1
|
Grosjean M, Girard E, Bethry A, Chagnon G, Garric X, Nottelet B. Degradable Bioadhesives Based on Star PEG-PLA Hydrogels for Soft Tissue Applications. Biomacromolecules 2023; 24:4430-4443. [PMID: 36524541 DOI: 10.1021/acs.biomac.2c01166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tissue adhesives are interesting materials for wound treatment as they present numerous advantages compared to traditional methods of wound closure such as suturing and stapling. Nowadays, fibrin and cyanoacrylate glues are the most widespread commercial biomedical adhesives, but these systems display some drawbacks. In this study, degradable bioadhesives based on PEG-PLA star-shaped hydrogels are designed. Acrylate, methacrylate, and catechol functional copolymers are synthesized and used to design various bioadhesive hydrogels. Various types of mechanisms responsible for adhesion are investigated (physical entanglement and interlocking, physical interactions, chemical bonds), and the adhesive properties of the different systems are first studied on a gelatin model and compared to fibrin and cyanoacrylate references. Hydrogels based on acrylate and methacrylate reached adhesion strength close to cyanoacrylate (332 kPa) with values of 343 and 293 kPa, respectively, whereas catechol systems displayed higher values (11 and 19 kPa) compared to fibrin glue (7 kPa). Bioadhesives were then tested on mouse skin and human cadaveric colonic tissue. The results on mouse skin confirmed the potential of acrylate and methacrylate gels with adhesion strength close to commercial glues (15-30 kPa), whereas none of the systems led to high levels of adhesion on the colon. These data confirm that we designed a family of degradable bioadhesives with adhesion strength in the range of commercial glues. The low level of cytotoxicity of these materials is also demonstrated and confirm the potential of these hydrogels to be used as surgical adhesives.
Collapse
Affiliation(s)
- Mathilde Grosjean
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier34095, France
| | - Edouard Girard
- Univ Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, Grenoble38058, France
- Département de chirurgie digestive et de l'urgence, Centre Hospitalier Grenoble-Alpes, Grenoble38043, France
- Laboratoire d'anatomie des Alpes françaises (LADAF), UFR de médecine de Grenoble, Université Grenoble Alpes, Grenoble38058, France
| | - Audrey Bethry
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier34095, France
| | - Grégory Chagnon
- Univ Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, Grenoble38058, France
| | - Xavier Garric
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier34095, France
- Department of Pharmacy, Nîmes University Hospital, 30900Nîmes, France
| | - Benjamin Nottelet
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier34095, France
| |
Collapse
|
2
|
Prevention of postoperative adhesion with a colloidal gel based on decyl group-modified Alaska pollock gelatin microparticles. Acta Biomater 2022; 149:139-149. [PMID: 35697199 DOI: 10.1016/j.actbio.2022.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022]
Abstract
Postoperative adhesion, bonding of the abdominal wall to damaged organs, causes severe complications after abdominal surgery. Despite the availability of physical barriers (i.e., solutions, films, and hydrogels), adhesion prevention materials that are a single-substance system with stability in wet tissue and ease of use have not been reported. Here, we report a microparticle based, sprayable adhesion prevention material comprising decyl group modified Alaska pollock gelatin (C10-ApGltn). C10-ApGltn microparticles (C10-MPs) were prepared by a coacervation method, freeze drying, and thermal crosslinking. The C10-MPs adhered to and formed a colloidal gel layer on intestinal serosal tissue by hydration without any crosslinking agents. After hydration of the C10-MPs, the resulting colloidal gel layer did not adhere to other tissues. Additionally, the C10-MP colloidal gel layer formed on the stomach serosal tissue showed stability when submersed in saline for 2 days. The colloidal gel layer also showed tissue followability. An in vivo rat adhesion model revealed that C10-MP colloidal gel layer on the cecum and abdominal wall defects effectively reduced postoperative adhesion and induced tissue remodeling, including re-mesothelialization. Therefore, C10-MPs are a potential anti-adhesion material for preventing postoperative adhesion. STATEMENT OF SIGNIFICANCE: We evaluated the postoperative adhesion prevention ability of a colloidal gel based on decyl group modified Alaska pollock gelatin (ApGltn) microparticles (C10-MPs). These microparticles are sprayable and form a colloidal gel with only hydration on the gastrointestinal tissue. We revealed that the modification of the decyl group into ApGltn improved the stability of C10-MP colloidal gel on the tissue by hydrophobic interaction in the in-vitro experiments. The gel prevented postoperative adhesion by being a physical barrier in the in-vivo rat adhesion model.
