1
|
Chaouachi M, Vincent S, Groussard C. A Review of the Health-Promoting Properties of Spirulina with a Focus on athletes' Performance and Recovery. J Diet Suppl 2023; 21:210-241. [PMID: 37143238 DOI: 10.1080/19390211.2023.2208663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Spirulina species are photosynthetic and filamentous bacteria, commonly called 'blue-green microalgae'. Spirulina has a high nutrient content. It contains 60-70% protein with all essential amino acids present, and is rich in several vitamins, minerals, and bioactive compounds. Spirulina is also rich in essential fatty acids, and antioxidants. This rich nutritional content provides to Spirulina several health benefits including antioxidant, anti-inflammatory, immunomodulation, and insulin-sensitizing properties as well as positive effects in various diseases which could be also interesting for athletes. This paper mainly aims to review the interest and effects of Spirulina supplementation in athletes at rest, and in relation to exercise/training. Spirulina's biochemical composition, health properties/effects in humans, and effects in athletes including nutritional status, body composition, physical performance and intense exercise-related disorders were discussed in this review. Literature data showed that Spirulina seems to have positive effects on body composition especially in overweight and obese subjects which could not be the case in other pathologies and athletes. Spirulina appears to be also effective in improving aerobic fitness especially in untrained and moderately trained subjects. Results reported in the literature suggest that Spirulina may improve strength and power performance despite the minor or no significant effects in highly trained subjects. Most studies have shown that Spirulina improves antioxidant status, prevents and accelerates the recovery of exercise-induced lipid peroxidation, muscle damage and inflammation in trained and untrained subjects. Taken together, the results from these studies are encouraging and may demonstrate the potential benefits of Spirulina supplementation in athletes despite methodological differences.
Collapse
|
2
|
Fernandes R, Campos J, Serra M, Fidalgo J, Almeida H, Casas A, Toubarro D, Barros AIRNA. Exploring the Benefits of Phycocyanin: From Spirulina Cultivation to Its Widespread Applications. Pharmaceuticals (Basel) 2023; 16:592. [PMID: 37111349 PMCID: PMC10144176 DOI: 10.3390/ph16040592] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Large-scale production of microalgae and their bioactive compounds has steadily increased in response to global demand for natural compounds. Spirulina, in particular, has been used due to its high nutritional value, especially its high protein content. Promising biological functions have been associated with Spirulina extracts, mainly related to its high value added blue pigment, phycocyanin. Phycocyanin is used in several industries such as food, cosmetics, and pharmaceuticals, which increases its market value. Due to the worldwide interest and the need to replace synthetic compounds with natural ones, efforts have been made to optimize large-scale production processes and maintain phycocyanin stability, which is a highly unstable protein. The aim of this review is to update the scientific knowledge on phycocyanin applications and to describe the reported production, extraction, and purification methods, including the main physical and chemical parameters that may affect the purity, recovery, and stability of phycocyanin. By implementing different techniques such as complete cell disruption, extraction at temperatures below 45 °C and a pH of 5.5-6.0, purification through ammonium sulfate, and filtration and chromatography, both the purity and stability of phycocyanin have been significantly improved. Moreover, the use of saccharides, crosslinkers, or natural polymers as preservatives has contributed to the increased market value of phycocyanin.
Collapse
Affiliation(s)
- Raquel Fernandes
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Joana Campos
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Mónica Serra
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Javier Fidalgo
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Hugo Almeida
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
- UCIBIO (Research Unit on Applied Molecular Biosciences), REQUIMTE (Rede de Química e Tecnologia), MEDTECH (Medicines and Healthcare Products), Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana Casas
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Duarte Toubarro
- CBA and Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus No 13, 9500-321 Ponta Delgada, Portugal
| | - Ana I. R. N. A. Barros
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
3
|
Abo-Shady AM, Gheda SF, Ismail GA, Cotas J, Pereira L, Abdel-Karim OH. Antioxidant and Antidiabetic Activity of Algae. Life (Basel) 2023; 13:460. [PMID: 36836817 PMCID: PMC9964347 DOI: 10.3390/life13020460] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Currently, algae arouse a growing interest in the pharmaceutical and cosmetic area due to the fact that they have a great diversity of bioactive compounds with the potential for pharmacological and nutraceutical applications. Due to lifestyle modifications brought on by rapid urbanization, diabetes mellitus, a metabolic illness, is the third largest cause of death globally. The hunt for an efficient natural-based antidiabetic therapy is crucial to battling diabetes and the associated consequences due to the unfavorable side effects of currently available antidiabetic medications. Finding the possible advantages of algae for the control of diabetes is crucial for the creation of natural drugs. Many of algae's metabolic processes produce bioactive secondary metabolites, which give algae their diverse chemical and biological features. Numerous studies have demonstrated the antioxidant and antidiabetic benefits of algae, mostly by blocking carbohydrate hydrolyzing enzyme activity, such as α-amylase and α-glucosidase. Additionally, bioactive components from algae can lessen diabetic symptoms in vivo. Therefore, the current review concentrates on the role of various secondary bioactive substances found naturally in algae and their potential as antioxidants and antidiabetic materials, as well as the urgent need to apply these substances in the pharmaceutical industry.
Collapse
Affiliation(s)
| | - Saly Farouk Gheda
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Gehan Ahmed Ismail
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - João Cotas
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Leonel Pereira
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Omnia Hamdy Abdel-Karim
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Bioprocess Engineering & AlgaePARC, Wageningen University and Research, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
4
|
Atilgan HI, Akbulut A, Yazihan N, Yumusak N, Singar E, Koca G, Korkmaz M. The Cytokines-Directed Roles of Spirulina for Radioprotection of Lacrimal Gland. Ocul Immunol Inflamm 2023; 31:271-276. [PMID: 35050831 DOI: 10.1080/09273948.2022.2026409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE To evaluate the radioprotective effect of spirulina (SP) on the lacrimal glands after RAI treatment. METHODS A total of 30 rats were separated into control, RAI and SP group. The radioprotective effect of SP on lacrimal glands was evaluated with histopathological and cytopathological analysis. Lacrimal glands were analyzed for tumor necrosis factor alpha (TNF-α), interleukin-2 (IL-2), IL-4, IL-6, IL-10, nuclear factor-kappa B (NF-κB), total oxidant status (TOS) and total antioxidant capacity (TAC) levels. RESULTS RAI increased TNF-α (p = .001), IL-6 (p = .018), and NF-κB levels (p < .0005). Following the administration of SP, TNF-α (p < .0005), IL-4 (p = .026), and IL-6 (p = .006) levels decreased. RAI decreased the TAC levels (p = .001), and co-administration of SP increased the TAC level, but was not statistically significant. SP decreased the TOS level after RAI (p = .022) . CONCLUSIONS SP protects lacrimal glands from RAI-induced damage.
Collapse
Affiliation(s)
- H I Atilgan
- Faculty of Medicine, Department of Nuclear Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - A Akbulut
- Ankara Training and Research Hospital, Department of Nuclear Medicine, University of Health Sciences, Ankara, Turkey
| | - N Yazihan
- Faculty of Medicine, Department of Pathophysiology, Ankara University, Ankara, Turkey
| | - N Yumusak
- Faculty of Veterinary Medicine, Department of Pathology, Harran University, Sanliurfa, Turkey
| | - E Singar
- Ankara Training and Research Hospital, Department of Ophthalmology, University of Health Sciences, Ankara, Turkey
| | - G Koca
- Ankara Training and Research Hospital, Department of Nuclear Medicine, University of Health Sciences, Ankara, Turkey
| | - M Korkmaz
- Ankara Training and Research Hospital, Department of Nuclear Medicine, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
5
|
Fais G, Manca A, Bolognesi F, Borselli M, Concas A, Busutti M, Broggi G, Sanna P, Castillo-Aleman YM, Rivero-Jiménez RA, Bencomo-Hernandez AA, Ventura-Carmenate Y, Altea M, Pantaleo A, Gabrielli G, Biglioli F, Cao G, Giannaccare G. Wide Range Applications of Spirulina: From Earth to Space Missions. Mar Drugs 2022; 20:md20050299. [PMID: 35621951 PMCID: PMC9143897 DOI: 10.3390/md20050299] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Spirulina is the most studied cyanobacterium species for both pharmacological applications and the food industry. The aim of the present review is to summarize the potential benefits of the use of Spirulina for improving healthcare both in space and on Earth. Regarding the first field of application, Spirulina could represent a new technology for the sustainment of long-duration manned missions to planets beyond the Lower Earth Orbit (e.g., Mars); furthermore, it could help astronauts stay healthy while exposed to a variety of stress factors that can have negative consequences even after years. As far as the second field of application, Spirulina could have an active role in various aspects of medicine, such as metabolism, oncology, ophthalmology, central and peripheral nervous systems, and nephrology. The recent findings of the capacity of Spirulina to improve stem cells mobility and to increase immune response have opened new intriguing scenarios in oncological and infectious diseases, respectively.
