1
|
Slivenecka E, Jurnecka D, Holubova J, Stanek O, Brazdilova L, Cizkova M, Bumba L. The Actinobacillus pleuropneumoniae apxIV operon encodes an antibacterial toxin-immunity pair. Microbiol Res 2025; 292:128043. [PMID: 39740637 DOI: 10.1016/j.micres.2024.128043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
The ApxIVA protein belongs to a distinct class of a "clip and link" activity of Repeat-in-ToXin (RTX) exoproteins. Along with the three other pore-forming RTX toxins (ApxI, ApxII and ApxIII), ApxIVA serves as a major virulence factor of Actinobacillus pleuropneumoniae, the causative agent of porcine pneumonia. The gene encoding ApxIVA is located on a bicistronic operon downstream of the orf1 gene and is expressed exclusively under in vivo conditions. Both ApxIVA and ORF1 are essential for full virulence of A. pleuropneumoniae, but the molecular mechanisms by which they contribute to the pathogenicity are not yet understood. Here, we provide a comprehensive structural and functional analysis of ApxIVA and ORF1 proteins. Our findings reveal that the N-terminal segment of ApxIVA shares structural similarity with colicin M (ColM)-like bacteriocins and exhibits an antimicrobial activity. The ORF1 protein resembles the colicin M immunity protein (Cmi) and, like Cmi, is exported to the periplasm through its N-terminal signal peptide. Additionally, ORF1 can protect bacterial cells from the antimicrobial activity of ApxIVA, suggesting that ORF1 and ApxIVA function as an antibacterial toxin-immunity pair. Moreover, we demonstrate that fetal bovine serum could elicit ApxIVA and ORF1 production under in vitro conditions. These findings highlight the coordinated action of various RTX determinants, where the fine-tuned spatiotemporal production of ApxIVA may enhance the fitness of A. pleuropneumoniae, facilitating its invasion to a resident microbial community on the surface of airway mucosa.
Collapse
Affiliation(s)
- Eva Slivenecka
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - David Jurnecka
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Jana Holubova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Ondrej Stanek
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Ludmila Brazdilova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Monika Cizkova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic.
| |
Collapse
|
2
|
Díaz JJAR, Garay AFG, Kayano AM, Holanda R, Francisco AF, Kuehn CC, Soares AM, Vega C, Calderon LDA. Cystatin from Austrelaps superbus snake venom as a model for identifying potential inhibitors of Trypanosoma cruzi cruzain. J Venom Anim Toxins Incl Trop Dis 2025; 31:e20240055. [PMID: 39963262 PMCID: PMC11832194 DOI: 10.1590/1678-9199-jvatitd-2024-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/19/2024] [Indexed: 02/20/2025] Open
Abstract
Background Chagas disease (CD), caused by Trypanosoma cruzi, affects approximately seven million individuals worldwide, with the highest number of cases in Latin America. CD has two phases, of which the chronic phase is characterized by reduced efficacy in drug therapies. This and other factors make developing new strategies that aim to identify molecules capable of becoming alternatives to or complement current chemotherapy vitally important. Methods Cruzain and AsCystatin were obtained recombinantly through expression in E. coli. Bioinformatic assays were conducted with both molecules, followed by in vitro enzyme inhibition assays. Subsequently, in silico studies allowed for the design of peptides, which were then assessed for molecular interactions with cruzain. The designed peptides were synthesized, and their inhibitory potential on cruzain and their trypanocidal and cytotoxic effects in vitro were finally assessed. Results AsCystatin, a potential inhibitor of cysteine proteases, was identified from previously published scientific literature. In silico assays suggested that AsCystatin interacts with key regions of cruzain, and was subsequently produced through heterologous expression, obtaining a protein with a high degree of purity. Next, the inhibition of AsCystatin on the activity of cruzain was assessed, observing that approximately 20 µM of cystatin could inhibit 50% of the catalytic activity of the recombinant enzyme. Based on the in-silico analysis performed previously, original, and modified peptides were designed and tested, which allowed for identifying four peptides with inhibitory capacity on the enzymatic activity of cruzain. Finally, three of these peptides showed trypanocidal activity on epimastigote forms of T. cruzi in in vitro models. Conclusion It was possible to identify AsCystatin and four peptides derived from this protein with inhibitory activity on cruzain, highlighting the trypanocidal effect of these peptides observed in in vitro assays.
Collapse
Affiliation(s)
- Jorge Javier Alfonso Ruiz Díaz
- Center for the Development of Scientific Research (CEDIC), Asunción, Paraguay
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation (Fiocruz), Fiocruz Rondônia Unit, Porto Velho, RO, Brazil
| | - Ana Fidelina Gómez Garay
- Center for the Development of Scientific Research (CEDIC), Asunción, Paraguay
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation (Fiocruz), Fiocruz Rondônia Unit, Porto Velho, RO, Brazil
- International Network for Research and Excellence Knowledge of Western/Eastern Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
| | - Anderson Makoto Kayano
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation (Fiocruz), Fiocruz Rondônia Unit, Porto Velho, RO, Brazil
- International Network for Research and Excellence Knowledge of Western/Eastern Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
- Center for Research in Tropical Medicine (CEPEM/SESAU-RO), Porto Velho, RO, Brazil
| | | | - Aleff Ferreira Francisco
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation (Fiocruz), Fiocruz Rondônia Unit, Porto Velho, RO, Brazil
- International Network for Research and Excellence Knowledge of Western/Eastern Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
- Laboratory of Biochemistry and Biophysics, Butantan Institute, São Paulo, SP, Brazil
| | | | - Andreimar Martins Soares
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation (Fiocruz), Fiocruz Rondônia Unit, Porto Velho, RO, Brazil
- International Network for Research and Excellence Knowledge of Western/Eastern Amazon (RED-CONEXAO), Porto Velho, RO, Brazil
- Laboratory of Biotechnology of Proteins and Bioactive Compounds Applied to Health (LABIOPROT), Oswaldo Cruz Foundation (Fiocruz), Fiocruz Rondônia Unit, Porto Velho, RO, Brazil
- National Institute of Science and Technology in Epidemiology of the Western Amazonia (INCT-EpiAmO), Porto Velho, RO, Brazil
- São Lucas Porto Velho University Center, Porto Velho, RO, Brazi
| | - Celeste Vega
- Center for the Development of Scientific Research (CEDIC), Asunción, Paraguay
| | - Leonardo de Azevedo Calderon
- Center for the Study of Biomolecules Applied to Health (CEBio), Oswaldo Cruz Foundation (Fiocruz), Fiocruz Rondônia Unit, Porto Velho, RO, Brazil
- Department of Medicine, Federal University of Rondônia, Porto Velho, RO, Brazil
| |
Collapse
|
3
|
Lalmanach G, Rigoux B, David A, Tahri-Joutey M, Lecaille F, Marchand-Adam S, Saidi A. Human cystatin C in fibrotic diseases. Clin Chim Acta 2025; 565:120016. [PMID: 39461496 DOI: 10.1016/j.cca.2024.120016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
Human cystatin C (hCC), which has a pervasive distribution within body fluids and is ubiquitously expressed by numerous cells and tissues, is a highly potent extracellular inhibitor of cysteine proteases. Besides measurement of serum creatinine, which is the most widely used technique for appraising glomerular filtration rate (GFR), hCC has emerged as a relevant GFR biomarker, because its quantification in serum is less sensitive to interferences with factors such as age, muscle mass or diet. Moreover, there are growing body of evidence that hCC overexpression and/or oversecretion, which is primarily driven by TGF-β1, occur during fibrogenesis (cardiac, liver, oral, and lung fibrosis). Even though molecular mechanisms and signaling pathways governing the regulation of hCC remain to be deciphered more acutely, current data sustain that hCC expression relates to myofibrogenesis and that hCC could be a specific and valuable biomarker of fibrotic disease.
Collapse
Affiliation(s)
- Gilles Lalmanach
- University of Tours, Tours, France; INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", Tours, France.
| | - Baptiste Rigoux
- University of Tours, Tours, France; INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", Tours, France
| | - Alexis David
- University of Tours, Tours, France; INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", Tours, France
| | - Mounia Tahri-Joutey
- University of Tours, Tours, France; INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", Tours, France
| | - Fabien Lecaille
- University of Tours, Tours, France; INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", Tours, France
| | - Sylvain Marchand-Adam
- University of Tours, Tours, France; INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", Tours, France; The University Hospital Center of Tours (CHRU Tours), Pulmonology Department, Tours, France
| | - Ahlame Saidi
- University of Tours, Tours, France; INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), Team "Proteolytic Enzymes and Their Pharmacological Targeting in Lung Diseases", Tours, France
| |
Collapse
|
4
|
Xue Y, Liu X, Wang Y, Chang J, Wang X. Identification, molecular profiling and immune functions of cystatin M in silver pomfret (Pampus argenteus). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109844. [PMID: 39168290 DOI: 10.1016/j.fsi.2024.109844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/02/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Cystatins play an important role in various physiological and pathological processes of organisms, including regulating protein metabolism, antigen processing, inflammatory response, nutritional disorders, and controlling enzyme activity. However, research on immunity functions of fish cystatin M is limited. In this study, Pampus argenteus cystatin M (Pacystatin M) was identified and analyzed. Its amino acid sequence was highly conserved in teleosts, and included the conserved cystatin cysteine protease inhibitor motifs. Pacystatin M was highly expressed in the gill, spleen, and intestine, whereas the expression levels of liver and kidney were lower. Furthermore, Nocardia seriolae infection up-regulated the expression of Pacystatin M in the kidney, spleen and liver, with particularly significant expression observed in the liver on day 15 post-infection. Functional analysis indicated that the recombinant Pacystatin M showed increasing inhibitory activity against papain within a certain concentration range, suggesting that the inhibition was likely competitive. Additionally, Pacystatin M demonstrated the ability to inhibit bacterial growth and high thermal stability. These results suggested that Pacystatin M might be involved in the immune response to microbial invasion and provided new reference addressing disease issues in the large-scale farming of silver pomfret.
Collapse
Affiliation(s)
- Yadong Xue
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China.
| | - Yajun Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| | - Jing Chang
- College of Marine Life Science, Ocean University of China, Qingdao, China.
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, Zhejiang, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, China.
| |
Collapse
|
5
|
Wang T, Gao J, Xu J, Hong Y, Du R, Zheng X, Wang P. Identification and functional characterization of a novel cystatin in amphioxus, ancient origin of vertebrate type-2 cystatin homologues. Int J Biol Macromol 2024; 277:134429. [PMID: 39097064 DOI: 10.1016/j.ijbiomac.2024.134429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Cystatins are well known as a vast superfamily of functional proteins participated in the reversible competitive inhibition of cysteine proteases. Currently, increasing evidences point to the extensive phylogenetic diversity and crucial immune roles of type-2 cystatins in the vertebrate species. However, no information is available regarding the homologue in cephalochordate amphioxus, the representative of most basal living chordates, whose immune regulation are still ambiguous. Here, we clearly identified the presence of type-2 cystatin gene in amphioxus Branchiostoma japonicum, termed Bjcystatin-2, which was structurally characterized by typical wedge-shaped cystatin feature. Evolutionary analyses revealed that Bjcystatin-2 is the putative ancestral type-2 cystatin for chordates, with gene diversity emerging through duplication events. The expression of Bjcystatin-2 showed tissue-specific profile and was inducible upon invasive pathogens. Significantly, the recombinant Bjcystatin-2 exhibited not merely cathepsin L inhibitory activity, but also the ability to bind with bacteria and their characteristic molecules. Furthermore, Bjcystatin-2 also showed the capacity to enhance the macrophage-driven bacterial phagocytosis and to attenuate the generation of pro-inflammatory cytokines within macrophages. In summary, these findings demonstrate that Bjcystatin-2 exhibits dual role acting as both a protease inhibitor and an immunoactive molecule, greatly enriching our understanding of immune defense mechanisms of type-2 cystatin within the amphioxus.
