1
|
Remmelink MJ, Rip Y, Nieuwenhuijzen JA, Ket JCF, Oddens JR, de Reijke TM, de Bruin DM. Advanced optical imaging techniques for bladder cancer detection and diagnosis: a systematic review. BJU Int 2024. [PMID: 39015996 DOI: 10.1111/bju.16471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
OBJECTIVES To systematically assess the current available literature concerning advanced optical imaging methods for the detection and diagnosis of bladder cancer (BCa), focusing particularly on the sensitivity and specificity of these techniques. METHODS First a scoping search was performed to identify all available optical techniques for BCa detection and diagnosis. The optical imaging techniques used for detecting BCa are: the Storz professional image enhancement system (IMAGE1 S), narrow-band imaging (NBI), photoacoustic imaging (PAI), autofluorescence imaging (AFI), photodynamic diagnosis (PDD), and scanning fibre endoscopy (SFE). The staging and grading techniques for BCa are: optical coherence tomography (OCT), confocal laser endomicroscopy (CLE), Raman spectroscopy, endocytoscopy, and non-linear optical microscopy (NLO). Then a systematic literature search was conducted using MEDLINE, EMBASE and Web of Science from inception to 21 November 2023. Articles were screened and selected by two independent reviewers. Inclusion criteria were: reporting on both the sensitivity and specificity of a particular technique and comparison to histopathology, and in the case of a detection technique comparison to white light cystoscopy (WLC). RESULTS Out of 6707 articles, 189 underwent full-text review, resulting in 52 inclusions. No articles met criteria for IMAGE1 S, PAI, SFE, Raman spectroscopy, and endocytoscopy. All detection techniques showed higher sensitivity than WLC, with NBI leading (87.8-100%). Overall, detection technique specificity was comparable to WLC, with PDD being most specific (23.3-100%). CLE and OCT varied in sensitivity and specificity, with OCT showing higher specificity for BCa diagnosis, notably for carcinoma in situ (97-99%) compared to CLE (62.5-81.3%). NLO demonstrated high sensitivity and specificity (90-97% and 77-100%, respectively) based on limited data from two small ex vivo studies. CONCLUSIONS Optical techniques with the most potential are PDD for detecting and OCT for staging and grading BCa. Further research is crucial to validate their integration into routine practice and explore the value of other imaging techniques.
Collapse
Affiliation(s)
- Marinka J Remmelink
- Department of Urology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and Quality of Life, Amsterdam, The Netherlands
| | - Yael Rip
- Department of Biomedical Engineering and Physics, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Jakko A Nieuwenhuijzen
- Cancer Center Amsterdam, Treatment and Quality of Life, Amsterdam, The Netherlands
- Department of Urology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Johannes C F Ket
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jorg R Oddens
- Department of Urology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and Quality of Life, Amsterdam, The Netherlands
| | - Theo M de Reijke
- Department of Urology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and Quality of Life, Amsterdam, The Netherlands
| | - Daniel M de Bruin
- Department of Urology, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Schulte B, Göb M, Singh AP, Lotz S, Draxinger W, Heimke M, Pieper M, Heinze T, Wedel T, Rahlves M, Huber R, Ellrichmann M. High-resolution rectoscopy using MHz optical coherence tomography: a step towards real time 3D endoscopy. Sci Rep 2024; 14:4672. [PMID: 38409328 PMCID: PMC10897148 DOI: 10.1038/s41598-024-55338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/22/2024] [Indexed: 02/28/2024] Open
Abstract
Colonoscopy and endoscopic ultrasound play pivotal roles in the assessment of rectal diseases, especially rectal cancer and inflammatory bowel diseases. Optical coherence tomography (OCT) offers a superior depth resolution, which is a critical factor for individualizing the therapeutic concept and evaluating the therapy response. We developed two distinct rectoscope prototypes, which were integrated into a 1300 nm MHz-OCT system constructed at our facility. The rapid rotation of the distal scanning probe at 40,000 revolutions per minute facilitates a 667 Hz OCT frame rate, enabling real-time endoscopic imaging of large areas. The performance of these OCT-rectoscopes was assessed in an ex vivo porcine colon and a post mortem human in-situ colon. The OCT-rectoscope consistently distinguished various layers of the intestinal wall, identified gut-associated lymphatic tissue, and visualized a rectal polyp during the imaging procedure with 3D-reconstruction in real time. Subsequent histological examination confirmed these findings. The body donor was preserved using an ethanol-glycerol-lysoformin-based technique for true-to-life tissue consistency. We could demonstrate that the novel MHZ-OCT-rectoscope effectively discriminates rectal wall layers and crucial tissue characteristics in a post mortem human colon in-situ. This real-time-3D-OCT holds promise as a valuable future diagnostic tool for assessing disease state and therapy response on-site in rectal diseases.
Collapse
Affiliation(s)
- Berenice Schulte
- Interdisciplinary Endoscopy, Medical Department 1, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Madita Göb
- Institute of Biomedical Optics, University of Luebeck, Luebeck, Germany
| | | | - Simon Lotz
- Institute of Biomedical Optics, University of Luebeck, Luebeck, Germany
| | | | - Marvin Heimke
- Center of Clinical Anatomy, Institute of Anatomy, Christian-Albrechts University Kiel, Kiel, Germany
| | - Mario Pieper
- Institute of Anatomy, University of Luebeck, Luebeck, Germany
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Luebeck, Germany
| | - Tillmann Heinze
- Center of Clinical Anatomy, Institute of Anatomy, Christian-Albrechts University Kiel, Kiel, Germany
| | - Thilo Wedel
- Center of Clinical Anatomy, Institute of Anatomy, Christian-Albrechts University Kiel, Kiel, Germany
| | - Maik Rahlves
- Institute of Biomedical Optics, University of Luebeck, Luebeck, Germany
| | - Robert Huber
- Institute of Biomedical Optics, University of Luebeck, Luebeck, Germany
| | - Mark Ellrichmann
- Interdisciplinary Endoscopy, Medical Department 1, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| |
Collapse
|
3
|
Zhang H, Yang J, Zhang J, Zhao S, Zhang A. Cross-attention learning enables real-time nonuniform rotational distortion correction in OCT. BIOMEDICAL OPTICS EXPRESS 2024; 15:319-335. [PMID: 38223193 PMCID: PMC10783899 DOI: 10.1364/boe.512337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Nonuniform rotational distortion (NURD) correction is vital for endoscopic optical coherence tomography (OCT) imaging and its functional extensions, such as angiography and elastography. Current NURD correction methods require time-consuming feature tracking/registration or cross-correlation calculations and thus sacrifice temporal resolution. Here we propose a cross-attention learning method for the NURD correction in OCT. Our method is inspired by the recent success of the self-attention mechanism in natural language processing and computer vision. By leveraging its ability to model long-range dependencies, we can directly obtain the spatial correlation between OCT A-lines at any distance, thus accelerating the NURD correction. We develop an end-to-end stacked cross-attention network and design three types of optimization constraints. We compare our method with two traditional feature-based methods and a CNN-based method on two publicly-available endoscopic OCT datasets. We further verify the NURD correction performance of our method on 3D stent reconstruction using a home-built endoscopic OCT system. Our method achieves a ∼3 × speedup to real time (26 ± 3 fps), and superior correction performance.
Collapse
Affiliation(s)
- Haoran Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jianlong Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jingqian Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shiqing Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Aili Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Plekhanov AA, Sirotkina MA, Gubarkova EV, Kiseleva EB, Sovetsky AA, Karabut MM, Zagainov VE, Kuznetsov SS, Maslennikova AV, Zagaynova EV, Zaitsev VY, Gladkova ND. Towards targeted colorectal cancer biopsy based on tissue morphology assessment by compression optical coherence elastography. Front Oncol 2023; 13:1121838. [PMID: 37064146 PMCID: PMC10100073 DOI: 10.3389/fonc.2023.1121838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Identifying the precise topography of cancer for targeted biopsy in colonoscopic examination is a challenge in current diagnostic practice. For the first time we demonstrate the use of compression optical coherence elastography (C-OCE) technology as a new functional OCT modality for differentiating between cancerous and non-cancerous tissues in colon and detecting their morphological features on the basis of measurement of tissue elastic properties. The method uses pre-determined stiffness values (Young’s modulus) to distinguish between different morphological structures of normal (mucosa and submucosa), benign tumor (adenoma) and malignant tumor tissue (including cancer cells, gland-like structures, cribriform gland-like structures, stromal fibers, extracellular mucin). After analyzing in excess of fifty tissue samples, a threshold stiffness value of 520 kPa was suggested above which areas of colorectal cancer were detected invariably. A high Pearson correlation (r =0.98; p <0.05), and a negligible bias (0.22) by good agreement of the segmentation results of C-OCE and histological (reference standard) images was demonstrated, indicating the efficiency of C-OCE to identify the precise localization of colorectal cancer and the possibility to perform targeted biopsy. Furthermore, we demonstrated the ability of C-OCE to differentiate morphological subtypes of colorectal cancer – low-grade and high-grade colorectal adenocarcinomas, mucinous adenocarcinoma, and cribriform patterns. The obtained ex vivo results highlight prospects of C-OCE for high-level colon malignancy detection. The future endoscopic use of C-OCE will allow targeted biopsy sampling and simultaneous rapid analysis of the heterogeneous morphology of colon tumors.
