1
|
Kunutsor SK, Lehoczki A, Laukkanen JA. Coffee consumption, cancer, and healthy aging: epidemiological evidence and underlying mechanisms. GeroScience 2024:10.1007/s11357-024-01332-8. [PMID: 39266809 DOI: 10.1007/s11357-024-01332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024] Open
Abstract
This comprehensive review examines the role of coffee consumption in promoting healthy aging and its potential impact on cancer prevention. Previous research has shown that moderate coffee intake may contribute to extending healthspan and enhancing longevity through beneficial effects on cardiometabolic health and key biological processes involved in aging. However, the relationship between coffee consumption and cancer risk remains controversial. This review synthesizes longitudinal observational and interventional data on the effects of coffee consumption on overall and site-specific cancers, explores underlying biological mechanisms, and discusses clinical and public health implications. Additionally, the review highlights evidence from Mendelian randomization (MR) studies to assess potential causal relationships. Our findings suggest that coffee consumption is associated with a reduced risk of several cancers, including skin, liver, prostate, and endometrial cancers, and may also lower cancer recurrence rates, particularly in colorectal cancer. These protective associations appear consistent across different demographic groups, with the most significant benefits observed at consumption levels of three or more cups per day. However, evidence is inconclusive for many other cancers, and coffee consumption is consistently linked to an increased risk of lung cancer. MR studies generally do not support a strong causal relationship for most cancers, though some suggest potential protective effects for hepatocellular, colorectal, and possibly prostate cancers, with mixed results for ovarian cancer and an increased risk for esophageal cancer and multiple myeloma. The protective effect of coffee on liver and prostate cancer is supported by both observational and MR studies. The potential anti-cancer benefits of coffee are attributed to its bioactive compounds, such as caffeine, chlorogenic acids, and diterpenes, which possess antioxidant and anti-inflammatory properties. These compounds may reduce oxidative stress, inhibit cancer cell proliferation, induce apoptosis, and modulate hormone levels. The review emphasizes the need for further research to clarify dose-response relationships, causal associations, and the biological mechanisms underlying these associations. While coffee consumption appears to contribute to cancer prevention and healthy aging, caution is warranted due to the increased risk of certain cancers, highlighting the complexity of its health effects.
Collapse
Affiliation(s)
- Setor K Kunutsor
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 409 Tache Avenue, St. Boniface Hospital, Winnipeg, MB, R2H 2A6, Canada.
| | - Andrea Lehoczki
- Department of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Jari A Laukkanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Department of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Wellbeing Services County of Central Finland, Jyväskylä, Finland District, Jyväskylä, Finland
| |
Collapse
|
2
|
Grigorescu RR, Husar-Sburlan IA, Gheorghe C. Pancreatic Cancer: A Review of Risk Factors. Life (Basel) 2024; 14:980. [PMID: 39202722 PMCID: PMC11355429 DOI: 10.3390/life14080980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Pancreatic adenocarcinoma is one of the most lethal types of gastrointestinal cancer despite the latest medical advances. Its incidence has continuously increased in recent years in developed countries. The location of the pancreas can result in the initial symptoms of neoplasia being overlooked, which can lead to a delayed diagnosis and a subsequent reduction in the spectrum of available therapeutic options. The role of modifiable risk factors in pancreatic cancer has been extensively studied in recent years, with smoking and alcohol consumption identified as key contributors. However, the few screening programs that have been developed focus exclusively on genetic factors, without considering the potential impact of modifiable factors on disease occurrence. Thus, fully understanding and detecting the risk factors for pancreatic cancer represents an important step in the prevention and early diagnosis of this type of neoplasia. This review reports the available evidence on different risk factors and identifies the areas that could benefit the most from additional studies.
