1
|
Matos-Sousa JM, Souza-Monteiro D, dos Santos VRN, Ferreira MKM, Frazão DR, Chemelo VS, Bittencourt LDO, Moura JDMD, Maia CDSF, Collares FM, Fernandes LDMP, Lima RR. High-intensity ethanol binge drinking accentuates bone damage in induced apical periodontitis in rats. Heliyon 2024; 10:e40163. [PMID: 39641066 PMCID: PMC11617731 DOI: 10.1016/j.heliyon.2024.e40163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
This study aimed to evaluate the effects of excessive and episodic consumption of ethanol (EtOH, a high-intensity drinking manner) on induced apical periodontitis in rats. Thirty-two animals were divided into the following four groups: control, EtOH, apical periodontitis, and EtOH + apical periodontitis. Ethanol exposure (3 g/kg 20 % w/v EtOH) was performed by orogastric gavage for 3 consecutive days, followed by 4 days of withdrawal for 4 weeks. Lesions were induced by exposing the dental pulp of the lower first molar and by the absence of any treatment/curative for 28 days. Finally, the animals were euthanized, and mandibles were collected. The mandible was divided medially, with one hemimandible being used for micro-computed tomography analysis of the volume of the periapical lesion and bone quality parameters, such as bone volume and trabecular bone assessments; the other hemimandible was used for histological analysis, with a descriptive histopathological analysis of the tissue and the pattern of bone loss presented, as well as an assessment of the collagen content present. The data were subjected to statistical analysis (one-way analysis of variance with Tukey's post-hoc test). Our results showed that the EtOH + apical periodontitis group had a larger volume of periapical lesions than animals that were not exposed to ethanol. Additionally, bone quality parameters showed a reduction in bone volume and thickening of the trabeculae, associated with increased tissue destruction and reduced collagen content in the remnant region of the alveolar bone. These results suggest that exposure to EtOH in a pattern of excessive alcohol consumption is an aggravating factor in apical periodontitis and, consequently, in its progression, the quality and quantity of the alveolar bone remaining in the region of the periapical lesion are the modulating aspects.
Collapse
Affiliation(s)
- José Mário Matos-Sousa
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Deiweson Souza-Monteiro
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Vinicius Ruan Neves dos Santos
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Maria Karolina Martins Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Deborah Ribeiro Frazão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Victória Santos Chemelo
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Leonardo de Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - João Daniel Mendonça de Moura
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Cristiane do Socorro Ferraz Maia
- Laboratory of Inflammation and Behavioral Pharmacology, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Fabrício Mezzomo Collares
- Laboratory of Dental Materials, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luanna de Melo Pereira Fernandes
- Laboratory of Neuropharmacology and Behavior, Center for Biological |Health Sciences, State University of Pará, Belém, Pará, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
2
|
Genchi VA, Cignarelli A, Sansone A, Yannas D, Dalla Valentina L, Renda Livraghi D, Spaggiari G, Santi D. Understanding the Role of Alcohol in Metabolic Dysfunction and Male Infertility. Metabolites 2024; 14:626. [PMID: 39590862 PMCID: PMC11596383 DOI: 10.3390/metabo14110626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Purpose: Over the past 40-50 years, demographic shifts and the obesity epidemic have coincided with significant changes in lifestyle habits, including a rise in excessive alcohol consumption. This increase in alcohol intake is a major public health concern due to its far-reaching effects on human health, particularly on metabolic processes and male reproductive function. This narrative review focuses on the role of alcohol consumption in altering metabolism and impairing testicular function, emphasizing the potential damage associated with both acute and chronic alcohol intake. Conclusion: Chronic alcohol consumption has been shown to disrupt liver function, impair lipid metabolism, and dysregulate blood glucose levels, contributing to the development of obesity, metabolic syndrome, and related systemic diseases. In terms of male reproductive health, alcohol can significantly affect testicular function by lowering testosterone levels, reducing sperm quality, and impairing overall fertility. The extent of these effects varies, depending on the frequency, duration, and intensity of alcohol use, with chronic and abusive consumption posing greater risks. The complexity of alcohol's impact is further compounded by individual variability and the interaction with other lifestyle factors such as diet, stress, and physical activity. Despite growing concern, research on alcohol's effects remains inconclusive, with significant discrepancies across studies regarding the definition and reporting of alcohol consumption. These inconsistencies highlight the need for more rigorous, methodologically sound research to better understand how alcohol consumption influences metabolic and reproductive health. Ultimately, a clearer understanding is essential for developing targeted public health interventions, particularly in light of rising alcohol use, demographic changes, and the ongoing obesity crisis.
Collapse
Affiliation(s)
- Valentina Annamaria Genchi
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Angelo Cignarelli
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Andrea Sansone
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Tower E South, Room E 413, Via Montpellier 1, 00133 Rome, Italy
| | - Dimitri Yannas
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Tower E South, Room E 413, Via Montpellier 1, 00133 Rome, Italy
| | - Leonardo Dalla Valentina
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy (D.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy
| | - Daniele Renda Livraghi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy (D.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy
| | - Giorgia Spaggiari
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy
| | - Daniele Santi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy (D.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria of Modena, 41125 Modena, Italy
| |
Collapse
|
3
|
Shi Q, Wang L, Li W, Feng Y, Wei Z, Yun K. Postmortem/dynamic distribution of ethanol and its nonoxidative metabolites in poisoned rabbits. Sci Rep 2024; 14:28056. [PMID: 39543154 PMCID: PMC11564820 DOI: 10.1038/s41598-024-75206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/03/2024] [Indexed: 11/17/2024] Open
Abstract
Nonoxidative ethanol metabolites have been reported as ethanol biomarkers in clinical and forensic cases. However, their forensic toxicokinetics are still unclear. The study aimed to simultaneously research the postmortem distribution and dynamic distribution of ethanol and its nonoxidative metabolites in 62 poisoned rabbits. Firstly, 32 rabbits were randomly divided into three groups and sacrificed after three doses ethanol, and their organs were collected to study the postmortem distribution of ethanol and its nonoxidative metabolites. The results showed that the distribution trends of ethanol and its nonoxidative metabolites were basically same between different groups, and ethanol could be better detected by collecting body fluids, while the nonoxidative metabolites could be better detected by collecting the heart, liver, kidney and testis. Secondly, 30 rabbits after 1/2LD50 ethanol intragastric administration were sacrificed at 10 time points, and their organs were collected to study the dynamic distribution of ethanol and its nonoxidative metabolites. The results showed the concentrations of ethanol and its nonoxidative metabolites increased with time and then decreased. All analytes could be detected in all samples within 8 h, with the exception of ethyl oleate, which kept high level in muscle and vitreous humor, and could be detected within 4 h.
Collapse
Affiliation(s)
- Qianwen Shi
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, China
- Key Laboratory of Forensic Medicine in Shanxi Province, Jinzhong, 030600, Shanxi, China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, 030600, Shanxi, China
| | - Lele Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, China
- Key Laboratory of Forensic Medicine in Shanxi Province, Jinzhong, 030600, Shanxi, China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, 030600, Shanxi, China
| | - Wenyue Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, China
- Key Laboratory of Forensic Medicine in Shanxi Province, Jinzhong, 030600, Shanxi, China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, 030600, Shanxi, China
- Guangdong Nantian Institute of Forensic Science, Shenzhen, Beijing, 518003, China
| | - Yongming Feng
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, China
- Key Laboratory of Forensic Medicine in Shanxi Province, Jinzhong, 030600, Shanxi, China
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, 030600, Shanxi, China
- Henan Zhongyi Judicial Appraisal Center, Zhengzhou, 450000, Henan, China
| | - Zhiwen Wei
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, China.
- Key Laboratory of Forensic Medicine in Shanxi Province, Jinzhong, 030600, Shanxi, China.
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, 030600, Shanxi, China.
| | - Keming Yun
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, China.
- Key Laboratory of Forensic Medicine in Shanxi Province, Jinzhong, 030600, Shanxi, China.
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, 030600, Shanxi, China.
| |
Collapse
|
4
|
Lai W, Zhang J, Sun J, Min T, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Oxidative stress in alcoholic liver disease, focusing on proteins, nucleic acids, and lipids: A review. Int J Biol Macromol 2024; 278:134809. [PMID: 39154692 DOI: 10.1016/j.ijbiomac.2024.134809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Oxidative stress is one of the important factors in the development of alcoholic liver disease. The production of reactive oxygen species and other free radicals is an important feature of alcohol metabolism in the liver and an important substance in liver injury. When large amounts of ROS are produced, the homeostasis of the liver REDOX system will be disrupted and liver injury will be caused. Oxidative stress can damage proteins, nucleic acids and lipids, liver dysfunction. In addition, damaging factors produced by oxidative damage to liver tissue can induce the occurrence of inflammation, thereby aggravating the development of ALD. This article reviews the oxidative damage of alcohol on liver proteins, nucleic acids, and lipids, and provides new insights and summaries of the oxidative stress process. We also discussed the relationship between oxidative stress and inflammation in alcoholic liver disease from different perspectives. Finally, the research status of antioxidant therapy in alcoholic liver disease was summarized, hoping to provide better help for learning and developing the understanding of alcoholic liver disease.
Collapse
Affiliation(s)
- Weiwen Lai
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiahua Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiawei Sun
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tianqi Min
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Miraldi E, Baini G, Biagi M, Cappellucci G, Giordano A, Vaccaro F, Bertelli AAE. Wine, Polyphenols, and the Matrix Effect: Is Alcohol Always the Same? Int J Mol Sci 2024; 25:9796. [PMID: 39337284 PMCID: PMC11432751 DOI: 10.3390/ijms25189796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
While the number of publications on wine and health is steadily increasing, ranging from a molecular level to epidemiological studies, often with contradictory results, little attention has been given to a holistic approach to research, starting from the molecular level to arrive at pharmacological and medical conclusions. In this review, some unusual concepts are considered, such as the phytocomplex, the vehicle, and the Matrix effect. The concept of the phytocomplex is discussed, specifically the biological activities of Tyrosol, Hydroxytyrosol, and Resveratrol; indeed, the interactions among different molecules in herbal matrices provide a specific response. This is often markedly different from the response evoked by single constituents in the modulation of microbial populations in the gut, in intestinal stability and bioaccessibility, and, obviously, in inducing biological responses. Among the many alcoholic beverages which contain these molecules, wine has the most peculiar Matrix effect, which can heavily influence the bioavailability of the phytocomplex obtained by the fermentation processes that produce this beverage. Wine's Matrix effect plays an instrumental role in improving the beneficial compounds' bioavailability and/or in inhibiting alcohol metabolites' carcinogenicity. Underestimation of the wine Matrix effect could lead to deceiving results, as in the case of dealcoholized wine or wine-compound-based nutritional supplements; alternatively, this can occur in the emphasis of a single component's toxic activity, in this case, alcohol, ignoring the specific molecular-level protective action of other compounds (polyphenols) that are present in the same matrix. The dark side of the Matrix effect is also discussed. This review confirms the research recommendations made by the WHO Scientific Group, which suggests it is important "to investigate the possible protective effects of ingredients other than alcohol in alcoholic beverages", considering that most recent studies seem not only relevant but also capable of directing future research towards innovative points of view that have so far been too neglected.
Collapse
Affiliation(s)
- Elisabetta Miraldi
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Giulia Baini
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Marco Biagi
- Department of Food and Drug, University of Parma, 43121 Parma, Italy
| | - Giorgio Cappellucci
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Alessandro Giordano
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Federica Vaccaro
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Alberto A E Bertelli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
6
|
Rangra S, Rana D, Prajapati A, Benival D, Dwivedi P, Mandoli A. Nutritional and microbiota-based therapeutic interventions for alcohol-associated liver disease: From pathogenesis to therapeutic insights. Life Sci 2024; 352:122852. [PMID: 38909682 DOI: 10.1016/j.lfs.2024.122852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
Alcohol-associated liver disease (ALD) manifests as a consequence of prolonged and excessive alcohol consumption. This disease is closely associated with the interplay between gut health and liver function, which can lead to complex pathophysiological changes in the body. This review offers a comprehensive exploration of ALD's multifaceted nature, with a keen focus on its pathogenesis and the potential of nutritional and microbiota-based therapies. Insights derived from diverse case studies are utilized to shed light on how interventions can rebalance the gut microbiome and enhance liver function in ALD patients. Furthermore, the feasibility of liver transplantation and stem cell therapy as ultimate measures for ALD has been discussed, with acknowledgment of the inherent risks and challenges accompanying them. ALD's complexity underscores the necessity for a thorough understanding of its etiology and progression to devise effective treatments that mitigate its profound impact on an individual's health.
