microglia, the macrophage-like cells of the central nervous system, fuels progression to metastasis. In the present study, an in-depth investigation of melanoma-microglia interactions elucidated a pro-metastatic molecular mechanism that drives a vicious melanoma-brain-metastasis cycle. We employed RNA-Sequencing, HTG miRNA whole transcriptome assay, and reverse phase protein arrays (RPPA) to analyze the impact of melanoma-microglia interactions on sustainability and progression of four different human brain-metastasizing melanoma cell lines. Microglia cells exposed to melanoma-derived IL-6 exhibited upregulated levels of STAT3 phosphorylation and SOCS3 expression, which, in turn, promoted melanoma cell viability and metastatic potential. IL-6/STAT3 pathway inhibitors diminished the pro-metastatic functions of microglia and reduced melanoma progression. SOCS3 overexpression in microglia cells evoked microglial support in melanoma brain metastasis by increasing melanoma cell migration and proliferation. Different melanomas exhibited heterogeneity in their microglia-activating capacity as well as in their response to microglia-derived signals. In spite of this reality and based on the results of the present study, we concluded that the activation of the IL-6/STAT3/SOCS3 pathway in microglia is a major mechanism by which reciprocal melanoma-microglia signaling engineers the interacting microglia to reinforce the progression of melanoma brain metastasis. This mechanism may operate differently in different melanomas.
Collapse
Affiliation(s)
- Sivan Izraely
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| | - Shlomit Ben-Menachem
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| | - Sapir Malka
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| | - Orit Sagi-Assif
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| | - Matias A. Bustos
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Orit Adir
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| | - Tsipi Meshel
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| | - Maharrish Chelladurai
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| | - Suyeon Ryu
- Department of Genome Sequencing, Saint John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Romela I. Ramos
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dave S. B. Hoon
- Department of Translational Molecular Medicine, Saint John’s Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Isaac P. Witz
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 6997801, Israel; (S.I.)
| |
Collapse
|
3
|
Maurya SK, Khan P, Rehman AU, Kanchan RK, Perumal N, Mahapatra S, Chand HS, Santamaria-Barria JA, Batra SK, Nasser MW. Rethinking the chemokine cascade in brain metastasis: Preventive and therapeutic implications. Semin Cancer Biol 2022; 86:914-930. [PMID: 34968667 PMCID: PMC9234104 DOI: 10.1016/j.semcancer.2021.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 01/27/2023]
Abstract
Brain metastasis (BrM) is one of the major causes of death in cancer patients and is associated with an estimated 10-40 % of total cancer cases. The survival rate of brain metastatic patients has not improved due to intratumor heterogeneity, the survival adaptations of brain homing metastatic cells, and the lack of understanding of underlying molecular mechanisms that limit the availability of effective therapies. The heterogeneous population of immune cells and tumor-initiating cells or cancer stem cells in the tumor microenvironment (TME) release various factors, such as chemokines that upon binding to their cognate receptors enhance tumor growth at primary sites and help tumor cells metastasize to the brain. Furthermore, brain metastatic sites have unique heterogeneous microenvironment that fuels cancer cells in establishing BrM. This review explores the crosstalk of chemokines with the heterogeneous TME during the progression of BrM and recognizes potential therapeutic approaches. We also discuss and summarize different targeted, immunotherapeutic, chemotherapeutic, and combinatorial strategies (with chemo-/immune- or targeted-therapies) to attenuate chemokines mediated BrM.
Collapse
Affiliation(s)
- Shailendra Kumar Maurya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Asad Ur Rehman
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Ranjana K Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Naveenkumar Perumal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Hitendra S Chand
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | | | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68108, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA.
| |
Collapse
|
4
|
Stejerean-Todoran I, Gimotty PA, Watters A, Brafford P, Krepler C, Godok T, Li H, Bonilla Del Rio Z, Zieseniss A, Katschinski DM, Sertel SM, Rizzoli SO, Garman B, Nathanson KL, Xu X, Chen Q, Oswald JH, Lotem M, Mills GB, Davies MA, Schön MP, Bogeski I, Herlyn M, Vultur A. A distinct pattern of growth and RAC1 signaling in melanoma brain metastasis cells. Neuro Oncol 2022; 25:674-686. [PMID: 36054930 PMCID: PMC10076948 DOI: 10.1093/neuonc/noac212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Melanoma, the deadliest of skin cancers, has a high propensity to form brain metastases that are associated with a markedly worsened prognosis. In spite of recent therapeutic advances, melanoma brain lesions remain a clinical challenge, biomarkers predicting brain dissemination are not clear and differences with other metastatic sites are poorly understood. METHODS We examined a genetically diverse panel of human-derived melanoma brain metastasis (MBM) and extracranial cell lines using targeted sequencing, a Reverse Phase Protein Array, protein expression analyses, and functional studies in vitro and in vivo. RESULTS Brain-specific genetic alterations were not detected; however, MBM cells in vitro displayed lower proliferation rates and MBM-specific protein expression patterns associated with proliferation, DNA damage, adhesion, and migration. MBM lines displayed higher levels of RAC1 expression, involving a distinct RAC1-PAK1-JNK1 signaling network. RAC1 knockdown or treatment with small molecule inhibitors contributed to a less aggressive MBM phenotype in vitro, while RAC1 knockdown in vivo led to reduced tumor volumes and delayed tumor appearance. Proliferation, adhesion, and migration were higher in MBM vs. non-MBM lines in the presence of insulin or brain-derived factors and were affected by RAC1 levels. CONCLUSIONS Our findings indicate that despite their genetic variability, MBM engage specific molecular processes such as RAC1 signaling to adapt to the brain microenvironment and this can be used for the molecular characterization and treatment of brain metastases.
Collapse
Affiliation(s)
- Ioana Stejerean-Todoran
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Phyllis A Gimotty
- Department of Biostatistics, Informatics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Andrea Watters
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Patricia Brafford
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Clemens Krepler
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Tetiana Godok
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Haiyin Li
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Zuriñe Bonilla Del Rio
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Anke Zieseniss
- Department of Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Dörthe M Katschinski
- Department of Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Sinem M Sertel
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Bradley Garman
- Department of Medicine, Div. Translational Medicine and Human Genetics; Abramson Cancer Center; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Katherine L Nathanson
- Department of Medicine, Div. Translational Medicine and Human Genetics; Abramson Cancer Center; University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qing Chen
- Immunology Microenvironment & Metastasis, The Wistar Institute, Philadelphia, PA, USA
| | - Jack H Oswald
- Immunology Microenvironment & Metastasis, The Wistar Institute, Philadelphia, PA, USA
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah Hebrew University Medical Center, Jerusalem, IL
| | - Gordon B Mills
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Ivan Bogeski
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Meenhard Herlyn
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Adina Vultur
- Molecular Physiology, Department of Cardiovascular Physiology, University Medical Center Göttingen, Göttingen, Germany.,Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
5
|
Lim AR, Ghajar CM. Thorny ground, rocky soil: Tissue-specific mechanisms of tumor dormancy and relapse. Semin Cancer Biol 2022; 78:104-123. [PMID: 33979673 PMCID: PMC9595433 DOI: 10.1016/j.semcancer.2021.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Disseminated tumor cells (DTCs) spread systemically yet distinct patterns of metastasis indicate a range of tissue susceptibility to metastatic colonization. Distinctions between permissive and suppressive tissues are still being elucidated at cellular and molecular levels. Although there is a growing appreciation for the role of the microenvironment in regulating metastatic success, we have a limited understanding of how diverse tissues regulate DTC dormancy, the state of reversible quiescence and subsequent awakening thought to contribute to delayed relapse. Several themes of microenvironmental regulation of dormancy are beginning to emerge, including vascular association, co-option of pre-existing niches, metabolic adaptation, and immune evasion, with tissue-specific nuances. Conversely, DTC awakening is often associated with injury or inflammation-induced activation of the stroma, promoting a proliferative environment with DTCs following suit. We review what is known about tissue-specific regulation of tumor dormancy on a tissue-by-tissue basis, profiling major metastatic organs including the bone, lung, brain, liver, and lymph node. An aerial view of the barriers to metastatic growth may reveal common targets and dependencies to inform the therapeutic prevention of relapse.