Collapse
Affiliation(s)
- Anton A. Plekhanov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- *Correspondence: Anton A. Plekhanov,
| | - Marina A. Sirotkina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Ekaterina V. Gubarkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Elena B. Kiseleva
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Alexander A. Sovetsky
- Laboratory of Wave Methods for Studying Structurally Inhomogeneous Media, Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Maria M. Karabut
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Vladimir E. Zagainov
- Department of Faculty Surgery and Transplantation, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Department of Pathology, Nizhny Novgorod Regional Oncologic Hospital, Nizhny Novgorod, Russia
| | - Sergey S. Kuznetsov
- Department of Pathology, Nizhny Novgorod Regional Oncologic Hospital, Nizhny Novgorod, Russia
| | - Anna V. Maslennikova
- Department of Oncology, Radiation Therapy and Radiation Diagnostics, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Elena V. Zagaynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Vladimir Y. Zaitsev
- Laboratory of Wave Methods for Studying Structurally Inhomogeneous Media, Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Natalia D. Gladkova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| |
Collapse
|
5
|
Schie IW, Placzek F, Knorr F, Cordero E, Wurster LM, Hermann GG, Mogensen K, Hasselager T, Drexler W, Popp J, Leitgeb RA. Morpho-molecular signal correlation between optical coherence tomography and Raman spectroscopy for superior image interpretation and clinical diagnosis. Sci Rep 2021; 11:9951. [PMID: 33976274 PMCID: PMC8113482 DOI: 10.1038/s41598-021-89188-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/16/2021] [Indexed: 01/16/2023] Open
Abstract
The combination of manifold optical imaging modalities resulting in multimodal optical systems allows to discover a larger number of biomarkers than using a single modality. The goal of multimodal imaging systems is to increase the diagnostic performance through the combination of complementary modalities, e.g. optical coherence tomography (OCT) and Raman spectroscopy (RS). The physical signal origins of OCT and RS are distinctly different, i.e. in OCT it is elastic back scattering of photons, due to a change in refractive index, while in RS it is the inelastic scattering between photons and molecules. Despite those diverse characteristics both modalities are also linked via scattering properties and molecular composition of tissue. Here, we investigate for the first time the relation of co-registered OCT and RS signals of human bladder tissue, to demonstrate that the signals of these complementary modalities are inherently intertwined, enabling a direct but more importantly improved interpretation and better understanding of the other modality. This work demonstrates that the benefit for using two complementary imaging approaches is, not only the increased diagnostic value, but the increased information and better understanding of the signal origins of both modalities. This evaluation confirms the advantages for using multimodal imaging systems and also paves the way for significant further improved understanding and clinically interpretation of both modalities in the future.
Collapse
Affiliation(s)
- Iwan W Schie
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, Jena, 07745, Germany.
- Department of Medical Engineering and Biotechnology, University of Applied Sciences-Jena, Carl-Zeiss-Promenade 2, 07745, Jena, Germany.
| | - Fabian Placzek
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20 / 4L, 1090, Vienna, Austria
| | - Florian Knorr
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, Jena, 07745, Germany
| | - Eliana Cordero
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, Jena, 07745, Germany
| | - Lara M Wurster
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20 / 4L, 1090, Vienna, Austria
| | - Gregers G Hermann
- Department of Urology, Copenhagen University, Herlev/Gentofte Hospital, Borgmester Ib Juuls Vej 23A, 2730, Herlev/Copenhagen, Denmark
| | - Karin Mogensen
- Department of Urology, Copenhagen University, Herlev/Gentofte Hospital, Borgmester Ib Juuls Vej 23A, 2730, Herlev/Copenhagen, Denmark
| | - Thomas Hasselager
- Department of Pathology, Copenhagen University, Herlev/Gentofte Hospital, Borgmester Ib Juuls Vej 23A, 2730, Herlev/Copenhagen, Denmark
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20 / 4L, 1090, Vienna, Austria
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, Jena, 07745, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Rainer A Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20 / 4L, 1090, Vienna, Austria
| |
Collapse
|
6
|
Zulina N, Caravaca O, Liao G, Gravelyn S, Schmitt M, Badu K, Heroin L, Gora MJ. Colon phantoms with cancer lesions for endoscopic characterization with optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2021; 12:955-968. [PMID: 33680552 PMCID: PMC7901311 DOI: 10.1364/boe.402081] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 05/31/2023]
Abstract
Optical coherence tomography (OCT) is a growing imaging technique for real-time early diagnosis of digestive system diseases. As with other well-established medical imaging modalities, OCT requires validated imaging performance and standardized test methods for performance assessment. A major limitation in the development and testing of new imaging technologies is the lack of models for simultaneous clinical procedure emulation and characterization of healthy and diseased tissues. Currently, the former can be tested in large animal models and the latter can be tested in small animal disease models or excised human biopsy samples. In this study, a 23 cm by 23 cm optical phantom was developed to mimic the thickness and near-infrared optical properties of each anatomical layer of a human colon, as well as the surface topography of colorectal polyps and visual appearance compatible with white light endoscopy.
Collapse
Affiliation(s)
- Natalia Zulina
- ICube Laboratory, CNRS, Strasbourg University, 1, Place de l'Hôpital - 67091 Strasbourg Cedex, France
| | - Oscar Caravaca
- ICube Laboratory, CNRS, Strasbourg University, 1, Place de l'Hôpital - 67091 Strasbourg Cedex, France
| | - Guiqiu Liao
- ICube Laboratory, CNRS, Strasbourg University, 1, Place de l'Hôpital - 67091 Strasbourg Cedex, France
| | - Sara Gravelyn
- ICube Laboratory, CNRS, Strasbourg University, 1, Place de l'Hôpital - 67091 Strasbourg Cedex, France
| | - Morgane Schmitt
- ICube Laboratory, CNRS, Strasbourg University, 1, Place de l'Hôpital - 67091 Strasbourg Cedex, France
| | - Keshia Badu
- ICube Laboratory, CNRS, Strasbourg University, 1, Place de l'Hôpital - 67091 Strasbourg Cedex, France
| | - Lucile Heroin
- ICube Laboratory, CNRS, Strasbourg University, 1, Place de l'Hôpital - 67091 Strasbourg Cedex, France
- Gastroenterology Department, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Michalina J Gora
- ICube Laboratory, CNRS, Strasbourg University, 1, Place de l'Hôpital - 67091 Strasbourg Cedex, France
| |
Collapse
|
7
|
Jiang Z, Huang Z, Qiu B, Meng X, You Y, Liu X, Geng M, Liu G, Zhou C, Yang K, Maier A, Ren Q, Lu Y. Weakly Supervised Deep Learning-Based Optical Coherence Tomography Angiography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:688-698. [PMID: 33136539 DOI: 10.1109/tmi.2020.3035154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Optical coherence tomography angiography (OCTA) is a promising imaging modality for microvasculature studies. Deep learning networks have been widely applied in the field of OCTA reconstruction, benefiting from its powerful mapping capability among images. However, these existing deep learning-based methods depend on high-quality labels, which are hard to acquire considering imaging hardware limitations and practical data acquisition conditions. In this article, we proposed an unprecedented weakly supervised deep learning-based pipeline for OCTA reconstruction task, in the absence of high-quality training labels. The proposed pipeline was investigated on an in vivo animal dataset and a human eye dataset by a cross-validation strategy. Compared with supervised learning approaches, the proposed approach demonstrated similar or even better performance in the OCTA reconstruction task. These investigations indicate that the proposed weakly supervised learning strategy is well capable of performing OCTA reconstruction, and has a certain potential towards clinical applications.
Collapse
|
8
|
Tang Y, Kortum A, Vohra I, Schwarz RA, Carns J, Kannady CR, Clavell-Hernandez J, Hu Z, Dhanani N, Richards-Kortum R. Initial Results of First In Vivo Imaging of Bladder Lesions Using a High-Resolution Confocal Microendoscope. J Endourol 2021; 35:1190-1197. [PMID: 33307957 DOI: 10.1089/end.2020.0757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Purpose: Conventional cystoscopy plays an important role in detection of bladder cancer; however, it is difficult to differentiate benign and neoplastic lesions based on cystoscopic appearance alone. Advanced microscopic modalities, such as confocal laser endomicroscopy and optical coherence tomography, have been shown to provide critical histopathologic information to help identify neoplastic bladder lesions in real time, but their availability and clinical adoption are limited due to a high cost. In this study, we present the first use of a novel and low-cost ($ <5000) confocal high-resolution microendoscope (confocal HRME) for in vivo imaging of bladder lesions. Materials and Methods: In a cohort of 15 patients undergoing white light cystoscopy as part of their standard of care, high-resolution images of proflavine-stained bladder lesions were acquired in vivo using the confocal HRME. Based on these images, we evaluated the ability of the confocal HRME to visualize uroepithelium with subcellular resolution and high contrast. Furthermore, we analyzed the cellular architecture and staining patterns of benign and neoplastic bladder lesions in confocal HRME images and compared results to that of standard cystoscopy and histopathology. Results: In vivo imaging in the pilot study demonstrates that the confocal HRME resolved subcellular structures of bladder uroepithelium with high contrast. In a wide range of clinical conditions from normal bladder wall to benign and neoplastic lesions, confocal HRME images revealed important diagnostic features that correlated to histopathology. Conclusions: The confocal HRME provides an affordable, portable, and easy-to-use tool to allow real-time and high-contrast subcellular characterization of bladder lesions, well suited for bladder cancer detection in community and resource-constrained settings. The ClinicalTrials.gov Identifier: NCT02340650.
Collapse
Affiliation(s)
- Yubo Tang
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Alex Kortum
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Imran Vohra
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | | - Jennifer Carns
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Christopher R Kannady
- Department of Surgery and University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | - Zhihong Hu
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Nadeem Dhanani
- Department of Surgery and University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | |
Collapse
|
9
|
Placzek F, Micko A, Sentosa R, Fonollà R, Winklehner M, Hosmann A, Andreana M, Höftberger R, Drexler W, Leitgeb RA, Wolfsberger S, Unterhuber A. Towards ultrahigh resolution OCT based endoscopical pituitary gland and adenoma screening: a performance parameter evaluation. BIOMEDICAL OPTICS EXPRESS 2020; 11:7003-7018. [PMID: 33408976 PMCID: PMC7747926 DOI: 10.1364/boe.409987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 05/06/2023]
Abstract
Ultrahigh resolution optical coherence tomography (UHR-OCT) for differentiating pituitary gland versus adenoma tissue has been investigated for the first time, indicating more than 80% accuracy. For biomarker identification, OCT images of paraffin embedded tissue are correlated to histopathological slices. The identified biomarkers are verified on fresh biopsies. Additionally, an approach, based on resolution modified UHR-OCT ex vivo data, investigating optical performance parameters for the realization in an in vivo endoscope is presented and evaluated. The identified morphological features-cell groups with reticulin framework-detectable with UHR-OCT showcase a promising differentiation ability, encouraging endoscopic OCT probe development for in vivo application.