Collapse
|
3
|
Bulk Polymerization of PEGDA in Spruce Wood Using a DBD Plasma-Initiated Process to Improve the Flexural Strength of the Wood–Polymer Composite. PLASMA 2022. [DOI: 10.3390/plasma5010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The chemical treatment of wood has been shown to increase its mechanical strength by forming composites with a variety of polymers. Polyethylene glycol diacrylate (PEGDA) has commonly been used as a polymer reinforcement to increase the strength and resistance of spruce wood for various applications, such as protection from weathering. In this study, PEGDA was impregnated into wood samples and polymerized by dielectric barrier discharge (DBD) plasma to form wood–polymer composites (WPCs). The kinetic rate order of PEGDA was explored using FT-IR quantitative analysis and the DBD plasma-initiated polymerization was determined to be second order. The strength of the wood samples was then determined by a three-point flexural test. The PEGDA-treated spruce wood samples showed improved flexural strength versus the untreated wood samples. The WPCs were also made using a UV treatment method and were then compared to the DBD plasma-treated samples. The results showed that the DBD plasma-treated samples yielded superior flexural strength relative to the UV-treated samples. We accredited this difference in strength to the plasma process and its ability to penetrate into the various layers of the wood and initiate polymerization, as opposed to UV light that can only penetrate superficially, initiating polymerization in only the first few layers of the wood surface.
Collapse
|
4
|
Wang BX, Xu W, Yang Z, Wu Y, Pi F. An Overview on Recent Progress of the Hydrogels: From Material Resources, Properties to Functional Applications. Macromol Rapid Commun 2022; 43:e2100785. [PMID: 35075726 DOI: 10.1002/marc.202100785] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/04/2022] [Indexed: 11/06/2022]
Abstract
Hydrogels, as the most typical elastomer materials with three-dimensional network structures, have attracted wide attention owing to their outstanding features in fields of sensitive stimulus response, low surface friction coefficient, good flexibility and bio-compatibility. Because of numerous fresh polymer materials (or polymerization monomers), hydrogels with various structure diversities and excellent properties are emerging, and the development of hydrogels is very vigorous over the past decade. This review focuses on state-of-the-art advances, systematically reviews the recent progress on construction of novel hydrogels utilized several kinds of typical polymerization monomers, and explores the main chemical and physical cross-linking methods to develop the diversity of hydrogels. Following the aspects mentioned above, the classification and emerging applications of hydrogels, such as pH response, ionic response, electrical response, thermal response, biomolecular response, and gas response, are extensively summarized. Finally, we have done this review with the promises and challenges for the future evolution of hydrogels and their biological applications. cross-linking methods; functional applications; hydrogels; material resources This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ben-Xin Wang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Wei Xu
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Zhuchuang Yang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Yangkuan Wu
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
5
|
Correa S, Grosskopf AK, Lopez Hernandez H, Chan D, Yu AC, Stapleton LM, Appel EA. Translational Applications of Hydrogels. Chem Rev 2021; 121:11385-11457. [PMID: 33938724 PMCID: PMC8461619 DOI: 10.1021/acs.chemrev.0c01177] [Citation(s) in RCA: 366] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Advances in hydrogel technology have unlocked unique and valuable capabilities that are being applied to a diverse set of translational applications. Hydrogels perform functions relevant to a range of biomedical purposes-they can deliver drugs or cells, regenerate hard and soft tissues, adhere to wet tissues, prevent bleeding, provide contrast during imaging, protect tissues or organs during radiotherapy, and improve the biocompatibility of medical implants. These capabilities make hydrogels useful for many distinct and pressing diseases and medical conditions and even for less conventional areas such as environmental engineering. In this review, we cover the major capabilities of hydrogels, with a focus on the novel benefits of injectable hydrogels, and how they relate to translational applications in medicine and the environment. We pay close attention to how the development of contemporary hydrogels requires extensive interdisciplinary collaboration to accomplish highly specific and complex biological tasks that range from cancer immunotherapy to tissue engineering to vaccination. We complement our discussion of preclinical and clinical development of hydrogels with mechanical design considerations needed for scaling injectable hydrogel technologies for clinical application. We anticipate that readers will gain a more complete picture of the expansive possibilities for hydrogels to make practical and impactful differences across numerous fields and biomedical applications.