Collapse
Affiliation(s)
- Andrea R Lim
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Graduate Program in Molecular and Cellular Biology, University of Washington/Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Cyrus M Ghajar
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
6
|
Leong SP, Witz IP, Sagi-Assif O, Izraely S, Sleeman J, Piening B, Fox BA, Bifulco CB, Martini R, Newman L, Davis M, Sanders LM, Haussler D, Vaske OM, Witte M. Cancer microenvironment and genomics: evolution in process. Clin Exp Metastasis 2021; 39:85-99. [PMID: 33970362 DOI: 10.1007/s10585-021-10097-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Cancer heterogeneity is a result of genetic mutations within the cancer cells. Their proliferation is not only driven by autocrine functions but also under the influence of cancer microenvironment, which consists of normal stromal cells such as infiltrating immune cells, cancer-associated fibroblasts, endothelial cells, pericytes, vascular and lymphatic channels. The relationship between cancer cells and cancer microenvironment is a critical one and we are just on the verge to understand it on a molecular level. Cancer microenvironment may serve as a selective force to modulate cancer cells to allow them to evolve into more aggressive clones with ability to invade the lymphatic or vascular channels to spread to regional lymph nodes and distant sites. It is important to understand these steps of cancer evolution within the cancer microenvironment towards invasion so that therapeutic strategies can be developed to control or stop these processes.
Collapse
Affiliation(s)
- Stanley P Leong
- California Pacific Medical Center and Research Institute, San Francisco, USA
| | - Isaac P Witz
- The Shmunis School of Biomedicine and Cancer Research, School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Orit Sagi-Assif
- The Shmunis School of Biomedicine and Cancer Research, School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Sivan Izraely
- The Shmunis School of Biomedicine and Cancer Research, School of Molecular Cell Biology & Biotechnology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan Sleeman
- European Center for Angioscience, Medizinische Fakultät Mannheim der Universität Heidelberg, Heidelberg, Germany
| | | | | | | | - Rachel Martini
- Department of Surgery, Weill Cornell Medical College, New York City, NY, USA.,Department of Genetics, University of Georgia, Athens, GA, USA
| | - Lisa Newman
- Department of Surgery, Weill Cornell Medical College, New York City, NY, USA
| | - Melissa Davis
- Department of Surgery, Weill Cornell Medical College, New York City, NY, USA.
| | - Lauren M Sanders
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz and UC Santa Cruz Genomics Institute, Santa Cruz, USA
| | - David Haussler
- UC Santa Cruz Genomics Institute and Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, USA.
| | - Olena M Vaske
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz and UC Santa Cruz Genomics Institute, Santa Cruz, USA
| | - Marlys Witte
- Department of Surgery, Neurosurgery and Pediatrics, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| |
Collapse
|
7
|
Izraely S, Witz IP. Site-specific metastasis: A cooperation between cancer cells and the metastatic microenvironment. Int J Cancer 2020; 148:1308-1322. [PMID: 32761606 PMCID: PMC7891572 DOI: 10.1002/ijc.33247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/08/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
The conclusion derived from the information provided in this review is that disseminating tumor cells (DTC) collaborate with the microenvironment of a future metastatic organ site in the establishment of organ‐specific metastasis. We review the basic principles of site‐specific metastasis and the contribution of the cross talk between DTC and the microenvironment of metastatic sites (metastatic microenvironment [MME]) to the establishment of the organ‐specific premetastatic niche; the targeted migration of DTC to the endothelium of the future organ‐specific metastasis; the transmigration of DTC to this site and the seeding and colonization of DTC in their future MME. We also discuss the role played by DTC‐MME interactions on tumor dormancy and on the differential response of tumor cells residing in different MMEs to antitumor therapy. Finally, we summarize some studies dealing with the effects of the MME on a unique site‐specific metastasis—brain metastasis.
Collapse
Affiliation(s)
- Sivan Izraely
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Isaac P Witz
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
In GK, Poorman K, Saul M, O'Day S, Farma JM, Olszanski AJ, Gordon MS, Thomas JS, Eisenberg B, Flaherty L, Weise A, Daveluy S, Gibney G, Atkins MB, Vanderwalde A. Molecular profiling of melanoma brain metastases compared to primary cutaneous melanoma and to extracranial metastases. Oncotarget 2020. [PMID: 32913556 DOI: 10.18632/oncotarget.27686.=] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Brain metastases are a significant cause of mortality and morbidity for patients with melanoma. We hypothesize that the development of brain metastases may be explained by molecular heterogeneity between primary cutaneous melanoma (PCM) or extracranial (ECM) and brain (MBM) melanoma metastases. MATERIALS AND METHODS We compared next-generation sequencing, tumor mutational burden (TMB), and immunohistochemical staining for PD-L1 expression, among 132 MBM, 745 PCM, and 1190 ECM. RESULTS The most common genetic alterations among MBM included: BRAF (52.4%), NRAS (26.6%), CDKN2A (23.3%), NF1 (18.9%), TP53 (18%), ARID2 (13.8%), SETD2 (11.9%), and PBRM1 (7.5%). Four genes were found with higher frequency among MBM compared to PCM or ECM: BRAF (52.4% v 40.4% v 40.9%), SETD2 (11.9% v 1.9% v 3.9%), PBRM1 (7.5% v 1.6% v 2.6%), and DICER1 (4.4% v 0.6% v 0.4%). MBM showed higher TMB (p = .04) and higher PD-L1 expression (p = .002), compared to PCM. PD-L1 expression was slightly higher among MBM compared to ECM (p = .042), but there was no difference between TMB (p = .21). CONCLUSIONS Our findings suggest a unique molecular profile for MBM, including higher rates of BRAF mutations, higher TMB and higher PD-L1 expression, and also implicate chromatin remodeling in the pathogenesis of MBM.