Collapse
Affiliation(s)
- Fabian Placzek
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 4L, 1090 Vienna, Austria
- These authors contributed equally to this work
| | - Alexander Micko
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- These authors contributed equally to this work
| | - Ryan Sentosa
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 4L, 1090 Vienna, Austria
| | - Roger Fonollà
- Department of Electrical Engineering, Video Coding and Architectures, Eindhoven University of Technology, 5612 AZ Eindhoven, Noord-Brabant, The Netherlands
| | - Michael Winklehner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Arthur Hosmann
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Marco Andreana
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 4L, 1090 Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 4L, 1090 Vienna, Austria
| | - Rainer A. Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 4L, 1090 Vienna, Austria
- Christian Doppler Laboratory OPTRAMED, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Stefan Wolfsberger
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Angelika Unterhuber
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 4L, 1090 Vienna, Austria
| |
Collapse
|
10
|
Placzek F, Cordero Bautista E, Kretschmer S, Wurster LM, Knorr F, González-Cerdas G, Erkkilä MT, Stein P, Ataman Ç, Hermann GG, Mogensen K, Hasselager T, Andersen PE, Zappe H, Popp J, Drexler W, Leitgeb RA, Schie IW. Morpho-molecular ex vivo detection and grading of non-muscle-invasive bladder cancer using forward imaging probe based multimodal optical coherence tomography and Raman spectroscopy. Analyst 2020; 145:1445-1456. [PMID: 31867582 DOI: 10.1039/c9an01911a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-muscle-invasive bladder cancer affects millions of people worldwide, resulting in significant discomfort to the patient and potential death. Today, cystoscopy is the gold standard for bladder cancer assessment, using white light endoscopy to detect tumor suspected lesion areas, followed by resection of these areas and subsequent histopathological evaluation. Not only does the pathological examination take days, but due to the invasive nature, the performed biopsy can result in significant harm to the patient. Nowadays, optical modalities, such as optical coherence tomography (OCT) and Raman spectroscopy (RS), have proven to detect cancer in real time and can provide more detailed clinical information of a lesion, e.g. its penetration depth (stage) and the differentiation of the cells (grade). In this paper, we present an ex vivo study performed with a combined piezoelectric tube-based OCT-probe and fiber optic RS-probe imaging system that allows large field-of-view imaging of bladder biopsies, using both modalities and co-registered visualization, detection and grading of cancerous bladder lesions. In the present study, 119 examined biopsies were characterized, showing that fiber-optic based OCT provides a sensitivity of 78% and a specificity of 69% for the detection of non-muscle-invasive bladder cancer, while RS, on the other hand, provides a sensitivity of 81% and a specificity of 61% for the grading of low- and high-grade tissues. Moreover, the study shows that a piezoelectric tube-based OCT probe can have significant endurance, suitable for future long-lasting in vivo applications. These results also indicate that combined OCT and RS fiber probe-based characterization offers an exciting possibility for label-free and morpho-chemical optical biopsies for bladder cancer diagnostics.
Collapse
Affiliation(s)
- Fabian Placzek
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 4L, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zeng Y, Xu S, Chapman WC, Li S, Alipour Z, Abdelal H, Chatterjee D, Mutch M, Zhu Q. Real-time colorectal cancer diagnosis using PR-OCT with deep learning. Theranostics 2020; 10:2587-2596. [PMID: 32194821 PMCID: PMC7052898 DOI: 10.7150/thno.40099] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/08/2019] [Indexed: 12/24/2022] Open
Abstract
Prior reports have shown optical coherence tomography (OCT) can differentiate normal colonic mucosa from neoplasia, potentially offering an alternative technique to endoscopic biopsy - the current gold-standard colorectal cancer screening and surveillance modality. To help clinical translation limited by processing the large volume of generated data, we designed a deep learning-based pattern recognition (PR) OCT system that automates image processing and provides accurate diagnosis potentially in real-time. Method: OCT is an emerging imaging technique to obtain 3-dimensional (3D) "optical biopsies" of biological samples with high resolution. We designed a convolutional neural network to capture the structure patterns in human colon OCT images. The network is trained and tested using around 26,000 OCT images acquired from 20 tumor areas, 16 benign areas, and 6 other abnormal areas. Results: The trained network successfully detected patterns that identify normal and neoplastic colorectal tissue. Experimental diagnoses predicted by the PR-OCT system were compared to the known histologic findings and quantitatively evaluated. A sensitivity of 100% and specificity of 99.7% can be reached. Further, the area under the receiver operating characteristic (ROC) curves (AUC) of 0.998 is achieved. Conclusions: Our results demonstrate that PR-OCT can be used to give an accurate real-time computer-aided diagnosis of colonic neoplastic mucosa. Future development of this system as an "optical biopsy" tool to assist doctors in real-time for early mucosal neoplasms screening and treatment evaluation following initial oncologic therapy is planned.
Collapse
Affiliation(s)
- Yifeng Zeng
- Department of Biomedical Engineering, Washington University in St. Louis
| | - Shiqi Xu
- Department of Electrical & System Engineering, Washington University in St. Louis
| | - William C. Chapman
- Department of Surgery, Section of Colon and Rectal Surgery, Washington University School of Medicine
| | - Shuying Li
- Department of Biomedical Engineering, Washington University in St. Louis
| | - Zahra Alipour
- Department of Pathology and Immunology, Washington University School of Medicine
| | - Heba Abdelal
- Department of Pathology and Immunology, Washington University School of Medicine
| | - Deyali Chatterjee
- Department of Pathology and Immunology, Washington University School of Medicine
| | - Matthew Mutch
- Department of Surgery, Section of Colon and Rectal Surgery, Washington University School of Medicine
| | - Quing Zhu
- Department of Biomedical Engineering, Washington University in St. Louis
- Department of Radiology, Washington University School of Medicine
| |
Collapse
|
12
|
Liu X, Huang Z, Wang Z, Wen C, Jiang Z, Yu Z, Liu J, Liu G, Huang X, Maier A, Ren Q, Lu Y. A deep learning based pipeline for optical coherence tomography angiography. JOURNAL OF BIOPHOTONICS 2019; 12:e201900008. [PMID: 31168927 DOI: 10.1002/jbio.201900008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 05/11/2023]
Abstract
Optical coherence tomography angiography (OCTA) is a relatively new imaging modality that generates microvasculature map. Meanwhile, deep learning has been recently attracting considerable attention in image-to-image translation, such as image denoising, super-resolution and prediction. In this paper, we propose a deep learning based pipeline for OCTA. This pipeline consists of three parts: training data preparation, model learning and OCTA predicting using the trained model. To be mentioned, the datasets used in this work were automatically generated by a conventional system setup without any expert labeling. Promising results have been validated by in-vivo animal experiments, which demonstrate that deep learning is able to outperform traditional OCTA methods. The image quality is improved in not only higher signal-to-noise ratio but also better vasculature connectivity by laser speckle eliminating, showing potential in clinical use. Schematic description of the deep learning based optical coherent tomography angiography pipeline.
Collapse
Affiliation(s)
- Xi Liu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Zhiyu Huang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Zhenzhou Wang
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chenyao Wen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Zhe Jiang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Zekuan Yu
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Jingfeng Liu
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Gangjun Liu
- Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Xiaolin Huang
- Institute of Image Processing and Pattern Recognition, Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
| | - Andreas Maier
- Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Qiushi Ren
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
- Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Yanye Lu
- Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
13
|
Cummins G, Cox BF, Ciuti G, Anbarasan T, Desmulliez MPY, Cochran S, Steele R, Plevris JN, Koulaouzidis A. Gastrointestinal diagnosis using non-white light imaging capsule endoscopy. Nat Rev Gastroenterol Hepatol 2019; 16:429-447. [PMID: 30988520 DOI: 10.1038/s41575-019-0140-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Capsule endoscopy (CE) has proved to be a powerful tool in the diagnosis and management of small bowel disorders since its introduction in 2001. However, white light imaging (WLI) is the principal technology used in clinical CE at present, and therefore, CE is limited to mucosal inspection, with diagnosis remaining reliant on visible manifestations of disease. The introduction of WLI CE has motivated a wide range of research to improve its diagnostic capabilities through integration with other sensing modalities. These developments have the potential to overcome the limitations of WLI through enhanced detection of subtle mucosal microlesions and submucosal and/or transmural pathology, providing novel diagnostic avenues. Other research aims to utilize a range of sensors to measure physiological parameters or to discover new biomarkers to improve the sensitivity, specificity and thus the clinical utility of CE. This multidisciplinary Review summarizes research into non-WLI CE devices by organizing them into a taxonomic structure on the basis of their sensing modality. The potential of these capsules to realize clinically useful virtual biopsy and computer-aided diagnosis (CADx) is also reported.
Collapse
Affiliation(s)
- Gerard Cummins
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK.
| | | | - Gastone Ciuti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Marc P Y Desmulliez
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Sandy Cochran
- School of Engineering, University of Glasgow, Glasgow, UK
| | - Robert Steele
- School of Medicine, University of Dundee, Dundee, UK
| | - John N Plevris
- Centre for Liver and Digestive Disorders, The Royal Infirmary of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
14
|
Xiong YQ, Tan J, Liu YM, Li YZ, You FF, Zhang MY, Chen Q, Zou K, Sun X. Diagnostic accuracy of optical coherence tomography for bladder cancer: A systematic review and meta-analysis. Photodiagnosis Photodyn Ther 2019; 27:298-304. [PMID: 31185324 DOI: 10.1016/j.pdpdt.2019.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Bladder cancer is the fourth most common malignancy in men and a considerable disease burden globally. Multiple studies have focused on the accuracy of optical coherence tomography for bladder cancer diagnosis; however, the findings are inconsistent. Here, we assessed the accuracy of optical coherence tomography for bladder cancer diagnosis. METHODS Embase, PubMed, Medline, Web of Science, and the Cochrane Library database were searched for relevant studies from the earliest date available through March 11, 2019. Studies evaluating the accuracy of optical coherence tomography bladder cancer diagnosis were included. Pooled sensitivity, specificity, and area under the curve values of weighted symmetric summary receiver operating curves, were calculated at the per-lesion level. RESULTS Eleven studies, with a total of 1933 lesions, were included in the final analysis. The pooled results indicated that optical coherence tomography can differentiate bladder cancer from benign lesions: sensitivity, 94.9% (95% confidence interval: 92.7%-96.6%); specificity, 84.6% (95% confidence interval: 82.6%-86.4%); area under the curve, 0.97. Moreover, compared with optical coherence tomography alone, combined optical coherence tomography and fluorescence cystoscopy increased the diagnostic accuracy (sensitivity, 94.3% vs. 87.3%; specificity, 89.2% vs. 73.9%). Cross-polarization optical coherence tomography could also distinguish bladder cancer from normal tissue: sensitivity, 92.0% (95% confidence interval: 87.0%-95.6%); specificity, 84.4% (95% confidence interval: 81.7%-86.9%); area under the curve, 0.95. CONCLUSIONS Optical coherence tomography can accurately differentiate malignant from benign bladder lesions, particularly when combined with fluorescence cystoscopy.
