1
|
El Bounkari O, Zan C, Yang B, Ebert S, Wagner J, Bugar E, Kramer N, Bourilhon P, Kontos C, Zarwel M, Sinitski D, Milic J, Jansen Y, Kempf WE, Sachs N, Maegdefessel L, Ji H, Gokce O, Riols F, Haid M, Gerra S, Hoffmann A, Brandhofer M, Avdic M, Bucala R, Megens RTA, Willemsen N, Messerer D, Schulz C, Bartelt A, Harm T, Rath D, Döring Y, Gawaz M, Weber C, Kapurniotu A, Bernhagen J. An atypical atherogenic chemokine that promotes advanced atherosclerosis and hepatic lipogenesis. Nat Commun 2025; 16:2297. [PMID: 40055309 PMCID: PMC11889166 DOI: 10.1038/s41467-025-57540-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/25/2025] [Indexed: 05/13/2025] Open
Abstract
Atherosclerosis is the underlying cause of myocardial infarction and ischemic stroke. It is a lipid-triggered and cytokine/chemokine-driven arterial inflammatory condition. We identify D-dopachrome tautomerase/macrophage migration-inhibitory factor-2 (MIF-2), a paralog of the cytokine MIF, as an atypical chemokine promoting both atherosclerosis and hepatic lipid accumulation. In hyperlipidemic Apoe-/- mice, Mif-2-deficiency and pharmacological MIF-2-blockade protect against lesion formation and vascular inflammation in early and advanced atherogenesis. MIF-2 promotes leukocyte migration, endothelial arrest, and foam-cell formation, and we identify CXCR4 as a receptor for MIF-2. Mif-2-deficiency in Apoe-/- mice leads to decreased plasma lipid levels and suppressed hepatic lipid accumulation, characterized by reductions in lipogenesis-related pathways, tri-/diacylglycerides, and cholesterol-esters, as revealed by hepatic transcriptomics/lipidomics. Hepatocyte cultures and FLIM-FRET-microscopy suggest that MIF-2 activates SREBP-driven lipogenic genes, mechanistically involving MIF-2-inducible CD74/CXCR4 complexes and PI3K/AKT but not AMPK signaling. MIF-2 is upregulated in unstable carotid plaques from atherosclerotic patients and its plasma concentration correlates with disease severity in patients with coronary artery disease. These findings establish MIF-2 as an atypical chemokine linking vascular inflammation to metabolic dysfunction in atherosclerosis.
Collapse
Affiliation(s)
- Omar El Bounkari
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany.
| | - Chunfang Zan
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Bishan Yang
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Simon Ebert
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Jonas Wagner
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Elina Bugar
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Naomi Kramer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Priscila Bourilhon
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Christos Kontos
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), Freising, Germany
| | - Marlies Zarwel
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Dzmitry Sinitski
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Jelena Milic
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Yvonne Jansen
- Institute for Cardiovascular Prevention, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Wolfgang E Kempf
- Institute of Molecular Vascular Medicine, TUM Klinikum, Technische Universität München (TUM), Munich, Germany
| | - Nadja Sachs
- Institute of Molecular Vascular Medicine, TUM Klinikum, Technische Universität München (TUM), Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Lars Maegdefessel
- Institute of Molecular Vascular Medicine, TUM Klinikum, Technische Universität München (TUM), Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Hao Ji
- Systems Neuroscience Lab, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Ozgun Gokce
- Systems Neuroscience Lab, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn Venusberg-Campus 1, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Munich, Germany
| | - Fabien Riols
- Metabolomics and Proteomics Core, Helmholtz Zentrum, Neuherberg, Germany
| | - Mark Haid
- Metabolomics and Proteomics Core, Helmholtz Zentrum, Neuherberg, Germany
| | - Simona Gerra
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Adrian Hoffmann
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Department of Anaesthesiology, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Markus Brandhofer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Maida Avdic
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | | | - Remco T A Megens
- Institute for Cardiovascular Prevention, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Nienke Willemsen
- Institute for Cardiovascular Prevention, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Denise Messerer
- Department of Medicine I, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Christian Schulz
- Department of Medicine I, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Department of Immunopharmacology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tobias Harm
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Dominik Rath
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), Freising, Germany
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany.
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
2
|
Ábrahám Á, Gyulai G, Mihály J, Horváth A, Dobay O, Varga Z, Kiss É, Horváti K. Optimizing lipopeptide bioactivity: The impact of non-ionic surfactant dressing. J Pharm Anal 2024; 14:101020. [PMID: 39881961 PMCID: PMC11774939 DOI: 10.1016/j.jpha.2024.101020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 01/31/2025] Open
Abstract
The aim of the research is to increase the applicability of lipopeptides as drugs. To this end, non-ionic triblock copolymers, namely poloxamers, were applied. The physico-chemical properties of poloxamers vary depending on the length of the blocks. In our study, we experimented with different types and systematically investigated the variation of the critical micelle concentration (CMC) of poloxamers at 25 and 37 °C in different media. In addition, the cytotoxicity of the different poloxamer micelles on three different cell lines was evaluated, and based on the results, Plur104, Plur123, and Plur127 were selected. Fatty acid elongated derivatives of a short antibacterial peptide (pL1), a medium-sized anticancer peptide (pCM15), and a branched-chain vaccine antigen (pATIPC) were used as lipopeptide models, and their formulations with the selected poloxamers were investigated. The solubility and homogeneity of the lipopeptides were significantly increased, and dynamic light scattering (DLS) measurements showed the formation of small particles of around 20 nm, which were well reproducible and storable. Similar homogenous micelle formation was observed after freeze-drying and reconstitution with water. The pL1 lipopeptide, formulated with the selected poloxamers, exhibited enhanced antibacterial activity with significantly reduced haemolytic side effects. The pCM15 peptide, when incorporated into poloxamer micelles, showed significantly enhanced cytotoxicity against tumor cells. Additionally, the internalization rate of poloxamer-formulated pATIPC peptide by antigen-presenting model cells exceeded that of the unformulated peptide. Our results demonstrate the potential of poloxamers as promising tools for the formulation of lipopeptides and for the optimization of their selectivity.
Collapse
Affiliation(s)
- Ágnes Ábrahám
- MTA-HUN-REN TTK Lendület “Momentum” Peptide-Based Vaccines Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Gergő Gyulai
- MTA-HUN-REN TTK Lendület “Momentum” Peptide-Based Vaccines Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Judith Mihály
- HUN-REN TTK Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Andrea Horváth
- Institute of Medical Microbiology, Semmelweis University, Budapest, H-1085, Hungary
| | - Orsolya Dobay
- Institute of Medical Microbiology, Semmelweis University, Budapest, H-1085, Hungary
| | - Zoltán Varga
- HUN-REN TTK Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, H-1111, Hungary
| | - Éva Kiss
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Kata Horváti
- MTA-HUN-REN TTK Lendület “Momentum” Peptide-Based Vaccines Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| |
Collapse
|
3
|
El Battioui K, Chakraborty S, Wacha A, Molnár D, Quemé-Peña M, Szigyártó IC, Szabó CL, Bodor A, Horváti K, Gyulai G, Bősze S, Mihály J, Jezsó B, Románszki L, Tóth J, Varga Z, Mándity I, Juhász T, Beke-Somfai T. In situ captured antibacterial action of membrane-incising peptide lamellae. Nat Commun 2024; 15:3424. [PMID: 38654023 PMCID: PMC11039730 DOI: 10.1038/s41467-024-47708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Developing unique mechanisms of action are essential to combat the growing issue of antimicrobial resistance. Supramolecular assemblies combining the improved biostability of non-natural compounds with the complex membrane-attacking mechanisms of natural peptides are promising alternatives to conventional antibiotics. However, for such compounds the direct visual insight on antibacterial action is still lacking. Here we employ a design strategy focusing on an inducible assembly mechanism and utilized electron microscopy (EM) to follow the formation of supramolecular structures of lysine-rich heterochiral β3-peptides, termed lamellin-2K and lamellin-3K, triggered by bacterial cell surface lipopolysaccharides. Combined molecular dynamics simulations, EM and bacterial assays confirmed that the phosphate-induced conformational change on these lamellins led to the formation of striped lamellae capable of incising the cell envelope of Gram-negative bacteria thereby exerting antibacterial activity. Our findings also provide a mechanistic link for membrane-targeting agents depicting the antibiotic mechanism derived from the in-situ formation of active supramolecules.
Collapse
Grants
- CZ.02.1.01/0.0/0.0/18_046/0015974 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
- This work was funded by the Momentum Program (LP2016-2 and LP2021-28) of the Hungarian Academy of Sciences, the National Competitiveness and Excellence Program (NVKP_16-1-2016-0007), the BIONANO_GINOP-2.3.2-15-2016-00017 project, and the National Research, Development and Innovation Office, Hungary (TKP2021-EGA-31, 2020-1.1.2-PIACI-KFI-2020-00021, 2019-2.1.11-TÉT-2019-00091, KKP_22 Project n.o. 144180, K131594 for J.M., K124900, K137940 for A.B., K142904 for Sz.B., and K138318 to J.T.). Support from Eötvös Loránd Research Network, Grant Nos. SA-87/2021 and KEP-5/2021, are also acknowledged. A.W. and Z.V. were supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. The authors acknowledge support from ELTE Thematic Excellence Programme 2020, the Szint+ Program, National Challenges Subprogramme-TKP2020-NKA-06. CIISB, Instruct-CZ Centre of Instruct-ERIC EU consortium, funded by MEYS CR infrastructure project LM2018127, LM2023042 and European Regional Development Fund-Project „UP CIISB“ (No. CZ.02.1.01/0.0/0.0/18_046/0015974), is gratefully acknowledged for the financial support of the measurements at the CF Cryo-Electron Microscopy and Tomography.
Collapse
Affiliation(s)
- Kamal El Battioui
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Sohini Chakraborty
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - András Wacha
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Dániel Molnár
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Doctoral School of Biology and Institute of Biology, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Mayra Quemé-Peña
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
| | - Imola Cs Szigyártó
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Csenge Lilla Szabó
- Hevesy György Ph.D. School of Chemistry, Eötvös Loránd University, Budapest, H-1117, Hungary
- ELTE Eötvös Loránd University, Institute of Chemistry, Analytical and BioNMR Laboratory, Budapest, H-1117, Hungary
| | - Andrea Bodor
- ELTE Eötvös Loránd University, Institute of Chemistry, Analytical and BioNMR Laboratory, Budapest, H-1117, Hungary
| | - Kata Horváti
- MTA-HUN-REN TTK "Momentum" Peptide-Based Vaccines Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Gergő Gyulai
- MTA-HUN-REN TTK "Momentum" Peptide-Based Vaccines Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- ELTE Eötvös Loránd University, Institute of Chemistry, Laboratory of Interfaces and Nanostructures, Budapest, H-1117, Hungary
| | - Szilvia Bősze
- HUN-REN ELTE Research Group of Peptide Chemistry, Hungarian Research Network, Eötvös Loránd University, Budapest, Hungary
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Bálint Jezsó
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- ELTE-MTA "Momentum" Motor Enzymology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Loránd Románszki
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Judit Tóth
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, H-1111, Hungary
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, 1111, Hungary
| | - István Mándity
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, Budapest, H-1092, Hungary
| | - Tünde Juhász
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Tamás Beke-Somfai
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest, H-1117, Hungary.
| |
Collapse
|
4
|
Quoniou R, Moreau E, Cachin F, Miot-Noirault E, Chautard E, Peyrode C. 3D Coculture between Cancer Cells and Macrophages: From Conception to Experimentation. ACS Biomater Sci Eng 2024; 10:313-325. [PMID: 38110331 DOI: 10.1021/acsbiomaterials.3c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
A tumor is a complex cluster with many types of cells in the microenvironment that help it grow. Macrophages, immune cells whose main role is to maintain body homeostasis, represent in the majority of cancers the most important cell population. In this context, they are called tumor-associated macrophages (TAMs) because of their phenotype, which contributes to tumor growth. In order to limit the use of animals, there is a real demand for the creation of in vitro models able to represent more specifically the complexity of the tumor microenvironment (TME) in order to characterize it and evaluate new treatments. However, the two-dimensional (2D) culture, which has been used for a long time, has shown many limitations, especially in terms of tumor representation. The three-dimensional (3D) models, developed over the last 20 years, have made it possible to get closer to what happens in vivo in terms of phenotypic and functional characteristics. Due to their architectural similarity to in vivo tissues, they provide a more physiologically relevant in vitro system. Most recently, it is the development of 3D coculture models in which two or three cell lines are cultured together that has allowed a better representation of TME with cell-cell interactions. Unfortunately, there is no clear direction for the design of these models at this time. In this Review on the coculture between cancer cells and TAMs, an in-depth analysis is performed to answer multiple questions on the conception of these models: Which models to use, and with which material and cancer lineage? Which monocyte or macrophage lines should be added to the coculture? And how can these models be exploited?
Collapse
Affiliation(s)
- Rohan Quoniou
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, 63000 Clermont-Ferrand, France
| | - Emmanuel Moreau
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, 63000 Clermont-Ferrand, France
| | - Florent Cachin
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, 63000 Clermont-Ferrand, France
- Service de Médecine Nucléaire, Centre Jean Perrin, 63000 Clermont-Ferrand, France
| | - Elisabeth Miot-Noirault
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, 63000 Clermont-Ferrand, France
| | - Emmanuel Chautard
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, 63000 Clermont-Ferrand, France
- Service de Pathologie, Centre Jean Perrin, 63000 Clermont-Ferrand, France
| | - Caroline Peyrode
- Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, Université Clermont Auvergne, INSERM, 63000 Clermont-Ferrand, France
| |
Collapse
|
5
|
Huszár B, Szolga R, Bősze S, Oláhné Szabó R, Simon A, Karaghiosoff K, Czugler M, Drahos L, Keglevich G. Synthesis and Anticancer Activity of Phosphinoylated and Phosphonoylated N-Heterocycles Obtained by the Microwave-Assisted Palladium Acetate-Catalyzed Hirao Reaction. Chemistry 2023; 29:e202302465. [PMID: 37711077 DOI: 10.1002/chem.202302465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
A literature survey showed that different derivatives with the 9-phenyl-9H-carbazole or the dihydroindoline scaffold may be of biological activity including cytotoxic effect. Driven by this experience, P-functionalized derivatives of these N-heterocycles were synthesized. Three N-heterocycles, 9-(4-bromophenyl)-9H-carbazole, 3-bromo-9-phenyl-9H-carbazole and 1-(5-bromoindolin-1-yl)ethan-1-one, were coupled with dialkyl phosphites and diarylphosphine oxides using Pd(OAc)2 (10 %) as the catalyst precursor and triethylamine as the base in ethanol under microwave irradiation. The excess of the Y2 P(O)H reagent (Y=alkoxy, aryl) (30 %) served as the P-ligand in its trivalent tautomeric form (Y2 POH), hence there was no need for the usual P-ligands meaning cost and environmental burden. Hence, the presented method is a "green" approach that proved to be more efficient than the preparation by the traditional method. The products, dialkyl phosphonates and tertiary phosphine oxides obtained in 58-84 % yields were characterized, one of them also by single crystal X-ray analysis, and were subjected to in vitro biological activity evaluation. A (carbazol)yl-phenylphosphonate, an N-phenyl-(carbazol)yl-phosphonate, a (carbazol)yl-phenylphosphine oxide and an N-phenyl-(carbazol)ylphosphine oxide revealed a significant cytotoxic activity on A549 human non-small-cell lung carcinoma and MonoMac-6 acute monocytic leukemia cancer cells. The cytotoxic effect was significant as compared to that of the reference compounds.