Collapse
Affiliation(s)
- Gino K In
- USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | | | - Steven O'Day
- John Wayne Cancer Institute, Santa Monica, CA, USA
| | | | | | | | - Jacob S Thomas
- USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
- Hoag Family Cancer Institute, Newport Beach, CA, USA
| | | | | | - Amy Weise
- Karmanos Cancer Institute, Detroit, MI, USA
| | | | - Geoffrey Gibney
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Michael B Atkins
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Ari Vanderwalde
- University of Tennessee Health Science Center, West Cancer Center, Germantown, TN, USA
| |
Collapse
|
9
|
In GK, Poorman K, Saul M, O'Day S, Farma JM, Olszanski AJ, Gordon MS, Thomas JS, Eisenberg B, Flaherty L, Weise A, Daveluy S, Gibney G, Atkins MB, Vanderwalde A. Molecular profiling of melanoma brain metastases compared to primary cutaneous melanoma and to extracranial metastases. Oncotarget 2020; 11:3118-3128. [PMID: 32913556 PMCID: PMC7443369 DOI: 10.18632/oncotarget.27686] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Brain metastases are a significant cause of mortality and morbidity for patients with melanoma. We hypothesize that the development of brain metastases may be explained by molecular heterogeneity between primary cutaneous melanoma (PCM) or extracranial (ECM) and brain (MBM) melanoma metastases. MATERIALS AND METHODS We compared next-generation sequencing, tumor mutational burden (TMB), and immunohistochemical staining for PD-L1 expression, among 132 MBM, 745 PCM, and 1190 ECM. RESULTS The most common genetic alterations among MBM included: BRAF (52.4%), NRAS (26.6%), CDKN2A (23.3%), NF1 (18.9%), TP53 (18%), ARID2 (13.8%), SETD2 (11.9%), and PBRM1 (7.5%). Four genes were found with higher frequency among MBM compared to PCM or ECM: BRAF (52.4% v 40.4% v 40.9%), SETD2 (11.9% v 1.9% v 3.9%), PBRM1 (7.5% v 1.6% v 2.6%), and DICER1 (4.4% v 0.6% v 0.4%). MBM showed higher TMB (p = .04) and higher PD-L1 expression (p = .002), compared to PCM. PD-L1 expression was slightly higher among MBM compared to ECM (p = .042), but there was no difference between TMB (p = .21). CONCLUSIONS Our findings suggest a unique molecular profile for MBM, including higher rates of BRAF mutations, higher TMB and higher PD-L1 expression, and also implicate chromatin remodeling in the pathogenesis of MBM.
Collapse
Affiliation(s)
- Gino K In
- USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | | | - Steven O'Day
- John Wayne Cancer Institute, Santa Monica, CA, USA
| | | | | | | | - Jacob S Thomas
- USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA.,Hoag Family Cancer Institute, Newport Beach, CA, USA
| | | | | | - Amy Weise
- Karmanos Cancer Institute, Detroit, MI, USA
| | | | - Geoffrey Gibney
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Michael B Atkins
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Ari Vanderwalde
- University of Tennessee Health Science Center, West Cancer Center, Germantown, TN, USA
| |
Collapse
|
10
|
Azizidoost S, Asnafi AA, Saki N. Signaling-chemokine axis network in brain as a sanctuary site for metastasis. J Cell Physiol 2018; 234:3376-3382. [PMID: 30187487 DOI: 10.1002/jcp.27305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/01/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Brain metastasis remains a major cause of death in patients with solid cancers. The co-operation between several molecular factors such as chemokines, chemokine receptors, and signaling pathways is involved in the pathogenesis of brain metastasis mostly from solid tumors. In this review, we examine the possible role of chemokine/receptor axis, as well as signaling pathways as prognostic biomarkers in brain metastasis. METHODS Relevant English language literature were searched and retrieved from Google Scholar search engine (1993-2017). The following keywords were used: "chemokine," "signaling pathway," "brain," "metastasis," and "niche." RESULTS Increased expression of chemokines like CXCL12 and dysregulated signaling intermediates such as Notch in patients with solid tumors (e.g., breast cancer) is associated with brain metastasis. CONCLUSIONS As biomarkers for brain metastasis, chemokine, and signaling intermediates are potential prognostic factors in a number of solid tumor, including breast cancer, melanoma, and lung cancer.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Amin Asnafi
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Klein A, Sagi-Assif O, Meshel T, Telerman A, Izraely S, Ben-Menachem S, Bayry J, Marzese DM, Ohe S, Hoon DSB, Erez N, Witz IP. CCR4 is a determinant of melanoma brain metastasis. Oncotarget 2018; 8:31079-31091. [PMID: 28415693 PMCID: PMC5458190 DOI: 10.18632/oncotarget.16076] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/02/2017] [Indexed: 01/21/2023] Open
Abstract
We previously identified the chemokine receptor CCR4 as part of the molecular signature of melanoma brain metastasis. The aim of this study was to determine the functional significance of CCR4 in melanoma brain metastasis. We show that CCR4 is more highly expressed by brain metastasizing melanoma cells than by local cutaneous cells from the same melanoma. Moreover, we found that the expression of CCR4 is significantly higher in paired clinical specimens of melanoma metastases than in samples of primary tumors from the same patients. Notably, the expression of the CCR4 ligands, Ccl22 and Ccl17 is upregulated at the earliest stages of brain metastasis, and precedes the infiltration of melanoma cells to the brain. In-vitro, CCL17 induced migration and transendothelial migration of melanoma cells. Functionally, human melanoma cells over-expressing CCR4 were more tumorigenic and produced a higher load of spontaneous brain micrometastasis than control cells. Blocking CCR4 with a small molecule CCR4 antagonist in-vivo, reduced the tumorigenicity and micrometastasis formation of melanoma cells. Taken together, these findings implicate CCR4 as a driver of melanoma brain metastasis.