Collapse
Affiliation(s)
- Yi-Quan Xiong
- Chinese Evidence-based Medicine Center and CREAT Group, West China Hospital, Sichuan University, Chengdu, China; Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jing Tan
- Chinese Evidence-based Medicine Center and CREAT Group, West China Hospital, Sichuan University, Chengdu, China
| | - Yan-Mei Liu
- Chinese Evidence-based Medicine Center and CREAT Group, West China Hospital, Sichuan University, Chengdu, China
| | - Yong-Zhi Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fang-Fei You
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Min-Yi Zhang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qing Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Kang Zou
- Chinese Evidence-based Medicine Center and CREAT Group, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Sun
- Chinese Evidence-based Medicine Center and CREAT Group, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Wurster LM, Shah RN, Placzek F, Kretschmer S, Niederleithner M, Ginner L, Ensher J, Minneman MP, Hoover EE, Zappe H, Drexler W, Leitgeb RA, Ataman Ç. Endoscopic optical coherence tomography angiography using a forward imaging piezo scanner probe. JOURNAL OF BIOPHOTONICS 2019; 12:e201800382. [PMID: 30652423 PMCID: PMC7065608 DOI: 10.1002/jbio.201800382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 05/23/2023]
Abstract
A forward imaging endoscope for optical coherence tomography angiography (OCTA) featuring a piezoelectric fiber scanner is presented. Imaging is performed with an optical coherence tomography (OCT) system incorporating an akinetic light source with a center wavelength of 1300 nm, bandwidth of 90 nm and A-line rate of 173 kHz. The endoscope operates in contact mode to avoid motion artifacts, in particular, beneficial for OCTA measurements, and achieves a transversal resolution of 12 μm in air at a rigid probe size of 4 mm in diameter and 11.3 mm in length. A spiral scan pattern is generated at a scanning frequency of 360 Hz to sample a maximum field of view of 1.3 mm. OCT images of a human finger as well as visualization of microvasculature of the human palm are presented both in two and three dimensions. The combination of morphological tissue contrast with qualitative dynamic blood flow information within this endoscopic imaging approach potentially enables improved early diagnostic capabilities of internal organs for diseases such as bladder cancer.
Collapse
Affiliation(s)
- Lara M. Wurster
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for Innovative Optical Imaging and its Translation to MedicineMedical University of ViennaViennaAustria
| | - Ronak N. Shah
- Gisela and Erwin Sick Chair of Micro‐optics, Department of Microsystems EngineeringUniversity of FreiburgFreiburgGermany
| | - Fabian Placzek
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Simon Kretschmer
- Gisela and Erwin Sick Chair of Micro‐optics, Department of Microsystems EngineeringUniversity of FreiburgFreiburgGermany
| | - Michael Niederleithner
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for Innovative Optical Imaging and its Translation to MedicineMedical University of ViennaViennaAustria
| | - Laurin Ginner
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for Innovative Optical Imaging and its Translation to MedicineMedical University of ViennaViennaAustria
| | - Jason Ensher
- INSIGHT Photonics Solution, Inc.LafayetteColorado
| | | | | | - Hans Zappe
- Gisela and Erwin Sick Chair of Micro‐optics, Department of Microsystems EngineeringUniversity of FreiburgFreiburgGermany
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
| | - Rainer A. Leitgeb
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for Innovative Optical Imaging and its Translation to MedicineMedical University of ViennaViennaAustria
| | - Çağlar Ataman
- Gisela and Erwin Sick Chair of Micro‐optics, Department of Microsystems EngineeringUniversity of FreiburgFreiburgGermany
| |
Collapse
|
16
|
Zeng Y, Rao B, Chapman WC, Nandy S, Rais R, González I, Chatterjee D, Mutch M, Zhu Q. The Angular Spectrum of the Scattering Coefficient Map Reveals Subsurface Colorectal Cancer. Sci Rep 2019; 9:2998. [PMID: 30816153 PMCID: PMC6395629 DOI: 10.1038/s41598-019-39146-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer diagnosis currently relies on histological detection of endoluminal neoplasia in biopsy specimens. However, clinical visual endoscopy provides no quantitative subsurface cancer information. In this ex vivo study of nine fresh human colon specimens, we report the first use of quantified subsurface scattering coefficient maps acquired by swept-source optical coherence tomography to reveal subsurface abnormities. We generate subsurface scattering coefficient maps with a novel wavelet-based-curve-fitting method that provides significantly improved accuracy. The angular spectra of scattering coefficient maps of normal tissues exhibit a spatial feature distinct from those of abnormal tissues. An angular spectrum index to quantify the differences between the normal and abnormal tissues is derived, and its strength in revealing subsurface cancer in ex vivo samples is statistically analyzed. The study demonstrates that the angular spectrum of the scattering coefficient map can effectively reveal subsurface colorectal cancer and potentially provide a fast and more accurate diagnosis.
Collapse
Affiliation(s)
- Yifeng Zeng
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Bin Rao
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - William C Chapman
- Department of Surgery, Section of Colon and Rectal Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Sreyankar Nandy
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Rehan Rais
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Iván González
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Deyali Chatterjee
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew Mutch
- Department of Surgery, Section of Colon and Rectal Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Quing Zhu
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
17
|
Wells WA, Thrall M, Sorokina A, Fine J, Krishnamurthy S, Haroon A, Rao B, Shevchuk MM, Wolfsen HC, Tearney GJ, Hariri LP. In Vivo and Ex Vivo Microscopy: Moving Toward the Integration of Optical Imaging Technologies Into Pathology Practice. Arch Pathol Lab Med 2018; 143:288-298. [PMID: 30525931 DOI: 10.5858/arpa.2018-0298-ra] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The traditional surgical pathology assessment requires tissue to be removed from the patient, then processed, sectioned, stained, and interpreted by a pathologist using a light microscope. Today, an array of alternate optical imaging technologies allow tissue to be viewed at high resolution, in real time, without the need for processing, fixation, freezing, or staining. Optical imaging can be done in living patients without tissue removal, termed in vivo microscopy, or also in freshly excised tissue, termed ex vivo microscopy. Both in vivo and ex vivo microscopy have tremendous potential for clinical impact in a wide variety of applications. However, in order for these technologies to enter mainstream clinical care, an expert will be required to assess and interpret the imaging data. The optical images generated from these imaging techniques are often similar to the light microscopic images that pathologists already have expertise in interpreting. Other clinical specialists do not have this same expertise in microscopy, therefore, pathologists are a logical choice to step into the developing role of microscopic imaging expert. Here, we review the emerging technologies of in vivo and ex vivo microscopy in terms of the technical aspects and potential clinical applications. We also discuss why pathologists are essential to the successful clinical adoption of such technologies and the educational resources available to help them step into this emerging role.
Collapse
Affiliation(s)
- Wendy A Wells
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Michael Thrall
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Anastasia Sorokina
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jeffrey Fine
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Savitri Krishnamurthy
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Attiya Haroon
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Babar Rao
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Maria M Shevchuk
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Herbert C Wolfsen
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Guillermo J Tearney
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Lida P Hariri
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
18
|
Gora MJ, Quénéhervé L, Carruth RW, Lu W, Rosenberg M, Sauk JS, Fasano A, Lauwers GY, Nishioka NS, Tearney GJ. Tethered capsule endomicroscopy for microscopic imaging of the esophagus, stomach, and duodenum without sedation in humans (with video). Gastrointest Endosc 2018; 88:830-840.e3. [PMID: 30031805 PMCID: PMC8176642 DOI: 10.1016/j.gie.2018.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 07/11/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Patients with many different digestive diseases undergo repeated EGDs throughout their lives. Tethered capsule endomicroscopy (TCE) is a less-invasive method for obtaining high-resolution images of the GI mucosa for diagnosis and treatment planning of GI tract diseases. In this article, we present our results from a single-center study aimed at testing the safety and feasibility of TCE for imaging the esophagus, stomach, and duodenum. METHODS After being swallowed by a participant without sedation, the tethered capsule obtains cross-sectional, 10 μm-resolution, optical coherence tomography images as the device traverses the alimentary tract. After imaging, the device is withdrawn through the mouth, disinfected, and reused. Safety and feasibility of TCE were tested, focusing on imaging the esophagus of healthy volunteers and patients with Barrett's esophagus (BE) and the duodenum of healthy volunteers. Images were compared with endoscopy and histopathology findings when available. RESULTS Thirty-eight patients were enrolled. No adverse effects were reported. The TCE device swallowing rate was 34 of 38 (89%). The appearance of a physiologic upper GI wall, including its microscopic pathology, was visualized with a tissue coverage of 85.4% ± 14.9% and 90.3% ± 6.8% in the esophagus of BE patients with and without endoscopic evidence of a hiatal hernia, respectively, as well as 84.8% ± 7.4% in the duodenum. A blinded comparison of TCE and endoscopic BE measurements showed a strong to very strong correlation (r = 0.7-0.83; P < .05) for circumferential extent and a strong correlation (r = 0.77-0.78; P < .01) for maximum extent (Prague classification). TCE interobserver correlation was very strong, at r = 0.92 and r = 0.84 (P < .01), for Prague classification circumferential (C) and maximal (M) length measurements, respectively. CONCLUSIONS TCE is a safe and feasible procedure for obtaining high-resolution microscopic images of the upper GI tract without endoscopic assistance or sedation.
Collapse
Affiliation(s)
- Michalina J. Gora
- ICube Laboratory, CNRS, Strasbourg University, Strasbourg, France.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Lucille Quénéhervé
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,Institut des Maladies de l’Appareil Digestif, IMAD, CHU Nantes, Hopital Hôtel-Dieu, Nantes, France
| | - Robert W. Carruth
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Weina Lu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Mireille Rosenberg
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Jenny S. Sauk
- Department of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Alessio Fasano
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Gregory Y. Lauwers
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Norman S. Nishioka
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard-MIT Division of Health Sciences Technology, Cambridge, MA, USA
| |
Collapse
|
19
|
Sdobnov AY, Darvin ME, Genina EA, Bashkatov AN, Lademann J, Tuchin VV. Recent progress in tissue optical clearing for spectroscopic application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 197:216-229. [PMID: 29433855 DOI: 10.1016/j.saa.2018.01.085] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 05/03/2023]
Abstract
This paper aims to review recent progress in optical clearing of the skin and over naturally turbid biological tissues and blood using this technique in vivo and in vitro with multiphoton microscopy, confocal Raman microscopy, confocal microscopy, NIR spectroscopy, optical coherence tomography, and laser speckle contrast imaging. Basic principles of the technique, its safety, advantages and limitations are discussed. The application of optical clearing agent on a tissue allows for controlling the optical properties of tissue. Optical clearing-induced reduction of tissue scattering significantly facilitates the observation of deep-located tissue regions, at the same time improving the resolution and image contrast for a variety of optical imaging methods suitable for clinical applications, such as diagnostics and laser treatment of skin diseases, mucosal tumor imaging, laser disruption of pathological abnormalities, etc.