Collapse
Affiliation(s)
- Santiago Correa
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Abigail K. Grosskopf
- Chemical
Engineering, Stanford University, Stanford, California 94305, United States
| | - Hector Lopez Hernandez
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Doreen Chan
- Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anthony C. Yu
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Eric A. Appel
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
- Bioengineering, Stanford University, Stanford, California 94305, United States
- Pediatric
Endocrinology, Stanford University School
of Medicine, Stanford, California 94305, United States
- ChEM-H Institute, Stanford
University, Stanford, California 94305, United States
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
6
|
Fatehi Hassanabad A, Zarzycki AN, Jeon K, Dundas JA, Vasanthan V, Deniset JF, Fedak PWM. Prevention of Post-Operative Adhesions: A Comprehensive Review of Present and Emerging Strategies. Biomolecules 2021; 11:biom11071027. [PMID: 34356652 PMCID: PMC8301806 DOI: 10.3390/biom11071027] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Post-operative adhesions affect patients undergoing all types of surgeries. They are associated with serious complications, including higher risk of morbidity and mortality. Given increased hospitalization, longer operative times, and longer length of hospital stay, post-surgical adhesions also pose a great financial burden. Although our knowledge of some of the underlying mechanisms driving adhesion formation has significantly improved over the past two decades, literature has yet to fully explain the pathogenesis and etiology of post-surgical adhesions. As a result, finding an ideal preventative strategy and leveraging appropriate tissue engineering strategies has proven to be difficult. Different products have been developed and enjoyed various levels of success along the translational tissue engineering research spectrum, but their clinical translation has been limited. Herein, we comprehensively review the agents and products that have been developed to mitigate post-operative adhesion formation. We also assess emerging strategies that aid in facilitating precision and personalized medicine to improve outcomes for patients and our healthcare system.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
| | - Anna N. Zarzycki
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
| | - Kristina Jeon
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada;
| | - Jameson A. Dundas
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
| | - Vishnu Vasanthan
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
| | - Justin F. Deniset
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Paul W. M. Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.A.D.); (V.V.); (J.F.D.)
- Correspondence:
| |
Collapse
|
7
|
Fujita M, Policastro GM, Burdick A, Lam HT, Ungerleider JL, Braden RL, Huang D, Osborn KG, Omens JH, Madani MM, Christman KL. Preventing post-surgical cardiac adhesions with a catechol-functionalized oxime hydrogel. Nat Commun 2021; 12:3764. [PMID: 34145265 PMCID: PMC8213776 DOI: 10.1038/s41467-021-24104-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 06/02/2021] [Indexed: 11/12/2022] Open
Abstract
Post-surgical cardiac adhesions represent a significant problem during routine cardiothoracic procedures. This fibrous tissue can impair heart function and inhibit surgical access in reoperation procedures. Here, we propose a hydrogel barrier composed of oxime crosslinked poly(ethylene glycol) (PEG) with the inclusion of a catechol (Cat) group to improve retention on the heart for pericardial adhesion prevention. This three component system is comprised of aldehyde (Ald), aminooxy (AO), and Cat functionalized PEG mixed to form the final gel (Ald-AO-Cat). Ald-AO-Cat has favorable mechanical properties, degradation kinetics, and minimal swelling, as well as superior tissue retention compared to an initial Ald-AO gel formulation. We show that the material is cytocompatible, resists cell adhesion, and led to a reduction in the severity of adhesions in an in vivo rat model. We further show feasibility in a pilot porcine study. The Ald-AO-Cat hydrogel barrier may therefore serve as a promising solution for preventing post-surgical cardiac adhesions.