Collapse
Affiliation(s)
- Anat Klein
- Department of Cell Research and Immunology, George S. Wise, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Orit Sagi-Assif
- Department of Cell Research and Immunology, George S. Wise, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Tsipi Meshel
- Department of Cell Research and Immunology, George S. Wise, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Alona Telerman
- Department of Cell Research and Immunology, George S. Wise, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Sivan Izraely
- Department of Cell Research and Immunology, George S. Wise, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Shlomit Ben-Menachem
- Department of Cell Research and Immunology, George S. Wise, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Jagadeesh Bayry
- Inserm Unité 1138, Center de Recherche des Cordeliers, Université Pierre et Marie Curie, Université, Paris Descartes, Paris, France
| | - Diego M Marzese
- Department of Molecular Oncology, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Shuichi Ohe
- Department of Molecular Oncology, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Dave S B Hoon
- Department of Molecular Oncology, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Neta Erez
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Isaac P Witz
- Department of Cell Research and Immunology, George S. Wise, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Westphal D, Glitza Oliva IC, Niessner H. Molecular insights into melanoma brain metastases. Cancer 2017; 123:2163-2175. [PMID: 28543697 DOI: 10.1002/cncr.30594] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/19/2016] [Accepted: 12/28/2016] [Indexed: 01/26/2023]
Abstract
Substantial proportions of patients with metastatic melanoma develop brain metastases during the course of their disease, often resulting in significant morbidity and death. Despite recent advances with BRAF/MEK and immune-checkpoint inhibitors in the treatment of patients who have melanoma with extracerebral metastases, patients who have melanoma brain metastases still have poor overall survival, highlighting the need for further therapy options. A deeper understanding of the molecular pathways involved in the development of melanoma brain metastases is required to develop more brain-specific therapies. Here, the authors summarize the currently known preclinical data and describe steps involved in the development of melanoma brain metastases. Only by knowing the molecular background is it possible to design new therapeutic agents that can be used to improve the outcome of patients with melanoma brain metastases. Cancer 2017;123:2163-75. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Dana Westphal
- Department of Dermatology, Carl Gustav Carus Medical Center, Technical University of Dresden, Dresden, Germany.,Center for Regenerative Therapies, Technical University of Dresden, Dresden, Germany
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heike Niessner
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
13
|
Izraely S, Ben-Menachem S, Sagi-Assif O, Meshel T, Marzese DM, Ohe S, Zubrilov I, Pasmanik-Chor M, Hoon DSB, Witz IP. ANGPTL4 promotes the progression of cutaneous melanoma to brain metastasis. Oncotarget 2017; 8:75778-75796. [PMID: 29100268 PMCID: PMC5652662 DOI: 10.18632/oncotarget.19018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/10/2017] [Indexed: 01/16/2023] Open
Abstract
In an ongoing effort to identify molecular determinants regulating melanoma brain metastasis, we previously identified Angiopoietin-like 4 (ANGPTL4) as a component of the molecular signature of such metastases. The aim of this study was to determine the functional significance of ANGPTL4 in the shaping of melanoma malignancy phenotype, especially in the establishment of brain metastasis. We confirmed that ANGPTL4 expression is significantly higher in cells metastasizing to the brain than in cells from the cutaneous (local) tumor from the same melanoma in a nude mouse xenograft model, and also in paired clinical specimens of melanoma metastases than in primary melanomas from the same patients. In vitro experiments indicated that brain-derived soluble factors and transforming growth factor β1 (TGFβ1) up-regulated ANGPTL4 expression by melanoma cells. Forced over-expression of ANGPTL4 in cutaneous melanoma cells promoted their ability to adhere and transmigrate brain endothelial cells. Over-expressing ANGPTL4 in cells derived from brain metastases resulted in the opposite effects. In vivo data indicated that forced overexpression of ANGPTL4 promoted the tumorigenicity of cutaneous melanoma cells but did not increase their ability to form brain metastasis. This finding can be explained by inhibitory activities of brain-derived soluble factors. Taken together these findings indicate that ANGPTL4 promotes the malignancy phenotype of primary melanomas of risk to metastasize to the brain.
Collapse
Affiliation(s)
- Sivan Izraely
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shlomit Ben-Menachem
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Orit Sagi-Assif
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tsipi Meshel
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Diego M Marzese
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Shuichi Ohe
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Inna Zubrilov
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Isaac P Witz
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Alnabulsi A, Swan R, Cash B, Alnabulsi A, Murray GI. The differential expression of omega-3 and omega-6 fatty acid metabolising enzymes in colorectal cancer and its prognostic significance. Br J Cancer 2017; 116:1612-1620. [PMID: 28557975 PMCID: PMC5518862 DOI: 10.1038/bjc.2017.135] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/13/2017] [Accepted: 04/24/2017] [Indexed: 12/28/2022] Open
Abstract
Background: Colorectal cancer is a common malignancy and one of the leading causes of cancer-related deaths. The metabolism of omega fatty acids has been implicated in tumour growth and metastasis. Methods: This study has characterised the expression of omega fatty acid metabolising enzymes CYP4A11, CYP4F11, CYP4V2 and CYP4Z1 using monoclonal antibodies we have developed. Immunohistochemistry was performed on a tissue microarray containing 650 primary colorectal cancers, 285 lymph node metastasis and 50 normal colonic mucosa. Results: The differential expression of CYP4A11 and CYP4F11 showed a strong association with survival in both the whole patient cohort (hazard ratio (HR)=1.203, 95% CI=1.092–1.324, χ2=14.968, P=0.001) and in mismatch repair-proficient tumours (HR=1.276, 95% CI=1.095–1.488, χ2=9.988, P=0.007). Multivariate analysis revealed that the differential expression of CYP4A11 and CYP4F11 was independently prognostic in both the whole patient cohort (P=0.019) and in mismatch repair proficient tumours (P=0.046). Conclusions: A significant and independent association has been identified between overall survival and the differential expression of CYP4A11 and CYP4F11 in the whole patient cohort and in mismatch repair-proficient tumours.
Collapse
Affiliation(s)
- Abdo Alnabulsi
- Department of Pathology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25, 2ZD, UK.,Vertebrate Antibodies, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Rebecca Swan
- Department of Pathology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25, 2ZD, UK
| | - Beatriz Cash
- Vertebrate Antibodies, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Ayham Alnabulsi
- Vertebrate Antibodies, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Graeme I Murray
- Department of Pathology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25, 2ZD, UK
| |
Collapse
|
15
|
Kircher DA, Silvis MR, Cho JH, Holmen SL. Melanoma Brain Metastasis: Mechanisms, Models, and Medicine. Int J Mol Sci 2016; 17:E1468. [PMID: 27598148 PMCID: PMC5037746 DOI: 10.3390/ijms17091468] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/02/2016] [Accepted: 08/26/2016] [Indexed: 12/15/2022] Open
Abstract
The development of brain metastases in patients with advanced stage melanoma is common, but the molecular mechanisms responsible for their development are poorly understood. Melanoma brain metastases cause significant morbidity and mortality and confer a poor prognosis; traditional therapies including whole brain radiation, stereotactic radiotherapy, or chemotherapy yield only modest increases in overall survival (OS) for these patients. While recently approved therapies have significantly improved OS in melanoma patients, only a small number of studies have investigated their efficacy in patients with brain metastases. Preliminary data suggest that some responses have been observed in intracranial lesions, which has sparked new clinical trials designed to evaluate the efficacy in melanoma patients with brain metastases. Simultaneously, recent advances in our understanding of the mechanisms of melanoma cell dissemination to the brain have revealed novel and potentially therapeutic targets. In this review, we provide an overview of newly discovered mechanisms of melanoma spread to the brain, discuss preclinical models that are being used to further our understanding of this deadly disease and provide an update of the current clinical trials for melanoma patients with brain metastases.
Collapse
Affiliation(s)
- David A Kircher
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA.
| | - Mark R Silvis
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA.
| | - Joseph H Cho
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA.
| | - Sheri L Holmen
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA.
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA.
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA.
| |
Collapse
|
16
|
Marzese DM, Witz IP, Kelly DF, Hoon DSB. Epigenomic landscape of melanoma progression to brain metastasis: unexplored therapeutic alternatives. Epigenomics 2015; 7:1303-11. [PMID: 26638944 DOI: 10.2217/epi.15.77] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Melanoma brain metastasis is a complication with rising incidence. Despite the high rate of somatic mutations driving the initial stages of melanocyte transformation, the brain colonization requires a phenotypic reprogramming that is, in part, influenced by epigenomic modifications. This special report summarizes recent findings in the epigenomic landscape of melanoma progression to brain metastasis, with particular emphasis on the clinical utility of DNA methylation, chromatin modifications and ncRNA expression as theragnostic markers, as well as the significance of the metastatic microenvironment on melanoma brain metastasis epigenome.