Collapse
Affiliation(s)
- A Yu Sdobnov
- Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu 90570, Finland; Research-Educational Institute of Optics and Biophotonics, Saratov State University (National Research University of Russia), Astrakhanskaya 83, 410012 Saratov, Russian Federation.
| | - M E Darvin
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - E A Genina
- Research-Educational Institute of Optics and Biophotonics, Saratov State University (National Research University of Russia), Astrakhanskaya 83, 410012 Saratov, Russian Federation; Interdisciplinary Laboratory of Biophotonics, Tomsk State University (National Research University of Russia), Lenin's av. 36, 634050 Tomsk, Russian Federation
| | - A N Bashkatov
- Research-Educational Institute of Optics and Biophotonics, Saratov State University (National Research University of Russia), Astrakhanskaya 83, 410012 Saratov, Russian Federation; Interdisciplinary Laboratory of Biophotonics, Tomsk State University (National Research University of Russia), Lenin's av. 36, 634050 Tomsk, Russian Federation
| | - J Lademann
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - V V Tuchin
- Research-Educational Institute of Optics and Biophotonics, Saratov State University (National Research University of Russia), Astrakhanskaya 83, 410012 Saratov, Russian Federation; Interdisciplinary Laboratory of Biophotonics, Tomsk State University (National Research University of Russia), Lenin's av. 36, 634050 Tomsk, Russian Federation; Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control RAS, Rabochaya 24, 410028 Saratov, Russian Federation
| |
Collapse
|
20
|
Luo Y, Cui D, Yu X, Bo E, Wang X, Wang N, Braganza CS, Chen S, Liu X, Xiong Q, Chen S, Chen S, Liu L. Endomicroscopic optical coherence tomography for cellular resolution imaging of gastrointestinal tracts. JOURNAL OF BIOPHOTONICS 2018; 11:e201700141. [PMID: 28787543 DOI: 10.1002/jbio.201700141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 06/07/2023]
Abstract
Our ability to detect neoplastic changes in gastrointestinal (GI) tracts is limited by the lack of an endomicroscopic imaging tool that provides cellular-level structural details of GI mucosa over a large tissue area. In this article, we report a fiber-optic-based micro-optical coherence tomography (μOCT) system and demonstrate its capability to acquire cellular-level details of GI tissue through circumferential scanning. The system achieves an axial resolution of 2.48 μm in air and a transverse resolution of 4.8 μm with a depth-of-focus (DOF) of ~150 μm. To mitigate the issue of limited DOF, we used a rigid sheath to maintain a circular lumen and center the distal-end optics. The sensitivity is tested to be 98.8 dB with an illumination power of 15.6 mW on the sample. With fresh swine colon tissues imaged ex vivo, detailed structures such as crypt lumens and goblet cells can be clearly resolved, demonstrating that this fiber-optic μOCT system is capable of visualizing cellular-level morphological features. We also demonstrate that time-lapsed frame averaging and imaging speckle reduction are essential for clearly visualizing cellular-level details. Further development of a clinically viable μOCT endomicroscope is likely to improve the diagnostic outcome of GI cancers.
Collapse
Affiliation(s)
- Yuemei Luo
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Dongyao Cui
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xiaojun Yu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - En Bo
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xianghong Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Nanshuo Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Cilwyn S Braganza
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Shufen Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xinyu Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Qiaozhou Xiong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Si Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Shi Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Linbo Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
21
|
Chu Z, Chen CL, Zhang Q, Pepple K, Durbin M, Gregori G, Wang RK. Complex signal-based optical coherence tomography angiography enables in vivo visualization of choriocapillaris in human choroid. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-10. [PMID: 29178697 PMCID: PMC5745879 DOI: 10.1117/1.jbo.22.12.121705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/08/2017] [Indexed: 05/15/2023]
Abstract
The choriocapillaris (CC) plays an essential role in maintaining the normal functions of the human eye. There is increasing interest in the community to develop an imaging technique for visualizing the CC, yet this remains underexplored due to technical limitations. We propose an approach for the visualization of the CC in humans via a complex signal-based optical microangiography (OMAG) algorithm, based on commercially available spectral domain optical coherence tomography (SD-OCT). We show that the complex signal-based OMAG was superior to both the phase and amplitude signal-based approaches in detailing the vascular lobules previously seen with histological analysis. With this improved ability to visualize the lobular vascular networks, it is possible to identify the feeding arterioles and draining venules around the lobules, which is important in understanding the role of the CC in the pathogenesis of ocular diseases. With built-in FastTrac™ and montage scanning capabilities, we also demonstrate wide-field SD-OCT angiograms of the CC with a field of view at 9×11 mm2.
Collapse
Affiliation(s)
- Zhongdi Chu
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Chieh-Li Chen
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Qinqin Zhang
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Kathryn Pepple
- University of Washington, Department of Ophthalmology, Seattle, Washington, United States
| | - Mary Durbin
- Carl Zeiss Meditec, Inc., Advanced Development, Dublin, California, United States
| | - Giovanni Gregori
- University of Miami Miller School of Medicine, Bascom Palmer Eye Institute, Department of Ophthalmology, Miami, Florida, United States
| | - Ruikang K. Wang
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- University of Washington, Department of Ophthalmology, Seattle, Washington, United States
- Address all correspondence to: Ruikang K. Wang, E-mail:
| |
Collapse
|
22
|
Gentile E, Maio C, Romano A, Laino L, Lucchese A. The potential role of in vivo optical coherence tomography for evaluating oral soft tissue: A systematic review. J Oral Pathol Med 2017; 46:864-876. [PMID: 28477348 DOI: 10.1111/jop.12589] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND The introduction of optical coherence tomography (OCT) in dentistry enabled the integration of already existing clinical and laboratory investigations in the study of the oral cavity. This systematic review presents an overview of the literature, to evaluate the usefulness of in vivo OCT for diagnosing oral soft tissues lesions, to compare the OCT results with traditional histology, and to identify limitations in prior studies so as to improve OCT applications. METHODS We performed a review of the literature using different search engines (PubMed, ISI Web of Science, and the Cochrane Library) employing MeSH terms such as "optical coherence tomography" and "OCT" in conjunction with other terms. We utilized the Population, Intervention, Comparison, Outcomes, and Study design (PICOS) method to define our study eligibility criteria. RESULTS Initial results were 3155. In conclusion, there were only 27 studies which met our selection criteria. We decided to allocate the 27 selected items into three groups: healthy mucosa; benign, premalignant, and malignant lesions; and oral manifestations of systemic therapies or pathological conditions. CONCLUSIONS Although the OCT is an easy-to-perform test and it offers an attractive diagnostic and monitoring prospect for soft tissues of the oral cavity, further studies are needed to complete the current knowledge of this imaging technique.
Collapse
Affiliation(s)
- Enrica Gentile
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania - Luigi Vanvitelli, Naples, Italy
| | - Claudio Maio
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania - Luigi Vanvitelli, Naples, Italy
| | - Antonio Romano
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania - Luigi Vanvitelli, Naples, Italy
| | - Luigi Laino
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania - Luigi Vanvitelli, Naples, Italy
| | - Alberta Lucchese
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania - Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
23
|
Gora MJ, Suter MJ, Tearney GJ, Li X. Endoscopic optical coherence tomography: technologies and clinical applications [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:2405-2444. [PMID: 28663882 PMCID: PMC5480489 DOI: 10.1364/boe.8.002405] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 05/07/2023]
Abstract
In this paper, we review the current state of technology development and clinical applications of endoscopic optical coherence tomography (OCT). Key design and engineering considerations are discussed for most OCT endoscopes, including side-viewing and forward-viewing probes, along with different scanning mechanisms (proximal-scanning versus distal-scanning). Multi-modal endoscopes that integrate OCT with other imaging modalities are also discussed. The review of clinical applications of endoscopic OCT focuses heavily on diagnosis of diseases and guidance of interventions. Representative applications in several organ systems are presented, such as in the cardiovascular, digestive, respiratory, and reproductive systems. A brief outlook of the field of endoscopic OCT is also discussed.
Collapse
Affiliation(s)
- Michalina J Gora
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- ICube Laboratory, CNRS, Strasbourg University, 1 Place de l'Hopital, Strasbourg 67091, France
| | - Melissa J Suter
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Department of Medicine, Division of Pulmonary and Critical Care, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Department of Pathology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Xingde Li
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, and Department of Oncology, Johns Hopkins University, 720 Rutland Avenue, Traylor 710, Baltimore, MD 21205, USA
| |
Collapse
|
24
|
Giannios P, Koutsoumpos S, Toutouzas KG, Matiatou M, Zografos GC, Moutzouris K. Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared. JOURNAL OF BIOPHOTONICS 2017; 10:303-310. [PMID: 27091794 DOI: 10.1002/jbio.201600001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/07/2016] [Accepted: 03/30/2016] [Indexed: 05/07/2023]
Abstract
A multi-wavelength prism coupling refractometer is utilized to measure the angular reflectance of freshly excised human intestinal tissue specimens. Based on reflectance data, the real and imaginary part of the refractive index is calculated via Fresnel analysis for three visible (blue, green, red) and two near-infrared (963 nm and 1551 nm) wavelengths. Averaged values of the complex refractive index and corresponding Cauchy dispersion fits are given for the mucosa, submucosa and serosa layers of the colorectal wall at the normal state. The refractive constants of tumorous and normal mucosa are then cross-compared for the indicative cases of one patient diagnosed with a benign polyp and three patients diagnosed with adenocarcinomas of different phenotype. Significant index contrast exists between the normal and diseased states, indicating the potential use of refractive index as a marker of colorectal dysplasia.
