1
|
Lv F, Qi N, Liu C, Wang L, Dai T, Tian H. Dichloroacetate: A metabolic game-changer in alleviating macrophage inflammation and enhancing recovery after myocardial infarction. Cell Signal 2025; 127:111618. [PMID: 39863031 DOI: 10.1016/j.cellsig.2025.111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/17/2025] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Dichloroacetate (DCA) has shown potential in modulating cellular metabolism and inflammation, particularly in cardiac conditions. This study investigates DCA's protective effects in a mouse model of myocardial infarction (MI), focusing on its ability to enhance cardiac function, reduce inflammation, and shift macrophage polarization from the pro-inflammatory M1 to the anti-inflammatory M2 phenotype. METHODS An acute MI model was created using left anterior descending coronary artery ligation. Mice were assigned to four groups: normal control, MI control, MI + 50 mM DCA, and MI + 100 mM DCA. Cardiac fibrosis and injury were assessed through H&E staining. Cardiac function was evaluated via echocardiography, and serum levels of creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH) were measured. Inflammation and apoptosis were analyzed through immunohistochemistry, ELISA, western blotting, and flow cytometry in heart tissue and RAW264.7 cells. Additionally, macrophage polarization and relevant signaling pathways were examined. RESULTS DCA significantly improved cardiac function in MI mice, evidenced by reduced myocardial injury and lower CK-MB and LDH levels. It also decreased inflammatory cytokines (TNF-α, IL-6 and IL-1β) and facilitated macrophage polarization from M1 to M2. Western blotting revealed that DCA inhibited iNOS and COX2 while enhancing Arg1 expression, alongside improved mitochondrial function and reduced apoptosis. Additionally, by injecting AAV-PDHK4 (pyruvate dehydrogenase kinase) into MI mice, we found that DCA effectively inhibited the progression of MI through the suppression of PDHK4. CONCLUSION DCA protects against myocardial infarction by enhancing cardiac function, reducing inflammation, and promoting macrophage polarization, likely through inhibition of PDHK4 and NF-κB pathways, positioning it as a potential therapeutic strategy for cardiac repair post-MI.
Collapse
Affiliation(s)
- Fuyou Lv
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Department of Thoracic surgery, The First Hospital of Harbin, Heilongjiang, China; Future Medical laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ning Qi
- Department of Thoracic surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chang Liu
- Future Medical laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lili Wang
- Department of Thoracic surgery, The First Hospital of Harbin, Heilongjiang, China
| | - Tianning Dai
- Department of Thoracic surgery, The First Hospital of Harbin, Heilongjiang, China.
| | - Hai Tian
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Future Medical laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
2
|
Muraoka S, Baba T, Akazawa T, Katayama KI, Kusumoto H, Yamashita S, Kohjimoto Y, Iwabuchi S, Hashimoto S, Hara I, Inoue N. Tumor-derived lactic acid promotes acetylation of histone H3K27 and differentiation of IL-10-producing regulatory B cells through direct and indirect signaling pathways. Int J Cancer 2025; 156:840-852. [PMID: 39482832 DOI: 10.1002/ijc.35229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024]
Abstract
Tumor cells are known to enhance glycolysis, even under normoxic conditions, via the Warburg effect, producing excess lactic acid in the tumor microenvironment. Lactic acid enhances the IL-23/IL-17 pathway and induces chronic inflammation. The acidic microenvironment formed by lactic acid suppresses immune cell proliferation and activation. In the present study, we clarified that lactic acid had two novel activities for immune cells. First, lactic acid specifically enhanced acetylation at lysine 27 of histone H3 (H3K27ac) in splenic B cells and monocytes/macrophages, and this epigenetically up-regulates the expression of genes. Acetylation and methylation of other residues of histone H3 were rarely induced. Second, lactic acid induced a particularly-marked enhancement of Il10 gene expression in B cells, leading to an increase in IL-10-producing regulatory B (Breg) cells. Furthermore, two pathways should be involved in both the enhancement of H3K27ac and the induction of Breg cells by lactic acid: a direct pathway that enhances the CD40 signal in B cells, and an indirect pathway that affects B cells by activating the exchange protein directly activated by cAMP (EPAC) 1/2 in non-B cells. In tumor-bearing mice, the levels of H3K27ac of tumor-infiltrating B cells were significantly higher than splenic B cells and were suppressed by intraperitoneal injection of the EPAC1/2 inhibitor. In conclusion, tumor-derived lactic acid increases H3K27ac and IL-10-producing Breg cells, causing the suppression of anti-tumor immunity.
Collapse
Affiliation(s)
- Satoshi Muraoka
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Takashi Baba
- Department of Molecular Genetics, Wakayama Medical University, Wakayama, Japan
| | - Takashi Akazawa
- Department of Cancer Drug Discovery and Development, Research Center, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| | - Kei-Ichi Katayama
- Department of Molecular Genetics, Wakayama Medical University, Wakayama, Japan
| | - Hiroki Kusumoto
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | | | - Yasuo Kohjimoto
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Wakayama Medical University, Wakayama, Japan
| | - Isao Hara
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Norimitsu Inoue
- Department of Molecular Genetics, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
3
|
Zhao Y, Zhu W, Dong S, Zhang H, Zhou W. Glucose Metabolism Reprogramming of Immune Cells in the Microenvironment of Pancreatic and Hepatobiliary Cancers. J Gastroenterol Hepatol 2025; 40:355-366. [PMID: 39780341 DOI: 10.1111/jgh.16873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND AND AIM Pancreatic and hepatobiliary cancers are increasing in prevalence and contribute significantly to cancer-related mortality worldwide. Emerging therapeutic approaches, particularly immunotherapy, are gaining attention for their potential to harness the patient's immune system to combat these tumors. Understanding the role of immune cells in the tumor microenvironment (TME) and their metabolic reprogramming is key to developing more effective treatment strategies. This review aims to explore the relationship between immune cell function and glucose metabolism in the TME of pancreatic and hepatobiliary cancers. METHODS This review synthesizes current research on the metabolic adaptations of immune cells, specifically focusing on glucose metabolism within the TME of pancreatic and hepatobiliary cancers. We examine the mechanisms by which immune cells influence tumor progression through metabolic reprogramming and how these interactions can be targeted for therapeutic purposes. RESULTS Immune cells in the TME undergo significant metabolic changes, with glucose metabolism playing a central role in modulating immune responses. These metabolic shifts not only affect immune cell function but also influence tumor behavior and progression. The unique metabolic features of immune cells in pancreatic and hepatobiliary cancers provide new opportunities for targeting immune responses to combat these malignancies more effectively. CONCLUSION Understanding the complex relationship between immune cell glucose metabolism and tumor progression in the TME of pancreatic and hepatobiliary cancers offers promising therapeutic strategies. By modulating immune responses through targeted metabolic interventions, it may be possible to improve the efficacy of immunotherapies and better combat these aggressive cancers.
Collapse
Affiliation(s)
- Yongqing Zhao
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Weixiong Zhu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Shi Dong
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Hui Zhang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Wence Zhou
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Environmental Oncology, Lanzhou, China
| |
Collapse
|
4
|
Li S, Han H, Yang K, Li X, Ma L, Yang Z, Zhao YX. Emerging role of metabolic reprogramming in the immune microenvironment and immunotherapy of thyroid cancer. Int Immunopharmacol 2025; 144:113702. [PMID: 39602959 DOI: 10.1016/j.intimp.2024.113702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
The metabolic reprogramming of cancer cells is a hallmark of many malignancies. To meet the energy acquisition needs of tumor cells for rapid proliferation, tumor cells reprogram their nutrient metabolism, which is caused by the abnormal expression of transcription factors and signaling molecules related to energy metabolic pathways as well as the upregulation and downregulation of abnormal metabolic enzymes, receptors, and mediators. Thyroid cancer (TC) is the most common endocrine tumor, and immunotherapy has become the mainstream choice for clinical benefit after the failure of surgical, endocrine, and radioiodine therapies. TC change the tumor microenvironment (TME) through nutrient competition and metabolites, causing metabolic reprogramming of immune cells, profoundly changing immune cell function, and promoting immune evasion of tumor cells. A deeper understanding of how metabolic reprogramming alters the TME and controls immune cell fate and function will help improve the effectiveness of TC immunotherapy and patient outcomes. This paper aims to elucidate the metabolic communication that occurs between immune cells around TC and discusses how metabolic reprogramming in TC affects the immune microenvironment and the effectiveness of anti-cancer immunotherapy. Finally, targeting key metabolic checkpoints during metabolic reprogramming, combined with immunotherapy, is a promising strategy.
Collapse
Affiliation(s)
- Shouhua Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China.
| | - Hengtong Han
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Kaili Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China.
| | - Xiaoxiao Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China.
| | - Libin Ma
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Ze Yang
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Yong-Xun Zhao
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
5
|
Jiang M, Wang Y, Zhao X, Yu J. From metabolic byproduct to immune modulator: the role of lactate in tumor immune escape. Front Immunol 2024; 15:1492050. [PMID: 39654883 PMCID: PMC11625744 DOI: 10.3389/fimmu.2024.1492050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Lactic acid, a key metabolic byproduct within the tumor microenvironment, has garnered significant attention for its role in immune evasion mechanisms. Tumor cells produce and release large amounts of lactic acid into the tumor microenvironment through aberrant glycolysis via the Warburg effect, leading to a drop in pH. Elevated lactic acid levels profoundly suppress proliferation capacity, cytotoxic functions, and migratory abilities of immune effector cells such as macrophages and natural killer cells at the tumor site. Moreover, lactic acid can modulate the expression of surface molecules on immune cells, interfering with their recognition and attack of tumor cells, and it regulates signaling pathways that promote the expansion and enhanced function of immunosuppressive cells like regulatory T cells, thereby fostering immune tolerance within the tumor microenvironment. Current research is actively exploring strategies targeting lactic acid metabolism to ameliorate tumor immune evasion. Key approaches under investigation include inhibiting the activity of critical enzymes in lactic acid production to reduce its synthesis or blocking lactate transporters to alter intracellular and extracellular lactate distribution. These methods hold promise when combined with existing immunotherapies such as immune checkpoint inhibitors and chimeric antigen receptor T-cell therapies to enhance the immune system's ability to eliminate tumor cells. This could pave the way for novel combinatorial treatment strategies in clinical cancer therapy, effectively overcoming tumor immune evasion phenomena, and ultimately improving overall treatment efficacy.
Collapse
Affiliation(s)
- Mengqian Jiang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuanchun Wang
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Xiaoyong Zhao
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Precision Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
6
|
Zheng Y, Xu R, Chen X, Lu Y, Zheng J, Lin Y, Lin P, Zhao X, Cui L. Metabolic gatekeepers: harnessing tumor-derived metabolites to optimize T cell-based immunotherapy efficacy in the tumor microenvironment. Cell Death Dis 2024; 15:775. [PMID: 39461979 PMCID: PMC11513100 DOI: 10.1038/s41419-024-07122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
The tumor microenvironment (TME) orchestrates a complex interplay between tumor cells and immune cells, crucially modulating the immune response. This review delves into the pivotal role of metabolic reprogramming in the TME, highlighting how tumor-derived metabolites influence T lymphocyte functionality and the efficacy of cancer immunotherapies. Focusing on the diverse roles of these metabolites, we examine how lactate, lipids, amino acids, and other biochemical signals act not only as metabolic byproducts but as regulatory agents that can suppress or potentiate T cell-mediated immunity. By integrating recent findings, we underscore the dual impact of these metabolites on enhancing tumor progression and inhibiting immune surveillance. Furthermore, we propose innovative therapeutic strategies that target metabolic pathways to restore immune function within the TME. The insights provided in this review pave the way for the development of metabolic interventions aimed at enhancing the success of immunotherapies in oncology, offering new hope for precision medicine in the treatment of cancer.
