1
|
Wang J, Zheng Q, Zhao Y, Chen S, Chen L. HMGB1 enhances the migratory and invasive abilities of A2780/DDP cells by facilitating epithelial to mesenchymal transition via GSK‑3β. Exp Ther Med 2024; 27:102. [PMID: 38356665 PMCID: PMC10865443 DOI: 10.3892/etm.2024.12390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/25/2023] [Indexed: 02/16/2024] Open
Abstract
The aim of the present study was to investigate the impact and mechanism of high mobility group box 1 (HMGB1) on the regulation of cell migration and invasion in A2780/DDP cisplatin-resistant ovarian cancer cells. After transfecting small interfering (si)RNA-HMGB1 into A2780/DDP cells, Transwell migration and invasion assays were conducted to assess alterations in the cell migratory and invasive abilities. Additionally, western blotting analyses were performed to examine changes in HMGB1, phosphorylated (p)-GSK-3β, GSK-3β, E-cadherin and vimentin expression levels. The results of the present study demonstrated that the migratory and invasive abilities of A2780/DDP cells were significantly higher compared with those of A2780 cells. Additionally, the expression levels of HMGB1, p-GSK-3β and the mesenchymal phenotype marker, vimentin, in A2780/DDP cells were significantly elevated relative to the levels in A2780 cells. Conversely, the expression level of the epithelial phenotype marker, E-cadherin, was markedly decreased compared with that in A2780 cells. Following transfection of A2780/DDP cells with siRNA-HMGB1, there was a significant reduction in the rate of cell migration and invasion. Simultaneously, the expression levels of HMGB1, p-GSK-3β and vimentin were downregulated while the level of E-cadherin was upregulated. It was therefore concluded that the high expression of HMGB1 in A2780/DDP cells enhanced the cell migration and invasion abilities by facilitating epithelial to mesenchymal transition via GSK-3β.
Collapse
Affiliation(s)
- Jinhua Wang
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Qiaomei Zheng
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yanjing Zhao
- Department of Surgery, 92403 Military Hospital, Fuzhou, Fujian 350015, P.R. China
| | - Shaozhan Chen
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Lihong Chen
- Department of Obstetrics and Gynecology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
2
|
Chen X, Liu Q, Wu E, Ma Z, Tuo B, Terai S, Li T, Liu X. The role of HMGB1 in digestive cancer. Biomed Pharmacother 2023; 167:115575. [PMID: 37757495 DOI: 10.1016/j.biopha.2023.115575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
High mobility group box protein B1 (HMGB1) belongs to the HMG family, is widely expressed in the nucleus of digestive mucosal epithelial cells, mesenchymal cells and immune cells, and binds to DNA to participate in genomic structural stability, mismatch repair and transcriptional regulation to maintain normal cellular activities. In the context of digestive inflammation and tumors, HMGB1 readily migrates into the extracellular matrix and binds to immune cell receptors to affect their function and differentiation, further promoting digestive tract tissue injury and tumor development. Notably, HMGB1 can also promote the antitumor immune response. Therefore, these seemingly opposing effects in tumors make targeted HMGB1 therapies important in digestive cancer. This review focuses on the role of HMGB1 in tumors and its effects on key pathways of digestive cancer and aims to provide new possibilities for targeted tumor therapy.
Collapse
Affiliation(s)
- Xiangqi Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Qian Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Enqing Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Shuji Terai
- Division of Gastroenterology & Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Japan
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| |
Collapse
|
3
|
Rojas A, Lindner C, Schneider I, González I, Morales MA. Contributions of the receptor for advanced glycation end products axis activation in gastric cancer. World J Gastroenterol 2023; 29:997-1010. [PMID: 36844144 PMCID: PMC9950863 DOI: 10.3748/wjg.v29.i6.997] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/26/2022] [Accepted: 01/12/2023] [Indexed: 02/10/2023] Open
Abstract
Compelling shreds of evidence derived from both clinical and experimental research have demonstrated the crucial contribution of receptor for advanced glycation end products (RAGE) axis activation in the development of neoplasms, including gastric cancer (GC). This new actor in tumor biology plays an important role in the onset of a crucial and long-lasting inflammatory milieu, not only by supporting phenotypic changes favoring growth and dissemination of tumor cells, but also by functioning as a pattern-recognition receptor in the inflammatory response to Helicobacter pylori infection. In the present review, we aim to highlight how the overexpression and activation of the RAGE axis contributes to the proliferation and survival of GC cells as and their acquisition of more invasive phenotypes that promote dissemination and metastasis. Finally, the contribution of some single nucleotide polymorphisms in the RAGE gene as susceptibility or poor prognosis factors is also discussed.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Cristian Lindner
- Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Iván Schneider
- Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Ileana González
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Miguel Angel Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago 8320000, Chile
| |
Collapse
|
4
|
Takaki W, Konishi H, Matsubara D, Shoda K, Arita T, Kataoka S, Shibamoto J, Furuke H, Takabatake K, Shimizu H, Komatsu S, Shiozaki A, Kubota T, Okamoto K, Otsuji E. Role of Extracellular High-Mobility Group Box-1 as a Therapeutic Target of Gastric Cancer. Int J Mol Sci 2022; 23:ijms23063264. [PMID: 35328684 PMCID: PMC8953630 DOI: 10.3390/ijms23063264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
Background: High-mobility group box-1 (HMGB1) is involved in the tumorigenesis and metastasis of various cancers. The present study investigated the roles of extracellular HMGB1 in the progression of gastric cancer (GC) and the therapeutic effects of recombinant human soluble thrombomodulin (rTM) targeting HMGB1. Methods: The effects of extracellular HMGB1 and rTM on GC cells were assessed using proliferation and Transwell assays. Their effects on local tumor growth and metastasis were evaluated using subcutaneous tumor and liver metastasis mouse models, respectively. Plasma HMGB1 concentrations in GC patients were measured using ELISA. The relationships between plasma HMGB1 concentrations and the prognosis and clinicopathological factors of patients were also investigated. Results: GC proliferation, migration, and invasion abilities were promoted by increases in extracellular HMGB1 concentrations and alleviated by rTM. In the subcutaneous tumor model, local tumor growth was promoted by the addition of rhHMGB1 and alleviated by rTM. Similar changes occurred in the liver metastasis model. Recurrence-free survival (p < 0.01) and overall survival (p = 0.01) were significantly worse in patients with high plasma HMGB1 concentrations. Conclusion: Plasma HMGB1 concentrations are a prognostic marker in GC patients. Extracellular HMGB1 promotes cancer progression and has potential as a novel treatment target in GC cells for rTM.
Collapse
Affiliation(s)
- Wataru Takaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (W.T.); (D.M.); (K.S.); (T.A.); (S.K.); (J.S.); (H.F.); (K.T.); (H.S.); (S.K.); (A.S.); (T.K.); (K.O.); (E.O.)
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (W.T.); (D.M.); (K.S.); (T.A.); (S.K.); (J.S.); (H.F.); (K.T.); (H.S.); (S.K.); (A.S.); (T.K.); (K.O.); (E.O.)
- Correspondence: ; Tel.: +81-75-251-5527; Fax: +81-75-251-5522
| | - Daiki Matsubara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (W.T.); (D.M.); (K.S.); (T.A.); (S.K.); (J.S.); (H.F.); (K.T.); (H.S.); (S.K.); (A.S.); (T.K.); (K.O.); (E.O.)
| | - Katsutoshi Shoda
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (W.T.); (D.M.); (K.S.); (T.A.); (S.K.); (J.S.); (H.F.); (K.T.); (H.S.); (S.K.); (A.S.); (T.K.); (K.O.); (E.O.)
- First Department of Surgery, Faculty of Medicine, University of Yamanashi, Kofu 400-8510, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (W.T.); (D.M.); (K.S.); (T.A.); (S.K.); (J.S.); (H.F.); (K.T.); (H.S.); (S.K.); (A.S.); (T.K.); (K.O.); (E.O.)
| | - Satoshi Kataoka
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (W.T.); (D.M.); (K.S.); (T.A.); (S.K.); (J.S.); (H.F.); (K.T.); (H.S.); (S.K.); (A.S.); (T.K.); (K.O.); (E.O.)
| | - Jun Shibamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (W.T.); (D.M.); (K.S.); (T.A.); (S.K.); (J.S.); (H.F.); (K.T.); (H.S.); (S.K.); (A.S.); (T.K.); (K.O.); (E.O.)
| | - Hirotaka Furuke
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (W.T.); (D.M.); (K.S.); (T.A.); (S.K.); (J.S.); (H.F.); (K.T.); (H.S.); (S.K.); (A.S.); (T.K.); (K.O.); (E.O.)
| | - Kazuya Takabatake
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (W.T.); (D.M.); (K.S.); (T.A.); (S.K.); (J.S.); (H.F.); (K.T.); (H.S.); (S.K.); (A.S.); (T.K.); (K.O.); (E.O.)
| | - Hiroki Shimizu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (W.T.); (D.M.); (K.S.); (T.A.); (S.K.); (J.S.); (H.F.); (K.T.); (H.S.); (S.K.); (A.S.); (T.K.); (K.O.); (E.O.)