Collapse
Affiliation(s)
- Shagun Rangra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad (NIPER-A), 382355, India
| | - Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad (NIPER-A), 382355, India
| | - Arvee Prajapati
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad (NIPER-A), 382355, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad (NIPER-A), 382355, India
| | - Pradeep Dwivedi
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS) - Jodhpur, 342005, India
| | - Amit Mandoli
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Ahmedabad (NIPER-A), 382355, India.
| |
Collapse
|
7
|
Kong EQZ, Subramaniyan V, Lubau NSA. Uncovering the impact of alcohol on internal organs and reproductive health: Exploring TLR4/NF-kB and CYP2E1/ROS/Nrf2 pathways. Animal Model Exp Med 2024; 7:444-459. [PMID: 38853347 PMCID: PMC11369036 DOI: 10.1002/ame2.12436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/10/2024] [Indexed: 06/11/2024] Open
Abstract
This review delves into the detrimental impact of alcohol consumption on internal organs and reproductive health, elucidating the underlying mechanisms involving the Toll-like receptor 4 (TLR4)/Nuclear factor kappa light chain enhancer of activated B cells (NF-kB) pathway and the Cytochrome P450 2E1 (CYP2E1)/reactive oxygen species (ROS)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. The TLR4/NF-kB pathway, crucial for inflammatory and immune responses, triggers the production of pro-inflammatory agents and type-1 interferon, disrupting the balance between inflammatory and antioxidant responses when tissues are chronically exposed to alcohol. Alcohol-induced dysbiosis in gut microbes heightens gut wall permeability to pathogen-associated molecular patterns (PAMPs), leading to liver cell infection and subsequent inflammation. Concurrently, CYP2E1-mediated alcohol metabolism generates ROS, causing oxidative stress and damaging cells, lipids, proteins, and deoxyribonucleic acid (DNA). To counteract this inflammatory imbalance, Nrf2 regulates gene expression, inhibiting inflammatory progression and promoting antioxidant responses. Excessive alcohol intake results in elevated liver enzymes (ADH, CYP2E1, and catalase), ROS, NADH, acetaldehyde, and acetate, leading to damage in vital organs such as the heart, brain, and lungs. Moreover, alcohol negatively affects reproductive health by inhibiting the hypothalamic-pituitary-gonadal axis, causing infertility in both men and women. These findings underscore the profound health concerns associated with alcohol-induced damage, emphasizing the need for public awareness regarding the intricate interplay between immune responses and the multi-organ impacts of alcohol consumption.
Collapse
Affiliation(s)
- Eason Qi Zheng Kong
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaSubang JayaSelangorMalaysia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaSubang JayaSelangorMalaysia
- Center for Global Health Research, Saveetha Medical CollegeSaveetha Institute of Medical and Technical SciencesChennaiTamil NaduIndia
| | - Natasha Sura Anak Lubau
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaSubang JayaSelangorMalaysia
| |
Collapse
|
8
|
do Carmo Artmann A, Tegner M, de Souza Guterres F, Frank Bastiani M, Linden R, Venzon Antunes M. Evaluation of harmful drinking among professional drivers by direct ethanol biomarkers and its relation with psychological distress. TRAFFIC INJURY PREVENTION 2024; 25:774-780. [PMID: 38832915 DOI: 10.1080/15389588.2024.2349282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/25/2024] [Indexed: 06/06/2024]
Abstract
OBJECTIVE This study aimed to evaluate the alcohol consumption among professional truck and bus drivers using direct ethanol biomarkers, and to explore its relationship with anxiety, depression, and stress. METHODS The assessment of potential harmful drinking was conducted through the measurement of direct biomarkers: phosphatidylethanol (PEth), ethyl glucuronide (EtG), and ethyl sulfate (EtS), using dried blood spots (DBS). Additionally, self-reported data from the Alcohol Use Disorders Identification Test (AUDIT-C) were used. Emotional states, including depression, anxiety, and stress, were evaluated using the Depression, Anxiety, and Stress Scale (DASS-21). RESULTS A total of 97 drivers participated in the study, with the majority being male (96%) and identified as truck drivers (75.3%). Among them, 43.3% reported working more than 10 h daily. The majority of volunteers exhibited normal levels of stress (81.4%), anxiety (83%), and depression (86.6%). According to the AUDIT-C assessment, 30.9% were categorized as having a moderate risk, while 11.3% were deemed to be at high risk for harmful alcohol consumption behavior. Ethyl glucuronide (EtG) and ethyl sulfate (EtS) levels, indicating recent ethanol consumption, were detected in 14.4% of the drivers. In contrast, the long half-life metabolite PEth (16:0-18:1) was present in 88.7% of the volunteers. A moderate correlation (rs = 0.45, p < .01) was observed between PEth levels and AUDIT-C scores. The Receiver Operating Characteristic (ROC) curve, utilizing a PEth threshold of ≥ 59.0 ng ml-1, displayed 78% sensitivity and 73% specificity in effectively distinguishing high risk for alcohol intake. Notably, no significant associations were found between alcohol consumption and levels of stress, depression, and anxiety. CONCLUSIONS The study findings indicate a noteworthy proportion of drivers engaging in regular alcohol consumption alongside a demanding workload. Notably, PEth measurements highlighted an underreporting within the AUDIT-C self-reports. These results lend robust support for the utilization of biomarkers in assessing alcohol consumption patterns among drivers.
Collapse
Affiliation(s)
- Andiara do Carmo Artmann
- Postgraduate Program on Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, Brazil
| | - Mariane Tegner
- Postgraduate Program on Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, Brazil
| | - Fernanda de Souza Guterres
- Laboratory of Analytical Toxicology, Institute of Health Sciences, Feevale University, Novo Hamburgo, Brazil
| | - Marcos Frank Bastiani
- Laboratory of Analytical Toxicology, Institute of Health Sciences, Feevale University, Novo Hamburgo, Brazil
| | - Rafael Linden
- Postgraduate Program on Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, Brazil
- Laboratory of Analytical Toxicology, Institute of Health Sciences, Feevale University, Novo Hamburgo, Brazil
| | - Marina Venzon Antunes
- Postgraduate Program on Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, Brazil
- Laboratory of Analytical Toxicology, Institute of Health Sciences, Feevale University, Novo Hamburgo, Brazil
| |
Collapse
|
9
|
Janeski JD, Naik VD, Carabulea AL, Jiang H, Ramadoss J. In Vivo Administration of Phosphatidic Acid, a Direct Alcohol Target Rescues Fetal Growth Restriction and Maternal Uterine Artery Dysfunction in Rat FASD Model. Nutrients 2024; 16:1409. [PMID: 38794647 PMCID: PMC11123873 DOI: 10.3390/nu16101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Fetal growth restriction is a hallmark of Fetal Alcohol Syndrome (FAS) and is accompanied by maternal uterine circulatory maladaptation. FAS is the most severe form of Fetal Alcohol Spectrum Disorder (FASD), a term for the range of conditions that can develop in a fetus when their pregnant mother consumes alcohol. Alcohol exerts specific direct effects on lipids that control fundamental developmental processes. We previously demonstrated that direct in vitro application of phosphatidic acid (PA, the simplest phospholipid and a direct target of alcohol exposure) to excised uterine arteries from alcohol-exposed rats improved vascular function, but it is unknown if PA can rescue end organ phenotypes in our FASD animal model. Pregnant Sprague-Dawley rats (n = 40 total dams) were gavaged daily from gestational day (GD) 5 to GD 19 with alcohol or maltose dextrin, with and without PA supplementation, for a total of four unique groups. To translate and assess the beneficial effects of PA, we hypothesized that in vivo administration of PA concomitant with chronic binge alcohol would reverse uterine artery dysfunction and fetal growth deficits in our FASD model. Mean fetal weights and placental efficiency were significantly lower in the binge alcohol group compared with those in the control (p < 0.05). However, these differences between the alcohol and the control groups were completely abolished by auxiliary in vivo PA administration with alcohol, indicating a reversal of the classic FAS growth restriction phenotype. Acetylcholine (ACh)-induced uterine artery relaxation was significantly impaired in the uterine arteries of chronic in vivo binge alcohol-administered rats compared to the controls (p < 0.05). Supplementation of PA in vivo throughout pregnancy reversed the alcohol-induced vasodilatory deficit; no differences were detected following in vivo PA administration between the pair-fed control and PA alcohol groups. Maximal ACh-induced vasodilation was significantly lower in the alcohol group compared to all the other treatments, including control, control PA, and alcohol PA groups (p < 0.05). When analyzing excitatory vasodilatory p1177-eNOS, alcohol-induced downregulation of p1177-eNOS was completely reversed following in vivo PA supplementation. In summary, these novel data utilize a specific alcohol target pathway (PA) to demonstrate a lipid-based preventive strategy and provide critical insights important for the development of translatable interventions.
Collapse
Affiliation(s)
- Joseph D. Janeski
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Vishal D. Naik
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Alexander L. Carabulea
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Hong Jiang
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Jayanth Ramadoss
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
10
|
Podéus H, Simonsson C, Nasr P, Ekstedt M, Kechagias S, Lundberg P, Lövfors W, Cedersund G. A physiologically-based digital twin for alcohol consumption-predicting real-life drinking responses and long-term plasma PEth. NPJ Digit Med 2024; 7:112. [PMID: 38702474 PMCID: PMC11068902 DOI: 10.1038/s41746-024-01089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/29/2024] [Indexed: 05/06/2024] Open
Abstract
Alcohol consumption is associated with a wide variety of preventable health complications and is a major risk factor for all-cause mortality in the age group 15-47 years. To reduce dangerous drinking behavior, eHealth applications have shown promise. A particularly interesting potential lies in the combination of eHealth apps with mathematical models. However, existing mathematical models do not consider real-life situations, such as combined intake of meals and beverages, and do not connect drinking to clinical markers, such as phosphatidylethanol (PEth). Herein, we present such a model which can simulate real-life situations and connect drinking to long-term markers. The new model can accurately describe both estimation data according to a χ2 -test (187.0 < Tχ2 = 226.4) and independent validation data (70.8 < Tχ2 = 93.5). The model can also be personalized using anthropometric data from a specific individual and can thus be used as a physiologically-based digital twin. This twin is also able to connect short-term consumption of alcohol to the long-term dynamics of PEth levels in the blood, a clinical biomarker of alcohol consumption. Here we illustrate how connecting short-term consumption to long-term markers allows for a new way to determine patient alcohol consumption from measured PEth levels. An additional use case of the twin could include the combined evaluation of patient-reported AUDIT forms and measured PEth levels. Finally, we integrated the new model into an eHealth application, which could help guide individual users or clinicians to help reduce dangerous drinking.
Collapse
Affiliation(s)
- Henrik Podéus
- Department of Biomedical Engineering (IMT), Linköping University, Linköping, Sweden
| | - Christian Simonsson
- Department of Biomedical Engineering (IMT), Linköping University, Linköping, Sweden
- Center for Medicine Imaging and Visualization Science (CMIV), Linköping University, Linköping, Sweden
| | - Patrik Nasr
- Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
- Wallenberg Center for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Mattias Ekstedt
- Center for Medicine Imaging and Visualization Science (CMIV), Linköping University, Linköping, Sweden
- Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Stergios Kechagias
- Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Center for Medicine Imaging and Visualization Science (CMIV), Linköping University, Linköping, Sweden
- Department of Radiation Physics, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - William Lövfors
- Department of Biomedical Engineering (IMT), Linköping University, Linköping, Sweden
- School of Medical Sciences and Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Gunnar Cedersund
- Department of Biomedical Engineering (IMT), Linköping University, Linköping, Sweden.