Collapse
Affiliation(s)
- Bianka Huszár
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 1521, Budapest, Hungary
| | - Renáta Szolga
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 1521, Budapest, Hungary
| | - Szilvia Bősze
- Eötvös Loránd Research Network (ELKH), Research Group of Peptide Chemistry, Eötvös Loránd University, 1117, Budapest, Hungary
| | - Rita Oláhné Szabó
- Eötvös Loránd Research Network (ELKH), Research Group of Peptide Chemistry, Eötvös Loránd University, 1117, Budapest, Hungary
- Department of Genetics, Cell-and Immunobiology, Semmelweis University, 1089, Budapest, Nagyvárad tér 4, Hungary
| | - András Simon
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 1521, Budapest, Hungary
| | - Konstantin Karaghiosoff
- Department Chemie, Ludwig-Maximilians-Universitat München, 81377, München, Butenandtstr. 5-13, Germany
| | - Mátyás Czugler
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 1521, Budapest, Hungary
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - György Keglevich
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 1521, Budapest, Hungary
| |
Collapse
|
6
|
Bellini C, Vergara E, Bencs F, Fodor K, Bősze S, Krivić D, Bacsa B, Surguta SE, Tóvári J, Reljic R, Horváti K. Design and Characterization of a Multistage Peptide-Based Vaccine Platform to Target Mycobacterium tuberculosis Infection. Bioconjug Chem 2023; 34:1738-1753. [PMID: 37606258 PMCID: PMC10587871 DOI: 10.1021/acs.bioconjchem.3c00273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/09/2023] [Indexed: 08/23/2023]
Abstract
The complex immunopathology ofMycobacterium tuberculosis(Mtb) is one of the main challenges in developing a novel vaccine against this pathogen, particularly regarding eliciting protection against both active and latent stages. Multistage vaccines, which contain antigens expressed in both phases, represent a promising strategy for addressing this issue, as testified by the tuberculosis vaccine clinical pipeline. Given this approach, we designed and characterized a multistage peptide-based vaccine platform containing CD4+ and CD8+ T cell epitopes previously validated for inducing a relevant T cell response against Mtb. After preliminary screening, CFP10 (32-39), GlfT2 (4-12), HBHA (185-194), and PPE15 (1-15) were selected as promising candidates, and we proved that the PM1 pool of these peptides triggered a T cell response in Mtb-sensitized human peripheral blood mononuclear cells (PBMCs). Taking advantage of the use of thiol-maleimide chemoselective ligation, we synthesized a multiepitope conjugate (Ac-CGHP). Our results showed a structure-activity relationship between the conjugation and a higher tendency to fold and assume an ordered secondary structure. Moreover, the palmitoylated conjugate (Pal-CGHP) comprising the same peptide antigens was associated with an enhanced cellular uptake in human and murine antigen-presenting cells and a better immunogenicity profile. Immunization study, conducted in BALB/c mice, showed that Pal-CGHP induced a significantly higher T cell proliferation and production of IFNγ and TNFα over PM1 formulated in the Sigma Adjuvant System.
Collapse
Affiliation(s)
- Chiara Bellini
- MTA-TTK
Lendület “Momentum” Peptide-Based Vaccines Research
Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest 1117, Hungary
- Hevesy
György PhD School of Chemistry, Eötvös
Loránd University, Budapest 1117, Hungary
| | - Emil Vergara
- Institute
for Infection and Immunity, St. George’s,
University of London, London SW17 0RE, U.K.
| | - Fruzsina Bencs
- Hevesy
György PhD School of Chemistry, Eötvös
Loránd University, Budapest 1117, Hungary
- Laboratory
of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Budapest 1117, Hungary
| | - Kinga Fodor
- Department
of Laboratory Animal Science and Animal Protection, University of Veterinary Medicine, Budapest 1078, Hungary
| | - Szilvia Bősze
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network (ELKH), Eötvös
Loránd University, Budapest 1117, Hungary
| | - Denis Krivić
- Division
of Medical Physics and Biophysics, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Bernadett Bacsa
- Division
of Medical Physics and Biophysics, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Sára Eszter Surguta
- Department
of Experimental Pharmacology and National Tumor Biology Laboratory, National Institute of Oncology, Budapest 1122, Hungary
| | - József Tóvári
- Department
of Experimental Pharmacology and National Tumor Biology Laboratory, National Institute of Oncology, Budapest 1122, Hungary
| | - Rajko Reljic
- Institute
for Infection and Immunity, St. George’s,
University of London, London SW17 0RE, U.K.
| | - Kata Horváti
- MTA-TTK
Lendület “Momentum” Peptide-Based Vaccines Research
Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest 1117, Hungary
| |
Collapse
|
7
|
Hein T, Krammer PH, Weyd H. Molecular analysis of Annexin expression in cancer. BMC Cancer 2022; 22:994. [PMID: 36123610 PMCID: PMC9484247 DOI: 10.1186/s12885-022-10075-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
Background Uptake of apoptotic cells induces a tolerogenic phenotype in phagocytes and promotes peripheral tolerance. The highly conserved Annexin core domain, present in all members of the Annexin family, becomes exposed on the apoptotic cell-surface and triggers tolerogenic signalling in phagocytes via the Dectin-1 receptor. Consequently, Annexins exposed on tumour cells upon cell death are expected to induce tolerance towards tumour antigens, inhibiting tumour rejection. Methods Expression analysis for all Annexin family members was conducted in cancer cell lines of diverse origins. Presentation of Annexins on the cell surface during apoptosis of cancer cell lines was investigated using surface washes and immunoblotting. Expression data from the GEO database was analysed to compare Annexin levels between malignant and healthy tissue. Results Six Annexins at least were consistently detected on mRNA and protein level for each investigated cell line. AnxA1, AnxA2 and AnxA5 constituted the major part of total Annexin expression. All expressed Annexins translocated to the cell surface upon apoptosis induction in all cell lines. Human expression data indicate a correlation between immune infiltration and overall Annexin expression in malignant compared to healthy tissue. Conclusions This study is the first comprehensive analysis of expression, distribution and presentation of Annexins in cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10075-8.
Collapse
Affiliation(s)
- Tobias Hein
- Division of Immunogenetics, Tumour Immunology Program, German Cancer Research Centre, 69120, Heidelberg, Germany.,Faculty of Biosciences, Ruprecht-Karls-University Heidelberg, 69120, Heidelberg, Germany
| | - Peter H Krammer
- Division of Immunogenetics, Tumour Immunology Program, German Cancer Research Centre, 69120, Heidelberg, Germany
| | - Heiko Weyd
- Division of Immunogenetics, Tumour Immunology Program, German Cancer Research Centre, 69120, Heidelberg, Germany.
| |
Collapse
|
8
|
Brandhofer M, Hoffmann A, Blanchet X, Siminkovitch E, Rohlfing AK, El Bounkari O, Nestele JA, Bild A, Kontos C, Hille K, Rohde V, Fröhlich A, Golemi J, Gokce O, Krammer C, Scheiermann P, Tsilimparis N, Sachs N, Kempf WE, Maegdefessel L, Otabil MK, Megens RTA, Ippel H, Koenen RR, Luo J, Engelmann B, Mayo KH, Gawaz M, Kapurniotu A, Weber C, von Hundelshausen P, Bernhagen J. Heterocomplexes between the atypical chemokine MIF and the CXC-motif chemokine CXCL4L1 regulate inflammation and thrombus formation. Cell Mol Life Sci 2022; 79:512. [PMID: 36094626 PMCID: PMC9468113 DOI: 10.1007/s00018-022-04539-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/31/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022]
Abstract
To fulfil its orchestration of immune cell trafficking, a network of chemokines and receptors developed that capitalizes on specificity, redundancy, and functional selectivity. The discovery of heteromeric interactions in the chemokine interactome has expanded the complexity within this network. Moreover, some inflammatory mediators, not structurally linked to classical chemokines, bind to chemokine receptors and behave as atypical chemokines (ACKs). We identified macrophage migration inhibitory factor (MIF) as an ACK that binds to chemokine receptors CXCR2 and CXCR4 to promote atherogenic leukocyte recruitment. Here, we hypothesized that chemokine–chemokine interactions extend to ACKs and that MIF forms heterocomplexes with classical chemokines. We tested this hypothesis by using an unbiased chemokine protein array. Platelet chemokine CXCL4L1 (but not its variant CXCL4 or the CXCR2/CXCR4 ligands CXCL8 or CXCL12) was identified as a candidate interactor. MIF/CXCL4L1 complexation was verified by co-immunoprecipitation, surface plasmon-resonance analysis, and microscale thermophoresis, also establishing high-affinity binding. We next determined whether heterocomplex formation modulates inflammatory/atherogenic activities of MIF. Complex formation was observed to inhibit MIF-elicited T-cell chemotaxis as assessed by transwell migration assay and in a 3D-matrix-based live cell-imaging set-up. Heterocomplexation also blocked MIF-triggered migration of microglia in cortical cultures in situ, as well as MIF-mediated monocyte adhesion on aortic endothelial cell monolayers under flow stress conditions. Of note, CXCL4L1 blocked binding of Alexa-MIF to a soluble surrogate of CXCR4 and co-incubation with CXCL4L1 attenuated MIF responses in HEK293-CXCR4 transfectants, indicating that complex formation interferes with MIF/CXCR4 pathways. Because MIF and CXCL4L1 are platelet-derived products, we finally tested their role in platelet activation. Multi-photon microscopy, FLIM-FRET, and proximity-ligation assay visualized heterocomplexes in platelet aggregates and in clinical human thrombus sections obtained from peripheral artery disease (PAD) in patients undergoing thrombectomy. Moreover, heterocomplexes inhibited MIF-stimulated thrombus formation under flow and skewed the lamellipodia phenotype of adhering platelets. Our study establishes a novel molecular interaction that adds to the complexity of the chemokine interactome and chemokine/receptor-network. MIF/CXCL4L1, or more generally, ACK/CXC-motif chemokine heterocomplexes may be target structures that can be exploited to modulate inflammation and thrombosis.
Collapse
Affiliation(s)
- Markus Brandhofer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Adrian Hoffmann
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany.,Department of Anesthesiology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Xavier Blanchet
- Institute for Cardiovascular Prevention (IPEK), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Pettenkofer Straße 8a/9, 80336, Munich, Germany
| | - Elena Siminkovitch
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Anne-Katrin Rohlfing
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Omar El Bounkari
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Jeremy A Nestele
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Alexander Bild
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Christos Kontos
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), 85354, Freising, Germany
| | - Kathleen Hille
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), 85354, Freising, Germany
| | - Vanessa Rohde
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Adrian Fröhlich
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Jona Golemi
- Systems Neuroscience Group, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Ozgun Gokce
- Systems Neuroscience Group, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - Christine Krammer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Patrick Scheiermann
- Department of Anesthesiology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Nikolaos Tsilimparis
- Department of Vascular Surgery, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Nadja Sachs
- Department for Vascular and Endovascular Surgery, Klinikum Rechts Der Isar, Technische Universität München (TUM), 81675, Munich, Germany.,Munich Heart Alliance, 80802, Munich, Germany
| | - Wolfgang E Kempf
- Department for Vascular and Endovascular Surgery, Klinikum Rechts Der Isar, Technische Universität München (TUM), 81675, Munich, Germany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum Rechts Der Isar, Technische Universität München (TUM), 81675, Munich, Germany.,Munich Heart Alliance, 80802, Munich, Germany
| | - Michael K Otabil
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Remco T A Megens
- Institute for Cardiovascular Prevention (IPEK), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Pettenkofer Straße 8a/9, 80336, Munich, Germany.,Munich Heart Alliance, 80802, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Hans Ippel
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Rory R Koenen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Junfu Luo
- Vascular Biology and Pathology, Institute of Laboratory Medicine, Ludwig-Maximilians-Universität, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Bernd Engelmann
- Vascular Biology and Pathology, Institute of Laboratory Medicine, Ludwig-Maximilians-Universität, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377, Munich, Germany
| | - Kevin H Mayo
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands.,Department of Biochemistry, Molecular Biology and Biophysics, Health Sciences Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), 85354, Freising, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Pettenkofer Straße 8a/9, 80336, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany.,Munich Heart Alliance, 80802, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Philipp von Hundelshausen
- Institute for Cardiovascular Prevention (IPEK), LMU University Hospital (LMU Klinikum), Ludwig-Maximilians-Universität (LMU) München, Pettenkofer Straße 8a/9, 80336, Munich, Germany. .,Munich Heart Alliance, 80802, Munich, Germany.
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Feodor-Lynen-Straße 17, 81377, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany. .,Munich Heart Alliance, 80802, Munich, Germany.
| |
Collapse
|
9
|
Akula S, Lara S, Olsson AK, Hellman L. Quantitative Analysis of the Transcriptome of Two Commonly Used Human Monocytic Cell Lines—THP-1 and Mono Mac 6—Reveals Their Arrest during Early Monocyte/Neutrophil Differentiation. Int J Mol Sci 2022; 23:ijms23105818. [PMID: 35628628 PMCID: PMC9145822 DOI: 10.3390/ijms23105818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
Cell lines of monocyte/macrophage origin are often used as model systems to study monocyte/macrophage biology. A relevant question is how similar these cell lines are to their in vivo counterparts? To address this issue, we performed a detailed analysis of the transcriptome of two commonly used human monocyte/macrophage cell lines, Mono Mac 6 and THP-1. Both of these cell lines originate from leukemic cells with myelo-monocytic characteristics. We found that both Mono Mac 6 and THP-1 represent cells of very immature origin. Their transcriptomes show more similarities to immature neutrophils than cells of the monocyte/macrophage lineage. They express significant levels of N-elastase, proteinase 3, cathepsin G, and azurocidin but very low levels of CD14, ficolin, and complement factor P. All major MHC class II genes are also expressed at low levels. They show high levels of lysozyme and low levels of one of the immunoglobulin Fc receptors, FCGRIIA, which is characteristic of both neutrophils and monocytes. THP-1, but not Mono Mac 6, also expresses the high-affinity receptor for IgG, FCGRIA. Both cell lines lack the expression of the connective tissue components fibronectin, proteoglycan 4, and syndecan 3, which are characteristics of tissue macrophages but are absent in blood monocytes, indicating that they originate from bone marrow precursors and not yolk sac-derived hematopoietic cells. Both of these cell lines seem, therefore, to represent cells arrested during early myelo-monocytic development, at a branch point between neutrophil and monocyte differentiation. Their very immature phenotype indicates that great care should be taken when using these cell lines as models for normal monocyte/macrophage biology.
Collapse
Affiliation(s)
- Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, P.O. Box 596, SE-75124 Uppsala, Sweden
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, SE-75007 Uppsala, Sweden
| | - Sandra Lara
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, P.O. Box 596, SE-75124 Uppsala, Sweden
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, BMC, Box 582, SE-75123 Uppsala, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, P.O. Box 596, SE-75124 Uppsala, Sweden
| |
Collapse
|
10
|
Host cell targeting of novel antimycobacterial 4-aminosalicylic acid derivatives with tuftsin carrier peptides. Eur J Pharm Biopharm 2022; 174:111-130. [DOI: 10.1016/j.ejpb.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/08/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022]
|
11
|
Sebák F, Horváth LB, Kovács D, Szolomájer J, Tóth GK, Babiczky Á, Bősze S, Bodor A. Novel Lysine-Rich Delivery Peptides of Plant Origin ERD and Human S100: The Effect of Carboxyfluorescein Conjugation, Influence of Aromatic and Proline Residues, Cellular Internalization, and Penetration Ability. ACS OMEGA 2021; 6:34470-34484. [PMID: 34963932 PMCID: PMC8697381 DOI: 10.1021/acsomega.1c04637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2021] [Indexed: 06/14/2023]
Abstract
The need for novel drug delivery peptides is an important issue of the modern pharmaceutical research. Here, we test K-rich peptides from plant dehydrin ERD14 (ERD-A, ERD-B, and ERD-C) and the C-terminal CPP-resembling region of S100A4 (S100) using the 5(6)-carboxyfluorescein (Cf) tag at the N-terminus. Via a combined pH-dependent NMR and fluorescence study, we analyze the effect of the Cf conjugation/modification on the structural behavior, separately investigating the (5)-Cf and (6)-Cf forms. Flow cytometry results show that all peptides internalize; however, there is a slight difference between the cellular internalization of (5)- and (6)-Cf-peptides. We indicate the possible importance of residues with an aromatic sidechain and proline. We prove that ERD-A localizes mostly in the cytosol, ERD-B and S100 have partial colocalization with lysosomal staining, and ERD-C mainly localizes within vesicle-like compartments, while the uptake mechanism mainly occurs through energy-dependent paths.