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (W.T.); (D.M.); (K.S.); (T.A.); (S.K.); (J.S.); (H.F.); (K.T.); (H.S.); (S.K.); (A.S.); (T.K.); (K.O.); (E.O.)
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (W.T.); (D.M.); (K.S.); (T.A.); (S.K.); (J.S.); (H.F.); (K.T.); (H.S.); (S.K.); (A.S.); (T.K.); (K.O.); (E.O.)
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (W.T.); (D.M.); (K.S.); (T.A.); (S.K.); (J.S.); (H.F.); (K.T.); (H.S.); (S.K.); (A.S.); (T.K.); (K.O.); (E.O.)
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (W.T.); (D.M.); (K.S.); (T.A.); (S.K.); (J.S.); (H.F.); (K.T.); (H.S.); (S.K.); (A.S.); (T.K.); (K.O.); (E.O.)
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (W.T.); (D.M.); (K.S.); (T.A.); (S.K.); (J.S.); (H.F.); (K.T.); (H.S.); (S.K.); (A.S.); (T.K.); (K.O.); (E.O.)
| |
Collapse
|
5
|
Xu S, Li W, Wu J, Lu Y, Xie M, Li Y, Zou J, Zeng T, Ling H. The role of miR-129-5p in cancer: a novel therapeutic target. Curr Mol Pharmacol 2021; 15:647-657. [PMID: 34521336 DOI: 10.2174/1874467214666210914122010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/30/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
MiRNA-129-5p belongs to the microRNA-129 (miRNA-129) family. MiRNA-129-5p is expressed in many tissues and organs of the human body, and it regulates a wide range of biological functions. The abnormal expression of miRNA-129-5p is related to the occurrence and development of a variety of malignant tumors. MiRNA-129-5p plays an important role in the tumorigenesis process and functions by promoting or inhibiting tumors. However, the role of miRNA-129-5p in cancer remains controversial. This article reviews the different biological functions of miRNA-129-5p in cancer and provides ideas for research in this field to guide the development of targeted therapies and drugs for malignant tumors.
Collapse
Affiliation(s)
- Shan Xu
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Wei Li
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Jing Wu
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Yuru Lu
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Ming Xie
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Yanlan Li
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Juan Zou
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| | - Tiebing Zeng
- Hunan Province Cooperative innovation Center for Molecular Target New Drug Study [Hunan Provincial Education Department document (Approval number: 2014-405], Hengyang, Hunan 421001. China
| | - Hui Ling
- Key Laboratory of Tumor Cellular & Molecular Pathology (University of South China),College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001. China
| |
Collapse
|
6
|
Zhou C, Yang Q. Value of HMGB1 expression for assessing gastric cancer severity: a systematic meta-analysis. J Int Med Res 2021; 49:300060521993312. [PMID: 33682495 PMCID: PMC7944546 DOI: 10.1177/0300060521993312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To evaluate the clinical value of high mobility group box-1 (HMGB1) expression levels in patients with gastric cancer. METHODS Articles published from January 2000 to August 2022 were searched using PubMed, Google Scholar and Science Direct, Springer, Wiley and NIH to evaluate the clinicopathological significance of HMGB1 expression in gastric cancer. RESULTS A total of 156 publications were selected, of which six studies, comprising 846 patients, met the criteria for inclusion in this study. Forest plots of clinicopathological characteristics indicated that HMGB1 expression was not associated with age (odds ratio (OR) = 1.07, 95% confidence interval (CI): 0.89-1.28), sex (OR = 0.90, 95% CI: 0.81-1.00), TNM (OR = 1.39, 95% CI: 0.82-2.37), N stage (OR = 1.42, 95% CI: 0.97-2.07), or tumor differentiation (OR = 0.96, 95% CI: 0.71-1.29), but was highly correlated with pT stage (OR = 1.56, 95% CI: 1.17-2.07). Funnel plots showed no significant publication bias in the included studies in terms of age, sex, TNM, pT stage, N stage, or tumor differentiation. CONCLUSION HMGB1 expression was significantly correlated with tumor pT stage, but not with age, sex, TNM stage, tumor N stage, tumor differentiation, or lymphatic metastasis in patients with GC.
Collapse
Affiliation(s)
- Chunxiang Zhou
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.,Department of Gastrointestinal Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Qun Yang
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.,Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
7
|
Hiramoto K, Yamate Y, Goto K, Ohnishi S, Morita A, Yoshikawa N, Kawanishi S. Glycyrrhizin ameliorates melanoma cell extravasation into mouse lungs by regulating signal transduction through HMGB1 and its receptors. J Clin Biochem Nutr 2021; 69:52-60. [PMID: 34376914 PMCID: PMC8325763 DOI: 10.3164/jcbn.20-125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/01/2020] [Indexed: 12/31/2022] Open
Abstract
Metastasis, which accounts for the majority of all cancer-related deaths, occurs through several steps, namely, local invasion, intravasation, transport, extravasation, and colonization. Glycyrrhizin has been reported to inhibit pulmonary metastasis in mice inoculated with B16 melanoma. This study aimed to identify the mechanism through which glycyrrhizin ameliorates the extravasation of melanoma cells into mouse lungs. Following B16 melanoma cell injection, mice were orally administered glycyrrhizin once every two days over 2 weeks; lung samples were then obtained and analyzed. Blood samples were collected on the final day, and cytokine plasma levels were determined. We found that glycyrrhizin ameliorated the extravasation of melanoma cells into the lungs and suppressed the plasma levels of interleukin-6, tumor necrosis factor-α, and transforming growth factor-β. Furthermore, glycyrrhizin ameliorated the lung tissue expression of high mobility group box-1 protein (HMGB1), receptor for advanced glycation end products (RAGE), Toll-like receptor (TLR)-4, RAS, extracellular signal-related kinase, NF-κB, myeloid differentiation primary response 88, IκB kinase complex, epithelial-mesenchymal transition markers, and vascular endothelial growth factor-A. Our study demonstrates that glycyrrhizin ameliorates melanoma metastasis by regulating the HMGB1/RAGE and HMGB1/TLR-4 signal transduction pathways.
Collapse
Affiliation(s)
- Keiichi Hiramoto
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-cho, Suzuka, Mie 513-8670, Japan
| | - Yurika Yamate
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-cho, Suzuka, Mie 513-8670, Japan
| | - Kenji Goto
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-cho, Suzuka, Mie 513-8670, Japan
| | - Shiho Ohnishi
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-cho, Suzuka, Mie 513-8670, Japan
| | - Akihiro Morita
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-cho, Suzuka, Mie 513-8670, Japan
| | - Nobuji Yoshikawa
- Matsusaka R&D Center, Cokey Co., Ltd., Matsusaka, Mie 515-0041, Japan
| | - Shosuke Kawanishi
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-cho, Suzuka, Mie 513-8670, Japan
| |
Collapse
|
8
|
Xia Q, Tao P, Xu J. Association of Polymorphism rs1045411 in the HMGB1 Gene with Cancer Risk: Evidence from a Meta-analysis. Int J Med Sci 2021; 18:1348-1355. [PMID: 33628090 PMCID: PMC7893572 DOI: 10.7150/ijms.52181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/04/2021] [Indexed: 11/19/2022] Open
Abstract
The high-mobility group box protein 1 (HMGB1) rs1045411 polymorphism has been demonstrated to be associated with cancer risk in some studies. However, the results regarding this topic are inconsistent. A meta-analysis was applied to elucidate the association between the HMGB1 rs1045411 polymorphism and cancer risk. Ten relevant studies were subjected to our analysis, and pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. In total, of 3,918 cases and 5,296 controls were included in this study. The pooled ORs were calculated using a random-effects or fixed-effects model according to the heterogeneity. The pooled results revealed that TT genotype was significantly related to increased cancer risk in the comparisons of TT vs. CC+TC (OR=1.35; 95% CI: 1.09-1.67; p=0.005). Though no statistical significance was achieved between HMGB1 rs1045411 polymorphism and cancer risk in other four genetic models (T vs. C: OR=1.08, 95% CI 0.90-1.30; TC vs. CC: OR=1.01, 95% CI 0.82-1.24; CC vs. TC+TT: OR=0.95, 95% CI 0.77-1.18; TT vs. CC: OR=1.42; 95% CI 0.98-2.05), a trend of increased risk could be drawn. In the subgroup analysis by type of malignancy and ethnicity, no obvious difference was found in the tumour risk regarding the HMGB1 rs1045411 polymorphism amongst the cancer types except for breast cancer (OR=1.94; 95% CI: 1.05-3.59; p=0.03) and hepatocellular carcinoma (OR=1.82; 95% CI: 1.15-2.88; p=0.01), while rs1045411 polymorphism was positively associated with risks of cancer amongst Hans (OR=1.37; 95% CI: 1.11-1.69; p=0.004) rather than Caucasians (OR=0.89; 95% CI: 0.26-3.02; p=0.01). These results suggest that the HMGB1 rs1045411 polymorphism might be associated with increased cancer risk.