Collapse
Affiliation(s)
- Diego M Marzese
- Department of Molecular Oncology, John Wayne Cancer Institute at Providence Saint John's Health Center, 2200 Santa Monica Boulevard, Santa Monica, CA 90404, USA
| | - Isaac P Witz
- Department of Cell Research & Immunology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniel F Kelly
- Brain Tumor Center, Providence Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Dave S B Hoon
- Department of Molecular Oncology, John Wayne Cancer Institute at Providence Saint John's Health Center, 2200 Santa Monica Boulevard, Santa Monica, CA 90404, USA
| |
Collapse
|
17
|
Chemokine-Derived Peptides: Novel Antimicrobial and Antineoplasic Agents. Int J Mol Sci 2015; 16:12958-85. [PMID: 26062132 PMCID: PMC4490481 DOI: 10.3390/ijms160612958] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 05/03/2015] [Accepted: 05/08/2015] [Indexed: 12/19/2022] Open
Abstract
Chemokines are a burgeoning family of chemotactic cytokines displaying a broad array of functions such as regulation of homeostatic leukocyte traffic and development, as well as activating the innate immune system. Their role in controlling early and late inflammatory stages is now well recognized. An improper balance either in chemokine synthesis or chemokine receptor expression contributes to various pathological disorders making chemokines and their receptors a useful therapeutic target. Research in this area is progressing rapidly, and development of novel agents based on chemokine/chemokine receptors antagonist functions are emerging as attractive alternative drugs. Some of these novel agents include generation of chemokine-derived peptides (CDP) with potential agonist and antagonist effects on inflammation, cancer and against bacterial infections. CDP have been generated mainly from N- and C-terminus chemokine sequences with subsequent modifications such as truncations or elongations. In this review, we present a glimpse of the different pharmacological actions reported for CDP and our current understanding regarding the potential use of CDP alone or as part of the novel therapies proposed in the treatment of microbial infections and cancer.
Collapse
|
18
|
Vemurafenib resistance selects for highly malignant brain and lung-metastasizing melanoma cells. Cancer Lett 2015; 361:86-96. [PMID: 25725450 DOI: 10.1016/j.canlet.2015.02.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 12/19/2022]
Abstract
V600E being the most common mutation in BRAF, leads to constitutive activation of the MAPK signaling pathway. The majority of V600E BRAF positive melanoma patients treated with the BRAF inhibitor vemurafenib showed initial good clinical responses but relapsed due to acquired resistance to the drug. The aim of the present study was to identify possible biomarkers associated with the emergence of drug resistant melanoma cells. To this end we analyzed the differential gene expression of vemurafenib-sensitive and vemurafenib resistant brain and lung metastasizing melanoma cells. The major finding of this study is that the in vitro induction of vemurafenib resistance in melanoma cells is associated with an increased malignancy phenotype of these cells. Resistant cells expressed higher levels of genes coding for cancer stem cell markers (JARID1B, CD271 and Fibronectin) as well as genes involved in drug resistance (ABCG2), cell invasion and promotion of metastasis (MMP-1 and MMP-2). We also showed that drug-resistant melanoma cells adhere better to and transmigrate more efficiently through lung endothelial cells than drug-sensitive cells. The former cells also alter their microenvironment in a different manner from that of drug-sensitive cells. Biomarkers and molecular mechanisms associated with drug resistance may serve as targets for therapy of drug-resistant cancer.
Collapse
|
19
|
Klein A, Schwartz H, Sagi-Assif O, Meshel T, Izraely S, Ben Menachem S, Bengaiev R, Ben-Shmuel A, Nahmias C, Couraud PO, Witz IP, Erez N. Astrocytes facilitate melanoma brain metastasis via secretion of IL-23. J Pathol 2015; 236:116-27. [DOI: 10.1002/path.4509] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/23/2014] [Accepted: 01/07/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Anat Klein
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
- Department of Pathology, Sackler School of Medicine; Tel Aviv University; Tel Aviv Israel
| | - Hila Schwartz
- Department of Pathology, Sackler School of Medicine; Tel Aviv University; Tel Aviv Israel
| | - Orit Sagi-Assif
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Tsipi Meshel
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Sivan Izraely
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Shlomit Ben Menachem
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Roman Bengaiev
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Amir Ben-Shmuel
- Department of Pathology, Sackler School of Medicine; Tel Aviv University; Tel Aviv Israel
| | - Clara Nahmias
- Department of Cell Biology; Institut Cochin; Paris France
| | | | - Isaac P Witz
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences; Tel Aviv University; Tel Aviv Israel
| | - Neta Erez
- Department of Pathology, Sackler School of Medicine; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
20
|
Zhou J, Xiang Y, Yoshimura T, Chen K, Gong W, Huang J, Zhou Y, Yao X, Bian X, Wang JM. The role of chemoattractant receptors in shaping the tumor microenvironment. BIOMED RESEARCH INTERNATIONAL 2014; 2014:751392. [PMID: 25110692 PMCID: PMC4119707 DOI: 10.1155/2014/751392] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/17/2014] [Indexed: 12/13/2022]
Abstract
Chemoattractant receptors are a family of seven transmembrane G protein coupled receptors (GPCRs) initially found to mediate the chemotaxis and activation of immune cells. During the past decades, the functions of these GPCRs have been discovered to not only regulate leukocyte trafficking and promote immune responses, but also play important roles in homeostasis, development, angiogenesis, and tumor progression. Accumulating evidence indicates that chemoattractant GPCRs and their ligands promote the progression of malignant tumors based on their capacity to orchestrate the infiltration of the tumor microenvironment by immune cells, endothelial cells, fibroblasts, and mesenchymal cells. This facilitates the interaction of tumor cells with host cells, tumor cells with tumor cells, and host cells with host cells to provide a basis for the expansion of established tumors and development of distant metastasis. In addition, many malignant tumors of the nonhematopoietic origin express multiple chemoattractant GPCRs that increase the invasiveness and metastasis of tumor cells. Therefore, GPCRs and their ligands constitute targets for the development of novel antitumor therapeutics.
Collapse
Affiliation(s)
- Jiamin Zhou
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
- Endoscopic Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yi Xiang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Teizo Yoshimura
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Keqiang Chen
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Jian Huang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ye Zhou
- Department of Gastric Cancer and Soft Tissue Surgery, Fudan University Cancer Center, Shanghai 200032, China
| | - Xiaohong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ji Ming Wang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
21
|
Marzese DM, Scolyer RA, Roqué M, Vargas-Roig LM, Huynh JL, Wilmott JS, Murali R, Buckland ME, Barkhoudarian G, Thompson JF, Morton DL, Kelly DF, Hoon DSB. DNA methylation and gene deletion analysis of brain metastases in melanoma patients identifies mutually exclusive molecular alterations. Neuro Oncol 2014; 16:1499-509. [PMID: 24968695 DOI: 10.1093/neuonc/nou107] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The brain is a common target of metastases for melanoma patients. Little is known about the genetic and epigenetic alterations in melanoma brain metastases (MBMs). Unraveling these molecular alterations is a key step in understanding their aggressive nature and identifying novel therapeutic targets. METHODS Genome-wide DNA methylation analyses of MBMs (n = 15) and normal brain tissues (n = 91) and simultaneous multigene DNA methylation and gene deletion analyses of metastatic melanoma tissues (99 MBMs and 43 extracranial metastases) were performed. BRAF and NRAS mutations were evaluated in MBMs by targeted sequencing. RESULTS MBMs showed significant epigenetic heterogeneity. RARB, RASSF1, ESR1, APC, PTEN, and CDH13 genes were frequently hypermethylated. Deletions were frequently detected in the CDKN2A/B locus. Of MBMs, 46.1% and 28.8% had BRAF and NRAS missense mutations, respectively. Compared with lung and liver metastases, MBMs exhibited higher frequency of CDH13 hypermethylation and CDKN2A/B locus deletion. Mutual exclusivity between hypermethylated genes and CDKN2A/B locus deletion identified 2 clinically relevant molecular subtypes of MBMs. CDKN2A/B deletions were associated with multiple MBMs and frequently hypermethylated genes with shorter time to brain metastasis. CONCLUSIONS Melanoma cells that colonize the brain harbor numerous genetically and epigenetically altered genes. This study presents an integrated genomic and epigenomic analysis that reveals MBM-specific molecular alterations and mutually exclusive molecular subtypes.