- Center for Medicine Imaging and Visualization Science (CMIV), Linköping University, Linköping, Sweden.
- School of Medical Sciences and Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| |
Collapse
|
11
|
Petrick L, Guan H, Page GP, Dolios G, Niedzwiecki MM, Wright RO, Wright RJ. Comparison of maternal venous blood metabolomics collected as dried blood spots, dried blood microsamplers, and plasma for integrative environmental health research. ENVIRONMENT INTERNATIONAL 2024; 187:108663. [PMID: 38657407 PMCID: PMC11555615 DOI: 10.1016/j.envint.2024.108663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Use of capillary blood devices for exposome research can deepen our understanding of the intricate relationship between environment and health, and open up new avenues for preventive and personalized medicine, particularly for vulnerable populations. While the potential of these whole blood devices to accurately measure chemicals and metabolites has been demonstrated, how untargeted metabolomics data from these samplers can be integrated with previous and ongoing environmental health studies that have used conventional blood collection approaches is not yet clear. Therefore, we performed a comprehensive comparison between relative-quantitative metabolite profiles measured in venous blood collected with dried whole blood microsamplers (DBM), dried whole blood spots (DBS), and plasma from 54 mothers in an ethnically diverse population. We determined that a majority of the 309 chemicals and metabolites showed similar median intensity rank, moderate correlation, and moderate agreement between participant-quantiled intraclass correlation coefficients (ICCs) for pair-wise comparisons among the three biomatrices. In particular, whole blood sample types, DBM and DBS, were in highest agreement across metabolite comparison metrics, followed by metabolites measured in DBM and plasma, and then metabolites measured in DBS and plasma. We provide descriptive characteristics and measurement summaries as a reference database. This includes unique metabolites that were particularly concordant or discordant in pairwise comparisons. Our results demonstrate that the range of metabolites from untargeted metabolomics data collected with DBM, DBS, and plasma provides biologically relevant information for use in independent exposome investigations. However, before meta-analysis with combined datasets are performed, robust statistical approaches that integrate untargeted metabolomics data collected on different blood matrices need to be developed.
Collapse
Affiliation(s)
- Lauren Petrick
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Bert Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, Israel.
| | - Haibin Guan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Grier P Page
- Analytics Program, RTI International, Atlanta, GA, USA
| | - Georgia Dolios
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan M Niedzwiecki
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
12
|
Huang J, Huang T, Li J. Regulation Mechanism and Potential Value of Active Substances in Spices in Alcohol-Liver-Intestine Axis Health. Int J Mol Sci 2024; 25:3728. [PMID: 38612538 PMCID: PMC11011869 DOI: 10.3390/ijms25073728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Excessive alcohol intake will aggravate the health risk between the liver and intestine and affect the multi-directional information exchange of metabolites between host cells and microbial communities. Because of the side effects of clinical drugs, people tend to explore the intervention value of natural drugs on diseases. As a flavor substance, spices have been proven to have medicinal value, but they are still rare in treating hepatointestinal diseases caused by alcohol. This paper summarized the metabolic transformation of alcohol in the liver and intestine and summarized the potential value of various perfume active substances in improving liver and intestine diseases caused by alcohol. It is also found that bioactive substances in spices can exert antioxidant activity in the liver and intestine environment and reduce the oxidative stress caused by diseases. These substances can interfere with fatty acid synthesis, promote sugar and lipid metabolism, and reduce liver injury caused by steatosis. They can effectively regulate the balance of intestinal flora, promote the production of SCFAs, and restore the intestinal microenvironment.
Collapse
Affiliation(s)
- Jianyu Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Tao Huang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Jinjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| |
Collapse
|
13
|
Khalikov AA, Korotun VN, Smirnova IY, Kuznetsov KO, Galimov AR, Iskuzhina LR. [Problems of ethyl glucuronide use in ethanol consumption diagnosis]. Sud Med Ekspert 2024; 67:56-61. [PMID: 38353016 DOI: 10.17116/sudmed20246701156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Quantitative determination of ethyl glucuronide (EtG) in different biological objects in recent years has been positioned as one of the most reliable biomarkers of unconditional alcohol consumption. The aim of the study is to summarize the analytical methods of alcohol consumption testing with the use of EtG currently available in domestic and foreign literature and to present a schematic overview of possible errors in reproducibility and interpretation of research on EtG results, which may limit their use in forensic medical practice. The main objective is to increase the reliability and validity of EtG as a marker of ethanol consumption.
Collapse
Affiliation(s)
| | - V N Korotun
- Bashkir State Medical University, Ufa, Russia
| | - I Yu Smirnova
- Perm Regional Bureau of Forensic Medical Examination, Perm, Russia
| | - K O Kuznetsov
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - A R Galimov
- Bashkir State Medical University, Ufa, Russia
| | | |
Collapse
|
14
|
Rungratanawanich W, Ballway JW, Wang X, Won KJ, Hardwick JP, Song BJ. Post-translational modifications of histone and non-histone proteins in epigenetic regulation and translational applications in alcohol-associated liver disease: Challenges and research opportunities. Pharmacol Ther 2023; 251:108547. [PMID: 37838219 DOI: 10.1016/j.pharmthera.2023.108547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Epigenetic regulation is a process that takes place through adaptive cellular pathways influenced by environmental factors and metabolic changes to modulate gene activity with heritable phenotypic variations without altering the DNA sequences of many target genes. Epigenetic regulation can be facilitated by diverse mechanisms: many different types of post-translational modifications (PTMs) of histone and non-histone nuclear proteins, DNA methylation, altered levels of noncoding RNAs, incorporation of histone variants, nucleosomal positioning, chromatin remodeling, etc. These factors modulate chromatin structure and stability with or without the involvement of metabolic products, depending on the cellular context of target cells or environmental stimuli, such as intake of alcohol (ethanol) or Western-style high-fat diets. Alterations of epigenetics have been actively studied, since they are frequently associated with multiple disease states. Consequently, explorations of epigenetic regulation have recently shed light on the pathogenesis and progression of alcohol-associated disorders. In this review, we highlight the roles of various types of PTMs, including less-characterized modifications of nuclear histone and non-histone proteins, in the epigenetic regulation of alcohol-associated liver disease (ALD) and other disorders. We also describe challenges in characterizing specific PTMs and suggest future opportunities for basic and translational research to prevent or treat ALD and many other disease states.
Collapse
Affiliation(s)
- Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Jacob W Ballway
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kyoung-Jae Won
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA, 90069, USA
| | - James P Hardwick
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Wu L, Hu J, Yi X, Lv J, Yao J, Tang W, Zhang S, Wan M. Gut microbiota interacts with inflammatory responses in acute pancreatitis. Therap Adv Gastroenterol 2023; 16:17562848231202133. [PMID: 37829561 PMCID: PMC10566291 DOI: 10.1177/17562848231202133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Acute pancreatitis (AP) is one of the most common acute abdominal conditions, and its incidence has been increasing for years. Approximately 15-20% of patients develop severe AP (SAP), which is complicated by critical inflammatory injury and intestinal dysfunction. AP-associated inflammation can lead to the gut barrier and function damage, causing dysbacteriosis and facilitating intestinal microbiota migration. Pancreatic exocrine deficiency and decreased levels of antimicrobial peptides in AP can also lead to abnormal growth of intestinal bacteria. Meanwhile, intestinal microbiota migration influences the pancreatic microenvironment and affects the severity of AP, which, in turn, exacerbates the systemic inflammatory response. Thus, the interaction between the gut microbiota (GM) and the inflammatory response may be a key pathogenic feature of SAP. Treating either of these factors or breaking their interaction may offer some benefits for SAP treatment. In this review, we discuss the mechanisms of interaction of the GM and inflammation in AP and factors that can deteriorate or even cure both, including some traditional Chinese medicine treatments, to provide new methods for studying AP pathogenesis and developing therapies.
Collapse
Affiliation(s)
- Linjun Wu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- Hospital of Chinese Traditional Medicine of Leshan, Leshan, China
| | - Jing Hu
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
- Hospital of Chinese Traditional Medicine of Leshan, Leshan, China
| | - Xiaolin Yi
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
- Intensive Care Unit, Suining Municipal Hospital of TCM, Suining, China
| | - Jianqin Lv
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Yao
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Wenfu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Chengdu, China
| | - Shu Zhang
- Department of Emergency Medicine, Emergency Medical Laboratory, West China
- Hospital, Sichuan University, Guo Xue Road 37, Chengdu 610041, Sichuan, China
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China
- Hospital, Sichuan University, Guo Xue Road 37, Chengdu 610041, China
| |
Collapse
|
16
|
Liu J, Man K. Biomarkers for monitoring alcohol sobriety after liver transplantation for alcoholic liver disease. J Gastroenterol Hepatol 2023; 38:1227-1232. [PMID: 37353915 DOI: 10.1111/jgh.16269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023]
Abstract
Alcoholic liver disease (ALD) has become the most common indication for liver transplantation in Western countries, and its incidence is rapidly increasing in East Asia. Alcohol abstinence remains the standard of care for promoting liver transplantation for ALD and for preventing posttransplant graft loss. However, efficient monitoring methods are still being developed due to the limitations of traditional biomarkers, interviews, and questionnaires. The development of alcohol biomarkers has shifted from detecting alcohol and methanol to indirect byproducts, and to current mid-term and long-term direct alcohol metabolites, which provide higher accuracy and cover almost all types of alcohol relapse detection. However, in most clinical studies, biomarkers are used and validated in healthy individuals and alcohol use disorder (AUD) patients and for pretransplant evaluations. The evidence for their use in posttransplant abstinence monitoring is still lacking, but it is crucial for early detection of alcohol relapse and initiating intervention. This review aims to summarize the current evidence of the use of biomarkers for monitoring sobriety and alcohol relapse after liver transplantation, as well as to cover the diagnostic accuracy, detection window, and optimal multidisciplinary strategies.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Surgery, LKS Faculty of Medicine and HKU-Shenzhen Hospital, The University of Hong Kong, Hong Kong, Hong Kong
- Hepato-pancreato-biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Kwan Man
- Department of Surgery, LKS Faculty of Medicine and HKU-Shenzhen Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
17
|
Perilli M, Toselli F, Franceschetto L, Cinquetti A, Ceretta A, Cecchetto G, Viel G. Phosphatidylethanol (PEth) in Blood as a Marker of Unhealthy Alcohol Use: A Systematic Review with Novel Molecular Insights. Int J Mol Sci 2023; 24:12175. [PMID: 37569551 PMCID: PMC10418704 DOI: 10.3390/ijms241512175] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The Alcohol Use Disorders Identification Test (AUDIT) and its short form, the AUDIT-C, the main clinical instruments used to identify unhealthy drinking behaviors, are influenced by memory bias and under-reporting. In recent years, phosphatidylethanol (PEth) in blood has emerged as a marker of unhealthy alcohol use. This systematic review aims to investigate the molecular characteristics of PEth and summarize the last ten years of published literature and its use compared to structured questionnaires. A systematic search was performed, adhering to PRISMA guidelines, through "MeSH" and "free-text" protocols in the databases PubMed, SCOPUS, and Web of Science. The inclusion criteria were as follows: PEth was used for detecting unhealthy alcohol consumption in the general population and quantified in blood through liquid chromatography coupled to mass spectrometry, with full texts in the English language. Quality assessment was performed using the JBI critical appraisal checklist. Twelve papers were included (0.79% of total retrieved records), comprising nine cross-sectional studies and three cohort studies. All studies stratified alcohol exposure and quantified PEth 16:0/18:1 through liquid chromatography coupled to mass spectrometry (LC-MS) in liquid blood or dried blood spots (DBS) with lower limits of quantitation (LLOQ) ranging from 1.7 ng/mL to 20 ng/mL. A correlation between blood PEth level and the amount of alcohol ingested in the previous two weeks was generally observed. PEth interpretative cut-offs varied greatly among the included records, ranging from 4.2 ng/mL to 250 ng/mL, with sensitivity and specificity in the ranges of 58-100% and 64-100%, respectively. Although the biomarker seems promising, further research elucidating the variability in PEth formation and degradation, as well as the molecular mechanisms behind that variability, are necessary.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guido Viel
- Legal Medicine and Toxicology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Via G. Falloppio 50, 35121 Padova, Italy; (M.P.); (F.T.); (L.F.); (A.C.); (A.C.); (G.C.)
| |
Collapse
|
18
|
Shetty A, De La Torre S, Ibrahim B, Hong A, Meza J, Saab S. Role of Biomarkers to Assess the Use of Alcohol. J Clin Gastroenterol 2023; 57:537-545. [PMID: 37039472 DOI: 10.1097/mcg.0000000000001852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Alcohol-associated liver disease has seen a significant rise in the last 2 decades, with an associated rise in the need for accurate alcohol use assessment. Alcohol use has been associated with poor outcomes in both the pre-liver transplant and post-liver transplant patients. Patients with alcohol use disorder often under-report their alcohol consumption because of varying factors, highlighting the need for objective assessment of alcohol use. Aside from the available self-report questionnaires, multiple serologic biomarkers are currently available to assist clinicians to assess recent alcohol consumption among patients with chronic liver disease, liver transplant candidates, and recipients. In this review, we will assess some of these alcohol biomarkers, discuss their strengths and weakness, and review-available data to discuss their role in pre-liver transplant and post-liver transplant population.