Collapse
Affiliation(s)
- Fanni Sebák
- Institute
of Chemistry, ELTE−Eötvös
Loránd University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
- Doctoral
School of Pharmaceutical Sciences, Semmelweis
University, Üllői
út 26, H-1085 Budapest, Hungary
| | - Lilla Borbála Horváth
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
- National
Public Health Center, Albert Flórián út 2-6, Budapest H-1097, Hungary
- Hevesy
György PhD School of Chemistry, ELTE
Eötvös Loránd University, Pázmány Péter sétány
1/a, H-1117 Budapest, Hungary
| | - Dániel Kovács
- Institute
of Chemistry, ELTE−Eötvös
Loránd University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
- Hevesy
György PhD School of Chemistry, ELTE
Eötvös Loránd University, Pázmány Péter sétány
1/a, H-1117 Budapest, Hungary
| | - János Szolomájer
- Department
of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Gábor K. Tóth
- Department
of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Ákos Babiczky
- Institute
of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Doctoral
School of Psychology/Cognitive Science, Budapest University of Technology and Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary
| | - Szilvia Bősze
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
- National
Public Health Center, Albert Flórián út 2-6, Budapest H-1097, Hungary
| | - Andrea Bodor
- Institute
of Chemistry, ELTE−Eötvös
Loránd University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
| |
Collapse
|
12
|
Horváti K, Fodor K, Pályi B, Henczkó J, Balka G, Gyulai G, Kiss É, Biri-Kovács B, Senoner Z, Bősze S. Novel Assay Platform to Evaluate Intracellular Killing of Mycobacterium tuberculosis: In Vitro and In Vivo Validation. Front Immunol 2021; 12:750496. [PMID: 34867981 PMCID: PMC8632718 DOI: 10.3389/fimmu.2021.750496] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
One of the main hallmarks of tuberculosis (TB) is the ability of the causative agent to transform into a stage of dormancy and the capability of long persistence in the host phagocytes. It is believed that approximately one-third of the population of the world is latently infected with Mycobacterium tuberculosis (Mtb), and 5%-10% of these individuals can develop clinical manifestations of active TB even decades after the initial infection. In this latent, intracellular form, the bacillus is shielded by an extremely robust cell wall and becomes phenotypically resistant to most antituberculars. Therefore, there is a clear rationale to develop novel compounds or carrier-conjugated constructs of existing drugs that are effective against the intracellular form of the bacilli. In this paper, we describe an experimental road map to define optimal candidates against intracellular Mtb and potential compounds effective in the therapy of latent TB. To validate our approach, isoniazid, a first-line antitubercular drug was employed, which is active against extracellular Mtb in the submicromolar range, but ineffective against the intracellular form of the bacteria. Cationic peptide conjugates of isoniazid were synthesized and employed to study the host-directed drug delivery. To measure the intracellular killing activity of the compounds, Mtb-infected MonoMac-6 human monocytic cells were utilized. We have assessed the antitubercular activity, cytotoxicity, membrane interactions in combination with internalization efficacy, localization, and penetration ability on interface and tissue-mimicking 3D models. Based on these in vitro data, most active compounds were further evaluated in vivo in a murine model of TB. Intraperitoneal infectious route was employed to induce a course of slowly progressive and systemic disease. The well-being of the animals, monitored by the body weight, allows a prolonged experimental setup and provides a great opportunity to test the long-term activity of the drug candidates. Having shown the great potency of this simple and suitable experimental design for antimicrobial research, the proposed novel assay platform could be used in the future to develop further innovative and highly effective antituberculars.
Collapse
Affiliation(s)
- Kata Horváti
- Eötvös Loránd Kutatási Hálózat-Eötvös Loránd Tudományegyetem (ELKH-ELTE) Research Group of Peptide Chemistry, Eötvös Loránd Research Network, Eötvös Loránd University, Budapest, Hungary
- Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Kinga Fodor
- Department of Laboratory Animal Science and Animal Protection, University of Veterinary Medicine, Budapest, Hungary
| | - Bernadett Pályi
- National Biosafety Laboratory, National Public Health Center, Budapest, Hungary
| | - Judit Henczkó
- National Biosafety Laboratory, National Public Health Center, Budapest, Hungary
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| | - Gergő Gyulai
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Éva Kiss
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | | | | | - Szilvia Bősze
- Eötvös Loránd Kutatási Hálózat-Eötvös Loránd Tudományegyetem (ELKH-ELTE) Research Group of Peptide Chemistry, Eötvös Loránd Research Network, Eötvös Loránd University, Budapest, Hungary
- National Biosafety Laboratory, National Public Health Center, Budapest, Hungary
| |
Collapse
|
13
|
Lara S, Anania JC, Virtanen A, Stenhammar V, Kleinau S. Importance of antibody isotypes in antitumor immunity by monocytes and complement using human-immune tumor models. Eur J Immunol 2021; 51:1218-1233. [PMID: 33533020 DOI: 10.1002/eji.202048885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/31/2020] [Indexed: 02/01/2023]
Abstract
Monoclonal antibodies (mAbs) have revolutionized clinical medicine, especially in the field of cancer immunotherapy. The challenge now is to improve the response rates, as immunotherapy still fails for many patients. Strategies to enhance tumor cell death is a fundamental aim, but relevant model systems for human tumor immunology are lacking. Herein, we have developed a preclinical human immune - three-dimensional (3D) tumor model (spheroids) to map the efficiency of tumor-specific isotypes for improved tumor cell killing. Different anti-CD20 Rituximab (RTX) isotypes alone or in combination, were evaluated for mediating complement-dependent cytotoxicity and antibody-dependent phagocytosis by human monocytic cells in 3D spheroids, in parallel with monolayer cultures, of human CD20+ B-cell lymphomas. We demonstrate that the IgG3 variant of RTX has the greatest tumoricidal effect over other isotypes, and when combined with apoptosis-inducing RTX-IgG2 isotype the therapeutic effect can be substantially enhanced. The results show further that the treatment outcome by RTX isotypes is influenced by tumor morphology and expression of the complement inhibitor CD59. Hence, the human immune-3D tumor model is a clinical relevant and attractive ex vivo system to predict mAbs for best efficacy in cancer immunotherapy.
Collapse
Affiliation(s)
- Sandra Lara
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Jessica C Anania
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Center for Cancer Immunology, University of Southampton, Southampton, UK
| | - Alexander Virtanen
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Viktoria Stenhammar
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Sandra Kleinau
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Kósa N, Zolcsák Á, Voszka I, Csík G, Horváti K, Horváth L, Bősze S, Herenyi L. Comparison of the Efficacy of Two Novel Antitubercular Agents in Free and Liposome-Encapsulated Formulations. Int J Mol Sci 2021; 22:2457. [PMID: 33671100 PMCID: PMC7957691 DOI: 10.3390/ijms22052457] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis is one of the top ten causes of death worldwide, and due to the appearance of drug-resistant strains, the development of new antituberculotic agents is a pressing challenge. Employing an in silico docking method, two coumaran (2,3-dihydrobenzofuran) derivatives-TB501 and TB515-were determined, with promising in vitro antimycobacterial activity. To enhance their effectiveness and reduce their cytotoxicity, we used liposomal drug carrier systems. Two types of small unilamellar vesicles (SUV) were prepared: multicomponent pH-sensitive stealth liposome (SUVmixed) and monocomponent conventional liposome. The long-term stability of our vesicles was obtained by the examination of particle size distribution with dynamic light scattering. Encapsulation efficiency (EE) of the two drugs was determined from absorption spectra before and after size exclusion chromatography. Cellular uptake and cytotoxicity were determined on human MonoMac-6 cells by flow cytometry. The antitubercular effect was characterized by the enumeration of colony-forming units on Mycobacterium tuberculosis H37Rv infected MonoMac-6 cultures. We found that SUVmixed + TB515 has the best long-term stability. TB515 has much higher EE in both types of SUVs. Cellular uptake for native TB501 is extremely low, but if it is encapsulated in SUVmixed it appreciably increases; in the case of TB515, quasi total uptake is accessible. It is concluded that SUVmixed + TB501 seems to be the most efficacious antitubercular formulation given the presented experiments; to find the most promising antituberculotic formulation for therapy further in vivo investigations are needed.
Collapse
Affiliation(s)
- Nikoletta Kósa
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (Á.Z.); (I.V.); (G.C.)
| | - Ádám Zolcsák
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (Á.Z.); (I.V.); (G.C.)
| | - István Voszka
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (Á.Z.); (I.V.); (G.C.)
| | - Gabriella Csík
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (Á.Z.); (I.V.); (G.C.)
| | - Kata Horváti
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Hungarian Academy of Sciences, 1518 Budapest, Hungary; (K.H.); (L.H.)
- Institute of Chemistry, Eötvös Loránd University, 1518 Budapest, Hungary
| | - Lilla Horváth
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Hungarian Academy of Sciences, 1518 Budapest, Hungary; (K.H.); (L.H.)
- Institute of Chemistry, Eötvös Loránd University, 1518 Budapest, Hungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Hungarian Academy of Sciences, 1518 Budapest, Hungary; (K.H.); (L.H.)
| | - Levente Herenyi
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (Á.Z.); (I.V.); (G.C.)
| |
Collapse
|
15
|
Antonelli A, Scarpa ES, Magnani M. Human Red Blood Cells Modulate Cytokine Expression in Monocytes/Macrophages Under Anoxic Conditions. Front Physiol 2021; 12:632682. [PMID: 33679443 PMCID: PMC7930825 DOI: 10.3389/fphys.2021.632682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
In the bone marrow (BM) hematopoietic niche, the oxygen tension is usually very low. Such condition affects stem and progenitor cell proliferation and differentiation and, at cellular level regulates hematopoietic growth factors, chemokines and adhesion molecules expression. In turn, these molecules affect the proliferation and maturation of other cellular components of the niche. Due to the complexity of the system we started the in vitro investigations of the IL-6, IL-8, TNFα cytokines expression and the vascular endothelial growth factor (VEGF), considered key mediators of the hematopoietic niche, in human macrophages and macrophage cell line. Since in the niche the oxygen availability is mediated by red blood cells (RBCs), we have influenced the anoxic cell cultures by the administration of oxygenated or deoxygenated RBCs (deoxy RBCs). The results reported in this brief paper show that the presence of RBCs up-regulates IL-8 mRNA while IL-6 and VEGF mRNA expression appears down-regulated. This does not occur when deoxy RBCs are used. Moreover, it appears that the administration of RBCs leads to an increase of TNFα expression levels in MonoMac 6 (MM6). Interestingly, the modulation of these factors likely occurs in a hypoxia-inducible factor-1α (HIF-1α) independent manner. Considering the role of oxygen in the hematopoietic niche further studies should explore these preliminary observations in more details.
Collapse
Affiliation(s)
- Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
16
|
Quemé-Peña M, Ricci M, Juhász T, Horváti K, Bősze S, Biri-Kovács B, Szeder B, Zsila F, Beke-Somfai T. Old Polyanionic Drug Suramin Suppresses Detrimental Cytotoxicity of the Host Defense Peptide LL-37. ACS Pharmacol Transl Sci 2020; 4:155-167. [PMID: 33615169 DOI: 10.1021/acsptsci.0c00155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Indexed: 12/27/2022]
Abstract
The host defense peptide LL-37 is the only human cathelicidin, characterized by pleiotropic activity ranging from immunological to anti-neoplastic functions. However, its overexpression has been associated with harmful inflammatory responses and apoptosis. Thus, for the latter cases, the development of strategies aiming to reduce LL-37 toxicity is highly desired as these have the potential to provide a viable solution. Here, we demonstrate that the reduction of LL-37 toxicity might be achieved by the impairment of its cell surface binding through interaction with small organic compounds that are able to alter the peptide conformation and minimize its cell penetration ability. In this regard, the performed cell viability and internalization studies showed a remarkable attenuation of LL-37 cytotoxicity toward colon and monocytic cells in the presence of the polysulfonated drug suramin. The mechanistic examinations of the molecular details indicated that this effect was coupled with the ability of suramin to alter LL-37 secondary structure via the formation of peptide-drug complexes. Moreover, a comparison with other therapeutic agents having common features unveiled the peculiar ability of suramin to optimize the binding to the peptide sequence. The newly discovered suramin action is hoped to inspire the elaboration of novel repurposing strategies aimed to reduce LL-37 cytotoxicity under pathological conditions.
Collapse
Affiliation(s)
- Mayra Quemé-Peña
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Biomolecular Self-Assembly Research Group, Budapest H-1117, Hungary.,Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Maria Ricci
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Biomolecular Self-Assembly Research Group, Budapest H-1117, Hungary
| | - Tünde Juhász
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Biomolecular Self-Assembly Research Group, Budapest H-1117, Hungary
| | - Kata Horváti
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Hungarian Academy of Sciences, Budapest H-1117, Hungary.,Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Beáta Biri-Kovács
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Hungarian Academy of Sciences, Budapest H-1117, Hungary.,Institute of Chemistry, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Bálint Szeder
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest H-1117, Hungary
| | - Ferenc Zsila
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Biomolecular Self-Assembly Research Group, Budapest H-1117, Hungary
| | - Tamás Beke-Somfai
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Biomolecular Self-Assembly Research Group, Budapest H-1117, Hungary
| |
Collapse
|
17
|
Hameister R, Lohmann CH, Dheen ST, Singh G, Kaur C. The effect of TNF-α on osteoblasts in metal wear-induced periprosthetic bone loss. Bone Joint Res 2020; 9:827-839. [PMID: 33179535 PMCID: PMC7672328 DOI: 10.1302/2046-3758.911.bjr-2020-0001.r2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aims This study aimed to examine the effects of tumour necrosis factor-alpha (TNF-α) on osteoblasts in metal wear-induced bone loss. Methods TNF-α immunoexpression was examined in periprosthetic tissues of patients with failed metal-on-metal hip arthroplasties and also in myeloid MM6 cells after treatment with cobalt ions. Viability and function of human osteoblast-like SaOs-2 cells treated with recombinant TNF-α were studied by immunofluorescence, terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay, western blotting, and enzyme-linked immunosorbent assay (ELISA). Results Macrophages, lymphocytes, and endothelial cells displayed strong TNF-α immunoexpression in periprosthetic tissues containing metal wear debris. Colocalization of TNF-α with the macrophage marker CD68 and the pan-T cell marker CD3 confirmed TNF-α expression in these cells. Cobalt-treated MM6 cells secreted more TNF-α than control cells, reflecting the role of metal wear products in activating the TNF-α pathway in the myeloid cells. While TNF-α did not alter the immunoexpression of the TNF-receptor 1 (TNF-R1) in SaOs-2 cells, it increased the release of the soluble TNF-receptor 1 (sTNF-R1). There was also evidence for TNF-α-induced apoptosis. TNF-α further elicited the expression of the endoplasmic reticulum stress markers inositol-requiring enzyme (IRE)-1α, binding-immunoglobulin protein (BiP), and endoplasmic oxidoreductin1 (Ero1)-Lα. In addition, TNF-α decreased pro-collagen I α 1 secretion without diminishing its synthesis. TNF-α also induced an inflammatory response in SaOs-2 cells, as evidenced by the release of reactive oxygen and nitrogen species and the proinflammatory cytokine vascular endothelial growth factor. Conclusion The results suggest a novel osteoblastic mechanism, which could be mediated by TNF-α and may be involved in metal wear debris-induced periprosthetic bone loss. Cite this article: Bone Joint Res 2020;9(11):827–839.