Collapse
Affiliation(s)
- Diego M Marzese
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, California (D.M.M., J.L.H., D.S.B.H.); Department of Tissue Oncology and Diagnostic Pathology (R.A.S., M.E.B., J.F.T.) and Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, Australia (J.F.T.); Sydney Medical School, The University of Sydney, Sydney, Australia (R.A.S., J.S.W., M.E.B., J.F.T.); Melanoma Institute Australia, Sydney, Australia (R.A.S., J.S.W.); Cellular and Molecular Biology Laboratory, Institute of Histology and Embryology, Mendoza, Argentina (M.R.); Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo, Mendoza, Argentina (L.M.V.-R.); Department of Pathology (R.M.), Center for Molecular Oncology (R.M.), and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York (R.M.); Division of Surgical Oncology, John Wayne Cancer Institute, Santa Monica, California (D.L.M.); Brain Tumor Center, Saint John's Health Center, Santa Monica, California (G.B., D.F.K.)
| | - Richard A Scolyer
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, California (D.M.M., J.L.H., D.S.B.H.); Department of Tissue Oncology and Diagnostic Pathology (R.A.S., M.E.B., J.F.T.) and Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, Australia (J.F.T.); Sydney Medical School, The University of Sydney, Sydney, Australia (R.A.S., J.S.W., M.E.B., J.F.T.); Melanoma Institute Australia, Sydney, Australia (R.A.S., J.S.W.); Cellular and Molecular Biology Laboratory, Institute of Histology and Embryology, Mendoza, Argentina (M.R.); Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo, Mendoza, Argentina (L.M.V.-R.); Department of Pathology (R.M.), Center for Molecular Oncology (R.M.), and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York (R.M.); Division of Surgical Oncology, John Wayne Cancer Institute, Santa Monica, California (D.L.M.); Brain Tumor Center, Saint John's Health Center, Santa Monica, California (G.B., D.F.K.)
| | - Maria Roqué
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, California (D.M.M., J.L.H., D.S.B.H.); Department of Tissue Oncology and Diagnostic Pathology (R.A.S., M.E.B., J.F.T.) and Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, Australia (J.F.T.); Sydney Medical School, The University of Sydney, Sydney, Australia (R.A.S., J.S.W., M.E.B., J.F.T.); Melanoma Institute Australia, Sydney, Australia (R.A.S., J.S.W.); Cellular and Molecular Biology Laboratory, Institute of Histology and Embryology, Mendoza, Argentina (M.R.); Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo, Mendoza, Argentina (L.M.V.-R.); Department of Pathology (R.M.), Center for Molecular Oncology (R.M.), and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York (R.M.); Division of Surgical Oncology, John Wayne Cancer Institute, Santa Monica, California (D.L.M.); Brain Tumor Center, Saint John's Health Center, Santa Monica, California (G.B., D.F.K.)
| | - Laura M Vargas-Roig
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, California (D.M.M., J.L.H., D.S.B.H.); Department of Tissue Oncology and Diagnostic Pathology (R.A.S., M.E.B., J.F.T.) and Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, Australia (J.F.T.); Sydney Medical School, The University of Sydney, Sydney, Australia (R.A.S., J.S.W., M.E.B., J.F.T.); Melanoma Institute Australia, Sydney, Australia (R.A.S., J.S.W.); Cellular and Molecular Biology Laboratory, Institute of Histology and Embryology, Mendoza, Argentina (M.R.); Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo, Mendoza, Argentina (L.M.V.-R.); Department of Pathology (R.M.), Center for Molecular Oncology (R.M.), and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York (R.M.); Division of Surgical Oncology, John Wayne Cancer Institute, Santa Monica, California (D.L.M.); Brain Tumor Center, Saint John's Health Center, Santa Monica, California (G.B., D.F.K.)
| | - Jamie L Huynh
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, California (D.M.M., J.L.H., D.S.B.H.); Department of Tissue Oncology and Diagnostic Pathology (R.A.S., M.E.B., J.F.T.) and Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, Australia (J.F.T.); Sydney Medical School, The University of Sydney, Sydney, Australia (R.A.S., J.S.W., M.E.B., J.F.T.); Melanoma Institute Australia, Sydney, Australia (R.A.S., J.S.W.); Cellular and Molecular Biology Laboratory, Institute of Histology and Embryology, Mendoza, Argentina (M.R.); Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo, Mendoza, Argentina (L.M.V.-R.); Department of Pathology (R.M.), Center for Molecular Oncology (R.M.), and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York (R.M.); Division of Surgical Oncology, John Wayne Cancer Institute, Santa Monica, California (D.L.M.); Brain Tumor Center, Saint John's Health Center, Santa Monica, California (G.B., D.F.K.)
| | - James S Wilmott
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, California (D.M.M., J.L.H., D.S.B.H.); Department of Tissue Oncology and Diagnostic Pathology (R.A.S., M.E.B., J.F.T.) and Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, Australia (J.F.T.); Sydney Medical School, The University of Sydney, Sydney, Australia (R.A.S., J.S.W., M.E.B., J.F.T.); Melanoma Institute Australia, Sydney, Australia (R.A.S., J.S.W.); Cellular and Molecular Biology Laboratory, Institute of Histology and Embryology, Mendoza, Argentina (M.R.); Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo, Mendoza, Argentina (L.M.V.-R.); Department of Pathology (R.M.), Center for Molecular Oncology (R.M.), and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York (R.M.); Division of Surgical Oncology, John Wayne Cancer Institute, Santa Monica, California (D.L.M.); Brain Tumor Center, Saint John's Health Center, Santa Monica, California (G.B., D.F.K.)
| | - Rajmohan Murali
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, California (D.M.M., J.L.H., D.S.B.H.); Department of Tissue Oncology and Diagnostic Pathology (R.A.S., M.E.B., J.F.T.) and Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, Australia (J.F.T.); Sydney Medical School, The University of Sydney, Sydney, Australia (R.A.S., J.S.W., M.E.B., J.F.T.); Melanoma Institute Australia, Sydney, Australia (R.A.S., J.S.W.); Cellular and Molecular Biology Laboratory, Institute of Histology and Embryology, Mendoza, Argentina (M.R.); Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo, Mendoza, Argentina (L.M.V.-R.); Department of Pathology (R.M.), Center for Molecular Oncology (R.M.), and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York (R.M.); Division of Surgical Oncology, John Wayne Cancer Institute, Santa Monica, California (D.L.M.); Brain Tumor Center, Saint John's Health Center, Santa Monica, California (G.B., D.F.K.)