Collapse
Affiliation(s)
- Quansong Xia
- Department of Clinical Laboratory, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| | - Pengzuo Tao
- Department of Clinical Laboratory, The Third Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| | - Juan Xu
- Department of Internal Medicine, The People's Hospital of Guandu District, Kunming 650200, China
| |
Collapse
|
9
|
Jiao D, Zhang J, Chen P, Guo X, Qiao J, Zhu J, Wang L, Lu Z, Liu Z. HN1L promotes migration and invasion of breast cancer by up-regulating the expression of HMGB1. J Cell Mol Med 2021; 25:397-410. [PMID: 33191617 PMCID: PMC7810958 DOI: 10.1111/jcmm.16090] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/01/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
Recent reports showed that haematological and neurological expressed 1-like (HN1L) gene participated in tumorigenesis and tumour invasion. However, the expression and role of HN1L in breast cancer remain to be investigated. Here, bioinformatics, western blot and immunohistochemistry were used to detect the expression of HN1L in breast cancer. Wound healing, transwell assay, immunofluorescence assay and mass spectrum were used to explore the role and mechanism of HN1L on the migration and invasion of breast cancer, which was confirmed in vivo using a nude mice model. Results showed that HN1L was significantly over-expressed in breast cancer tissues, which was positively correlated with M metastasis of breast cancer patients. Silencing HN1L significantly inhibited the invasion and metastasis of breast cancer cells in vitro and lung metastasis in nude mice metastasis model of breast cancer. Mechanistically, HN1L interacted with HSPA9 and affected the expression of HMGB1, playing a key role in promoting the invasion and metastasis of breast cancer cell. These results suggested that HN1L was an appealing drug target for breast cancer.
Collapse
Affiliation(s)
- Dechuang Jiao
- Department of Breast DiseaseHenan Breast Cancer CenterAffiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Jingyang Zhang
- Department of Breast DiseaseHenan Breast Cancer CenterAffiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Ping Chen
- College of Basic Medical SciencesCollaborative Innovation Center of Henan Province for Cancer ChemopreventionZhengzhou UniversityZhengzhouChina
| | - Xuhui Guo
- Department of Breast DiseaseHenan Breast Cancer CenterAffiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Jianghua Qiao
- Department of Breast DiseaseHenan Breast Cancer CenterAffiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Jiujun Zhu
- Department of Breast DiseaseHenan Breast Cancer CenterAffiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Lina Wang
- Department of Breast DiseaseHenan Breast Cancer CenterAffiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Zhenduo Lu
- Department of Breast DiseaseHenan Breast Cancer CenterAffiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| | - Zhenzhen Liu
- Department of Breast DiseaseHenan Breast Cancer CenterAffiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouChina
| |
Collapse
|
10
|
The utility of high-mobility group A2 overexpression for predicting the prognosis of gastric cancer patients and its contribution to poor prognosis via chemoresistance and the propensity for the occurrence of carcinomatosis peritonei. Surgery 2020; 169:1213-1220. [PMID: 33376002 DOI: 10.1016/j.surg.2020.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/22/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The aim of this study was to elucidate the correlation of high-mobility group protein A2 overexpression with gastric cancer prognosis and compare its prognostic power with that of pre-existing markers. METHODS Malignant tissues from 396 patients with gastric cancer who underwent gastrectomy from 2008 to 2012 were examined. High-mobility group protein A2 expression was assessed by immunohistochemistry and the sensitivity and specificity for predicting disease progression and overall survival of high-mobility group protein A2 and the prognostic biomarkers p53, Ki-67, human epidermal growth factor receptor 2, cyclooxygenase-2, and epidermal growth factor receptor were compared. RESULTS A total of 95 samples (24.1%) showed high-mobility group protein A2 overexpression, which was related to advanced stage, undifferentiated histology, and lymphatic and perineural invasion. Additionally, high-mobility group protein A2 overexpression was an independent prognostic factor in multivariate analysis for disease progression and overall survival. Based on Kaplan-Meier survival analysis disease progression and overall survival, the high-mobility group protein A2-overexpressing patients showed worse survival. The recurrence pattern of peritoneal dissemination was more frequently observed in high-mobility group protein A2-positive group. Moreover, chemoresistance was more frequently observed in the high-mobility group protein A2-positive group. High-mobility group protein A2 exhibited a better ability for predicting disease progression and overall survival than other markers, and the prognostic power was enhanced when high-mobility group protein A2 was used with these markers. CONCLUSION High-mobility group protein A2 overexpression is associated with chemoresistance and a propensity for carcinomatosis peritonei after surgery in patients with gastric cancer. The power to predict the prognosis of patients with gastric cancer can be enhanced with the use of preexisting biomarkers and high-mobility group protein A2.
Collapse
|
11
|
Downregulation of miR-205 contributes to epithelial-mesenchymal transition and invasion in triple-negative breast cancer by targeting HMGB1-RAGE signaling pathway. Anticancer Drugs 2020; 30:225-232. [PMID: 30334817 PMCID: PMC6410973 DOI: 10.1097/cad.0000000000000705] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Our aim was to study the regulatory molecule networks involved in the epithelial-to-mesenchymal transition and thus promoting the early onset of metastasis in triple-negative breast cancer (TNBC). Forty pairs of human TNBC and their adjacent normal breast tissues were analyzed by real-time PCR and immunochemistry to demonstrate the correlation between the miR-205 expression and clinicopathological characteristics. In vitro, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, cell migration, and invasion assay were used to detect the cell growth and invasive ability of TNBC cells after upregulation or downregulation of miR-205 expression. Luciferase reporter assay was used to confirm the potential target directly influenced by miR-205. Our results showed that miR-205 abnormal expression may be involved and associated with the biological traits of TNBC. Ectopic expression of miR-205 not only inhibited cell growth, but also suppressed migration and invasion of mesenchymal-like TNBC cells. In addition, we found that overexpression of miR-205 significantly suppressed HMGB1 by binding its 3′-untranslated region, and that miR-205 was inversely correlated with the expression of HMGB1 and RAGE in cell lines and clinical samples. Our study illustrated that miR-205 was a tumor suppressor in TNBC, which attenuated the viability and the acquisition of the epithelial-to-mesenchymal transition phenotype TNBC cells at least partially exerted through targeting of HMGB1–RAGE signaling pathway.
Collapse
|
12
|
Dariya B, Nagaraju GP. Advanced glycation end products in diabetes, cancer and phytochemical therapy. Drug Discov Today 2020; 25:1614-1623. [PMID: 32652310 DOI: 10.1016/j.drudis.2020.07.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/04/2020] [Accepted: 07/03/2020] [Indexed: 02/08/2023]
Abstract
The irreversible glycation and oxidation of proteins and lipids produces advanced glycation end products (AGEs). These modified AGEs are triggered to bind the receptor for AGE (RAGE), thereby activating its downstream signaling pathways, such as nuclear factor (NF)-κB and phosphoinositide 3-kinase (PI3K)/Akt, ultimately leading to diabetes and cancers. In this review, we focus on the interaction of AGE-RAGE and their associated pathways. We also consider the activity of phytochemicals, such as genistein and curcumin, that trap dicarbonyl compounds including methylglyoxal (MG) and glyoxalase that arise from multiple pathways to block AGE formation and prevent its interaction with RAGE.