Collapse
Affiliation(s)
- Giacomo Fais
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (A.C.); (G.C.)
| | - Alessia Manca
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (A.M.); (A.P.)
| | - Federico Bolognesi
- Unit of Maxillofacial Surgery, Head and Neck Department, ASST Santi Paolo e Carlo Hospital, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; (F.B.); (F.B.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Zamboni 33, 40126 Bologna, Italy
| | - Massimiliano Borselli
- Department of Ophthalmology, University Magna Grecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
| | - Alessandro Concas
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (A.C.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Marco Busutti
- Nephrology, Dialysis and Transplant Unit, IRCCS-Azienda Ospedaliero Universitaria di Bologna, University of Bologna, Via Giuseppe Massarenti 9, 40138 Bologna, Italy;
| | - Giovanni Broggi
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, University of Milan, Via Celoria 11, 20133 Milan, Italy;
- Columbus Clinic Center, Via Michelangelo Buonarroti 48, 20145 Milan, Italy
| | - Pierdanilo Sanna
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - Yandy Marx Castillo-Aleman
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - René Antonio Rivero-Jiménez
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - Antonio Alfonso Bencomo-Hernandez
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - Yendry Ventura-Carmenate
- Abu Dhabi Stem Cells Center, Al Misaha Street, Rowdhat, Abu Dhabi, United Arab Emirates; (P.S.); (Y.M.C.-A.); (R.A.R.-J.); (A.A.B.-H.); (Y.V.-C.)
| | - Michela Altea
- TOLO Green, Via San Damiano 2, 20122 Milan, Italy; (M.A.); (G.G.)
| | - Antonella Pantaleo
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (A.M.); (A.P.)
| | | | - Federico Biglioli
- Unit of Maxillofacial Surgery, Head and Neck Department, ASST Santi Paolo e Carlo Hospital, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; (F.B.); (F.B.)
| | - Giacomo Cao
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy; (G.F.); (A.C.); (G.C.)
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
- Center for Advanced Studies, Research and Development in Sardinia (CRS4), Loc. Piscina Manna, Building 1, 09050 Pula, Italy
| | - Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Grecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy;
- Correspondence: ; Tel.: +39-3317186201
| |
Collapse
|
6
|
Germoush MO, Fouda MMA, Kamel M, Abdel-Daim MM. Spirulina platensis protects against microcystin-LR-induced toxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11320-11331. [PMID: 34533748 DOI: 10.1007/s11356-021-16481-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Microcystis aeruginosa produces an abundant cyanotoxin (microcystins (MCs) in freshwater supplies. MCs have adverse health hazards to animals and humans. Microcystin-leucine-arginine (microcystin-LR or MC-LR) is the most studied among these MCs due to their high toxicity. So, this study was designed to evaluate the possible therapeutic role of the natural algal food supplement, Spirulina platensis (SP), against MC-LR-induced toxic effects in male Wistar rats. Forty rats were randomly divided into five groups. Control and SP groups orally administered distilled water and SP (1000 mg/kg/daily), respectively, for 21 days. MC-LR group was intraperitoneally injected with MC-LR (10 μg/kg/day) for 14 days. MC-LR-SP500 and MC-LR-SP1000 groups were orally treated with SP (500 and 1000 mg/kg, respectively) for 7 days and concomitantly with MC-LR for 14 days. MC-LR induced oxidative hepatorenal damage, cardiotoxicity, and neurotoxicity greatly, which was represented by reduction of reduced glutathione content and the activities of glutathione peroxidase, catalase, and superoxide dismutase and elevation of concentrations of nitric oxide and malondialdehyde in renal, hepatic, brain, and heart tissues. In addition, it increased serum levels of urea, creatinine, tumor necrosis factor-alfa, interleukin-1beta and interleukin-6 and serum activities of alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, creatine kinase, and creatine kinase-MB. However, S. platensis restored normal levels of measured serum parameters, ameliorated MC-LR-induced oxidative damage, and normalized tissue antioxidant biomarkers. In conclusion, SP alleviated MC-induced organ toxicities by mitigating oxidative and nitrosative stress and lipid peroxidation.
Collapse
Affiliation(s)
- Mousa O Germoush
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Maged M A Fouda
- Biology Department, College of Science, Jouf University, Sakaka, Saudi Arabia
- Department of Zoology, Faculty of Science, Al-Azhar University, Assuit Branch, Assuit, Egypt
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia.
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
7
|
Pina-Pérez MC, Úbeda-Manzanaro M, Beyrer M, Martínez A, Rodrigo D. In vivo Assessment of Cold Atmospheric Pressure Plasma Technology on the Bioactivity of Spirulina. Front Microbiol 2022; 12:781871. [PMID: 35140692 PMCID: PMC8819064 DOI: 10.3389/fmicb.2021.781871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
The present study challenges the in vivo assessment of cold atmospheric pressure plasma (CAPP) technology on the bioactive activity (antioxidant/antiaging and antimicrobial potential) of Spirulina powder, using Caenorhabditis elegans as an animal model. Surface microdischarge cold atmospheric pressure plasma (SMD-CAPP) treatment was 3.3 W discharge power for 7 min. C. elegans lifespan and egg laying were used as indicators of antioxidant/antiaging potential of Spirulina (1 mg/mL), when grown with Spirulina CP-treated [E_SCP] and untreated [E_S], compared with a control [E_0] (non-supplemented with Spirulina). According to our results, under both Spirulina supplemented media [E_SCP and E_S] and for the first 17 days, nematodes experienced an increase in lifespan but without significant differences (p > 0.05) between control and Spirulina CP-treated. Regarding the in vivo assay of the antimicrobial potential of Spirulina against Salmonella enterica serovar Typhimurium (infected worms), no significant differences (p > 0.05) were found between the three exposure scenarios (control [S_0]; Spirulina supplemented media [S_S]; CP-treated Spirulina supplemented media [S_SCP]). According to present results, CAPP-treatment do not influence negatively the lifespan of C. elegans but a reduction in the Spirulina antiaging potential was found. No in vivo modifications in antimicrobial activity seem to be linked to CAPP-processed Spirulina.
Collapse
Affiliation(s)
- María Consuelo Pina-Pérez
- Departamento de Microbiología y Ecología, Universitat de València, Burjassot, Valencia, Spain
- Food Engineering Laboratory, Institute of Life Technologies, University of Applied Sciences and Arts Western-Switzerland (HES-SO) Valais-Wallis, Sion, Switzerland
| | - María Úbeda-Manzanaro
- Departamento Conservación y Calidad, Instituto de Agroquímica y Tecnología de Alimentos IATA - Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Michael Beyrer
- Food Engineering Laboratory, Institute of Life Technologies, University of Applied Sciences and Arts Western-Switzerland (HES-SO) Valais-Wallis, Sion, Switzerland
| | - Antonio Martínez
- Departamento Conservación y Calidad, Instituto de Agroquímica y Tecnología de Alimentos IATA - Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Dolores Rodrigo
- Departamento Conservación y Calidad, Instituto de Agroquímica y Tecnología de Alimentos IATA - Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
- *Correspondence: Dolores Rodrigo,
| |
Collapse
|
8
|
Kolluri G, Marappan G, Yadav AS, Kumar A, Mariappan AK, Tyagi JS, Rokade JJ, Govinthasamy P. Effects of Spirulina (Arthrospira platensis) as a drinking water supplement during cyclical chronic heat stress on broiler chickens: Assessing algal composition, production, stress, health and immune-biochemical indices. J Therm Biol 2022; 103:103100. [PMID: 35027195 DOI: 10.1016/j.jtherbio.2021.103100] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/18/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Spirulina, the blue green algae is considered to exhibit multifaceted benefits on both human health and animal production. Three hundred sixty day old unsexed broiler chicks of CARIBROVISHAL strain were assigned to five treatment groups each comprising nine replicates of 8 chicks. The experiment was carried out during the hot humid summer season (Mid-April to May) under deep litter rearing system with uniform managemental conditions. Birds were administered orally with Spirulina through drinking water in the morning (06:00-12:00 PM) on daily basis throughout the experimental period at 5, 10, 15 and 20 gL-1 concentration. Spirulina supplementation neither improved nor compromised production performance of broilers reared during hot climatic condition. Results based on one way analysis of variance indicated a significant effect on haemoglobin and total red blood cell count. Serum lipid content and transaminases were reduced, while serum protein concentration was higher (P < 0.01) in the groups administered with 15 and 20 gL-1 of Spirulina. The extent of imparting shank pigmentation was improved in all the supplemented groups. Cell mediated and humoral immunity against Phytoheamagglutunin-P and Newcastle disease vaccination respectively were maximized (P < 0.05) at 20 gL-1. These findings provide direct evidence of dose-related modulation of production, physiological and immunological attributes by Spirulina engendering its further investigation as a potential source of drinking water supplement for stress alleviation in broilers. From the results, it may concluded that Spirulina can be incorporated at 15 or 20 gL-1 for achieving optimal improvement of health and welfare attributes in broilers reared during hot summer without compromising production.