Collapse
Affiliation(s)
| | | | | | | | - Julio Meza
- Family Medicine, University of California at Los Angeles, Los Angeles, CA
| | | |
Collapse
|
19
|
Mishra G, Singh P, Molla M, Yimer YS, Dinda SC, Chandra P, Singh BK, Dagnew SB, Assefa AN, Ewunetie A. Harnessing the potential of probiotics in the treatment of alcoholic liver disorders. Front Pharmacol 2023; 14:1212742. [PMID: 37361234 PMCID: PMC10287977 DOI: 10.3389/fphar.2023.1212742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
In the current scenario, prolonged consumption of alcohol across the globe is upsurging an appreciable number of patients with the risk of alcohol-associated liver diseases. According to the recent report, the gut-liver axis is crucial in the progression of alcohol-induced liver diseases, including steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Despite several factors associated with alcoholic liver diseases, the complexity of the gut microflora and its great interaction with the liver have become a fascinating area for researchers due to the high exposure of the liver to free radicals, bacterial endotoxins, lipopolysaccharides, inflammatory markers, etc. Undoubtedly, alcohol-induced gut microbiota imbalance stimulates dysbiosis, disrupts the intestinal barrier function, and trigger immune as well as inflammatory responses which further aggravate hepatic injury. Since currently available drugs to mitigate liver disorders have significant side effects, hence, probiotics have been widely researched to alleviate alcohol-associated liver diseases and to improve liver health. A broad range of probiotic bacteria like Lactobacillus, Bifidobacteria, Escherichia coli, Sacchromyces, and Lactococcus are used to reduce or halt the progression of alcohol-associated liver diseases. Several underlying mechanisms, including alteration of the gut microbiome, modulation of intestinal barrier function and immune response, reduction in the level of endotoxins, and bacterial translocation, have been implicated through which probiotics can effectively suppress the occurrence of alcohol-induced liver disorders. This review addresses the therapeutic applications of probiotics in the treatment of alcohol-associated liver diseases. Novel insights into the mechanisms by which probiotics prevent alcohol-associated liver diseases have also been elaborated.
Collapse
Affiliation(s)
- Garima Mishra
- Pharmaceutical Chemistry Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Pradeep Singh
- Pharmaceutical Chemistry Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Mulugeta Molla
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Yohannes Shumet Yimer
- Social Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | | | - Phool Chandra
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| | | | - Samuel Berihun Dagnew
- Clinical Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Abraham Nigussie Assefa
- Social Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Amien Ewunetie
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
20
|
Zhai Z, Yamauchi T, Shangraw S, Hou V, Matsumoto A, Fujita M. Ethanol Metabolism and Melanoma. Cancers (Basel) 2023; 15:1258. [PMID: 36831600 PMCID: PMC9954650 DOI: 10.3390/cancers15041258] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Malignant melanoma is the deadliest form of skin cancer. Despite significant efforts in sun protection education, melanoma incidence is still rising globally, drawing attention to other socioenvironmental risk factors for melanoma. Ethanol and acetaldehyde (AcAH) are ubiquitous in our diets, medicines, alcoholic beverages, and the environment. In the liver, ethanol is primarily oxidized to AcAH, a toxic intermediate capable of inducing tumors by forming adducts with proteins and DNA. Once in the blood, ethanol and AcAH can reach the skin. Although, like the liver, the skin has metabolic mechanisms to detoxify ethanol and AcAH, the risk of ethanol/AcAH-associated skin diseases increases when the metabolic enzymes become dysfunctional in the skin. This review highlights the evidence linking cutaneous ethanol metabolism and melanoma. We summarize various sources of skin ethanol and AcAH and describe how the reduced activity of each alcohol metabolizing enzyme affects the sensitivity threshold to ethanol/AcAH toxicity. Data from the Gene Expression Omnibus database also show that three ethanol metabolizing enzymes (alcohol dehydrogenase 1B, P450 2E1, and catalase) and an AcAH metabolizing enzyme (aldehyde dehydrogenase 2) are significantly reduced in melanoma tissues.
Collapse
Affiliation(s)
- Zili Zhai
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Takeshi Yamauchi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah Shangraw
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vincent Hou
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Akiko Matsumoto
- Department of Social Medicine, School of Medicine, Saga University, Saga 849-8501, Japan
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
| |
Collapse
|
21
|
Wu X, Fan X, Miyata T, Kim A, Cajigas-Du Ross CK, Ray S, Huang E, Taiwo M, Arya R, Wu J, Nagy LE. Recent Advances in Understanding of Pathogenesis of Alcohol-Associated Liver Disease. ANNUAL REVIEW OF PATHOLOGY 2023; 18:411-438. [PMID: 36270295 PMCID: PMC10060166 DOI: 10.1146/annurev-pathmechdis-031521-030435] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alcohol-associated liver disease (ALD) is one of the major diseases arising from chronic alcohol consumption and is one of the most common causes of liver-related morbidity and mortality. ALD includes asymptomatic liver steatosis, fibrosis, cirrhosis, and alcohol-associated hepatitis and its complications. The progression of ALD involves complex cell-cell and organ-organ interactions. We focus on the impact of alcohol on dysregulation of homeostatic mechanisms and regulation of injury and repair in the liver. In particular, we discuss recent advances in understanding the disruption of balance between programmed cell death and prosurvival pathways, such as autophagy and membrane trafficking, in the pathogenesis of ALD. We also summarize current understanding of innate immune responses, liver sinusoidal endothelial cell dysfunction and hepatic stellate cell activation, and gut-liver and adipose-liver cross talk in response to ethanol. In addition,we describe the current potential therapeutic targets and clinical trials aimed at alleviating hepatocyte injury, reducing inflammatory responses, and targeting gut microbiota, for the treatment of ALD.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Xiude Fan
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Tatsunori Miyata
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Adam Kim
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Christina K Cajigas-Du Ross
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Semanti Ray
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Emily Huang
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Moyinoluwa Taiwo
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Rakesh Arya
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Jianguo Wu
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Laura E Nagy
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
22
|
Liu X, Yu S, Zhang Y, Zhang W, Zhong H, Lu X, Guan R. A review on the protective effect of active components in Antrodia camphorata against alcoholic liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115740. [PMID: 36162549 DOI: 10.1016/j.jep.2022.115740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/02/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Antrodia camphorata is a genus of wood-rot basidiomycete in the family Fomitopsidaceae. It is a valuable medicinal fungus in China that contains more than 78 kinds of active compounds. A. camphorata has good protection effects on the liver, especially on alcoholic liver injury (ALI). AIM This paper summarizes the complex occurrence and development of alcoholic liver disease (ALD). In addition, the effect of ALD on the intestine through the gut-liver axis is summarized. The protective mechanism of A. camphorata on ALI is reviewed to reveal its therapeutic potential, offering insights into future research. MATERIALS AND METHODS A comprehensive search in the literature was obtained from books and online databases such as Web of Science, Google Scholar, PubMed, Scopus, Science direct, ACS Publications and Baidu Scholar. RESULTS The pathogenesis of ALD mainly includes oxidative stress injury, intestinal microflora imbalance, inflammatory mediator injury and nutritional imbalance. A. camphorata contains rich active components (e.g. polysaccharides, triterpenoids, maleic and succinic acid derivatives, amino acids, superoxide dismutase, vitamins, lignin and sterols). These components have good antioxidant, anti-inflammatory and intestinal protection activities. Therefore, A. camphorata has a wide application in the prevention and treatment of ALI. CONCLUSIONS ALD develops from a mild disease to alcoholic hepatitis and cirrhosis, which is the main reason of global morbidity and mortality. At present, there is no effective drug for the treatment of ALD. A. camphorata, as a valuable medicinal fungus unique to Taiwan, has a great protective effect on the liver. It is expected to be an effective drug for ALI treatment. Although many studies have performed the protective effects of A. camphorata on ALI, its regulatory effects on the gut-liver axis of ALD patients need to be further explored.
Collapse
Affiliation(s)
- Xiaofeng Liu
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, China.
| | - Shuzhen Yu
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, China.
| | - Yao Zhang
- Zhejiang Provincial Key Lab for Chem and Bio Processing Technology of Farm Produces, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou, 310023, China.
| | - Wei Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, China.
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, China.
| | - Xiaoqin Lu
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, China.
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, 310014, China.
| |
Collapse
|
23
|
Nguyen Huu T, Park J, Zhang Y, Duong Thanh H, Park I, Choi JM, Yoon HJ, Park SC, Woo HA, Lee SR. The Role of Oxidative Inactivation of Phosphatase PTEN and TCPTP in Fatty Liver Disease. Antioxidants (Basel) 2023; 12:antiox12010120. [PMID: 36670982 PMCID: PMC9854873 DOI: 10.3390/antiox12010120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) are becoming increasingly prevalent worldwide. Despite the different etiologies, their spectra and histological feature are similar, from simple steatosis to more advanced stages such as steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Studies including peroxiredoxin knockout models revealed that oxidative stress is crucial in these diseases, which present as consequences of redox imbalance. Protein tyrosine phosphatases (PTPs) are a superfamily of enzymes that are major targets of reactive oxygen species (ROS) because of an oxidation-susceptible nucleophilic cysteine in their active site. Herein, we review the oxidative inactivation of two tumor suppressor PTPs, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and T-cell protein tyrosine phosphatase (TCPTP), and their contribution to the pathogenicity of ALD and NAFLD, respectively. This review might provide a better understanding of the pathogenic mechanisms of these diseases and help develop new therapeutic strategies to treat fatty liver disease.
Collapse
Affiliation(s)
- Thang Nguyen Huu
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun 58 128, Republic of Korea
| | - Jiyoung Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Ying Zhang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hien Duong Thanh
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun 58 128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Iha Park
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Jin Myung Choi
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Hyun Joong Yoon
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Sang Chul Park
- The Future Life and Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Republic of Korea
| | - Hyun Ae Woo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Seung-Rock Lee
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
- Correspondence: ; Tel.: +82-61-379-2775; Fax: +82-61-379-2782
| |
Collapse
|
24
|
Starek-Świechowicz B, Budziszewska B, Starek A. Alcohol and breast cancer. Pharmacol Rep 2023; 75:69-84. [PMID: 36310188 PMCID: PMC9889462 DOI: 10.1007/s43440-022-00426-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 02/04/2023]
Abstract
Breast cancer is one of the main causes of death in women worldwide. In women, breast cancer includes over half of all tumours caused by alcohol. This paper discusses both ethanol metabolism and the mechanisms of mammary tumourigenesis caused by alcohol. Numerous signalling pathways in neoplastic transformation following alcohol consumption in women have been presented. In addition, primary and secondary prevention, phytochemicals, synthetic chemicals, specific inhibitors of enzymes and selective receptor modulators have been described.