Collapse
Affiliation(s)
- Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Li G, Ma X, Sui S, Chen Y, Li H, Liu L, Zhang X, Zhang L, Hao Y, Yang Z, Yang S, He X, Wang Q, Tao W, Xu S. NAT10/ac4C/JunB facilitates TNBC malignant progression and immunosuppression by driving glycolysis addiction. J Exp Clin Cancer Res 2024; 43:278. [PMID: 39363363 PMCID: PMC11451012 DOI: 10.1186/s13046-024-03200-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND N4-Acetylcytidine (ac4C), a highly conserved post-transcriptional mechanism, plays a pivotal role in RNA modification and tumor progression. However, the molecular mechanism by which ac4C modification mediates tumor immunosuppression remains elusive in triple-negative breast cancer (TNBC). METHODS NAT10 expression was analyzed in TNBC samples in the level of mRNA and protein, and compared with the corresponding normal tissues. ac4C modification levels also measured in the TNBC samples. The effects of NAT10 on immune microenvironment and tumor metabolism were investigated. NAT10-mediated ac4C and its downstream regulatory mechanisms were determined in vitro and in vivo. The combination therapy of targeting NAT10 in TNBC was further explored. RESULTS The results revealed that the loss of NAT10 inhibited TNBC development and promoted T cell activation. Mechanistically, NAT10 upregulated JunB expression by increasing ac4C modification levels on its mRNA. Moreover, JunB further up-regulated LDHA expression and facilitated glycolysis. By deeply digging, remodelin, a NAT10 inhibitor, elevated the surface expression of CTLA-4 on T cells. The combination of remodelin and CTLA-4 mAb can further activate T cells and inhibite tumor progression. CONCLUSION Taken together, our study demonstrated that the NAT10-ac4C-JunB-LDHA pathway increases glycolysis levels and creates an immunosuppressive tumor microenvironment (TME). Consequently, targeting this pathway may assist in the identification of novel therapeutic strategies to improve the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Guozheng Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Xin Ma
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Shiyao Sui
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Yihai Chen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hui Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Lei Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Xin Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Lei Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Yi Hao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zihan Yang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Shuai Yang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Xu He
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
- Weihan Yu Academy, Harbin Medical University, Harbin, 150086, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China.
- Key Laboratory of Tumor Biotherapy of Heilongjiang Province, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Weiyang Tao
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China.
- Key Laboratory of Tumor Biotherapy of Heilongjiang Province, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
8
|
Zhang X, Liang C, Wu C, Wan S, Xu L, Wang S, Wang J, Huang X, Xu L. A rising star involved in tumour immunity: Lactylation. J Cell Mol Med 2024; 28:e70146. [PMID: 39417674 PMCID: PMC11483924 DOI: 10.1111/jcmm.70146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
In recent years, continuous exploration worldwide has revealed that some metabolites produced during cellular and tissue metabolism can act as signalling molecules to exert different effects on the human body. These metabolites may act as cofactors for proteases or as post-translational modifications linked to proteins. Lactate, a traditional metabolite, is found at high levels in the tumour microenvironment (TME). Many studies have shown that lactate influences tumorigenesis and development via different mechanisms, not only through the metabolic reprogramming of tumours but also through its significant impact on tumour immunity. Previously, tumour cells were reported to use glucose and glutamine to fuel lactate metabolism; however, lactate serves not only as an energy source for tumour cells but also as a precursor substance needed for the post-translational modification of proteins. Recent studies identified a novel form of epigenetic modification, lactate-mediated histone lysine lactylation (Kla) and demonstrated that histone lactylation directly stimulates chromatin after gene transcription; consequently, lactylation has become a popular research topic in recent years. This article focuses on the research progress and application prospects of lactylation in the context of tumour immunity.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Changming Liang
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Chengwei Wu
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Senlin Wan
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Lishuai Xu
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Song Wang
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Jiawei Wang
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Xiaoxu Huang
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| | - Li Xu
- Department of Gastrointestinal SurgeryThe First Affiliated Yijishan Hospital of Wannan Medical CollegeWuhuAnhuiChina
- Anhui Province Key Laboratory of Non‐coding RNA Basic and Clinical Transformation (Wannan Medical College)WuhuChina
| |
Collapse
|
9
|
Koltai T, Fliegel L. Dichloroacetate for Cancer Treatment: Some Facts and Many Doubts. Pharmaceuticals (Basel) 2024; 17:744. [PMID: 38931411 PMCID: PMC11206832 DOI: 10.3390/ph17060744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Rarely has a chemical elicited as much controversy as dichloroacetate (DCA). DCA was initially considered a dangerous toxic industrial waste product, then a potential treatment for lactic acidosis. However, the main controversies started in 2008 when DCA was found to have anti-cancer effects on experimental animals. These publications showed contradictory results in vivo and in vitro such that a thorough consideration of this compound's in cancer is merited. Despite 50 years of experimentation, DCA's future in therapeutics is uncertain. Without adequate clinical trials and health authorities' approval, DCA has been introduced in off-label cancer treatments in alternative medicine clinics in Canada, Germany, and other European countries. The lack of well-planned clinical trials and its use by people without medical training has discouraged consideration by the scientific community. There are few thorough clinical studies of DCA, and many publications are individual case reports. Case reports of DCA's benefits against cancer have been increasing recently. Furthermore, it has been shown that DCA synergizes with conventional treatments and other repurposable drugs. Beyond the classic DCA target, pyruvate dehydrogenase kinase, new target molecules have also been recently discovered. These findings have renewed interest in DCA. This paper explores whether existing evidence justifies further research on DCA for cancer treatment and it explores the role DCA may play in it.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina
| | - Larry Fliegel
- Department of Biochemistry, University Alberta, Edmonton, AB T6G 2H7, Canada;
| |
Collapse
|
10
|
Ji P, Jin XK, Deng XC, Zhang SM, Liang JL, Li QR, Chen WH, Zhang XZ. Metabolic Regulation-Mediated Reversion of the Tumor Immunosuppressive Microenvironment for Potentiating Cooperative Metabolic Therapy and Immunotherapy. NANO LETTERS 2024; 24:4691-4701. [PMID: 38588212 DOI: 10.1021/acs.nanolett.4c01307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Tumor cells exhibit heightened glucose (Glu) consumption and increased lactic acid (LA) production, resulting in the formation of an immunosuppressive tumor microenvironment (TME) that facilitates malignant proliferation and metastasis. In this study, we meticulously engineer an antitumor nanoplatform, denoted as ZLGCR, by incorporating glucose oxidase, LA oxidase, and CpG oligodeoxynucleotide into zeolitic imidazolate framework-8 that is camouflaged with a red blood cell membrane. Significantly, ZLGCR-mediated consumption of Glu and LA not only amplifies the effectiveness of metabolic therapy but also reverses the immunosuppressive TME, thereby enhancing the therapeutic outcomes of CpG-mediated antitumor immunotherapy. It is particularly important that the synergistic effect of metabolic therapy and immunotherapy is further augmented when combined with immune checkpoint blockade therapy. Consequently, this engineered antitumor nanoplatform will achieve a cooperative tumor-suppressive outcome through the modulation of metabolism and immune responses within the TME.
Collapse
Affiliation(s)
- Ping Ji
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
- Institute of Precision Medicine Peking University Shenzhen Hospital, Shenzhen 518036, P. R. China
| | - Xiao-Kang Jin
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xin-Chen Deng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Shi-Man Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Jun-Long Liang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Qian-Ru Li
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, P. R. China
| |
Collapse
|
11
|
Lin C, Chu Y, Zheng Y, Gu S, Hu Y, He J, Shen Z. Macrophages: plastic participants in the diagnosis and treatment of head and neck squamous cell carcinoma. Front Immunol 2024; 15:1337129. [PMID: 38650924 PMCID: PMC11033442 DOI: 10.3389/fimmu.2024.1337129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) rank among the most prevalent types of head and neck cancer globally. Unfortunately, a significant number of patients receive their diagnoses at advanced stages, limiting the effectiveness of available treatments. The tumor microenvironment (TME) is a pivotal player in HNSCC development, with macrophages holding a central role. Macrophages demonstrate diverse functions within the TME, both inhibiting and facilitating cancer progression. M1 macrophages are characterized by their phagocytic and immune activities, while M2 macrophages tend to promote inflammation and immunosuppression. Striking a balance between these different polarization states is essential for maintaining overall health, yet in the context of tumors, M2 macrophages typically prevail. Recent efforts have been directed at controlling the polarization states of macrophages, paving the way for novel approaches to cancer treatment. Various drugs and immunotherapies, including innovative treatments based on macrophages like engineering macrophages and CAR-M cell therapy, have been developed. This article provides an overview of the roles played by macrophages in HNSCC, explores potential therapeutic targets and strategies, and presents fresh perspectives on the future of HNSCC treatment.
Collapse
Affiliation(s)
- Chen Lin
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Yidian Chu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Ye Zheng
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Shanshan Gu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Yanghao Hu
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Jiali He
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Zhisen Shen
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
12
|
Ohashi T, Terazawa K, Shibata H, Inoue N, Ogawa T. Metabolic profiling analysis of head and neck squamous cell carcinoma. Oral Dis 2024; 30:342-352. [PMID: 36349421 DOI: 10.1111/odi.14432] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/02/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Tumor cells can acquire a large amount of energy and structural components by reprogramming energy metabolism; moreover, metabolic profiles slightly differ according to cancer type. This study compared and assessed the metabolic profile of head and neck squamous cell carcinoma (HNSCC) and normal tissues, which were collected from patients without cancer. SUBJECTS AND METHODS Overall, 23 patients with HNSCC and 6 patients without cancer were included in the analysis. Metabolomic profiles were analyzed using capillary electrophoresis-mass spectrometry. Gene expression was evaluated using real-time reverse transcription-polymerase chain reaction. RESULTS Glycolysis, the pentose phosphate pathway, tricarboxylic acid cycle, and glutamine metabolism were upregulated in HNSCC tissues based on gene expression analysis. HNSCC could then have enhanced energy production and structural component. The levels of lactate, succinate, glutathione, 2-hydroxyglutarate, and S-adenosylmethionine, considered as oncometabolites, increased and these had accumulated in HNSCC tissues. CONCLUSIONS The level of metabolites and the expression of enzymes differ between HNSCC and normal tissues. Reprogramming metabolism in HNSCC provides an energy source as well as structural components, creating a system that offers rapid proliferation, progression, and is less likely to be eliminated.
Collapse
Affiliation(s)
- Toshimitsu Ohashi
- Department of Otolaryngology-Head and Neck Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kosuke Terazawa
- Department of Otolaryngology-Head and Neck Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hirofumi Shibata
- Department of Otolaryngology-Head and Neck Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Norimitsu Inoue
- Department of Molecular Genetics, Wakayama Medical University, Wakayama, Japan
| | - Takenori Ogawa
- Department of Otolaryngology-Head and Neck Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
13
|
Kleef R, Dank M, Herold M, Agoston EI, Lohinszky J, Martinek E, Herold Z, Szasz AM. Comparison of the effectiveness of integrative immunomodulatory treatments and conventional therapies on the survival of selected gastrointestinal cancer patients. Sci Rep 2023; 13:20360. [PMID: 37990076 PMCID: PMC10663566 DOI: 10.1038/s41598-023-47802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/18/2023] [Indexed: 11/23/2023] Open
Abstract
In the last decade, the use of immunomodulating treatments (IMT) at integrative oncology providers (IOP) increased. IMTs are used to modulate the tumor microenvironment, which might lead to increased response-to-treatment, and the indication of immune checkpoint inhibitors might also be widened. The efficacy and safety of IMTs in advanced/metastatic gastrointestinal cancers were compared with conventional chemo(radio)therapy (CT). 21 colorectal- (CRC), 14 pancreatic- (PC), 5 cholangiocellular- (CCC), 5 gastric- (GC) and 4 esophageal cancer (EC) patients received IMT. IMT and CT were compared in CRC and PC. CT was administered at an academic oncology center. After the initiation of IMT, a median survival of ~ 20 (CRC, PC and EC) and ~ 10 months (CCC and GC) was observed. Of the IMTs, locoregional modulated electro-hyperthermia had the most positive effect on overall survival (HR: 0.3055; P = 0.0260), while fever-inducing interleukin-2, and low-dose ipilimumab showed a positive tendency. IMT was superior to CT in PC (HR: 0.1974; P = 0.0013), while modest effect was detected in CRC (HR: 0.7797; P = 0.4710). When the whole study population was analyzed, IMTs showed minimal effect on patient survival, still CT had the greatest effect if introduced as early as possible (HR: 0.0624; P < 0.0001). The integrative IMTs in the presented form have mild impact on gastrointestinal cancer patients' survival, however, we observed its benefit in PC, which warrants further investigations.