Collapse
Affiliation(s)
- Raluca Roxana Grigorescu
- Gastroenterology Department, “Sfanta Maria” Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | | | - Cristian Gheorghe
- Center for Digestive Disease and Liver Transplantation, Fundeni Clinical Institute, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
3
|
Hujoel PP. Confounding by Smoking May Drive Spurious Associations Between Intermittent Fasting and Mortality. J Acad Nutr Diet 2023; 123:1406-1407. [PMID: 37244592 DOI: 10.1016/j.jand.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/24/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Affiliation(s)
- Philippe P Hujoel
- Department of Epidemiology, School of Public Health, and Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA
| |
Collapse
|
4
|
Wang X, Chen C, Vuong D, Rodriguez-Rodriguez S, Lam V, Roleder C, Wang JH, Thiruvengadam SK, Berger A, Pennock N, Torka P, Hernandez-Ilizaliturri F, Siddiqi T, Wang L, Xia Z, Danilov AV. Pharmacologic targeting of Nedd8-activating enzyme reinvigorates T-cell responses in lymphoid neoplasia. Leukemia 2023; 37:1324-1335. [PMID: 37031300 PMCID: PMC10244170 DOI: 10.1038/s41375-023-01889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023]
Abstract
Neddylation is a sequential enzyme-based process which regulates the function of E3 Cullin-RING ligase (CRL) and thus degradation of substrate proteins. Here we show that CD8+ T cells are a direct target for therapeutically relevant anti-lymphoma activity of pevonedistat, a Nedd8-activating enzyme (NAE) inhibitor. Pevonedistat-treated patient-derived CD8+ T cells upregulated TNFα and IFNγ and exhibited enhanced cytotoxicity. Pevonedistat induced CD8+ T-cell inflamed microenvironment and delayed tumor progression in A20 syngeneic lymphoma model. This anti-tumor effect lessened when CD8+ T cells lost the ability to engage tumors through MHC class I interactions, achieved either through CD8+ T-cell depletion or genetic knockout of B2M. Meanwhile, loss of UBE2M in tumor did not alter efficacy of pevonedistat. Concurrent blockade of NAE and PD-1 led to enhanced tumor immune infiltration, T-cell activation and chemokine expression and synergistically restricted tumor growth. shRNA-mediated knockdown of HIF-1α, a CRL substrate, abrogated the in vitro effects of pevonedistat, suggesting that NAE inhibition modulates T-cell function in HIF-1α-dependent manner. scRNA-Seq-based clinical analyses in lymphoma patients receiving pevonedistat therapy demonstrated upregulation of interferon response signatures in immune cells. Thus, targeting NAE enhances the inflammatory T-cell state, providing rationale for checkpoint blockade-based combination therapy.
Collapse
Affiliation(s)
| | - Canping Chen
- Computational Biology Program, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Dan Vuong
- City of Hope National Medical Center, Duarte, CA, USA
| | | | - Vi Lam
- City of Hope National Medical Center, Duarte, CA, USA
| | - Carly Roleder
- City of Hope National Medical Center, Duarte, CA, USA
| | - Jing H Wang
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Nathan Pennock
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Pallawi Torka
- Division of Hematology & Medical Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Tanya Siddiqi
- City of Hope National Medical Center, Duarte, CA, USA
| | - Lili Wang
- City of Hope National Medical Center, Duarte, CA, USA
| | - Zheng Xia
- Computational Biology Program, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | | |
Collapse
|
5
|
Qin X, Chen J, Jia G, Yang Z. Dietary Factors and Pancreatic Cancer Risk: An Umbrella Review of Meta-Analyses of Prospective Observational Studies. Adv Nutr 2023; 14:451-464. [PMID: 36849084 PMCID: PMC10201674 DOI: 10.1016/j.advnut.2023.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
Dietary factors may be associated with the occurrence of pancreatic cancer. This umbrella review aimed to review and grade the evidence for the associations between dietary factors and pancreatic cancer risk. We searched PubMed, EMBASE, Web of Science, Scopus, Cochrane Database of Systematic Reviews, and CINAHL for eligible literature. We included meta-analyses of randomized controlled trials (RCTs) or prospective observational studies. We used AMSTAR-2, a measurement tool to assess systematic reviews, to evaluate the methodological quality of the included meta-analyses. For each association, we calculated the summary effect size, 95% CI, heterogeneity, number of cases, 95% prediction interval, small-study effect, and excess significance bias. The protocol for this review was registered in the PROSPERO database (CRD42022333669). We included 41 meta-analyses of prospective observational studies describing 59 associations between dietary factors and pancreatic cancer risk. None of the retrieved meta-analyses included RCTs. No association was supported by convincing or highly suggestive evidence; however, there was suggestive evidence of a positive association between fructose intake and pancreatic cancer risk. There was weak evidence for an inverse association of nuts intake or adherence to the Mediterranean diet with pancreatic cancer incidence, and for positive associations between a higher intake of red meat or heavy alcohol intake and pancreatic cancer incidence. The remaining 54 associations were nonsignificant. Consistent with the American Institute for Cancer Research review, this umbrella review found that regular consumption of nuts and reduced intake of fructose, red meat, and alcohol were associated with a lower risk of pancreatic cancer. Emerging weak evidence supported an inverse association between adherence to the Mediterranean diet and pancreatic cancer risk. As some associations were rated as weak and most were considered nonsignificant, further prospective studies are needed to investigate the role of dietary factors and risk of pancreatic cancer.