Collapse
Affiliation(s)
- Beata Starek-Świechowicz
- Department of Biochemical Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Bogusława Budziszewska
- Department of Biochemical Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Andrzej Starek
- Department of Biochemical Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
25
|
Wang Y, Yang H, Geerts C, Furtos A, Waters P, Cyr D, Wang S, Mitchell GA. The multiple facets of acetyl-CoA metabolism: Energetics, biosynthesis, regulation, acylation and inborn errors. Mol Genet Metab 2023; 138:106966. [PMID: 36528988 DOI: 10.1016/j.ymgme.2022.106966] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
Acetyl-coenzyme A (Ac-CoA) is a core metabolite with essential roles throughout cell physiology. These functions can be classified into energetics, biosynthesis, regulation and acetylation of large and small molecules. Ac-CoA is essential for oxidative metabolism of glucose, fatty acids, most amino acids, ethanol, and of free acetate generated by endogenous metabolism or by gut bacteria. Ac-CoA cannot cross lipid bilayers, but acetyl groups from Ac-CoA can shuttle across membranes as part of carrier molecules like citrate or acetylcarnitine, or as free acetate or ketone bodies. Ac-CoA is the basic unit of lipid biosynthesis, providing essentially all of the carbon for the synthesis of fatty acids and of isoprenoid-derived compounds including cholesterol, coenzyme Q and dolichols. High levels of Ac-CoA in hepatocytes stimulate lipid biosynthesis, ketone body production and the diversion of pyruvate metabolism towards gluconeogenesis and away from oxidation; low levels exert opposite effects. Acetylation changes the properties of molecules. Acetylation is necessary for the synthesis of acetylcholine, acetylglutamate, acetylaspartate and N-acetyl amino sugars, and to metabolize/eliminate some xenobiotics. Acetylation is a major post-translational modification of proteins. Different types of protein acetylation occur. The most-studied form occurs at the epsilon nitrogen of lysine residues. In histones, lysine acetylation can alter gene transcription. Acetylation of other proteins has diverse, often incompletely-documented effects. Inborn errors related to Ac-CoA feature a broad spectrum of metabolic, neurological and other features. To date, a small number of studies of animals with inborn errors of CoA thioesters has included direct measurement of acyl-CoAs. These studies have shown that low levels of tissue Ac-CoA correlate with the development of clinical signs, hinting that shortage of Ac-CoA may be a recurrent theme in these conditions. Low levels of Ac-CoA could potentially disrupt any of its roles.
Collapse
Affiliation(s)
- Youlin Wang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Hao Yang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Chloé Geerts
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Alexandra Furtos
- Département de Chimie, Université de Montréal, Montréal, Québec, Canada
| | - Paula Waters
- Medical Genetics Service, Department of Laboratory Medicine, CHU Sherbrooke and Department of Pediatrics, Université de Sherbrooke, Québec, Canada
| | - Denis Cyr
- Medical Genetics Service, Department of Laboratory Medicine, CHU Sherbrooke and Department of Pediatrics, Université de Sherbrooke, Québec, Canada
| | - Shupei Wang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Grant A Mitchell
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
26
|
Sakallioglu IT, Tripp B, Kubik J, Casey CA, Thomes P, Powers R. Multiomics Approach Captures Hepatic Metabolic Network Altered by Chronic Ethanol Administration. BIOLOGY 2022; 12:28. [PMID: 36671721 PMCID: PMC9855439 DOI: 10.3390/biology12010028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Using a multiplatform and multiomics approach, we identified metabolites, lipids, proteins, and metabolic pathways that were altered in the liver after chronic ethanol administration. A functional enrichment analysis of the multiomics dataset revealed that rats treated with ethanol experienced an increase in hepatic fatty acyl content, which is consistent with an initial development of steatosis. The nuclear magnetic resonance spectroscopy (NMR) and liquid chromatography-mass spectrometry (LC-MS) metabolomics data revealed that the chronic ethanol exposure selectively modified toxic substances such as an increase in glucuronidation tyramine and benzoyl; and a depletion in cholesterol-conjugated glucuronides. Similarly, the lipidomics results revealed that ethanol decreased diacylglycerol, and increased triacylglycerol, sterol, and cholesterol biosynthesis. An integrated metabolomics and lipidomics pathway analysis showed that the accumulation of hepatic lipids occurred by ethanol modulation of the upstream lipid regulatory pathways, specifically glycolysis and glucuronides pathways. A proteomics analysis of lipid droplets isolated from control EtOH-fed rats and a subsequent functional enrichment analysis revealed that the proteomics data corroborated the metabolomic and lipidomic findings that chronic ethanol administration altered the glucuronidation pathway.
Collapse
Affiliation(s)
- Isin Tuna Sakallioglu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Bridget Tripp
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588-0665, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| | - Jacy Kubik
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Carol A. Casey
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Paul Thomes
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA
| |
Collapse
|
27
|
Alcohol, Resistance Exercise, and mTOR Pathway Signaling: An Evidence-Based Narrative Review. Biomolecules 2022; 13:biom13010002. [PMID: 36671386 PMCID: PMC9855961 DOI: 10.3390/biom13010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle mass is determined by the balance between muscle protein synthesis (MPS) and degradation. Several intracellular signaling pathways control this balance, including mammalian/mechanistic target of rapamycin (mTOR) complex 1 (C1). Activation of this pathway in skeletal muscle is controlled, in part, by nutrition (e.g., amino acids and alcohol) and exercise (e.g., resistance exercise (RE)). Acute and chronic alcohol use can result in myopathy, and evidence points to altered mTORC1 signaling as a contributing factor. Moreover, individuals who regularly perform RE or vigorous aerobic exercise are more likely to use alcohol frequently and in larger quantities. Therefore, alcohol may antagonize beneficial exercise-induced increases in mTORC1 pathway signaling. The purpose of this review is to synthesize up-to-date evidence regarding mTORC1 pathway signaling and the independent and combined effects of acute alcohol and RE on activation of the mTORC1 pathway. Overall, acute alcohol impairs and RE activates mTORC1 pathway signaling; however, effects vary by model, sex, feeding, training status, quantity, etc., such that anabolic stimuli may partially rescue the alcohol-mediated pathway inhibition. Likewise, the impact of alcohol on RE-induced mTORC1 pathway signaling appears dependent on several factors including nutrition and sex, although many questions remain unanswered. Accordingly, we identify gaps in the literature that remain to be elucidated to fully understand the independent and combined impacts of alcohol and RE on mTORC1 pathway signaling.
Collapse
|
28
|
Naraki K, Rameshrad M, Hosseinzadeh H. Protective effects and therapeutic applications of ellagic acid against natural and synthetic toxicants: A review article. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1402-1415. [PMID: 36544528 PMCID: PMC9742565 DOI: 10.22038/ijbms.2022.64790.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/01/2022] [Indexed: 12/24/2022]
Abstract
Traditional herbal drugs are widely used for the treatment of various diseases. Ellagic acid (EA) as an herbal polyphenol metabolite exists in many medicinal plants. EA has an important role against natural and chemical toxicities due to its antioxidant and anti-inflammatory properties. For this review, several search engines or databases such as PubMed, Scopus, the Web of Science, and Google Scholar were used, and the most relevant published papers till February 2022 were included. The protective effects of EA against natural and chemical compounds are mediated through molecular mechanisms including scavenging of free radicals, modulation of proinflammatory cytokine synthesis, and reduction of lipid peroxidation. These properties make EA a highly fascinating compound that may contribute to different aspects of health; whereas, more studies are needed, especially on the pharmacokinetic profile of EA. In this review, we selected articles that include the protective effect of EA against several synthetic and natural toxins such as aflatoxin, lipopolysaccharide, acrylamide, and rotenone.
Collapse
Affiliation(s)
- Karim Naraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran, Student Research Committee, Mashhad University of Medical Science, Mashhad, Iran
| | - Maryam Rameshrad
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran, Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding author: Hossein Hosseinzadeh. Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-51-38819042; Fax: +98-51-38823251;
| |
Collapse
|
29
|
Yamauchi T, Shangraw S, Zhai Z, Ravindran Menon D, Batta N, Dellavalle RP, Fujita M. Alcohol as a Non-UV Social-Environmental Risk Factor for Melanoma. Cancers (Basel) 2022; 14:5010. [PMID: 36291794 PMCID: PMC9599745 DOI: 10.3390/cancers14205010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
Although cancer mortality has declined among the general population, the incidence of melanoma continues to rise. While identifying high-risk cohorts with genetic risk factors improves public health initiatives and clinical care management, recognizing modifiable risk factors such as social-environmental risk factors would also affect the methods of patient outreach and education. One major modifiable social-environmental risk factor associated with melanoma is ultraviolet (UV) radiation. However, not all forms of melanoma are correlated with sun exposure or occur in sun-exposed areas. Additionally, UV exposure is rarely associated with tumor progression. Another social-environmental factor, pregnancy, does not explain the sharply increased incidence of melanoma. Recent studies have demonstrated that alcohol consumption is positively linked with an increased risk of cancers, including melanoma. This perspective review paper summarizes epidemiological data correlating melanoma incidence with alcohol consumption, describes the biochemical mechanisms of ethanol metabolism, and discusses how ethanol and ethanol metabolites contribute to human cancer, including melanoma.
Collapse
Affiliation(s)
- Takeshi Yamauchi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah Shangraw
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zili Zhai
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dinoop Ravindran Menon
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nisha Batta
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Robert P Dellavalle
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
30
|
Simon L, Molina PE. Cellular Bioenergetics: Experimental Evidence for Alcohol-induced Adaptations. FUNCTION 2022; 3:zqac039. [PMID: 36120487 PMCID: PMC9469757 DOI: 10.1093/function/zqac039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 01/07/2023] Open
Abstract
At-risk alcohol use is associated with multisystemic effects and end-organ injury, and significantly contributes to global health burden. Several alcohol-mediated mechanisms have been identified, with bioenergetic maladaptation gaining credence as an underlying pathophysiological mechanism contributing to cellular injury. This evidence-based review focuses on the current knowledge of alcohol-induced bioenergetic adaptations in metabolically active tissues: liver, cardiac and skeletal muscle, pancreas, and brain. Alcohol metabolism itself significantly interferes with bioenergetic pathways in tissues, particularly the liver. Alcohol decreases states of respiration in the electron transport chain, and activity and expression of respiratory complexes, with a net effect to decrease ATP content. In addition, alcohol dysregulates major metabolic pathways, including glycolysis, the tricarboxylic acid cycle, and fatty acid oxidation. These bioenergetic alterations are influenced by alcohol-mediated changes in mitochondrial morphology, biogenesis, and dynamics. The review highlights similarities and differences in bioenergetic adaptations according to tissue type, pattern of (acute vs. chronic) alcohol use, and energy substrate availability. The compromised bioenergetics synergizes with other critical pathophysiological mechanisms, including increased oxidative stress and accelerates cellular dysfunction, promoting senescence, programmed cell death, and end-organ injury.