Collapse
Affiliation(s)
- Gautham Kolluri
- Avian Medicine Section, ICAR-Central Avian Research Institute, Izatnagar, 243122, U.P, India; Division of Avian Physiology and Reproduction, ICAR-Central Avian Research Institute, Izatnagar, 243122, U.P, India.
| | - Gopi Marappan
- Division of Avian Physiology and Reproduction, ICAR-Central Avian Research Institute, Izatnagar, 243122, U.P, India
| | - Ajit Singh Yadav
- Avian Medicine Section, ICAR-Central Avian Research Institute, Izatnagar, 243122, U.P, India
| | - Akhilesh Kumar
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, U.P, India
| | - Asok Kumar Mariappan
- Avian Disease Section, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, U.P, India
| | - Jagbir Singh Tyagi
- Division of Avian Physiology and Reproduction, ICAR-Central Avian Research Institute, Izatnagar, 243122, U.P, India
| | - Jaydip Jaywant Rokade
- Experimental Broiler Farm, ICAR-Central Avian Research Institute, Izatnagar, 243122, U.P, India
| | - Prabakar Govinthasamy
- Division of Avian Physiology and Reproduction, ICAR-Central Avian Research Institute, Izatnagar, 243122, U.P, India
| |
Collapse
|
9
|
Ashour M, Alprol AE, Heneash AMM, Saleh H, Abualnaja KM, Alhashmialameer D, Mansour AT. Ammonia Bioremediation from Aquaculture Wastewater Effluents Using Arthrospira platensis NIOF17/003: Impact of Biodiesel Residue and Potential of Ammonia-Loaded Biomass as Rotifer Feed. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5460. [PMID: 34576683 PMCID: PMC8472451 DOI: 10.3390/ma14185460] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022]
Abstract
The present work evaluated the capability of Arthrospira platensis complete biomass (ACDW) and the lipid-free biomass (LFB) to remove ammonium ions (NH4+) from aquaculture wastewater discharge. Under controlled conditions in flasks filled with 100 mL of distilled water (synthetic aqueous solution), a batch process ion-exchange was conducted by changing the main parameters including contact times (15, 30, 45, 60, 120, and 180 min), initial ammonium ion concentrations (10, 20, 30, 40, 50, and 100 mg·L-1), and initial pH levels (2, 4, 6, 8, and 10) at various dosages of ACDW and LFB as adsorbents (0.02, 0.04, 0.06, 0.08, and 0.1 g). After lab optimization, ammonia removal from real aquaculture wastewater was also examined. The removal of ammonium using ACDW and LFB in the synthetic aqueous solution (64.24% and 89.68%, respectively) was higher than that of the real aquaculture effluents (25.70% and 37.80%, respectively). The data of IR and Raman spectroscopy confirmed the existence of various functional groups in the biomass of ACDW and LFB. The adsorption equilibrium isotherms were estimated using Freundlich, Langmuir, and Halsey models, providing an initial description of the ammonia elimination capacity of A. platensis. The experimental kinetic study was suitably fit by a pseudo-second-order equation. On the other hand, as a result of the treatment of real aquaculture wastewater (RAW) using LFB and ACDW, the bacterial counts of the LFB, ACDW, ACDW-RAW, and RAW groups were high (higher than 300 CFU), while the LFB-RAW group showed lower than 100 CFU. The current study is the first work reporting the potential of ammonia-loaded microalgae biomass as a feed source for the rotifer (Brachionus plicatilis). In general, our findings concluded that B. plicatilis was sensitive to A. platensis biomass loaded with ammonia concentrations. Overall, the results in this work showed that the biomass of A. platensis is a promising candidate for removing ammonia from aquaculture wastewater.
Collapse
Affiliation(s)
- Mohamed Ashour
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt; (A.E.A.); (A.M.M.H.); (H.S.)
| | - Ahmed E. Alprol
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt; (A.E.A.); (A.M.M.H.); (H.S.)
| | - Ahmed M. M. Heneash
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt; (A.E.A.); (A.M.M.H.); (H.S.)
| | - Hosam Saleh
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt; (A.E.A.); (A.M.M.H.); (H.S.)
| | - Khamael M. Abualnaja
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (K.M.A.); (D.A.)
| | - Dalal Alhashmialameer
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (K.M.A.); (D.A.)
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| |
Collapse
|
10
|
Serrya MS, Nader MA, Abdelmageed ME. Hepatoprotective effect of the tyrosine kinase inhibitor nilotinib against cyclosporine-A induced liver injury in rats through blocking the Bax/Cytochrome C/caspase-3 apoptotic signaling pathway. J Biochem Mol Toxicol 2021; 35:1-13. [PMID: 33710703 DOI: 10.1002/jbt.22764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/07/2020] [Accepted: 03/02/2021] [Indexed: 11/09/2022]
Abstract
Cyclosporine-A (CsA) is a powerful immunosuppressive agent and hepatotoxicity results from CsA treatment. This study aimed to elucidate the effectiveness of tyrosine kinase inhibitor nilotinib against CsA-induced hepatotoxicity and the underlying molecular mechanisms. Male Sprague-Dawley rats were allocated into four groups and received drugs for 28 days as follows: Control group: received vehicle, Nilotinib group: received nilotinib (20 mg/kg orally), CsA group: received CsA by subcutaneous injection (20 mg/kg daily), CsA-nilotinib: received nilotinib and CsA. Serum lactate dehydrogenase (LDH), liver function biomarkers, hepatic levels of oxidative stress biomarkers, nuclear factor erythroid-2 like-2 (Nrf2), total antioxidant capacity (TAC), interleukin-2 (IL-2), IL-1β, IL-6, and cytochrome-C were assessed. Additionally, the protein levels and mRNA expression of Bcl2 associated X protein (Bax), caspase-3, nuclear factor-κB (NF-κB), hemoxygenase-1 (HO-1) were measured. Moreover, liver tissues were assessed histopathologically using hematoxylin-eosin and Masson trichrome stain. Nilotinib treatment decreased serum LDH, alanine aminotransferase, aspartate aminotransferase, and γ-glutamyltransferase (γ-GT), hepatic malondialdehyde, and cytochrome-C. It also increased superoxide dismutase, reduced glutathione, glutathione reductase, glutathione peroxidase, glutathione-S-transferase (GST), TAC, and Nrf2 compared to CsA-injected rats. In addition, nilotinib decreased NF-κB, IL-1β, IL-6, Bax, and caspase-3, while elevated IL-2 and immunoexpression of HO-1. Additionally, mRNA expression of Bax and caspase-3 was elevated and that of HO-1 and inhibitory protein κB-α was reduced in the nilotinib-treated group. Moreover, nilotinib significantly attenuated CsA-induced histopathological alterations. Nilotinib may have a promising role as a hepato-protective through its antiapoptotic, antioxidant, and anti-inflammatory effects.
Collapse
Affiliation(s)
- Marwa S Serrya
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Marwa E Abdelmageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
11
|
Cho JA, Baek SY, Cheong SH, Kim MR. Spirulina Enhances Bone Modeling in Growing Male Rats by Regulating Growth-Related Hormones. Nutrients 2020; 12:nu12041187. [PMID: 32344533 PMCID: PMC7231069 DOI: 10.3390/nu12041187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 11/16/2022] Open
Abstract
In recent years, growth hormone deficiency in children has been treated with hormone therapy despite the possible significant side effects. Therefore, it was deemed beneficial to develop functional foods or dietary supplements for safely improving children's growth. Spirulina platensis is known for its high antioxidant, anti-aging, anti-cancer, and immunity-enhancing properties, as well as its high digestibility and high protein content, but little has been reported about its influence on bone development in children with a normal supply of protein. In this study, we evaluated the effects of spirulina on the bone metabolism and antioxidant profiles of three-week-old growing male rats. The animals were divided into four groups (n = 17 per group) and were fed AIN93G diets with 0% (control), 30% (SP30), 50% (SP50), and 70% (SP70) of casein protein replaced by spirulina, respectively, for seven weeks. We observed that spirulina enhanced bone growth and bone strength by stimulating parathyroid hormone and growth hormone activities, as well its increased antioxidant activity. These results indicate that spirulina provides a suitable dietary supplement and alternative protein source with antioxidant benefits for growth improvement in early developmental stages.
Collapse
Affiliation(s)
- Jin Ah Cho
- Department of Food and Nutrition, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (J.A.C.); (S.Y.B.)
| | - Seong Yeon Baek
- Department of Food and Nutrition, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (J.A.C.); (S.Y.B.)
| | - Sun Hee Cheong
- Department of Marine Bio Food Science, College of Fisheries and Ocean Science, Chonnam National University, Yeosu 550-749, Korea;
| | - Mee Ree Kim
- Department of Food and Nutrition, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (J.A.C.); (S.Y.B.)
- Correspondence: ; Tel.: +82-42-821-6837
| |
Collapse
|
12
|
Khalil SR, Salem HFA, Metwally MMM, Emad RM, Elbohi KM, Ali SA. Protective effect of Spirulina platensis against physiological, ultrastructural and cell proliferation damage induced by furan in kidney and liver of rat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110256. [PMID: 32014724 DOI: 10.1016/j.ecoenv.2020.110256] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/08/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The modulatory role of the Spirulina platensis (SP) against furan-induced (FU) hepatic and renal damage was assessed in this study. For achieving this, sixty rats were distributed into six groups: control group, SP-administered group (300 mg/kg b.wt orally for 28 days), a FU-intoxicated group (16 mg/kg b.wt, orally, daily for 28 days), protective co-treated group SP/F (administered SP 300 mg/kg b.wt, one week before, and concurrently with FU intoxication), therapeutic co-treated group FU/SP (administered SP 300 mg/kg b.wt, one week after FU intoxication for 28 days) and protective/therapeutic co-treated group SP/FU/SP (administered SP one week before and after, concurrently with FU intoxication). Subsequently, the biochemical responses and the histology of hepatic and renal tissues in treated rats were assessed. The results indicated that FU intoxication induced a significant hepato- and nephropathy represented by the elevation in the values of tissue injury biomarkers and reduction in protein levels. Histologically, a wide range of morphological, cytotoxic, inflammatory, and vascular alterations as well as downregulation in the immunoexpression of the proliferating cell nuclear antigen (PCNA) and the proliferation-associated nuclear antigen (Ki-67) were induced by FU intoxication. Oral SP administration, particularly in the protective/therapeutic co-treated group, markedly supressed the serum levels of the tissue injury biomarkers, diminished the inflammatory response, restored the cytotoxic alterations, upregulated the immunoexpression of PCNA and Ki-67, and restored the perturbed morphology of the hepatic and renal tissues. In conclusion, the obtained data demonstrated that SP co-administration elicits both protective and therapeutic potential against the FU-induced hepato- and nephropathy.