Collapse
Affiliation(s)
- Ralf Kleef
- Dr. Kleef Medical Center, 1030, Vienna, Austria
| | - Magdolna Dank
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, 1082, Hungary
| | - Magdolna Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, 1082, Hungary
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, 1088, Hungary
| | - Emese Irma Agoston
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, 1082, Hungary
| | - Julia Lohinszky
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, 1088, Hungary
| | - Emoke Martinek
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, 1082, Hungary
| | - Zoltan Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, 1082, Hungary
| | - Attila Marcell Szasz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, 1082, Hungary.
| |
Collapse
|
14
|
Li S, Li Z, Wang X, Zhong J, Yu D, Chen H, Ma W, Liu L, Ye M, Shen R, Jiang C, Meng X, Cai J. HK3 stimulates immune cell infiltration to promote glioma deterioration. Cancer Cell Int 2023; 23:227. [PMID: 37779195 PMCID: PMC10543879 DOI: 10.1186/s12935-023-03039-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Glioma is the most common and lethal type of brain tumor, and it is characterized by unfavorable prognosis and high recurrence rates. The reprogramming of energy metabolism and an immunosuppressive tumor microenvironment (TME) are two hallmarks of tumors. Complex and dynamic interactions between neoplastic cells and the surrounding microenvironment can generate an immunosuppressive TME, which can accelerate the malignant progression of glioma. Therefore, it is crucial to explore associations between energy metabolism and the immunosuppressive TME and to identify new biomarkers for glioma prognosis. METHODS In our work, we analyzed the co-expression relationship between glycolytic genes and immune checkpoints based on the transcriptomic data from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) and found the correlation between HK3 expression and glioma tumor immune status. To investigate the biological role of HK3 in glioma, we performed bioinformatics analysis and established a mouse glioblastoma (GBM) xenograft model. RESULTS Our study showed that HK3 significantly stimulated immune cell infiltration into the glioma TME. Tissue samples with higher HK3 expressive level showed increasing levels of immune cells infiltration, including M2 macrophages, neutrophils, and various subtypes of activated memory CD4+ T cells. Furthermore, HK3 expression was significantly increasing along with the elevated tumor grade, had a higher level in the mesenchymal subtype compared with those in other subtypes of GBM and could independently predict poor outcomes of GBM patients. CONCLUSION The present work mainly concentrated on the biological role of HK3 in glioma and offered a novel insight of HK3 regulating the activation of immune cells in the glioma microenvironment. These findings could provide a new theoretical evidence for understanding the metabolic molecular within the glioma microenvironment and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Shupeng Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Neurosurgery, The Dalian Municipal Central Hospital, Dalian, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziwei Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xinyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Junzhe Zhong
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Daohan Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lingling Liu
- Department of Clinical Medical Record, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Minghuang Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruofei Shen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- The Sixth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
15
|
Niu N, Ye J, Hu Z, Zhang J, Wang Y. Regulative Roles of Metabolic Plasticity Caused by Mitochondrial Oxidative Phosphorylation and Glycolysis on the Initiation and Progression of Tumorigenesis. Int J Mol Sci 2023; 24:ijms24087076. [PMID: 37108242 PMCID: PMC10139088 DOI: 10.3390/ijms24087076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
One important feature of tumour development is the regulatory role of metabolic plasticity in maintaining the balance of mitochondrial oxidative phosphorylation and glycolysis in cancer cells. In recent years, the transition and/or function of metabolic phenotypes between mitochondrial oxidative phosphorylation and glycolysis in tumour cells have been extensively studied. In this review, we aimed to elucidate the characteristics of metabolic plasticity (emphasizing their effects, such as immune escape, angiogenesis migration, invasiveness, heterogeneity, adhesion, and phenotypic properties of cancers, among others) on tumour progression, including the initiation and progression phases. Thus, this article provides an overall understanding of the influence of abnormal metabolic remodeling on malignant proliferation and pathophysiological changes in carcinoma.
Collapse
Affiliation(s)
- Nan Niu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
- College of Physics and Optoelectronic Engineering, Canghai Campus of Shenzhen University, Shenzhen 518060, China
| | - Jinfeng Ye
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Zhangli Hu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Junbin Zhang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Yun Wang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
16
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
17
|
Metabolic Regulation of T cell Activity: Implications for Metabolic-Based T-cell Therapies for Cancer. IRANIAN BIOMEDICAL JOURNAL 2023; 27:1-14. [PMID: 36624636 PMCID: PMC9971708 DOI: 10.52547/ibj.3811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Immunometabolism is an emerging field in tumor immunotherapy. Understanding the metabolic competition for access to the limited nutrients between tumor cells and immune cells can reveal the complexity of the tumor microenvironment and help develop new therapeutic approaches for cancer. Recent studies have focused on modifying the function of immune cells by manipulating their metabolic pathways. Besides, identifying metabolic events, which affect the function of immune cells leads to new therapeutic opportunities for treatment of inflammatory diseases and immune-related conditions. According to the literature, metabolic pathway such as glycolysis, tricarboxylic acid cycle, and fatty acid metabolism, significantly influence the survival, proliferation, activation, and function of immune cells and thus regulate immune responses. In this paper, we reviewed the role of metabolic processes and major signaling pathways involving in T-cell regulation and T-cell responses against tumor cells. Moreover, we summarized the new therapeutics suggested to enhance anti-tumor activity of T cells through manipulating metabolic pathways.
Collapse
|
18
|
Identification and Validation of a Novel Glycolysis-Related Gene Signature for Predicting the Prognosis and Therapeutic Response in Triple-Negative Breast Cancer. Adv Ther 2023; 40:310-330. [PMID: 36316558 DOI: 10.1007/s12325-022-02330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/21/2022] [Indexed: 01/21/2023]
Abstract
INTRODUCTION A high malignancy rate and poor prognosis are common problems with triple-negative breast cancer (TNBC). There is increasing evidence that glycolysis plays vital roles in tumorigenesis, tumor invasion, immune evasion, chemoresistance, and metastasis. However, a comprehensive analysis of the diagnostic and prognostic significance of glycolysis in TNBC is lacking. METHODS Transcriptomic and clinical data of TNBC patients were obtained from The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) databases, respectively. Glycolysis-related genes (GRGs) were collected from the Molecular Signatures Database (MSigDB). Differential comparative analysis was performed to obtain the differentially expressed (DE)-GRGs associated with TNBC. Based on the DE-GRGs, a glycolysis-related risk signature was established using Least Absolute Shrinkage and Selector Operation (LASSO) and multivariable Cox regression analyses. The prognostic value, tumor microenvironment, mutation status, and chemotherapy response of different risk groups were analyzed. An independent cohort from the METABRIC database was used for external validation. Furthermore, the expression patterns of five genes derived from the prognostic model were validated by quantitative real-time polymerase chain reaction (RT-qPCR). RESULTS The glycolysis-related prognostic signature included five genes (IFNG, ACSS2, IRS2, GFUS, and GAL3ST1) and predicted the prognosis of TNBC patients independent of clinical factors (p < 0.05). Patients were divided into high- and low-risk groups based on the median risk score. Compared to low-risk TNBC patients, high-risk patients had significantly decreased overall survival (HR = 2.718, p < 0.001). Receiver operating characteristic and calibration curves demonstrated that the model had high performance in terms of predicting survival and risk stratification. The results remained consistent after external verification. Additionally, the tumor immune microenvironment significantly differed between the risk groups. Low-risk TNBC patients had a better immunotherapy response than high-risk patients. High-risk TNBC patients with a poor prognosis may benefit from targeted therapy. CONCLUSIONS This study developed a novel glycolysis and prognosis-related (GRP) signature based on GRGs to predict the prognosis of TNBC patients, and may aid clinical decision-making for these patients.
Collapse
|
19
|
Osuna-Espinoza KY, Rosas-Taraco AG. Metabolism of NK cells during viral infections. Front Immunol 2023; 14:1064101. [PMID: 36742317 PMCID: PMC9889541 DOI: 10.3389/fimmu.2023.1064101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Cellular metabolism is essential for the correct function of immune system cells, including Natural Killer cells (NK). These cells depend on energy to carry out their effector functions, especially in the early stages of viral infection. NK cells participate in the innate immune response against viruses and tumors. Their main functions are cytotoxicity and cytokine production. Metabolic changes can impact intracellular signals, molecule production, secretion, and cell activation which is essential as the first line of immune defense. Metabolic variations in different immune cells in response to a tumor or pathogen infection have been described; however, little is known about NK cell metabolism in the context of viral infection. This review summarizes the activation-specific metabolic changes in NK cells, the immunometabolism of NK cells during early, late, and chronic antiviral responses, and the metabolic alterations in NK cells in SARS-CoV2 infection. The modulation points of these metabolic routes are also discussed to explore potential new immunotherapies against viral infections.
Collapse
Affiliation(s)
- Kenia Y Osuna-Espinoza
- Faculty of Medicine, Department of Immunology, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico
| | - Adrián G Rosas-Taraco
- Faculty of Medicine, Department of Immunology, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico
| |
Collapse
|
20
|
Longhitano L, Vicario N, Forte S, Giallongo C, Broggi G, Caltabiano R, Barbagallo GMV, Altieri R, Raciti G, Di Rosa M, Caruso M, Parenti R, Liso A, Busi F, Lolicato M, Mione MC, Li Volti G, Tibullo D. Lactate modulates microglia polarization via IGFBP6 expression and remodels tumor microenvironment in glioblastoma. Cancer Immunol Immunother 2023; 72:1-20. [PMID: 35654889 PMCID: PMC9813126 DOI: 10.1007/s00262-022-03215-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/25/2022] [Indexed: 01/09/2023]
Abstract
Lactic acidosis has been reported in solid tumor microenvironment (TME) including glioblastoma (GBM). In TME, several signaling molecules, growth factors and metabolites have been identified to induce resistance to chemotherapy and to sustain immune escape. In the early phases of the disease, microglia infiltrates TME, contributing to tumorigenesis rather than counteracting its growth. Insulin-like Growth Factor Binding Protein 6 (IGFBP6) is expressed during tumor development, and it is involved in migration, immune-escape and inflammation, thus providing an attractive target for GBM therapy. Here, we aimed at investigating the crosstalk between lactate metabolism and IGFBP6 in TME and GBM progression. Our results show that microglia exposed to lactate or IGFBP6 significantly increased the Monocarboxylate transporter 1 (MCT1) expression together with genes involved in mitochondrial metabolism. We, also, observed an increase in the M2 markers and a reduction of inducible nitric oxide synthase (iNOS) levels, suggesting a role of lactate/IGFBP6 metabolism in immune-escape activation. GBM cells exposed to lactate also showed increased levels of IGFBP6 and vice-versa. Such a phenomenon was coupled with a IGFBP6-mediated sonic hedgehog (SHH) ignaling increase. We, finally, tested our hypothesis in a GBM zebrafish animal model, where we observed an increase in microglia cells and igfbp6 gene expression after lactate exposure. Our results were confirmed by the analysis of human transcriptomes datasets and immunohistochemical assay from human GBM biopsies, suggesting the existence of a lactate/IGFBP6 crosstalk in microglial cells, so that IGFBP6 expression is regulated by lactate production in GBM cells and in turn modulates microglia polarization.