Collapse
Affiliation(s)
- Panagiotis Giannios
- Laboratory of Electronic Devices and Materials, Department of Electronic Engineering, Technological Educational Institute of Athens, Athens, 12210, Greece
| | - Spyridon Koutsoumpos
- Laboratory of Electronic Devices and Materials, Department of Electronic Engineering, Technological Educational Institute of Athens, Athens, 12210, Greece
| | - Konstantinos G Toutouzas
- First Department of Propaedeutic Surgery, Hippocration Hospital, Athens Medical School, National and Kapodistrian University of Athens, Athens, 11525, Greece
| | - Maria Matiatou
- First Department of Propaedeutic Surgery, Hippocration Hospital, Athens Medical School, National and Kapodistrian University of Athens, Athens, 11525, Greece
| | - George C Zografos
- First Department of Propaedeutic Surgery, Hippocration Hospital, Athens Medical School, National and Kapodistrian University of Athens, Athens, 11525, Greece
| | - Konstantinos Moutzouris
- Laboratory of Electronic Devices and Materials, Department of Electronic Engineering, Technological Educational Institute of Athens, Athens, 12210, Greece
| |
Collapse
|
25
|
Zhang A, Zhang Q, Chen CL, Wang RK. Methods and algorithms for optical coherence tomography-based angiography: a review and comparison. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:100901. [PMID: 26473588 PMCID: PMC4881033 DOI: 10.1117/1.jbo.20.10.100901] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/28/2015] [Indexed: 05/18/2023]
Abstract
Optical coherence tomography (OCT)-based angiography is increasingly becoming a clinically useful and important imaging technique due to its ability to provide volumetric microvascular networks innervating tissue beds in vivo without a need for exogenous contrast agent. Numerous OCT angiography algorithms have recently been proposed for the purpose of contrasting microvascular networks. A general literature review is provided on the recent progress of OCT angiography methods and algorithms. The basic physics and mathematics behind each method together with its contrast mechanism are described. Potential directions for future technical development of OCT based angiography is then briefly discussed. Finally, by the use of clinical data captured from normal and pathological subjects, the imaging performance of vascular networks delivered by the most recently reported algorithms is evaluated and compared, including optical microangiography, speckle variance,phase variance, split-spectrum amplitude decorrelation angiography, and correlation mapping. It is found that the method that utilizes complex OCT signal to contrast retinal blood flow delivers the best performance among all the algorithms in terms of image contrast and vessel connectivity. The purpose of this review is to help readers understand and select appropriate OCT angiography algorithm for use in specific applications.
Collapse
Affiliation(s)
- Anqi Zhang
- University of Washington, Department of Bioengineering, Seattle, Washington 98195, United States
| | - Qinqin Zhang
- University of Washington, Department of Bioengineering, Seattle, Washington 98195, United States
| | - Chieh-Li Chen
- University of Washington, Department of Bioengineering, Seattle, Washington 98195, United States
| | - Ruikang K. Wang
- University of Washington, Department of Bioengineering, Seattle, Washington 98195, United States
- Address all correspondence to: Ruikang K. Wang, E-mail:
| |
Collapse
|
26
|
Wang HW, Chen Y. Clinical applications of optical coherence tomography in urology. INTRAVITAL 2014; 3:e28770. [PMID: 28243507 PMCID: PMC5312717 DOI: 10.4161/intv.28770] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 12/20/2022]
Abstract
Since optical coherence tomography (OCT) was first demonstrated in 1991, it has advanced significantly in technical aspects such as imaging speed and resolution, and has been clinically demonstrated in a diverse set of medical and surgical applications, including ophthalmology, cardiology, gastroenterology, dermatology, oncology, among others. This work reviews current clinical applications in urology, particularly in bladder, urether, and kidney. Clinical applications in bladder and urether mainly focus on cancer detection and staging based on tissue morphology, image contrast, and OCT backscattering. The application in kidney includes kidney cancer detection based on OCT backscattering attenuation and non-destructive evaluation of transplant kidney viability or acute tubular necrosis based on both tissue morphology from OCT images and function from Doppler OCT (DOCT) images. OCT holds the promise to positively impact the future clinical practices in urology.
Collapse
Affiliation(s)
- Hsing-Wen Wang
- Fischell Department of Bioengineering; University of Maryland; College Park, MD USA
| | - Yu Chen
- Fischell Department of Bioengineering; University of Maryland; College Park, MD USA
| |
Collapse
|
27
|
Gladkova N, Kiseleva E, Streltsova O, Prodanets N, Snopova L, Karabut M, Gubarkova E, Zagaynova E. Combined use of fluorescence cystoscopy and cross-polarization OCT for diagnosis of bladder cancer and correlation with immunohistochemical markers. JOURNAL OF BIOPHOTONICS 2013; 6:687-98. [PMID: 23420564 DOI: 10.1002/jbio.201200105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 05/15/2023]
Abstract
The combined use of fluorescence cystoscopy and cross-polarization optical coherence tomography (CP OCT) with quantitative estimation of the OCT signal was assessed in 92 bladder zones. It demonstrated the diagnostic accuracy in detecting superficial bladder cancer of 93.6%, sensitivity 96.4%, specificity 92.1%, positive predictive value 87% and negative predictive value 97.9%. Quantitative estimation of OCT signal standard deviation in cross-polarization (CP OCT SD index) makes the visual criteria of CP OCT image assessment more objective. The level of CP OCT SD index for diagnosing superficial bladder cancer, including cancer in situ, was 4.32 dB and lower. When tumor is located on a postoperative scar, CP OCT SD index may be higher than the threshold level of 4.32 dB due to strong scattering and depolarization in scar fibrous tissue. A high inverse correlation was found between CP OCT SD index and the level expressed by p63, Ki-67, p53, CD44v6 markers.
Collapse
|
28
|
Kharchenko S, Adamowicz J, Wojtkowski M, Drewa T. Optical coherence tomography diagnostics for onco-urology. Review of clinical perspectives. Cent European J Urol 2013; 66:136-41. [PMID: 24579012 PMCID: PMC3936153 DOI: 10.5173/ceju.2013.02.art6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/01/2013] [Accepted: 04/04/2013] [Indexed: 11/30/2022] Open
Abstract
Introduction Optical coherence tomography (OCT) is being investigated widely for use in urologic pathology. The current imaging of urogenital cancers cannot be perfect, thus, routine methods demands new updates or inventions of alternative radiological scope. OCT presents so–called “live” optical biopsy. The authors aim to review this modality for uro–oncological purposes. Matherial and methods A series of 37 publications between 1989 and 2012 was selected and cited from GoogleScholar and PubMED/MEDLINE. The urogenital tract (bladder, ureter, scrotum organs and prostate) was imaged by OCT. Results The overall OCT sensitivity, specificity, accuracy, negative and positive predictive values ranged a lot on example of the urinary bladder's tumors screening. The data were 75–100%, 65–97.9%, 92%, 75%, 100%, respectively. Notwithstanding, a diagnostic importance of OCT may be comparable with urine cytology, cystoscopy, computerized tomography and magnetic resonance imaging. Conclusions OCT demonstrated its imaging potential, while till the present OCT plays role of an additional imaging. Future progress of OCT involvement in experimental and clinical once–urological diagnostics is needed under high evidence control.
Collapse
Affiliation(s)
- Sergiy Kharchenko
- The Medical Institute of Sumy State University, Faculty of Post-graduate Medical Education, Department of General, Pediatric Surgery with Oncology's Course, Glukhiv Central District Hospital, Surgical Division, Glukhiv, Ukraine
| | - Jan Adamowicz
- Nicolaus Copernicus University, Faculty of Medicine, Department Tissue Engineering, Bydgoszcz, Poland
| | - Maciej Wojtkowski
- Nicolaus Copernicus University, Institute of Physics, Department of Biophysics and Medical Physics, Toruń, Poland
| | - Tomasz Drewa
- Nicolaus Copernicus University, Faculty of Medicine, Department Tissue Engineering, Bydgoszcz, Poland ; Department of Urology Nicolaus Copernicus Hospital, Toruń, Poland
| |
Collapse
|
29
|
Bergmann T, Maeder U, Fiebich M, Dickob M, Nattkemper TW, Anselmetti D. Categorization of two-photon microscopy images of human cartilage into states of osteoarthritis. Osteoarthritis Cartilage 2013; 21:1074-82. [PMID: 23680876 DOI: 10.1016/j.joca.2013.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/30/2013] [Accepted: 04/27/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The degeneration of articular cartilage is part of the clinical syndrome of osteoarthritis (OA) and one of the most common causes of pain and disability in middle-aged and older people(1). However, the objective detection of an initial state of OA is still challenging. In order to categorize cartilage into states of OA, an algorithm is presented which offers objective categorization on the basis of two-photon laser-scanning microscopy (TPLSM) images. METHODS The algorithm is based on morphological characteristics of the images and results in a topographical visualization. This paper describes the algorithm and shows the result of a categorization of human cartilage samples. RESULTS The resulting map of the analysis of TPLSM images can be divided into areas which correspond to the grades of the Outerbridge-Categorization. The algorithm is able to differentiate the samples in coincidence with the macroscopic impression. CONCLUSION The method is promising for early OA detection and categorization. In order to achieve a higher benefit for the physician the method must be transferred to an endoscopic setup for an application in surgery.
Collapse
Affiliation(s)
- T Bergmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen, Wiesenstraße 14, Giessen, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Xu C, Zhang S, Tan Y, Zhao S. Inner structure detection by optical tomography technology based on feedback of microchip Nd:YAG lasers. OPTICS EXPRESS 2013; 21:11819-11826. [PMID: 23736403 DOI: 10.1364/oe.21.011819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We describe a new optical tomography technology based on feedback of microchip Nd:YAG lasers. In the case of feedback light frequency-shifted, light can be magnified by a fact of 10(6) in the Nd:YAG microchip lasers, which makes it possible to realize optical tomography with a greater depth than current optical tomography. The results of the measuring and imaging of kinds of samples are presented, which demonstrate the feasibility and potential of this approach in the inner structure detection. The system has a lateral resolution of ~1 μm, a vertical resolution of 15 μm and a longitudinal scanning range of over 10mm.