Collapse
Affiliation(s)
- Tianren Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Jingru Gao
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Jinghan Xu
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Yuxiang Hong
- Zhejiang Fangyuan Testing Group Co., Ltd., Hangzhou, Zhejiang 310020, China
| | - Ronghuan Du
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Xian Zheng
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China
| | - Peng Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao 266071, China.
| |
Collapse
|
6
|
Zhang X, Luo Y, Hao H, Krahn JM, Su G, Dutcher R, Xu Y, Liu J, Pedersen LC, Xu D. Heparan sulfate selectively inhibits the collagenase activity of cathepsin K. Matrix Biol 2024; 129:15-28. [PMID: 38548090 DOI: 10.1016/j.matbio.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Cathepsin K (CtsK) is a cysteine protease with potent collagenase activity. CtsK is highly expressed by bone-resorbing osteoclasts and plays an essential role in resorption of bone matrix. Although CtsK is known to bind heparan sulfate (HS), the structural details of the interaction, and how HS regulates the biological functions of CtsK, remains largely unknown. In this report, we discovered that HS is a multifaceted regulator of the structure and function of CtsK. Structurally, HS forms a highly stable complex with CtsK and induces its dimerization. Co-crystal structures of CtsK with bound HS oligosaccharides reveal the location of the HS binding site and suggest how HS may support dimerization. Functionally, HS plays a dual role in regulating the enzymatic activity of CtsK. While it preserves the peptidase activity of CtsK by stabilizing its active conformation, it inhibits the collagenase activity of CtsK in a sulfation level-dependent manner. These opposing effects can be explained by our finding that the HS binding site is remote from the active site, which allows HS to specifically inhibit the collagenase activity without affecting the peptidase activity. At last, we show that structurally defined HS oligosaccharides effectively block osteoclast resorption of bone in vitro without inhibiting osteoclast differentiation, which suggests that HS-based oligosaccharide might be explored as a new class of selective CtsK inhibitor for many diseases involving exaggerated bone resorption.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY 14214, USA
| | - Yin Luo
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY 14214, USA
| | - Huanmeng Hao
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY 14214, USA
| | - Juno M Krahn
- Macromolecular Structure Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Guowei Su
- Glycan Therapeutics Corp, 617 Hutton Street, Raleigh, NC 27606, USA
| | - Robert Dutcher
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Lars C Pedersen
- Macromolecular Structure Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Ding Xu
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY 14214, USA.
| |
Collapse
|
7
|
Zhang X, Luo Y, Hao H, Krahn JM, Su G, Dutcher R, Xu Y, Liu J, Pedersen LC, Xu D. Heparan sulfate selectively inhibits the collagenase activity of cathepsin K. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574350. [PMID: 38260317 PMCID: PMC10802503 DOI: 10.1101/2024.01.05.574350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cathepsin K (CtsK) is a cysteine protease with potent collagenase activity. CtsK is highly expressed by bone-resorbing osteoclasts and plays an essential role in bone remodeling. Although CtsK is known to bind heparan sulfate (HS), the structural details of the interaction, and how HS ultimately regulates the biological functions of CtsK, remains largely unknown. In this report, we determined that CtsK preferably binds to larger HS oligosaccharides, such as dodecasaccharides (12mer), and that the12mer can induce monomeric CtsK to form a stable dimer in solution. Interestingly, while HS has no effect on the peptidase activity of CtsK, it greatly inhibits the collagenase activity of CtsK in a manner dependent on sulfation level. By forming a complex with CtsK, HS was able to preserve the full peptidase activity of CtsK for prolonged periods, likely by stabilizing its active conformation. Crystal structures of Ctsk with a bound 12mer, alone and in the presence of the endogenous inhibitor cystatin-C reveal the location of HS binding is remote from the active site. Mutagenesis based on these complex structures identified 6 basic residues of Ctsk that play essential roles in mediating HS-binding. At last, we show that HS 12mers can effectively block osteoclast resorption of bone in vitro. Combined, we have shown that HS can function as a multifaceted regulator of CtsK and that HS-based oligosaccharide might be explored as a new class of selective CtsK inhibitor in many diseases that involve exaggerated bone resorption.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY 14214, USA
| | - Yin Luo
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY 14214, USA
- These authors contributed equally to this work
| | - Huanmeng Hao
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY 14214, USA
- These authors contributed equally to this work
| | - Juno M. Krahn
- Macromolecular Structure Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Guowei Su
- Glycan Therapeutics Corp, 617 Hutton Street, Raleigh, NC 27606
| | - Robert Dutcher
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lars C. Pedersen
- Macromolecular Structure Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Ding Xu
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, the State University of New York, Buffalo, NY 14214, USA
| |
Collapse
|
8
|
Santos NP, Soh WT, Demir F, Tenhaken R, Briza P, Huesgen PF, Brandstetter H, Dall E. Phytocystatin 6 is a context-dependent, tight-binding inhibitor of Arabidopsis thaliana legumain isoform β. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1681-1695. [PMID: 37688791 PMCID: PMC10952133 DOI: 10.1111/tpj.16458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/11/2023]
Abstract
Plant legumains are crucial for processing seed storage proteins and are critical regulators of plant programmed cell death. Although research on legumains boosted recently, little is known about their activity regulation. In our study, we used pull-down experiments to identify AtCYT6 as a natural inhibitor of legumain isoform β (AtLEGβ) in Arabidopsis thaliana. Biochemical analysis revealed that AtCYT6 inhibits both AtLEGβ and papain-like cysteine proteases through two separate cystatin domains. The N-terminal domain inhibits papain-like proteases, while the C-terminal domain inhibits AtLEGβ. Furthermore, we showed that AtCYT6 interacts with legumain in a substrate-like manner, facilitated by a conserved asparagine residue in its reactive center loop. Complex formation was additionally stabilized by charged exosite interactions, contributing to pH-dependent inhibition. Processing of AtCYT6 by AtLEGβ suggests a context-specific regulatory mechanism with implications for plant physiology, development, and programmed cell death. These findings enhance our understanding of AtLEGβ regulation and its broader physiological significance.
Collapse
Affiliation(s)
- Naiá P. Santos
- Department of Biosciences and Medical BiologyUniversity of Salzburg5020SalzburgAustria
| | - Wai Tuck Soh
- Department of Biosciences and Medical BiologyUniversity of Salzburg5020SalzburgAustria
- Present address:
Max Planck Institute for Multidisciplinary SciencesD‐37077GöttingenGermany
| | - Fatih Demir
- Central Institute for Engineering, Electronics and Analytics52428JülichZEA‐3, Forschungszentrum JülichGermany
- Present address:
Department of BiomedicineAarhus University8000Aarhus CDenmark
| | - Raimund Tenhaken
- Department of Environment and BiodiversityUniversity of Salzburg5020SalzburgAustria
| | - Peter Briza
- Department of Biosciences and Medical BiologyUniversity of Salzburg5020SalzburgAustria
| | - Pitter F. Huesgen
- Central Institute for Engineering, Electronics and Analytics52428JülichZEA‐3, Forschungszentrum JülichGermany
- CECADMedical Faculty and University Hospital, University of Cologne50931CologneGermany
- Institute for Biochemistry, Faculty of Mathematics and Natural SciencesUniversity of Cologne50674CologneGermany
| | - Hans Brandstetter
- Department of Biosciences and Medical BiologyUniversity of Salzburg5020SalzburgAustria
| | - Elfriede Dall
- Department of Biosciences and Medical BiologyUniversity of Salzburg5020SalzburgAustria
| |
Collapse
|
9
|
Stoka V, Vasiljeva O, Nakanishi H, Turk V. The Role of Cysteine Protease Cathepsins B, H, C, and X/Z in Neurodegenerative Diseases and Cancer. Int J Mol Sci 2023; 24:15613. [PMID: 37958596 PMCID: PMC10650516 DOI: 10.3390/ijms242115613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Papain-like cysteine proteases are composed of 11 human cysteine cathepsins, originally located in the lysosomes. They exhibit broad specificity and act as endopeptidases and/or exopeptidases. Among them, only cathepsins B, H, C, and X/Z exhibit exopeptidase activity. Recently, cysteine cathepsins have been found to be present outside the lysosomes and often participate in various pathological processes. Hence, they have been considered key signalling molecules. Their potentially hazardous proteolytic activities are tightly regulated. This review aims to discuss recent advances in understanding the structural aspects of these four cathepsins, mechanisms of their zymogen activation, regulation of their activities, and functional aspects of these enzymes in neurodegeneration and cancer. Neurodegenerative effects have been evaluated, particularly in Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and neuropsychiatric disorders. Cysteine cathepsins also participate in tumour progression and metastasis through the overexpression and secretion of proteases, which trigger extracellular matrix degradation. To our knowledge, this is the first review to provide an in-depth analysis regarding the roles of cysteine cathepsins B, H, C, and X in neurodegenerative diseases and cancer. Further advances in understanding the functions of cysteine cathepsins in these conditions will result in the development of novel, targeted therapeutic strategies.
Collapse
Affiliation(s)
- Veronika Stoka
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, SI-1000 Ljubljana, Slovenia
| | - Olga Vasiljeva
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- CytomX Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan;
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Di Pietro L, Boroumand M, Lattanzi W, Manconi B, Salvati M, Cabras T, Olianas A, Flore L, Serrao S, Calò CM, Francalacci P, Parolini O, Castagnola M. A Catalog of Coding Sequence Variations in Salivary Proteins' Genes Occurring during Recent Human Evolution. Int J Mol Sci 2023; 24:15010. [PMID: 37834461 PMCID: PMC10573131 DOI: 10.3390/ijms241915010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Saliva houses over 2000 proteins and peptides with poorly clarified functions, including proline-rich proteins, statherin, P-B peptides, histatins, cystatins, and amylases. Their genes are poorly conserved across related species, reflecting an evolutionary adaptation. We searched the nucleotide substitutions fixed in these salivary proteins' gene loci in modern humans compared with ancient hominins. We mapped 3472 sequence variants/nucleotide substitutions in coding, noncoding, and 5'-3' untranslated regions. Despite most of the detected variations being within noncoding regions, the frequency of coding variations was far higher than the general rate found throughout the genome. Among the various missense substitutions, specific substitutions detected in PRB1 and PRB2 genes were responsible for the introduction/abrogation of consensus sequences recognized by convertase enzymes that cleave the protein precursors. Overall, these changes that occurred during the recent human evolution might have generated novel functional features and/or different expression ratios among the various components of the salivary proteome. This may have influenced the homeostasis of the oral cavity environment, possibly conditioning the eating habits of modern humans. However, fixed nucleotide changes in modern humans represented only 7.3% of all the substitutions reported in this study, and no signs of evolutionary pressure or adaptative introgression from archaic hominins were found on the tested genes.
Collapse
Affiliation(s)
- Lorena Di Pietro
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Mozhgan Boroumand
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Wanda Lattanzi
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Barbara Manconi
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Martina Salvati
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.)
| | - Tiziana Cabras
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Alessandra Olianas
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Laura Flore
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Simone Serrao
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy
| | - Carla M. Calò
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Paolo Francalacci
- Dipartimento di Scienze della Vita e Dell’ambiente, Università di Cagliari, 09042 Monserrato, Italy
| | - Ornella Parolini
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.D.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Massimo Castagnola
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
11
|
de Souza EP, Ferro M, Pelá VT, Fernanda-Carlos T, Borges CGG, Taira EA, Ventura TMO, Arencibia AD, Buzalaf MAR, Henrique-Silva F. Maquiberry Cystatins: Recombinant Expression, Characterization, and Use to Protect Tooth Dentin and Enamel. Biomedicines 2023; 11:biomedicines11051360. [PMID: 37239031 DOI: 10.3390/biomedicines11051360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Phytocystatins are proteinaceous competitive inhibitors of cysteine peptidases involved in physiological and defensive roles in plants. Their application as potential therapeutics for human disorders has been suggested, and the hunt for novel cystatin variants in different plants, such as maqui (Aristotelia chilensis), is pertinent. Being an understudied species, the biotechnological potential of maqui proteins is little understood. In the present study, we constructed a transcriptome of maqui plantlets using next-generation sequencing, in which we found six cystatin sequences. Five of them were cloned and recombinantly expressed. Inhibition assays were performed against papain and human cathepsins B and L. Maquicystatins can inhibit the proteases in nanomolar order, except MaquiCPIs 4 and 5, which inhibit cathepsin B in micromolar order. This suggests maquicystatins' potential use for treating human diseases. In addition, since we previously demonstrated the efficacy of a sugarcane-derived cystatin to protect dental enamel, we tested the ability of MaquiCPI-3 to protect both dentin and enamel. Both were protected by this protein (by One-way ANOVA and Tukey's Multiple Comparisons Test, p < 0.05), suggesting its potential usage in dental products.