Collapse
Affiliation(s)
- Rita Hameister
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christoph H Lohmann
- Department of Orthopaedic Surgery, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - S Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
18
|
Bode K, Bujupi F, Link C, Hein T, Zimmermann S, Peiris D, Jaquet V, Lepenies B, Weyd H, Krammer PH. Dectin-1 Binding to Annexins on Apoptotic Cells Induces Peripheral Immune Tolerance via NADPH Oxidase-2. Cell Rep 2020; 29:4435-4446.e9. [PMID: 31875551 DOI: 10.1016/j.celrep.2019.11.086] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/18/2019] [Accepted: 11/20/2019] [Indexed: 12/30/2022] Open
Abstract
Uptake of apoptotic cells (ACs) by dendritic cells (DCs) and induction of a tolerogenic DC phenotype is an important mechanism for establishing peripheral tolerance to self-antigens. The receptors involved and underlying signaling pathways are not fully understood. Here, we identify Dectin-1 as a crucial tolerogenic receptor binding with nanomolar affinity to the core domain of several annexins (annexin A1, A5, and A13) exposed on ACs. Annexins bind to Dectin-1 on a site distinct from the interaction site of pathogen-derived β-glucans. Subsequent tolerogenic signaling induces selective phosphorylation of spleen tyrosine kinase (SYK), causing activation of NADPH oxidase-2 and moderate production of reactive oxygen species. Thus, mice deficient for Dectin-1 develop autoimmune pathologies (autoantibodies and splenomegaly) and generate stronger immune responses (cytotoxic T cells) against ACs. Our data describe an important immunological checkpoint system and provide a link between immunosuppressive signals of ACs and maintenance of peripheral immune tolerance.
Collapse
Affiliation(s)
- Kevin Bode
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany; Faculty of Biosciences, Ruprecht Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Fatmire Bujupi
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany; Faculty of Biosciences, Ruprecht Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Corinna Link
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany; Faculty of Biosciences, Ruprecht Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Tobias Hein
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany; Faculty of Biosciences, Ruprecht Karls University Heidelberg, 69120 Heidelberg, Germany
| | - Stephanie Zimmermann
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; Department of Biology, Chemistry and Pharmacy, Free University Berlin, 14195 Berlin, Germany
| | - Diluka Peiris
- Attana AB, Greta Arwidssons v. 21, 11419 Stockholm, Sweden
| | - Vincent Jaquet
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Bernd Lepenies
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany; Immunology Unit and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Heiko Weyd
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany.
| | - Peter H Krammer
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany.
| |
Collapse
|
19
|
Bode K, Link C, Krammer PH, Weyd H. Flow-cytometric Detection of Low-level Reactive Oxygen Species in Cell Lines and Primary Immune Cells. Bio Protoc 2020; 10:e3737. [PMID: 33659398 DOI: 10.21769/bioprotoc.3737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/27/2020] [Accepted: 06/18/2020] [Indexed: 11/02/2022] Open
Abstract
Depending on its concentration and cellular origin the production of reactive oxygen species (ROS) in the organism serves a variety of functions. While high concentrations during an oxidative burst are used to fight pathogens, low to moderate amounts of ROS act as signaling molecules important for several physiological processes such as regulation of immune responses. The ROS-sensitive dye 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) is an inexpensive and well-established tool for measuring intracellular ROS levels. However, it needs to be carefully controlled to be able to draw firm conclusions on the nature of ROS species produced and the cellular source of ROS generation such as the enzyme complex NADPH-oxidase 2 (NOX-2). In this protocol, a robust method to determine low intracellular ROS production using H2DCFDA was validated by several ROS-specific as well as NOX-2-specific inhibitors. Cells were treated with inhibitors or control substances prior to treatment with the ROS-inducer of interest. H2DCFDA was added only for the last 30 min of the treatment schedule. To terminate its conversion, we used a ROS-specific inhibitor until analysis by flow cytometry within the FITC-channel (Ex: 488 nm/Em: 519 nm). In summary, this protocol allows the detection of signaling-relevant intracellular ROS production in cell lines and primary immune cells (e.g., Mono Mac 6 cells and Bone marrow-derived dendritic cells, respectively). Using this method in combination with specific inhibitors, we were able to validate even exceptionally low amounts of ROS produced by NOX-2 and relevant for immune-regulatory signaling.
Collapse
Affiliation(s)
- Kevin Bode
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Corinna Link
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Peter H Krammer
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Heiko Weyd
- Division of Immunogenetics, Research Program Immunology and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Abraham J, Botto S, Mizuno N, Pryke K, Gall B, Boehm D, Sali TM, Jin H, Nilsen A, Gough M, Baird J, Chakhtoura M, Subra C, Trautmann L, Haddad EK, DeFilippis VR. Characterization of a Novel Compound That Stimulates STING-Mediated Innate Immune Activity in an Allele-Specific Manner. Front Immunol 2020; 11:1430. [PMID: 32733475 PMCID: PMC7360819 DOI: 10.3389/fimmu.2020.01430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
The innate immune response to cytosolic DNA involves transcriptional activation of type I interferons (IFN-I) and proinflammatory cytokines. This represents the culmination of intracellular signaling pathways that are initiated by pattern recognition receptors that engage DNA and require the adaptor protein Stimulator of Interferon Genes (STING). These responses lead to the generation of cellular and tissue states that impair microbial replication and facilitate the establishment of long-lived, antigen-specific adaptive immunity. Ultimately this can lead to immune-mediated protection from infection but also to the cytotoxic T cell-mediated clearance of tumor cells. Intriguingly, pharmacologic activation of STING-dependent phenotypes is known to enhance both vaccine-associated immunogenicity and immune-based anti-tumor therapies. Unfortunately, the STING protein exists as multiple variant forms in the human population that exhibit differences in their reactivity to chemical stimuli and in the intensity of molecular signaling they induce. In light of this, STING-targeting drug discovery efforts require an accounting of protein variant-specific activity. Herein we describe a small molecule termed M04 that behaves as a novel agonist of human STING. Importantly, we find that the molecule exhibits a differential ability to activate STING based on the allelic variant examined. Furthermore, while M04 is inactive in mice, expression of human STING in mouse cells rescues reactivity to the compound. Using primary human cells in ex vivo assays we were also able to show that M04 is capable of simulating innate responses important for adaptive immune activation such as cytokine secretion, dendritic cell maturation, and T cell cross-priming. Collectively, this work demonstrates the conceivable utility of a novel agonist of human STING both as a research tool for exploring STING biology and as an immune potentiating molecule.
Collapse
Affiliation(s)
- Jinu Abraham
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Sara Botto
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Nobuyo Mizuno
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Kara Pryke
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Bryan Gall
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Dylan Boehm
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Tina M. Sali
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Haihong Jin
- Veterans Affairs Medical Center, Portland, OR, United States
| | - Aaron Nilsen
- Veterans Affairs Medical Center, Portland, OR, United States
| | - Michael Gough
- Integrated Therapies Laboratory, Earle A. Chiles Research Institute, Portland, OR, United States
| | - Jason Baird
- Integrated Therapies Laboratory, Earle A. Chiles Research Institute, Portland, OR, United States
| | - Marita Chakhtoura
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Caroline Subra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Lydie Trautmann
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| | - Elias K. Haddad
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Victor R. DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
21
|
Vakili S, Ahooyi TM, Yarandi SS, Donadoni M, Rappaport J, Sariyer IK. Molecular and Cellular Impact of Inflammatory Extracellular Vesicles (EVs) Derived from M1 and M2 Macrophages on Neural Action Potentials. Brain Sci 2020; 10:brainsci10070424. [PMID: 32635207 PMCID: PMC7408497 DOI: 10.3390/brainsci10070424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 11/16/2022] Open
Abstract
Several factors can contribute to neuroinflammatory disorders, such as cytokine and chemokines that are produced and released from peripherally derived immune cells or from locally activated cells such as microglia and perivascular macrophages in the brain. The primary function of these cells is to clear inflammation; however, following inflammation, circulating monocytes are recruited to the central nervous system (CNS). Monocyte-derived macrophages in the CNS play pivotal roles in mediating neuroinflammatory responses. Macrophages are heterogeneous both in normal and in pathological conditions due to their plasticity, and they are classified in two main subsets, classically activated (M1) or alternatively activated (M2). There is accumulating evidence suggesting that extracellular vesicles (EVs) released from activated immune cells may play crucial roles in mediating inflammation. However, a possible role of EVs released from immune cells such as M1 and M2 macrophages on neuronal functions in the brain is not known. In order to investigate the molecular and cellular impacts of macrophages and EVs released from macrophage subtypes on neuronal functions, we used a recently established in vitro M1 and M2 macrophage culture model and isolated and characterized EVs from these macrophage subtypes, treated primary neurons with M1 or M2 EVs, and analyzed the extracellular action potentials of neurons with microelectrode array studies (MEA). Our results introduce evidence on the interfering role of inflammatory EVs released from macrophages in interneuronal signal transmission processes, with implications in the pathogenesis of neuroinflammatory diseases induced by a variety of inflammatory insults.
Collapse
Affiliation(s)
- Sarah Vakili
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; (S.V.); (T.M.A.); (S.S.Y.); (M.D.)
| | - Taha Mohseni Ahooyi
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; (S.V.); (T.M.A.); (S.S.Y.); (M.D.)
| | - Shadan S. Yarandi
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; (S.V.); (T.M.A.); (S.S.Y.); (M.D.)
| | - Martina Donadoni
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; (S.V.); (T.M.A.); (S.S.Y.); (M.D.)
| | - Jay Rappaport
- Tulane National Primate Research Center, New Orleans, Covington, LA 70433, USA;
| | - Ilker K. Sariyer
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; (S.V.); (T.M.A.); (S.S.Y.); (M.D.)
- Correspondence:
| |
Collapse
|
22
|
Radakovic S, Andreoli N, Schmid S, Nietzsche S, Zumbrunn J, Sculean A, Eick S. Taurolidine Acts on Bacterial Virulence Factors and Does Not Induce Resistance in Periodontitis-Associated Bacteria-An In-Vitro Study. Antibiotics (Basel) 2020; 9:antibiotics9040166. [PMID: 32272629 PMCID: PMC7235838 DOI: 10.3390/antibiotics9040166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 11/16/2022] Open
Abstract
The aims of the present study were: (a) to determine the mechanism of action of taurolidine against bacterial species associated with periodontal disease, and (b) to evaluate the potential development of resistance against taurolidine as compared with minocycline. After visualizing the mode of action of taurolidine by transmission electron micrographs, the interaction with most important virulence factors (lipopolysaccharide (LPS), Porphyromonas gingivalis gingipains, Aggregatibacter actinomycetemcomitans leukotoxin), was analyzed. Then, 14 clinical isolates from subgingival biofilm samples were transferred on agar plates containing subinhibitory concentrations of taurolidine or minocycline up to 50 passages. Before and after each 10 passages, minimal inhibitory concentrations (MICs) were determined. Increasing MICs were screened for efflux mechanism. Taurolidine inhibited in a concentration-dependent manner the activities of LPS and of the arginine-specific gingipains; however, an effect on A. actinomycetemcomitans leukotoxin was not detected. One P. gingivalis strain developed a resistance against taurolidine, which was probably linked with efflux mechanisms. An increase of MIC values of minocycline occurred in five of the 14 included strains after exposure to subinhibitory concentrations of the antibiotic. The present results indicate that: (a) taurolidine interacts with LPS and gingipains, and (b) development of resistance seems to be a rare event when using taurolidine.
Collapse
Affiliation(s)
- Sabrina Radakovic
- Department of Periodontology, School of Dental Medicine, University of Bern, CH-3010 Bern, Switzerland; (S.R.); (N.A.); (S.S.); (A.S.)
| | - Nicola Andreoli
- Department of Periodontology, School of Dental Medicine, University of Bern, CH-3010 Bern, Switzerland; (S.R.); (N.A.); (S.S.); (A.S.)
| | - Simon Schmid
- Department of Periodontology, School of Dental Medicine, University of Bern, CH-3010 Bern, Switzerland; (S.R.); (N.A.); (S.S.); (A.S.)
| | - Sandor Nietzsche
- Center for Electron Microscopy, Jena University Hospital, D-07743 Jena, Germany;
| | - Jürg Zumbrunn
- Department of Clinical Affairs R& D, Geistlich Pharma Ag, CH-6110 Wolhusen, Switzerland;
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, CH-3010 Bern, Switzerland; (S.R.); (N.A.); (S.S.); (A.S.)
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, CH-3010 Bern, Switzerland; (S.R.); (N.A.); (S.S.); (A.S.)
- Correspondence:
| |
Collapse
|
23
|
Anionic food color tartrazine enhances antibacterial efficacy of histatin-derived peptide DHVAR4 by fine-tuning its membrane activity. Q Rev Biophys 2020; 53:e5. [PMID: 32115014 DOI: 10.1017/s0033583520000013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Here it is demonstrated how some anionic food additives commonly used in our diet, such as tartrazine (TZ), bind to DHVAR4, an antimicrobial peptide (AMP) derived from oral host defense peptides, resulting in significantly fostered toxic activity against both Gram-positive and Gram-negative bacteria, but not against mammalian cells. Biophysical studies on the DHVAR4-TZ interaction indicate that initially large, positively charged aggregates are formed, but in the presence of lipid bilayers, they rather associate with the membrane surface. In contrast to synergistic effects observed for mixed antibacterial compounds, this is a principally different mechanism, where TZ directly acts on the membrane-associated AMP promoting its biologically active helical conformation. Model vesicle studies show that compared to dye-free DHVAR4, peptide-TZ complexes are more prone to form H-bonds with the phosphate ester moiety of the bilayer head-group region resulting in more controlled bilayer fusion mechanism and concerted severe cell damage. AMPs are considered as promising compounds to combat formidable antibiotic-resistant bacterial infections; however, we know very little on their in vivo actions, especially on how they interact with other chemical agents. The current example illustrates how food dyes can modulate AMP activity, which is hoped to inspire improved therapies against microbial infections in the alimentary tract. Results also imply that the structure and function of natural AMPs could be manipulated by small compounds, which may also offer a new strategic concept for the future design of peptide-based antimicrobials.
Collapse
|
24
|
Poirier SJ, Boudreau LH, Flamand N, Surette ME. LPS induces ALOX5 promoter activation and 5-lipoxygenase expression in human monocytic cells. Prostaglandins Leukot Essent Fatty Acids 2020; 154:102078. [PMID: 32120263 DOI: 10.1016/j.plefa.2020.102078] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 11/24/2022]
Abstract
5-lipoxygenase (5-LO), coded by the ALOX5 gene, is expressed in leukocytes and catalyzes the formation of leukotrienes, pro-inflammatory lipid mediators. Leukotrienes are central to immune responses, but are also involved in inflammatory disorders and 5-LO expression is associated with leukemia stem cell survival. It is therefore important to understand mechanisms that control 5-LO expression. This study investigated the control of 5-LO expression and leukotriene biosynthesis following the maturation of human monocytic cells. MonoMac-1 (MM1) and THP-1 cells were incubated for up to 72 h with or without LPS and TGF-β. LPS, but not TGF-β, increased CD14 expression in both MM1 and THP-1 cells. Incubation with LPS (100 ng/ml) and TGF-β (1 ng/ml) synergistically increased the capacity of MM1 cells to produce 5-LO products from undetectable levels to 40±5 pmol/106 cells. 5-LO product biosynthesis in THP-1 cells increased 25-fold. A synergistic effect of LPS and TGF-β was measured with increases in 5-LO mRNA of 54- and 13-fold in MM1 and THP-1 cells, respectively. 5-LO protein expression increased significantly in both MM1 and THP-1 cells. ALOX5 promoter activity was significantly elevated >2-fold in both cell lines following LPS treatment, but TGF-β was without effect. The main 5-LO products were cysteinyl-leukotrienes, however LPS and TGF-β did not impact on the capacity of the cells to metabolize leukotriene A4. Overall, this study demonstrates that receptor-mediated stimulation of MM1 and THP-1 cells by LPS is associated with increased 5-LO expression. This represents a new mechanism by which leukotriene biosynthesis can be modulated by pathological agents.