Collapse
Affiliation(s)
- Begum Dariya
- Department of Biosciences and Biotechnology, Banasthali University, Banasthali, Rajasthan 304022, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
13
|
Matsubara D, Konishi H, Otsuji E. ASO Author Reflections: Involvement of Intracellular and Extracellular High-Mobility Group Box-1 in the Progression of Esophageal Squamous Cell Carcinoma. Ann Surg Oncol 2020; 27:3245-3246. [PMID: 32248372 DOI: 10.1245/s10434-020-08415-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Indexed: 11/18/2022]
Affiliation(s)
- Daiki Matsubara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
14
|
Matsubara D, Konishi H, Arita T, Shoda K, Fujita Y, Ogino S, Takao K, Nanishi K, Kosuga T, Komatsu S, Shiozaki A, Fujiwara H, Okamoto K, Otsuji E. Involvement of Intracellular and Extracellular High-Mobility Group Box-1 in the Progression of Esophageal Squamous Cell Carcinoma. Ann Surg Oncol 2020; 27:3233-3244. [PMID: 32221734 DOI: 10.1245/s10434-020-08363-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND High-mobility group box-1 (HMGB1) is involved in a broad range of inflammatory responses and the progression of various types of malignancy. However, the roles of HMGB1 in the progression of esophageal squamous cell carcinoma (ESCC) are unclear. The aim of this study was to investigate the significance of intracellular and extracellular HMGB1 in ESCC. METHODS HMGB1 levels were measured in the tissue and plasma of patients with ESCC, or in ESCC cell lines and their conditioned medium. The effects of downregulation of intracellular HMGB1 or upregulation of extracellular HMGB1 on proliferation, cell migration, and invasion were evaluated using proliferation, transwell, and wound healing assays. RESULTS Downregulation of HMGB1 expression inhibited cell proliferation, migration, and invasion. On the other hand, upregulation of extracellular HMGB1 level by addition of recombinant HMGB1 promoted the migratory and invasive abilities of ESCC cells through increases of phosphorylation of the signal-regulated kinase 1/2 and NF-κBp65 proteins. These effects of extracellular HMGB1 were attenuated by treatment with recombinant soluble thrombomodulin, which adsorbs HMGB1. The expression of HMGB1 was significantly higher in tumor tissue (p = 0.008), and the concentration of HMGB1 in the plasma was significantly higher in patients with ESCC than in healthy volunteers (p = 0.04). Cancer-specific survival was worse in patients with high concentration of plasma HMGB1 (p = 0.01). CONCLUSION Increase of HMGB1 levels in tumor cells or plasma plays a crucial role in the malignant potential of ESCC. Intracellular and extracellular HMGB1 may be a therapeutic target in ESCC.
Collapse
Affiliation(s)
- Daiki Matsubara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Katsutoshi Shoda
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuji Fujita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinpei Ogino
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koji Takao
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenji Nanishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
15
|
Ghweil AA, Osman HA, Hassan MH, Sabry AM, Mahdy RE, Ahmed AR, Okasha A, Khodeary A, Ameen HH. Validity of serum amyloid A and HMGB1 as biomarkers for early diagnosis of gastric cancer. Cancer Manag Res 2020; 12:117-126. [PMID: 32021428 PMCID: PMC6958557 DOI: 10.2147/cmar.s207934] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/11/2019] [Indexed: 12/23/2022] Open
Abstract
Background and aim Gastric carcinomais a frequent neoplasm with poor outcome, and its early detection would improve prognosis. This study was designed to evaluate the possible use of new biomarkers, namely SAA and HMGB1, for early diagnosis of gastric cancer. Methods A total of 100 patients presenting with gastric symptoms were included. All patients underwent upper endoscopic evaluation, histopathological diagnosis and serum CEA, SAA, and HMGB1 measurements. Results Patients were classed endoscopically with neoplastic, inflammatory, and normal-appearing gastric mucosa: 50, 25, and 25 patients, respectively. Histologically, half the patients had chronic gastritis and the remaining cases gastric carcinoma of diffuse (n=28) or intestinal (n=22) type. SAA at cutoff of 18.5 mg/L had the best validity to differentiate gastritis from gastric carcinoma, with AUC, sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV) of 0.99, 98%, 100%, 100%, and 98%, respectively, followed by HMGB1 at cutoff of 14.5 pg/μL, with AUC, sensitivity, specificity, PPV, and NPV of 0.91, 70%, 96%, 94.6%, and 76.2%, respectively. Sensitivity, specificity, PPV, and NPV of serum CEA at cutoff of 2.9 ng/mL to differentiate gastritis from gastric carcinoma were 42%, 72%, 60%, and 55.4%, respectively, with AUC of 0.53. Nonetheless, higher serum levels of both SAA and HMGB1 reflected higher tumor grade (P=0.027 and P=0.016, respectively) and advanced tumor stage (P-OBrk-0.001 for both). Conclusion Serum levels of both SAA and HMGB1 could be of great value for early diagnosis of gastric carcinoma, comparable to the diagnostic role of serum CEA, which is not valid for early diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Ali A Ghweil
- Tropical Medicine and Gastroenterology Department, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Heba A Osman
- Tropical Medicine and Gastroenterology Department, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Mohammed H Hassan
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Abeer Mm Sabry
- Internal Medicine and Gastroenterology Department, Faculty of Medicine, Helwan University, Helwan, Egypt
| | - Reem E Mahdy
- Internal Medicine Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed Rh Ahmed
- Pathology Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Ahmed Okasha
- Radiology Department, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Ashraf Khodeary
- Clinical Pathology Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Hesham H Ameen
- Clinical Pathology Department, Faculty of Medicine, Al-Azhar University (Assiut Branch), Assiut, Egypt
| |
Collapse
|
16
|
Kano M, Hayano K, Hayashi H, Hanari N, Gunji H, Toyozumi T, Murakami K, Uesato M, Ota S, Matsubara H. Survival Benefit of Neoadjuvant Chemotherapy with S-1 Plus Docetaxel for Locally Advanced Gastric Cancer: A Propensity Score-Matched Analysis. Ann Surg Oncol 2019; 26:1805-1813. [PMID: 30977014 PMCID: PMC6510880 DOI: 10.1245/s10434-019-07299-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Indexed: 12/16/2022]
Abstract
Background Postoperative docetaxel plus S-1 (DS) chemotherapy is expected to be the standard therapeutic strategy for pStage III gastric cancer based on the results of the JACCRO GC-07 study. Neoadjuvant chemotherapy (NAC) is thought to have several advantages over adjuvant settings. Objective This study aimed to compare the efficacies of NAC DS and the surgery-first strategy for advanced gastric cancer patients with D2 gastrectomy. Methods This was a retrospective, single-institution observational study. Of 171 patients with locally advanced (cStage IIB or III) gastric cancer who underwent curative D2 gastrectomy and received NAC DS and/or S-1 adjuvant chemotherapy between 2011 and 2017, 76 (after propensity score matching for 132 patients who met the eligibility criteria) were enrolled in this study. The 3-year progression-free survival (PFS) rate was used to directly compare efficacies between NAC DS patients and surgery-first patients. Results The 3-year PFS rates for the NAC DS group were significantly higher than those for the surgery-first group (80.0 vs. 58.7; p = 0.037), and the progression hazard ratio of the NAC DS group compared with the surgery-first group was 0.394 (95% confidence interval 0.159–0.978; p = 0.045). Conclusions The NAC DS group showed a high 3-year PFS compared with the surgery-first group, with standard S-1 postoperative chemotherapy or observation. NAC DS can be expected to be beneficial as the standard therapy for advanced gastric cancer and should be adopted for the test arm of a randomized controlled phase III trial. Electronic supplementary material The online version of this article (10.1245/s10434-019-07299-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Masayuki Kano
- Department of Frontier Surgery, Chiba University, Chiba, Japan.
| | - Koichi Hayano
- Department of Frontier Surgery, Chiba University, Chiba, Japan
| | - Hideki Hayashi
- Department of Frontier Surgery, Chiba University, Chiba, Japan
| | - Naoyuki Hanari
- Department of Frontier Surgery, Chiba University, Chiba, Japan
| | - Hisashi Gunji
- Department of Frontier Surgery, Chiba University, Chiba, Japan
| | | | | | - Masaya Uesato
- Department of Frontier Surgery, Chiba University, Chiba, Japan
| | - Satoshi Ota
- Department of Frontier Surgery, Chiba University, Chiba, Japan
| | | |
Collapse
|
17
|
Wang S, Chen Y, Yu X, Lu Y, Wang H, Wu F, Teng L. miR-129-5p attenuates cell proliferation and epithelial mesenchymal transition via HMGB1 in gastric cancer. Pathol Res Pract 2019; 215:676-682. [DOI: 10.1016/j.prp.2018.12.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/30/2018] [Accepted: 12/24/2018] [Indexed: 02/08/2023]
|
18
|
HMGB1 as a Potential Biomarker and Therapeutic Target for Malignant Mesothelioma. DISEASE MARKERS 2019; 2019:4183157. [PMID: 30891101 PMCID: PMC6390248 DOI: 10.1155/2019/4183157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/29/2018] [Accepted: 01/08/2019] [Indexed: 02/06/2023]
Abstract
Malignant mesothelioma (MM) is a rare, aggressive, and highly lethal cancer that is substantially induced by exposure to asbestos fibers. High-mobility group box 1 (HMGB1) is an intriguing proinflammatory molecule involved in MM. In this review, we describe the possible crucial roles of HMGB1 in carcinogenic mechanisms based on in vivo and in vitro experimental evidence and outline the clinical findings of epidemiological investigations regarding the possible roles of HMGB1 as a biomarker for MM. We conclude that novel strategies targeting HMGB1 may suppress MM cells and interfere with asbestos-induced inflammation.