Collapse
Affiliation(s)
- Eduardo Pereira de Souza
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil
| | - Milene Ferro
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil
| | - Vinicius Taioqui Pelá
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, SP, Brazil
| | - Thais Fernanda-Carlos
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil
| | | | - Even Akemi Taira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, SP, Brazil
| | - Talita Mendes Oliveira Ventura
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, SP, Brazil
| | - Ariel Domingo Arencibia
- Center of Biotechnology in Natural Resources, Faculty of Agrarian and Forestry Sciences, Catholic University of Maule (UCM), Talca 3466706, Chile
| | - Marília Afonso Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, SP, Brazil
| | - Flávio Henrique-Silva
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil
| |
Collapse
|
12
|
Chakraborty S, Biswas S. Structure-Based Optimization of Protease-Inhibitor Interactions to Enhance Specificity of Human Stefin-A against Falcipain-2 from the Plasmodium falciparum 3D7 Strain. Biochemistry 2023; 62:1053-1069. [PMID: 36763907 DOI: 10.1021/acs.biochem.2c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The emergence of resistance in Plasmodium falciparum to frontline artemisinin-based combination therapies has raised global concerns and emphasized the identification of new drug targets for malaria. Cysteine protease falcipain-2 (FP2), involved in host hemoglobin degradation and instrumental in parasite survival, has long been proposed as a promising malarial drug target. However, designing active-site-targeted small-molecule inhibitors of FP2 becomes challenging due to their off-target specificity toward highly homologous human cysteine cathepsins. The use of proteinaceous inhibitors, which have nonconserved exosite interactions and larger interface area, can effectively circumvent this problem. In this study, we report for the first time that human stefin-A (STFA) efficiently inhibits FP2 with Ki values in the nanomolar range. The FP2-STFA complex crystal structure, determined in this study, and sequence analyses identify a unique nonconserved exosite interaction, compared to human cathepsins. Designing a mutation Lys68 > Arg in STFA amplifies its selectivity garnering a 3.3-fold lower Ki value against FP2, and the crystal structure of the FP2-STFAK68R complex shows stronger electrostatic interaction between side-chains of Arg68 (STFAK68R) and Asp109 (FP2). Comparative structural analyses and molecular dynamics (MD) simulation studies of the complexes further confirm higher buried surface areas, better interaction energies for FP2-STFAK68R, and consistency of the newly developed electrostatic interaction (STFA-R68-FP2-D109) in the MD trajectory. The STFA-K68R mutant also shows higher Ki values against human cathepsin-L and stefin, a step toward eliminating off-target specificity. Hence, this work underlines the design of host-based proteinaceous inhibitors against FP2, with further optimization to render them more potent and selective.
Collapse
Affiliation(s)
- Subhoja Chakraborty
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhan Nagar, Kolkata 700064, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Sampa Biswas
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhan Nagar, Kolkata 700064, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
13
|
Buša M, Matoušková Z, Bartošová-Sojková P, Pachl P, Řezáčová P, Eichenberger RM, Deplazes P, Horn M, Štefanić S, Mareš M. An evolutionary molecular adaptation of an unusual stefin from the liver fluke Fasciola hepatica redefines the cystatin superfamily. J Biol Chem 2023; 299:102970. [PMID: 36736427 PMCID: PMC9986714 DOI: 10.1016/j.jbc.2023.102970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Fasciolosis is a worldwide parasitic disease of ruminants and an emerging human disease caused by the liver fluke Fasciola hepatica. The cystatin superfamily of cysteine protease inhibitors is composed of distinct families of intracellular stefins and secreted true cystatins. FhCyLS-2 from F. hepatica is an unusual member of the superfamily, where our sequence and 3D structure analyses in this study revealed that it combines characteristics of both families. The protein architecture demonstrates its relationship to stefins, but FhCyLS-2 also contains the secretion signal peptide and disulfide bridges typical of true cystatins. The secretion status was confirmed by detecting the presence of FhCyLS-2 in excretory/secretory products, supported by immunolocalization. Our high-resolution crystal structure of FhCyLS-2 showed a distinct disulfide bridging pattern and functional reactive center. We determined that FhCyLS-2 is a broad specificity inhibitor of cysteine cathepsins from both the host and F. hepatica, suggesting a dual role in the regulation of exogenous and endogenous proteolysis. Based on phylogenetic analysis that identified several FhCyLS-2 homologues in liver/intestinal foodborne flukes, we propose a new group within the cystatin superfamily called cystatin-like stefins.
Collapse
Affiliation(s)
- Michal Buša
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia; Department of Biochemistry, Faculty of Science, Charles University, Prague, Czechia
| | - Zuzana Matoušková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia; Department of Biochemistry, Faculty of Science, Charles University, Prague, Czechia
| | | | - Petr Pachl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | | | - Peter Deplazes
- Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Saša Štefanić
- Institute of Parasitology, University of Zurich, Zurich, Switzerland.
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia.
| |
Collapse
|
14
|
Niu T, Cui Y, Shan X, Qin S, Zhou X, Wang R, Chang A, Ma N, Jing J, He J. Comparative transcriptomic analysis-based identification of the regulation of foreign proteins with different stabilities expressed in Pichia pastoris. Front Microbiol 2022; 13:1074398. [PMID: 36620045 PMCID: PMC9814716 DOI: 10.3389/fmicb.2022.1074398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction The industrial yeast Pichia pastoris is widely used as a cell factory to produce proteins, chemicals and advanced biofuels. We have previously constructed P. pastoris strains that overexpress protein disulfide isomerase (PDI), which is a kind of molecular chaperone that can improve the expression of an exogenous protein when they are co-expressed. Chicken cystatin (cC) is a highly thermostable cysteine protease inhibitor and a homologous protein of human cystatin C (HCC). Wild-type cC and the two mutants, I66Q and ΔW (a truncated cC lacking the á-helix 2) represent proteins with different degrees of stability. Methods Wild-type cC, I66Q and ΔW were each overexpressed in P. pastoris without and with the coexpression of PDI and their extracellular levels were determined and compared. Transcriptomic profiling was performed to compare the changes in the main signaling pathways and cell components (other than endoplasmic reticulum quality control system represented by molecular chaperones) in P. pastoris in response to intracellular folding stress caused by the expression of exogenous proteins with different stabilities. Finally, hub genes hunting was also performed. Results and discussion The coexpression of PDI was able to increase the extracellular levels of both wild-type cC and the two mutants, indicating that overexpression of PDI could prevent the misfolding of unstable proteins or promote the degradation of the misfolded proteins to some extent. For P. pastoris cells that expressed the I66Q or ΔW mutant, GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses of the common DEGs in these cells revealed a significant upregulation of the genes involved in protein processing, but a significant downregulation of the genes enriched in the Ribosome, TCA and Glycolysis/Gluconeogenesis pathways. Hub genes hunting indicated that the most downregulated ribosome protein, C4QXU7 in this case, might be an important target protein that could be manipulated to increase the expression of foreign proteins, especially proteins with a certain degree of instability. Conclusion These findings should shed new light on our understanding of the regulatory mechanism in yeast cells that responds to intracellular folding stress, providing valuable information for the development of a convenient platform that could improve the efficiency of heterologous protein expression in P. pastoris.
Collapse
Affiliation(s)
- Tingting Niu
- School of Life Sciences, Liaoning University, Shenyang, China
| | - Yi Cui
- School of Life Sciences, Liaoning University, Shenyang, China
| | - Xu Shan
- School of Life Sciences, Liaoning University, Shenyang, China
| | - Shuzhen Qin
- School of Life Sciences, Liaoning University, Shenyang, China
| | - Xuejie Zhou
- School of Life Sciences, Liaoning University, Shenyang, China
| | - Rui Wang
- School of Life Sciences, Liaoning University, Shenyang, China
| | - Alan Chang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Nan Ma
- China Academy of Transportation Sciences, Beijing, China,Nan Ma,
| | - Jingjing Jing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China,Jingjing Jing,
| | - Jianwei He
- School of Life Sciences, Liaoning University, Shenyang, China,*Correspondence: Jianwei He,
| |
Collapse
|
15
|
Jiang Y, Han L, Xue M, Wang T, Zhu Y, Xiong C, Shi M, Li H, Hai W, Huo Y, Shen B, Jiang L, Chen H. Cystatin B increases autophagic flux by sustaining proteolytic activity of cathepsin B and fuels glycolysis in pancreatic cancer: CSTB orchestrates autophagy and glycolysis in PDAC. Clin Transl Med 2022; 12:e1126. [PMID: 36495123 PMCID: PMC9736795 DOI: 10.1002/ctm2.1126] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Both autophagy and glycolysis are essential for pancreatic ductal adenocarcinoma (PDAC) survival due to desmoplasia. We investigated whether targeting a hub gene which participates in both processes could be an efficient strategy for PDAC treatment. METHODS The expression pattern of glycolysis signatures (GS) and autophagy signatures (AS) and their correlation with cystatin B (CSTB) in PDAC were analysed. It was discovered how CSTB affected the growth, glycolysis, and autophagy of PDAC cells. We assessed competitive binding to cathepsin B (CTSB) between CSTB and cystatin C (CSTC) via immunoprecipitation (IP) and immunofluorescence (IF). Chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) and luciferase reporter gene assays were used to unveil the mechanism underlying CSTB upregulation. The expression pattern of CSTB was examined in clinical samples and KrasG12D/+, Trp53R172H/+, Pdx1-Cre (KPC) mice. RESULTS GS and AS were enriched and closely associated in PDAC tissues. CSTB increased autophagic flux and provided substrates for glycolysis. CSTB knockdown attenuated the proliferation of PDAC cells and patient-derived xenografts. The liquid chromatography-tandem mass spectrometry assay indicated CSTB interacted with CTSB and contributed to the proteolytic activity of CTSB in lysosomes. IF and IP assays demonstrated that CSTB competed with CSTC to bind to CTSB. Mutation of the key sites of CSTB abolished the interaction between CSTB and CTSB. CSTB was highly expressed in PDAC due to H3K27acetylation and SP1 expression. High expression of CSTB in PDAC was observed in tissue microarray and patients' serum samples. CONCLUSIONS Our work demonstrated the tumorigenic roles of autophagy and glycolysis in PDAC. CSTB is a key role in orchestrating these processes to ensure energy supply of PDAC cells.
Collapse
Affiliation(s)
- Yongsheng Jiang
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lijie Han
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Meilin Xue
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ting Wang
- Department of PathologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Youwei Zhu
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Cheng Xiong
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Minmin Shi
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hongzhe Li
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wangxi Hai
- Department of Nuclear MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yanmiao Huo
- Department of Biliary‐Pancreatic SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Baiyong Shen
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina,Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Lingxi Jiang
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hao Chen
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina,Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
16
|
Balbinott N, Margis R. Review: Unraveling the origin of the structural and functional diversity of plant cystatins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111342. [PMID: 35696902 DOI: 10.1016/j.plantsci.2022.111342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/02/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The regulation of protease activity is a critical factor for the physiological balance during plant growth and development. Among the proteins involved in controlling protease activity are the cystatins, well-described inhibitors of cysteine proteases present in viruses, bacteria and most Eukaryotes. Plant cystatins, commonly called phytocystatins, display unique structural and functional diversity and are classified according to their molecular weight as type-I, -II, and -III. Their gene structure is highly conserved across Viridiplantae and provides insights into their evolutionary relationships. Many type-I phytocystatins with introns share sequence similarities with type-II phytocystatins. New data shows that they could have originated from recent losses of the carboxy-terminal extension present in type-II phytocystatins. Intronless type-I phytocystatins originated from a single event shared by flowering plants. Pieces of evidence show multiple events of gene duplications, intron losses, and gains throughout the expansion and diversity of the phytocystatin family. Gene duplication events in Gymnosperms and Eudicots resulted in inhibitors with amino acid substitutions that may modify their interaction with target proteases and other proteins. This review brings a phylogenomic analysis of plant cystatin evolution and contributes to a broader understanding of their origins. A complete functional genomic analysis among phytocystatins and their roles in plant development and responses to abiotic and biotic stresses remains a question to be fully solved.
Collapse
Affiliation(s)
- Natalia Balbinott
- Laboratório de Genomas e Populações de Plantas, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil; Programa de Pós-graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
| | - Rogerio Margis
- Laboratório de Genomas e Populações de Plantas, Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil; Programa de Pós-graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil; Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil; Programa INCT Plant Stress Biotech, EMBRAPA, CENARGEN, Brasilia, DF, Brazil.
| |
Collapse
|
17
|
Moreau T, Gautron J, Hincke MT, Monget P, Réhault-Godbert S, Guyot N. Antimicrobial Proteins and Peptides in Avian Eggshell: Structural Diversity and Potential Roles in Biomineralization. Front Immunol 2022; 13:946428. [PMID: 35967448 PMCID: PMC9363672 DOI: 10.3389/fimmu.2022.946428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
The calcitic avian eggshell provides physical protection for the embryo during its development, but also regulates water and gaseous exchange, and is a calcium source for bone mineralization. The calcified eggshell has been extensively investigated in the chicken. It is characterized by an inventory of more than 900 matrix proteins. In addition to proteins involved in shell mineralization and regulation of its microstructure, the shell also contains numerous antimicrobial proteins and peptides (AMPPs) including lectin-like proteins, Bacterial Permeability Increasing/Lipopolysaccharide Binding Protein/PLUNC family proteins, defensins, antiproteases, and chelators, which contribute to the innate immune protection of the egg. In parallel, some of these proteins are thought to be crucial determinants of the eggshell texture and its resulting mechanical properties. During the progressive solubilization of the inner mineralized eggshell during embryonic development (to provide calcium to the embryo), some antimicrobials may be released simultaneously to reinforce egg defense and protect the egg from contamination by external pathogens, through a weakened eggshell. This review provides a comprehensive overview of the diversity of avian eggshell AMPPs, their three-dimensional structures and their mechanism of antimicrobial activity. The published chicken eggshell proteome databases are integrated for a comprehensive inventory of its AMPPs. Their biochemical features, potential dual function as antimicrobials and as regulators of eggshell biomineralization, and their phylogenetic evolution will be described and discussed with regard to their three-dimensional structural characteristics. Finally, the repertoire of chicken eggshell AMPPs are compared to orthologs identified in other avian and non-avian eggshells. This approach sheds light on the similarities and differences exhibited by AMPPs, depending on bird species, and leads to a better understanding of their sequential or dual role in biomineralization and innate immunity.