Collapse
Affiliation(s)
- Samuel J Poirier
- Département de chimie et biochimie, Université de Moncton, Moncton, NB, E1A 3E9, Canada; Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec-Université Laval, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, G1V 4G5, Canada
| | - Luc H Boudreau
- Département de chimie et biochimie, Université de Moncton, Moncton, NB, E1A 3E9, Canada
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec-Université Laval, Département de médecine, Faculté de médecine, Université Laval, Québec City, QC, G1V 4G5, Canada
| | - Marc E Surette
- Département de chimie et biochimie, Université de Moncton, Moncton, NB, E1A 3E9, Canada.
| |
Collapse
|
25
|
Zimmermann K, Kuehle J, Dragon AC, Galla M, Kloth C, Rudek LS, Sandalcioglu IE, Neyazi B, Moritz T, Meyer J, Rossig C, Altvater B, Eiz-Vesper B, Morgan MA, Abken H, Schambach A. Design and Characterization of an "All-in-One" Lentiviral Vector System Combining Constitutive Anti-G D2 CAR Expression and Inducible Cytokines. Cancers (Basel) 2020; 12:cancers12020375. [PMID: 32041222 PMCID: PMC7072617 DOI: 10.3390/cancers12020375] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/25/2022] Open
Abstract
Genetically modified T cells expressing chimeric antigen receptors (CARs) so far have mostly failed in the treatment of solid tumors owing to a number of limitations, including an immunosuppressive tumor microenvironment and insufficient CAR T cell activation and persistence. Next-generation approaches using CAR T cells that secrete transgenic immunomodulatory cytokines upon CAR signaling, known as TRUCKs (“T cells redirected for universal cytokine-mediated killing”), are currently being explored. As TRUCKs were engineered by the transduction of T cells with two separate vectors, we developed a lentiviral modular “all-in-one” vector system that combines constitutive CAR expression and inducible nuclear factor of activated T cells (NFAT)-driven transgene expression for more efficient production of TRUCKs. Activation of the GD2-specific CAR via GD2+ target cells induced NFAT promoter-driven cytokine release in primary human T cells, and indicated a tight linkage of CAR-specific activation and transgene expression that was further improved by a modified NFATsyn promoter. As proof-of-concept, we showed that T cells containing the “all-in-one” vector system secrete the immunomodulatory cytokines interleukin (IL)12 or IL18 upon co-cultivation with primary human GD2+ tumor cells, resulting in enhanced effector cell properties and increased monocyte recruitment. This highlights the potential of our system to simplify application of TRUCK-modified T cells in solid tumor therapy.
Collapse
Affiliation(s)
- Katharina Zimmermann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (K.Z.); (M.G.); (C.K.); (L.S.R.); (T.M.); (J.M.)
| | - Johannes Kuehle
- Center for Molecular Medicine Cologne, University of Cologne, and Department I of Internal Medicine, University Hospital Cologne, 50931 Cologne, Germany;
| | - Anna Christina Dragon
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany; (A.C.D.); (B.E.-V.)
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (K.Z.); (M.G.); (C.K.); (L.S.R.); (T.M.); (J.M.)
| | - Christina Kloth
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (K.Z.); (M.G.); (C.K.); (L.S.R.); (T.M.); (J.M.)
| | - Loreen Sophie Rudek
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (K.Z.); (M.G.); (C.K.); (L.S.R.); (T.M.); (J.M.)
| | - I. Erol Sandalcioglu
- Department of Neurosurgery, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (I.E.S.); (B.N.)
| | - Belal Neyazi
- Department of Neurosurgery, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (I.E.S.); (B.N.)
| | - Thomas Moritz
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (K.Z.); (M.G.); (C.K.); (L.S.R.); (T.M.); (J.M.)
| | - Johann Meyer
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (K.Z.); (M.G.); (C.K.); (L.S.R.); (T.M.); (J.M.)
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, 48149 Muenster, Germany; (C.R.); (B.A.)
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Muenster, 48149 Muenster, Germany; (C.R.); (B.A.)
| | - Britta Eiz-Vesper
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany; (A.C.D.); (B.E.-V.)
| | - Michael Alexander Morgan
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (K.Z.); (M.G.); (C.K.); (L.S.R.); (T.M.); (J.M.)
| | - Hinrich Abken
- Regensburg Centre for Interventional Immunology (RCI), Department of Genetic Immunotherapy, and University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (K.Z.); (M.G.); (C.K.); (L.S.R.); (T.M.); (J.M.)
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: ; Tel.: +49-511-532-5170
| |
Collapse
|
26
|
Horváti K, Pályi B, Henczkó J, Balka G, Szabó E, Farkas V, Biri-Kovács B, Szeder B, Fodor K. A Convenient Synthetic Method to Improve Immunogenicity of Mycobacterium tuberculosis Related T-Cell Epitope Peptides. Vaccines (Basel) 2019; 7:vaccines7030101. [PMID: 31461944 PMCID: PMC6789589 DOI: 10.3390/vaccines7030101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022] Open
Abstract
Epitopes from different proteins expressed by Mycobacterium tuberculosis (Rv1886c, Rv0341, Rv3873) were selected based on previously reported antigenic properties. Relatively short linear T-cell epitope peptides generally have unordered structure, limited immunogenicity, and low in vivo stability. Therefore, they rely on proper formulation and on the addition of adjuvants. Here we report a convenient synthetic route to induce a more potent immune response by the formation of a trivalent conjugate in spatial arrangement. Chemical and structural characterization of the vaccine conjugates was followed by the study of cellular uptake and localization. Immune response was assayed by the measurement of splenocyte proliferation and cytokine production, while vaccine efficacy was studied in a murine model of tuberculosis. The conjugate showed higher tendency to fold and increased internalization rate into professional antigen presenting cells compared to free epitopes. Cellular uptake was further improved by the incorporation of a palmitoyl group to the conjugate and the resulted pal-A(P)I derivative possessed an internalization rate 10 times higher than the free epitope peptides. Vaccination of CB6F1 mice with free peptides resulted in low T-cell response. In contrast, significantly higher T-cell proliferation with prominent expression of IFN-γ, IL-2, and IL-10 cytokines was measured for the palmitoylated conjugate. Furthermore, the pal-A(P)I conjugate showed relevant vaccine efficacy against Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Kata Horváti
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Hungarian Academy of Sciences, Budapest 1117, Hungary.
- Institute of Chemistry, Eötvös Loránd University, Budapest 1117, Hungary.
| | - Bernadett Pályi
- National Biosafety Laboratory, National Public Health Center, Budapest 1097, Hungary
| | - Judit Henczkó
- National Biosafety Laboratory, National Public Health Center, Budapest 1097, Hungary
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine, Budapest 1078, Hungary
| | - Eleonóra Szabó
- Laboratory of Bacteriology, Korányi National Institute for Tuberculosis and Respiratory Medicine, Budapest 1122, Hungary
| | - Viktor Farkas
- MTA-ELTE Protein Modelling Research Group, Eötvös Loránd University, Hungarian Academy of Sciences, Budapest 1117, Hungary
| | - Beáta Biri-Kovács
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Hungarian Academy of Sciences, Budapest 1117, Hungary
- Institute of Chemistry, Eötvös Loránd University, Budapest 1117, Hungary
| | - Bálint Szeder
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest 1117, Hungary
| | - Kinga Fodor
- Department of Laboratory Animal and Animal Protection, University of Veterinary Medicine, Budapest 1078, Hungary
| |
Collapse
|
27
|
Quemé‐Peña M, Juhász T, Mihály J, Cs. Szigyártó I, Horváti K, Bősze S, Henczkó J, Pályi B, Németh C, Varga Z, Zsila F, Beke‐Somfai T. Manipulating Active Structure and Function of Cationic Antimicrobial Peptide CM15 with the Polysulfonated Drug Suramin: A Step Closer to in Vivo Complexity. Chembiochem 2019; 20:1578-1590. [PMID: 30720915 PMCID: PMC6618317 DOI: 10.1002/cbic.201800801] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 12/11/2022]
Abstract
Antimicrobial peptides (AMPs) kill bacteria by targeting their membranes through various mechanisms involving peptide assembly, often coupled with disorder-to-order structural transition. However, for several AMPs, similar conformational changes in cases in which small organic compounds of both endogenous and exogenous origin have induced folded peptide conformations have recently been reported. Thus, the function of AMPs and of natural host defence peptides can be significantly affected by the local complex molecular environment in vivo; nonetheless, this area is hardly explored. To address the relevance of such interactions with regard to structure and function, we have tested the effects of the therapeutic drug suramin on the membrane activity and antibacterial efficiency of CM15, a potent hybrid AMP. The results provided insight into a dynamic system in which peptide interaction with lipid bilayers is interfered with by the competitive binding of CM15 to suramin, resulting in an equilibrium dependent on peptide-to-drug ratio and vesicle surface charge. In vitro bacterial tests showed that when CM15⋅suramin complex formation dominates over membrane binding, antimicrobial activity is abolished. On the basis of this case study, it is proposed that small-molecule secondary structure regulators can modify AMP function and that this should be considered and could potentially be exploited in future development of AMP-based antimicrobial agents.
Collapse
Affiliation(s)
- Mayra Quemé‐Peña
- Institute of Materials and Environmental ChemistryResearch Centre for Natural SciencesHungarian Academy of SciencesMagyar tudósok körútja 21117BudapestHungary
| | - Tünde Juhász
- Institute of Materials and Environmental ChemistryResearch Centre for Natural SciencesHungarian Academy of SciencesMagyar tudósok körútja 21117BudapestHungary
| | - Judith Mihály
- Institute of Materials and Environmental ChemistryResearch Centre for Natural SciencesHungarian Academy of SciencesMagyar tudósok körútja 21117BudapestHungary
| | - Imola Cs. Szigyártó
- Institute of Materials and Environmental ChemistryResearch Centre for Natural SciencesHungarian Academy of SciencesMagyar tudósok körútja 21117BudapestHungary
| | - Kata Horváti
- MTA-ELTE Research Group of Peptide ChemistryHungarian Academy of SciencesEötvös Loránd UniversityPázmány Péter sétány 1/A1117BudapestHungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide ChemistryHungarian Academy of SciencesEötvös Loránd UniversityPázmány Péter sétány 1/A1117BudapestHungary
| | - Judit Henczkó
- National Biosafety LaboratoryNational Public Health CenterAlbert Flórián út 21097BudapestHungary
| | - Bernadett Pályi
- National Biosafety LaboratoryNational Public Health CenterAlbert Flórián út 21097BudapestHungary
| | - Csaba Németh
- Institute of Materials and Environmental ChemistryResearch Centre for Natural SciencesHungarian Academy of SciencesMagyar tudósok körútja 21117BudapestHungary
| | - Zoltán Varga
- Institute of Materials and Environmental ChemistryResearch Centre for Natural SciencesHungarian Academy of SciencesMagyar tudósok körútja 21117BudapestHungary
| | - Ferenc Zsila
- Institute of Materials and Environmental ChemistryResearch Centre for Natural SciencesHungarian Academy of SciencesMagyar tudósok körútja 21117BudapestHungary
| | - Tamás Beke‐Somfai
- Institute of Materials and Environmental ChemistryResearch Centre for Natural SciencesHungarian Academy of SciencesMagyar tudósok körútja 21117BudapestHungary
| |
Collapse
|
28
|
Miyakawa K, Matsunaga S, Yokoyama M, Nomaguchi M, Kimura Y, Nishi M, Kimura H, Sato H, Hirano H, Tamura T, Akari H, Miura T, Adachi A, Sawasaki T, Yamamoto N, Ryo A. PIM kinases facilitate lentiviral evasion from SAMHD1 restriction via Vpx phosphorylation. Nat Commun 2019; 10:1844. [PMID: 31015445 PMCID: PMC6479052 DOI: 10.1038/s41467-019-09867-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 04/04/2019] [Indexed: 12/22/2022] Open
Abstract
Lentiviruses have evolved to acquire an auxiliary protein Vpx to counteract the intrinsic host restriction factor SAMHD1. Although Vpx is phosphorylated, it remains unclear whether such phosphorylation indeed regulates its activity toward SAMHD1. Here we identify the PIM family of serine/threonine protein kinases as the factors responsible for the phosphorylation of Vpx and the promotion of Vpx-mediated SAMHD1 counteraction. Integrated proteomics and subsequent functional analysis reveal that PIM family kinases, PIM1 and PIM3, phosphorylate HIV-2 Vpx at Ser13 and stabilize the interaction of Vpx with SAMHD1 thereby promoting ubiquitin-mediated proteolysis of SAMHD1. Inhibition of the PIM kinases promotes the antiviral activity of SAMHD1, ultimately reducing viral replication. Our results highlight a new mode of virus–host cell interaction in which host PIM kinases facilitate promotion of viral infectivity by counteracting the host antiviral system, and suggest a novel therapeutic strategy involving restoration of SAMHD1-mediated antiviral response. The accessory lentiviral protein X (Vpx) of the SIVsmm/mac and HIV-2 lineage targets the host-restriction factor SAMHD1 for proteasomal degradation. Here, the authors show that host PIM kinase-mediated phosphorylation of Vpx stabilizes its interaction with SAMHD1, suggesting PIM as potential antiviral targets.
Collapse
Affiliation(s)
- Kei Miyakawa
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, 236-0004, Japan
| | - Satoko Matsunaga
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, 236-0004, Japan
| | - Masaru Yokoyama
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashi Murayama, Tokyo, 208-0011, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima, 770-8503, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Kanagawa, 236-0004, Japan
| | - Mayuko Nishi
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, 236-0004, Japan
| | - Hirokazu Kimura
- School of Medical Technology, Faculty of Health Sciences, Gunma Paz University, Gunma, 370-0006, Japan
| | - Hironori Sato
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashi Murayama, Tokyo, 208-0011, Japan
| | - Hisashi Hirano
- Advanced Medical Research Center, Yokohama City University, Kanagawa, 236-0004, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University School of Medicine, Kanagawa, 236-0004, Japan
| | - Hirofumi Akari
- Laboratory of Infectious Disease Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.,Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Aichi, 484-8506, Japan
| | - Tomoyuki Miura
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Aichi, 484-8506, Japan
| | - Akio Adachi
- Department of Microbiology, Tokushima University Graduate School of Medical Science, Tokushima, 770-8503, Japan.,Department of Microbiology, Kansai Medical University, Osaka, 573-1010, Japan
| | | | - Naoki Yamamoto
- National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.,Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Kanagawa, 236-0004, Japan. .,Advanced Medical Research Center, Yokohama City University, Kanagawa, 236-0004, Japan.
| |
Collapse
|
29
|
Gyulai G, Ouanzi F, Bertóti I, Mohai M, Kolonits T, Horváti K, Bősze S. Chemical structure and in vitro cellular uptake of luminescent carbon quantum dots prepared by solvothermal and microwave assisted techniques. J Colloid Interface Sci 2019; 549:150-161. [PMID: 31029843 DOI: 10.1016/j.jcis.2019.04.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 11/28/2022]
Abstract
Carbon quantum dots (CQDs) are a novel family of fluorescent materials that could be employed as non-toxic alternatives to molecular fluorescent dyes in biological research and also in medicine. Four different preparation approaches, including microwave assisted heating and solvent refluxing, were explored. In addition to the widely used microwave assisted methods, a simple convenient new procedure is presented here for the particle synthesis. A detailed X-ray photoelectron spectroscopic (XPS) analysis was employed to characterize the composition, and more importantly, the chemical structure of the CQD samples and the interrelation of the characteristic surface chemical groups with the fluorescence properties and with surface polarity was unambiguously established. In vitro cellular internalization experiments documented their applicability as fluorescence labels while non-toxic properties were also approved. It was demonstrated that the adequate water-dispersibility of the particles plays a crucial role in their biological application. The synthetized CQD samples turned to be promising for cellular imaging applications both in laser illuminated flow cytometric measurements and in fluorescence microscopy.