Collapse
Affiliation(s)
- Samah R Khalil
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Egypt.
| | - Hoda F A Salem
- Histology and Cytology Department, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | | | - Rasha M Emad
- Histology and Cytology Department, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Khlood M Elbohi
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Egypt
| | - Sozan A Ali
- Histology and Cytology Department, Faculty of Veterinary Medicine, Zagazig University, Egypt
| |
Collapse
|
13
|
Nasirian F, Sarir H, Moradi-kor N. Antihyperglycemic and antihyperlipidemic activities of Nannochloropsis oculata microalgae in Streptozotocin-induced diabetic rats. Biomol Concepts 2019; 10:37-43. [DOI: 10.1515/bmc-2019-0004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/02/2019] [Indexed: 01/09/2023] Open
Abstract
AbstractBackgroundIt is well documented that biologically active components of microalgae can be utilized for treatment of different diseases. This study was conducted to evaluate the antihyperglycemic and antihyperlipidemic activities and weight control of Nannochloropsis oculata microalgae (NOM) in Streptozotocin-induced diabetic male rats.MethodsDiabetes was induced by intraperitoneal administration of Streptozotocin (55 mg/kg). Healthy and diabetic rats were divided in to six groups. Healthy and diabetic rats orally received distilled water or NOM (10 and 20 mg/kg) for three weeks.ResultsOral administration of NOM to diabetic rats significantly reduced the serum concentrations of glucose, cholesterol, triglycerides, LDL and increased the serum concentration of insulin and HDL-C (P<0.05). Treatment with NOM had no significant effect on blood parameters in healthy rats (P>0.05). Also, NOM maintained body weight in diabetic rats (P<0.05).ConclusionIt can be concluded that NOM has antihyperglycemic and antihyperlipidemic activities in diabetic rats.
Collapse
Affiliation(s)
- Fariba Nasirian
- Department of Animal Sciences, University of Birjand, Birjand, Iran
| | - Hadi Sarir
- Department of Animal Sciences, University of Birjand, Birjand, Iran
| | | |
Collapse
|
14
|
Khatun S, Maity M, Perveen H, Dash M, Chattopadhyay S. Spirulina platensis ameliorates arsenic-mediated uterine damage and ovarian steroidogenic disorder. Facets (Ott) 2018. [DOI: 10.1139/facets-2017-0099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Novel, non-invasive, painless oral therapeutic agents are needed to replace the painful conventional treatment of arsenic-associated health hazards with metal chelators. Our aim was to examine the effect of spirulina ( Spirulina platensis ( Geitler, 1925 )) on arsenic-mediated uterine toxicity. Female Wistar rats were divided equally into four experimental treatment groups: control group, sodium arsenite group (1.0 mg/100 g body mass), spirulina placebo group (20 mg/100 g body mass), and sodium arsenite + spirulina group. In contrast with the control group, spectrophotometric and electrozymographic evaluation revealed that rats that ingested arsenic for 8 d showed significant diminution of the activities of superoxide dismutase, catalase, and peroxidase ( p < 0.001). Mutagenic uterine DNA breakage and tissue damage were prominent following arsenic consumption by the rats. Oral delivery of spirulina resulted in a significant amelioration of arsenic-induced adverse oxidative stress and genotoxic state of rats. A significant low-signaling ( p < 0.001) of gonadotropins and estradiol was also noted in the arsenic-treated rats, which was terminated by spirulina; this arsenic-primed adverse effect was significant ( p < 0.05, p < 0.01). The spirulina treatment mechanism could be associated with augmentation of the antioxidant defense system that protects the arsenic-mediated pathological state of the uterus.
Collapse
Affiliation(s)
- Shamima Khatun
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics Division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Moulima Maity
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics Division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Hasina Perveen
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics Division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Moumita Dash
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics Division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Sandip Chattopadhyay
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics Division (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal 721102, India
| |
Collapse
|
15
|
Wollina U, Voicu C, Gianfaldoni S, Lotti T, França K, Tchernev G. Arthrospira Platensis - Potential in Dermatology and Beyond. Open Access Maced J Med Sci 2018; 6:176-180. [PMID: 29484021 PMCID: PMC5816296 DOI: 10.3889/oamjms.2018.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 11/16/2022] Open
Abstract
The search for natural products with benefits for health in general and of potential for treating human disease has gained wider interest world-wide. Here, we analyse current data on the microalga Arthrospira platensis (AP), that has been used in nutrition since ancient times in Fare East and African communities, for medical purposes with a focus on dermatology. Extracts of AP have been investigated in vitro and in vivo. The alga is rich in proteins, lipopolysaccharides and gamma-linolenic acid. AP extracts, phycocyanin compounds and polysaccharide calcium spirulan (Ca-SP) have been evaluated in various models. It could be demonstrated, that AP has significant antioxidant activity, prevents viruses from entry into target cells and inhibits the colonisation of wounds by multi-resistant bacteria. Furthermore, anti-cancer activity was documented in models of oral cancer, melanoma, and UV-induced non-melanoma skin cancer.
Collapse
Affiliation(s)
- Uwe Wollina
- Städtisches Klinikum Dresden - Department of Dermatology and Allergology, Dresden, Sachsen, Germany
| | - Cristiana Voicu
- Polisano Clinic - Department of Dermatology and Venereology, Piscului 16, Corbeanca, Ilfov 077065, Romania
| | - Serena Gianfaldoni
- University G. Marconi of Rome - Dermatology and Venereology, Rome, Italy
| | - Torello Lotti
- University G. Marconi of Rome - Dermatology and Venereology, Rome, Italy
| | - Katlein França
- Department of Dermatology and Cutaneous Surgery, Department of Psychiatry & Behavioral Sciences; Institute for Bioethics and Health Policy, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Georgi Tchernev
- Department of Dermatology, Venereology and Dermatologic Surgery, Medical Institute of Ministry of Interior, Sofia, Bulgaria.,Onkoderma, Policlinic for Dermatology and Dermatologic Surgery, Sofia, Bulgaria
| |
Collapse
|
16
|
Nasirian F, Dadkhah M, Moradi-Kor N, Obeidavi Z. Effects of Spirulina platensis microalgae on antioxidant and anti-inflammatory factors in diabetic rats. Diabetes Metab Syndr Obes 2018; 11:375-380. [PMID: 30104892 PMCID: PMC6074810 DOI: 10.2147/dmso.s172104] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Lipid peroxidation and hyperglycemia are common signs for diabetes. Natural antioxidants such as Spirulina platensis microalgae (SPM) may prevent lipid peroxidation and hyperglycemia. This study aimed to evaluate the effects of SPM on antioxidant and anti-inflammatory in diabetic rats. MATERIALS AND METHODS Sixty-four rats were divided into eight groups (n=8) and orally treated with 0, 10, 20 and 30 mg/kg body weight of SPM extract. Experimental groups included diabetic rats fed with 0 (DC), 10, 20 and 30 mg/kg SPM. Healthy rats were treated with 0 mg/kg SPM (HC), 10 mg/kg SPM, 20 mg/kg SPM and 30 mg/kg SPM. At the end of the trial, blood samples were collected and the plasma concentrations of trace minerals (TMs), biochemical parameters, and antioxidant enzymes in liver were evaluated. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), TNF-α (tumor necrosis factor-alpha) and IL-6 (interleukin-6) were evaluated. RESULTS Our findings showed that diabetes significantly lowered the plasma concentration of TMs and antioxidant enzymes in liver and also increased the levels of malondialdehyde, glucose, lipid profile, AST, ALT, TNF-α and IL-6 (DC vs HC). However, an oral supplement of SPM (20 and 30 mg/kg body weight) lowered levels of malondialdehyde level, glucose, lipid parameters, AST, ALT, TNF-α and IL-6. The same levels increased the plasma contents of zinc, iron, copper and selenium and activity of antioxidant enzymes (P<0.05). CONCLUSION It can be concluded that diabetes decreases TM concentration and antioxidant enzymes and also increases lipid profile, glucose, AST, ALT, TNF-α and IL-6 concentrations. Inclusion of SPM supplementing (20 and 30 mg/kg body weight) increased some TMs and antioxidant enzymes. SPM may provide TMs for synthesis of antioxidant enzymes which subsequently reduce lipid profile, glucose concentration and anti-inflammatory responses.
Collapse
Affiliation(s)
- Fariba Nasirian
- Department of Animal Sciences, University of Birjand, Birjand, Iran
| | - Masoumeh Dadkhah
- Research Centers Development and Coordination Office, Deputy of Research & Technology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nasrollah Moradi-Kor
- Research Centre of Physiology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran,
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran,
| | - Zia Obeidavi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
17
|
Gargouri M, Hamed H, Akrouti A, Dauvergne X, Magné C, El Feki A. Effects of Spirulina platensis on lipid peroxidation, antioxidant defenses, and tissue damage in kidney of alloxan-induced diabetic rats. Appl Physiol Nutr Metab 2017; 43:345-354. [PMID: 29091744 DOI: 10.1139/apnm-2017-0461] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chronic hyperglycemia in diabetes causes free radicals overproduction, which contributes to the development of diabetic nephropathy. In modern medicine, no satisfactory therapy is available to cure diabetes mellitus. In that context, we investigated the potential therapeutic action of spirulina-enriched diet on renal impairment and oxidative stress in diabetic rats. Diabetes was induced by a single subcutaneous injection of alloxan (120 mg·kg-1) in rats. Following alloxan treatment, male Wistar rats were fed daily with 5% spirulina-enriched diet or treated with insulin (0.5 IU·rat-1) for 3 weeks. Diabetes was associated with hyperglycemia, increase in renal oxidative parameters (lipid peroxidation, thiobarbituric-acid reactive substances, protein carbonyl and advanced oxidation protein products levels, changes in antioxidant enzyme activities), and nephropathology markers. The renal injury induced by alloxan was confirmed by histological study of the diabetic rat kidney. Treatment with spirulina or insulin significantly ameliorated renal dysfunction by reducing oxidative stress, while rats recovered normal kidney histology. Overall, this study indicates that spirulina is efficient in inhibiting hyperglycemia and oxidative stress induced by diabetes, and suggests that the administration of this alga may be helpful in the prevention of diabetic complications. This amelioration was even more pronounced than that caused by insulin injection.