Collapse
Affiliation(s)
- Masaki Fujita
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, USA
| | - Gina M Policastro
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, USA
| | - Austin Burdick
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, USA
| | - Hillary T Lam
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, USA
| | - Jessica L Ungerleider
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, USA
| | - Rebecca L Braden
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, USA
| | - Diane Huang
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Kent G Osborn
- Division of Comparative Pathology and Medicine, School of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Jeffrey H Omens
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Michael M Madani
- Division of Cardiovascular and Thoracic Surgery, University of California, San Diego, San Diego, CA, USA
| | - Karen L Christman
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA.
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
8
|
Li Y, Wang X, Han Y, Sun HY, Hilborn J, Shi L. Click chemistry-based biopolymeric hydrogels for regenerative medicine. Biomed Mater 2021; 16:022003. [PMID: 33049725 DOI: 10.1088/1748-605x/abc0b3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Click chemistry is not a single specific reaction, but describes ways of generating products which emulate examples in nature. Click reactions occur in one pot, are not disturbed by water, generate minimal and inoffensive byproducts, and are characterized by a high thermodynamic driving force, driving the reaction quickly and irreversibly towards a high yield of a single reaction product. As a result, over the past 15 years it has become a very useful bio-orthogonal method for the preparation of chemical cross-linked biopolymer-based hydrogel, in the presence of e.g. growth factors and live cells, or in-vivo. Biopolymers are renewable and non-toxic, providing a myriad of potential backbone toolboxes for hydrogel design. The goal of this review is to summarize recent advances in the development of click chemistry-based biopolymeric hydrogels, and their applications in regenerative medicine. In particular, various click chemistry approaches, including copper-catalyzed azide-alkyne cycloaddition reactions, copper-free click reactions (e.g. the Diels-Alder reactions, the strain-promoted azide-alkyne cycloaddition reactions, the radical mediated thiol-ene reactions, and the oxime-forming reactions), and pseudo-click reactions (e.g. the thiol-Michael addition reactions and the Schiff base reactions) are highlighted in the first section. In addition, numerous biopolymers, including proteins (e.g. collagen, gelatin, silk, and mucin), polysaccharides (e.g. hyaluronic acid, alginate, dextran, and chitosan) and polynucleotides (e.g. deoxyribonucleic acid), are discussed. Finally, we discuss biopolymeric hydrogels, cross-linked by click chemistry, intended for the regeneration of skin, bone, spinal cord, cartilage, and cornea. This article provides new insights for readers in terms of the design of regenerative medicine, and the use of biopolymeric hydrogels based on click chemistry reactions.
Collapse
Affiliation(s)
- Ya Li
- College of Biology, Hunan University, Changsha 410082, People's Republic of China
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Polymeric tissue adhesives provide versatile materials for wound management and are widely used in a variety of medical settings ranging from minor to life-threatening tissue injuries. Compared to the traditional methods of wound closure (i.e., suturing and stapling), they are relatively easy to use, enable rapid application, and introduce minimal tissue damage. Furthermore, they can act as hemostats to control bleeding and provide a tissue-healing environment at the wound site. Despite their numerous current applications, tissue adhesives still face several limitations and unresolved challenges (e.g., weak adhesion strength and poor mechanical properties) that limit their use, leaving ample room for future improvements. Successful development of next-generation adhesives will likely require a holistic understanding of the chemical and physical properties of the tissue-adhesive interface, fundamental mechanisms of tissue adhesion, and requirements for specific clinical applications. In this review, we discuss a set of rational guidelines for design of adhesives, recent progress in the field along with examples of commercially available adhesives and those under development, tissue-specific considerations, and finally potential functions for future adhesives. Advances in tissue adhesives will open new avenues for wound care and potentially provide potent therapeutics for various medical applications.