Collapse
Affiliation(s)
- Liz Simon
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Patricia E Molina
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| |
Collapse
|
31
|
Wang L, Zhang W, Wang R, Guang Y, Zhang D, Zhang C, Hu M, Wei Z, Zhang W, Yun K, Guo Z. Estimating the time of last drinking from blood ethyl glucuronide and ethyl sulphate concentrations. Sci Rep 2022; 12:14262. [PMID: 35995832 PMCID: PMC9395533 DOI: 10.1038/s41598-022-18527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/16/2022] [Indexed: 11/09/2022] Open
Abstract
The determination of length of time from the last drinking is critical for cases like drunk driving, sexual assault victims, and also postmortem suspected poisoning cases. The study was aimed to established a method of estimating the time of last drinking through the pharmacokinetic study of conjugation metabolites of alcohol in blood after a single oral dose. Twenty-six volunteers (14 males) consumed alcohol with food at a fixed dose of 0.72 g/kg after fasting for 12 h. Five milliliters of blood were collected 120 h after the start of drinking, and all samples were analyzed with headspace-gas chromatography and high-performance liquid chromatography–tandem mass spectrometry. The time point of last drinking was estimated through the relationship between the concentration ratio of ethyl glucuronide to ethyl sulphate and the length of time after drinking. Pharmacokinetic parameters were analyzed by a pharmacokinetic software DAS according to the non-compartment model. A good correlation model was obtained from the relationship between concentration ratio of ethyl glucuronide to ethyl sulphate in blood and the time of alcohol use, and the margin of error was mostly lower than 10%. The time of maximum concentration, maximum concentration, and elimination half-life of ethyl glucuronide in blood were 4.12 ± 1.07 h, 0.31 ± 0.11 mg/L and 2.56 ± 0.89 h; the time of maximum concentration, maximum concentration, and elimination half-life of ethyl sulphate in blood were 3.02 ± 0.70 h, 0.17 ± 0.04 mg/L, and 2.04 ± 0.76 h. The study established a potential method to estimate the length of time after a moderate oral dose, and provided pharmacokinetic parameters of ethyl glucuronide and ethyl sulphate in Chinese population.
Collapse
Affiliation(s)
- Lele Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, China.,Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, 030600, Shanxi, China
| | - Wei Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing, 100037, China
| | - Ruilong Wang
- Wanbailin District Public Security Bureau, Taiyuan, 030024, China
| | - Yongli Guang
- Insititute of Forensic Science Tianjinn Binhai New Area Public Security Bureau, Tianjin, 300457, China
| | - Daming Zhang
- Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, 030600, Shanxi, China
| | - Chao Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, China.,Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, 030600, Shanxi, China
| | - Meng Hu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, China.,Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, 030600, Shanxi, China
| | - Zhiwen Wei
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, China. .,Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, 030600, Shanxi, China.
| | - Wenfang Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, China. .,Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, 030600, Shanxi, China.
| | - Keming Yun
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, China. .,Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, 030600, Shanxi, China.
| | - Zhongyuan Guo
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, 030600, Shanxi, China. .,Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong, 030600, Shanxi, China.
| |
Collapse
|
32
|
Park SH, Lee YS, Sim J, Seo S, Seo W. Alcoholic liver disease: a new insight into the pathogenesis of liver disease. Arch Pharm Res 2022; 45:447-459. [PMID: 35761115 DOI: 10.1007/s12272-022-01392-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
Abstract
Excessive alcohol consumption contributes to a broad clinical spectrum of liver diseases, from simple steatosis to end-stage hepatocellular carcinoma. The liver is the primary organ that metabolizes ingested alcohol and is exquisitely sensitive to alcohol intake. Alcohol metabolism is classified into two pathways: oxidative and non-oxidative alcohol metabolism. Both oxidative and non-oxidative alcohol metabolisms and their metabolites have toxic consequences for multiple organs, including the liver, adipose tissue, intestine, and pancreas. Although many studies have focused on the effects of oxidative alcohol metabolites on liver damage, the importance of non-oxidative alcohol metabolites in cellular damage has also been discovered. Furthermore, extrahepatic alcohol effects are crucial for providing additional information necessary for the progression of alcoholic liver disease. Therefore, studying the effects of alcohol-producing metabolites and interorgan crosstalk between the liver and peripheral organs that express ethanol-metabolizing enzymes will facilitate a comprehensive understanding of the pathogenesis of alcoholic liver disease. This review focuses on alcohol-metabolite-associated hepatotoxicity due to oxidative and non-oxidative alcohol metabolites and the role of interorgan crosstalk in alcoholic liver disease pathogenesis.
Collapse
Affiliation(s)
- Seol Hee Park
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Young-Sun Lee
- Department of Internal Medicine, Korea University Medical Center, Seoul, Republic of Korea
| | - Jaemin Sim
- Lab of Hepatotoxicity, College of Pharmacy, Ewha Womans University, #52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03765, Republic of Korea
| | - Seonkyung Seo
- Lab of Hepatotoxicity, College of Pharmacy, Ewha Womans University, #52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03765, Republic of Korea
| | - Wonhyo Seo
- Lab of Hepatotoxicity, College of Pharmacy, Ewha Womans University, #52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03765, Republic of Korea.
| |
Collapse
|
33
|
Abstract
At-risk alcohol use is a major contributor to the global health care burden and leads to preventable deaths and diseases including alcohol addiction, alcoholic liver disease, cardiovascular disease, diabetes, traumatic injuries, gastrointestinal diseases, cancers, and fetal alcohol syndrome. Excessive and frequent alcohol consumption has increasingly been linked to alcohol-associated tissue injury and pathophysiology, which have significant adverse effects on multiple organ systems. Extensive research in animal and in vitro models has elucidated the salient mechanisms involved in alcohol-induced tissue and organ injury. In some cases, these pathophysiological mechanisms are shared across organ systems. The major alcohol- and alcohol metabolite-mediated mechanisms include oxidative stress, inflammation and immunometabolic dysregulation, gut leak and dysbiosis, cell death, extracellular matrix remodeling, endoplasmic reticulum stress, mitochondrial dysfunction, and epigenomic modifications. These mechanisms are complex and interrelated, and determining the interplay among them will make it possible to identify how they synergistically or additively interact to cause alcohol-mediated multiorgan injury. In this article, we review the current understanding of pathophysiological mechanisms involved in alcohol-induced tissue injury.
Collapse
Affiliation(s)
- Liz Simon
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA;
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Flavia M Souza-Smith
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Patricia E Molina
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA;
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
34
|
Lappas NT, Lappas CM. Ethanol. Forensic Toxicol 2022. [DOI: 10.1016/b978-0-12-819286-3.00021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Finelli R, Mottola F, Agarwal A. Impact of Alcohol Consumption on Male Fertility Potential: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:ijerph19010328. [PMID: 35010587 PMCID: PMC8751073 DOI: 10.3390/ijerph19010328] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/11/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
Alcohol abuse disorder is a serious condition, implicating more than 15 million people aged 12 years and older in 2019 in the United States. Ethanol (or ethyl alcohol) is mainly oxidized in the liver, resulting in the synthesis of acetaldehyde and acetate, which are toxic and carcinogenic metabolites, as well as in the generation of a reductive cellular environment. Moreover, ethanol can interact with lipids, generating fatty acid ethyl esters and phosphatidylethanol, which interfere with physiological cellular pathways. This narrative review summarizes the impact of excessive alcohol consumption on male fertility by describing its metabolism and how ethanol consumption may induce cellular damage. Furthermore, the impact of alcohol consumption on hormonal regulation, semen quality, and genetic and epigenetic regulations is discussed based on evidence from animal and human studies, focusing on the consequences on the offspring. Finally, the limitations of the current evidence are discussed. Our review highlights the association between chronic alcohol consumption and poor semen quality, mainly due to the development of oxidative stress, as well as its genotoxic impact on hormonal regulation and DNA integrity, affecting the offspring’s health. New landscapes of investigation are proposed for the identification of molecular markers for alcohol-associated infertility, with a focus on advanced OMICS-based approaches applied to the analysis of semen samples.
Collapse
Affiliation(s)
- Renata Finelli
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44106, USA;
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy;
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44106, USA;
- Correspondence: ; Tel.: +1-(214)-444-9485
| |
Collapse
|
36
|
Sensitivity of SARS-CoV-2 towards Alcohols: Potential for Alcohol-Related Toxicity in Humans. Life (Basel) 2021; 11:life11121334. [PMID: 34947865 PMCID: PMC8708630 DOI: 10.3390/life11121334] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative organism that is highly contagious and has been responsible for more than 240 million cases and 5 million deaths worldwide. Using masks, soap-based hand washing, and maintaining social distancing are some of the common methods to prevent the spread of the virus. In the absence of any preventive medications, from the outset of pandemic, alcohol-based hand sanitizers (ABHS) have been one of the first-line measures to control transmission of Coronavirus Disease 2019 (COVID-19). The purpose of this narrative review is to evaluate the sensitivity of SARS-CoV-2 towards ABHS and understand their potential adverse effects on humans. Ethanol and isopropanol have been the most commonly used alcohols in ABHS (e.g., gel, solution, spray, wipes, or foam) with alcohol in the range of 70–85% v/v in World Health Organization or Food and Drug Administration-approved ABHS. The denaturation of proteins around the envelope of SARS-CoV-2 positive sense single-stranded RNA virus is the major mechanism of action of ABHS. Due to frequent use of high-percentage alcohol-containing ABHS over an extended period of time, the oral, dermal, or pulmonary absorption is a possibility. In addition to the systemic toxicity, topical adverse effects such as contact dermatitis and atopic dermatitis are plausible and have been reported during COVID-19. ABHS appear to be effective in controlling the transmission of SARS-CoV-2 with the concern of oral, dermal, or pulmonary absorption.
Collapse
|
37
|
Zhu L, Pei W, Thiele I, Mahadevan R. Integration of a physiologically-based pharmacokinetic model with a whole-body, organ-resolved genome-scale model for characterization of ethanol and acetaldehyde metabolism. PLoS Comput Biol 2021; 17:e1009110. [PMID: 34351898 PMCID: PMC8370625 DOI: 10.1371/journal.pcbi.1009110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 08/17/2021] [Accepted: 05/24/2021] [Indexed: 11/25/2022] Open
Abstract
Ethanol is one of the most widely used recreational substances in the world and due to its ubiquitous use, ethanol abuse has been the cause of over 3.3 million deaths each year. In addition to its effects, ethanol's primary metabolite, acetaldehyde, is a carcinogen that can cause symptoms of facial flushing, headaches, and nausea. How strongly ethanol or acetaldehyde affects an individual depends highly on the genetic polymorphisms of certain genes. In particular, the genetic polymorphisms of mitochondrial aldehyde dehydrogenase, ALDH2, play a large role in the metabolism of acetaldehyde. Thus, it is important to characterize how genetic variations can lead to different exposures and responses to ethanol and acetaldehyde. While the pharmacokinetics of ethanol metabolism through alcohol dehydrogenase have been thoroughly explored in previous studies, in this paper, we combined a base physiologically-based pharmacokinetic (PBPK) model with a whole-body genome-scale model (WBM) to gain further insight into the effect of other less explored processes and genetic variations on ethanol metabolism. This combined model was fit to clinical data and used to show the effect of alcohol concentrations, organ damage, ALDH2 enzyme polymorphisms, and ALDH2-inhibiting drug disulfiram on ethanol and acetaldehyde exposure. Through estimating the reaction rates of auxiliary processes with dynamic Flux Balance Analysis, The PBPK-WBM was able to navigate around a lack of kinetic constants traditionally associated with PK modelling and demonstrate the compensatory effects of the body in response to decreased liver enzyme expression. Additionally, the model demonstrated that acetaldehyde exposure increased with higher dosages of disulfiram and decreased ALDH2 efficiency, and that moderate consumption rates of ethanol could lead to unexpected accumulations in acetaldehyde. This modelling framework combines the comprehensive steady-state analyses from genome-scale models with the dynamics of traditional PK models to create a highly personalized form of PBPK modelling that can push the boundaries of precision medicine.