Collapse
Affiliation(s)
- Manel Gargouri
- a Laboratory of animal Ecophysiology, Faculty of Sciences, University of Sfax, BP 3038, Sfax, Tunisia.,b EA 2219 Géoarchitecture, Faculty of Sciences, University of Western Brittany, 6 Avenue V. Le Gorgeu, CS 93837, 29238 Brest Cedex 3, France
| | - Houda Hamed
- a Laboratory of animal Ecophysiology, Faculty of Sciences, University of Sfax, BP 3038, Sfax, Tunisia
| | - Amel Akrouti
- a Laboratory of animal Ecophysiology, Faculty of Sciences, University of Sfax, BP 3038, Sfax, Tunisia
| | - Xavier Dauvergne
- b EA 2219 Géoarchitecture, Faculty of Sciences, University of Western Brittany, 6 Avenue V. Le Gorgeu, CS 93837, 29238 Brest Cedex 3, France
| | - Christian Magné
- b EA 2219 Géoarchitecture, Faculty of Sciences, University of Western Brittany, 6 Avenue V. Le Gorgeu, CS 93837, 29238 Brest Cedex 3, France
| | - Abdelfattah El Feki
- a Laboratory of animal Ecophysiology, Faculty of Sciences, University of Sfax, BP 3038, Sfax, Tunisia
| |
Collapse
|
18
|
Sayed AEDH, El-Sayed YS, El-Far AH. Hepatoprotective efficacy of Spirulina platensis against lead-induced oxidative stress and genotoxicity in catfish; Clarias gariepinus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 143:344-350. [PMID: 28554489 DOI: 10.1016/j.ecoenv.2017.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/01/2017] [Accepted: 05/08/2017] [Indexed: 02/07/2023]
Abstract
Lead (Pb) is a toxic environmental pollutant that induces a broad range of biochemical and physiological hazards in living organisms. We investigated the possible hepatoprotective effects of Spirulina platensis (SP) in counteracting the Pb-induced oxidative damage. Ninety-six adult African catfish were allocated into four equal groups. The 1st group (control) fed basal diet while the 2nd group (Pb-treated) fed on basal diet and exposed to 1mg Pb(NO3)2/L. The 3rd and 4th groups fed SP-supplemented basal diets at levels of 0.25% and 0.5%, respectively and exposed to Pb. Serum samples were used to analyze hepatic function biomarkers, electrolytes, and oxidant and antioxidant status. Lipid peroxidation and DNA fragmentation were determined in the liver tissues. Pb exposure induced hepatic dysfunction, electrolytes (Na+, K+, Ca+2, and Cl-) imbalance, as well a significant decrease in GSH content, and LDH, AChE, SOD, CAT and GST enzymes activity. SP supplementation reverted these biochemical and genetic alterations close to control levels. This amelioration was higher with 0.5% SP and at the 4th week of exposure, showing concentration- and time-dependency. Thus, the current study suggests that SP could protect the catfish liver against lead-induced injury by scavenging ROS, sustaining the antioxidant status and diminishing DNA oxidative damage. The dietary inclusion of SP can be used as a promising protective agent to counteract oxidative stress-mediated diseases and toxicities.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut 71516, Egypt.
| | - Yasser S El-Sayed
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
19
|
Sharma S, Sharma KP, Sharma S. Role of Spirulina in mitigating hemato-toxicity in Swiss albino mice exposed to aluminum and aluminum fluoride. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:25280-25287. [PMID: 27687764 DOI: 10.1007/s11356-016-7718-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
Aluminum is ingested through foods, water, air, and even drugs. Its intake is potentiated further through foods and tea prepared in aluminum utensils and Al salt added in the drinking water for removal of suspended impurities and also fluoride in the affected areas. The ameliorating role of a blue green alga Spirulina is well documented to various pollutants in the animal models. We, therefore, examined its protective role (230 mg/kg body weight) on the hematology of male Swiss albino mice treated with aluminum (sub-acute = 78.4 mg/kg body weight for 7 days, sub-chronic = 7.8 mg/kg body weight for 90 days) and aluminum fluoride (sub-acute = 103 mg/kg body weight, sub-chronic = 21 mg/kg body weight), along with their recovery after 90 days of sub-chronic exposure. This study revealed significant reduction in the values of RBC (5-18 %), Hb (15-17 %), PCV (8-14 %), and platelets (26-36 %), and increase in WBC (54-124 %) in the treated mice, particularly after sub-acute exposure. Aluminum fluoride was comparatively more toxic than aluminum. Further, Spirulina supplement not only alleviated toxicity of test chemicals in Swiss albino mice but also led to their better recovery after withdrawal.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Zoology, University of Rajasthan, Jaipur, 302004, India.
| | - K P Sharma
- Department of Botany, University of Rajasthan, Jaipur, 302004, India
| | - Subhasini Sharma
- Department of Zoology, University of Rajasthan, Jaipur, 302004, India
| |
Collapse
|
20
|
Hu Y, Mou L, Yang F, Tu H, Lin W. Curcumin attenuates cyclosporine A‑induced renal fibrosis by inhibiting hypermethylation of the klotho promoter. Mol Med Rep 2016; 14:3229-36. [PMID: 27510836 DOI: 10.3892/mmr.2016.5601] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 04/21/2016] [Indexed: 11/05/2022] Open
Abstract
Chronic kidney disease is increasingly considered to be a worldwide public health problem and usually leads to renal fibrosis. In the present study, curcumin, a polyphenol pigment extracted from turmeric, was demonstrated to exert protective effects on renal fibrosis via the suppression of transforming growth factor‑β (TGF‑β) downstream signaling, such as plasminogen activator inhibitor‑1 (PAI‑1), α‑smooth muscle actin (α‑SMA) and collagen I (Col I) downregulation. The present findings demonstrate that curcumin exerted a protective effect on cyclosporine A‑induced renal fibrosis via a klotho (KL)‑dependent mechanism, which inhibits the TGF‑β signaling pathway. Further research indicated that curcumin induced KL expression in HK‑2 tubular epithelial cells by inhibiting CpG hypermethylation in the KL promoter, which mediates the loss of expression in cells. Methylation‑specific polymerase chain reaction (PCR) combined with bisulfite sequencing identified numerous key CpG sites, such as 249, 240 and 236, whose methylation statuses are important for KL expression. A PCR reporter assay was utilized to further confirm these findings. In addition, the effects of curcumin on the regulation of DNA methyltransferase 1 (Dnmt1) expression were evaluated, and the data suggest that curcumin inhibits Dnmt1 expression and restricts CpG hypermethylation. Thus, the current study reveals that curcumin attenuated renal fibrosis by suppressing CpG methylation in the KL promoter, thus inducing KL expression, which inhibited TGF‑β signaling, which may provide a novel therapeutic approach for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Ying Hu
- Department of Nephrology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 31009, P.R. China
| | - Lijun Mou
- Department of Nephrology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 31009, P.R. China
| | - Fuye Yang
- Department of Nephrology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 31009, P.R. China
| | - Haiyan Tu
- Department of Nephrology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 31009, P.R. China
| | - Wanbing Lin
- Department of Nephrology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 31009, P.R. China
| |
Collapse
|
21
|
Abdel-Daim M, El-Bialy BE, Rahman HGA, Radi AM, Hefny HA, Hassan AM. Antagonistic effects of Spirulina platensis against sub-acute deltamethrin toxicity in mice: Biochemical and histopathological studies. Biomed Pharmacother 2016; 77:79-85. [DOI: 10.1016/j.biopha.2015.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 12/05/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022] Open
|
22
|
Farag MR, Alagawany M, Abd El-Hac ME, Dhama K. Nutritional and Healthical Aspects of Spirulina (Arthrospira) for Poultry, Animals and Human. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2016.36.51] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Mader J, Gallo A, Schommartz T, Handke W, Nagel CH, Günther P, Brune W, Reich K. Calcium spirulan derived from Spirulina platensis inhibits herpes simplex virus 1 attachment to human keratinocytes and protects against herpes labialis. J Allergy Clin Immunol 2015; 137:197-203.e3. [PMID: 26341274 DOI: 10.1016/j.jaci.2015.07.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/14/2015] [Accepted: 07/03/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Chronic infections with herpes simplex virus (HSV) type 1 are highly prevalent in populations worldwide and cause recurrent oral lesions in up to 40% of infected subjects. OBJECTIVE We investigated the antiviral activity of a defined Spirulina platensis microalga extract and of purified calcium spirulan (Ca-SP), a sulfated polysaccharide contained therein. METHODS The inhibitory effects of HSV-1 were assessed by using a plaque reduction assay and quantitative PCR in a susceptible mammalian epithelial cell line and confirmed in human keratinocytes. Time-of-addition and attachment experiments and fluorescence detection of the HSV-1 tegument protein VP16 were used to analyze the mechanism of HSV-1 inhibition. Effects of Ca-SP on Kaposi sarcoma-associated herpesvirus/human herpes virus 8 replication and uptake of the ORF45 tegument protein were tested in human retinal pigment epithelial cells. In an observational trial the prophylactic effects of topically applied Ca-SP were compared with those of systemic and topical nucleoside analogues in 198 volunteers with recurrent herpes labialis receiving permanent lip makeup. RESULTS Ca-SP inhibited HSV-1 infection in vitro with a potency at least comparable to that of acyclovir by blocking viral attachment and penetration into host cells. Ca-SP also inhibited entry of Kaposi sarcoma-associated herpesvirus/human herpes virus 8. In the clinical model of herpes exacerbation, the prophylactic effect of a Ca-SP and microalgae extract containing cream was superior to that of acyclovir cream. CONCLUSION These data indicate a potential clinical use of Ca-SP containing Spirulina species extract for the prophylactic treatment of herpes labialis and suggest possible activity of Ca-SP against infections caused by other herpesviruses.