| | - Michael E Buckland
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, California (D.M.M., J.L.H., D.S.B.H.); Department of Tissue Oncology and Diagnostic Pathology (R.A.S., M.E.B., J.F.T.) and Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, Australia (J.F.T.); Sydney Medical School, The University of Sydney, Sydney, Australia (R.A.S., J.S.W., M.E.B., J.F.T.); Melanoma Institute Australia, Sydney, Australia (R.A.S., J.S.W.); Cellular and Molecular Biology Laboratory, Institute of Histology and Embryology, Mendoza, Argentina (M.R.); Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo, Mendoza, Argentina (L.M.V.-R.); Department of Pathology (R.M.), Center for Molecular Oncology (R.M.), and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York (R.M.); Division of Surgical Oncology, John Wayne Cancer Institute, Santa Monica, California (D.L.M.); Brain Tumor Center, Saint John's Health Center, Santa Monica, California (G.B., D.F.K.)
| | - Garni Barkhoudarian
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, California (D.M.M., J.L.H., D.S.B.H.); Department of Tissue Oncology and Diagnostic Pathology (R.A.S., M.E.B., J.F.T.) and Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, Australia (J.F.T.); Sydney Medical School, The University of Sydney, Sydney, Australia (R.A.S., J.S.W., M.E.B., J.F.T.); Melanoma Institute Australia, Sydney, Australia (R.A.S., J.S.W.); Cellular and Molecular Biology Laboratory, Institute of Histology and Embryology, Mendoza, Argentina (M.R.); Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo, Mendoza, Argentina (L.M.V.-R.); Department of Pathology (R.M.), Center for Molecular Oncology (R.M.), and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York (R.M.); Division of Surgical Oncology, John Wayne Cancer Institute, Santa Monica, California (D.L.M.); Brain Tumor Center, Saint John's Health Center, Santa Monica, California (G.B., D.F.K.)
| | - John F Thompson
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, California (D.M.M., J.L.H., D.S.B.H.); Department of Tissue Oncology and Diagnostic Pathology (R.A.S., M.E.B., J.F.T.) and Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, Australia (J.F.T.); Sydney Medical School, The University of Sydney, Sydney, Australia (R.A.S., J.S.W., M.E.B., J.F.T.); Melanoma Institute Australia, Sydney, Australia (R.A.S., J.S.W.); Cellular and Molecular Biology Laboratory, Institute of Histology and Embryology, Mendoza, Argentina (M.R.); Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo, Mendoza, Argentina (L.M.V.-R.); Department of Pathology (R.M.), Center for Molecular Oncology (R.M.), and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York (R.M.); Division of Surgical Oncology, John Wayne Cancer Institute, Santa Monica, California (D.L.M.); Brain Tumor Center, Saint John's Health Center, Santa Monica, California (G.B., D.F.K.)
| | - Donald L Morton
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, California (D.M.M., J.L.H., D.S.B.H.); Department of Tissue Oncology and Diagnostic Pathology (R.A.S., M.E.B., J.F.T.) and Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, Australia (J.F.T.); Sydney Medical School, The University of Sydney, Sydney, Australia (R.A.S., J.S.W., M.E.B., J.F.T.); Melanoma Institute Australia, Sydney, Australia (R.A.S., J.S.W.); Cellular and Molecular Biology Laboratory, Institute of Histology and Embryology, Mendoza, Argentina (M.R.); Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo, Mendoza, Argentina (L.M.V.-R.); Department of Pathology (R.M.), Center for Molecular Oncology (R.M.), and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York (R.M.); Division of Surgical Oncology, John Wayne Cancer Institute, Santa Monica, California (D.L.M.); Brain Tumor Center, Saint John's Health Center, Santa Monica, California (G.B., D.F.K.)
| | - Daniel F Kelly
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, California (D.M.M., J.L.H., D.S.B.H.); Department of Tissue Oncology and Diagnostic Pathology (R.A.S., M.E.B., J.F.T.) and Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, Australia (J.F.T.); Sydney Medical School, The University of Sydney, Sydney, Australia (R.A.S., J.S.W., M.E.B., J.F.T.); Melanoma Institute Australia, Sydney, Australia (R.A.S., J.S.W.); Cellular and Molecular Biology Laboratory, Institute of Histology and Embryology, Mendoza, Argentina (M.R.); Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo, Mendoza, Argentina (L.M.V.-R.); Department of Pathology (R.M.), Center for Molecular Oncology (R.M.), and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York (R.M.); Division of Surgical Oncology, John Wayne Cancer Institute, Santa Monica, California (D.L.M.); Brain Tumor Center, Saint John's Health Center, Santa Monica, California (G.B., D.F.K.)
| | - Dave S B Hoon
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, California (D.M.M., J.L.H., D.S.B.H.); Department of Tissue Oncology and Diagnostic Pathology (R.A.S., M.E.B., J.F.T.) and Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, Australia (J.F.T.); Sydney Medical School, The University of Sydney, Sydney, Australia (R.A.S., J.S.W., M.E.B., J.F.T.); Melanoma Institute Australia, Sydney, Australia (R.A.S., J.S.W.); Cellular and Molecular Biology Laboratory, Institute of Histology and Embryology, Mendoza, Argentina (M.R.); Tumor Biology Laboratory, Institute of Medicine and Experimental Biology of Cuyo, Mendoza, Argentina (L.M.V.-R.); Department of Pathology (R.M.), Center for Molecular Oncology (R.M.), and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York (R.M.); Division of Surgical Oncology, John Wayne Cancer Institute, Santa Monica, California (D.L.M.); Brain Tumor Center, Saint John's Health Center, Santa Monica, California (G.B., D.F.K.)
| |
Collapse
|
22
|
Han EC, Lee J, Ryu SW, Choi C. Tumor-conditioned Gr-1(+)CD11b(+) myeloid cells induce angiogenesis through the synergistic action of CCL2 and CXCL16 in vitro. Biochem Biophys Res Commun 2014; 443:1218-25. [PMID: 24388986 DOI: 10.1016/j.bbrc.2013.12.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 12/22/2013] [Indexed: 12/12/2022]
Abstract
Gr-1(+)CD11b(+) cells can suppress innate and adaptive immunity, and the functional immunosuppressive characteristics of these cells can be modulated by the tumor microenvironment. Since Gr-1(+)CD11(+) cells are also involved in tumor-associated angiogenesis, we hypothesized that the angiogenic nature of Gr-1(+)CD11b(+) cells could be regulated by the tumor milieu. To address this hypothesis, we imitated a tumor microenvironment by exposing Gr-1(+)CD11b(+) cells isolated from spleen of 4T1 mammary carcinoma-bearing mice to tumor-conditioned medium. Supernatants from tumor-conditioned Gr-1(+)CD11b(+) cells significantly induced capillary-like tube formation and migration of human umbilical vein endothelial cells (HUVECs) compared to naive Gr-1(+)CD11b(+) cells. Incubation of Gr-1(+)CD11b(+) cells with tumor-conditioned medium induced production of pro-angiogenic chemokines CCL2 and CXCL16. Pretreatment with an anti-CCL2 antibody, but not an anti-CXCL16 antibody, suppressed the angiogenic effects of tumor-conditioned Gr-1(+)CD11b(+) cells on HUVECs. Simultaneous neutralization of CCL2 and CXCL16 significantly inhibited tube formation and migration of HUVECs compared to the sole neutralization against CCL2. Supernatants from tumor-conditioned Gr-1(+)CD11b(+) cells induced phosphorylation of ERK1/2 in HUVECs, and inhibition of the ERK pathway blocked angiogenic effects. ERK pathway activity was partially abrogated by neutralization of CCL2 and more suppressed by simultaneous neutralization of CCL2 and CXCL16. These results collectively indicate that CCL2 and CXCL16 chemokines produced by tumor-conditioned Gr-1(+)CD11b(+) myeloid cells synergistically induce angiogenesis in vitro by stimulating the ERK1/2 signaling pathway. Thus, regulation of Gr-1(+)CD11b(+) cells in the tumor microenvironment may contribute to angiogenesis through the secretion of pro-angiogenic chemokines.