Collapse
Affiliation(s)
- Leo Zhu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - William Pei
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Ines Thiele
- School of Medicine, National University of Ireland at Galway, Galway, Ireland
- Discipline of Microbiology, National University of Ireland at Galway, Galway, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Rodriguez FD, Coveñas R. Biochemical Mechanisms Associating Alcohol Use Disorders with Cancers. Cancers (Basel) 2021; 13:cancers13143548. [PMID: 34298760 PMCID: PMC8306032 DOI: 10.3390/cancers13143548] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Of all yearly deaths attributable to alcohol consumption globally, approximately 12% are due to cancers, representing approximately 0.4 million deceased individuals. Ethanol metabolism disturbs cell biochemistry by targeting the structure and function of essential biomolecules (proteins, nucleic acids, and lipids) and by provoking alterations in cell programming that lead to cancer development and cancer malignancy. A better understanding of the metabolic and cell signaling realm affected by ethanol is paramount to designing effective treatments and preventive actions tailored to specific neoplasias. Abstract The World Health Organization identifies alcohol as a cause of several neoplasias of the oropharynx cavity, esophagus, gastrointestinal tract, larynx, liver, or female breast. We review ethanol’s nonoxidative and oxidative metabolism and one-carbon metabolism that encompasses both redox and transfer reactions that influence crucial cell proliferation machinery. Ethanol favors the uncontrolled production and action of free radicals, which interfere with the maintenance of essential cellular functions. We focus on the generation of protein, DNA, and lipid adducts that interfere with the cellular processes related to growth and differentiation. Ethanol’s effects on stem cells, which are responsible for building and repairing tissues, are reviewed. Cancer stem cells (CSCs) of different origins suffer disturbances related to the expression of cell surface markers, enzymes, and transcription factors after ethanol exposure with the consequent dysregulation of mechanisms related to cancer metastasis or resistance to treatments. Our analysis aims to underline and discuss potential targets that show more sensitivity to ethanol’s action and identify specific metabolic routes and metabolic realms that may be corrected to recover metabolic homeostasis after pharmacological intervention. Specifically, research should pay attention to re-establishing metabolic fluxes by fine-tuning the functioning of specific pathways related to one-carbon metabolism and antioxidant processes.
Collapse
Affiliation(s)
- Francisco D. Rodriguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, University of Salamanca, 37007 Salamanca, Spain
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), 37007 Salamanca, Spain;
- Correspondence: ; Tel.: +34-677-510-030
| | - Rafael Coveñas
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), 37007 Salamanca, Spain;
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
39
|
Hyun J, Han J, Lee C, Yoon M, Jung Y. Pathophysiological Aspects of Alcohol Metabolism in the Liver. Int J Mol Sci 2021; 22:ijms22115717. [PMID: 34071962 PMCID: PMC8197869 DOI: 10.3390/ijms22115717] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD) is a globally prevalent chronic liver disease caused by chronic or binge consumption of alcohol. The liver is the major organ that metabolizes alcohol; therefore, it is particularly sensitive to alcohol intake. Metabolites and byproducts generated during alcohol metabolism cause liver damage, leading to ALD via several mechanisms, such as impairing lipid metabolism, intensifying inflammatory reactions, and inducing fibrosis. Despite the severity of ALD, the development of novel treatments has been hampered by the lack of animal models that fully mimic human ALD. To overcome the current limitations of ALD studies and therapy development, it is necessary to understand the molecular mechanisms underlying alcohol-induced liver injury. Hence, to provide insights into the progression of ALD, this review examines previous studies conducted on alcohol metabolism in the liver. There is a particular focus on the occurrence of ALD caused by hepatotoxicity originating from alcohol metabolism.
Collapse
Affiliation(s)
- Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea;
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan 31116, Korea
| | - Jinsol Han
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Korea; (J.H.); (C.L.)
| | - Chanbin Lee
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Korea; (J.H.); (C.L.)
| | - Myunghee Yoon
- Department of Surgery, Division of Hepatobiliary and Pancreas Surgery, Biomedical Research Institute, Pusan National University, Pusan 46241, Korea;
| | - Youngmi Jung
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Korea; (J.H.); (C.L.)
- Department of Biological Sciences, Pusan National University, Pusan 46241, Korea
- Correspondence: ; Tel.: +82-51-510-2262
| |
Collapse
|
40
|
Grüner Nielsen D, Andersen K, Søgaard Nielsen A, Juhl C, Mellentin A. Consistency between self-reported alcohol consumption and biological markers among patients with alcohol use disorder - A systematic review. Neurosci Biobehav Rev 2021; 124:370-385. [PMID: 33581224 DOI: 10.1016/j.neubiorev.2021.02.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND No systematic review has yet examined the consistency between self-reports of alcohol consumption and alcohol biomarkers among patients in treatment for alcohol use disorders (AUD). Therefore, we aimed to provide an overview of the consistency between self-reported alcohol intake and biomarkers among patients in treatment for AUD. METHODS The electronical databases MEDLINE, PsycINFO, EMBASE, Cochrane Database of Systematic Reviews (CDSR) and CENTRAL were searched for all original studies that examined the validity of self-reported alcohol consumption using a biological marker in samples of patients with AUD. Eligible studies were included in a qualitative synthesis of the outcomes. Quality assessment was conducted with the quality assessment tool for Observational Cohort and Cross-sectional studies, developed by The National Heart, Lung and Blood Institute. RESULTS The search identified 7672 hits, and 11 papers comprising 13 eligible studies were included. All the identified studies revealed inconsistencies between self-reporting and biomarkers. Under-reporting was the most common type of inconsistency across short-, intermediate- and long-term biomarkers. For short-term markers, under-reporting was indicated in 7 studies (n = 15-585) in a range from 5.5%-56.0% of the patients, and over-reporting in 2 studies (n = 34-65) in a range from 5.9%-74.1%. Only under-reporting was reported for intermediate-term, direct markers and was indicated in 2 studies (n = 18-54) in a range from 5.0%-50.0% of the patients. Although the results for long-term biomarkers were not reported consistently across the studies, under-reporting was indicated in 3 studies (n = 73-1580) in a range from 0.1%-40.0% of the patients, and over-reporting in 2 studies (n = 15-1580) in a range from 13.0%-70.6%. Correlations between self-reported alcohol consumption and biological markers were strongest for the intermediate-term direct markers, ranging from moderate to strong. For short-term and long-term markers, the correlations were mostly weak. Most of the studies were quality rated as fair. CONCLUSION The findings indicate that inconsistency between self-reported alcohol consumption and biomarkers may occur in a considerable proportion of patients with AUD. However, further studies applying more sensitive, specific, and easily assessable biological markers are warranted to confirm this preliminary synthesis. PROSPERO registration no.: CRD42018105308.
Collapse
Affiliation(s)
- Dorthe Grüner Nielsen
- Unit for Clinical Alcohol Research, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Kjeld Andersen
- Unit for Clinical Alcohol Research, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; BRIDGE, Brain Research, Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Open, Odense Patient Explorative Data Network, Odense University Hospital, Odense, Denmark
| | - Anette Søgaard Nielsen
- Unit for Clinical Alcohol Research, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; BRIDGE, Brain Research, Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Carsten Juhl
- Department of Physiotherapy and Occupational Therapy, Copenhagen University Hospital, Gentofte, Herlev, Denmark; Department of Sport Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Angelina Mellentin
- Unit for Clinical Alcohol Research, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; BRIDGE, Brain Research, Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Tele-Psychiatric Center, Region of Southern Denmark, Odense, Denmark
| |
Collapse
|
41
|
Restorative Effects of Aloe Vera Gel on Alcohol Induced Hepato-Nephrocellular Dysfunction. FOLIA VETERINARIA 2021. [DOI: 10.2478/fv-2021-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Excessive alcohol intake is associated with pathological conditions that are detrimental. Aloe vera is a plant that possesses antimicrobial and anti-oxidant properties. This study investigated the effects of Aloe vera gel on alcohol induced hepato-nephrocellular dysfunction in rats using the specific activities of glutathione-S-transferase (GST), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma glutamyl transferase (GGT) and lactate dehydrogenase (LDH) as well as concentration of some electrolytes as indices. Six groups of male albino rats containing 5 rats each were used in the experiments. Groups A and B were administered distilled water and 50 % (v/v) alcohol for 21 days respectively. Groups C and D were administered 50 % (v/v) alcohol, while groups E and F were administered distilled water for the first 14 days, followed by co-administration (without stopping alcohol or distilled water administrations) of 125 mg and 250 mg.kg–1 body weight Aloe vera gel respectively for 7 days. The administration of Aloe vera gel extract significantly modulated serum electrolytes imbalances with concomitant lowering of ALT, AST, ALP, GGT, LDH and GST rates when compared to group B. These results suggested the restoration of alcohol induced dys-function by Aloe vera gel.
Collapse
|
42
|
Translational Approaches with Antioxidant Phytochemicals against Alcohol-Mediated Oxidative Stress, Gut Dysbiosis, Intestinal Barrier Dysfunction, and Fatty Liver Disease. Antioxidants (Basel) 2021; 10:antiox10030384. [PMID: 33806556 PMCID: PMC8000766 DOI: 10.3390/antiox10030384] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging data demonstrate the important roles of altered gut microbiomes (dysbiosis) in many disease states in the peripheral tissues and the central nervous system. Gut dysbiosis with decreased ratios of Bacteroidetes/Firmicutes and other changes are reported to be caused by many disease states and various environmental factors, such as ethanol (e.g., alcohol drinking), Western-style high-fat diets, high fructose, etc. It is also caused by genetic factors, including genetic polymorphisms and epigenetic changes in different individuals. Gut dysbiosis, impaired intestinal barrier function, and elevated serum endotoxin levels can be observed in human patients and/or experimental rodent models exposed to these factors or with certain disease states. However, gut dysbiosis and leaky gut can be normalized through lifestyle alterations such as increased consumption of healthy diets with various fruits and vegetables containing many different kinds of antioxidant phytochemicals. In this review, we describe the mechanisms of gut dysbiosis, leaky gut, endotoxemia, and fatty liver disease with a specific focus on the alcohol-associated pathways. We also mention translational approaches by discussing the benefits of many antioxidant phytochemicals and/or their metabolites against alcohol-mediated oxidative stress, gut dysbiosis, intestinal barrier dysfunction, and fatty liver disease.
Collapse
|
43
|
Fujii C, Zorumski CF, Izumi Y. Ethanol, neurosteroids and cellular stress responses: Impact on central nervous system toxicity, inflammation and autophagy. Neurosci Biobehav Rev 2021; 124:168-178. [PMID: 33561510 DOI: 10.1016/j.neubiorev.2021.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/19/2021] [Indexed: 01/21/2023]
Abstract
Alcohol intake can impair brain function, in addition to other organs such as the liver and kidney. In the brain ethanol can be detrimental to memory formation, through inducing the integrated stress response/endoplasmic reticulum stress/unfolded protein response and the molecular mechanisms linking stress to other events such as NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammation and autophagy. This literature review aims to provide an overview of our current understanding of the molecular mechanisms involved in ethanol-induced damage with endoplasmic reticulum stress, integrated stress response, NLRP3 inflammation and autophagy, while discussing the impact of neurosteroids and oxysterols, including allopregnanolone, 25-hydroxycholesterol and 24S-hydroxycholesterol, on the central nervous system.