Collapse
Affiliation(s)
- Thierry Moreau
- INRAE, Université de Tours, BOA, Nouzilly, France
- *Correspondence: Nicolas Guyot, ; Thierry Moreau,
| | - Joël Gautron
- INRAE, Université de Tours, BOA, Nouzilly, France
| | - Maxwell T. Hincke
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Philippe Monget
- INRAE, CNRS, IFCE, Université de Tours, PRC, Nouzilly, France
| | | | - Nicolas Guyot
- INRAE, Université de Tours, BOA, Nouzilly, France
- *Correspondence: Nicolas Guyot, ; Thierry Moreau,
| |
Collapse
|
18
|
Ramirez Merlano JA, Almeida DV. Heterologous Production and Evaluation of the Biological Activity of Cystatin-B From the Red Piranha Pygocentrus nattereri. Front Genet 2022; 13:812971. [PMID: 35719393 PMCID: PMC9203827 DOI: 10.3389/fgene.2022.812971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Cystatin proteins are known to form a superfamily of cysteine protease inhibitors, which play a key role in protein degradation and are related to different physiological processes, such as development and immunity. Currently, numerous immunoregulatory proteins, such as cystatins, are being used in the control and prevention of diseases in aquaculture. Thus, the objective of this study was to produce recombinant cystatin (rCYST-B) from the red piranha Pygocentrus nattereri and to evaluate its effect on bacterial growth. The gene that encodes cystatin-B was isolated from the spleen of P. nattereri and cloned in an expression system. The protein was produced via a heterologous system involving the yeast Pichia pastoris X-33. The inhibitory activity of purified cystatin-B was evaluated on papain using different concentrations (0–80.0 μg/μL) of rCYST-B. The bacteriostatic action of the protein was evaluated using the Kirby-Bauer method on the growth of Escherichia coli and Bacillus subtilis. rCYST-B showed 100% inhibition at a concentration of 60 μg/μL. Moreover, the bacteriostatic activity of E. coli and B. subtilis showed inhibition of 40.36 and 49.08% compared to the negative control (phosphate buffer), respectively. These results suggest that recombinant CYST-B has biotechnological potential for use in aquaculture.
Collapse
Affiliation(s)
| | - Daniela Volcan Almeida
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, Brazil
- *Correspondence: Daniela Volcan Almeida,
| |
Collapse
|
19
|
Galindo-González L, Hwang SF, Strelkov SE. Candidate Effectors of Plasmodiophora brassicae Pathotype 5X During Infection of Two Brassica napus Genotypes. Front Microbiol 2021; 12:742268. [PMID: 34803960 PMCID: PMC8595600 DOI: 10.3389/fmicb.2021.742268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/11/2021] [Indexed: 01/28/2023] Open
Abstract
Clubroot, caused by Plasmodiophora brassicae, is one of the most important diseases of canola (Brassica napus) in Canada. Disease management relies heavily on planting clubroot resistant (CR) cultivars, but in recent years, new resistance-breaking pathotypes of P. brassicae have emerged. Current efforts against the disease are concentrated in developing host resistance using traditional genetic breeding, omics and molecular biology. However, because of its obligate biotrophic nature, limited resources have been dedicated to investigating molecular mechanisms of pathogenic infection. We previously performed a transcriptomic study with the cultivar resistance-breaking pathotype 5X on two B. napus hosts presenting contrasting resistance/susceptibility, where we evaluated the mechanisms of host response. Since cultivar-pathotype interactions are very specific, and pathotype 5X is one of the most relevant resistance-breaking pathotypes in Canada, in this study, we analyze the expression of genes encoding putative secreted proteins from this pathotype, predicted using a bioinformatics pipeline, protein modeling and orthologous comparisons with effectors from other pathosystems. While host responses were found to differ markedly in our previous study, many common effectors are found in the pathogen while infecting both hosts, and the gene response among biological pathogen replicates seems more consistent in the effectors associated with the susceptible interaction, especially at 21 days after inoculation. The predicted effectors indicate the predominance of proteins with interacting domains (e.g., ankyrin), and genes bearing kinase and NUDIX domains, but also proteins with protective action against reactive oxygen species from the host. Many of these genes confirm previous predictions from other clubroot studies. A benzoic acid/SA methyltransferase (BSMT), which methylates SA to render it inactive, showed high levels of expression in the interactions with both hosts. Interestingly, our data indicate that E3 ubiquitin proteasome elements are also potentially involved in pathogenesis. Finally, a gene with similarity to indole-3-acetaldehyde dehydrogenase is a promising candidate effector because of its involvement in indole acetic acid synthesis, since auxin is one of the major players in clubroot development.
Collapse
Affiliation(s)
| | | | - Stephen E. Strelkov
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
20
|
Identification and molecular profiling of a novel homolog of cystatin C from rock bream (Oplegnathus fasciatus) evidencing its transcriptional sensitivity to pathogen infections. Mol Biol Rep 2021; 48:4933-4942. [PMID: 34041676 DOI: 10.1007/s11033-021-06415-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
Cystatins are reversible inhibitors of cysteine proteases which show an omnipresent distribution in the life on earth. Although, cystatins with mammalian origin were well characterized and their roles in physiology were reported in details, those from teleostean origin are still underrepresented in literature. However, role of cystatins in fish physiology and immune defense is highlighted in few recent reports. In this study, a cystatin C holmologue from rock bream (Oplegnathus fasciatus); termed RbCytC was identified and molecularly characterized. The complete coding sequence of RbCytC was 387 bp in length, which codes for a polypeptide with 129 amino acids, including a signal peptide of 19 amino acids. The consensus cystatin family signatures including a G residue, turning up towards the N-terminus region, QVVAG motif, locating at the middle of the sequence and the PW motif at the c terminal region was found to be well conserved in RbCytC. Phylogenetic analysis using different cystatin counterparts affirmed the close evolutionary relationship of RbCytC with its teleostan homologs which belong to family 2 cystatins. The predicted molecular model of RbCytC resembled most of the structural features of empirically elucidated tertiary structures for chicken egg white cystatin. According to the qPCR assays, RbCytC showed detectable expression in all fish tissues used in the experiment, with markedly pronounced expression level in liver. Moreover, its basal mRNA expression was up-regulated in liver and spleen tissues by experimental rock bream iridovirus infection, whereas down regulated in the same tissues, post live Edwardsiella tarda injection. Collectively, outcomes of our study validate the structural homology of RbCytC with known cystatin C similitudes, especially those of teleosts and suggest its potential roles in proteolytic processes of rock bream physiology as well as in host immune defense mechanisms.
Collapse
|
21
|
Kotál J, Buša M, Urbanová V, Řezáčová P, Chmelař J, Langhansová H, Sojka D, Mareš M, Kotsyfakis M. Mialostatin, a Novel Midgut Cystatin from Ixodes ricinus Ticks: Crystal Structure and Regulation of Host Blood Digestion. Int J Mol Sci 2021; 22:5371. [PMID: 34065290 PMCID: PMC8161381 DOI: 10.3390/ijms22105371] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/18/2022] Open
Abstract
The hard tick Ixodes ricinus is a vector of Lyme disease and tick-borne encephalitis. Host blood protein digestion, essential for tick development and reproduction, occurs in tick midgut digestive cells driven by cathepsin proteases. Little is known about the regulation of the digestive proteolytic machinery of I. ricinus. Here we characterize a novel cystatin-type protease inhibitor, mialostatin, from the I. ricinus midgut. Blood feeding rapidly induced mialostatin expression in the gut, which continued after tick detachment. Recombinant mialostatin inhibited a number of I. ricinus digestive cysteine cathepsins, with the greatest potency observed against cathepsin L isoforms, with which it co-localized in midgut digestive cells. The crystal structure of mialostatin was determined at 1.55 Å to explain its unique inhibitory specificity. Finally, mialostatin effectively blocked in vitro proteolysis of blood proteins by midgut cysteine cathepsins. Mialostatin is likely to be involved in the regulation of gut-associated proteolytic pathways, making midgut cystatins promising targets for tick control strategies.
Collapse
Affiliation(s)
- Jan Kotál
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (J.K.); (V.U.); (D.S.)
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760c, 37005 České Budějovice, Czech Republic; (J.C.); (H.L.)
| | - Michal Buša
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, 16610 Praha, Czech Republic; (M.B.); (P.Ř.)
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12800 Prague, Czech Republic
| | - Veronika Urbanová
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (J.K.); (V.U.); (D.S.)
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, 16610 Praha, Czech Republic; (M.B.); (P.Ř.)
| | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760c, 37005 České Budějovice, Czech Republic; (J.C.); (H.L.)
| | - Helena Langhansová
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, Branišovská 1760c, 37005 České Budějovice, Czech Republic; (J.C.); (H.L.)
| | - Daniel Sojka
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (J.K.); (V.U.); (D.S.)
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, 16610 Praha, Czech Republic; (M.B.); (P.Ř.)
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (J.K.); (V.U.); (D.S.)
| |
Collapse
|
22
|
Li R, Tan X, Li S, Jin Y, Li S, Li S, Takala TM, Saris PEJ. Cloning, Expression, Characterization, and Tissue Distribution of Cystatin C from Silver Carp ( Hypophthalmichthys molitrix). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5144-5154. [PMID: 33881846 DOI: 10.1021/acs.jafc.1c00345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cystatins are proteins, which inhibit cysteine proteases, such as papain. In this study, the 336-bp cystatin C gene (family II, HmCysC) of silver carp (Hypophthalmichthys molitrix) was cloned and expressed in Escherichia coli BL21 (DE3). HmCysC encodes the mature peptide of cystatin C (HmCystatin C), with 111 amino acids. A typical QXXXG motif was found in HmCystatin C and it formed a cluster with Cyprinus carpio and Danio rerio cystatin C in the phylogenetic tree. Quantitative real-time polymerase chain reaction analysis indicated that HmCysC was transcribed at different levels in five tested tissues of silver carp. Following purification with Ni2+- nitrilotriacetic acid agarose affinity chromatography, HmCystatin C displayed a molecular weight of 20 kDa in sodium dodecyl sulfate polyacrylamide gel electrophoresis. Purified HmCystatin C had strong inhibitory effects toward the proteolytic activity of papain. Immunochemical staining with anti-HmCystatin C antibody showed that HmCystatin C was widely distributed in silver carp tissues. These results collectively demonstrated the properties of HmCystatin C, providing information for further studies of cystatins from fish organisms.
Collapse
Affiliation(s)
- Ran Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province 625014, China
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki 00014, Finland
| | - Xiaoqian Tan
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province 625014, China
| | - Shuhong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province 625014, China
| | - Yu Jin
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province 625014, China
| | - Song Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan Province 625014, China
| | - Shulei Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, Jilin Province 130021, China
| | - Timo M Takala
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki 00014, Finland
| | - Per E J Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
23
|
Cystatin M/E (Cystatin 6): A Janus-Faced Cysteine Protease Inhibitor with Both Tumor-Suppressing and Tumor-Promoting Functions. Cancers (Basel) 2021; 13:cancers13081877. [PMID: 33919854 PMCID: PMC8070812 DOI: 10.3390/cancers13081877] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 01/08/2023] Open
Abstract
Alongside its contribution in maintaining skin homeostasis and its probable involvement in fetal and placental development, cystatin M/E (also known as cystatin 6) was first described as a tumor suppressor of breast cancer. This review aims to provide an update on cystatin M/E with particular attention paid to its role during tumorigenesis. Cystatin M/E, which is related to type 2 cystatins, displays the unique property of being a dual tight-binding inhibitor of both legumain (also known as asparagine endopeptidase) and cysteine cathepsins L, V and B, while its expression level is epigenetically regulated via the methylation of the CST6 promoter region. The tumor-suppressing role of cystatin M/E was further reported in melanoma, cervical, brain, prostate, gastric and renal cancers, and cystatin M/E was proposed as a biomarker of prognostic significance. Contrariwise, cystatin M/E could have an antagonistic function, acting as a tumor promoter (e.g., oral, pancreatic cancer, thyroid and hepatocellular carcinoma). Taking into account these apparently divergent functions, there is an urgent need to decipher the molecular and cellular regulatory mechanisms of the expression and activity of cystatin M/E associated with the safeguarding homeostasis of the proteolytic balance as well as its imbalance in cancer.