Collapse
Affiliation(s)
- Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Stefano Forte
- IOM Ricerca, 95029 Viagrande, CT Italy ,Department of Medical and Surgical Sciences and Advanced Technologies, F. Ingrassia, Anatomic Pathology, University of Catania, Catania, Italy
| | | | - Giuseppe Broggi
- Department of Drug Sciences, University of Catania, Catania, Italy
| | | | | | - Roberto Altieri
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Giuseppina Raciti
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Arcangelo Liso
- Department of Cellular, Computational and Integrative Biology Cibio, University of Trento, 38123 Trento, Italy
| | - Federica Busi
- Department of Cellular, Computational and Integrative Biology Cibio, University of Trento, 38123 Trento, Italy
| | - Marco Lolicato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Maria Caterina Mione
- Department of Cellular, Computational and Integrative Biology Cibio, University of Trento, 38123 Trento, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
21
|
Ye L, Jiang Y, Zhang M. Crosstalk between glucose metabolism, lactate production and immune response modulation. Cytokine Growth Factor Rev 2022; 68:81-92. [PMID: 36376165 DOI: 10.1016/j.cytogfr.2022.11.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Metabolites of glycolytic metabolism have been identified as signaling molecules and regulators of gene expression, in addition to their basic function as major energy and biosynthetic source. Immune cells reprogram metabolic pathways to cater to energy and biosynthesis demands upon activation. Most lymphocytes, including inflammatory M1 macrophages, mainly shift from oxidative phosphorylation to glycolysis, whereas regulatory T cells and M2 macrophages preferentially use the tricarboxylic acid (TCA) cycle and have reduced glycolysis. Recent studies have revealed the "non-metabolic" signaling functions of intermediates of the mitochondrial pathway and glycolysis. The roles of citrate, succinate and itaconate in immune response, including post-translational modifications of proteins and macrophages activation, have been highlighted. As an end product of glycolysis, lactate has received considerable interest from researchers. In this review, we specifically focused on studies exploring the integration of lactate into immune cell biology and associated pathologies. Lactate can act as a double-edged sword. On one hand, activated immune cells prefer to use lactate to support their function. On the other hand, accumulated lactate in the tissue microenvironment acts as a signaling molecule that restricts immune cell function. Recently, a novel epigenetic change mediated by histone lysine lactylation has been proposed. The burgeoning researches support the idea that histone lactylation participates in diverse cellular events. This review describes glycolytic metabolism, including the immunoregulation of metabolites of the TCA cycle and lactate. These latest findings strengthen our understanding on tumor and chronic inflammatory diseases and offer potential therapeutic options.
Collapse
Affiliation(s)
- Lei Ye
- Department of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Shanghai 200001, China
| | - Yi Jiang
- Department of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Shanghai 200001, China
| | - Mingming Zhang
- Department of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, NHC Key Laboratory of Digestive Diseases, Shanghai 200001, China; Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
22
|
Zhang X, Halberstam AA, Zhu W, Leitner BP, Thakral D, Bosenberg MW, Perry RJ. Isotope tracing reveals distinct substrate preference in murine melanoma subtypes with differing anti-tumor immunity. Cancer Metab 2022; 10:21. [PMID: 36457136 PMCID: PMC9714036 DOI: 10.1186/s40170-022-00296-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Research about tumor "metabolic flexibility"-the ability of cells to toggle between preferred nutrients depending on the metabolic context-has largely focused on obesity-associated cancers. However, increasing evidence for a key role for nutrient competition in the tumor microenvironment, as well as for substrate regulation of immune function, suggests that substrate metabolism deserves reconsideration in immunogenic tumors that are not strongly associated with obesity. METHODS We compare two murine models: immunologically cold YUMM1.7 and immunologically-hot YUMMER1.7. We utilize stable isotope and radioisotope tracer-based metabolic flux studies as well as gas and liquid chromatography-based metabolomics analyses to comprehensively probe substrate preference in YUMM1.7 and YUMMER1.7 cells, with a subset of studies on the impact of available metabolites across a panel of five additional melanoma cell lines. We analyze bulk RNA-seq data and identify increased expression of amino acid and glucose metabolism genes in YUMMER1.7. Finally, we analyze melanoma patient RNA-seq data to identify potential prognostic predictors rooted in metabolism. RESULTS We demonstrate using stable isotope tracer-based metabolic flux studies as well as gas and liquid chromatography-based metabolomics that immunologically-hot melanoma utilizes more glutamine than immunologically-cold melanoma in vivo and in vitro. Analyses of human melanoma RNA-seq data demonstrate that glutamine transporter and other anaplerotic gene expression positively correlates with lymphocyte infiltration and function. CONCLUSIONS Here, we highlight the importance of understanding metabolism in non-obesity-associated cancers, such as melanoma. This work advances the understanding of the correlation between metabolism and immunogenicity in the tumor microenvironment and provides evidence supporting metabolic gene expression as potential prognostic factors of melanoma progression and may inform investigations of adjunctive metabolic therapy in melanoma. TRIAL REGISTRATION Deidentified data from The Cancer Genome Atlas were analyzed.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, P.O. Box 208026, 333 Cedar St., SHM BE36-B, New Haven, CT, 06520-8026, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, USA
| | - Alexandra A Halberstam
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, P.O. Box 208026, 333 Cedar St., SHM BE36-B, New Haven, CT, 06520-8026, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, USA
| | - Wanling Zhu
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, P.O. Box 208026, 333 Cedar St., SHM BE36-B, New Haven, CT, 06520-8026, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, USA
| | - Brooks P Leitner
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, P.O. Box 208026, 333 Cedar St., SHM BE36-B, New Haven, CT, 06520-8026, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, USA
| | - Durga Thakral
- Department of Pathology, Yale School of Medicine, New Haven, USA
| | - Marcus W Bosenberg
- Department of Pathology, Yale School of Medicine, New Haven, USA
- Department of Dermatology, Yale School of Medicine, New Haven, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Yale Stem Cell Center, New Haven, CT, USA
- Yale Cancer Center, New Haven, CT, USA
- Yale Center for Immuno-Oncology, New Haven, CT, USA
| | - Rachel J Perry
- Department of Internal Medicine (Endocrinology), Yale School of Medicine, P.O. Box 208026, 333 Cedar St., SHM BE36-B, New Haven, CT, 06520-8026, USA.
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, USA.
| |
Collapse
|
23
|
Li X, Ma S, Gao T, Mai Y, Song Z, Yang J. The main battlefield of mRNA vaccine – Tumor immune microenvironment. Int Immunopharmacol 2022; 113:109367. [DOI: 10.1016/j.intimp.2022.109367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/03/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
24
|
Zhu S, Wang Y, Tang J, Cao M. Radiotherapy induced immunogenic cell death by remodeling tumor immune microenvironment. Front Immunol 2022; 13:1074477. [PMID: 36532071 PMCID: PMC9753984 DOI: 10.3389/fimmu.2022.1074477] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
Emerging evidence indicates that the induction of radiotherapy(RT) on the immunogenic cell death (ICD) is not only dependent on its direct cytotoxic effect, changes in the tumor immune microenvironment also play an important role in it. Tumor immune microenvironment (TIME) refers to the immune microenvironment that tumor cells exist, including tumor cells, inflammatory cells, immune cells, various signaling molecules and extracellular matrix. TIME has a barrier effect on the anti-tumor function of immune cells, which can inhibit all stages of anti-tumor immune response. The remodeling of TIME caused by RT may affect the degree of immunogenicity, and make it change from immunosuppressive phenotype to immunostimulatory phenotype. It is of great significance to reveal the causes of immune escape of tumor cells, especially for the treatment of drug-resistant tumor. In this review, we focus on the effect of RT on the TIME, the mechanism of RT in reversing the TIME to suppress intrinsic immunity, and the sensitization effect of the remodeling of TIME caused by RT on the effectiveness of immunotherapy.
Collapse
|
25
|
Liu Y, Hu Y, Jiang Y, Bu J, Gu X. Targeting ferroptosis, the achilles' heel of breast cancer: A review. Front Pharmacol 2022; 13:1036140. [PMID: 36467032 PMCID: PMC9709426 DOI: 10.3389/fphar.2022.1036140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/31/2022] [Indexed: 08/27/2023] Open
Abstract
Ferroptosis is referred as a novel type of cell death discovered in recent years with the feature of the accumulation of iron-dependent lipid reactive oxygen species. Breast cancer is one of the most common malignant cancers in women. There is increasing evidence that ferroptosis can inhibit breast cancer cell growth, improve the sensitivity of chemotherapy and radiotherapy and inhibit distant metastases. Therefore, ferroptosis can be regarded a new target for tumor suppression and may expand the landscape of clinical treatment of breast cancer. This review highlights the ferroptosis mechanism and its potential role in breast cancer treatment to explore new therapeutic strategies of breast cancer.
Collapse
Affiliation(s)
| | | | | | | | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Ren Y, Kumar A, Das JK, Peng HY, Wang L, Balllard D, Xiong X, Ren X, Zhang Y, Yang JM, Song J. Tumorous expression of NAC1 restrains antitumor immunity through the LDHA-mediated immune evasion. J Immunother Cancer 2022; 10:e004856. [PMID: 36150745 PMCID: PMC9511653 DOI: 10.1136/jitc-2022-004856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND T cell-mediated antitumor immunity has a vital role in cancer prevention and treatment; however, the immune-suppressive tumor microenvironment (TME) constitutes a significant contributor to immune evasion that weakens antitumor immunity. Here, we explore the relationship between nucleus accumbens-associated protein-1 (NAC1), a nuclear factor of the BTB (broad-complex, Tramtrack, bric a brac)/POZ (Poxvirus, and Zinc finger) gene family, and the TME. METHODS Adoptive cell transfer (ACT) of mouse or human tumor antigen (Ag)-specific CD8+ cytotoxic T lymphocytes (CTLs) was tested in an immunocompetent or immunodeficient mouse model of melanoma with or without expression of NAC1. The effects of NAC1 expression on immune evasion in tumor cells were assessed in vitro and in vivo. CRISPR/Cas9, glycolysis analysis, retroviral transduction, quantitative real-time PCR, flow cytometric analysis, immunoblotting, database analyses were used to screen the downstream target and underlying mechanism of NAC1 in tumor cells. RESULTS Tumorous expression of NAC1 negatively impacts the CTL-mediated antitumor immunity via lactate dehydrogenase A (LDHA)-mediated suppressive TME. NAC1 positively regulated the expression of LDHA at the transcriptional level, which led to higher accumulation of lactic acid in the TME. This inhibited the cytokine production and induced exhaustion and apoptosis of CTLs, impairing their cell-killing ability. In the immunocompetent and immunodeficient mice, NAC1 depleted melanoma tumors grew significantly slower and had an elevated infiltration of tumor Ag-specific CTLs following ACT, compared with the control groups. CONCLUSIONS Tumor expression of NAC1 contributes substantially to immune evasion through its regulatory role in LDHA expression and lactic acid production. Thus, therapeutic targeting of NAC1 warrants further exploration as a potential strategy to reinforce cancer immunotherapy, such as the ACT of CTLs.