Collapse
Affiliation(s)
- Chika Fujii
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States
| | - Charles F Zorumski
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States
| | - Yukitoshi Izumi
- Department of Psychiatry and Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
44
|
Arnts J, Vanlerberghe BTK, Roozen S, Crunelle CL, Masclee AAM, Olde‐Damink SWM, Heeren RMA, van Nuijs A, Neels H, Nevens F, Verbeek J. Diagnostic Accuracy of Biomarkers of Alcohol Use in Patients With Liver Disease: A Systematic Review. Alcohol Clin Exp Res 2021; 45:25-37. [PMID: 33190239 PMCID: PMC7898850 DOI: 10.1111/acer.14512] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/09/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND AIMS Alcohol-related liver disease is the most frequent cause of cirrhosis and a major indication for liver transplantation. Several alcohol use biomarkers have been developed in recent years and are already in use in several centers. However, in patients with liver disease their diagnostic performance might be influenced by altered biomarker formation by hepatic damage, altered excretion by kidney dysfunction and diuretics use, and altered deposition in hair and nails. We systematically reviewed studies on the diagnostic accuracy of biomarkers of alcohol use in patients with liver disease and performed a detailed study quality assessment. METHODS A structured search in PubMed/Medline/Embase databases was performed for relevant studies, published until April 28, 2019. The risk of bias and applicability concerns was assessed according to the adapted quality assessment of diagnostic accuracy studies-2 (QUADAS-2) checklist. RESULTS Twelve out of 6,449 studies met inclusion criteria. Urinary ethyl glucuronide and urinary ethyl sulfate showed high sensitivity (70 to 89 and 73 to 82%, respectively) and specificity (93 to 99 and 86 to 89%, respectively) for assessing any amount of alcohol use in the past days. Serum carbohydrate-deficient transferrin showed low sensitivity but higher specificity (40 to 79 and 57 to 99%, respectively) to detect excessive alcohol use in the past weeks. Whole blood phosphatidylethanol showed high sensitivity and specificity (73 to 100 and 90 to 96%, respectively) to detect any amount of alcohol use in the previous weeks. Scalp hair ethyl glucuronide showed high sensitivity (85 to 100%) and specificity (97 to 100%) for detecting chronic excessive alcohol use in the past 3 to 6 months. Main limitations of the current evidence are the lack of an absolute gold standard to assess alcohol use, heterogeneous study populations, and the paucity of studies. CONCLUSIONS Urinary and scalp hair ethyl glucuronide are currently the most validated alcohol use biomarkers in patients with liver disease with good diagnostic accuracies. Phosphatidylethanol is a highly promising alcohol use biomarker, but so far less validated in liver patients. Alcohol use biomarkers can complement each other regarding diagnostic time window. More validation studies on alcohol use biomarkers in patients with liver disease are needed.
Collapse
Affiliation(s)
- Janique Arnts
- From theDivision of Gastroenterology and Hepatology(JA, BTKV, AAMM)Department of Internal MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Benedict T. K. Vanlerberghe
- From theDivision of Gastroenterology and Hepatology(JA, BTKV, AAMM)Department of Internal MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Sylvia Roozen
- Governor Kremers Centre‐Maastricht University Medical Centre(SR)MaastrichtThe Netherlands
| | - Cleo L. Crunelle
- Department of Psychiatry(CLC)Vrije Universiteit Brussel (VUB)Universitair Ziekenhuis Brussel (UZ Brussel)BrusselsBelgium
- Toxicological Center(CLC, AN, HN)University of AntwerpAntwerpBelgium
| | - Ad A. M. Masclee
- From theDivision of Gastroenterology and Hepatology(JA, BTKV, AAMM)Department of Internal MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism(AAMM, SWMO‐D)Maastricht UniversityMaastrichtThe Netherlands
| | - Steven W. M. Olde‐Damink
- NUTRIM School of Nutrition and Translational Research in Metabolism(AAMM, SWMO‐D)Maastricht UniversityMaastrichtThe Netherlands
- Department of Surgery(Maastricht University Medical CenterMaastrichtThe Netherlands
- Department of General, Visceral and Transplantation Surgery(RWTH University Hospital AachenAachenGermany
| | - Ron M. A. Heeren
- Division of Imaging Mass Spectrometry(RMAH)Maastricht MultiModal Molecular Imaging (M4I) InstituteMaastricht UniversityMaastrichtThe Netherlands
| | | | - Hugo Neels
- Toxicological Center(CLC, AN, HN)University of AntwerpAntwerpBelgium
| | - Frederik Nevens
- Department of Gastroenterology and Hepatology(FN, JV)University Hospitals KU LeuvenLeuvenBelgium
| | - Jef Verbeek
- Department of Gastroenterology and Hepatology(FN, JV)University Hospitals KU LeuvenLeuvenBelgium
| |
Collapse
|
45
|
Mackus M, van de Loo AJAE, Garssen J, Kraneveld AD, Scholey A, Verster JC. The Role of Alcohol Metabolism in the Pathology of Alcohol Hangover. J Clin Med 2020; 9:E3421. [PMID: 33113870 PMCID: PMC7692803 DOI: 10.3390/jcm9113421] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
The limited number of available studies that examined the pathology of alcohol hangover focused on biomarkers of alcohol metabolism, oxidative stress and the inflammatory response to alcohol as potentially important determinants of hangover severity. The available literature on alcohol metabolism and oxidative stress is reviewed in this article. The current body of evidence suggests a direct relationship between blood ethanol concentration and hangover severity, whereas this association is not significant for acetaldehyde. The rate of alcohol metabolism seems to be an important determinant of hangover severity. That is, fast elimination of ethanol is associated with experiencing less severe hangovers. An explanation for this observation may be the fact that ethanol-in contrast to acetaldehyde-is capable of crossing the blood-brain barrier. With slower ethanol metabolism, more ethanol is able to reach the brain and elicit hangover symptoms. Hangover severity was also significantly associated with biomarkers of oxidative stress. More oxidative stress in the first hours after alcohol consumption was associated with less severe next-day hangovers (i.e., a significant negative correlation was found between hangover severity and malondialdehyde). On the contrary, more oxidative stress at a later stage after alcohol consumption was associated with having more severe next-day hangovers (i.e., a significant positive correlation was found between hangover severity and 8-isoprostane). In conclusion, assessment of biomarkers of alcohol metabolism suggests that fast elimination of ethanol is associated with experiencing less severe hangovers. More research is needed to further examine the complex interrelationship between alcohol metabolism, the role of acetaldehyde and oxidative stress and antioxidants, and the pathology of the alcohol hangover.
Collapse
Affiliation(s)
- Marlou Mackus
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584CG Utrecht, The Netherlands; (M.M.); (A.J.v.d.L.); (J.G.); (A.D.K.)
| | - Aurora JAE van de Loo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584CG Utrecht, The Netherlands; (M.M.); (A.J.v.d.L.); (J.G.); (A.D.K.)
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584CM Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584CG Utrecht, The Netherlands; (M.M.); (A.J.v.d.L.); (J.G.); (A.D.K.)
- Global Centre of Excellence Immunology, Nutricia Danone Research, 3584CT Utrecht, The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584CG Utrecht, The Netherlands; (M.M.); (A.J.v.d.L.); (J.G.); (A.D.K.)
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia;
| | - Joris C. Verster
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584CG Utrecht, The Netherlands; (M.M.); (A.J.v.d.L.); (J.G.); (A.D.K.)
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584CM Utrecht, The Netherlands
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, VIC 3122, Australia;
| |
Collapse
|
46
|
Quantitation of phosphatidylethanol in dried blood after volumetric absorptive microsampling. Talanta 2020; 223:121694. [PMID: 33303146 DOI: 10.1016/j.talanta.2020.121694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Stimulated by the increased recognition of phosphatidylethanol (PEth) as sensitive direct marker of alcohol intake, the Ghent University's Laboratory of Toxicology and the National Institute of Criminalistics and Criminology combined their efforts to develop a quantitative method. To facilitate implementation the focus was on the use of a sampling technique which allows quick and easy blood collection, without the need of dedicated personnel at any place/any time. In the meantime the cooperation of the two labs should also allow to initiate a Belgian network of laboratories capable of quantifying PEth. METHODS Dried blood microsamples were collected via volumetric absorptive microsampling (VAMS). PEth 16:0/18:1 was quantified after liquid-liquid extraction using two independent isotope dilution - liquid chromatography - tandem mass spectrometry methods. A systematic review of the entire process at both sites was performed before the final method comparison using samples from 59 routine toxicology cases collected within a one-year time interval. RESULTS Initial differences between both laboratories were solved by focusing on important methodological aspects: (i) trueness verification of the calibration protocol focusing on the primary material, preparation of the stock solutions and adequate equilibration of calibrators and QCs, and (ii) verification of comparability of results obtained with different m/z transitions. Several of these aspects could only be verified by critically assessing spiked and native samples. After a final validation good average comparability of the two methods was observed. The average bias was -0.4%, with 85% of the differences within 20%. Moreover, the methods proved to be reproducible and robust within a one-year time interval. CONCLUSION This study is the first to develop a quantitative volumetric absorptive microsampling based method for PEth measurements, in addition it is the first to perform a systematic comparison of PEth measurements between two laboratories. From the discussion on the encountered pitfalls it is clear that also on a global scale, more efforts are needed to improve interlaboratory agreement.
Collapse
|
47
|
Kubiak-Tomaszewska G, Tomaszewski P, Pachecka J, Struga M, Olejarz W, Mielczarek-Puta M, Nowicka G. Molecular mechanisms of ethanol biotransformation: enzymes of oxidative and nonoxidative metabolic pathways in human. Xenobiotica 2020; 50:1180-1201. [PMID: 32338108 DOI: 10.1080/00498254.2020.1761571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ethanol, as a small-molecule organic compound exhibiting both hydrophilic and lipophilic properties, quickly pass through the biological barriers. Over 95% of absorbed ethanol undergoes biotransformation, the remaining amount is excreted unchanged, mainly with urine and exhaled air.The main route of ethyl alcohol metabolism is its oxidation to acetaldehyde, which is converted into acetic acid with the participation of cytosolic NAD+ - dependent alcohol (ADH) and aldehyde (ALDH) dehydrogenases. Oxidative biotransformation pathways of ethanol also include reactions catalyzed by the microsomal ethanol oxidizing system (MEOS), peroxisomal catalase and aldehyde (AOX) and xanthine (XOR) oxidases. The resulting acetic acid can be activated to acetyl-CoA by the acetyl-CoA synthetase (ACS).It is also possible, to a much smaller extent, non-oxidative routes of ethanol biotransformation including its esterification with fatty acids by ethyl fatty acid synthase (FAEES), re-esterification of phospholipids, especially phosphatidylcholines, with phospholipase D (PLD), coupling with sulfuric acid by alcohol sulfotransferase (SULT) and with glucuronic acid using UDP-glucuronyl transferase (UGT, syn. UDPGT).The intestinal microbiome plays a significant role in the ethanol biotransformation and in the initiation and progression of liver diseases stimulated by ethanol and its metabolite - acetaldehyde, or by lipopolysaccharide and ROS.
Collapse
Affiliation(s)
- Grażyna Kubiak-Tomaszewska
- Department of Biochemistry and Clinical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Tomaszewski
- Department of Biochemistry and Clinical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Jan Pachecka
- Department of Biochemistry and Clinical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Marta Struga
- Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Wioletta Olejarz
- Department of Biochemistry and Clinical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | | | - Grażyna Nowicka
- Department of Biochemistry and Clinical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
48
|
Abstract
Alcohol consumption has long been a part of human culture. However, alcohol consumption levels and alcohol consumption patterns are associated with chronic diseases. Overall, light and moderate alcohol consumption (up to 14 g per day for women and up to 28 g per day for men) may be associated with reduced mortality risk, mainly due to reduced risks for cardiovascular disease and type-2 diabetes. However, chronic heavy alcohol consumption and alcohol abuse lead to alcohol-use disorder, which results in physical and mental diseases such as liver disease, pancreatitis, dementia, and various types of cancer. Risk factors for alcohol-use disorder are largely unknown. Alcohol-use disorder and frequent heavy drinking have detrimental effects on personal health.
Collapse
|
49
|
Xhaferaj M, Naegele E, Parr MK. Ion exchange in supercritical fluid chromatography tandem mass spectrometry (SFC-MS/MS): Application for polar and ionic drugs and metabolites in forensic and anti-doping analysis. J Chromatogr A 2020; 1614:460726. [DOI: 10.1016/j.chroma.2019.460726] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022]
|
50
|
Donohue TM, Osna NA, Kharbanda KK, Thomes PG. Lysosome and proteasome dysfunction in alcohol-induced liver injury. LIVER RESEARCH 2019. [DOI: 10.1016/j.livres.2019.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|