Collapse
|
24
|
NAC blocks Cystatin C amyloid complex aggregation in a cell system and in skin of HCCAA patients. Nat Commun 2021; 12:1827. [PMID: 33758187 PMCID: PMC7988011 DOI: 10.1038/s41467-021-22120-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Hereditary cystatin C amyloid angiopathy is a dominantly inherited disease caused by a leucine to glutamine variant of human cystatin C (hCC). L68Q-hCC forms amyloid deposits in brain arteries associated with micro-infarcts, leading ultimately to paralysis, dementia and death in young adults. To evaluate the ability of molecules to interfere with aggregation of hCC while informing about cellular toxicity, we generated cells that produce and secrete WT and L68Q-hCC and have detected high-molecular weight complexes formed from the mutant protein. Incubations of either lysate or supernatant containing L68Q-hCC with reducing agents glutathione or N-acetyl-cysteine (NAC) breaks oligomers into monomers. Six L68Q-hCC carriers taking NAC had skin biopsies obtained to determine if hCC deposits were reduced following NAC treatment. Remarkably, ~50–90% reduction of L68Q-hCC staining was observed in five of the treated carriers suggesting that L68Q-hCC is a clinical target for reducing agents. HCCAA is a dominantly inherited disease which causes brain hemorrhages as a result of mutant cystatin C aggregation in carriers. Here, the authors show that n- acetyl cysteine can prevent aggregation of mutant protein in a cell model system and reverse protein deposition in the skin of mutation-carrying subjects.
Collapse
|
25
|
Zhang X, Liu X, Su G, Li M, Liu J, Wang C, Xu D. pH-dependent and dynamic interactions of cystatin C with heparan sulfate. Commun Biol 2021; 4:198. [PMID: 33580179 PMCID: PMC7881039 DOI: 10.1038/s42003-021-01737-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/20/2021] [Indexed: 01/27/2023] Open
Abstract
Cystatin C (Cst-3) is a potent inhibitor of cysteine proteases with diverse biological functions. As a secreted protein, the potential interaction between Cst-3 and extracellular matrix components has not been well studied. Here we investigated the interaction between Cst-3 and heparan sulfate (HS), a major component of extracellular matrix. We discovered that Cst-3 is a HS-binding protein only at acidic pH. By NMR and site-directed mutagenesis, we identified two HS binding regions in Cst-3: the highly dynamic N-terminal segment and a flexible region located between residue 70-94. The composition of the HS-binding site by two highly dynamic halves is unique in known HS-binding proteins. We further discovered that HS-binding severely impairs the inhibitory activity of Cst-3 towards papain, suggesting the interaction could actively regulate Cst-3 activity. Using murine bone tissues, we showed that Cst-3 interacts with bone matrix HS at low pH, again highlighting the physiological relevance of our discovery.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Oral Biology, The University at Buffalo, Buffalo, NY, USA
| | - Xinyue Liu
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Guowei Su
- Division of Chemical Biology and Natural Product, School of Pharmacy, The University of North Carolina, Chapel Hill, NC, USA
| | - Miaomiao Li
- Department of Oral Biology, The University at Buffalo, Buffalo, NY, USA
| | - Jian Liu
- Division of Chemical Biology and Natural Product, School of Pharmacy, The University of North Carolina, Chapel Hill, NC, USA
| | - Chunyu Wang
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| | - Ding Xu
- Department of Oral Biology, The University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
26
|
Tušar L, Usenik A, Turk B, Turk D. Mechanisms Applied by Protein Inhibitors to Inhibit Cysteine Proteases. Int J Mol Sci 2021; 22:997. [PMID: 33498210 PMCID: PMC7863939 DOI: 10.3390/ijms22030997] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023] Open
Abstract
Protein inhibitors of proteases are an important tool of nature to regulate and control proteolysis in living organisms under physiological and pathological conditions. In this review, we analyzed the mechanisms of inhibition of cysteine proteases on the basis of structural information and compiled kinetic data. The gathered structural data indicate that the protein fold is not a major obstacle for the evolution of a protease inhibitor. It appears that nature can convert almost any starting fold into an inhibitor of a protease. In addition, there appears to be no general rule governing the inhibitory mechanism. The structural data make it clear that the "lock and key" mechanism is a historical concept with limited validity. However, the analysis suggests that the shape of the active site cleft of proteases imposes some restraints. When the S1 binding site is shaped as a pocket buried in the structure of protease, inhibitors can apply substrate-like binding mechanisms. In contrast, when the S1 binding site is in part exposed to solvent, the substrate-like inhibition cannot be employed. It appears that all proteases, with the exception of papain-like proteases, belong to the first group of proteases. Finally, we show a number of examples and provide hints on how to engineer protein inhibitors.
Collapse
Affiliation(s)
- Livija Tušar
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Aleksandra Usenik
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Faculty of Chemistry, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
- Institute of Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Bol’shaya Pirogovskaya Ulitsa, 19c1, 119146 Moscow, Russia
| | - Dušan Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
27
|
Mishra M, Singh V, Tellis MB, Joshi RS, Singh S. Repurposing the McoTI-II Rigid Molecular Scaffold in to Inhibitor of 'Papain Superfamily' Cysteine Proteases. Pharmaceuticals (Basel) 2020; 14:ph14010007. [PMID: 33374547 PMCID: PMC7822474 DOI: 10.3390/ph14010007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 01/19/2023] Open
Abstract
Clan C1A or ‘papain superfamily’ cysteine proteases are key players in many important physiological processes and diseases in most living systems. Novel approaches towards the development of their inhibitors can open new avenues in translational medicine. Here, we report a novel design of a re-engineered chimera inhibitor Mco-cysteine protease inhibitor (CPI) to inhibit the activity of C1A cysteine proteases. This was accomplished by grafting the cystatin first hairpin loop conserved motif (QVVAG) onto loop 1 of the ultrastable cyclic peptide scaffold McoTI-II. The recombinantly expressed Mco-CPI protein was able to bind with micromolar affinity to papain and showed remarkable thermostability owing to the formation of multi-disulphide bonds. Using an in silico approach based on homology modelling, protein–protein docking, the calculation of the free-energy of binding, the mechanism of inhibition of Mco-CPI against representative C1A cysteine proteases (papain and cathepsin L) was validated. Furthermore, molecular dynamics simulation of the Mco-CPI–papain complex validated the interaction as stable. To conclude, in this McoTI-II analogue, the specificity had been successfully redirected towards C1A cysteine proteases while retaining the moderate affinity. The outcomes of this study pave the way for further modifications of the Mco-CPI design for realizing its full potential in therapeutics. This study also demonstrates the relevance of ultrastable peptide-based scaffolds for the development of novel inhibitors via grafting.
Collapse
Affiliation(s)
- Manasi Mishra
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar 201314, India;
- Correspondence: (M.M.); (S.S.)
| | - Vigyasa Singh
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar 201314, India;
- Special Centre for Molecular Medicine, Jawahar Lal Nehru University, New Delhi 110067, India
| | - Meenakshi B. Tellis
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; (M.B.T.); (R.S.J.)
| | - Rakesh S. Joshi
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; (M.B.T.); (R.S.J.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shailja Singh
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar 201314, India;
- Special Centre for Molecular Medicine, Jawahar Lal Nehru University, New Delhi 110067, India
- Correspondence: (M.M.); (S.S.)
| |
Collapse
|
28
|
Mishra M, Singh V, Tellis MB, Joshi RS, Pandey KC, Singh S. Cyclic peptide engineered from phytocystatin inhibitory hairpin loop as an effective modulator of falcipains and potent antimalarial. J Biomol Struct Dyn 2020; 40:3642-3654. [PMID: 33292080 DOI: 10.1080/07391102.2020.1848629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cystatins are classical competitive inhibitors of C1 family cysteine proteases (papain family). Phytocystatin superfamily shares high sequence homology and typical tertiary structure with conserved glutamine-valine-glycine (Q-X-V-X-G) loop blocking the active site of C1 proteases. Here, we develop a cysteine-bounded cyclic peptide (CYS-cIHL) and linear peptide (CYS-IHL), using the conserved inhibitory hairpin loop amino acid sequence. Using an in silico approach based on modeling, protein-peptide docking, molecular dynamics simulations and calculation of free energy of binding, we designed and validated inhibitory peptides against falcipain-2 (FP-2) and -3 (FP-3), cysteine proteases from the malarial parasite Plasmodium falciparum. Falcipains are critical hemoglobinases of P. falciparum that are validated targets for the development of antimalarial therapies. CYS-cIHL was able to bind with micromolar affinity to FP-2 and modulate its binding with its substrate, hemoglobin in in vitro and in vivo assays. CYS-cIHL could effectively block parasite growth and displayed antimalarial activity in culture assays with no cytotoxicity towards human cells. These results indicated that cyclization can substantially increase the peptide affinity to the target. Furthermore, this can be applied as an effective strategy for engineering peptide inhibitory potency against proteases.
Collapse
Affiliation(s)
- Manasi Mishra
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Uttar Pradesh, India
| | - Vigyasa Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Meenakshi B Tellis
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
| | - Rakesh S Joshi
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kailash C Pandey
- Parasite-Host Biology Group, ICMR National Institute of Malaria Research, Dwarka, India
| | - Shailja Singh
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Uttar Pradesh, India.,Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
29
|
Shibao PYT, Santos-Júnior CD, Santiago AC, Mohan C, Miguel MC, Toyama D, Vieira MAS, Narayanan S, Figueira A, Carmona AK, Schiermeyer A, Soares-Costa A, Henrique-Silva F. Sugarcane cystatins: From discovery to biotechnological applications. Int J Biol Macromol 2020; 167:676-686. [PMID: 33285201 DOI: 10.1016/j.ijbiomac.2020.11.185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/01/2022]
Abstract
Phytocystatins are tight-binding cysteine protease inhibitors produced by plants. The first phytocystatin described was isolated from Oryza sativa and, since then, cystatins from several plant species were reported, including from sugarcane. Sugarcane cystatins were unraveled in Sugarcane EST project database, after sequencing of cDNA libraries from various sugarcane tissues at different developmental stages and six sugarcane cystatins were cloned, expressed and characterized (CaneCPI-1 to CaneCPI-6). These recombinant proteins were produced in different expression systems and inhibited several cysteine proteases, including human cathepsins B and L, which can be involved in pathologies, such as cancer. In this review, we summarize a comprehensive history of all sugarcane cystatins, presenting an updated phylogenetic analysis; chromosomal localization, and genomic organization. We also present protein docking of CaneCPI-5 in the active site of human cathepsin B, insights about canecystatins structures; recombinant expression in different systems, comparison of their inhibitory activities against human cysteine cathepsins B, K, L, S, V, falcipains from Plasmodium falciparum and a cathepsin L-like from the sugarcane weevil Sphenophorus levis; and enlighten their potential and current applications in agriculture and health.
Collapse
Affiliation(s)
- Priscila Yumi Tanaka Shibao
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Célio Dias Santos-Júnior
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, China
| | | | - Chakravarthi Mohan
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Mariana Cardoso Miguel
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Danyelle Toyama
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | | | - Subramonian Narayanan
- Genetic Transformation Laboratory, Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - Antonio Figueira
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Adriana K Carmona
- Department of Biophysics, Federal University of São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Andreas Schiermeyer
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Andrea Soares-Costa
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Flavio Henrique-Silva
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil.
| |
Collapse
|
30
|
Moura GTD, Souza AA, Garay AV, Freitas SMD, Valadares NF. Crystal structure and physicochemical characterization of a phytocystatin from Humulus lupulus: Insights into its domain-swapped dimer. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140541. [PMID: 32947025 DOI: 10.1016/j.bbapap.2020.140541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022]
Abstract
Phytocystatins are a family of plant cysteine-protease inhibitors of great interest due to their biotechnological application in culture improvement. It was shown that their expression in plants increases resistance to herbivory by insects and improves tolerance to both biotic and abiotic stress factors. In this work, owing to the economical relevance of the source organism, a phytocystatin from hop (Humulus lupulus), Hop1, was produced by heterologous expression in E. coli Lemo21 (DE3) cultivated in auto-inducing ZYM-5052 medium and purified by immobilized metal ion affinity and size exclusion chromatography. Thermal denaturation assays by circular dichroism showed that Hop1 exhibited high melting temperatures ranging from 82 °C to 85 °C and high thermal stability at a wide pH range, with ΔG25's higher than 12 kcal/mol. At 20 °C and pH 7.6, the dimeric conformation of the protein is favored according to size exclusion chromatography and analytical ultracentrifugation data, although monomers and higher order oligomers could still be detected in a lesser extent. The crystal structure of Hop1 was solved in the space groups P 2 21 21 and C 2 2 21 at resolutions of 1.80 Å and 1.68 Å, respectively. In both models, Hop1 is folded as a domain-swapped dimer where the first inhibitory loop undergoes a significant structural change and interacts with their equivalent from the other monomer forming a long antiparallel beta strand, leading to loss of inhibitory activity.