Collapse
Affiliation(s)
- Chunxin Xu
- Institute of Opto-Electronic Engineering, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
31
|
Wade R, Spackman E, Corbett M, Walker S, Light K, Naik R, Sculpher M, Eastwood A. Adjunctive colposcopy technologies for examination of the uterine cervix--DySIS, LuViva Advanced Cervical Scan and Niris Imaging System: a systematic review and economic evaluation. Health Technol Assess 2013; 17:1-240, v-vi. [PMID: 23449335 PMCID: PMC4781255 DOI: 10.3310/hta17080] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Women in England (aged 25-64 years) are invited for cervical screening every 3-5 years to assess for cervical intraepithelial neoplasia (CIN) or cancer. CIN is a term describing abnormal changes in the cells of the cervix, ranging from CIN1 to CIN3, which is precancerous. Colposcopy is used to visualise the cervix. Three adjunctive colposcopy technologies for examination of the cervix have been included in this assessment: Dynamic Spectral Imaging System (DySIS), the LuViva Advanced Cervical Scan and the Niris Imaging System. OBJECTIVE To determine the clinical effectiveness and cost-effectiveness of adjunctive colposcopy technologies for examination of the uterine cervix for patients referred for colposcopy through the NHS Cervical Screening Programme. DATA SOURCES Sixteen electronic databases [Allied and Complementary Medicine Database (AMED), BIOSIS Previews, Cochrane Database of Systematic Reviews (CDSR), Cochrane Central Register of Controlled Trials (CENTRAL), Cumulative Index to Nursing and Allied Health Literature (CINAHL), Database of Abstracts of Reviews of Effects (DARE), EMBASE, Health Management Information Consortium (HMIC), Health Technology Assessment (HTA) database; Inspec, Inside Conferences, MEDLINE, NHS Economic Evaluation Database (NHS EED), PASCAL, Science Citation Index Expanded (SCIE) and Science Citation Index (SCI) - Conference Proceedings], and two clinical trial registries [ClinicalTrials.gov and Current Controlled Trials (CCT)] were searched to September-October 2011. REVIEW METHODS Studies comparing DySIS, LuViva or Niris with conventional colposcopy were sought; a narrative synthesis was undertaken. A decision-analytic model was developed, which measured outcomes in terms of quality-adjusted life-years (QALYs) and costs were evaluated from the perspective of the NHS and Personal Social Services with a time horizon of 50 years. RESULTS Six studies were included: two studies of DySIS, one study of LuViva and three studies of Niris. The DySIS studies were well reported and had a low risk of bias; they found higher sensitivity with DySIS (both the DySISmap alone and in combination with colposcopy) than colposcopy alone for identifying CIN2+ disease, although specificity was lower with DySIS. The studies of LuViva and Niris were poorly reported and had limitations, which indicated that their results were subject to a high risk of bias; the results of these studies cannot be considered reliable. The base-case cost-effectiveness analysis suggests that both DySIS treatment options are less costly and more effective than colposcopy alone in the overall weighted population; these results were robust to the ranges tested in the sensitivity analysis. DySISmap alone was more costly and more effective in several of the referral groups but the incremental cost-effectiveness ratio (ICER) was never higher than £1687 per QALY. DySIS plus colposcopy was less costly and more effective in all reasons for referral. Only indicative analyses were carried out on Niris and LuViva and no conclusions could be made on their cost-effectiveness. LIMITATIONS The assessment is limited by the available evidence on the new technologies, natural history of the disease area and current treatment patterns. CONCLUSIONS DySIS, particularly in combination with colposcopy, has higher sensitivity than colposcopy alone. There is no reliable evidence on the clinical effectiveness of LuViva and Niris. DySIS plus colposcopy appears to be less costly and more effective than both the DySISmap alone and colposcopy alone; these results were robust to the sensitivity analyses undertaken. Given the lack of reliable evidence on LuViva and Niris, no conclusions on their potential cost-effectiveness can be drawn. There is some uncertainty about how generalisable these findings will be to the population of women referred for colposcopy in the future, owing to the introduction of the human papillomavirus (HPV) triage test and uptake of the HPV vaccine.
Collapse
Affiliation(s)
- R Wade
- CRD/CHE Technology Assessment Group, Centre for Reviews and Dissemination, University of York, York, UK
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW As high-risk nonmuscle invasive bladder cancer (NMIBC) has a high propensity to recur and progress, the primary therapeutic goal in patients with high-risk NMIBC is the prevention or delay of disease recurrence and progression. RECENT FINDINGS For improving transurethral resection quality, new optical enhancement technology such as optical coherence tomography, photodynamic diagnosis and narrow band imaging might be considered because these emerging optical techniques may contribute to resection completeness and reduce the recurrence risk. Recent studies have confirmed that a second resection is associated with a lower risk of progression and cancer-related death. Although maintenance bacillus Calmette-Guérin (BCG) for at least 1 year has been recommended, some studies have shown no significant advantage to maintenance BCG. Although other options may be considered in early BCG failure, there are no large trials that have shown a long-term benefit in BCG-failure patients. SUMMARY Current literature suggests that the best treatment for patients with high-risk NMIBC involves complete transurethral resection with intravesical BCG therapy. New approaches or therapeutic agents for preventing recurrence and progression are needed in this field.
Collapse
|
33
|
Dhawan AP, D'Alessandro B, Fu X. Optical imaging modalities for biomedical applications. IEEE Rev Biomed Eng 2012; 3:69-92. [PMID: 22275202 DOI: 10.1109/rbme.2010.2081975] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Optical photographic imaging is a well known imaging method that has been successfully translated into biomedical applications such as microscopy and endoscopy. Although several advanced medical imaging modalities are used today to acquire anatomical, physiological, metabolic, and functional information from the human body, optical imaging modalities including optical coherence tomography, confocal microscopy, multiphoton microscopy, multispectral endoscopy, and diffuse reflectance imaging have recently emerged with significant potential for non-invasive, portable, and cost-effective imaging for biomedical applications spanning tissue, cellular, and molecular levels. This paper reviews methods for modeling the propagation of light photons in a biological medium, as well as optical imaging from organ to cellular levels using visible and near-infrared wavelengths for biomedical and clinical applications.
Collapse
Affiliation(s)
- Atam P Dhawan
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| | | | | |
Collapse
|
34
|
Burkhardt A, Walther J, Cimalla P, Mehner M, Koch E. Endoscopic optical coherence tomography device for forward imaging with broad field of view. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:071302. [PMID: 22894463 DOI: 10.1117/1.jbo.17.7.071302] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
One current challenge of studying human tympanic membranes (TM) with optical coherence tomography (OCT) is the implementation of optics that avoid direct contact with the inflamed tissue. At the moment, no commercial device is available. We report an optics design for contactless forward imaging endoscopic optical coherence tomography (EOCT) with a large working distance (WD) and a broad field of view (FOV) by restricting the overall diameter of the probe to be small (3.5 mm), ensuring a sufficient numerical aperture. Our system uses a gradient-index (GRIN) relay lens and a GRIN objective lens, and executes a fan-shaped optical scanning pattern. The WD and FOV can be adjusted by manually changing the distance between the triplet and the GRIN relay lens. The measured lateral resolution is ∼28 μm at a WD of 10 mm with a FOV of 10 mm. Additionally, a camera and an illumination beam path were implemented within the probe for image guidance during investigations of the TM. We demonstrated the performance of the EOCT design by 3-D imaging of a human TM ex vivo and in vivo with a k-linear spectral domain OCT system.
Collapse
Affiliation(s)
- Anke Burkhardt
- Dresden University of Technology, Faculty of Medicine Carl Gustav Carus, Department of Clinical Sensoring and Monitoring, Fetscherstr. 74, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
35
|
Li J, Chen B, Du Y, Yang L, Xia Y, He Y, Liu S, Chen C. Quantitative measurement of optical parameters of cell lines 5-8F and 6-10B using polarization sensitive optical coherence tomography. Arch Biochem Biophys 2012; 522:125-9. [PMID: 22525523 DOI: 10.1016/j.abb.2012.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/05/2012] [Indexed: 12/22/2022]
Abstract
The aim was to test whether the typical NPC cell lines of 5-8F (high tumorigenesis and metastasis) and 6-10B (low tumorigenesis and metastasis) could be differentiated by polarization sensitive optical coherence tomography (PS-OCT). We imaged the two types of low cellular differentiated NPC cell lines 5-8F and 6-10B pellets using PS-OCT; then extracted the optical parameters of attenuate coefficient and anisotropy from the A-scan lines based on the multiple scattering model; and compared their phase retardation. The fitting scattering coefficients were μs=10.91±0.45 and μs=11.33±0.27 cm(-1) for 5-8F and 6-10B pellets (p<0.05), respectively; and the anisotropy factors were g=0.900±0.013 and g=0.885±0.008 for 5-8F and 6-10B pellets (p<0.01), respectively. While the phase retardation of 6-10B was a little faster than 5-8F. These results indicated that PS-OCT could differentiate the two cell lines, and had the potential ability for typing the tissue of NPC.
Collapse
Affiliation(s)
- Jianghua Li
- School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Costello S, Singh R. Endoscopic Imaging in Barrett's Oesophagus: Applications in Routine Clinical Practice and Future Outlook. Clin Endosc 2011; 44:87-92. [PMID: 22741118 PMCID: PMC3363063 DOI: 10.5946/ce.2011.44.2.87] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/08/2011] [Accepted: 12/14/2011] [Indexed: 12/20/2022] Open
Abstract
The practice for endoscopic surveillance of Barrett's oesophagus has evolved from "blind" or random 4 quadrant biopsies (Seattle protocol) to a more "intelligent" targeted biopsy approach. This evolution has been possible due to the rapid advances in endoscopic imaging technology and expertise in the last decade. Previous endoscopes had relatively poor image resolution that often did not allow the subtle mucosal changes associated with dysplastic Barrett's mucosa to be identified. Newer endoscopic imaging techniques available today may allow endoscopists to identify areas of dysplasia or malignancy and target biopsies accordingly. These modalities which include narrow band imaging, chromoendoscopy, autofluorescence imaging, and confocal endomicroscopy as well as a few novel imaging modalities on the horizon will be discussed further.
Collapse
Affiliation(s)
- Sam Costello
- Lyell McEwin Hospital, University of Adelaide, South Australia, Australia
| | | |
Collapse
|
37
|
Cauberg Evelyne CC, de la Rosette JJMCH, de Reijke TM. Emerging optical techniques in advanced cystoscopy for bladder cancer diagnosis: A review of the current literature. Indian J Urol 2011; 27:245-51. [PMID: 21814317 PMCID: PMC3142837 DOI: 10.4103/0970-1591.82845] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND AND OBJECTIVE The current standard for the diagnosis and followup of bladder cancer remains white light cystoscopy, despite its well-known limitations. The aim of this paper is to review the current literature on three optical diagnostics that have been developed to improve the performance of white light cystoscopy: photodynamic diagnosis, narrow-band imaging and optical coherence tomography. MATERIALS AND METHODS A PubMed search was performed for all articles on bladder cancer and photodynamic diagnosis, narrow-band imaging, and optical coherence tomography. Relevant papers on the working mechanism or clinical performance of the techniques were selected. RESULTS Photodynamic diagnosis and narrow-band imaging both aim to improve the visualization of bladder cancer. Both techniques have demonstrated an improved detection rate of bladder cancer. For photodynamic diagnosis, decreased residual tumor rates and increased recurrence free survival after photodynamic diagnosis-assisted transurethral resection have been shown. Both techniques have a relatively high false positive rate. Optical coherence tomography is a technique aiming at real-time noninvasive pathological diagnosis. Studies have shown that optical coherence tomography can accurately discriminate bladder cancer from normal bladder mucosa, and even suggest that a reliable estimation of the stage of a bladder tumor can be made. CONCLUSIONS Photodynamic diagnosis is the technique with most evidence of clinical effectiveness to date, but low specificity is limiting a widespread use. For the novelties, narrow-band imaging, and optical coherence tomography, more evidence is needed before these techniques can be implemented in daily urological practice.