Collapse
Affiliation(s)
- Yijie Ren
- Microbial Pathogenesis and Immunology, Texas A&M University Health Sciences Center, Bryan, Texas, USA
| | - Anil Kumar
- Microbial Pathogenesis and Immunology, Texas A&M University Health Sciences Center, Bryan, Texas, USA
| | - Jugal K Das
- Microbial Pathogenesis and Immunology, Texas A&M University Health Sciences Center, Bryan, Texas, USA
| | - Hao-Yun Peng
- Microbial Pathogenesis and Immunology, Texas A&M University Health Sciences Center, Bryan, Texas, USA
| | - Liqing Wang
- Microbial Pathogenesis and Immunology, Texas A&M University Health Sciences Center, Bryan, Texas, USA
| | - Darby Balllard
- Microbial Pathogenesis and Immunology, Texas A&M University Health Sciences Center, Bryan, Texas, USA
| | - Xiaofang Xiong
- Microbial Pathogenesis and Immunology, Texas A&M University Health Sciences Center, Bryan, Texas, USA
| | - Xingcong Ren
- Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Yi Zhang
- Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Jin-Ming Yang
- Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Jianxun Song
- Microbial Pathogenesis and Immunology, Texas A&M University Health Sciences Center, Bryan, Texas, USA
| |
Collapse
|
27
|
Yin TT, Huang MX, Wang F, Jiang YH, Long J, Li L, Cao J. Lactate score predicts survival, immune cell infiltration and response to immunotherapy in breast cancer. Front Genet 2022; 13:943849. [PMID: 36046245 PMCID: PMC9421043 DOI: 10.3389/fgene.2022.943849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Tumor-derived lactate can modulate the function of infiltrating immune cells to establish an immunosuppressive microenvironment that favors tumor progression. However, possible effects of lactate-related genes (LRGs) on the tumor microenvironment (TME) of breast cancer (BRCA) are still unknown. Methods: LRGs were comprehensively screened from lactate metabolism-related pathways. We correlated the expression of these LRGs with immune cell infiltrating characteristics in the TME and clinicopathological features of patients. We also established a lactate score for quantifying lactate metabolism patterns of cancers and to predict of recurrence-free survival (RFS). Results: We successfully constructed a lactate score that was an independent prognostic factor in BRCA. A low lactate score, which was associated with immune activation with increased CD8+ T cells infiltration levels, indicated an inflamed TME. Consistently, higher expression levels of inhibitory immune checkpoints, including PD-L1, LAG3, CTLA4, and TIM3, as observed from high lactate score subgroup, suggested an immune-desert phenotype as well as poor prognosis. Moreover, a low lactate score predicted the increased chemotherapeutic drug sensitivity and enhanced anti-PD-1 immunotherapy responses. Conclusion: The present study analyzed the potential roles of LRGs in the TME diversity and prognosis. These results will help to improve our understanding of the characteristics of TME immune cell infiltration and guide the development of more effective immunotherapy strategies.
Collapse
Affiliation(s)
- Ting-Ting Yin
- Department of General Surgery, Guangzhou Digestive Disease Center, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Meng-Xing Huang
- Chronic Disease Laboratory, School of Medicine, South China University of Technology, Guangzhou, China
| | - Fei Wang
- Department of Oncology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yi-Hua Jiang
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jie Long
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liang Li
- Medical Research Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Liang Li, ; Jie Cao,
| | - Jie Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- *Correspondence: Liang Li, ; Jie Cao,
| |
Collapse
|
28
|
Yang H, Li S, Qu Y, Li L, Li Y, Wang D. Anti-Colorectal Cancer Effects of Inonotus hispidus (Bull.: Fr.) P. Karst. Spore Powder through Regulation of Gut Microbiota-Mediated JAK/STAT Signaling. Nutrients 2022; 14:nu14163299. [PMID: 36014805 PMCID: PMC9415721 DOI: 10.3390/nu14163299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Inonotus hispidus (Bull.: Fr.) P. Karst. spore powder (IHS) contains polyphenols and triterpenoids with pharmacological effects. Here, we analyzed its composition, and we investigated the effects of IHS on colorectal cancer (CRC) in B6/JGpt-Apcem1Cin(min)/Gpt (ApcMin/+) mice and its potential mechanisms by analyzing gut microbiota and serum metabolomics. The enzyme-linked immunosorbent assays and Western blotting were used to confirm the changes in the cytokine and protein levels associated with IHS administration. The IHS affected the abundance of gut microbiota and the level of L-arginine (L-Arg). Furthermore, the IHS influenced T cells in ApcMin/+ mice by increasing the interleukin (IL)-2 and decreasing the IL-5, -6, and -10 levels, thus suppressing tumor development. Overall, IHS showed anti-CRC properties in ApcMin/+ mice by affecting the gut microbiota and serum metabolites, which in turn affected the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling, and regulated the abundance of CD8+ T cells. These results provide experimental support for the potential future treatment of CRC with IHS.
Collapse
Affiliation(s)
- Hongxin Yang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Siyu Li
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yidi Qu
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Y.L.); (D.W.)
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Y.L.); (D.W.)
| |
Collapse
|
29
|
Refining the Role of Pyruvate Dehydrogenase Kinases in Glioblastoma Development. Cancers (Basel) 2022; 14:cancers14153769. [PMID: 35954433 PMCID: PMC9367285 DOI: 10.3390/cancers14153769] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 12/07/2022] Open
Abstract
Glioblastoma (GB) are the most frequent brain cancers. Aggressive growth and limited treatment options induce a median survival of 12–15 months. In addition to highly proliferative and invasive properties, GB cells show cancer-associated metabolic characteristics such as increased aerobic glycolysis. Pyruvate dehydrogenase (PDH) is a key enzyme complex at the crossroads between lactic fermentation and oxidative pathways, finely regulated by PDH kinases (PDHKs). PDHKs are often overexpressed in cancer cells to facilitate high glycolytic flux. We hypothesized that targeting PDHKs, by disturbing cancer metabolic homeostasis, would alter GB progression and render cells vulnerable to additional cancer treatment. Using patient databases, distinct expression patterns of PDHK1 and PDHK2 in GB tissues were obvious. To disturb protumoral glycolysis, we modulated PDH activity through the genetic or pharmacological inhibition of PDHK in patient-derived stem-like spheroids. Striking effects of PDHKs inhibition using dichloroacetate were observed in vitro on cell morphology and metabolism, resulting in increased intracellular ROS levels and decreased proliferation and invasion. In vivo findings confirmed a reduction in tumor size and better survival of mice implanted with PDHK1 and PDHK2 knockout cells. Adding a radiotherapeutic protocol further resulted in a reduction in tumor size and improved mouse survival in our model.
Collapse
|
30
|
Sun JX, Xu XH, Jin L. Effects of Metabolism on Macrophage Polarization Under Different Disease Backgrounds. Front Immunol 2022; 13:880286. [PMID: 35911719 PMCID: PMC9331907 DOI: 10.3389/fimmu.2022.880286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/21/2022] [Indexed: 11/20/2022] Open
Abstract
Macrophages are versatile immune cells associated with various diseases, and their phenotypes and functions change on the basis of the surrounding environments. Reprogramming of metabolism is required for the proper polarization of macrophages. This review will focus on basic metabolic pathways, the effects of key enzymes and specific products, relationships between cellular metabolism and macrophage polarization in different diseases and the potential prospect of therapy targeted key metabolic enzymes. In particular, the types and characteristics of macrophages at the maternal-fetal interface and their effects on a successful conception will be discussed.
Collapse
Affiliation(s)
| | | | - Liping Jin
- *Correspondence: Liping Jin, ; Xiang-Hong Xu,
| |
Collapse
|
31
|
Tumor Microenvironment: Lactic Acid Promotes Tumor Development. J Immunol Res 2022; 2022:3119375. [PMID: 35733921 PMCID: PMC9207018 DOI: 10.1155/2022/3119375] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/19/2022] [Indexed: 12/17/2022] Open
Abstract
Lactic acid is a "metabolic waste" product of glycolysis that is produced in the body. However, the role of lactic acid in the development of human malignancies has gained increasing interest lately as a multifunctional small molecule chemical. There is evidence that tumor cells may create a large amount of lactic acid through glycolysis even when they have abundant oxygen. Tumor tissues have a higher quantity of lactic acid than normal tissues. Lactic acid is required for tumor development. Lactate is an immunomodulatory chemical that affects both innate and adaptive immune cells' effector functions. In immune cells, the lactate signaling pathway may potentially serve as a link between metabolism and immunity. Lactate homeostasis is significantly disrupted in the TME. Lactate accumulation results in acidosis, angiogenesis, immunosuppression, and tumor cell proliferation and survival, all of which are deleterious to health. Thus, augmenting anticancer immune responses by lactate metabolism inhibition may modify lactate levels in the tumor microenvironment. This review will evaluate the role of lactic acid in tumor formation, metastasis, prognosis, treatment, and histone modification. Our findings will be of considerable interest to readers, particularly those engaged in the therapeutic treatment of cancer patients. Treatments targeting the inhibition of lactate synthesis and blocking the source of lactate have emerged as a potential new therapeutic option for oncology patients. Additionally, lactic acid levels in the plasma may serve as biomarkers for disease stage and may be beneficial for evaluating therapy effectiveness in individuals with tumors.
Collapse
|
32
|
Li Q, Oduro PK, Guo R, Li R, Leng L, Kong X, Wang Q, Yang L. Oncolytic Viruses: Immunotherapy Drugs for Gastrointestinal Malignant Tumors. Front Cell Infect Microbiol 2022; 12:921534. [PMID: 35719333 PMCID: PMC9203847 DOI: 10.3389/fcimb.2022.921534] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Oncolytic virus therapy has advanced rapidly in recent years. Natural or transgenic viruses can target tumor cells and inhibit tumor growth and metastasis in various ways without interfering with normal cell and tissue function. Oncolytic viruses have a high level of specificity and are relatively safe. Malignant tumors in the digestive system continue to have a high incidence and mortality rate. Although existing treatment methods have achieved some curative effects, they still require further improvement due to side effects and a lack of specificity. Many studies have shown that oncolytic viruses can kill various tumor cells, including malignant tumors in the digestive system. This review discusses how oncolytic virus therapy improves malignant tumors in the digestive system from the point-of-view of basic and clinical studies. Also, the oncolytic virus anti-tumor mechanisms underpinning the therapeutic potential of oncolytic viruses are expounded. In all, we argue that oncolytic viruses might eventually provide therapeutic solutions to malignant tumors in the digestive system.
Collapse
Affiliation(s)
- Qingbo Li
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Patrick Kwabena Oduro
- Research Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine & State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Rui Guo
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruiqiao Li
- Research Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine & State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Ling Leng
- Research Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine & State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Xianbin Kong
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xianbin Kong, ; Qilong Wang, ; Long Yang,
| | - Qilong Wang
- Research Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine & State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
- *Correspondence: Xianbin Kong, ; Qilong Wang, ; Long Yang,
| | - Long Yang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xianbin Kong, ; Qilong Wang, ; Long Yang,
| |
Collapse
|
33
|
Metabolic reprograming of MDSCs within tumor microenvironment and targeting for cancer immunotherapy. Acta Pharmacol Sin 2022; 43:1337-1348. [PMID: 34561553 PMCID: PMC9160034 DOI: 10.1038/s41401-021-00776-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
A number of emerging studies in field of immune metabolism have indicated that cellular metabolic reprograming serves as a major administrator in maintaining the viability and functions of both tumor cells and immune cells. As one of the most important immunosuppressive cells in tumor stroma, myeloid-derived suppressor cells (MDSCs) dynamically orchestrate their metabolic pathways in response to the complicated tumor microenvironment (TME), a process that consequently limits the therapeutic effectiveness of anti-cancer treatment modalities. In this context, the metabolic vulnerabilities of MDSCs could be exploited as a novel immune metabolic checkpoint upon which to intervene for promoting the efficacy of immunotherapy. Here, we have discussed about recent studies highlighting the important roles of the metabolic reprograming and the core molecular pathways involved in tumor-infiltrating MDSCs. In addition, we have also summarized the state-of-the-art strategies that are currently being employed to target MDSC metabolism and improve the efficacy of antineoplastic immunotherapy.