Collapse
|
19
|
miRNA-1284, a regulator of HMGB1, inhibits cell proliferation and migration in osteosarcoma. Biosci Rep 2018; 38:BSR20171675. [PMID: 29899164 PMCID: PMC6043716 DOI: 10.1042/bsr20171675] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/29/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023] Open
Abstract
Previous literatures have reported the role of human micro RNA-1284 (hsa-miR-1284, in short miR-1284) in diverse cancers. However, its biological function in osteosarcoma pathogenesis remains unknown. In the present study, we investigated the potential role of miR-1284 in osteosarcoma. Expression of miR-1284 and high mobility group box 1 (HMGB1) were examined in 80 tissues obtained from 40 patients. MiR-1284 level was measured in five osteosarcoma cell lines. Relative luciferase activity and HMGB1 expression were examined in MG-63 and U2OS cells transfected with wild-type or mutant 3′-UTR of HMGB1 in the presence of miR-1284 mimics or miR-NC. Cell viability, colony formation, and cell migration were measured in MG-63, U2OS and hFOB 1.19 cells, which were transfected with miR-1284 mimics or miR-NC. In the rescue experiments, recombinant HMGB1 plasmid was transfected into MG-63 and U2OS cells, and cell viability and migration were determined again. Our results indicated that relative level of miR-1284 was lower in tumor tissues compared with its adjacent tissues and it was found suppressed at lower levels in MG-63 and U2OS cell lines. Expression of HMGB1 is significantly elevated in tumor tissues and negatively correlated with miR-1284 expression. MiR-1284 exerted its function by directly binding to 3′-UTR of HMGB1 and regulates expression of HMGB1. The overexpression of miR-1284 inhibited the cell proliferation and migration, and altered the protein expression of epithelial–mesenchymal transition (EMT)-associated genes (E-cadherin, N-cadherin, Vimentin, and Snail), which was reversed by HMGB1 overexpression. In conclusion, miR-1284 can function as a new regulator to inhibit osteosarcoma cell proliferation and migration by targeting HMGB1.
Collapse
|
20
|
A functional variant at the miRNA binding site in HMGB1 gene is associated with risk of oral squamous cell carcinoma. Oncotarget 2018; 8:34630-34642. [PMID: 28423715 PMCID: PMC5470997 DOI: 10.18632/oncotarget.16120] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/15/2017] [Indexed: 12/12/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common malignancy that has been causally associated with both hereditary and acquired factors. The high mobility group box 1 (HMGB1) gene plays an important role as a DNA chaperone to help maintain nuclear homeostasis. Altered expression of HMGB1 has been implicated in a wide range of pathological processes, including inflammation and cancer. The present study explores the impact of HMGB1 gene polymorphisms, combined with environmental risks regarding susceptibility to oral tumorigenesis. Four single-nucleotide polymorphisms (SNPs) of the HMGB1 gene, rs1412125, rs2249825, rs1045411, and rs1360485, were evaluated in 1,200 normal controls and 772 patients with OSCC. We found an association between the wild-type allele of rs1045411 and genotypes CT and CT/TT (AOR=0.754, 95% CI=0.582-0.978 and AOR=0.778, 95% CI=0.609-0.995, respectively). Additionally, bioinformatics analysis was used to characterize the functional relevance of these variants for the miRNA-505-5p binding site and transcriptional regulation by the HMGB1 3’-UTR and promoter regions. Moreover, in considering behavioral exposure to environmental carcinogens, the presence of the four HMGB1 SNPs, combined with/without betel quid chewing and smoking showed, profoundly synergistic effects on the risk of OSCC. In conclusion, we present a potential clinical relevance for HMGB1 variants in OSCC, as well as associations between HMGB1 polymorphisms, haplotypes and environmental risk factors. The finding may help in development of optimal therapeutic approaches for OSCC patients.
Collapse
|
21
|
Regulation of Tumor Progression by Programmed Necrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3537471. [PMID: 29636841 PMCID: PMC5831895 DOI: 10.1155/2018/3537471] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022]
Abstract
Rapidly growing malignant tumors frequently encounter hypoxia and nutrient (e.g., glucose) deprivation, which occurs because of insufficient blood supply. This results in necrotic cell death in the core region of solid tumors. Necrotic cells release their cellular cytoplasmic contents into the extracellular space, such as high mobility group box 1 (HMGB1), which is a nonhistone nuclear protein, but acts as a proinflammatory and tumor-promoting cytokine when released by necrotic cells. These released molecules recruit immune and inflammatory cells, which exert tumor-promoting activity by inducing angiogenesis, proliferation, and invasion. Development of a necrotic core in cancer patients is also associated with poor prognosis. Conventionally, necrosis has been thought of as an unregulated process, unlike programmed cell death processes like apoptosis and autophagy. Recently, necrosis has been recognized as a programmed cell death, encompassing processes such as oncosis, necroptosis, and others. Metabolic stress-induced necrosis and its regulatory mechanisms have been poorly investigated until recently. Snail and Dlx-2, EMT-inducing transcription factors, are responsible for metabolic stress-induced necrosis in tumors. Snail and Dlx-2 contribute to tumor progression by promoting necrosis and inducing EMT and oncogenic metabolism. Oncogenic metabolism has been shown to play a role(s) in initiating necrosis. Here, we discuss the molecular mechanisms underlying metabolic stress-induced programmed necrosis that promote tumor progression and aggressiveness.
Collapse
|
22
|
Taipale K, Tähtinen S, Havunen R, Koski A, Liikanen I, Pakarinen P, Koivisto-Korander R, Kankainen M, Joensuu T, Kanerva A, Hemminki A. Interleukin 8 activity influences the efficacy of adenoviral oncolytic immunotherapy in cancer patients. Oncotarget 2018; 9:6320-6335. [PMID: 29464075 PMCID: PMC5814215 DOI: 10.18632/oncotarget.23967] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 12/12/2017] [Indexed: 12/20/2022] Open
Abstract
After the landmark approval of T-VEC, oncolytic viruses are finding their way to the clinics. However, response rates have still room for improvement, and unfortunately there are currently no available markers to predict responses for oncolytic immunotherapy. Interleukin 8 (IL-8) production is upregulated in many cancers and it also connects to several pathways that have been shown to impair the efficacy of adenoviral immunotherapy. We studied the role of IL-8 in 103 cancer patients treated with oncolytic adenoviruses. We found high baseline serum IL-8 concentration to be independently associated with poor prognosis (p<0.001). Further, normal baseline IL-8 was associated with improved prognostic potential of calculation of the neutrophil-to-lymphocyte ratio (p<0.001). Interestingly, a decrease in IL-8 concentration after treatment with oncolytic adenovirus predicted better overall survival (p<0.001) and higher response rate, although this difference was not significant (p=0.066). We studied the combination of adenovirus and IL-8 neutralizing antibody ex vivo in single cell suspensions and in co-cultures of tumor-associated CD15+ neutrophils and CD3+ tumor-infiltrating lymphocytes derived from fresh patient tumor samples. These results indicate a role for IL-8 as a biomarker in oncolytic virotherapy, but additionally provide a rationale for targeting IL-8 to improve treatment efficacy. In conclusion, curtailing the activity of IL-8 systemically or locally in the tumor microenvironment could improve anti-tumor immune responses resulting in enhanced efficacy of adenoviral immunotherapy of cancer.