Collapse
Affiliation(s)
- Gustavo Trajano de Moura
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Universidade de Brasília, Brasília, 70910-900, Brazil
| | - Amanda Araújo Souza
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Universidade de Brasília, Brasília, 70910-900, Brazil
| | - Aisel Valle Garay
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Universidade de Brasília, Brasília, 70910-900, Brazil
| | - Sonia Maria de Freitas
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Universidade de Brasília, Brasília, 70910-900, Brazil
| | - Napoleão Fonseca Valadares
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Universidade de Brasília, Brasília, 70910-900, Brazil.
| |
Collapse
|
31
|
Wickramasinghe PDSU, Kwon H, Elvitigala DAS, Wan Q, Lee J. Identification and characterization of cystatin B from black rockfish, Sebastes schlegelii, indicating its potent immunological importance. FISH & SHELLFISH IMMUNOLOGY 2020; 104:497-505. [PMID: 32534230 DOI: 10.1016/j.fsi.2020.05.068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 05/09/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Cystatins represent a large superfamily of proteins involved in the competitive reversible inhibition of C1 class cysteine proteases. Plant-derived papain proteases and cysteine cathepsins are the major cysteine proteases that interact with cystatins. The cystatin superfamily can be further classified into three groups: stefins, cystatins, and kininogens. Among these, cystatin B is categorized under stefins. Cystatin B lacks a signal sequence, disulfide bonds, and carbohydrate groups. However, it contains the conserved cystatin family signature, including a single cystatin-like domain, cysteine protease inhibitory signature concealing pentapeptide (QXVXG) consensus sequence, and two conserved neighboring glycine (8GG9) residues at the N-terminal. In the current study, a member of cystatin B was identified from Korean black rockfish (Sebastes schlegeli) using a cDNA database and designated as RfCytB. The full-length cDNA of RfCytB was 573 bp long, with a coding region of 294 bp. The 5'-untranslated region (UTR) comprised 55 bp, and the 263-bp-long 3'-UTR included a polyadenylation signal sequence and a poly-A tail. The coding sequence encodes a polypeptide comprising 97 amino acids, with a predicted molecular weight of 11 kDa and theoretical isoelectric point of 6.3. RfCytB shared homology features with similar molecules from other teleost and vertebrate species, and was clustered with Cystatin family 1 in our phylogenetic reconstruction. RfCytB was ubiquitously expressed in all tissue types of healthy animals, with the highest levels of expression observed in gill and spleen. Temporal expression of RfCytB displayed significant up-regulation upon infection with Aeromonas salmonicida. Recombinantly expressed RfCytB showed a concentration-dependent inhibitory activity towards papain, with a high thermal stability. Transient expression of RfCytB in LPS activated murine macrophages, thereby inducing the expression of genes related to pro-inflammatory conditions, such as iNOS and TNF α. These results provide evidence for its protease inhibitory and immunity relevant roles in hosts.
Collapse
Affiliation(s)
- P D S U Wickramasinghe
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Department of Chemistry, Faculty of Science, University of Colombo, Colombo-03, Sri Lanka
| | - Hyukjae Kwon
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Don Anushka Sandaruwan Elvitigala
- Dept. of Basic Science and Social Sciences for Nursing, Faculty of Nursing, University of Colombo, Thalapathpitiya, Nugegoda, 10250, Sri Lanka.
| | - Qiang Wan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
32
|
Bastos VA, Gomes-Neto F, Rocha SLG, Teixeira-Ferreira A, Perales J, Neves-Ferreira AGC, Valente RH. The interaction between the natural metalloendopeptidase inhibitor BJ46a and its target toxin jararhagin analyzed by structural mass spectrometry and molecular modeling. J Proteomics 2020; 221:103761. [PMID: 32247172 DOI: 10.1016/j.jprot.2020.103761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/08/2020] [Accepted: 03/23/2020] [Indexed: 12/31/2022]
Abstract
Snakebite envenoming affects millions of people worldwide, being officially considered a neglected tropical disease by the World Health Organization. The antivenom is effective in neutralizing the systemic effects of envenomation, but local effects are poorly neutralized, often leading to permanent disability. The natural resistance of the South American pit viper Bothrops jararaca to its venom is partly attributed to BJ46a, a natural snake venom metalloendopeptidase inhibitor. Upon complex formation, BJ46a binds non-covalently to the metalloendopeptidase, rendering it unable to exert its proteolytic activity. However, the structural features that govern this interaction are largely unknown. In this work, we applied structural mass spectrometry techniques (cross-linking-MS and hydrogen-deuterium exchange MS) and in silico analyses (molecular modeling, docking, and dynamics simulations) to understand the interaction between BJ46a and jararhagin, a metalloendopeptidase from B. jararaca venom. We explored the distance restraints generated from XL-MS experiments to guide the modeling of BJ46a and jararhagin, as well as the protein-protein docking simulations. HDX-MS data pinpointed regions of protection/deprotection at the interface of the BJ46a-jararhagin complex which, in addition to the molecular dynamics simulation data, reinforced our proposed interaction model. Ultimately, the structural understanding of snake venom metalloendopeptidases inhibition by BJ46a could lead to the rational design of drugs to improve anti-snake venom therapeutics, alleviating the high morbidity rates currently observed.
Collapse
Affiliation(s)
- Viviane A Bastos
- Laboratory of Toxinology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Francisco Gomes-Neto
- Laboratory of Toxinology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Surza Lucia G Rocha
- Laboratory of Toxinology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Jonas Perales
- Laboratory of Toxinology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Richard H Valente
- Laboratory of Toxinology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.
| |
Collapse
|
33
|
Lu S, da Rocha LA, Torquato RJS, da Silva Vaz Junior I, Florin-Christensen M, Tanaka AS. A novel type 1 cystatin involved in the regulation of Rhipicephalus microplus midgut cysteine proteases. Ticks Tick Borne Dis 2020; 11:101374. [PMID: 32008997 DOI: 10.1016/j.ttbdis.2020.101374] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/03/2020] [Accepted: 01/10/2020] [Indexed: 01/20/2023]
Abstract
Rhipicephalus microplus is a cattle ectoparasite found in tropical and subtropical regions around the world with great impact on livestock production. R. microplus can also harbor pathogens, such as Babesia sp. and Anaplasma sp. which further compromise cattle production. Blood meal acquisition and digestion are key steps for tick development. In ticks, digestion takes place inside midgut cells and is mediated by aspartic and cysteine peptidases and, therefore, regulated by their inhibitors. Cystatins are a family of cysteine peptidases inhibitors found in several organisms and have been associated in ticks with blood acquisition, blood digestion, modulation of host immune response and tick immunity. In this work, we characterized a novel R. microplus type 1 cystatin, named Rmcystatin-1b. The inhibitor transcripts were found to be highly expressed in the midgut of partially and fully engorged females and they appear to be modulated at different days post-detachment. Purified recombinant Rmcystatin-1b displayed inhibitory activity towards typical cysteine peptidases with high affinity. Moreover, rRmcystatin-1b was able to inhibit native R. microplus cysteine peptidases and RNAi-mediated knockdown of the cystatin transcripts resulted in increased proteolytic activity. Moreover, rRmcystatin-1b was able to interfere with B. bovis growth in vitro. Taken together our data strongly suggest that Rmcystatin-1b is a regulator of blood digestion in R. microplus midgut.
Collapse
Affiliation(s)
- Stephen Lu
- Department of Biochemistry, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Leticia A da Rocha
- Department of Biochemistry, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Ricardo J S Torquato
- Department of Biochemistry, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Itabajara da Silva Vaz Junior
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-em), RJ, Brazil
| | - Monica Florin-Christensen
- Instituto de Patobiologia Veterinaria, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), INTA-Castelar, Los Reseros y Nicolas Repetto s/n, Hurlingham 1686, Argentina; National Council of Scientific and Technological Research (CONICET), Ciudad Autónoma de Buenos Aires C1033AAj, Argentina
| | - Aparecida S Tanaka
- Department of Biochemistry, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-em), RJ, Brazil.
| |
Collapse
|
34
|
Guevara T, Körschgen H, Cuppari A, Schmitz C, Kuske M, Yiallouros I, Floehr J, Jahnen-Dechent W, Stöcker W, Gomis-Rüth FX. The C-terminal region of human plasma fetuin-B is dispensable for the raised-elephant-trunk mechanism of inhibition of astacin metallopeptidases. Sci Rep 2019; 9:14683. [PMID: 31604990 PMCID: PMC6789097 DOI: 10.1038/s41598-019-51095-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/24/2019] [Indexed: 01/07/2023] Open
Abstract
Human fetuin-B plays a key physiological role in human fertility through its inhibitory action on ovastacin, a member of the astacin family of metallopeptidases. The inhibitor consists of tandem cystatin-like domains (CY1 and CY2), which are connected by a linker containing a "CPDCP-trunk" and followed by a C-terminal region (CTR) void of regular secondary structure. Here, we solved the crystal structure of the complex of the inhibitor with archetypal astacin from crayfish, which is a useful model of human ovastacin. Two hairpins from CY2, the linker, and the tip of the "legumain-binding loop" of CY1 inhibit crayfish astacin following the "raised-elephant-trunk mechanism" recently reported for mouse fetuin-B. This inhibition is exerted by blocking active-site cleft sub-sites upstream and downstream of the catalytic zinc ion, but not those flanking the scissile bond. However, contrary to the mouse complex, which was obtained with fetuin-B nicked at a single site but otherwise intact, most of the CTR was proteolytically removed during crystallization of the human complex. Moreover, the two complexes present in the crystallographic asymmetric unit diverged in the relative arrangement of CY1 and CY2, while the two complexes found for the mouse complex crystal structure were equivalent. Biochemical studies in vitro confirmed the differential cleavage susceptibility of human and mouse fetuin-B in front of crayfish astacin and revealed that the cleaved human inhibitor blocks crayfish astacin and human meprin α and β only slightly less potently than the intact variant. Therefore, the CTR of animal fetuin-B orthologs may have a function in maintaining a particular relative orientation of CY1 and CY2 that nonetheless is dispensable for peptidase inhibition.
Collapse
Affiliation(s)
- Tibisay Guevara
- Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/ Baldiri Reixac, 15-21, E-08028, Barcelona, Catalonia, Spain
| | - Hagen Körschgen
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 7, D-55128, Mainz, Germany
| | - Anna Cuppari
- Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/ Baldiri Reixac, 15-21, E-08028, Barcelona, Catalonia, Spain
| | - Carlo Schmitz
- Biointerface Laboratory, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Pauwelsstr. 30, D-52074, Aachen, Germany
| | - Michael Kuske
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 7, D-55128, Mainz, Germany
| | - Irene Yiallouros
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 7, D-55128, Mainz, Germany
| | - Julia Floehr
- Biointerface Laboratory, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Pauwelsstr. 30, D-52074, Aachen, Germany
| | - Willi Jahnen-Dechent
- Biointerface Laboratory, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Pauwelsstr. 30, D-52074, Aachen, Germany
| | - Walter Stöcker
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 7, D-55128, Mainz, Germany
| | - F Xavier Gomis-Rüth
- Proteolysis Lab, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/ Baldiri Reixac, 15-21, E-08028, Barcelona, Catalonia, Spain.
| |
Collapse
|
35
|
Xue Q, Wu XQ. Characteristics and function of a novel cystatin gene in the pine wood nematode Bursaphelenchus xylophilus. Biol Open 2019; 8:bio.042655. [PMID: 31511247 PMCID: PMC6777362 DOI: 10.1242/bio.042655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bursaphelenchus xylophilus is the pathogen that causes pine wilt disease (PWD). The disease has caused significant economic losses and damage to forests. However, the pathogenic mechanism of B. xylophilus remains unclear. Cystatins are involved in various biological processes where they regulate normal proteolysis and also play a role in pathogenicity, but their functions in B. xylophilus are unknown. Therefore, we cloned the full-length cDNA of a cystatin gene of B. xylophilus (Bx-cpi-1) by rapid-amplification of cDNA ends and analyzed its characteristics with bioinformatic methods. In situ mRNA hybridization analyses showed that transcripts of Bx-cpi-1 were abundantly expressed in the reproductive organs of B. xylophilus. The expression of Bx-cpi-1 was investigated using qPCR. Bx-cpi-1 was expressed during each of the different developmental stages of B. xylophilus. The highest gene expression was at the egg stage. After infection of Pinus massoniana, the expression of Bx-cpi-1 increased. The functions of Bx-cpi-1 were verified by RNA interference. The feeding rate, reproduction and pathogenicity of B. xylophilus all decreased as a result of silencing of the Bx-cpi-1 gene. These results revealed that Bx-cpi-1 may be a variant of a type II cystatin gene which is involved in the development and pathogenic process of B. xylophilus. Summary:Bx-cpi-1, a variant of a type II cystatin gene, was abundantly expressed in the reproductive organs of Bursaphelenchusxylophilus, and involved in the development and pathogenicity of B. xylophilus.