Collapse
|
34
|
Nath M, Romaine SP, Koekemoer A, Hamby S, Webb TR, Nelson CP, Castellanos‐Uribe M, Papakonstantinou M, Anker SD, Lang CC, Metra M, Zannad F, Filippatos G, van Veldhuisen DJ, Cleland JG, Ng LL, May ST, Marelli‐Berg F, Voors AA, Timmons JA, Samani NJ. Whole blood transcriptomic profiling identifies molecular pathways related to cardiovascular mortality in heart failure. Eur J Heart Fail 2022; 24:1009-1019. [PMID: 35570197 PMCID: PMC9546237 DOI: 10.1002/ejhf.2540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 12/01/2022] Open
Abstract
AIMS Chronic heart failure (CHF) is a systemic syndrome with a poor prognosis and a need for novel therapies. We investigated whether whole blood transcriptomic profiling can provide new mechanistic insights into cardiovascular (CV) mortality in CHF. METHODS AND RESULTS Transcriptome profiles were generated at baseline from 944 CHF patients from the BIOSTAT-CHF study, of whom 626 survived and 318 died from a CV cause during a follow-up of 21 months. Multivariable analysis, including adjustment for cell count, identified 1153 genes (6.5%) that were differentially expressed between those that survived or died and strongly related to a validated clinical risk score for adverse prognosis. The differentially expressed genes mainly belonged to five non-redundant pathways: adaptive immune response, proteasome-mediated ubiquitin-dependent protein catabolic process, T-cell co-stimulation, positive regulation of T-cell proliferation, and erythrocyte development. These five pathways were selectively related (RV coefficients >0.20) with seven circulating protein biomarkers of CV mortality (fibroblast growth factor 23, soluble ST2, adrenomedullin, hepcidin, pentraxin-3, WAP 4-disulfide core domain 2, and interleukin-6) revealing an intricate relationship between immune and iron homeostasis. The pattern of survival-associated gene expression matched with 29 perturbagen-induced transcriptome signatures in the iLINCS drug-repurposing database, identifying drugs, approved for other clinical indications, that were able to reverse in vitro the molecular changes associated with adverse prognosis in CHF. CONCLUSION Systematic modelling of the whole blood protein-coding transcriptome defined molecular pathways that provide a link between clinical risk factors and adverse CV prognosis in CHF, identifying both established and new potential therapeutic targets.
Collapse
Affiliation(s)
- Mintu Nath
- Department of Cardiovascular SciencesUniversity of Leicester and NIHR Leicester Biomedical Research CentreGlenfield Hospital, LeicesterUK
- Institute of Applied Health SciencesUniversity of AberdeenAberdeenUK
| | - Simon P.R. Romaine
- Department of Cardiovascular SciencesUniversity of Leicester and NIHR Leicester Biomedical Research CentreGlenfield Hospital, LeicesterUK
| | - Andrea Koekemoer
- Department of Cardiovascular SciencesUniversity of Leicester and NIHR Leicester Biomedical Research CentreGlenfield Hospital, LeicesterUK
| | - Stephen Hamby
- Department of Cardiovascular SciencesUniversity of Leicester and NIHR Leicester Biomedical Research CentreGlenfield Hospital, LeicesterUK
| | - Thomas R. Webb
- Department of Cardiovascular SciencesUniversity of Leicester and NIHR Leicester Biomedical Research CentreGlenfield Hospital, LeicesterUK
| | - Christopher P. Nelson
- Department of Cardiovascular SciencesUniversity of Leicester and NIHR Leicester Biomedical Research CentreGlenfield Hospital, LeicesterUK
| | | | - Manolo Papakonstantinou
- Department of Cardiovascular SciencesUniversity of Leicester and NIHR Leicester Biomedical Research CentreGlenfield Hospital, LeicesterUK
| | - Stefan D. Anker
- German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Charité – Universitätsmedizin BerlinBerlinGermany
| | - Chim C. Lang
- Division of Molecular and Clinical Medicine, School of MedicineUniversity of DundeeDundeeUK
| | - Marco Metra
- Department of Medical and Surgical Specialties, Radiological Sciences and Public HealthUniversity of BresciaBresciaItaly
| | - Faiez Zannad
- Clinical Investigation Center 1433, Centre Hospitalier Regional et Universitaire de NancyVandoeuvre les NancyFrance
| | | | - Dirk J. van Veldhuisen
- Department of Cardiology, University of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - John G. Cleland
- National Heart and Lung Institute, Royal Brompton and Harefield Hospitals, Imperial College, London, UK and Robertson Centre for Biostatistics and Clinical TrialsUniversity of GlasgowGlasgowUK
| | - Leong L. Ng
- Department of Cardiovascular SciencesUniversity of Leicester and NIHR Leicester Biomedical Research CentreGlenfield Hospital, LeicesterUK
| | - Sean T. May
- School of BiosciencesUniversity of Nottingham, Sutton Bonington CampusLoughboroughUK
| | | | - Adriaan A. Voors
- Department of Cardiology, University of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - James A. Timmons
- Barts & The London School of MedicineQueen Mary University of LondonLondonUK
- Augur Precision Medicine LtdStirling University Innovation ParkUK
| | - Nilesh J. Samani
- Department of Cardiovascular SciencesUniversity of Leicester and NIHR Leicester Biomedical Research CentreGlenfield Hospital, LeicesterUK
| |
Collapse
|
35
|
Muk T, Brunse A, Henriksen NL, Aasmul-Olsen K, Nguyen DN. Glucose supply and glycolysis inhibition shape the clinical fate of Staphylococcus epidermidis-infected preterm newborns. JCI Insight 2022; 7:157234. [PMID: 35503431 DOI: 10.1172/jci.insight.157234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Preterm infants are susceptible to bloodstream infection by coagulase-negative staphylococci (CONS) that can lead to sepsis. High parenteral glucose supplement is commonly used to support their growth and energy expenditure, but may exceed endogenous regulation during infection, causing dysregulated immune response and clinical deterioration. Using a preterm piglet model of neonatal CONS sepsis induced by Staphylococcus epidermidis infection, we demonstrate the delicate interplay between immunity and glucose metabolism to regulate the host infection response. Circulating glucose levels, glycolysis and inflammatory response to infection are closely connected across the states of tolerance, resistance and immunoparalysis. Further, high parenteral glucose provision during infection induces hyperglycemia, elevated glycolysis and inflammation, leading to metabolic acidosis and sepsis, whereas glucose restricted individuals are clinically unaffected with increased gluconeogenesis to maintain moderate hypoglycemia. Finally, standard glucose supply maintaining normoglycemia or pharmacological glycolysis inhibition enhances bacterial clearance and dampens inflammation but fails to prevent sepsis. Our results uncover how blood glucose and glycolysis controls circulating immune responses, in turn determining the clinical fate of CONS infected preterm individuals. This questions the current practice of parenteral glucose supply for preterm infants during infection.
Collapse
Affiliation(s)
- Tik Muk
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Anders Brunse
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Nicole L Henriksen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Karoline Aasmul-Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Duc Ninh Nguyen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
36
|
The metabolism of cells regulates their sensitivity to NK cells depending on p53 status. Sci Rep 2022; 12:3234. [PMID: 35217717 PMCID: PMC8881467 DOI: 10.1038/s41598-022-07281-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/09/2022] [Indexed: 01/01/2023] Open
Abstract
Leukemic cells proliferate faster than non-transformed counterparts. This requires them to change their metabolism to adapt to their high growth. This change can stress cells and facilitate recognition by immune cells such as cytotoxic lymphocytes, which express the activating receptor Natural Killer G2-D (NKG2D). The tumor suppressor gene p53 regulates cell metabolism, but its role in the expression of metabolism-induced ligands, and subsequent recognition by cytotoxic lymphocytes, is unknown. We show here that dichloroacetate (DCA), which induces oxidative phosphorylation (OXPHOS) in tumor cells, induces the expression of such ligands, e.g. MICA/B, ULBP1 and ICAM-I, by a wtp53-dependent mechanism. Mutant or null p53 have the opposite effect. Conversely, DCA sensitizes only wtp53-expressing cells to cytotoxic lymphocytes, i.e. cytotoxic T lymphocytes and NK cells. In xenograft in vivo models, DCA slows down the growth of tumors with low proliferation. Treatment with DCA, monoclonal antibodies and NK cells also decreased tumors with high proliferation. Treatment of patients with DCA, or a biosimilar drug, could be a clinical option to increase the effectiveness of CAR T cell or allogeneic NK cell therapies.
Collapse
|
37
|
Boyer T, Blaye C, Larmonier N, Domblides C. Influence of the Metabolism on Myeloid Cell Functions in Cancers: Clinical Perspectives. Cells 2022; 11:cells11030554. [PMID: 35159363 PMCID: PMC8834417 DOI: 10.3390/cells11030554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Tumor metabolism plays a crucial role in sustaining tumorigenesis. There have been increasing reports regarding the role of tumor metabolism in the control of immune cell functions, generating a potent immunosuppressive contexture that can lead to immune escape. The metabolic reprogramming of tumor cells and the immune escape are two major hallmarks of cancer, with several instances of crosstalk between them. In this paper, we review the effects of tumor metabolism on immune cells, focusing on myeloid cells due to their important role in tumorigenesis and immunosuppression from the early stages of the disease. We also discuss ways to target this specific crosstalk in cancer patients.
Collapse
Affiliation(s)
- Thomas Boyer
- CNRS UMR5164, ImmunoConcEpT, Site de Carreire, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (T.B.); (C.B.); (N.L.)
- Department of Life and Medical Sciences, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Céline Blaye
- CNRS UMR5164, ImmunoConcEpT, Site de Carreire, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (T.B.); (C.B.); (N.L.)
- Department of Life and Medical Sciences, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
- Department of Medical Oncology, Bergonié Institute, 229 cours de l’Argonne, 33076 Bordeaux, France
| | - Nicolas Larmonier
- CNRS UMR5164, ImmunoConcEpT, Site de Carreire, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (T.B.); (C.B.); (N.L.)
- Department of Life and Medical Sciences, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Charlotte Domblides
- CNRS UMR5164, ImmunoConcEpT, Site de Carreire, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (T.B.); (C.B.); (N.L.)
- Department of Medical Oncology, Bergonié Institute, 229 cours de l’Argonne, 33076 Bordeaux, France
- Department of Medical Oncology, Hôpital Saint-André, 1 rue Jean Burguet, University Hospital Bordeaux, 33076 Bordeaux, France
- Correspondence:
| |
Collapse
|
38
|
Baradaran A, Asadzadeh Z, Hemmat N, Baghbanzadeh A, Shadbad MA, Khosravi N, Derakhshani A, Alemohammad H, Afrashteh Nour M, Safarpour H, Silvestris N, Brunetti O, Baradaran B. The cross-talk between tumor-associated macrophages and tumor endothelium: Recent advances in macrophage-based cancer immunotherapy. Biomed Pharmacother 2022; 146:112588. [PMID: 35062062 DOI: 10.1016/j.biopha.2021.112588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/02/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are among the abundant cell populations of the tumor microenvironment (TME), which have pivotal roles in tumor development, chemoresistance, immune evasion, and metastasis. Growing evidence indicates that TAMs and the cross-talk between TAMs and tumoral endothelial cells can substantially contribute to tumor angiogenesis, which is considered a vital process for cancer development. Besides, tumoral endothelial cells can regulate the leukocyte infiltration to the TME in solid cancers and contribute to immune evasion. Therefore, targeting the immunosuppressive TAMs and the cross-talk between them can be a promising strategy for improving anti-tumoral immune responses. This review aims to summarize the biology of TAMs, their recently identified roles in tumor development/angiogenesis, and recent advances in macrophage-based cancer immunotherapy approaches for treating cancers.