Collapse
Affiliation(s)
- Sungmin Nam
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02134, United States.,Wyss Institute for Biologically Inspired Engineering, Cambridge, Massachusetts 02115, United States
| | - David Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02134, United States.,Wyss Institute for Biologically Inspired Engineering, Cambridge, Massachusetts 02115, United States
| |
Collapse
|
10
|
Stapleton LM, Lucian HJ, Grosskopf AK, Smith AAA, Totherow KP, Woo YJ, Appel EA. Dynamic Hydrogels for Prevention of Post‐Operative Peritoneal Adhesions. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Haley J. Lucian
- Department of Cardiothoracic Surgery Stanford University School of Medicine Stanford CA 94305 USA
| | - Abigail K. Grosskopf
- Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA
| | - Anton A. A. Smith
- Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA
| | | | - Y. Joseph Woo
- Department of Bioengineering Stanford University Stanford CA 94305 USA
- Department of Cardiothoracic Surgery Stanford University School of Medicine Stanford CA 94305 USA
| | - Eric A. Appel
- Department of Bioengineering Stanford University Stanford CA 94305 USA
- Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA
- ChEM‐H Institute Stanford University Stanford CA 94305 USA
- Department of Pediatrics (Endocrinology) Stanford University School of Medicine Stanford CA 94305 USA
| |
Collapse
|
11
|
Ibrahim SM, Yin TY, Misran M. Arabic Gum Grafted PEGDMA Hydrogels: Synthesis, Physico-Chemical Characterization and In-vitro Release of Hydrophobic Drug. Macromol Res 2021. [DOI: 10.1007/s13233-020-8166-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Peritoneal adhesions: Occurrence, prevention and experimental models. Acta Biomater 2020; 116:84-104. [PMID: 32871282 DOI: 10.1016/j.actbio.2020.08.036] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022]
Abstract
Peritoneal adhesions (PA) are a postoperative syndrome with high incidence rate, which can cause chronic abdominal pain, intestinal obstruction, and female infertility. Previous studies have identified that PA are caused by a disordered feedback of blood coagulation, inflammation, and fibrinolysis. Monocytes, macrophages, fibroblasts, and mesothelial cells are involved in this process, and secreted signaling molecules, such as tumor necrosis factor alpha (TNF-α), interleukin-10 (IL-10), tissue plasminogen activator (tPA), and type 1 plasminogen activator inhibitor (PAI-1), play a key role in PA development. There have been many attempts to prevent PA formation by anti-PA drugs, barriers, and other therapeutic methods, but their effectiveness has not been widely accepted. Treatment by biomaterial-based barriers is believed to be the most promising method to prevent PA formation in recent years. In this review, the pathogenesis, treatment approaches, and animal models of PA are summarized and discussed to understand the challenges faced in the biomaterial-based anti-PA treatments.