Collapse
Affiliation(s)
- Julia Mader
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany; Dermatologikum Hamburg, Hamburg, Germany
| | - Antonio Gallo
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Tim Schommartz
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Wiebke Handke
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Claus-Henning Nagel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - Wolfram Brune
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg, Hamburg, Germany.
| | | |
Collapse
|
24
|
Elshazly MO, Abd El-Rahman SS, Morgan AM, Ali ME. The Remedial Efficacy of Spirulina platensis versus Chromium-Induced Nephrotoxicity in Male Sprague-Dawley Rats. PLoS One 2015; 10:e0126780. [PMID: 26029926 PMCID: PMC4450866 DOI: 10.1371/journal.pone.0126780] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/07/2015] [Indexed: 11/30/2022] Open
Abstract
This study was conducted to investigate the possible protective effect of Spirulina platensis against chromium-induced nephrotoxicity. A total of 36 adult male Sprague-Dawley rats were divided into 4 equal groups (Gps). Gp1 served as control, rats of Gps 2, 3, and 4 were exposed to Spirulina platensis (300 mg/kg b.wt per os) and sodium dichromate dihydrate (SDD) via drinking water at concentration of 520 mg /l respectively. Chromium administration caused alterations in the renal function markers as evidenced by significant increase of blood urea and creatinine levels accompanied with significant increase in kidney’s chromium residues and MDA level as well as decreased catalase activity and glutathion content in kidney tissue. Histologically, Cr provoked deleterious changes including: vascular congestion, wide spread tubular epithelium necrobiotic changes, atrophy of glomerular tuft and proliferative hyperplasia. The latter was accompanied with positive PCNA expression in kidney tissues as well as DNA ploidy interpretation of major cellular population of degenerated cells, appearance of tetraploid cells, high proliferation index and high DNA index. Morphometrical measurements revealed marked glomerular and tubular lumen alterations. On contrary, spirulina co-treatment with Cr significantly restored the histopathological changes, antioxidants and renal function markers and all the previously mentioned changes as well.
Collapse
Affiliation(s)
- M. O. Elshazly
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sahar S. Abd El-Rahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- * E-mail:
| | - Ashraf M. Morgan
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Merhan E. Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
25
|
Ibrahim AE, Abdel-Daim MM. Modulating Effects of Spirulina platensis against Tilmicosin-Induced Cardiotoxicity in Mice. CELL JOURNAL 2015; 17:137-44. [PMID: 25870843 PMCID: PMC4393661 DOI: 10.22074/cellj.2015.520] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 03/12/2014] [Indexed: 01/16/2023]
Abstract
Objective Tilmicosin (TIL) is a long-acting macrolide antibiotic used to treat cattle for
pathogens that cause bovine respiratory disease. However, overdoses of this medication
have been reported to induce cardiac damage. Our experimental objective was to evaluate the protective effects of Spirulina platensis (SP) administration against TIL-induced
cardiotoxicity in mice.
Materials and Methods Our experimental in vivo animal study used 40 male albino mice
that were divided into five groups of eight mice per group. The first group served as a control
group and was injected with saline. The second group received SP at dose of 1000 mg/kg
body weight for five days. The third group received a single dose of TIL (75 mg/kg, subcutaneously). Groups 4 and 5 were given SP at doses of 500 and 1000 mg/kg body weight for five
consecutive days just before administration of TIL at the same dose and regimen used for
group 3.
Results TIL treated animals showed a significant increase in serum cardiac injury biomarkers as well as cardiac lipid peroxidation, however they had evidence of an inhibition in antioxidant biomarkers. SP normalized elevated serum levels of lactate dehydrogenase (LDH),
creatine kinase (CK), and CK-MB. Furthermore, SP reduced TIL-induced lipid peroxidation
and oxidative stress in a dose-dependent manner.
Conclusion Administration of SP minimized the toxic effects of TIL by its free radicalscavenging and potent antioxidant activity.
Collapse
Affiliation(s)
- Abdelaziz E Ibrahim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | | |
Collapse
|
26
|
Buono S, Langellotti AL, Martello A, Rinna F, Fogliano V. Functional ingredients from microalgae. Food Funct 2015; 5:1669-85. [PMID: 24957182 DOI: 10.1039/c4fo00125g] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A wide variety of natural sources are under investigation to evaluate their possible use for new functional ingredient formulation. Some records attested the traditional and ancient use of wild harvested microalgae as human food but their cultivation for different purposes started about 40 years ago. The most popular species are Arthrospira (traditional name, Spirulina), Chlorella spp., Dunaliella spp. and Haematococcus spp. Microalgae provide a bewildering array of opportunities to develop healthier food products using innovative approaches and a number of different strategies. Compared to other natural sources of bioactive ingredients, microalgae have many advantages such as their huge biodiversity, the possibility to grow in arid land and with limited fresh water consumption and the flexibility of their metabolism, which could be adapted to produce specific molecules. All these factors led to very sustainable production making microalgae eligible as one of the most promising foods for the future, particularly as source of proteins, lipids and phytochemicals. In this work, a revision of the knowledge about the use of microalgae as food and as a source of functional ingredients has been performed. The most interesting results in the field are presented and commented upon, focusing on the different species of microalgae and the activity of the nutritionally relevant compounds. A summary of the health effects obtained together with pros and cons in the adoption of this natural source as functional food ingredients is also proposed.
Collapse
Affiliation(s)
- Silvia Buono
- CRIAcq, University of Naples Federico II, Parco Gussone Ed 77, 80055 Portici, Italy.
| | | | | | | | | |
Collapse
|
27
|
Farag MM, Ahmed GO, Shehata RR, Kazem AH. Thymoquinone improves the kidney and liver changes induced by chronic cyclosporine A treatment and acute renal ischaemia/reperfusion in rats. J Pharm Pharmacol 2015; 67:731-9. [DOI: 10.1111/jphp.12363] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/16/2014] [Indexed: 11/29/2022]
Abstract
Abstract
Objectives
This study was designed to evaluate the effects of chronic cyclosporine A (CsA) treatment and acute renal ischaemia/reperfusion (I/R) on the kidney and liver in thymoquinone (TQ)-treated rats.
Methods
In the CsA study, adult male rats were divided into control, CsA (25 mg/kg per day), TQ (10 mg/kg per day) and CsA + TQ groups, and rat treatment was for 28 days. In the I/R study, adult male rats were divided into sham-operated, I/R (renal ischaemia for 60 min followed by 60 min reperfusion) and TQ + I/R (TQ 10 mg/kg, 24 h and 1 h before ischaemia) groups.
Key findings
CsA treatment and renal I/R caused kidney and liver dysfunction as evaluated by histopathological changes and biochemical parameters. TQ treatment reduced elevated serum indices back to control levels and ameliorated CsA-induced kidney and liver histopathological changes. In renal and hepatic tissues, CsA and renal I/R induced significant increases in malondialdehyde levels with significant decreases in reduced glutathione levels and superoxide dismutase activities. Such changes in oxidative stress markers were counteracted by TQ treatment.
Conclusions
Kidney and liver injury due to CsA or renal I/R can be significantly reduced by TQ, which resets the oxidant/antioxidant balance of the affected organs through scavenging free radicals and antilipoperoxidative effects.