Collapse
Affiliation(s)
- Kristian Taipale
- Cancer Gene Therapy Group, University of Helsinki, Faculty of Medicine, Helsinki, Finland
| | - Siri Tähtinen
- Cancer Gene Therapy Group, University of Helsinki, Faculty of Medicine, Helsinki, Finland
| | - Riikka Havunen
- Cancer Gene Therapy Group, University of Helsinki, Faculty of Medicine, Helsinki, Finland
| | - Anniina Koski
- Cancer Gene Therapy Group, University of Helsinki, Faculty of Medicine, Helsinki, Finland.,Department of Neurosurgery, HUCH, Helsinki, Finland
| | - Ilkka Liikanen
- Cancer Gene Therapy Group, University of Helsinki, Faculty of Medicine, Helsinki, Finland
| | - Päivi Pakarinen
- Department of Obstetrics and Gynecology, HUCH, Helsinki, Finland
| | | | - Matti Kankainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | | | - Anna Kanerva
- Cancer Gene Therapy Group, University of Helsinki, Faculty of Medicine, Helsinki, Finland.,Department of Obstetrics and Gynecology, HUCH, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, University of Helsinki, Faculty of Medicine, Helsinki, Finland.,Docrates Cancer Center, Helsinki, Finland.,TILT Biotherapeutics Ltd., Helsinki, Finland.,Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| |
Collapse
|
23
|
Hung SC, Wang SS, Li JR, Chen CS, Yang CK, Chiu KY, Cheng CL, Ou YC, Ho HC, Yang SF. Effect of HMGB1 Polymorphisms on Urothelial Cell Carcinoma Susceptibility and Clinicopathological Characteristics. Int J Med Sci 2018; 15:1731-1736. [PMID: 30588197 PMCID: PMC6299401 DOI: 10.7150/ijms.27901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/18/2018] [Indexed: 12/29/2022] Open
Abstract
The high mobility group box 1 gene (HMGB1) plays a prominent role in cancer progression, angiogenesis, invasion, and metastasis. This study explored the effect of HMGB1 polymorphisms on clinicopathological characteristics of urothelial cell carcinoma (UCC). In total, 1293 participants (431 patients with UCC and 862 healthy controls) were recruited. Four single-nucleotide polymorphisms (SNPs) of HMGB1 (rs1412125, rs1360485, rs1045411, and rs2249825) were assessed using TaqMan real-time polymerase chain reaction assay. The results indicated that individuals carrying at least one T allele at rs1045411 had a lower risk of UCC than those with the wild-type allele [adjusted odds ratio = 0.722, 95% confidence interval (CI) = 0.565-0.924]. Furthermore, female patients with UCC carrying at least one T allele at rs1045411 were at a lower invasive tumor stage than those with the wild-type allele [odds ratio (OR) = 0.396, 95% CI = 0.169-0.929], similar to nonsmoking patients (OR = 0.607, 95% CI = 0.374-0.985). In conclusion, this is the first report on correlation between HMGB1 polymorphisms and UCC risk. Individuals carrying at least one T allele at rs1045411 are associated with a lower risk of UCC and a less invasive disease in women and nonsmokers.
Collapse
Affiliation(s)
- Sheng-Chun Hung
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shian-Shiang Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Jian-Ri Li
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Medicine and Nursing, Hungkuang University, Taichung, Taiwan Taiwan
| | - Chuan-Shu Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chun-Kuang Yang
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Kun-Yuan Chiu
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Chen-Li Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yen-Chuan Ou
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Urology, Tung's Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Hao-Chung Ho
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
24
|
High-Mobility Group Box 1 Mediates Fibroblast Activity via RAGE-MAPK and NF-κB Signaling in Keloid Scar Formation. Int J Mol Sci 2017; 19:ijms19010076. [PMID: 29283384 PMCID: PMC5796026 DOI: 10.3390/ijms19010076] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022] Open
Abstract
Emerging studies have revealed the involvement of high-mobility group box 1 (HMGB1) in systemic fibrotic diseases, yet its role in the cutaneous scarring process has not yet been investigated. We hypothesized that HMGB1 may promote fibroblast activity to cause abnormal cutaneous scarring. In vitro wound healing assay with normal and keloid fibroblasts demonstrated that HMGB1 administration promoted the migration of both fibroblasts with increased speed and a greater traveling distance. Treatment of the HMGB1 inhibitor glycyrrhizic acid (GA) showed an opposing effect on both activities. To analyze the downstream mechanism, the protein levels of extracellular signal-regulated kinase (ERK) 1/2, protein kinase B (AKT), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were measured by western blot analysis. HMGB1 increased the expression levels of ERK1/2, AKT, and NF-κB compared to the control, which was suppressed by GA. HMGB1 promoted both normal and keloid fibroblasts migration to a degree equivalent to that achieved with TGF-β. We concluded that HMGB1 activates fibroblasts via the receptor for advanced glycation end product (RAGE)—mitogen-activated protein kinases (MAPK) and NF-κB interaction signaling pathways. Further knowledge of the relationship of HMGB1 with skin fibrosis may lead to a promising clinical approach to manage abnormal scarring.
Collapse
|
25
|
Liu PL, Liu WL, Chang JM, Chen YH, Liu YP, Kuo HF, Hsieh CC, Ding YS, Chen WW, Chong IW. MicroRNA-200c inhibits epithelial-mesenchymal transition, invasion, and migration of lung cancer by targeting HMGB1. PLoS One 2017; 12:e0180844. [PMID: 28727734 PMCID: PMC5519074 DOI: 10.1371/journal.pone.0180844] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/22/2017] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRs) play critical roles in cancer development, proliferation, epithelial-mesenchymal transition (EMT), invasion, and migration through regulating the expression of oncogenes and tumour suppressor genes. Previous studies have indicated that miR-200c acts as a tumour suppressor in various cancers by downregulating high-mobility group box 1 (HMGB1) and thereby suppressing EMT and metastasis. In addition, miR-200c was reported to be downregulated and correlated with poor outcomes in non-small cell lung cancer (NSCLC). However, its functional role in HMGB1 regulation in NSCLC is still unclear. This study aimed to clarify whether miR-200c acts as a tumour suppressor in NSCLC by downregulating HMGB1, which is associated with EMT, invasion, cytoskeleton rearrangement, and migration in vitro and in vivo. In order to demonstrate HMGB1 downregulation by miR-200c, the NSCLC cell line A549 was transfected with miR-200c mimic or inhibitor. The mimic significantly reduced HMGB1 expression and suppressed EMT, invasion, and migration, while the inhibitor generated the opposite effects. Additionally, using xenograft mouse models, we confirmed that HMGB1 overexpression increased tumour EMT. In summary, our results demonstrated that miR-200c could suppress EMT, invasion, and migration of NSCLC cells by downregulating HMGB1.
Collapse
Affiliation(s)
- Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Lun Liu
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Jia-Ming Chang
- Preclinical Animal Pharmacology Testing Center, National Research Project for Biopharmaceuticals, New Taipei, Taiwan
- Department of Pharmacology, Institute for Drug Evaluation Platform, Development Center for Biotechnology, New Taipei, Taiwan
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Yu-Peng Liu
- Department of Genome Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsuan-Fu Kuo
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chong-Chao Hsieh
- Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Sian Ding
- Preclinical Animal Pharmacology Testing Center, National Research Project for Biopharmaceuticals, New Taipei, Taiwan
- Department of Pharmacology, Institute for Drug Evaluation Platform, Development Center for Biotechnology, New Taipei, Taiwan
| | - Wei-Wei Chen
- Preclinical Animal Pharmacology Testing Center, National Research Project for Biopharmaceuticals, New Taipei, Taiwan
- Department of Pharmacology, Institute for Drug Evaluation Platform, Development Center for Biotechnology, New Taipei, Taiwan
| | - Inn-Wen Chong
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
26
|
Chung HW, Lim JB. High-mobility group box-1 contributes tumor angiogenesis under interleukin-8 mediation during gastric cancer progression. Cancer Sci 2017; 108:1594-1601. [PMID: 28574630 PMCID: PMC5543560 DOI: 10.1111/cas.13288] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 12/12/2022] Open
Abstract
Many soluble factors are involved in tumor angiogenesis. Thus, it is valuable to identify novel soluble factors for effective control of tumor angiogenesis in gastric cancer (GC). We investigated the role of extracellular high‐mobility group box‐1 (HMGB1) and its associated soluble factors in the tumor angiogenesis of GC. Clinically, we measured serum levels of HMGB1 and GC‐associated cytokines/chemokines using GC serum samples (n = 120), and calculated microvessel density (MVD) by CD34 immunostaining using human GC tissues (n = 27). Then we analyzed the correlation of serum HMGB1 levels with MVD or that with cytokine/chemokine levels by linear regression. As in vitro angiogenesis assay for HMGB1, HUVEC migration and capillary tube formation assay were carried out using different histological types of human GC cells (N87 and KATOIII). CD34‐positive microvessels were detected from early GC, but MVD increased according to GC stages, and were closely correlated with serum HMGB1 levels (R = 0.608, P = 0.01). The HUVECs cultured in conditioned media derived from rhHMGB1‐treated or HMGB1‐TF GC cells showed remarkably enhanced migration and tube formation activities. These effects were abrogated by anti‐HMGB1 antibody or HMGB1 siRNA in both N87 and KATOIII cells (all P < 0.05). Among tested cytokines/chemokines, interleukin‐8 (IL‐8) was the most remarkable cytokine correlated with serum HMGB1 (P < 0.001), and enhanced HUVEC migration and tube formation activities by rhHMGB1 or HMGB1‐TF were significantly reversed by IL‐8 inhibition. These results indicate overexpressed HMGB1 contributes to tumor angiogenesis through IL‐8 mediation, and combined targeting of HMGB1 and IL‐8 can control tumor angiogenesis in GC.