Collapse
Affiliation(s)
- Xianpeng Qin
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Chen
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Guiqing Jia
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhou Yang
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
6
|
Health Benefits of Coffee Consumption for Cancer and Other Diseases and Mechanisms of Action. Int J Mol Sci 2023; 24:ijms24032706. [PMID: 36769029 PMCID: PMC9916720 DOI: 10.3390/ijms24032706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Coffee is one of the most widely consumed beverages worldwide, and epidemiology studies associate higher coffee consumption with decreased rates of mortality and decreased rates of neurological and metabolic diseases, including Parkinson's disease and type 2 diabetes. In addition, there is also evidence that higher coffee consumption is associated with lower rates of colon and rectal cancer, as well as breast, endometrial, and other cancers, although for some of these cancers, the results are conflicting. These studies reflect the chemopreventive effects of coffee; there is also evidence that coffee consumption may be therapeutic for some forms of breast and colon cancer, and this needs to be further investigated. The mechanisms associated with the chemopreventive or chemotherapeutic effects of over 1000 individual compounds in roasted coffee are complex and may vary with different diseases. Some of these mechanisms may be related to nuclear factor erythroid 2 (Nrf2)-regulated pathways that target oxidative stress or pathways that induce reactive oxygen species to kill diseased cells (primarily therapeutic). There is evidence for the involvement of receptors which include the aryl hydrocarbon receptor (AhR) and orphan nuclear receptor 4A1 (NR4A1), as well as contributions from epigenetic pathways and the gut microbiome. Further elucidation of the mechanisms will facilitate the potential future clinical applications of coffee extracts for treating cancer and other inflammatory diseases.
Collapse
|
7
|
Zhou L, Lin X, Zhu J, Zhang L, Chen S, Yang H, Jia L, Chen B. NEDD8-conjugating enzyme E2s: critical targets for cancer therapy. Cell Death Dis 2023; 9:23. [PMID: 36690633 PMCID: PMC9871045 DOI: 10.1038/s41420-023-01337-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023]
Abstract
NEDD8-conjugating enzymes, E2s, include the well-studied ubiquitin-conjugating enzyme E2 M (UBE2M) and the poorly characterized ubiquitin-conjugating enzyme E2 F (UBE2F). UBE2M and UBE2F have distinct and prominent roles in catalyzing the neddylation of Cullin or non-Cullin substrates. These enzymes are overexpressed in various malignancies, conferring a worse overall survival. Targeting UBE2M to influence tumor growth by either modulating several biological responses of tumor cells (such as DNA-damage response, apoptosis, or senescence) or regulating the anti-tumor immunity holds strong therapeutic potential. Multiple inhibitors that target the interaction between UBE2M and defective cullin neddylation protein 1 (DCN1), a co-E3 for neddylation, exhibit promising anti-tumor effects. By contrast, the potential benefits of targeting UBE2F are still to be explored. It is currently reported to inhibit apoptosis and then induce cell growth; hence, targeting UBE2F serves as an effective chemo-/radiosensitizing strategy by triggering apoptosis. This review highlights the most recent advances in the roles of UBE2M and UBE2F in tumor progression, indicating these E2s as two promising anti-tumor targets.
Collapse
Affiliation(s)
- Lisha Zhou
- grid.440657.40000 0004 1762 5832Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang China
| | - Xiongzhi Lin
- grid.412026.30000 0004 1776 2036Graduate School of Medicine, Hebei North University, Zhangjiakou, Hebei China
| | - Jin Zhu
- grid.452533.60000 0004 1763 3891Department of Surgical Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi China
| | - Luyi Zhang
- grid.440657.40000 0004 1762 5832Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang China
| | - Siyuan Chen
- grid.440657.40000 0004 1762 5832Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang China
| | - Hui Yang
- grid.8547.e0000 0001 0125 2443Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Lijun Jia
- grid.411480.80000 0004 1799 1816Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baofu Chen
- grid.440657.40000 0004 1762 5832Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang China
| |
Collapse
|
8
|
Zhang S, You X, Xu T, Chen Q, Li H, Dou L, Sun Y, Xiong X, Meredith MA, Sun Y. PD-L1 induction via the MEK-JNK-AP1 axis by a neddylation inhibitor promotes cancer-associated immunosuppression. Cell Death Dis 2022; 13:844. [PMID: 36192389 PMCID: PMC9529958 DOI: 10.1038/s41419-022-05292-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 01/23/2023]
Abstract
MLN4924 is a first-in-class small molecule inhibitor of NEDD8-activating enzyme (NAE), which is currently in several clinical trials for anti-cancer applications. However, MLN4924 also showed some off-target effects with potential to promote the growth of cancer cells which counteracts its anticancer activity. In this study, we found that MLN4924 increases the levels of PD-L1 mRNA and protein in dose- and time-dependent manners. Mechanistic study showed that this MLN4924 effect is largely independent of neddylation inactivation, but is due to activation of both ERK and JNK signals, leading to AP-1 activation, which is blocked by the small molecule inhibitors of MEK and JNK, respectively. Biologically, MLN4924 attenuates T cell killing in a co-culture model due to PD-L1 upregulation, which can be, at least in part, abrogated by either MEK inhibitor or anti-PD-L1 antibody. In an in vivo BALB/c mouse xenograft tumor model, while MLN4924 alone had no effect, combination with either MEK inhibitor or anti-PD-L1 antibody enhanced the suppression of tumor growth. Taken together, our study provides a sound rationale for effective anticancer therapy in combination of anti-PD-L1 antibody or MEK inhibitor with MLN4924 to overcome the side-effect of immunosuppression by MLN4924 via PD-L1 induction.