Collapse
Affiliation(s)
- Gergő Gyulai
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Budapest, P.O. Box 32, H-1518 Budapest, Hungary.
| | - Fatima Ouanzi
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Budapest, P.O. Box 32, H-1518 Budapest, Hungary
| | - Imre Bertóti
- Institute of Materials and Environmental Chemistry, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, PO Box 286, H-1519 Budapest, Hungary
| | - Miklós Mohai
- Institute of Materials and Environmental Chemistry, Research Centre of Natural Sciences, Hungarian Academy of Sciences, Budapest, PO Box 286, H-1519 Budapest, Hungary
| | - Tamás Kolonits
- Department of Materials Physics, Eötvös Loránd University, Budapest, P.O. Box 32, H-1518, Hungary
| | - Kata Horváti
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Budapest 112, P.O. Box 32, H-1518 Budapest, Hungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Budapest 112, P.O. Box 32, H-1518 Budapest, Hungary
| |
Collapse
|
30
|
Sáez T, de Vos P, Kuipers J, Sobrevia L, Faas MM. Exosomes derived from monocytes and from endothelial cells mediate monocyte and endothelial cell activation under high d-glucose conditions. Immunobiology 2019; 224:325-333. [PMID: 30827721 DOI: 10.1016/j.imbio.2019.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/04/2018] [Accepted: 02/04/2019] [Indexed: 01/22/2023]
Abstract
Diabetes mellitus type 2 (DMT2) is characterized by hyperglycemia and associated with low grade inflammation affecting both endothelial cells and monocytes. Exosomes are nanovesicles, allow communication between endothelial cells and monocytes and have been associated with diabetic complications. In this study we evaluated whether high glucose can activate monocytes and endothelial cells and whether exosomes play a role in this activation. Moreover, we studied whether endothelial cells and monocytes communicate with each other via exosomes under high and basal glncubation. In the first experiment, monomac 6 cells (MM6) were exposed to high glucose (HG; 25 mmol/L) or to exosomes from MM6 exposed to HG (exoMM6-HG) or basal glucose (5.5 mmol/L) (exoMM6-BG). In the second experiment, MM6 were exposed to exosomes from human umbilical vein endothelial cells (HUVECs) and HUVECs to exosomes from MM6. In the third experiment, MM6 and HUVECs were exposed to a mixture of exosomes from MM6 and HUVECs (exoMix). Cell activation was evaluated by measuring the protein surface expression of intracellular adhesion molecule-1 (ICAM-1) by flow cytometry. HG increased ICAM-1 expression in MM6 and monocytic exosomes from HG or BG shown similar effect in HG and BG MM6 cells. Exosomes from HUVECs increased ICAM-1 expression in MM6 cells, incubated under HG or BG, while also exosomes from MM6 increased ICAM-1 expression in HUVECs incubated under HG or BG. The combination of exosomes from both cell types (exoMixHG or exoMixBG) also increased ICAM-1 expression in both type cells in most conditions. However, the exoMixBG reversed the effect of HG in both MM6 and HUVECs. Our results show that HG activated monocytes and endothelial cells and that exosomes play a role in this HG-induced cell ICAM-1 expression. We hypothesize that during DMT2, exosomes may act as a communication mechanism between monocytes and endothelial cells, inducing and maintaining activating of both cell types in the presence of high glucose.
Collapse
Affiliation(s)
- Tamara Sáez
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Jeroen Kuipers
- Molecular Imaging and Electron Microscopy Department of Cell Biology, University of Groningen, University Medical Center Groningen (UMCG), 9713 AZ, Groningen, the Netherlands
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD, 4029, Australia.
| | - Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands; Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.
| |
Collapse
|
31
|
Mufarrege EF, Haile LA, Etcheverrigaray M, Verthelyi DI. Multiplexed Gene Expression as a Characterization of Bioactivity for Interferon Beta (IFN-β) Biosimilar Candidates: Impact of Innate Immune Response Modulating Impurities (IIRMIs). AAPS JOURNAL 2019; 21:26. [DOI: 10.1208/s12248-019-0300-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/12/2019] [Indexed: 01/10/2023]
|
32
|
Stenzel P, Nagorsen K, Bernd J, Leppert U, Zakrzewicz A, Berkholz J. ZNF580 - a brake on Interleukin-6. JOURNAL OF INFLAMMATION-LONDON 2018; 15:20. [PMID: 30386182 PMCID: PMC6198383 DOI: 10.1186/s12950-018-0196-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022]
Abstract
Background Zinc finger protein 580 (ZNF580) was reported to modulate angiogenesis, endothelial homeostasis and blood pressure control. ZNF580 regulated genes include VEGF-A and IL-8. However, it is unknown if ZNF580 could play a role during inflammation. The aim of this study was to find out if ZNF580 affects the expression of IL-6, if it occurs in monocytic cells and responds to inflammatory mediators. Results Overexpression of ZNF580 reduced LPS-induced promotor activity of IL-6. Consistently, overexpression of ZNF580 reduced by half the LPS-induced expression of IL-6. ZNF580 was strongly expressed in the nucleus of MonoMac6, a human monocytic cell line. LPS-stimulated IL-6 secretion increased when ZNF580 was suppressed with siRNA. After stimulation of MonoMac6 with LPS for 24 h, ZNF580 negatively correlated with the amount of secreted IL-6. In response to LPS, ZNF580 was increased within the first 8 h, followed by a marked decrease after 16 h. This decrease coincided with sustained IL-6 production. Conclusion This study demonstrated that ZNF580 inhibits LPS-induced expression of IL-6. ZNF580 was highly expressed in monocytic cells and therefore may contribute to the modulation of its IL-6 production, at least in response to LPS. This suggests cooperation between ZNF580 and NFκB, which could play a role during sepsis.
Collapse
Affiliation(s)
- Philipp Stenzel
- 1Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Insitute of Health, Virchowweg 6/ CCO, Charitéplatz 1, 10117 Berlin, Germany.,2Institute of Pathology, Universitätsmedizin Mainz, Mainz, Germany
| | - Kaj Nagorsen
- 1Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Insitute of Health, Virchowweg 6/ CCO, Charitéplatz 1, 10117 Berlin, Germany
| | - Jonathan Bernd
- 1Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Insitute of Health, Virchowweg 6/ CCO, Charitéplatz 1, 10117 Berlin, Germany
| | - Ulrike Leppert
- 1Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Insitute of Health, Virchowweg 6/ CCO, Charitéplatz 1, 10117 Berlin, Germany
| | - Andreas Zakrzewicz
- 1Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Insitute of Health, Virchowweg 6/ CCO, Charitéplatz 1, 10117 Berlin, Germany
| | - Janine Berkholz
- 1Institute of Physiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Insitute of Health, Virchowweg 6/ CCO, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
33
|
Chamaon K, Schönfeld P, Awiszus F, Bertrand J, Lohmann CH. Ionic cobalt but not metal particles induces ROS generation in immune cells in vitro. J Biomed Mater Res B Appl Biomater 2018; 107:1246-1253. [PMID: 30261124 DOI: 10.1002/jbm.b.34217] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/25/2022]
Abstract
Total joint replacement is one of the most successful procedures in orthopedic surgery today. However, metal implant materials undergo wear and corrosion processes. Generated particles and ions can cause a variety of cellular reactions. Cobalt-containing alloys are used frequently in implant materials. Some studies suggest that cobalt exhibits potential cytotoxic effects, for example, via generation of reactive oxygen species (ROS). To further elucidate the effects of cobalt on human cells, we determined cell viability and cytosolic and mitochondrial superoxide formation after incubation of either ions or particles with different cells. MM-6 and Jurkat cell lines were treated for 24, 48 and 72 h with either CoCrMo particles or cobalt ions (supplied as CoCl2 ). A total of 24 h exposure of both forms of cobalt did not induce cell death using terminal deoxynucleotidyl transferase (TUNEL) and trypan blue assay. Interestingly, the formation of superoxide (O2 .- ) is evoked mainly by ionic CoCl2 but not cobalt particles. Cobalt alloy particles are likely to even suppress O2 .- formation in mitochondria in both used cell lines. Furthermore, we did not observe any effect of cobalt particles on O2 .- formation in peripheral blood mononuclear cells (PBMCs) from healthy donors. We also found that the O2 - formation by CoCl2 within mitochondria is a generalized effect for all cell types used, while the formation of superoxide in cytosolic compartment is cell-type dependent. In summary, our data suggest that cobalt ions specifically induce the formation of O2 .- , whereas the cobalt particles were better tolerated. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1246-1253, 2019.
Collapse
Affiliation(s)
- Kathrin Chamaon
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Peter Schönfeld
- Institute for Biochemistry and Cell Biology, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Friedemann Awiszus
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Christoph H Lohmann
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| |
Collapse
|
34
|
Membrane affinity and fluorescent labelling: comparative study of monolayer interaction, cellular uptake and cytotoxicity profile of carboxyfluorescein-conjugated cationic peptides. Amino Acids 2018; 50:1557-1571. [PMID: 30099595 DOI: 10.1007/s00726-018-2630-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023]
Abstract
Fluorescent labelling is a common approach to reveal the molecular details of cellular uptake, internalisation, transport, distribution processes in biological systems. The conjugation with a fluorescent moiety might affect relevant physico-chemical and in vitro transport properties of the bioactive component. A representative set of seven cationic peptides-including cell-penetrating peptides as well as antimicrobial peptides and synthetic derivatives-was selected for our comparative study. Membrane affinity of the peptides and their 5(6)-carboxyfluorescein (Cf) derivatives was determined quantitatively and compared applying Langmuir monolayer of zwitterionic (DPPC) and negatively charged (DPPC + DPPG) lipids as cell membrane models. The interaction with neutral lipid layer is mainly governed by the overall hydrophobicity of the molecule which is remarkably increased by Cf-conjugation for the most hydrophobic Magainin, Melittin and Transportan. A significantly enhanced membrane affinity was detected in negatively charged lipid model monolayer for all of the peptides since the combination of electrostatic and hydrophobic interaction is active in that case. The Cf-conjugation improved the penetration ability of Penetratin and Dhvar4 suggesting that both the highly charged character (Z/n) and the increased hydrophobicity by Cf-conjugation present important contribution to membrane interaction. This effect might also responsible for the observed high in vitro internalisation rate of Penetratin and Dhvar4, while according to in vitro studies they did not cause damage of cell membrane. From the experiments with the given seven cationic peptides, it can be concluded that the Cf-conjugation alters the degree of membrane interaction of such peptides which are moderately hydrophobic and highly charged.
Collapse
|
35
|
Wan M, Tang X, Rekha RS, Muvva SSVJR, Brighenti S, Agerberth B, Haeggström JZ. Prostaglandin E 2 suppresses hCAP18/LL-37 expression in human macrophages via EP2/EP4: implications for treatment of Mycobacterium tuberculosis infection. FASEB J 2018; 32:2827-2840. [PMID: 29401596 DOI: 10.1096/fj.201701308] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Prostaglandin (PG)E2 is an arachidonic acid-derived lipid mediator that plays an important role in inflammation and immunity. In this study, we demonstrate that PGE2 suppresses basal and 1,25-dihydroxy vitamin D3 (VD3)-induced expression of hCAP18/LL-37 via E prostanoid (EP)2 and EP4 receptors. In humans, VD3 up-regulates vitamin D receptor (VDR) expression and promotes transcription of the cathelicidin hCAP18/LL-37 gene, whereas PGE2 counteracts this effect. We find that PGE2 induces the cAMP/PKA-signaling pathway and enhances the expression of the inhibitory transcription factor cAMP-responsive modulator/inducible cAMP early repressor, which prevents VDR expression and induction of hCAP18/LL-37 in human macrophages. The negative regulation by PGE2 was evident in M1- and M2-polarized human macrophages, although PGE2 displayed more profound inhibitory effects in M2 cells. PGE2 impaired VD3-induced expression of cathelicidin and concomitant activation of autophagy during Mycobacterium tuberculosis (Mtb) infection and facilitated intracellular Mtb growth in human macrophages. An EP4 agonist also significantly promoted Mtb survival in human macrophages. Our results indicate that PGE2 inhibits hCAP18/LL-37 expression, especially VD3-induced cathelicidin and autophagy, which may reduce host defense against Mtb. Accordingly, antagonists of EP4 may constitute a novel adjunctive therapy in Mtb infection.-Wan, M., Tang, X., Rekha, R. S., Muvva, S. S. V. J. R., Brighenti, S., Agerberth, B., Haeggström, J. Z. Prostaglandin E2 suppresses hCAP18/LL-37 expression in human macrophages via EP2/EP4: implications for treatment of Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Min Wan
- Division of Physiology Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Xiao Tang
- Division of Physiology Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rokeya Sultana Rekha
- Department of Laboratory Medicine, Clinical Microbiology, Karolinska University Hospital, Huddinge, Stockholm, Sweden; and
| | | | - Susanna Brighenti
- Center for Infectious Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Birgitta Agerberth
- Department of Laboratory Medicine, Clinical Microbiology, Karolinska University Hospital, Huddinge, Stockholm, Sweden; and
| | - Jesper Z Haeggström
- Division of Physiology Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Greif PA, Hartmann L, Vosberg S, Stief SM, Mattes R, Hellmann I, Metzeler KH, Herold T, Bamopoulos SA, Kerbs P, Jurinovic V, Schumacher D, Pastore F, Bräundl K, Zellmeier E, Ksienzyk B, Konstandin NP, Schneider S, Graf A, Krebs S, Blum H, Neumann M, Baldus CD, Bohlander SK, Wolf S, Görlich D, Berdel WE, Wörmann BJ, Hiddemann W, Spiekermann K. Evolution of Cytogenetically Normal Acute Myeloid Leukemia During Therapy and Relapse: An Exome Sequencing Study of 50 Patients. Clin Cancer Res 2018; 24:1716-1726. [PMID: 29330206 DOI: 10.1158/1078-0432.ccr-17-2344] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/03/2017] [Accepted: 01/08/2018] [Indexed: 11/16/2022]
Abstract
Purpose: To study mechanisms of therapy resistance and disease progression, we analyzed the evolution of cytogenetically normal acute myeloid leukemia (CN-AML) based on somatic alterations.Experimental Design: We performed exome sequencing of matched diagnosis, remission, and relapse samples from 50 CN-AML patients treated with intensive chemotherapy. Mutation patterns were correlated with clinical parameters.Results: Evolutionary patterns correlated with clinical outcome. Gain of mutations was associated with late relapse. Alterations of epigenetic regulators were frequently gained at relapse with recurring alterations of KDM6A constituting a mechanism of cytarabine resistance. Low KDM6A expression correlated with adverse clinical outcome, particularly in male patients. At complete remission, persistent mutations representing preleukemic lesions were observed in 48% of patients. The persistence of DNMT3A mutations correlated with shorter time to relapse.Conclusions: Chemotherapy resistance might be acquired through gain of mutations. Insights into the evolution during therapy and disease progression lay the foundation for tailored approaches to treat or prevent relapse of CN-AML. Clin Cancer Res; 24(7); 1716-26. ©2018 AACR.
Collapse
Affiliation(s)
- Philipp A Greif
- Department of Medicine III, University Hospital, LMU Munich, München, Germany. .,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Luise Hartmann
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Vosberg
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sophie M Stief
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Raphael Mattes
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ines Hellmann
- Anthropology and Human Genomics, Department Biology II, LMU Munich, Martinsried, Germany
| | - Klaus H Metzeler
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Herold
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Paul Kerbs
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vindi Jurinovic
- Institute for Medical Information Procesing, Biometry and Epidemiology (IBE), LMU Munich, München, Germany
| | - Daniela Schumacher
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Friederike Pastore
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kathrin Bräundl
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Evelyn Zellmeier
- Department of Medicine III, University Hospital, LMU Munich, München, Germany
| | - Bianka Ksienzyk
- Department of Medicine III, University Hospital, LMU Munich, München, Germany
| | - Nikola P Konstandin
- Department of Medicine III, University Hospital, LMU Munich, München, Germany
| | - Stephanie Schneider
- Department of Medicine III, University Hospital, LMU Munich, München, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, München, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, München, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, München, Germany
| | - Martin Neumann
- German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Divison of Hematology and Oncology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, and Campus Virchow, Berlin, Germany
| | - Claudia D Baldus
- German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Divison of Hematology and Oncology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, and Campus Virchow, Berlin, Germany
| | - Stefan K Bohlander
- Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Stephan Wolf
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Wolfgang E Berdel
- Department of Medicine A -Hematology, Oncology and Pneumology, University of Münster, Münster, Germany
| | - Bernhard J Wörmann
- Divison of Hematology and Oncology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, and Campus Virchow, Berlin, Germany
| | - Wolfgang Hiddemann
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karsten Spiekermann
- Department of Medicine III, University Hospital, LMU Munich, München, Germany.,German Cancer Consortium (DKTK), and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
37
|
Chen W, Pilling D, Gomer RH. C-reactive protein (CRP) but not the related pentraxins serum amyloid P and PTX3 inhibits the proliferation and induces apoptosis of the leukemia cell line Mono Mac 6. BMC Immunol 2017; 18:47. [PMID: 29202702 PMCID: PMC5716379 DOI: 10.1186/s12865-017-0230-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/19/2017] [Indexed: 12/23/2022] Open
Abstract
Background Pentraxins are a family of highly conserved secreted proteins that regulate the innate immune system, including monocytes and macrophages. C-reactive protein (CRP) is a plasma protein whose levels can rise to 1000 μg/ml from the normal <3 μg/ ml during inflammation. Results We find that CRP inhibits proliferation of the human myeloid leukemia cell line Mono Mac 6 with an IC50 of 75 μg/ ml by inducing apoptosis of these cells. The related proteins serum amyloid P (SAP) and pentraxin 3 (PTX3) do not inhibit Mono Mac 6 proliferation. CRP has no significant effect on the proliferation of other leukemia cell lines such as HL-60, Mono Mac 1, K562, U937, or THP-1, or the survival of normal peripheral blood cells. The effect of CRP appears to be dependent on the CRP receptor FcγRI, and is negatively regulated by a phosphatidylinositol −3-kinase pathway. Conclusion These data reveal differential signaling by pentraxins on immune cells, and suggest that CRP can regulate the proliferation of some myeloid leukemia cells.