Collapse
Affiliation(s)
- Qi Xue
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China .,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
36
|
The Functional Mammalian CRES (Cystatin-Related Epididymal Spermatogenic) Amyloid is Antiparallel β-Sheet Rich and Forms a Metastable Oligomer During Assembly. Sci Rep 2019; 9:9210. [PMID: 31239483 PMCID: PMC6593142 DOI: 10.1038/s41598-019-45545-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
An amyloid matrix composed of several family 2 cystatins, including the reproductive cystatin CRES, is an integral structure in the mouse epididymal lumen and has proposed functions in sperm maturation and protection. Understanding how CRES amyloid assembles in vitro may provide clues on how the epididymal amyloid matrix forms in vivo. We therefore purified full-length CRES under nondenaturing conditions and followed its aggregation from monomer to amyloid under conditions that may approximate those in the epididymal lumen. CRES transitioned into a metastable oligomer that was resistant to aggregation and only over extended time formed higher-ordered amyloids. High protein concentrations facilitated oligomer assembly and also were required to maintain the metastable state since following dilution the oligomer was no longer detected. Similar to other amyloid precursors, the formation of CRES amyloids correlated with a loss of α-helix and a gain of β-sheet content. However, CRES is unique in that its amyloids are rich in antiparallel β-sheets instead of the more common parallel β-sheets. Taken together, our studies suggest that early metastable oligomers may serve as building blocks for functional amyloid assembly and further reveal that antiparallel β-sheet-rich amyloids can be functional forms.
Collapse
|
37
|
Abstract
Dozens of studies have assessed the practical value of plant cystatins as ectopic inhibitors of Cys proteases in biological systems. The potential of these proteins in crop protection to control herbivorous pests and pathogens has been documented extensively over the past 25 years. Their usefulness to regulate endogenous Cys proteases in planta has also been considered recently, notably to implement novel traits of agronomic relevance in crops or to generate protease activity-depleted environments in plants or plant cells used as bioreactors for recombinant proteins. After a brief update on the basic structural characteristics of plant cystatins, we summarize recent advances on the use of these proteins in plant biotechnology. Attention is also paid to the molecular improvement of their structural properties for the improvement of their protease inhibitory effects or the fine-tuning of their biological target range.
Collapse
|
38
|
Soond SM, Kozhevnikova MV, Townsend PA, Zamyatnin AA. Cysteine Cathepsin Protease Inhibition: An update on its Diagnostic, Prognostic and Therapeutic Potential in Cancer. Pharmaceuticals (Basel) 2019; 12:ph12020087. [PMID: 31212661 PMCID: PMC6630828 DOI: 10.3390/ph12020087] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 12/22/2022] Open
Abstract
In keeping with recent developments in basic research; the importance of the Cathepsins as targets in cancer therapy have taken on increasing importance and given rise to a number of key areas of interest in the clinical setting. In keeping with driving basic research in this area in a translational direction; recent findings have given rise to a number of exciting developments in the areas of cancer diagnosis; prognosis and therapeutic development. As a fast-moving area of research; the focus of this review brings together the latest findings and highlights the translational significance of these developments.
Collapse
Affiliation(s)
- Surinder M Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8-2, 119991 Moscow, Russia.
| | - Maria V Kozhevnikova
- Federal State Autonomous Edu-cational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovskiy University), Hospital Therapy Department No. 1, 6-1 Bolshaya Pirogovskaya str, 119991 Moscow, Russia.
| | - Paul A Townsend
- Division of Cancer Sciences and Manchester Cancer Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, and the NIHR Manchester Biomedical Research Centre, Manchester M20 4GJ, UK.
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8-2, 119991 Moscow, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia.
| |
Collapse
|
39
|
Amin F, Khan MS, Bano B. Mammalian cystatin and protagonists in brain diseases. J Biomol Struct Dyn 2019; 38:2171-2196. [DOI: 10.1080/07391102.2019.1620636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fakhra Amin
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bilqees Bano
- Department of Biochemistry, Faculty of Life Sciences, Aligarh MuslimUniversity, Aligarh, India
| |
Collapse
|
40
|
Cystatins in cancer progression: More than just cathepsin inhibitors. Biochimie 2019; 166:233-250. [PMID: 31071357 DOI: 10.1016/j.biochi.2019.05.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022]
Abstract
Cystatins are endogenous and reversible inhibitors of cysteine peptidases that are important players in cancer progression. Besides their primary role as regulators of cysteine peptidase activity, cystatins are involved in cancer development and progression through proteolysis-independent mechanisms. Mechanistic studies of cystatin function revealed that they affect all stages of cancer progression including tumor growth, apoptosis, invasion, metastasis and angiogenesis. Recently, the involvement of cystatins in the antitumor immune responses was reported. In this review, we discuss molecular mechanisms and clinical aspects of cystatins in cancer. Altered expression of cystatins in cancer resulting in harmful excessive cysteine peptidase activity has been a subject of several studies in order to find correlations with clinical outcome and therapy response. However, involvement in anti-tumor immune response and signaling cascades leading to cancer progression designates cystatins as possible targets for development of new anti-tumor drugs.
Collapse
|
41
|
Cuppari A, Körschgen H, Fahrenkamp D, Schmitz C, Guevara T, Karmilin K, Kuske M, Olf M, Dietzel E, Yiallouros I, de Sanctis D, Goulas T, Weiskirchen R, Jahnen-Dechent W, Floehr J, Stoecker W, Jovine L, Gomis-Rüth FX. Structure of mammalian plasma fetuin-B and its mechanism of selective metallopeptidase inhibition. IUCRJ 2019; 6:317-330. [PMID: 30867929 PMCID: PMC6400186 DOI: 10.1107/s2052252519001568] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Mammalian fetuin-A and fetuin-B are abundant serum proteins with pleiotropic functions. Fetuin-B is a highly selective and potent inhibitor of metallo-peptidases (MPs) of the astacin family, which includes ovastacin in mammals. By inhibiting ovastacin, fetuin-B is essential for female fertility. The crystal structure of fetuin-B was determined unbound and in complex with archetypal astacin, and it was found that the inhibitor has tandem cystatin-type modules (CY1 and CY2). They are connected by an exposed linker with a rigid, disulfide-linked 'CPDCP-trunk', and are followed by a C-terminal region (CTR) with little regular secondary structure. The CPDCP-trunk and a hairpin of CY2 form a bipartite wedge, which slots into the active-site cleft of the MP. These elements occupy the nonprimed and primed sides of the cleft, respectively, but spare the specificity pocket so that the inhibitor is not cleaved. The aspartate in the trunk blocks the catalytic zinc of astacin, while the CY2 hairpin binds through a QWVXGP motif. The CY1 module assists in structural integrity and the CTR is not involved in inhibition, as verified by in vitro studies using a cohort of mutants and variants. Overall, the inhibition conforms to a novel 'raised-elephant-trunk' mechanism for MPs, which is reminiscent of single-domain cystatins that target cysteine peptidases. Over 200 sequences from vertebrates have been annotated as fetuin-B, underpinning its ubiquity and physiological relevance; accordingly, sequences with conserved CPDCP- and QWVXGP-derived motifs have been found from mammals to cartilaginous fishes. Thus, the raised-elephant-trunk mechanism is likely to be generally valid for the inhibition of astacins by orthologs of fetuin-B.
Collapse
Affiliation(s)
- Anna Cuppari
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/o Baldiri Reixac 15-21, E-08028 Barcelona, Catalonia, Spain
| | - Hagen Körschgen
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 7, D-55128 Mainz, Germany
| | - Dirk Fahrenkamp
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Blickagången 16, SE-141 83 Huddinge, Sweden
| | - Carlo Schmitz
- Biointerface Laboratory, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Tibisay Guevara
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/o Baldiri Reixac 15-21, E-08028 Barcelona, Catalonia, Spain
| | - Konstantin Karmilin
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 7, D-55128 Mainz, Germany
| | - Michael Kuske
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 7, D-55128 Mainz, Germany
| | - Mario Olf
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 7, D-55128 Mainz, Germany
| | - Eileen Dietzel
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Blickagången 16, SE-141 83 Huddinge, Sweden
| | - Irene Yiallouros
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 7, D-55128 Mainz, Germany
| | - Daniele de Sanctis
- ESRF – The European Synchrotron, 71 Rue Jules Horowitz, F-38000 Grenoble, France
| | - Theodoros Goulas
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/o Baldiri Reixac 15-21, E-08028 Barcelona, Catalonia, Spain
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH Aachen University Hospital, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Willi Jahnen-Dechent
- Biointerface Laboratory, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Julia Floehr
- Biointerface Laboratory, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Medical Faculty, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Walter Stoecker
- Institute of Molecular Physiology, Cell and Matrix Biology, Johannes Gutenberg-University Mainz, Johann-Joachim-Becher-Weg 7, D-55128 Mainz, Germany
| | - Luca Jovine
- Department of Biosciences and Nutrition and Center for Innovative Medicine, Karolinska Institutet, Blickagången 16, SE-141 83 Huddinge, Sweden
| | - F. Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona, CSIC, Barcelona Science Park, Helix Building, c/o Baldiri Reixac 15-21, E-08028 Barcelona, Catalonia, Spain
| |
Collapse
|
42
|
Yu H, Xu X, Zhang Q, Wang X. Molecular characterization, expression and functional analysis of cystatin C in Japanese flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2019; 86:695-701. [PMID: 30543934 DOI: 10.1016/j.fsi.2018.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/03/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
Cystatins are natural tight-binding reversible inhibitors of cysteine proteases found in a wide arrange of organisms. Studies have shown that cystatins play important roles under both physiological and pathological conditions in mammals. However, much less is known about fish cystatins. In this study, we described the identification and analysis of the gene encoding cystatin C in Japanese flounder (Paralichthys olivaceus). This gene had a high homology with the sequence of cystatin C in many fish species and had a signal peptide and three conserved functional sites. The results of qRT-PCR showed that the gene was highly expressed in the liver. Lipopolysaccharide, peptidoglycan and polyinosinic-polycytidylic acid all increased its expression after stimulation. Functional analysis showed that the recombinant P. olivaceus cystatin C purified from Escherichia coli had cysteine protease inhibitory activity and could inhibit bacterial growth by binding to bacteria. Meanwhile, rPocystatin C could up-regulate the expression of cytokines tumor necrosis factor α and interleukin 10. These results indicated that cystatin C of P. olivaceus might be considered to have the similar immunomodulatory function to mammalian cystatin.
Collapse
Affiliation(s)
- Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Xin Xu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003, Qingdao, Shandong, China.
| |
Collapse
|
43
|
Stańczykiewicz B, Jakubik-Witkowska M, Rutkowska M, Polanowski A, Gburek J, Gołąb K, Juszczyńska K, Trziszka T, Rymaszewska J. Beneficial effect of ovocystatin on the cognitive decline in APP/PS1 transgenic mice. Adv Med Sci 2019; 64:65-71. [PMID: 30504006 DOI: 10.1016/j.advms.2018.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/16/2018] [Accepted: 08/17/2018] [Indexed: 10/27/2022]
Abstract
PURPOSE Cystatin C plays an important role in the course of neurodegenerative diseases and has a beneficial effect through inhibiting cysteine proteases and amyloid-β aggregation. It also induces proliferation and autophagy. Cystatin isolated from chicken egg white, called ovocystatin, has been widely used in the medical and pharmaceutical research due to its structural and biological similarities to human cystatin C. The aim of this study was to assess the effect of administering ovocystatin on the development of dementia-specific cognitive deficits in APP/PS1 transgenic mice. MATERIALS/METHODS The study was conducted on transgenic B6C3-Tg(APPswe,PSEN1dE9)85Dbo/Mmjax mice. Ovocystatin was administered to four-month-old transgenic (AD) and wild type (NCAR) mice in drinking water for 24 weeks (at a dose of 40 and 4 μg/ mouse). The locomotor activity and cognitive functions were determined using an actimeter and the Morris water maze test, respectively. RESULTS The results of the study indicate that ovocystatin has a beneficial effect on the cognitive functions in APP/PS1 transgenic mice. The strongest effects of ovocystatin were found in the group of AD mice, where ovocystatin was administered in drinking water at a dose of 40 μg/mouse (p < 0.05). Mice from the AD group swam statistically significantly further in the target zone during the trial in the Morris water maze compared to the AD (vehiculum) group (p < 0.05). CONCLUSIONS The obtained results encourage further research into the protective effect, which may be used as an adjuvant in the treatment of deteriorating cognitive functions.