Collapse
|
38
|
Shukla R, Abidi WM, Richards-Kortum R, Anandasabapathy S. Endoscopic imaging: How far are we from real-time histology? World J Gastrointest Endosc 2011; 3:183-94. [PMID: 22013499 PMCID: PMC3196726 DOI: 10.4253/wjge.v3.i10.183] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 07/15/2011] [Accepted: 08/30/2011] [Indexed: 02/05/2023] Open
Abstract
Currently, in gastrointestinal endoscopy there is increasing interest in high resolution endoscopic technologies that can complement high-definition white light endoscopy by providing real-time subcellular imaging of the epithelial surface. These ‘optical biopsy’ technologies offer the potential to improve diagnostic accuracy and yield, while facilitating real-time decision-making. Although many endoscopic techniques have preliminarily shown high accuracy rates, these technologies are still evolving. This review will provide an overview of the most promising high-resolution imaging technologies, including high resolution microendoscopy, optical coherence tomography, endocytoscopy and confocal laser endoscopy. This review will also discuss the application and current limitations of these technologies for the early detection of neoplasia in Barrett’s esophagus, ulcerative colitis and colorectal cancer.
Collapse
Affiliation(s)
- Richa Shukla
- Richa Shukla, Wasif M Abidi, Sharmila Anandasabapathy, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, United States
| | | | | | | |
Collapse
|
39
|
Zhu Y, Terry NG, Wax A. Development of angle-resolved low coherence interferometry for clinical detection of dysplasia. J Carcinog 2011; 10:19. [PMID: 21886457 PMCID: PMC3162729 DOI: 10.4103/1477-3163.83935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 06/24/2011] [Indexed: 12/20/2022] Open
Abstract
This review covers the development of angle-resolved low coherence interferometry (a/LCI) from initial development through clinical application. In the first applications, the approach used a time-domain interferometry scheme and was validated using animal models of carcinogenesis to assess the feasibility of detecting dysplasia in situ. Further development of the approach led to Fourier-domain interferometry schemes with higher throughput and endoscope-compatible probes to enable clinical application. These later implementations have been applied to clinical studies of dysplasia in Barrett's esophagus tissues, a metaplastic tissue type that is associated with an increased risk of esophageal adenocarcinoma. As an alternative to systematic biopsy, the a/LCI approach offers high sensitivity and specificity for detecting dysplasia in these tissues while avoiding the need for tissue removal or exogenous contrast agents. Here, the various implementations of a/LCI are discussed and the results of the preliminary animal experiments and ex vivo human tissue studies are reviewed. A review of a recent in vivo clinical study is also presented.
Collapse
Affiliation(s)
- Yizheng Zhu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | | |
Collapse
|
40
|
Wax A, Terry NG, Dellon ES, Shaheen NJ. Angle-resolved low coherence interferometry for detection of dysplasia in Barrett's esophagus. Gastroenterology 2011; 141:443-7, 447.e1-2. [PMID: 21703265 PMCID: PMC3152604 DOI: 10.1053/j.gastro.2011.06.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Adam Wax
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.
| | - Neil G. Terry
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Evan S. Dellon
- Center for Esophageal Diseases and Swallowing, University of North Carolina, Chapel Hill, North Carolina
| | - Nicholas J. Shaheen
- Center for Esophageal Diseases and Swallowing, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
41
|
Gladkova N, Streltsova O, Zagaynova E, Kiseleva E, Gelikonov V, Gelikonov G, Karabut M, Yunusova K, Evdokimova O. Cross-polarization optical coherence tomography for early bladder-cancer detection: statistical study. JOURNAL OF BIOPHOTONICS 2011; 4:519-532. [PMID: 21780300 DOI: 10.1002/jbio.201000088] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 11/04/2010] [Accepted: 11/05/2010] [Indexed: 05/31/2023]
Abstract
The capabilities of cross-polarization optical coherence tomography (CP OCT) for early bladder-cancer detection are assessed in statistical study and compared with the traditional OCT. Unlike the traditional OCT that demonstrates images only in copolarization, CP OCT acquires images in cross-polarization and copolarization simultaneously. 116 patients with localized flat suspicious lesions in the bladder were enrolled, 360 CP OCT images were obtained and analyzed. CP OCT demonstrated sensitivity 93.7% (vs. 81.2%, <0.0001), specificity 84% (vs. 70.0%, <0.001) and accuracy 85.3% (vs. 71.5%, <0.001) in detecting flat malignant bladder lesions, which is significantly better than with the traditional OCT. Higher diagnostic efficacy of CP OCT in detecting early bladder cancer is associated with the ability to detect changes in epithelium and connective tissues.
Collapse
Affiliation(s)
- Natalia Gladkova
- Institute of Applied and Fundamental Medicine, Nizhny Novgorod State Medical Academy, Minina and Pozharski Sq. 10/1, Nizhny Novgorod 603005, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Korde VR, Liebmann E, Barton JK. Design of a handheld optical coherence microscopy endoscope. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:066018. [PMID: 21721819 PMCID: PMC3144968 DOI: 10.1117/1.3594149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 04/29/2011] [Accepted: 05/04/2011] [Indexed: 05/15/2023]
Abstract
Optical coherence microscopy (OCM) combines coherence gating, high numerical aperture optics, and a fiber-core pinhole to provide high axial and lateral resolution with relatively large depth of imaging. We present a handheld rigid OCM endoscope designed for small animal surgical imaging, with a 6-mm diam tip, 1-mm scan width, and 1-mm imaging depth. X-Y scanning is performed distally with mirrors mounted to micro galvonometer scanners incorporated into the endoscope handle. The endoscope optical design consists of scanning doublets, an afocal Hopkins relay lens system, a 0.4 numerical aperture water immersion objective, and a cover glass. This endoscope can resolve laterally a 1.4-μm line pair feature and has an axial resolution (full width half maximum) of 5.4 μm. Images taken with this endoscope of fresh ex-vivo mouse ovaries show structural features, such as corpus luteum, primary follicles, growing follicles, and fallopian tubes. This rigid handheld OCM endoscope can be useful for a variety of minimally invasive and surgical imaging applications.
Collapse
Affiliation(s)
- Vrushali R Korde
- University of Arizona, College of Optical Sciences, 1630 East University Boulevard, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
43
|
Wall RA, Bonnema GT, Barton JK. Novel focused OCT-LIF endoscope. BIOMEDICAL OPTICS EXPRESS 2011; 2:421-30. [PMID: 21412448 PMCID: PMC3047348 DOI: 10.1364/boe.2.000421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/04/2010] [Accepted: 01/28/2011] [Indexed: 05/22/2023]
Abstract
Combined optical coherence tomography (OCT) and laser-induced fluorescence (LIF) endoscopy has shown higher sensitivity and specificity for distinguishing normal tissue from adenoma when compared to either modality alone. Endoscope optical design is complicated by the large wavelength difference between the two systems. A new high-resolution endoscope 2 mm in diameter is presented that can create focused beams from the ultraviolet to near-infrared. A reflective design ball lens operates achromatically over a large wavelength range, and employs TIR at two faces and reflection at a third internal mirrored face. The 1:1 imaging system obtains theoretically diffraction-limited spots for both the OCT (1300 nm) and LIF (325 nm) channels.
Collapse
Affiliation(s)
- R. Andrew Wall
- College of Optical Sciences, The University of Arizona,
1230 East Speedway Boulevard, Tucson, Arizona 85721, USA
| | - Garret T. Bonnema
- College of Optical Sciences, The University of Arizona,
1230 East Speedway Boulevard, Tucson, Arizona 85721, USA
| | - Jennifer K. Barton
- College of Optical Sciences, The University of Arizona,
1230 East Speedway Boulevard, Tucson, Arizona 85721, USA
- Department of Biomedical Engineering, The University of Arizona,
1230 East Speedway Boulevard, Tucson, Arizona 85721, USA
| |
Collapse
|
44
|
Endoscopic techniques for recognizing neoplasia in Barrett's esophagus: which should the clinician use? Curr Opin Gastroenterol 2010; 26:352-60. [PMID: 20571387 DOI: 10.1097/mog.0b013e32833ad5c4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The key to prevention and cure of esophageal adenocarcinoma is the detection and eradication of neoplasia in patients with Barrett's esophagus. Multiple tools and technologies are emerging for this purpose. RECENT FINDINGS A detailed white light examination with high-resolution endoscopy and recognition of lesions is paramount. A variety of imaging modalities are being studied for the detection of neoplasia in Barrett's esophagus. Chromoendoscopy, narrow band imaging, and autofluorescence provide a way to target suspicious areas. Confocal endomicroscopy and optical coherence tomography are means to pinpoint imaging to obtain information about the tissue microarchitecture. SUMMARY The key to detection of neoplasia is a careful white light examination with high-resolution endoscopy and recognition of lesion characteristics. Additional imaging modalities may enhance targeting of lesions or provide more information at a focused level. Many of these modalities have yet to be validated in prospective randomized, multicenter trials.
Collapse
|
45
|
Intraperitoneal virtual biopsy by fibered optical coherence tomography (OCT) at natural orifice transluminal endoscopic surgery (NOTES). J Gastrointest Surg 2010; 14:732-8. [PMID: 19997982 DOI: 10.1007/s11605-009-1108-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 11/09/2009] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Fibered optical coherence tomography (OCT) in conjunction with natural orifice transluminal endoscopic surgery (NOTES) could provide a facility for rapid, in situ pathological diagnosis of intraperitoneal tissues in a truly minimally invasive fashion. MATERIALS AND METHODS A large porcine model was established to test this hypothesis. A standard double channel gastroscope (Olympus) was used to achieve a transgastric access to the peritoneum and initiate the pneumoperitoneum. Magnetic retraction was used to display the sigmoid colon along with its mesentery. A commercially available fibered OCT probe (NIRIS system, Imalux) was inserted via a working channel of the gastroscope and used to assess intraperitoneal tissues. Separately, OCT images of human tissue specimens ex vivo were contrasted with representative standard histopathological slides. RESULTS Intraperitoneal OCT provided clear real-time images of both the serosal and muscularis propria mural layers as well as the submucosal-muscularis interface. Examination of mesenteric lymph nodes (including sentinel nodes) allowed visualization of their subcapsular sinus. Comparison of representative cross-sections however failed to evince sufficient resolution for confident diagnosis. CONCLUSION This approach is technically feasible and, if the technology is advanced and proven accurate in human patients, could potentially be used to individualize operative extent prior to definitive resection.
Collapse
|