Collapse
Affiliation(s)
- Shizhen Zhang
- grid.412465.0Cancer Institute, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310029 Hangzhou, China ,grid.412465.0Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310029 Hangzhou, China
| | - Xiahong You
- grid.13402.340000 0004 1759 700XInstitute of Translational Medicine, Zhejiang University School of Medicine, 310029 Hangzhou, China
| | - Tiantian Xu
- grid.13402.340000 0004 1759 700XInstitute of Translational Medicine, Zhejiang University School of Medicine, 310029 Hangzhou, China
| | - Qian Chen
- grid.13402.340000 0004 1759 700XInstitute of Translational Medicine, Zhejiang University School of Medicine, 310029 Hangzhou, China
| | - Hua Li
- grid.214458.e0000000086837370Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109 USA
| | - Longyu Dou
- grid.13402.340000 0004 1759 700XInstitute of Translational Medicine, Zhejiang University School of Medicine, 310029 Hangzhou, China
| | - Yilun Sun
- grid.214458.e0000000086837370Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109 USA
| | - Xiufang Xiong
- grid.412465.0Cancer Institute, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310029 Hangzhou, China ,grid.13402.340000 0004 1759 700XInstitute of Translational Medicine, Zhejiang University School of Medicine, 310029 Hangzhou, China
| | - Morgan A. Meredith
- grid.214458.e0000000086837370Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109 USA
| | - Yi Sun
- grid.412465.0Cancer Institute, the Second Affiliated Hospital, Zhejiang University School of Medicine, 310029 Hangzhou, China ,grid.13402.340000 0004 1759 700XInstitute of Translational Medicine, Zhejiang University School of Medicine, 310029 Hangzhou, China ,grid.13402.340000 0004 1759 700XZhejiang University Cancer Center, 310029 Hangzhou, China ,grid.13402.340000 0004 1759 700XResearch Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053 Zhejiang China
| |
Collapse
|
9
|
Neddylation tunes peripheral blood mononuclear cells immune response in COVID-19 patients. Cell Death Dis 2022; 8:316. [PMID: 35831294 PMCID: PMC9277603 DOI: 10.1038/s41420-022-01115-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has reached 5.5 million deaths worldwide, generating a huge impact globally. This highly contagious viral infection produces a severe acute respiratory syndrome that includes cough, mucus, fever and pneumonia. Likewise, many hospitalized patients develop severe pneumonia associated with acute respiratory distress syndrome (ARDS), along an exacerbated and uncontrolled systemic inflammation that in some cases induces a fatal cytokine storm. Although vaccines clearly have had a beneficial effect, there is still a high percentage of unprotected patients that develop the pathology, due to an ineffective immune response. Therefore, a thorough understanding of the modulatory mechanisms that regulate the response to SARS-CoV-2 is crucial to find effective therapeutic alternatives. Previous studies describe the relevance of Neddylation in the activation of the immune system and its implications in viral infection. In this context, the present study postulates Neddylation, a reversible ubiquitin-like post-translational modification of proteins that control their stability, localization and activity, as a key regulator in the immune response against SARS-CoV-2. For the first time, we describe an increase in global neddylation levels in COVID-19 in the serum of patients, which is particularly associated with the early response to infection. In addition, the results showed that overactivation of neddylation controls activation, proliferation, and response of peripheral blood mononuclear cells (PBMCs) isolated from COVID-19 patients. Inhibition of neddylation, and the subsequent avoidance of activated PBMCs, reduces cytokine production, mainly IL-6 and MCP-1 and induce proteome modulation, being a critical mechanism and a potential approach to immunomodulate COVID-19 patients.