Collapse
Affiliation(s)
- Ali Baradaran
- Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia; Research & Development, BSD Robotics, Queensland, Australia
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Khosravi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Derakhshani
- Experimental Pharmacology Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Hajar Alemohammad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Afrashteh Nour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nicola Silvestris
- Medical Oncology Unit-IRCCS IstitutoTumori "Giovanni Paolo II" of Bari, Bari, Italy; Department of Biomedical Sciences and Human Oncology DIMO-University of Bari, Bari, Italy
| | - Oronzo Brunetti
- Medical Oncology Unit-IRCCS IstitutoTumori "Giovanni Paolo II" of Bari, Bari, Italy.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
39
|
Liu X, Hoft DF, Peng G. Tumor microenvironment metabolites directing T cell differentiation and function. Trends Immunol 2022; 43:132-147. [PMID: 34973923 PMCID: PMC8810659 DOI: 10.1016/j.it.2021.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 02/03/2023]
Abstract
Metabolic reprogramming of cancer cells creates a unique tumor microenvironment (TME) characterized by the limited availability of nutrients, which subsequently affects the metabolism, differentiation, and function of tumor-infiltrating T lymphocytes (TILs). TILs can also be inhibited by tumor-derived metabolic waste products and low oxygen. Therefore, a thorough understanding of how such unique metabolites influence mammalian T cell differentiation and function can inform novel anticancer therapeutic approaches. Here, we highlight the importance of these metabolites in modulating various T cell subsets within the TME, dissecting how these changes might alter clinical outcomes. We explore potential TME metabolic determinants that might constitute candidate targets for cancer immunotherapies, ideally leading to future strategies for reprogramming tumor metabolism to potentiate anticancer T cell functions.
Collapse
Affiliation(s)
- Xia Liu
- Division of Infectious Diseases, Allergy and Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Daniel F Hoft
- Division of Infectious Diseases, Allergy and Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA; Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, MO 63104, USA
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy and Immunology and Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA; Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, MO 63104, USA.
| |
Collapse
|
40
|
|
41
|
Caslin HL, Abebayehu D, Pinette JA, Ryan JJ. Lactate Is a Metabolic Mediator That Shapes Immune Cell Fate and Function. Front Physiol 2021; 12:688485. [PMID: 34733170 PMCID: PMC8558259 DOI: 10.3389/fphys.2021.688485] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Lactate and the associated H+ ions are still introduced in many biochemistry and general biology textbooks and courses as a metabolic by-product within fast or oxygen-independent glycolysis. However, the role of lactate as a fuel source has been well-appreciated in the field of physiology, and the role of lactate as a metabolic feedback regulator and distinct signaling molecule is beginning to gain traction in the field of immunology. We now know that while lactate and the associated H+ ions are generally immunosuppressive negative regulators, there are cell, receptor, mediator, and microenvironment-specific effects that augment T helper (Th)17, macrophage (M)2, tumor-associated macrophage, and neutrophil functions. Moreover, we are beginning to uncover how lactate and H+ utilize different transporters and signaling cascades in various immune cell types. These immunomodulatory effects may have a substantial impact in cancer, sepsis, autoimmunity, wound healing, and other immunomodulatory conditions with elevated lactate levels. In this article, we summarize the known effects of lactate and H+ on immune cells to hypothesize potential explanations for the divergent inflammatory vs. anti-inflammatory effects.
Collapse
Affiliation(s)
- Heather L Caslin
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States.,Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Daniel Abebayehu
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States.,Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Julia A Pinette
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - John J Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
42
|
Guo Q, Chu Y, Li H, Shi D, Lin L, Lan W, Wu D. Dickkopf-related protein 3 alters aerobic glycolysis in pancreatic cancer BxPC-3 cells, promoting CD4 + T-cell activation and function. Eur J Med Res 2021; 26:93. [PMID: 34391478 PMCID: PMC8364117 DOI: 10.1186/s40001-021-00567-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Background To investigate the value of Dickkopf-related protein 3 (DKK3) on aerobic glycolysis in pancreatic cancer cells, where DKK3-overexpression is used to determine its effects on CD4+ T cells. Methods The BxPC-3-DKK3 cell line was constructed, and peripheral blood mononuclear cell (PBMC) was prepared. After isolated the CD4+ T cells, the lactic acid, glucose uptake ability, cellular viability, proliferation, apoptosis, and markers were detected by PCR and western blot, and the concentrations of multiple cytokines were determined using the ELISA method. Results After co-culture with pancreatic cancer cells overexpressing DKK3, the glucose uptake markedly, proliferation enhanced and apoptosis inhibited in CD4+ T cells. The co-culture model also revealed that DKK3-overexpression promotes the activation and regulates the metabolism and function of CD4+ T cells. Conclusions DKK3 alters the metabolic microenvironment of pancreatic cancer cells and further facilitates the function of CD4+ T cells which suggesting that DKK3 may have a therapeutic potential in pancreatic cancer.
Collapse
Affiliation(s)
- Qingqu Guo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yiming Chu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
| | - Hongbo Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Dike Shi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Lele Lin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Weifeng Lan
- Department of Surgery, Suichang County Hospital, No. 143 North Street, Suichang County, Lishui City, 323300, Zhejiang, China.
| | - Dan Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
43
|
O'Callaghan AA, Dempsey E, Iyer N, Stiegeler S, Mercurio K, Corr SC. Intestinal Metabolites Influence Macrophage Phagocytosis and Clearance of Bacterial Infection. Front Cell Infect Microbiol 2021; 11:622491. [PMID: 34350128 PMCID: PMC8327167 DOI: 10.3389/fcimb.2021.622491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/30/2021] [Indexed: 11/20/2022] Open
Abstract
The metabolite-rich environment that is the intestinal lumen contains metabolic by-products deriving from microbial fermentation and host cell metabolism, with resident macrophages being constantly exposed to this metabolic flux. Succinate, lactate and itaconate are three metabolites secreted by primed macrophages due to a fragmented tri-carboxylic acid (TCA) cycle. Additionally, succinate and lactate are known by-products of microbial fermentation. How these metabolites impact biological functioning of resident macrophages particularly in response to bacterial infection remains poorly understood. We have investigated the potential influence of these metabolites on macrophage phagocytosis and clearance of Escherichia coli (E. coli) infection. Treatment of murine bone-marrow-derived macrophages (BMDMs) with succinate reduced numbers of intracellular E. coli early during infection, while lactate-treated BMDMs displayed no difference throughout the course of infection. Treatment of BMDMs with itaconate lead to higher levels of intracellular E. coli early in the infection with bacterial burden subsequently reduced at later time-points compared to untreated macrophages, indicative of enhanced engulfment and killing capabilities of macrophages in response to itaconate. Expression of engulfment mediators MARCKS, RhoB, and CDC42 were reduced or unchanged following succinate or lactate treatment and increased in itaconate-treated macrophages following E. coli infection. Nitric oxide (NO) levels varied while pro- and anti-inflammatory cytokines differed in secretory levels in all metabolite-treated macrophages post-infection with E. coli or in response to lipopolysaccharide (LPS) stimulation. Finally, the basal phenotypic profile of metabolite-treated macrophages was altered according to marker gene expression, describing how fluid macrophage phenotype can be in response to the microenvironment. Collectively, our data suggests that microbe- and host-derived metabolites can drive distinct macrophage functional phenotypes in response to infection, whereby succinate and itaconate regulate phagocytosis and bactericidal mechanisms, limiting the intracellular bacterial niche and impeding the pathogenesis of infection.
Collapse
Affiliation(s)
- Amy A O'Callaghan
- Department of Microbiology, Moyne Institute of Preventative Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Elaine Dempsey
- Department of Microbiology, Moyne Institute of Preventative Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Namrata Iyer
- Department of Microbiology, Moyne Institute of Preventative Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Sarah Stiegeler
- Department of Microbiology, Moyne Institute of Preventative Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Kevin Mercurio
- Department of Microbiology, Moyne Institute of Preventative Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Sinéad C Corr
- Department of Microbiology, Moyne Institute of Preventative Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
44
|
Metabolic reprogramming due to hypoxia in pancreatic cancer: Implications for tumor formation, immunity, and more. Biomed Pharmacother 2021; 141:111798. [PMID: 34120068 DOI: 10.1016/j.biopha.2021.111798] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/20/2021] [Accepted: 05/29/2021] [Indexed: 01/04/2023] Open
Abstract
Hypoxia is a common phenomenon in most malignant tumors, especially in pancreatic cancer (PC). Hypoxia is the result of unlimited tumor growth and plays an active role in promoting tumor survival, progression, and invasion. As the part of the hypoxia microenvironment in PC is gradually clarified, hypoxia is becoming a key determinant and an important therapeutic target of pancreatic cancer. To adapt to the severe hypoxia environment, cells have changed their metabolic phenotypes to maintain their survival and proliferation. Enhanced glycolysis is the most prominent feature of cancer cells' metabolic reprogramming in response to hypoxia. It provides the energy source for hypoxic cancer cells (although it provides less than oxidative phosphorylation) and produces metabolites that can be absorbed and utilized by normoxic cancer cells. In addition, the uptake of glutamine and fatty acids by hypoxic cancer cells is also increased, which is also conducive to tumor progression. Their metabolites are pooled in the hexosamine biosynthesis pathway (HBP). As a nutrition sensor, HBP, in turn, can coordinate glucose and glutamine metabolism. Its end product, UDP-GlcNAc, is the substrate of protein post-translational modification (PTM) involved in various signaling pathways supporting tumor progression. Adaptive metabolic changes of cancer cells promote their survival and affect tumor immune cells in the tumor microenvironment (TME), which contributes to tumor immunosuppressive microenvironment and induces tumor immunotherapy resistance. Here, we summarize the hypoxic microenvironment, its effect on metabolic reprogramming, and its contribution to immunotherapy resistance in pancreatic cancer.
Collapse
|
45
|
Zhang X, Chen Q, Liu Q, Wang Y, Wang F, Zhao Z, Zhao G, Lau WY, Gao Y, Liu R. Development and validation of glycolysis-related prognostic score for prediction of prognosis and chemosensitivity of pancreatic ductal adenocarcinoma. J Cell Mol Med 2021; 25:5615-5627. [PMID: 33942483 PMCID: PMC8184720 DOI: 10.1111/jcmm.16573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with aggressive biological behaviour. Its rapid proliferation and tumour growth require reprogramming of glucose metabolism or the Warburg effect. However, the association between glycolysis-related genes with clinical features and prognosis of PDAC is still unknown. Here, we used the meta-analysis to correlate the hazard ratios (HR) of 106 glycolysis genes from MSigDB by the cox proportional hazards regression analysis in 6 clinical data sets of PDAC patients to form a training cohort, and a single group of PDAC patients from the TCGA, ICGC, Arrayexpress and GEO databases to form the validation cohort. Then, a glycolysis-related prognosis (GRP) score based on 29 glycolysis prognostic genes was established in 757 PDAC patients from the training composite cohort and validated in 267 ICGC-CA validation cohort (all P < .05). In addition, including PADC, the prognostic value was also confirmed in other 7 out of 30 pan-cancer cohorts. The GRP score was significantly related to specific metabolism pathways, immune genes and immune cells in the patients with PADC (all P < .05). Finally, by combining with immune cells, the GRP score also well-predicted the chemosensitivity of patients with PADC in the TCGA cohort (AUC = 0.709). In conclusion, this study developed a GRP score for patients with PDAC in predicting prognosis and chemosensitivity for PDAC.