Collapse
Affiliation(s)
- Wensheng Chen
- Department of Biology, Texas A&M University, College Station, TX, 77843-3474, USA.,Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, 230032, China
| | - Darrell Pilling
- Department of Biology, Texas A&M University, College Station, TX, 77843-3474, USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX, 77843-3474, USA.
| |
Collapse
|
38
|
Krátký M, Bősze S, Baranyai Z, Stolaříková J, Vinšová J. Synthesis and biological evolution of hydrazones derived from 4-(trifluoromethyl)benzohydrazide. Bioorg Med Chem Lett 2017; 27:5185-5189. [PMID: 29097168 DOI: 10.1016/j.bmcl.2017.10.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 01/26/2023]
Abstract
Reflecting the known biological activity of isoniazid-based hydrazones, seventeen hydrazones of 4-(trifluoromethyl)benzohydrazide as their bioisosters were synthesized from various benzaldehydes and aliphatic ketones. The compounds were screened for their in vitro activity against Mycobacterium tuberculosis, nontuberculous mycobacteria (M. avium, M. kansasii), bacterial and fungal strains. The most antimicrobial potent derivatives were also investigated for their cytostatic and cytotoxic properties against three cell lines. Camphor-based molecule, 4-(trifluoromethyl)-N'-(1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene)benzohydrazide, exhibited the highest and selective inhibition of M. tuberculosis with the minimum inhibitory concentration (MIC) of 4 µM, while N'-(4-chlorobenzylidene)-4-(trifluoromethyl)benzohydrazide was found to be superior against M. kansasii (MIC = 16 µM). N'-(5-Chloro-2-hydroxybenzylidene)-4-(trifluoromethyl)benzohydrazide showed the lowest MIC values for gram-positive bacteria including methicillin-resistant Staphylococcus aureus as well as against two fungal strains of Candida glabrata and Trichophyton mentagrophytes within the range of ≤0.49-3.9 µM. The convenient substitution of benzylidene moiety at the position 4 or the presence of 5-chloro-2-hydroxybenzylidene scaffold concomitantly with a sufficient lipophilicity are essential for the noticeable antimicrobial activity. This 5-chlorosalicylidene derivative avoided any cytotoxicity on two mammalian cell cultures (HepG2, BMMΦ) up to the concentration of 100 µM, but it affected the growth of MonoMac6 cells.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, Budapest, H-1117, P.O. Box 32, 1518 Budapest 112, Hungary
| | - Zsuzsa Baranyai
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, Budapest, H-1117, P.O. Box 32, 1518 Budapest 112, Hungary
| | - Jiřina Stolaříková
- Laboratory for Mycobacterial Diagnostics and Tuberculosis, Regional Institute of Public Health in Ostrava, Partyzánské náměstí 7, 702 00 Ostrava, Czech Republic
| | - Jarmila Vinšová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
39
|
Respiratory sensitization: toxicological point of view on the available assays. Arch Toxicol 2017; 92:803-822. [DOI: 10.1007/s00204-017-2088-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022]
|
40
|
Complement-Mediated Enhancement of Monocyte Adhesion to Endothelial Cells by HLA Antibodies, and Blockade by a Specific Inhibitor of the Classical Complement Cascade, TNT003. Transplantation 2017. [PMID: 28640789 PMCID: PMC5482566 DOI: 10.1097/tp.0000000000001486] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Antibody-mediated rejection (AMR) of most solid organs is characterized by evidence of complement activation and/or intragraft macrophages (C4d + and CD68+ biopsies). We previously demonstrated that crosslinking of HLA I by antibodies triggered endothelial activation and monocyte adhesion. We hypothesized that activation of the classical complement pathway at the endothelial cell surface by HLA antibodies would enhance monocyte adhesion through soluble split product generation, in parallel with direct endothelial activation downstream of HLA signaling. Methods Primary human aortic endothelial cells (HAEC) were stimulated with HLA class I antibodies in the presence of intact human serum complement. C3a and C5a generation, endothelial P-selectin expression, and adhesion of human primary and immortalized monocytes (Mono Mac 6) were measured. Alternatively, HAEC or monocytes were directly stimulated with purified C3a or C5a. Classical complement activation was inhibited by pretreatment of complement with an anti-C1s antibody (TNT003). Results Treatment of HAEC with HLA antibody and human complement increased the formation of C3a and C5a. Monocyte recruitment by human HLA antibodies was enhanced in the presence of intact human serum complement or purified C3a or C5a. Specific inhibition of the classical complement pathway using TNT003 or C1q-depleted serum significantly reduced adhesion of monocytes in the presence of human complement. Conclusions Despite persistent endothelial viability in the presence of HLA antibodies and complement, upstream complement anaphylatoxin production exacerbates endothelial exocytosis and leukocyte recruitment. Upstream inhibition of classical complement may be therapeutic to dampen mononuclear cell recruitment and endothelial activation characteristic of microvascular inflammation during AMR. Valenzuela et al show that HLA antibody binding to human endothelial cells in vitro, triggered complement C3a and C5a deposition that mediated monocyte recruitment, and the salutary effects of inhibiting the classical complement pathway with an anti-C1s antibody. Supplemental digital content is available in the text.
Collapse
|
41
|
Patel AA, Zhang Y, Fullerton JN, Boelen L, Rongvaux A, Maini AA, Bigley V, Flavell RA, Gilroy DW, Asquith B, Macallan D, Yona S. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med 2017; 214:1913-1923. [PMID: 28606987 PMCID: PMC5502436 DOI: 10.1084/jem.20170355] [Citation(s) in RCA: 675] [Impact Index Per Article: 84.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 12/15/2022] Open
Abstract
Using stable isotope labeling, Patel et al. establish the lifespan of all three human monocyte subsets that circulate in dynamic equilibrium; in steady state, classical monocytes are short-lived precursors with the potential to become intermediate and nonclassical monocytes. They highlight that systemic inflammation induces an emergency release of classical monocytes into the circulation. In humans, the monocyte pool comprises three subsets (classical, intermediate, and nonclassical) that circulate in dynamic equilibrium. The kinetics underlying their generation, differentiation, and disappearance are critical to understanding both steady-state homeostasis and inflammatory responses. Here, using human in vivo deuterium labeling, we demonstrate that classical monocytes emerge first from marrow, after a postmitotic interval of 1.6 d, and circulate for a day. Subsequent labeling of intermediate and nonclassical monocytes is consistent with a model of sequential transition. Intermediate and nonclassical monocytes have longer circulating lifespans (∼4 and ∼7 d, respectively). In a human experimental endotoxemia model, a transient but profound monocytopenia was observed; restoration of circulating monocytes was achieved by the early release of classical monocytes from bone marrow. The sequence of repopulation recapitulated the order of maturation in healthy homeostasis. This developmental relationship between monocyte subsets was verified by fate mapping grafted human classical monocytes into humanized mice, which were able to differentiate sequentially into intermediate and nonclassical cells.
Collapse
Affiliation(s)
- Amit A Patel
- Division of Medicine, University College London, University of London, London, England, UK
| | - Yan Zhang
- Institute for Infection and Immunity, St. George's, University of London, London, England, UK
| | - James N Fullerton
- Division of Medicine, University College London, University of London, London, England, UK
| | - Lies Boelen
- Theoretical Immunology Group, Faculty of Medicine, Imperial College London, London, England, UK
| | | | - Alexander A Maini
- Division of Medicine, University College London, University of London, London, England, UK
| | - Venetia Bigley
- Newcastle University Medical School, Newcastle University, Newcastle Upon Tyne, England, UK
| | - Richard A Flavell
- Department of Immunobiology, Yale University, New Haven, CT.,Howard Hughes Medical Institute, Yale University, New Haven, CT
| | - Derek W Gilroy
- Division of Medicine, University College London, University of London, London, England, UK
| | - Becca Asquith
- Theoretical Immunology Group, Faculty of Medicine, Imperial College London, London, England, UK
| | - Derek Macallan
- Institute for Infection and Immunity, St. George's, University of London, London, England, UK.,St. George's University Hospitals NHS Foundation Trust, London, England, UK
| | - Simon Yona
- Division of Medicine, University College London, University of London, London, England, UK
| |
Collapse
|
42
|
Muramatsu D, Okabe M, Takaoka A, Kida H, Iwai A. Aureobasidium pullulans produced β-glucan is effective to enhance Kurosengoku soybean extract induced Thrombospondin-1 expression. Sci Rep 2017; 7:2831. [PMID: 28588201 PMCID: PMC5460285 DOI: 10.1038/s41598-017-03053-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/24/2017] [Indexed: 12/29/2022] Open
Abstract
Black yeast, Aureobasidium pullulans is extracellularly produced β-(1,3), (1,6)-D-glucan (β-glucan) under certain conditions. In this study, using Glycine max cv. Kurosengoku (Kurosengoku soybeans), the production of β-glucan through fermentation of A. pullulans was evaluated, and the effects of A. pullulans cultured fluid (AP-CF) containing β-glucan made with Kurosengoku soybeans (kAP-CF) on a human monocyte derived cell line, Mono Mac 6 cells were investigated. Concentration of β-glucan in kAP-CF reached the same level as normal AP-CF. An anti-angiogenic protein, Thrombospondin-1 (THBS1) was effectively induced after the stimulation with kAP-CF for comparison with AP-CF. The THBS1 is also induced after stimulation with hot water extract of Kurosengoku soybeans (KS-E), while the combined stimulation of β-glucan with KS-E more effectively induced THBS1 than that with KS-E alone. These results suggest effects of A. pullulans-produced β-glucan on the enhancement of Kurosengoku soybean-induced THBS1 expression.
Collapse
Affiliation(s)
- Daisuke Muramatsu
- Aureo Science Co., Ltd., Hokudai Business Spring, North 21, West 12, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Mitsuyasu Okabe
- Aureo Co., Ltd., 54-1 Kazusakoito, Kimitsu, Chiba, 292-1149, Japan
| | - Akinori Takaoka
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-0815, Japan
| | - Hiroshi Kida
- Hokkaido University Research Center for Zoonosis Control, North 20, West 10, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Atsushi Iwai
- Aureo Science Co., Ltd., Hokudai Business Spring, North 21, West 12, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan.
- Aureo Co., Ltd., 54-1 Kazusakoito, Kimitsu, Chiba, 292-1149, Japan.
| |
Collapse
|
43
|
Suess PM, Watson J, Chen W, Gomer RH. Extracellular polyphosphate signals through Ras and Akt to prime Dictyostelium discoideum cells for development. J Cell Sci 2017; 130:2394-2404. [PMID: 28584190 DOI: 10.1242/jcs.203372] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/27/2017] [Indexed: 12/21/2022] Open
Abstract
Linear chains of five to hundreds of phosphates called polyphosphate are found in organisms ranging from bacteria to humans, but their function is poorly understood. In Dictyostelium discoideum, polyphosphate is used as a secreted signal that inhibits cytokinesis in an autocrine negative feedback loop. To elucidate how cells respond to this unusual signal, we undertook a proteomic analysis of cells treated with physiological levels of polyphosphate and observed that polyphosphate causes cells to decrease levels of actin cytoskeleton proteins, possibly explaining how polyphosphate inhibits cytokinesis. Polyphosphate also causes proteasome protein levels to decrease, and in both Dictyostelium and human leukemia cells, decreases proteasome activity and cell proliferation. Polyphosphate also induces Dictyostelium cells to begin development by increasing expression of the cell-cell adhesion molecule CsA (also known as CsaA) and causing aggregation, and this effect, as well as the inhibition of proteasome activity, is mediated by Ras and Akt proteins. Surprisingly, Ras and Akt do not affect the ability of polyphosphate to inhibit proliferation, suggesting that a branching pathway mediates the effects of polyphosphate, with one branch affecting proliferation, and the other branch affecting development.
Collapse
Affiliation(s)
- Patrick M Suess
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Jacob Watson
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Wensheng Chen
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA.,Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei 230032, China
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| |
Collapse
|
44
|
Karwaciak I, Gorzkiewicz M, Bartosz G, Pulaski L. TLR2 activation induces antioxidant defence in human monocyte-macrophage cell line models. Oncotarget 2017; 8:54243-54264. [PMID: 28903338 PMCID: PMC5589577 DOI: 10.18632/oncotarget.17342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 04/10/2017] [Indexed: 01/08/2023] Open
Abstract
When monocytes are recruited to inflammation/infection sites, extravasate and differentiate into macrophages, they encounter increasing levels of oxidative stress, both from exogenous and endogenous sources. In this study, we aimed to determine whether there are specific biochemical mechanisms responsible for an increase in oxidative stress resistance in differentiating macrophages. We performed experiments on in vitro cell line models of the monocyte-macrophage differentiation axis (less differentiated THP-1 cells and more differentiated Mono Mac 6 cells). At the same time, we verified the hypothesis that activating monocyte/macrophage innate immune response by pathogens (exemplified by stimulating the TLR2 pattern recognition receptor) would further strengthen cellular antioxidant defences. We found that resistance to exogenous oxidative stress increased substantially both during differentiation and upon activation of TLR2. This increase in antioxidant resistance was accompanied by decrease in free radical damage to cellular proteins. On the molecular level, this resistance was mediated especially by increased levels and activity of glutathione, glutathione-related antioxidant enzymes and Mn superoxide dismutase, as shown by gene expression assays, Western blotting and enzyme activity assays. Moreover, upon TLR2 activation additional molecular mechanisms came into play, conferring additional resistance levels even upon differentiated macrophage-like cells, mainly related to thioredoxin-linked antioxidant enzymes.