Collapse
|
10
|
Funakoshi-Tago M, Matsutaka M, Hokimoto S, Kobata K, Tago K, Tamura H. Coffee ingredients, hydroquinone, pyrocatechol, and 4-ethylcatechol exhibit anti-inflammatory activity through inhibiting NF-κB and activating Nrf2. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
11
|
Grigor’eva IN. Pancreatic cancer risk: alcoholic and non-alcoholic beverages. TERAPEVT ARKH 2022; 94:265-270. [DOI: 10.26442/00403660.2022.02.201375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
This article provides an overview of the metaanalyzes (PubMed, 19952019) of alcohol and non-alcoholic (coffee, tea, dairy products) beverage consumption in relation to risk of pancreatic cancer PC (PubMed, 19952019). Increased the PC risk was associated with high alcohol intake. The increased risk for heavy drinking did not explained by residual confounding by history of pancreatitis or tobacco smoking or diabetes. Light-moderate alcohol intake may reduced the PC risk, probably due to the fasting insulin levels decrement, which leads to the diminished the РС risk. The association between alcohol and the PC was stronger in men than in women. Some metaanalyzes demonstrated that a small amount of coffee may reduce PC risk, and a large amount to increase PC risk. Another meta-analyzes have not confirmed any association between the PC risk and coffee or tea consumption. One meta-analysis revealed a direct association of the PC risk with the dairy products consumption, but most research showed no such connection. Nutrition is considered to be associated with the PC risk, but the degree of risk due to structure of beverages consumption (dose, duration, alcohol, coffee, tea, dairy products pattern) is still not clear.
Collapse
|
12
|
Effects of Coffee on the Gastro-Intestinal Tract: A Narrative Review and Literature Update. Nutrients 2022; 14:nu14020399. [PMID: 35057580 PMCID: PMC8778943 DOI: 10.3390/nu14020399] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 02/05/2023] Open
Abstract
The objective of the present research was to review the state of the art on the consequences of drinking coffee at the different levels of the gastrointestinal tract. At some steps of the digestive process, the effects of coffee consumption seem rather clear. This is the case for the stimulation of gastric acid secretion, the stimulation of biliary and pancreatic secretion, the reduction of gallstone risk, the stimulation of colic motility, and changes in the composition of gut microbiota. Other aspects are still controversial, such as the possibility for coffee to affect gastro-esophageal reflux, peptic ulcers, and intestinal inflammatory diseases. This review also includes a brief summary on the lack of association between coffee consumption and cancer of the different digestive organs, and points to the powerful protective effect of coffee against the risk of hepatocellular carcinoma. This review reports the available evidence on different topics and identifies the areas that would most benefit from additional studies.
Collapse
|
13
|
Turati F, Rossi M, Mattioli V, Bravi F, Negri E, La Vecchia C. Diabetes risk reduction diet and the risk of pancreatic cancer. Eur J Nutr 2021; 61:309-316. [PMID: 34338866 DOI: 10.1007/s00394-021-02646-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE To evaluate the role of a diabetes risk reduction diet (DRRD) on pancreatic cancer risk. METHODS We used data from a hospital-based case-control study conducted in Italy between 1991 and 2008; the study included 326 incident pancreatic cancer cases and 652 controls matched by age, gender and study center. Subjects' usual diet was collected through a valid and reproducible food frequency questionnaire. A DRRD score was derived from 8 dietary components: cereal fiber, total fruit, coffee, polyunsaturated to saturated fats ratio and nuts (higher score for higher intake), and dietary glycemic index, red/processed meat and sugar-sweetened beverages/fruit juices (higher score for lower intake). The score ranged 8-37, with higher values indicating greater DRRD adherence. Odds ratios (ORs) of pancreatic cancer according to the DRRD score were estimated using multiple conditional logistic regression models. RESULTS After allowance for confounding factors, the DRRD score was inversely related to pancreatic cancer risk, with ORs of 0.55 (95% confidence interval, CI 0.38-0.80) for the highest versus the lowest score tertile (p for trend across tertiles = 0.002) and 0.84 (95% CI 0.75-0.95) for a 3-point score increment. The exclusion of diabetic subjects and additional adjustment for vegetable intake did not change the results. Inverse associations were observed in subgroups defined by age, gender, education, body mass index, smoking and total energy intake. CONCLUSION Study findings suggest a protective role of high adherence to a DRRD on pancreatic cancer risk.
Collapse
Affiliation(s)
- Federica Turati
- Unit of Medical Statistics and Biometry, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, via Venezian 1, 20133, Milan, Italy.