Collapse
Affiliation(s)
- Eun Chun Han
- Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Jungwhoi Lee
- Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Seung-Wook Ryu
- Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea; KI for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Chulhee Choi
- Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea; Department of Bio and Brain Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea; KI for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| |
Collapse
|
23
|
Maman S, Edry-Botzer L, Sagi-Assif O, Meshel T, Yuan W, Lu W, Witz IP. The metastatic microenvironment: lung-derived factors control the viability of neuroblastoma lung metastasis. Int J Cancer 2013; 133:2296-306. [PMID: 23649556 DOI: 10.1002/ijc.28255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/19/2013] [Indexed: 12/29/2022]
Abstract
Recent data suggest that the mechanisms determining whether a tumor cell reaching a secondary organ will enter a dormant state, progress toward metastasis, or go through apoptosis are regulated by the microenvironment of the distant organ. In neuroblastoma, 60-70% of children with high-risk disease will ultimately experience relapse due to the presence of micrometastases. The main goal of this study is to evaluate the role of the lung microenvironment in determining the fate of neuroblastoma lung metastases and micrometastases. Utilizing an orthotopic mouse model for human neuroblastoma metastasis, we were able to generate two neuroblastoma cell populations-lung micrometastatic (MicroNB) cells and lung macrometastatic (MacroNB) cells. These two types of cells share the same genetic background, invade the same distant organ, but differ in their ability to create metastasis in the lungs. We hypothesize that factors present in the lung microenvironment inhibit the propagation of MicroNB cells preventing them from forming overt lung metastasis. This study indeed shows that lung-derived factors significantly reduce the viability of MicroNB cells by up regulating the expression of pro-apoptotic genes, inducing cell cycle arrest and decreasing ERK and FAK phosphorylation. Lung-derived factors affected various additional progression-linked cellular characteristics of neuroblastoma cells, such as the expression of stem-cell markers, morphology, and migratory capacity. An insight into the microenvironmental effects governing neuroblastoma recurrence and progression would be of pivotal importance as they could have a therapeutic potential for the treatment of neuroblastoma residual disease.
Collapse
Affiliation(s)
- Shelly Maman
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978; Department of Biochemistry and Molecular Biology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201
| | | | | | | | | | | | | |
Collapse
|
24
|
The role played by the microenvironment in site-specific metastasis. Cancer Lett 2013; 352:54-8. [PMID: 23988268 DOI: 10.1016/j.canlet.2013.08.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/13/2013] [Accepted: 08/15/2013] [Indexed: 01/18/2023]
Abstract
Cancer cells that disseminate to metastatic sites may progress to frank metastasis or persist as dormant micrometastasis. Significant progress has been made in defining the genetic and phenotypic cancer-cell-autonomous determinants of metastasis and in the understanding of the cross-talk between metastasizing tumor cells and the metastatic microenvironment. However several questions remain open, in particular the identity of microenvironmental factors that keep micrometastatic cells in a state of dormancy and those that promote survival, proliferation and progression of such cells. Significantly more information is available on the latter factors than on microenvironmental cells and molecules that restrain micrometastasis. This mini-review summarizes findings suggesting that: In view of the above, it is not unlikely that metastases residing in different microenvironments may require "individualized" treatment modalities.
Collapse
|
25
|
Gaziel-Sovran A, Osman I, Hernando E. In vivo Modeling and Molecular Characterization: A Path Toward Targeted Therapy of Melanoma Brain Metastasis. Front Oncol 2013; 3:127. [PMID: 23750336 PMCID: PMC3668495 DOI: 10.3389/fonc.2013.00127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/06/2013] [Indexed: 11/24/2022] Open
Abstract
Brain metastasis (B-Met) from melanoma remains mostly incurable and the main cause of death from the disease. Early stage clinical trials and case studies show some promise for targeted therapies in the treatment of melanoma B-Met. However, the progression-free survival for currently available therapies, although significantly improved, is still very short. The development of new potent agents to eradicate melanoma B-Met relies on the elucidation of the molecular mechanisms that allow melanoma cells to reach and colonize the brain. The discovery of such mechanisms depends heavily on pre-clinical models that enable the testing of candidate factors and therapeutic agents in vivo. In this review we summarize the effects of available targeted therapies on melanoma B-Met in the clinic. We provide an overview of existing pre-clinical models to study the disease and discuss specific molecules and mechanisms reported to modulate different aspects of melanoma B-Met and finally, by integrating both clinical and basic data, we summarize both opportunities and challenges currently presented to researchers in the field.
Collapse
Affiliation(s)
- Avital Gaziel-Sovran
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, NYU Langone Medical Center , New York, NY , USA ; Department of Pathology, NYU School of Medicine , New York, NY , USA
| | | | | |
Collapse
|
26
|
Role of the blood-brain barrier in the formation of brain metastases. Int J Mol Sci 2013; 14:1383-411. [PMID: 23344048 PMCID: PMC3565326 DOI: 10.3390/ijms14011383] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 01/11/2023] Open
Abstract
The majority of brain metastases originate from lung cancer, breast cancer and malignant melanoma. In order to reach the brain, parenchyma metastatic cells have to transmigrate through the endothelial cell layer of brain capillaries, which forms the morphological basis of the blood-brain barrier (BBB). The BBB has a dual role in brain metastasis formation: it forms a tight barrier protecting the central nervous system from entering cancer cells, but it is also actively involved in protecting metastatic cells during extravasation and proliferation in the brain. The mechanisms of interaction of cancer cells and cerebral endothelial cells are largely uncharacterized. Here, we provide a comprehensive review on our current knowledge about the role of junctional and adhesion molecules, soluble factors, proteolytic enzymes and signaling pathways mediating the attachment of tumor cells to brain endothelial cells and the transendothelial migration of metastatic cells. Since brain metastases represent a great therapeutic challenge, it is indispensable to understand the mechanisms of the interaction of tumor cells with the BBB in order to find targets of prevention of brain metastasis formation.
Collapse
|
27
|
Huynh KT, Hoon DSB. Epigenetics of regional lymph node metastasis in solid tumors. Clin Exp Metastasis 2012; 29:747-56. [DOI: 10.1007/s10585-012-9491-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/20/2012] [Indexed: 01/01/2023]
|