Collapse
Affiliation(s)
- Mahmoud M Farag
- Department of Pharmacology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ghada O Ahmed
- Department of Pharmacology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Rowaida R Shehata
- Department of Pharmacology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amani H Kazem
- Department of Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
28
|
Haleagrahara N, Chakravarthi S, Bangra Kulur A, Yee TM. Plant flavone apigenin protects against cyclosporine-induced histological and biochemical changes in the kidney in rats. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bionut.2014.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Pharmacodynamic interaction of Spirulina platensis with erythromycin in Egyptian Baladi bucks (Capra hircus). Small Rumin Res 2014. [DOI: 10.1016/j.smallrumres.2014.05.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Hong YA, Lim JH, Kim MY, Kim EN, Koh ES, Shin SJ, Choi BS, Park CW, Chang YS, Chung S. Delayed treatment with oleanolic acid attenuates tubulointerstitial fibrosis in chronic cyclosporine nephropathy through Nrf2/HO-1 signaling. J Transl Med 2014; 12:50. [PMID: 24559268 PMCID: PMC3939938 DOI: 10.1186/1479-5876-12-50] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/13/2014] [Indexed: 12/13/2022] Open
Abstract
Background Nuclear factor erythroid-2-related factor-2 (Nrf2) is known to protect against tissue injury by orchestrating antioxidant and detoxification responses to oxidative stress. This study investigated whether upregulation of Nrf2-dependent signaling by oleanolic acid (OA), which is known to activate Nrf2, could attenuate renal inflammation and fibrosis in cyclosporine (CsA)-induced kidney injury. Methods Male ICR mice were divided into four treatment groups: Vehicle (VH, n = 6), VH + OA (n = 6), CsA (n = 8), and CsA + OA (n = 8). For the OA-treated groups, OA (25 mg/kg/day) was administered by intraperitoneal injection for the final week of the 4-week experimental period. Renal function, morphologies and signaling were evaluated at the end of the study. Results Treatment with CsA resulted in decreased kidney function and urine osmolality and increased urine volume and urinary albumin levels. The CsA-induced changes were improved by OA treatment. Specifically, administration of OA decreased tubulointerstitial fibrosis and inflammation scores that were increased in CsA-treated mice. Furthermore, OA treatment decreased urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) and 8-epi-prostaglandin F2α (8-iso-PGF2α) levels. The beneficial effects of OA were attributed to an increased ratio of nuclear/total Nrf2 and subsequently enhanced expression of heme oxygenase (HO)-1, as well as a stable level of Kelch-like ECH-associated protein 1 (Keap1) expression, indicating that OA enhanced nuclear translocation of Nrf2. Increased apoptotic cell death and a high ratio of B cell leukaemia/lymphoma 2 (Bcl-2)-associated X protein (Bax) to Bcl-2 in CsA-treated mice were also significantly ameliorated by OA treatment. Conclusion Our results suggest that OA activates Nrf2/HO-1 signaling in chronic CsA nephropathy, which may have beneficial effects on inflammation and oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sungjin Chung
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoul 137-701, Republic of Korea.
| |
Collapse
|
31
|
Savranoglu S, Tumer TB. Inhibitory Effects of Spirulina platensis on Carcinogen-Activating Cytochrome P450 Isozymes and Potential for Drug Interactions. Int J Toxicol 2013; 32:376-84. [DOI: 10.1177/1091581813503887] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Spirulina platensis (SP) has been considered as potential food source of 21st century due to its remarkable nutrient profile and therapeutic benefits. However, the cytochrome P450 (CYP)-mediated drug/chemical interaction potential of SP has not yet been pursued. We investigated the effects of SP on the expressions and enzymatic activities of main CYP isozymes. After the rats were orally administered with SP daily for 5 consecutive weeks, there were significant downregulations in hepatic expression levels and inhibition in enzymatic activities of CYP1A2 and CYP2E1 compared to controls. In addition, a significant decrease was observed in CYP2C6-associated enzyme activity with no remarkable changes in messenger RNA (mRNA)/protein levels. The SP application resulted in significant increases in mRNA/protein levels of both CYP2B1 and CYP3A1 without a significant change in enzyme activities. These findings partly explain the chemopreventive properties of SP toward various organ toxicities, mutagenesis, and carcinogenesis; however, its coadministration with some CYP substrates may lead to undesirable drug interactions.
Collapse
Affiliation(s)
- Seda Savranoglu
- Graduate Program of Biology, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
32
|
Abdel-Daim MM, Abuzead SMM, Halawa SM. Protective role of Spirulina platensis against acute deltamethrin-induced toxicity in rats. PLoS One 2013; 8:e72991. [PMID: 24039839 PMCID: PMC3767669 DOI: 10.1371/journal.pone.0072991] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/23/2013] [Indexed: 01/24/2023] Open
Abstract
Deltamethrin is a broad-spectrum synthetic pyrethroid insecticide and acaricide widely used for agricultural and veterinary purposes. However, its human and animal exposure leads to hepatonephrotoxicity. Therefore, the present study was undertaken to examine the hepatonephroprotective and antioxidant potential of Spirulina platensis against deltamethrin toxicity in male Wistar albino rats. Deltamethrin treated animals revealed a significant increase in serum biochemical parameters as well as hepatic and renal lipid peroxidation but caused an inhibition in antioxidant biomarkers. Spirulina normalized the elevated serum levels of AST, ALT, APL, uric acid, urea and creatinine. Furthermore, it reduced deltamethrin-induced lipid peroxidation and oxidative stress in a dose dependent manner. Therefore, it could be concluded that spirulina administration able to minimize the toxic effects of deltamethrin by its free radical-scavenging and potent antioxidant activity.
Collapse
Affiliation(s)
- Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Said M. M. Abuzead
- Physiology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Safaa M. Halawa
- Department of Plant Protection, Faculty of Agriculture, Benha univeristy, Benha, Egypt
| |
Collapse
|
33
|
Chandramohan Y, Parameswari CS. Therapeutic efficacy of naringin on cyclosporine (A) induced nephrotoxicity in rats: Involvement of hemeoxygenase-1. Pharmacol Rep 2013; 65:1336-44. [DOI: 10.1016/s1734-1140(13)71492-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/22/2013] [Indexed: 10/25/2022]
|
34
|
Influence of N-Acetylcysteine on Klotho Expression and Its Signaling Pathway in Experimental Model of Chronic Cyclosporine Nephropathy in Mice. Transplantation 2013; 96:146-53. [DOI: 10.1097/tp.0b013e318296c9a9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Oh SW, Lee ES, Kim S, Na KY, Chae DW, Kim S, Chin HJ. Bilirubin attenuates the renal tubular injury by inhibition of oxidative stress and apoptosis. BMC Nephrol 2013; 14:105. [PMID: 23683031 PMCID: PMC3681641 DOI: 10.1186/1471-2369-14-105] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 04/24/2013] [Indexed: 02/07/2023] Open
Abstract
Background Bilirubin (BIL) has been recognized as an endogenous antioxidant that shows a protective effect for cardiorenal diseases. We investigated whether administration of BIL had a protective effect on cyclosporine (CsA)-induced nephropathy (CIN), and examined the effects of BIL on the oxidative stress and apoptosis. Methods BIL was pretreated intraperitoneally three times for a week (60 mg/kg), and CsA was injected for 4 weeks (15 mg/kg/day, subcutaneous). Proximal tubular epithelial (HK2) cells were pretreated with 0.1mg/ml of BIL for 24 hours, and then treated with 20 μM of CsA for another 24 hours. Results CsA induced marked increases in urine kidney injury molecule-1 (Kim-1) and neutrophil gelatinase-associated lipocalin (NGAL) concentrations (P < 0.05). BIL reduced urine Kim-1 in CIN (P < 0.05), while urine NGAL exhibited a decreasing tendency. In CsA-treated rat kidneys, the protein expression of NOX4 and p22phox was reduced by BIL (P < 0.05). BIL ameliorated CsA-induced arteriolopathy, tubulointerstitial fibrosis, tubular injury, and the apoptosis examined by TUNEL assay (P < 0.01). In HK2 cells, BIL reduced intracellular reactive oxygen species in CsA-treated cells. CsA increased the protein expression of bax, cleaved caspase-9, caspase-3 and the activity of caspase-3; however, the anti-apoptotic bcl-2 protein was reduced. These changes were recovered by BIL (P < 0.05). Conclusions The direct administration of BIL protected against CsA-induced tubular injury via inhibition of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Se Won Oh
- Department of Internal Medicine, Eulji General Hospital, Eulji University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
Xiao Z, Shan J, Li C, Luo L, Lu J, Li S, Long D, Li Y. Mechanisms of cyclosporine-induced renal cell apoptosis: a systematic review. Am J Nephrol 2012; 37:30-40. [PMID: 23295863 DOI: 10.1159/000345988] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 11/21/2012] [Indexed: 02/05/2023]
Abstract
BACKGROUND/AIMS Chronic cyclosporine A (CsA) nephrotoxicity (CCN) is an important cause of chronic renal dysfunction with no effective clinical intervention. To further elucidate the mechanisms of renal cell apoptosis in CCN, all relevant in vivo studies on this subject were analyzed. METHODS We searched for in vivo studies on the mechanisms of CsA-induced renal cell apoptosis in Medline (1966-July 2010), Embase (1980-July 2010) and ISI (1986-July 2010). The studies were evaluated for their quality according to a set of in vivo standards, data extracted according to PICOS, and then synthesized. RESULTS Renal cell apoptosis was an important feature of CCN and an important factor of renal dysfunction. First, CsA could upregulate Fas/Fas ligand, downregulate Bcl-2/Bcl-XL, and increase caspase-1 and caspase-3. Second, it could induce oxidative stress and damage the antioxidant defense system. Third, it could increase endoplasmic reticulum stress protein in a dose- and time-dependent manner. Fourth, CsA could impair the urine concentration and decrease the expression of hypertonicity-induced genes. Fifth, CsA-induced renal cell apoptosis was significantly decreased by blocking the angiotensin II type 1 receptor using losartan. CONCLUSIONS The in vivo mechanisms for CCN are more complex than those found in vitro. CsA can induce renal cell apoptosis using five pathways in vivo and activated caspases might be the ultimate intersection of these pathways and the common intracellular pathway mediating apoptosis. These data provide new potential points for intervention and need to be confirmed by further studies.