Collapse
Affiliation(s)
- Iwona Karwaciak
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland
| | - Michal Gorzkiewicz
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland.,Department of General Biophysics, Faculty of Biology and Environmental Sciences, University of Lodz, Lodz, Poland
| | - Grzegorz Bartosz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Sciences, University of Lodz, Lodz, Poland
| | - Lukasz Pulaski
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, Lodz, Poland.,Department of Molecular Biophysics, Faculty of Biology and Environmental Sciences, University of Lodz, Lodz, Poland
| |
Collapse
|
45
|
Baranyai Z, Krátký M, Vosátka R, Szabó E, Senoner Z, Dávid S, Stolaříková J, Vinšová J, Bősze S. In vitro biological evaluation of new antimycobacterial salicylanilide-tuftsin conjugates. Eur J Med Chem 2017; 133:152-173. [PMID: 28384546 DOI: 10.1016/j.ejmech.2017.03.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/17/2017] [Accepted: 03/22/2017] [Indexed: 11/18/2022]
Abstract
Tuberculosis is caused by Mycobacterium tuberculosis, an intracellular pathogen that can survive in host cells, mainly in macrophages. An increase of multidrug-resistant tuberculosis qualifies this infectious disease as a major public health problem worldwide. The cellular uptake of the antimycobacterial agents by infected host cells is limited. Our approach is to enhance the cellular uptake of the antituberculars by target cell-directed delivery using drug-peptide conjugates to achieve an increased intracellular efficacy. In this study, salicylanilide derivatives (2-hydroxy-N-phenylbenzamides) with remarkable antimycobacterial activity were conjugated to macrophage receptor specific tuftsin based peptide carriers through oxime bond directly or by insertion of a GFLG tetrapeptide spacer. We have found that the in vitro antimycobacterial activity of the salicylanilides against M. tuberculosis H37Rv is preserved in the conjugates. While the free drug was ineffective on infected macrophage model, the conjugates were active against the intracellular bacteria. The fluorescently labelled peptide carriers that were modified with different fatty acid side chains showed outstanding cellular uptake rate to the macrophage model cells. The conjugation of the salicylanilides to tuftsin based carriers reduced or abolished the in vitro cytostatic activity of the free drugs with the exception of the palmitoylated conjugates. The conjugates degraded in the presence of rat liver lysosomal homogenate leading to the formation of an oxime bond-linked salicylanilide-amino acid fragment as the smallest active metabolite.
Collapse
Affiliation(s)
- Zsuzsa Baranyai
- MTA-ELTE Research Group of Peptide Chemistry, Pázmány Péter sétány 1/A, P.O. Box 32, 1518, H-1117 Budapest 112, Hungary.
| | - Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Rudolf Vosátka
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Eleonóra Szabó
- Laboratory of Bacteriology, Korányi National Institute for Tuberculosis and Respiratory Medicine, Pihenő út 1, Budapest H-1122, Hungary.
| | - Zsuzsanna Senoner
- Laboratory of Bacteriology, Korányi National Institute for Tuberculosis and Respiratory Medicine, Pihenő út 1, Budapest H-1122, Hungary.
| | - Sándor Dávid
- MTA-ELTE Research Group of Peptide Chemistry, Pázmány Péter sétány 1/A, P.O. Box 32, 1518, H-1117 Budapest 112, Hungary; Laboratory of Bacteriology, Korányi National Institute for Tuberculosis and Respiratory Medicine, Pihenő út 1, Budapest H-1122, Hungary
| | - Jiřina Stolaříková
- Laboratory for Mycobacterial Diagnostics and Tuberculosis, Regional Institute of Public Health in Ostrava, Partyzánské náměstí 7, 702 00 Ostrava, Czech Republic.
| | - Jarmila Vinšová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Pázmány Péter sétány 1/A, P.O. Box 32, 1518, H-1117 Budapest 112, Hungary.
| |
Collapse
|
46
|
Anti-inflammatory Properties of Antimicrobial Peptides and Peptidomimetics: LPS and LTA Neutralization. Methods Mol Biol 2017; 1548:369-386. [PMID: 28013519 DOI: 10.1007/978-1-4939-6737-7_27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lipopolysaccharide (LPS) and lipoteichoic acid (LTA) neutralization constitute potential non-antibiotic treatment strategies for sepsis - a systemic infection-induced inflammatory response. Studies on LPS- and LTA-neutralizing compounds are abundant in literature, and a number of peptides and peptidomimetics appear to display promising activity. However, in this ongoing search for potential antisepsis drug leads, it will be preferable that the assays used by different research groups lead to readily comparable data for the most efficient compounds. Here, we propose and describe standardized methods to be used for testing of novel compounds for their LPS- and LTA-neutralizing capacity with a focus on functional suppression of pro-inflammatory responses in cell-based systems. To best mimic the human in vivo conditions, we suggest the use of freshly isolated human leukocytes combined with an appropriate method for the chosen cytokine (e.g., IL-6 or TNF-α). The described protocols comprise isolation, stimulation, and viability test of the human leukocytes.
Collapse
|
47
|
de Vallière C, Cosin-Roger J, Simmen S, Atrott K, Melhem H, Zeitz J, Madanchi M, Tcymbarevich I, Fried M, Kullak-Ublick GA, Vavricka SR, Misselwitz B, Seuwen K, Wagner CA, Eloranta JJ, Rogler G, Ruiz PA. Hypoxia Positively Regulates the Expression of pH-Sensing G-Protein-Coupled Receptor OGR1 (GPR68). Cell Mol Gastroenterol Hepatol 2016; 2:796-810. [PMID: 28174749 PMCID: PMC5247318 DOI: 10.1016/j.jcmgh.2016.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/17/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS A novel family of proton-sensing G-protein-coupled receptors, including ovarian cancer G-protein-coupled receptor 1 (OGR1) (GPR68) has been identified to play a role in pH homeostasis. Hypoxia is known to change tissue pH as a result of anaerobic glucose metabolism through the stabilization of hypoxia-inducible factor-1α. We investigated how hypoxia regulates the expression of OGR1 in the intestinal mucosa and associated cells. METHODS OGR1 expression in murine tumors, human colonic tissue, and myeloid cells was determined by quantitative reverse-transcription polymerase chain reaction. The influence of hypoxia on OGR1 expression was studied in monocytes/macrophages and intestinal mucosa of inflammatory bowel disease (IBD) patients. Changes in OGR1 expression in MonoMac6 (MM6) cells under hypoxia were determined upon stimulation with tumor necrosis factor (TNF), in the presence or absence of nuclear factor-κB (NF-κB) inhibitors. To study the molecular mechanisms involved, chromatin immunoprecipitation analysis of the OGR1 promoter was performed. RESULTS OGR1 expression was significantly higher in tumor tissue compared with normal murine colon tissue. Hypoxia positively regulated the expression of OGR1 in MM6 cells, mouse peritoneal macrophages, primary human intestinal macrophages, and colonic tissue from IBD patients. In MM6 cells, hypoxia-enhanced TNF-induced OGR1 expression was reversed by inhibition of NF-κB. In addition to the effect of TNF and hypoxia, OGR1 expression was increased further at low pH. Chromatin immunoprecipitation analysis showed that HIF-1α, but not NF-κB, binds to the promoter of OGR1 under hypoxia. CONCLUSIONS The enhancement of TNF- and hypoxia-induced OGR1 expression under low pH points to a positive feed-forward regulation of OGR1 activity in acidic conditions, and supports a role for OGR1 in the pathogenesis of IBD.
Collapse
Key Words
- AICAR, 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside
- CD, Crohn's disease
- ChIP, chromatin immunoprecipitation
- FCS, fetal calf serum
- GPR, G-protein–coupled receptor
- GRP65
- HIF, hypoxia-inducible factor
- HV, healthy volunteer
- IBD, inflammatory bowel disease
- IEC, intestinal epithelial cell
- IFN, interferon
- IL, interleukin
- Inflammation
- Inflammatory Bowel Disease
- MM6, MonoMac 6
- NF-κB, nuclear factor-κB
- OGR1, ovarian cancer G-protein–coupled receptor 1 (GPR68)
- Ovarian Cancer G-Protein–Coupled Receptor
- RT-qPCR, quantitative reverse-transcription polymerase chain reaction
- SPARC, secreted protein acidic and rich in cysteine
- TDAG8
- TDAG8, T-cell death-associated gene 8 (GPR65)
- TNF, tumor necrosis factor
- Th, T-helper
- UC, ulcerative colitis
- WT, wild type
- mRNA, messenger RNA
Collapse
Affiliation(s)
- Cheryl de Vallière
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Jesus Cosin-Roger
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland; Department of Pharmacology and Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Simona Simmen
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Kirstin Atrott
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Hassan Melhem
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Jonas Zeitz
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Mehdi Madanchi
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Irina Tcymbarevich
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Michael Fried
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | - Stephan R Vavricka
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Benjamin Misselwitz
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Klaus Seuwen
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University Hospital Zurich, Zurich, Switzerland
| | - Jyrki J Eloranta
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Pedro A Ruiz
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
48
|
Gonnissen D, Qu Y, Langer K, Öztürk C, Zhao Y, Chen C, Seebohm G, Düfer M, Fuchs H, Galla HJ, Riehemann K. Comparison of cellular effects of starch-coated SPIONs and poly(lactic-co-glycolic acid) matrix nanoparticles on human monocytes. Int J Nanomedicine 2016; 11:5221-5236. [PMID: 27789942 PMCID: PMC5072557 DOI: 10.2147/ijn.s106540] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Within the last years, progress has been made in the knowledge of the properties of medically used nanoparticles and their toxic effects, but still, little is known about their influence on cellular processes of immune cells. The aim of our comparative study was to present the influence of two different nanoparticle types on subcellular processes of primary monocytes and the leukemic monocyte cell line MM6. We used core-shell starch-coated superparamagnetic iron oxide nanoparticles (SPIONs) and matrix poly(lactic-co-glycolic acid) (PLGA) nanoparticles for our experiments. In addition to typical biocompatibility testing like the detection of necrosis or secretion of interleukins (ILs), we investigated the impact of these nanoparticles on the actin cytoskeleton and the two voltage-gated potassium channels Kv1.3 and Kv7.1. Induction of necrosis was not seen for PLGA nanoparticles and SPIONs in primary monocytes and MM6 cells. Likewise, no alteration in secretion of IL-1β and IL-10 was detected under the same experimental conditions. In contrast, IL-6 secretion was exclusively downregulated in primary monocytes after contact with both nanoparticles. Two-electrode voltage clamp experiments revealed that both nanoparticles reduce currents of the aforementioned potassium channels. The two nanoparticles differed significantly in their impact on the actin cytoskeleton, demonstrated via atomic force microscopy elasticity measurement and phalloidin staining. While SPIONs led to the disruption of the respective cytoskeleton, PLGA did not show any influence in both experimental setups. The difference in the effects on ion channels and the actin cytoskeleton suggests that nanoparticles affect these subcellular components via different pathways. Our data indicate that the alteration of the cytoskeleton and the effect on ion channels are new parameters that describe the influence of nanoparticles on cells. The results are highly relevant for medical application and further evaluation of nanomaterial biosafety.
Collapse
Affiliation(s)
- Dominik Gonnissen
- Center for Nanotechnology, Institute of Physics, University of Münster, Münster, Germany
| | - Ying Qu
- Center for Nanotechnology, Institute of Physics, University of Münster, Münster, Germany; National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Münster, Münster
| | | | - Yuliang Zhao
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Chunying Chen
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Guiscard Seebohm
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases, University Hospital Münster
| | - Martina Düfer
- Department of Pharmacology, Institute of Pharmaceutical and Medicinal Chemistry
| | - Harald Fuchs
- Center for Nanotechnology, Institute of Physics, University of Münster, Münster, Germany
| | - Hans-Joachim Galla
- Department of Cell Biology/Biophysics, Institute of Biochemistry, University of Münster, Münster, Germany
| | - Kristina Riehemann
- Center for Nanotechnology, Institute of Physics, University of Münster, Münster, Germany
| |
Collapse
|
49
|
Hyperspectral Imaging Using Intracellular Spies: Quantitative Real-Time Measurement of Intracellular Parameters In Vivo during Interaction of the Pathogenic Fungus Aspergillus fumigatus with Human Monocytes. PLoS One 2016; 11:e0163505. [PMID: 27727286 PMCID: PMC5058474 DOI: 10.1371/journal.pone.0163505] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022] Open
Abstract
Hyperspectral imaging (HSI) is a technique based on the combination of classical spectroscopy and conventional digital image processing. It is also well suited for the biological assays and quantitative real-time analysis since it provides spectral and spatial data of samples. The method grants detailed information about a sample by recording the entire spectrum in each pixel of the whole image. We applied HSI to quantify the constituent pH variation in a single infected apoptotic monocyte as a model system. Previously, we showed that the human-pathogenic fungus Aspergillus fumigatus conidia interfere with the acidification of phagolysosomes. Here, we extended this finding to monocytes and gained a more detailed analysis of this process. Our data indicate that melanised A. fumigatus conidia have the ability to interfere with apoptosis in human monocytes as they enable the apoptotic cell to recover from mitochondrial acidification and to continue with the cell cycle. We also showed that this ability of A. fumigatus is dependent on the presence of melanin, since a non-pigmented mutant did not stop the progression of apoptosis and consequently, the cell did not recover from the acidic pH. By conducting the current research based on the HSI, we could measure the intracellular pH in an apoptotic infected human monocyte and show the pattern of pH variation during 35 h of measurements. As a conclusion, we showed the importance of melanin for determining the fate of intracellular pH in a single apoptotic cell.
Collapse
|
50
|
Xu X, Narni-Mancinelli E, Cantoni C, Li Y, Guia S, Gauthier L, Chen Q, Moretta A, Vély F, Eisenstein E, Rangarajan S, Vivier E, Mariuzza RA. Structural Insights into the Inhibitory Mechanism of an Antibody against B7-H6, a Stress-Induced Cellular Ligand for the Natural Killer Cell Receptor NKp30. J Mol Biol 2016; 428:4457-4466. [PMID: 27663271 DOI: 10.1016/j.jmb.2016.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/15/2016] [Accepted: 09/14/2016] [Indexed: 01/08/2023]
Abstract
Antibodies have been shown to block signaling through cell surface receptors using several mechanisms. The two most common are binding to the ligand-binding site of the receptor and, conversely, binding to the receptor-binding site of the ligand. Here, we investigated the inhibitory mechanism of an antibody (17B1.3) against human B7-H6, a stress-induced cellular ligand for the natural killer (NK) cell receptor NKp30. Binding of this antibody to B7-H6, a transmembrane protein expressed on tumor and other stressed cells, but not on normal cells, prevents NK cell activation via NKp30. We determined the crystal structure of antibody 17B1.3 in complex with the ectodomain of B7-H6 to 2.5Å resolution. Surprisingly, 17B1.3 binds to a site on B7-H6 that is completely distinct from the binding site for NKp30, such that 17B1.3 does not block the NKp30-B7-H6 interaction. We then asked whether 17B1.3 prevents signaling by binding to a putative site for B7-H6 dimerization. However, structure-based mutations designed to disrupt potential B7-H6 dimerization through this site did not diminish NKp30-mediated cell activation. We conclude that the bulky 17B1.3 antibody most likely acts by sterically interfering with close cell-cell contacts at the NK cell-target cell interface that are required for NK cell activation. A similar inhibitory mechanism may apply to other antibodies, including therapeutic antibodies that block signaling through cell surface receptors whose ligands are also cell surface proteins.
Collapse
Affiliation(s)
- Xiaoping Xu
- University of Maryland Institute for Bioscience and Biotechnology Research, W.M. Keck Laboratory for Structural Biology, Rockville, MD 20850, USA; State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Sichuan 610041, People's Republic of China
| | - Emilie Narni-Mancinelli
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Inserm, U1104, CNRS UMR7280, Marseille 13288, France
| | - Claudia Cantoni
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova 16132, Italy; Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Genova 16132, Italy; Istituto Giannina Gaslini, Genova 16147, Italy
| | - Yili Li
- University of Maryland Institute for Bioscience and Biotechnology Research, W.M. Keck Laboratory for Structural Biology, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Sophie Guia
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Inserm, U1104, CNRS UMR7280, Marseille 13288, France
| | | | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Sichuan 610041, People's Republic of China
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genova 16132, Italy; Centro di Eccellenza per le Ricerche Biomediche, Università degli Studi di Genova, Genova 16132, Italy
| | - Frédéric Vély
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Inserm, U1104, CNRS UMR7280, Marseille 13288, France; Immunologie, Hôpital de la Conception, Assistance Publique - Hôpitaux de Marseille, Aix-Marseille Université, Marseille 13005, France
| | - Edward Eisenstein
- University of Maryland Institute for Bioscience and Biotechnology Research, W.M. Keck Laboratory for Structural Biology, Rockville, MD 20850, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Sneha Rangarajan
- University of Maryland Institute for Bioscience and Biotechnology Research, W.M. Keck Laboratory for Structural Biology, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Inserm, U1104, CNRS UMR7280, Marseille 13288, France.
| | - Roy A Mariuzza
- University of Maryland Institute for Bioscience and Biotechnology Research, W.M. Keck Laboratory for Structural Biology, Rockville, MD 20850, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|