| | - Marta Rossi
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Veronica Mattioli
- Unit of Cancer Epidemiology, CRO Aviano National Cancer Institute, IRCCS, Aviano, Italy
| | - Francesca Bravi
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Eva Negri
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy.,Department of Humanities, Pegaso Online University, Napoli, Italy
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
14
|
Zheng YC, Guo YJ, Wang B, Wang C, Mamun MAA, Gao Y, Liu HM. Targeting neddylation E2s: a novel therapeutic strategy in cancer. J Hematol Oncol 2021; 14:57. [PMID: 33827629 PMCID: PMC8028724 DOI: 10.1186/s13045-021-01070-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/29/2021] [Indexed: 12/22/2022] Open
Abstract
Ubiquitin-conjugating enzyme E2 M (UBE2M) and ubiquitin-conjugating enzyme E2 F (UBE2F) are the two NEDD8-conjugating enzymes of the neddylation pathway that take part in posttranslational modification and change the activity of target proteins. The activity of E2 enzymes requires both a 26-residue N-terminal docking peptide and a conserved E2 catalytic core domain, which is the basis for the transfer of neural precursor cell-expressed developmentally downregulated 8 (NEDD8). By recruiting E3 ligases and targeting cullin and non-cullin substrates, UBE2M and UBE2F play diverse biological roles. Currently, there are several inhibitors that target the UBE2M-defective in cullin neddylation protein 1 (DCN1) interaction to treat cancer. As described above, this review provides insights into the mechanism of UBE2M and UBE2F and emphasizes these two E2 enzymes as appealing therapeutic targets for the treatment of cancers.
Collapse
Affiliation(s)
- Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Yan-Jia Guo
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Bo Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Chong Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - M A A Mamun
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
15
|
Gou Q, Dong C, Xu H, Khan B, Jin J, Liu Q, Shi J, Hou Y. PD-L1 degradation pathway and immunotherapy for cancer. Cell Death Dis 2020; 11:955. [PMID: 33159034 PMCID: PMC7648632 DOI: 10.1038/s41419-020-03140-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022]
Abstract
Programmed death ligand 1 (PD-L1, CD274) is an essential immune checkpoint protein that binds to programmed death 1 (PD-1) on T-lymphocytes. T cell plays a critical role in killing cancer cells while the cancer cell exhibits immune escape by the expression of PD-L1. The binding of PD-L1 to PD-1 inhibits T cell proliferation and activity, leading to tumor immunosuppression. Increasing evidence shows that PD-L1 protein undergoes degradation in proteasomes or lysosomes by multiple pathways, leading to enhanced immunotherapy for cancer. Although some specific drugs induce PD-L1 degradation and increase antitumor activity, the combination of these drugs with PD-L1/PD-1 blockade significantly enhances cancer immunotherapy. In this review, we have discussed the interaction of PD-L1 degradation with cancer immunotherapy.
Collapse
Affiliation(s)
- Qian Gou
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu Province, 213017, China.,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China.,School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Chen Dong
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Huihui Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Bibimaryam Khan
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Jianhua Jin
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu Province, 213017, China.,Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu Province, 212017, China
| | - Qian Liu
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu Province, 213017, China.,Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu Province, 212017, China
| | - Juanjuan Shi
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yongzhong Hou
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu Province, 213017, China. .,School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China.
| |
Collapse
|
16
|
Jentzsch V, Davis JAA, Djamgoz MBA. Pancreatic Cancer (PDAC): Introduction of Evidence-Based Complementary Measures into Integrative Clinical Management. Cancers (Basel) 2020; 12:E3096. [PMID: 33114159 PMCID: PMC7690843 DOI: 10.3390/cancers12113096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
The most common form of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC), which comprises some 85% of all cases. Currently, this is the fourth highest cause of cancer mortality worldwide and its incidence is rising steeply. Commonly applied clinical therapies offer limited chance of a lasting cure and the five-year survival rate is one of the lowest of the commonly occurring cancers. This review cultivates the hypothesis that the best management of PDAC would be possible by integrating 'western' clinical medicine with evidence-based complementary measures. Protecting the liver, where PDAC frequently first spreads, is also given some consideration. Overall, the complementary measures are divided into three groups: dietary factors, nutraceutical agents and lifestyle. In turn, dietary factors are considered as general conditioners, multi-factorial foodstuffs and specific compounds. The general conditioners are alkalinity, low-glycemic index and low-cholesterol. The multi-factorial foodstuffs comprise red meat, fish, fruit/vegetables, dairy, honey and coffee. The available evidence for the beneficial effects of the specific dietary and nutraceutical agents was considered at four levels (in order of prominence): clinical trials, meta-analyses, in vivo tests and in vitro studies. Thus, 9 specific agents were identified (6 dietary and 3 nutraceutical) as acceptable for integration with gemcitabine chemotherapy, the first-line treatment for pancreatic cancer. The specific dietary agents were the following: Vitamins A, C, D and E, genistein and curcumin. As nutraceutical compounds, propolis, triptolide and cannabidiol were accepted. The 9 complementary agents were sub-grouped into two with reference to the main 'hallmarks of cancer'. Lifestyle factors covered obesity, diabetes, smoking, alcohol and exercise. An integrative treatment regimen was devised for the management of PDAC patients. This involved combining first-line gemcitabine chemotherapy with the two sub-groups of complementary agents alternately in weekly cycles. The review concludes that integrated management currently offers the best patient outcome. Opportunities to be investigated in the future include emerging modalities, precision medicine, the nerve input to tumors and, importantly, clinical trials.