Collapse
Affiliation(s)
- Zheng Xiao
- Key Laboratory of Transplant Engineering and Immunology of the Ministry of Health of China, West China Hospital, Sichuan University, Chengdu, PR China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Sagiroglu T, Kanter M, Yagci MA, Sezer A, Erboga M. Protective effect of curcumin on cyclosporin A-induced endothelial dysfunction, antioxidant capacity, and oxidative damage. Toxicol Ind Health 2012; 30:316-27. [PMID: 22903178 DOI: 10.1177/0748233712456065] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cyclosporin A (CsA) is the most widely used immunosuppressive drug for preventing graft rejection and autoimmune disease. However, the therapeutic treatment induces several side effects such as nephrotoxicity, cardiotoxicity, hypertension, and hepatotoxicity. Curcumin has been successfully used as a potent antioxidant against many pathophysiological states. This experimental study was performed to test, during CsA treatment, the alterations of curcumin antioxidant properties against CsA-induced endothelial dysfunction. Rats were divided into four groups: control, curcumin alone, CsA, and CsA + curcumin; each group containing eight animals. The animals in the CsA + curcumin group were treated with CsA (10 days, 25 mg/kg, orally) and curcumin (15 days, 200 mg/kg, orally, starting 5 days before CsA administration). At the end of the treatments, the animals were killed; serum and aorta tissue were treated for biochemical and morphological analyses. The results indicate that CsA-induced aortic endothelial dysfunction was characterized by morphological and ultrastructural alterations in tissue architecture, changes in malondialdehyde and ferric reducing/antioxidant power levels, and increase in endothelial nitric oxide synthase and terminal-deoxynucleotidyl-transferase mediated dUTP nick end labeling (TUNEL) expression. In conclusion, our data suggest that the imbalance between production of free oxygen radicals and antioxidant defence systems, due to CsA administration, is a mechanism responsible for oxidative stress. Moreover, we show that curcumin plays a protective action against CsA-induced endothelial dysfunction and oxidative stress, as supported by biochemical, ultrastructural, immunohistochemical, and TUNEL results.
Collapse
Affiliation(s)
- Tamer Sagiroglu
- 1Department of General Surgery, Faculty of Medicine, Trakya University, Edirne, Turkey
| | | | | | | | | |
Collapse
|
38
|
Abstract
Spirulina is free-floating filamentous microalgae growing in alkaline water bodies. With its high nutritional value, Spirulina has been consumed as food for centuries in Central Africa. It is now widely used as nutraceutical food supplement worldwide. Recently, great attention and extensive studies have been devoted to evaluate its therapeutic benefits on an array of diseased conditions including hypercholesterolemia, hyperglycerolemia, cardiovascular diseases, inflammatory diseases, cancer, and viral infections. The cardiovascular benefits of Spirulina are primarily resulted from its hypolipidemic, antioxidant, and antiinflammatory activities. Data from preclinical studies with various animal models consistently demonstrate the hypolipidemic activity of Spirulina. Although differences in study design, sample size, and patient conditions resulting in minor inconsistency in response to Spirulina supplementation, the findings from human clinical trials are largely consistent with the hypolipidemic effects of Spirulina observed in the preclinical studies. However, most of the human clinical trials are suffered with limited sample size and some with poor experimental design. The antioxidant and/or antiinflammatory activities of Spirulina were demonstrated in a large number of preclinical studies. However, a limited number of clinical trials have been carried out so far to confirm such activities in human. Currently, our understanding on the underlying mechanisms for Spirulina's activities, especially the hypolipidemic effect, is limited. Spirulina is generally considered safe for human consumption supported by its long history of use as food source and its favorable safety profile in animal studies. However, rare cases of side-effects in human have been reported. Quality control in the growth and process of Spirulina to avoid contamination is mandatory to guarantee the safety of Spirulina products.
Collapse
Affiliation(s)
- Ruitang Deng
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | | |
Collapse
|
39
|
El-Kenawy AEM. Investigating the Protective Effects of Astragalus Membranaceus on Nephrotoxicity in Cyclosporine A-treated Rats. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s00596-009-0136-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
40
|
Evaluation of protective efficacy of Spirulina platensis against collagen-induced arthritis in rats. Inflammopharmacology 2009; 17:181-90. [DOI: 10.1007/s10787-009-0004-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 03/23/2009] [Indexed: 10/20/2022]
|
41
|
Attenuation of diabetic complications by C-phycoerythrin in rats: antioxidant activity of C-phycoerythrin including copper-induced lipoprotein and serum oxidation. Br J Nutr 2009; 102:102-9. [PMID: 19123960 DOI: 10.1017/s0007114508162973] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the present study, the protective role of purified C-phycoerythrin (C-PE) against diabetic complications and Cu-mediated lipoprotein oxidation was evaluated. C-PE (25 and 50 mg/kg body weight per d) was administered to experimental streptozotocin-nicotinamide-induced type 2 diabetic male rats for 28 d. C-PE treatment successfully ameliorated diabetic complications by decreasing food intake, organ weights, serum concentrations of glucose, cholesterol, TAG, VLDL-cholesterol, creatinine, uric acid and thiobarbituric acid-reactive substances (TBARS), with increases in body weight, Hb, total protein, bilirubin and ferric-reducing ability of plasma values. Hepatic and renal tissues demonstrated significant decreases in TBARS, lipid hydroperoxide and conjugated diene contents, with increases in superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, vitamin E and vitamin C levels. Furthermore, the 4-week ex vivo and in vitro administration of C-PE (0.5 and 1.0 mg/ml) indicated a decrease in Cu-mediated serum oxidation. The kinetics of the LDL oxidation profile showed significant prolongation of the lag phase with declines in oxidation rate, conjugated dienes, lipid hydroperoxide and TBARS. Results indicated the involvement of C-PE in the amelioration of diabetic complications by significant reductions in oxidative stress and oxidised LDL-triggered atherogenesis.
Collapse
|
42
|
Chiu HC, Lan GL, Chiang CY, Chin YT, Tu HP, Ming-Jen Fu M, Shin N, Fu E. Upregulation of Heme Oxygenase-1 Expression in Gingiva After Cyclosporin A Treatment. J Periodontol 2008; 79:2200-6. [DOI: 10.1902/jop.2008.080160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Ameliorative action of cyanobacterial phycoerythrin on CCl4-induced toxicity in rats. Toxicology 2008; 248:59-65. [DOI: 10.1016/j.tox.2008.03.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 03/09/2008] [Accepted: 03/10/2008] [Indexed: 12/20/2022]
|
44
|
Abstract
Recent research reveals that free bilirubin functions physiologically as a potent inhibitor of NADPH oxidase activity. The chromophore phycocyanobilin (PCB), found in blue-green algae and cyanobacteria such as Spirulina, also has been found to be a potent inhibitor of this enzyme complex, likely because in mammalian cells it is rapidly reduced to phycocyanorubin, a close homolog of bilirubin. In light of the protean roles of NADPH oxidase activation in pathology, it thus appears likely that PCB supplementation may have versatile potential in prevention and therapy -- particularly in light of rodent studies demonstrating that orally administered Spirulina or phycocyanin (the Spirulina holoprotein that contains PCB) can exert a wide range of anti-inflammatory effects. Until PCB-enriched Spirulina extracts or synthetically produced PCB are commercially available, the most feasible and least expensive way to administer PCB is by ingestion of whole Spirulina. A heaping tablespoon (about 15 g) of Spirulina can be expected to provide about 100 mg of PCB. By extrapolating from rodent studies, it can be concluded that an intake of 2 heaping tablespoons daily would be likely to have important antioxidant activity in humans -- assuming that humans and rodents digest and absorb Spirulina-bound PCB in a comparable manner. An intake of this magnitude can be clinically feasible if Spirulina is incorporated into "smoothies" featuring such ingredients as soy milk, fruit juices, and whole fruits. Such a regimen should be evaluated in clinical syndromes characterized and in part mediated by NADPH oxidase overactivity in affected tissues.
Collapse
|
45
|
Chamorro-Cevallos G, Garduño-Siciliano L, Barrón B, Madrigal-Bujaidar E, Cruz-Vega D, Pages N. Chemoprotective effect of Spirulina (Arthrospira) against cyclophosphamide-induced mutagenicity in mice. Food Chem Toxicol 2008; 46:567-74. [DOI: 10.1016/j.fct.2007.08.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 08/16/2007] [Accepted: 08/24/2007] [Indexed: 12/01/2022]
|
46
|
Ghaznavi R, Zahmatkesh M, Kadkhodaee M, Mahdavi-Mazdeh M. Cyclosporine effects on the antioxidant capacity of rat renal tissues. Transplant Proc 2007; 39:866-7. [PMID: 17524835 DOI: 10.1016/j.transproceed.2007.02.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Cyclosporine (CsA) has been shown to improve long-term survival after organ transplantation. However, CsA therapy is associated with a variety of side effects, among which nephropathy is the major one. Recent studies have suggested increased oxidative stress as a cause of drug nephrotoxicity. Therefore, this study was designed to evaluate the effects of CsA administration on the antioxidant capacity of kidney tissue. METHODS Adult male Sprague-Dawley rats were randomly assigned into 2 groups: one group received CsA (25 mg/kg/d, IP for 2 weeks) and a control group (no CsA administration). After 2 weeks, the kidneys of the rats from both groups were removed under anesthesia. A 50 mg fresh kidney tissue sample was homogenized in ice-cold phosphate buffer. Total antioxidant capacity (Ferric Reducing Ability of Plasma [FRAP]) in the homogenates was assayed based on the Benzie spectrophotometric method. RESULTS FRAP in the kidney tissues had been significantly decreased by 2 weeks of CsA administration when compared with control rats (P<.05). CONCLUSIONS These data suggested that CsA administration may decrease the antioxidant capacity of renal tissues. More studies on the evaluation of the protective effects of antioxidant therapy against CsA nephrotoxicity are underway.
Collapse
Affiliation(s)
- R Ghaznavi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|