Collapse
Affiliation(s)
| | - Jong-Baeck Lim
- Department of Laboratory Medicine, Seoul, Korea.,Severance Institute for Vascular and Metabolic Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Yu Y, Li L, Zheng Z, Chen S, Chen E, Hu Y. Long non-coding RNA linc00261 suppresses gastric cancer progression via promoting Slug degradation. J Cell Mol Med 2016; 21:955-967. [PMID: 27878953 PMCID: PMC5387161 DOI: 10.1111/jcmm.13035] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/15/2016] [Indexed: 01/17/2023] Open
Abstract
Gastric cancer (GC) remains a threat to public health with high incidence and mortality worldwide. Increasing evidence demonstrates that long non‐coding RNAs (lncRNAs) play critical regulatory roles in cancer biology, including GC. Previous profiling study showed that lncRNA linc00261 was aberrantly expressed in GC. However, the role of linc00261 in GC progression and the precise molecular mechanism remain unknown. In this study, we report that linc00261 was significantly down‐regulated in GC tissues and the expression level of linc00261 negatively correlated with advanced tumour status and clinical stage as well as poor prognostic outcome. In vitro functional assays indicate that ectopic expression of linc00261 suppressed cell invasion by inhibiting the epithelial–mesenchymal transition (EMT). By RNA pull‐down and mass spectrum experiments, we identified Slug as an RNA‐binding protein that binds to linc00261. We confirmed that linc00261 down‐regulated Slug by decreasing the stability of Slug proteins and that the tumour‐suppressive function of linc00261 can be neutralized by Slug. linc00261 may promote the degradation of Slug via enhancing the interaction between GSK3β and Slug. Moreover, linc00216 overexpression repressed lung metastasis in vivo. Together, our findings suggest that linc00261 acts a tumour suppressor in GC by decreasing the stability of Slug proteins and suppressing EMT. By clarifying the mechanisms underlying GC progression, these findings may facilitate the development of novel therapeutic strategies for GC.
Collapse
Affiliation(s)
- Yingcong Yu
- Department of Gastroenterology, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Linjin Li
- Department of Urology Surgery, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Zhiqiang Zheng
- Department of General Surgery, The Second Affilated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Senrui Chen
- Department of General Surgery, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Ende Chen
- Department of General Surgery, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Yiren Hu
- Department of General Surgery, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| |
Collapse
|
28
|
Qiu Y, Chen Y, Zeng T, Guo W, Zhou W, Yang X. High-mobility group box-B1 (HMGB1) mediates the hypoxia-induced mesenchymal transition of osteoblast cells via activating ERK/JNK signaling. Cell Biol Int 2016; 40:1152-1161. [PMID: 27106169 DOI: 10.1002/cbin.10616] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/27/2016] [Indexed: 11/09/2022]
Abstract
High-mobility group box 1 (HMGB1) is a nuclear protein that involves the binding with DNA and influences chromatin regulation and transcription. HMGB1 activates monocytes and neutrophils, which are involved in inflammation during wounding. In this study, we investigated the promotion of HMGB1 under hypoxia and determined the regulatory role of HMGB1 on the fibrosis of mouse osteoblast-like MC3T3-E1 cells or of human osteoblast MG-63 cells. Results demonstrated that HMGB1 expression was significantly upregulated in MC3T3-E1 or MG-63 cells under hypoxia. We also found that treatment with 10 and 100 ng/mL of HMGB1 significantly promoted the fibrosis-associated markers such as Collagen I, α-SMA, whereas downregulated the E-cadherin, indicating the differentiation of MC3T3-E1 or MG-63 cells into fibroblast cells. Further investigation indicated that the HMGB1 treatment markedly activated the mitogen-activated protein kinases (MAPKs), including extracellular signal-related kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38) phosphorylation, as well as nuclear factor (NF)-κB nuclear translocation. On the other side, using specific inhibitors and shRNAs of protein kinases, we observed that repression of ERK, JNK, p38, and NF-κB all inhibited HMGB1-induced cellular differentiation and migration of MC3T3-E1 cells. In addition, knocking down of advanced glycation end products (RAGE) but not Toll-like receptor (TLR)2 and TLR4 by shRNAs attenuated HMGB1-induced myofibroblast differentiation and migration. In conclusion, our study demonstrated that HMGB1 induced the fibrosis of osteoblasts in vitro via activating the RAGE-MAPK and NF-κB interaction signaling pathways.
Collapse
Affiliation(s)
- Yiyan Qiu
- Department of Spine Surgery, The 2nd Shenzhen People's Hospital, No. 3002, Sungang Road, Futian District, Shenzhen, 510000, China
| | - Yang Chen
- Department of Spine Surgery, The 2nd Shenzhen People's Hospital, No. 3002, Sungang Road, Futian District, Shenzhen, 510000, China
| | - Tenghui Zeng
- Department of Spine Surgery, The 2nd Shenzhen People's Hospital, No. 3002, Sungang Road, Futian District, Shenzhen, 510000, China
| | - Weizhuang Guo
- Department of Spine Surgery, The 2nd Shenzhen People's Hospital, No. 3002, Sungang Road, Futian District, Shenzhen, 510000, China
| | - Wenyu Zhou
- Department of Spine Surgery, The 2nd Shenzhen People's Hospital, No. 3002, Sungang Road, Futian District, Shenzhen, 510000, China
| | - Xinjian Yang
- Department of Spine Surgery, The 2nd Shenzhen People's Hospital, No. 3002, Sungang Road, Futian District, Shenzhen, 510000, China.
| |
Collapse
|
29
|
Lin HJ, Hsu FY, Chen WW, Lee CH, Lin YJ, Chen YYM, Chen CJ, Huang MZ, Kao MC, Chen YA, Lai HC, Lai CH. Helicobacter pylori Activates HMGB1 Expression and Recruits RAGE into Lipid Rafts to Promote Inflammation in Gastric Epithelial Cells. Front Immunol 2016; 7:341. [PMID: 27667993 PMCID: PMC5016528 DOI: 10.3389/fimmu.2016.00341] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/23/2016] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori infection is associated with several gastrointestinal disorders in the human population worldwide. High-mobility group box 1 (HMGB1), a ubiquitous nuclear protein, mediates various inflammation functions. The interaction between HMGB1 and receptor for advanced glycation end-products (RAGE) triggers nuclear factor (NF)-κB expression, which in turn stimulates the release of proinflammatory cytokines, such as interleukin (IL)-8, and enhances the inflammatory response. However, how H. pylori activates HMGB1 expression and mobilizes RAGE into cholesterol-rich microdomains in gastric epithelial cells to promote inflammation has not been explored. In this study, we found that HMGB1 and RAGE expression increased significantly in H. pylori-infected cells compared with -uninfected cells. Blocking HMGB1 by neutralizing antibody abrogated H. pylori-elicited RAGE, suggesting that RAGE expression follows HMGB1 production, and silenced RAGE-attenuated H. pylori-mediated NF-κB activation and IL-8 production. Furthermore, significantly more RAGE was present in detergent-resistant membranes extracted from H. pylori-infected cells than in those from -uninfected cells, indicating that H. pylori exploited cholesterol to induce the HMGB1 signaling pathway. These results indicate that HMGB1 plays a crucial role in H. pylori-induced inflammation in gastric epithelial cells, which may be valuable in developing treatments for H. pylori-associated diseases.