Collapse
Affiliation(s)
- Valerie Jentzsch
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (V.J.); (J.A.A.D.)
- Business School, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - James A. A. Davis
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (V.J.); (J.A.A.D.)
| | - Mustafa B. A. Djamgoz
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (V.J.); (J.A.A.D.)
- Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey
| |
Collapse
|
17
|
Ismail T, Donati-Zeppa S, Akhtar S, Turrini E, Layla A, Sestili P, Fimognari C. Coffee in cancer chemoprevention: an updated review. Expert Opin Drug Metab Toxicol 2020; 17:69-85. [PMID: 33074040 DOI: 10.1080/17425255.2021.1839412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Chemoprevention of cancer refers to the use of natural or synthetic compounds to abolish or perturb a variety of steps in tumor initiation, promotion, and progression. This can be realized through different mechanisms, including activation of free radical scavenging enzymes, control of chronic inflammation, and downregulation of specific signaling pathways. AREAS COVERED The goal of this article is to critically review recent evidence on association between coffee and prevention of different types of cancer, with particular emphasis on the molecular mechanisms and the bioactive compounds involved in its anticancer activity. EXPERT OPINION Coffee is a mixture of different compounds able to decrease the risk of many types of cancer. However, its potential anticancer activity is not completely understood. Hundreds of biologically active components such as caffeine, chlorogenic acid, diterpenes are contained in coffee. Further research is needed to fully elucidate the molecular mechanisms underlying the anticancer effects of coffee and fully understand the role of different confounding factors playing a role in its reported anticancer activity.
Collapse
Affiliation(s)
- Tariq Ismail
- Institute of Food Science & Nutrition, Bahauddin Zakariya University , Multan, Pakistan
| | - Sabrina Donati-Zeppa
- Department of Biomolecular Sciences (DISB), Università Degli Studi Di Urbino Carlo Bo , Urbino, Italy
| | - Saeed Akhtar
- Institute of Food Science & Nutrition, Bahauddin Zakariya University , Multan, Pakistan
| | - Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum - Università Di Bologna , Rimini, Italy
| | - Anam Layla
- National Institute of Food Science & Technology, University of Agriculture Faisalabad , Faisalabad, Pakistan
| | - Piero Sestili
- Department of Biomolecular Sciences (DISB), Università Degli Studi Di Urbino Carlo Bo , Urbino, Italy
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum - Università Di Bologna , Rimini, Italy
| |
Collapse
|
18
|
Nehlig A, Cunha RA. The Coffee-Acrylamide Apparent Paradox: An Example of Why the Health Impact of a Specific Compound in a Complex Mixture Should Not Be Evaluated in Isolation. Nutrients 2020; 12:E3141. [PMID: 33066651 PMCID: PMC7602460 DOI: 10.3390/nu12103141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/01/2020] [Accepted: 10/10/2020] [Indexed: 12/18/2022] Open
Abstract
The health implications of acrylamide in food are a matter of concern based on toxicological studies in rodents, which showed that doses of acrylamide more than 100 times higher than those estimated to result from dietary exposure in humans are carcinogenic; however, the cancer types reported in rodents are species-specific, and whether these results can be extrapolated to humans is still in question. In fact, human epidemiological studies revealed a general lack of association between dietary acrylamide exposure and the incidence of different cancer types. Even occupational exposure to acrylamide, resulting in acrylamide exposure nearly 10 times higher than dietary exposure, did not increase tumor occurrence. Furthermore, the consumption of coffee, which is a main contributor of dietary acrylamide exposure, actually decreases the overall incidence of cancer in humans and afford global health benefits, increasing both lifespan and healthspan on ageing. This paradox clearly illustrates the risk of evaluating an individual molecule independently of its complete food matrix, which may have other components that completely override the effects of the considered molecule.