Collapse
Affiliation(s)
- Xiu‐Ping Zhang
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
| | - Qinjunjie Chen
- Department of Hepatic Surgery IVThe Eastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghaiChina
| | - Qu Liu
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
| | - Yang Wang
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
| | - Fei Wang
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
| | - Zhi‐Ming Zhao
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
| | - Guo‐Dong Zhao
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
| | - Wan Yee Lau
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
- Faculty of MedicineThe Chinese University of Hong KongHong KongChina
| | - Yu‐Zhen Gao
- Department of Clinical LaboratorySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Rong Liu
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
| |
Collapse
|
46
|
Wu Q, Zhang C, He J, Wang C, Hu X, Li N, Zou H, Qin J, Yuan M, Wang Y. Downregulation of caveolin-1 promotes murine breast cancer cell line progression by highly glycosylated CD147. Anticancer Drugs 2021; 32:626-634. [PMID: 33587355 DOI: 10.1097/cad.0000000000001036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Caveolin-1 (CAV-1) can extensively regulate lipid transportation, cell growth and cell death. In the present study, we revealed a novel function of CAV-1 in inhibiting glycosylation of other molecules in murine breast cancer cell line. After the silencing of CAV-1, we found that the mRNA and protein expressions of cluster of differentiation 147 (CD147) and its related molecules (MCT4, matrix metalloproteinase MMP2 and MMP9) increased in the breast cancer cells. Meanwhile, the migration and invasion of the breast cancer cells were significantly enhanced assessed by cell wound healing experiment and transwell assays. Further, the gelatin zymography and lactate assay in the cells also showed the strengthened enzyme activity of MMP9 and the increased extracellular lactate concentration, respectively, after the silencing of CAV-1. Notably, the glycosylation level of CD147 overtly increased after the inhibition of CAV-1 detected by Western Blot analysis, whereas upregulation of CAV-1 did the opposite. Therefore, the findings suggest that the downregulation of CAV-1 can promote breast cancer cell progression probably by highly glycosylated CD147.
Collapse
Affiliation(s)
- Qingzhen Wu
- Department of Immunology, School of Medicine, Nankai University
| | - Chao Zhang
- Department of Immunology, School of Medicine, Nankai University
| | - Juan He
- Department of Immunology, School of Medicine, Nankai University
| | - Che Wang
- Department of Immunology, School of Medicine, Nankai University
| | - Xiao Hu
- Department of Immunology, School of Medicine, Nankai University
| | - Ning Li
- Institute of Disaster Medicine, Tianjin University, Tianjin, China
| | - Huiru Zou
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, The Affiliated Stomatological Hospital of Nankai University
| | - Junfang Qin
- Department of Immunology, School of Medicine, Nankai University
| | - Mengci Yuan
- Department of Immunology, School of Medicine, Nankai University
| | - Yue Wang
- Department of Immunology, School of Medicine, Nankai University
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, The Affiliated Stomatological Hospital of Nankai University
| |
Collapse
|
47
|
Xu F, Xu H, Li Z, Huang Y, Huang X, Li Y, Zheng X, Chen Y, Lin L. Glycolysis-Based Genes Are Potential Biomarkers in Thyroid Cancer. Front Oncol 2021; 11:534838. [PMID: 33981593 PMCID: PMC8107473 DOI: 10.3389/fonc.2021.534838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/24/2021] [Indexed: 02/05/2023] Open
Abstract
While increased glycolysis has been identified as a cancer marker and attracted much attention in thyroid cancer (THCA), the prognostic role of it remains to be further elucidated. Here we aimed to determine a specific glycolysis-associated risk model to predict THCA patients' survival. We also explored the interaction between this signature and tumor immune microenvironment and performed drug screening to identify specific drugs targeting the glycolysis-associated signature. Six genes (CHST6, POM121C, PPFIA4, STC1, TGFBI, and FBP2) comprised the specific model, which was an independent prognostic indicator in THCA patients determined by univariate, LASSO and multivariate Cox regression analyses. The receiver operating characteristic (ROC) curve analysis confirmed the excellent clinical performance of the prognostic signature. According to the specific gene signature, patients were categorized into high- and low-risk subgroups. The high-risk group was characterized by decreased immune score and elevated tumor purity, as well as worser survival prognosis compared to the low-risk group. We also validated the expression of these genes in clinical samples and in-vitro experiments. Lastly, we identified potential drugs targeting the glycolysis-associated signature. The derived glycolysis-related signature is an independent prognostic biomarker for THCA patients and might be used as an efficacy of biomarker for drug-sensitivity prediction.
Collapse
Affiliation(s)
- Feng Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Huan Xu
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Rheumatology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Zixiong Li
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yuanyuan Huang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Rheumatology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiaoling Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yangyi Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiaohe Zheng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yongsong Chen
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ling Lin
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Rheumatology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
48
|
Gao W, Huang M, Chen X, Chen J, Zou Z, Li L, Ji K, Nie Z, Yang B, Wei Z, Xu P, Jia J, Zhang Q, Shen H, Wang Q, Li K, Zhu L, Wang M, Ye S, Zeng S, Lin Y, Rong Z, Xu Y, Zhu P, Zhang H, Hao B, Liu Q. The role of S-nitrosylation of PFKM in regulation of glycolysis in ovarian cancer cells. Cell Death Dis 2021; 12:408. [PMID: 33859186 PMCID: PMC8050300 DOI: 10.1038/s41419-021-03681-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 02/02/2023]
Abstract
One of the malignant transformation hallmarks is metabolism reprogramming, which plays a critical role in the biosynthetic needs of unchecked proliferation, abrogating cell death programs, and immunologic escape. However, the mechanism of the metabolic switch is not fully understood. Here, we found that the S-nitrosoproteomic profile of endogenous nitrogen oxide in ovarian cancer cells targeted multiple components in metabolism processes. Phosphofructokinase (PFKM), one of the most important regulatory enzymes of glycolysis, was S-nitrosylated by nitric oxide synthase NOS1 at Cys351. S-nitrosylation at Cys351 stabilized the tetramer of PFKM, leading to resist negative feedback of downstream metabolic intermediates. The PFKM-C351S mutation decreased the proliferation rate of cultured cancer cells, and reduced tumor growth and metastasis in the mouse xenograft model. These findings indicated that S-nitrosylation at Cys351 of PFKM by NOS1 contributes to the metabolic reprogramming of ovarian cancer cells, highlighting a critical role of endogenous nitrogen oxide on metabolism regulations in tumor progression.
Collapse
Affiliation(s)
- Wenwen Gao
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mengqiu Huang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xi Chen
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jianping Chen
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhiwei Zou
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Southern Hospital Zengcheng Branch, Southern Medical University, Guangzhou, 528308, China
| | - Linlin Li
- First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan Province, 450001, China
| | - Kaiyuan Ji
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhirui Nie
- Guangzhou Panyu Central Hospital, Guangzhou, 511400, China
| | - Bingsheng Yang
- Pearl River Hospital, Southern Medical University, Guangzhou, 528308, China
| | - Zibo Wei
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Pengfei Xu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Junshuang Jia
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qianbing Zhang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hongfen Shen
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qianli Wang
- Henan Cancer Hospital, Zhengzhou University, Zhengzhou, Henan Province, 450003, China
| | - Keyi Li
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lingqun Zhu
- Guangzhou Concord Cancer Center, Guangzhou, 528308, China
| | - Meng Wang
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuangyan Ye
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sisi Zeng
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying Lin
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhili Rong
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yang Xu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518033, China
| | - Peng Zhu
- Central Lab of Shenzhen Pingshan People's Hospital, Shenzhen, 518118, P. R. China
| | - Hui Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
- Metabolic Innovation Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China.
- Platform of Metabolomics, Center for Precision Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China.
| | - Bingtao Hao
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Medical Genetic Institute of Henan Province, Henan Provincial Key Laboratory of Genetic Diseases and Functional Genoics, Henan Provincial People's Hospital Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, 450003, China.
| | - Qiuzhen Liu
- Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Pingshan General Hospital of Southern Medical University, Southern Medical University, Shenzhen, 518118, China.
| |
Collapse
|
49
|
Ruiz-Iglesias A, Mañes S. The Importance of Mitochondrial Pyruvate Carrier in Cancer Cell Metabolism and Tumorigenesis. Cancers (Basel) 2021; 13:cancers13071488. [PMID: 33804985 PMCID: PMC8037430 DOI: 10.3390/cancers13071488] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The characteristic metabolic hallmark of cancer cells is the massive catabolism of glucose by glycolysis, even under aerobic conditions—the so-called Warburg effect. Although energetically unfavorable, glycolysis provides “building blocks” to sustain the unlimited growth of malignant cells. Aberrant glycolysis is also responsible for lactate accumulation and acidosis in the tumor milieu, which fosters hypoxia and immunosuppression. One of the mechanisms used by cancer cells to increase glycolytic flow is the negative regulation of the proteins that conform the mitochondrial pyruvate carrier (MPC) complex, which transports pyruvate into the mitochondrial matrix to be metabolized in the tricarboxylic acid (TCA) cycle. Evidence suggests that MPC downregulation in tumor cells impacts many aspects of tumorigenesis, including cancer cell-intrinsic (proliferation, invasiveness, stemness, resistance to therapy) and -extrinsic (angiogenesis, anti-tumor immune activity) properties. In many cancers, but not in all, MPC downregulation is associated with poor survival. MPC regulation is therefore central to tackling glycolysis in tumors. Abstract Pyruvate is a key molecule in the metabolic fate of mammalian cells; it is the crossroads from where metabolism proceeds either oxidatively or ends with the production of lactic acid. Pyruvate metabolism is regulated by many enzymes that together control carbon flux. Mitochondrial pyruvate carrier (MPC) is responsible for importing pyruvate from the cytosol to the mitochondrial matrix, where it is oxidatively phosphorylated to produce adenosine triphosphate (ATP) and to generate intermediates used in multiple biosynthetic pathways. MPC activity has an important role in glucose homeostasis, and its alteration is associated with diabetes, heart failure, and neurodegeneration. In cancer, however, controversy surrounds MPC function. In some cancers, MPC upregulation appears to be associated with a poor prognosis. However, most transformed cells undergo a switch from oxidative to glycolytic metabolism, the so-called Warburg effect, which, amongst other possibilities, is induced by MPC malfunction or downregulation. Consequently, impaired MPC function might induce tumors with strong proliferative, migratory, and invasive capabilities. Moreover, glycolytic cancer cells secrete lactate, acidifying the microenvironment, which in turn induces angiogenesis, immunosuppression, and the expansion of stromal cell populations supporting tumor growth. This review examines the latest findings regarding the tumorigenic processes affected by MPC.
Collapse
|
50
|
Peng J, Cui Y, Xu S, Wu X, Huang Y, Zhou W, Wang S, Fu Z, Xie H. Altered glycolysis results in drug-resistant in clinical tumor therapy. Oncol Lett 2021; 21:369. [PMID: 33747225 DOI: 10.3892/ol.2021.12630] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer cells undergo metabolic reprogramming, including increased glucose metabolism, fatty acid synthesis and glutamine metabolic rates. These enhancements to three major metabolic pathways are closely associated with glycolysis, which is considered the central component of cancer cell metabolism. Increasing evidence suggests that dysfunctional glycolysis is commonly associated with drug resistance in cancer treatment, and aberrant glycolysis plays a significant role in drug-resistant cancer cells. Studies on the development of drugs targeting these abnormalities have led to improvements in the efficacy of tumor treatment. The present review discusses the changes in glycolysis targets that cause drug resistance in cancer cells, including hexokinase, pyruvate kinase, pyruvate dehydrogenase complex, glucose transporters, and lactate, as well the underlying molecular mechanisms and corresponding novel therapeutic strategies. In addition, the association between increased oxidative phosphorylation and drug resistance is introduced, which is caused by metabolic plasticity. Given that aberrant glycolysis has been identified as a common metabolic feature of drug-resistant tumor cells, targeting glycolysis may be a novel strategy to develop new drugs to benefit patients with drug-resistance.
Collapse
Affiliation(s)
- Jinghui Peng
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yangyang Cui
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shipeng Xu
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xiaowei Wu
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yue Huang
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wenbin Zhou
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shui Wang
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ziyi Fu
- Nanjing Maternal and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China.,Department of Oncology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hui Xie
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|