Collapse
Affiliation(s)
- Hwai-Jeng Lin
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, College of Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, Division of Gastroenterology and Hepatology, Shuang-Ho Hospital, New Taipei, Taiwan
| | - Fang-Yu Hsu
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University , Taichung , Taiwan
| | - Wei-Wei Chen
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University , Taichung , Taiwan
| | - Che-Hsin Lee
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung, Taiwan; Department of Biological Sciences, National Sun Yet-sen University, Kaohsiung, Taiwan
| | - Ying-Ju Lin
- Department of Medical Research, Genetic Center, School of Chinese Medicine, China Medical University and Hospital , Taichung , Taiwan
| | - Yi-Ywan M Chen
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, Molecular Infectious Disease Research Center, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Jung Chen
- Department of Pediatrics, Molecular Infectious Disease Research Center, Chang Gung Children's Hospital and Chang Gung Memorial Hospital , Taoyuan , Taiwan
| | - Mei-Zi Huang
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University , Taoyuan , Taiwan
| | - Min-Chuan Kao
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University , Taoyuan , Taiwan
| | - Yu-An Chen
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University , Taichung , Taiwan
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan; Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Ho Lai
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung, Taiwan; Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, Molecular Infectious Disease Research Center, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
30
|
Ma HY, Liu XZ, Liang CM. Inflammatory microenvironment contributes to epithelial-mesenchymal transition in gastric cancer. World J Gastroenterol 2016; 22:6619-6628. [PMID: 27547005 PMCID: PMC4970470 DOI: 10.3748/wjg.v22.i29.6619] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/12/2016] [Accepted: 07/06/2016] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common malignancy in the world. The major cause of GC is chronic infection with Helicobacter pylori (H. pylori). Infection with H. pylori leads to an active inflammatory microenvironment that is maintained by immune cells such as T cells, macrophages, natural killer cells, among other cells. Immune cell dysfunction allows the initiation and accumulation of mutations in GC cells, inducing aberrant proliferation and protection from apoptosis. Meanwhile, immune cells can secrete certain signals, including cytokines, and chemokines, to alter intracellular signaling pathways in GC cells. Thus, GC cells obtain the ability to metastasize to lymph nodes by undergoing the epithelial-mesenchymal transition (EMT), whereby epithelial cells lose their epithelial attributes and acquire a mesenchymal cell phenotype. Metastasis is a leading cause of death for GC patients, and the involved mechanisms are still under investigation. In this review, we summarize the current research on how the inflammatory environment affects GC initiation and metastasis via EMT.
Collapse
|
31
|
Yan Y, Zhang J, Li JH, Liu X, Wang JZ, Qu HY, Wang JS, Duan XY. High tumor-associated macrophages infiltration is associated with poor prognosis and may contribute to the phenomenon of epithelial-mesenchymal transition in gastric cancer. Onco Targets Ther 2016; 9:3975-83. [PMID: 27418840 PMCID: PMC4935103 DOI: 10.2147/ott.s103112] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Recent studies show that epithelial-mesenchymal transition (EMT) and tumor-associated macrophages (TAMs) contribute to the progression and poor prognosis of carcinoma through multiple mechanisms. Both inflammation and changing of epithelium have a close relationship with tumorigenesis of gastric cancer. However, the relevance between EMT and TAMs is still unclear in gastric cancer and needs more scientific research. This study is designed to explore the relationship between EMT and TAMs in gastric cancer. MATERIALS AND METHODS Immunohistochemistry was used to detect the expression of EMT-related proteins and TAM markers in cancer tissues and normal gastric tissues. RESULTS High levels of EMT and TAMs infiltration are related to aggressive features and independent prognostic factors in gastric cancer, respectively. In addition, expression of the two indicators is associated with expression of transforming growth factor-β1 (TGF-β1). Infiltration of TAMs is also associated with EMT-related marker in gastric cancer. CONCLUSION Our results suggest that high levels of EMT and TAMs infiltration are related to aggressive features and independent prognostic factors in gastric cancer, respectively. A correlation was found between EMT- and TAM-related indicators, which may be associated with TGF-β signaling pathway. The level of TAMs infiltration plays an important role in gastric cancer, the markers of which can be used as prognostic indicators.
Collapse
Affiliation(s)
- Yan Yan
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an
| | - Jia Zhang
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an
| | - Jun-Hai Li
- The Department of Oncological Surgery, Nuclear Industry 215 Hospital of Shaanxi Province, Xianyang
| | - Xu Liu
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an
| | - Ji-Zhao Wang
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an
| | - Hang-Ying Qu
- The Department of Oncological Surgery, Shaanxi University of Chinese Medicine, Xianyang
| | - Jian-Sheng Wang
- The Second Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an
| | - Xiao-Yi Duan
- Department of Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
32
|
Pandolfi F, Altamura S, Frosali S, Conti P. Key Role of DAMP in Inflammation, Cancer, and Tissue Repair. Clin Ther 2016; 38:1017-28. [PMID: 27021609 DOI: 10.1016/j.clinthera.2016.02.028] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 02/29/2016] [Accepted: 02/29/2016] [Indexed: 12/30/2022]
Abstract
PURPOSE This review aimed to take stock of the current status of research on damage-associated molecular pattern (DAMP) protein. We discuss the Janus-faced role of DAMP molecules in inflammation, cancer, and tissue repair. The high-mobility group box (HMGB)-1 and adenosine triphosphate proteins are well-known DAMP molecules and have been primarily associated with inflammation. However, as we shall see, recent data have linked these molecules to tissue repair. HMGB1 is associated with cancer-related inflammation. It activates nuclear factor kB, which is involved in cancer regulation via its receptor for advanced glycation end-products (RAGE), Toll-like receptors 2 and 4. Proinflammatory activity and tissue repair may lead to pharmacologic intervention, by blocking DAMP RAGE and Toll like receptor 2 and 4 role in inflammation and by increasing their concentration in tissue repair, respectively. METHODS We conducted a MEDLINE search for articles pertaining to the various issues related to DAMP, and we discuss the most relevant articles especially (ie, not only those published in journals with a higher impact factor). FINDINGS A cluster of remarkable articles on DAMP have appeared in the literature in recent years. Regarding inflammation, several strategies have been proposed to target HMGB1, from antibodies to recombinant box A, which interacts with RAGE, competing with the full molecule. In tissue repair, it was reported that the overexpression of HMGB1 or the administration of exogenous HMGB1 significantly increased the number of vessels and promoted recovery in skin-wound, ischemic injury. IMPLICATIONS Due to the bivalent nature of DAMP, it is often difficult to explain the relative role of DAMP in inflammation versus its role in tissue repair. However, this point is crucial as DAMP-related treatments move into clinical practice.
Collapse
Affiliation(s)
- Franco Pandolfi
- Department of Internal Medicine, School of Medicine, Catholic University, Rome, Italy.
| | - Simona Altamura
- Department of Internal Medicine, School of Medicine, Catholic University, Rome, Italy
| | - Simona Frosali
- Department of Internal Medicine, School of Medicine, Catholic University, Rome, Italy
| | - Pio Conti
- Postgraduate Medical School, Chieti University, Chieti, Italy
| |
Collapse
|
33
|
Lee YM, Kim MJ, Kim Y, Kim H. Glutamine Deprivation Causes Hydrogen Peroxide-induced Interleukin-8 Expression via Jak1/Stat3 Activation in Gastric Epithelial AGS Cells. J Cancer Prev 2015; 20:179-84. [PMID: 26473156 PMCID: PMC4597806 DOI: 10.15430/jcp.2015.20.3.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The Janus kinase (Jak)/Signal transducers of activated transcription (Stat) pathway is an upstream signaling pathway for NF-κB activation in Helicobacter pylori-induced interleukin (IL)-8 production in gastric epithelial AGS cells. H. pylori activates NADPH oxidase and produces hydrogen peroxide, which activates Jak1/Stat3 in AGS cells. Therefore, hydrogen peroxide may be critical for IL-8 production via Jak/Stat activation in gastric epithelial cells. Glutamine is depleted during severe injury and stress and contributes to the formation of glutathione (GSH), which is involved in conversion of hydrogen peroxide into water as a cofactor for GSH peroxidase. METHODS We investigated whether glutamine deprivation induces hydrogen peroxide-mediated IL-8 production and whether hydrogen peroxide activates Jak1/Stat3 to induce IL-8 in AGS cells. Cells were cultured in the presence or absence of glutamine or hydrogen peroxide, with or without GSH or a the Jak/Stat specific inhibitor AG490. RESULTS Glutamine deprivation decreased GSH levels, but increased levels of hydrogen peroxide and IL-8, an effect that was inhibited by treatment with GSH. Hydrogen peroxide induced the activation of Jak1/Stat3 time-dependently. AG490 suppressed hydrogen peroxide- induced activation of Jak1/Stat3 and IL-8 expression in AGS cells, but did not affect levels of reactive oxygen species in AGS cells. CONCLUSIONS In gastric epithelial AGS cells, glutamine deprivation increases hydrogen peroxide levels and IL-8 expression, which may be mediated by Jak1/Stat3 activation. Glutamine supplementation may be beneficial for preventing gastric inflammation by suppressing hydrogen peroxide-mediated Jak1/Stat3 activation and therefore, reducing IL-8 production. Scavenging hydrogen peroxide or targeting Jak1/Stat3 may also prevent oxidant-mediated gastric inflammation.
Collapse
Affiliation(s)
- Yun Mi Lee
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Mi Jung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Youngha Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|