Collapse
|
44
|
Cwiklinski K, Donnelly S, Drysdale O, Jewhurst H, Smith D, De Marco Verissimo C, Pritsch IC, O'Neill S, Dalton JP, Robinson MW. The cathepsin-like cysteine peptidases of trematodes of the genus Fasciola. ADVANCES IN PARASITOLOGY 2019; 104:113-164. [PMID: 31030768 DOI: 10.1016/bs.apar.2019.01.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fasciolosis caused by trematode parasites of the genus Fasciola is a global disease of livestock, particularly cattle, sheep, water buffalo and goats. It is also a major human zoonosis with reports suggesting that 2.4-17 million people are infected worldwide, and 91.1 million people currently living at risk of infection. A unique feature of these worms is their reliance on a family of developmentally-regulated papain-like cysteine peptidases, termed cathepsins. These proteolytic enzymes play central roles in virulence, infection, tissue migration and modulation of host innate and adaptive immune responses. The availability of a Fasciola hepatica genome, and the exploitation of transcriptomic and proteomic technologies to probe parasite growth and development, has enlightened our understanding of the cathepsin-like cysteine peptidases. Here, we clarify the structure of the cathepsin-like cysteine peptidase families and, in this context, review the phylogenetics, structure, biochemistry and function of these enzymes in the host-parasite relationship.
Collapse
Affiliation(s)
- Krystyna Cwiklinski
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Sheila Donnelly
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom; The School of Life Sciences, University of Technology Sydney (UTS), Ultimo, Sydney, NSW, Australia
| | - Orla Drysdale
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Heather Jewhurst
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - David Smith
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | | | - Izanara C Pritsch
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom; Department of Basic Pathology, Federal University of Parana, Curitiba, Brazil
| | - Sandra O'Neill
- School of Biotechnology, Dublin City University, Dublin, Republic of Ireland
| | - John P Dalton
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Mark W Robinson
- School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
45
|
Zhou X, Lu X, Qin S, Xu L, Chong X, Liu J, Yan P, Sun R, Hurley IP, Jones GW, Wang Q, He J. Is the absence of alpha-helix 2 in the appendant structure region the major contributor to structural instability of human cystatin C? J Biomol Struct Dyn 2019; 37:4522-4527. [DOI: 10.1080/07391102.2018.1552625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Xuejie Zhou
- School of Life Science, Liaoning University, Shenyang, China
| | - Xian Lu
- School of Life Science, Liaoning University, Shenyang, China
| | - Shuzhen Qin
- School of Life Science, Liaoning University, Shenyang, China
| | - Linan Xu
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Xiaoying Chong
- School of Life Science, Liaoning University, Shenyang, China
| | - Junqing Liu
- School of Life Science, Liaoning University, Shenyang, China
| | - Pingyu Yan
- School of Life Science, Liaoning University, Shenyang, China
| | - Rui Sun
- School of Life Science, Liaoning University, Shenyang, China
| | - Ian P. Hurley
- Centre for Biomedical Science Research, School of Clinical and Applied Sciences, Faculty of Health and Social Sciences, Leeds Beckett University, Leeds, United Kingdom
| | - Gary W. Jones
- Centre for Biomedical Science Research, School of Clinical and Applied Sciences, Faculty of Health and Social Sciences, Leeds Beckett University, Leeds, United Kingdom
| | - Qiuyu Wang
- School of Life Science, Liaoning University, Shenyang, China
| | - Jianwei He
- School of Life Science, Liaoning University, Shenyang, China
| |
Collapse
|
46
|
Manconi B, Liori B, Cabras T, Vincenzoni F, Iavarone F, Castagnola M, Messana I, Olianas A. Salivary Cystatins: Exploring New Post-Translational Modifications and Polymorphisms by Top-Down High-Resolution Mass Spectrometry. J Proteome Res 2018; 16:4196-4207. [PMID: 29019242 DOI: 10.1021/acs.jproteome.7b00567] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cystatins are a complex family of cysteine peptidase inhibitors. In the present study, various proteoforms of cystatin A, cystatin B, cystatin S, cystatin SN, and cystatin SA were detected in the acid-soluble fraction of human saliva and characterized by a top-down HPLC-ESI-MS approach. Proteoforms of cystatin D were also detected and characterized by an integrated top-down and bottom-up strategy. The proteoforms derive from coding sequence polymorphisms and post-translational modifications, in particular, phosphorylation, N-terminal processing, and oxidation. This study increases the current knowledge of salivary cystatin proteoforms and provides the basis to evaluate possible qualitative/quantitative variations of these proteoforms in different pathological states and reveal new potential salivary biomarkers of disease. Data are available via ProteomeXchange with identifier PXD007170.
Collapse
Affiliation(s)
- Barbara Manconi
- Department of Life and Environmental Sciences, Biomedical Section, University of Cagliari , Monserrato Campus, 09042 Monserrato, Cagliari, Italy
| | - Barbara Liori
- Department of Life and Environmental Sciences, Biomedical Section, University of Cagliari , Monserrato Campus, 09042 Monserrato, Cagliari, Italy
| | - Tiziana Cabras
- Department of Life and Environmental Sciences, Biomedical Section, University of Cagliari , Monserrato Campus, 09042 Monserrato, Cagliari, Italy
| | - Federica Vincenzoni
- Biochemistry and Clinical Biochemistry Institute, Medicine Faculty, Catholic University of Rome , L.go F. Vito 1, 00168 Rome, Italy
| | - Federica Iavarone
- Biochemistry and Clinical Biochemistry Institute, Medicine Faculty, Catholic University of Rome , L.go F. Vito 1, 00168 Rome, Italy
| | - Massimo Castagnola
- Biochemistry and Clinical Biochemistry Institute, Medicine Faculty, Catholic University of Rome , L.go F. Vito 1, 00168 Rome, Italy.,Institute of Chemistry of the Molecular Recognition CNR , L.go F. Vito 1, 00168 Rome, Italy
| | - Irene Messana
- Biochemistry and Clinical Biochemistry Institute, Medicine Faculty, Catholic University of Rome , L.go F. Vito 1, 00168 Rome, Italy.,Institute of Chemistry of the Molecular Recognition CNR , L.go F. Vito 1, 00168 Rome, Italy
| | - Alessandra Olianas
- Department of Life and Environmental Sciences, Biomedical Section, University of Cagliari , Monserrato Campus, 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
47
|
The transcription factor C/EBP α controls the role of cystatin F during the differentiation of monocytes to macrophages. Eur J Cell Biol 2018; 97:463-473. [PMID: 30033148 DOI: 10.1016/j.ejcb.2018.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 12/30/2022] Open
Abstract
Cystatin F is an inhibitor of cysteine peptidases expressed solely in immune cells. It is the only type II cystatin able to enter endosomal/lysosomal vesicles and to regulate directly the activity of intracellular cysteine cathepsins. Its expression in promonocytic U937 and promyeloblastic HL-60 cells is highly upregulated but, after differentiation with phorbol 12-myristate 13-acetate - PMA, its levels drop significantly. In contrast, the activities of intracellular cysteine cathepsins C, L and S are higher in differentiated cells than in non-differentiated ones due, presumably, to the lower inhibitory capacity of cystatin F. Using immunofluorescence confocal microscopy, proximity ligation assay and co-immunoprecipitation, cathepsins C, L and S were confirmed to be the main interacting partners of cystatin F in U937 and HL-60 cells. The promoter region of the cystatin F gene, CST7, contains a unique binding site for transcription factor C/EBP α, one of the main myeloid differentiation instructors. Using the chromatin immunoprecipitation assay, C/EBP α was shown to bind to CST7 gene in U937 cells. Following cell differentiation with PMA, the binding of C/EBP α was decreased significantly. The protein level of C/EBP α was also significantly lower in differentiated than in non-differentiated cells. It was shown that, during monocyte to macrophage differentiation, the endosomal/lysosomal proteolytic activity can be regulated by cystatin F whose expression is under the control of transcriptional factor C/EBP α.
Collapse
|
48
|
Cysteine cathepsins as a prospective target for anticancer therapies-current progress and prospects. Biochimie 2018; 151:85-106. [PMID: 29870804 DOI: 10.1016/j.biochi.2018.05.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/31/2018] [Indexed: 02/08/2023]
Abstract
Cysteine cathepsins (CTS), being involved in both physiological and pathological processes, play an important role in the human body. During the last 30 years, it has been shown that CTS are highly upregulated in a wide variety of cancer types although they have received a little attention as a potential therapeutic target as compared to serine or metalloproteinases. Studies on the increasing problem of neoplastic progression have revealed that secretion of cell-surface- and intracellular cysteine proteases is aberrant in tumor cells and has an impact on their growth, invasion, and metastasis by taking part in tumor angiogenesis, in apoptosis, and in events of inflammatory and immune responses. Considering the role of CTS in carcinogenesis, inhibition of these enzymes becomes an attractive strategy for cancer therapy. The downregulation of natural CTS inhibitors (CTSsis), such as cystatins, observed in various types of cancer, supports this claim. The intention of this review is to highlight the relationship of CTS with cancer and to present illustrations that explain how some of their inhibitors affect processes related to neoplastic progression.
Collapse
|
49
|
Parizi LF, Ali A, Tirloni L, Oldiges DP, Sabadin GA, Coutinho ML, Seixas A, Logullo C, Termignoni C, DA Silva Vaz I. Peptidase inhibitors in tick physiology. MEDICAL AND VETERINARY ENTOMOLOGY 2018; 32:129-144. [PMID: 29111611 DOI: 10.1111/mve.12276] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 06/23/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
Peptidase inhibitors regulate a wide range of physiological processes involved in the interaction between hematophagous parasites and their hosts, including tissue remodeling, the immune response and blood coagulation. In tick physiology, peptidase inhibitors have a crucial role in adaptation to improve parasitism mechanisms, facilitating blood feeding by interfering with defense-related host peptidases. Recently, a larger number of studies on this topic led to the description of several new tick inhibitors displaying interesting novel features, for example a role in pathogen transmission to the host. A comprehensive review discussing these emerging concepts can therefore shed light on peptidase inhibitor functions, their relevance to tick physiology and their potential applications. Here, we summarize and examine the general characteristics, functional diversity and action of tick peptidase inhibitors with known physiological roles in the tick-host-pathogen interaction.
Collapse
Affiliation(s)
- L F Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A Ali
- Department of Zoology, Abdul Wali Khan University, Mardan, Pakistan
- Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - L Tirloni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - D P Oldiges
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - G A Sabadin
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - M L Coutinho
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A Seixas
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - C Logullo
- Laboratório de Química e Função de Proteínas e Peptídeos-CBB and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - C Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Porto Alegre, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - I DA Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
50
|
Prabucka B, Mielecki M, Chojnacka M, Bielawski W, Czarnocki-Cieciura M, Orzechowski S. Structural and functional characterization of the triticale (x Triticosecale Wittm.) phytocystatin TrcC-8 and its dimerization-dependent inhibitory activity. PHYTOCHEMISTRY 2017; 142:1-10. [PMID: 28654769 DOI: 10.1016/j.phytochem.2017.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/06/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
Phytocystatins are a group of proteins with significant potential to regulate activities of cysteine proteinases of native and pest/pathogen origins. The two-domain triticale (x Triticosecale Wittm.) phytocystatin TrcC-8 was characterized in this study. This protein belongs to the second group of phytocystatins and contains all the conserved sequences and motifs as well as both N-terminal (CY) and C-terminal (CY-L) domains that are characteristic of phytocystatins with the C-terminal extension. We demonstrated that TrcC-8 forms stable dimers with a significantly reduced inhibitory activity against papain compared to the activity of monomers, indicating the regulatory nature of the oligomerization. Moreover, according to our research, only the N-terminal domain possesses the ability to form dimers, indicating that this part of TrcC-8 is involved in the dimerization of the full-length protein. Homology modelling of TrcC-8 strongly suggests distinct specificities for the CY and CY-L domains, confirmed in experiments with inhibition of the papain. Our results suggest that the CY domain of TrcC-8 may, although markedly weakly and suboptimally, interact with papain in an analogous mode to tarocystatin, while the CY-L domain of TrcC-8 has distinct specificity than tarocystatin.
Collapse
Affiliation(s)
- Beata Prabucka
- Department of Biochemistry, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Marcin Mielecki
- Protein Biosynthesis Department, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Chojnacka
- Department of Biochemistry, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Wiesław Bielawski
- Department of Biochemistry, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Mariusz Czarnocki-Cieciura
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, Poland; Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Sławomir Orzechowski
- Department of Biochemistry, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|