Collapse
Affiliation(s)
- Astrid Nehlig
- INSERM U 1129, Pediatric Neurology, Necker-Enfants Malades Hospital, University of Paris Descartes, 75015 Paris, France;
- Faculty of Medicine, INSERM U 1129, 67000 Strasbourg, France
| | - Rodrigo A. Cunha
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
19
|
Bae JM, Shim SR. Coffee Consumption and Pancreatic Cancer Risk: A Meta-Epidemiological Study of Population-based Cohort Studies. Asian Pac J Cancer Prev 2020; 21:2793-2798. [PMID: 32986382 PMCID: PMC7779453 DOI: 10.31557/apjcp.2020.21.9.2793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/26/2020] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Previous systematic reviews evaluating the association between coffee consumption and pancreatic cancer showed inconsistent results. The aim was to conduct a meta-epidemiological study to explore further the association between coffee consumption and the incidence of pancreatic cancer. METHODS The selection criteria were defined as a population-based prospective cohort study reporting adjusted relative risk (RR) and their 95% confidence interval (95%CI) of pancreatic cancer occurrence according to coffee consumption. Adjusted RR for the highest versus the lowest level of coffee consumption in each study was extracted. A fixed-effect model was applied to calculate a summary RR (sRR) and its 95%CI. Two-stage random-effects dose-response meta-analysis (DRMA) was performed to estimate the incidence risk per unit dose (cup per day). RESULTS Twelve cohort studies were selected for meta-analysis. The total number of cohort participants was 3,230,053, and pancreatic cancer incidents were 10,587. The sRR of pancreatic cancer risk for the highest versus the lowest level of coffee consumption indicated no statistical significance (sRR=0.98, 95% CI: 0.88-1.10; I-squared=0.0%). Two-stage random-effect DRMA showed the non-linear relationship between the amount of coffee consumption and pancreatic cancer risk. And the RR for an increment of one cup per day of coffee consumption was 0.97 (95%CI: 0.91-1.04, P=0.42), without statistically significant. CONCLUSION There was no association between coffee consumption habits and pancreatic cancer risk. And there was no statistical significance in the dose-response relationship between the amount of coffee consumption and pancreatic cancer risk. Finding the turning point would be important because it can be critical information for the prevention of pancreatic cancer. .
Collapse
Affiliation(s)
- Jong-Myon Bae
- Department of Preventive Medicine, Jeju National University College of Medicine, Jeju, Republic of Korea.
| | - Sung Ryul Shim
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Environmental Risk Factors of Pancreatic Cancer. J Clin Med 2019; 8:jcm8091427. [PMID: 31510046 PMCID: PMC6780233 DOI: 10.3390/jcm8091427] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 02/06/2023] Open
Abstract
Despite the advancement in medical knowledge that has improved the survival rate of many cancers, the survival rate of pancreatic cancer has remained dismal with a five-year survival rate of only 9%. The poor survival of pancreatic cancer emphasizes the urgent need to identify the causes or the risk factors of pancreatic cancer in order to establish effective preventive strategies. This review summarizes the current evidence regarding the environmental (non-genetic, including lifestyle, and clinical factors) risk factors of pancreatic cancer. Based on the current evidence, the established risk factors of pancreatic cancer are cigarette smoking, chronic diabetes, and obesity. Other strong risk factors include low consumption of fruits and vegetables, excess consumption of alcohol, poor oral hygiene, and the lack of allergy history. In the future, more studies are needed to identify additional risk factors of pancreatic cancer, especially the modifiable risk factors that could be included in a public health campaign to educate the public in order to reduce the incidence of pancreatic cancer.
Collapse
|
21
|
Kawada T. Coffee consumption and pancreatic cancer. Eur J Epidemiol 2019; 35:987-988. [DOI: 10.1007/s10654-019-00537-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/16/2019] [Indexed: 12/16/2022]
|
22
|
Tran KT, Coleman HG, McMenamin ÚC, Cardwell CR. Coffee consumption by type and risk of digestive cancer: a large prospective cohort study. Br J Cancer 2019; 120:1059-1066. [PMID: 31040384 PMCID: PMC6738036 DOI: 10.1038/s41416-019-0465-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Inverse associations have been observed between coffee consumption and liver cancer, but associations for other digestive cancers are unclear. Few previous studies have investigated coffee type (specifically instant or ground coffee) or a range of digestive cancer types within one cohort. We therefore investigated coffee consumption by type and digestive cancer risks in a population-based cohort. METHODS The UK Biobank captured self-reported coffee consumption and cancer-registry recorded incident digestive cancers. Hazard ratios (HRs) and 95% CIs were calculated using Cox regression. The risk of every type of digestive cancer was investigated in association with coffee consumption by dose-response and by coffee type (decaffeinated, instant and ground). RESULTS Over 7.5 years of follow-up, 3567 developed digestive cancer among 471,779 participants. There were 88 cases of hepatocellular carcinoma and a marked association was observed for hepatocellular carcinoma in coffee drinkers (HR 0.50, 95% CI 0.29, 0.87), which was similar for instant (HR 0.51, 95% CI 0.28, 0.93) and ground coffee (HR 0.47, 95% CI 0.20, 1.08). We did not observe significant consistently reduced risks of other individual digestive cancers amongst coffee drinkers. CONCLUSIONS We found some evidence that coffee consumption was inversely associated with hepatocellular carcinoma which was similar by coffee type.
Collapse
Affiliation(s)
- Kim Tu Tran
- Cancer Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Helen G Coleman
- Cancer Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland, UK
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Úna C McMenamin
- Cancer Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Chris R Cardwell
- Cancer Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, Northern Ireland, UK.
| |
Collapse
|