Collapse
|
13
|
Kuşaslan R, Ercan G, Ağcaoğlu O, Altınay S, Binboğa S, Altınel Y. A novel coenzyme-Q approach for the prevention of postsurgical adhesion. Turk J Surg 2020; 36:202-208. [PMID: 33015565 DOI: 10.5578/turkjsurg.4398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/30/2019] [Indexed: 11/15/2022]
Abstract
Objectives Postoperative intraperitoneal adhesions are an unsolved and important problem in abdominal surgery. In the present study, the probable preventive role of coenzyme-Q in the development of peritoneal adhesions was investigated. Material and Methods Sixteen Wistar Hannover male rats weighing 300-350 g were randomly separated into two groups of 8 rats each. The cecum was abraded with a sterile gauze until sub-serosal hemorrhage developed. A patch of peritoneum located opposite to the cecal abrasion was completely dissected. No treatment was given to Group 1. Group 2 received 30 mg/kg coenzyme-Q, which was injected 2 mL intraperitoneally. All the rats were sacrificed on the postoperative 21st day, and after adhesions were scored macroscopically, tissue specimens of the peritoneum and bowel were subjected to histopathological investigation. Tissue and blood specimens were also taken for biochemical analysis to investigate antioxidant efficiency. Results Adhesion scores were significantly different between the control group and the coenzyme-Q group (p= 0.001). According to the tissue levels of GSH-Px, MDA, and SOD levels, there was no significant difference between the study groups (p= 0.074, p= 0.208, p= 0.526). According to the plasma GSH-Px and SOD levels, there was significant difference between the groups (p= 0.002, p= 0.001), but the difference was not significant at MDA levels (p= 0.793). The differences between the pathological scores of the control and coenzyme-Q (p= 0.028 for fibrosis; p= 0.025 for inflammation) groups were statistically significant. Conclusion This study confirms that coenzyme-Q is the potential application in the prevention of early postoperative adhesions.
Collapse
Affiliation(s)
- Ramazan Kuşaslan
- Department of General Surgery, Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Gülçin Ercan
- Department of General Surgery, Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Orhan Ağcaoğlu
- Department of General Surgery, Koc University School of Medicine Hospital, Istanbul, Turkey
| | - Serdar Altınay
- Department of Pathology, Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Sinan Binboğa
- Department of General Surgery, Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Yüksel Altınel
- Department of General Surgery, Bagcilar Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
14
|
Macdougall LJ, Anseth K. Bioerodible Hydrogels Based on Photopolymerized Poly(ethylene glycol)-co-poly(α-hydroxy acid) Diacrylate Macromers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Xu B, Ye J, Yuan FZ, Zhang JY, Chen YR, Fan BS, Jiang D, Jiang WB, Wang X, Yu JK. Advances of Stem Cell-Laden Hydrogels With Biomimetic Microenvironment for Osteochondral Repair. Front Bioeng Biotechnol 2020; 8:247. [PMID: 32296692 PMCID: PMC7136426 DOI: 10.3389/fbioe.2020.00247] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Osteochondral damage from trauma or osteoarthritis is a general joint disease that can lead to an increased social and economic burden in the modern society. The inefficiency of osteochondral defects is mainly due to the absence of suitable tissue-engineered substrates promoting tissue regeneration and replacing damaged areas. The hydrogels are becoming a promising kind of biomaterials for tissue regeneration. The biomimetic hydrogel microenvironment can be tightly controlled by modulating a number of biophysical and biochemical properties, including matrix mechanics, degradation, microstructure, cell adhesion, and intercellular interactions. In particular, advances in stem cell-laden hydrogels have offered new ideas for the cell therapy and osteochondral repair. Herein, the aim of this review is to underpin the importance of stem cell-laden hydrogels on promoting the development of osteochondral regeneration, especially in the field of manipulation of biomimetic microenvironment and utilization growth factors with various delivery methods.
Collapse
Affiliation(s)
- Bingbing Xu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Jing Ye
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Fu-Zhen Yuan
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Ji-Ying Zhang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - You-Rong Chen
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Bao-Shi Fan
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Dong Jiang
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| | - Wen-Bo Jiang
- Clinical Translational R&D Center of 3D Printing Technology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Kuo Yu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
16
|
Hosseini V, Maroufi NF, Saghati S, Asadi N, Darabi M, Ahmad SNS, Hosseinkhani H, Rahbarghazi R. Current progress in hepatic tissue regeneration by tissue engineering. J Transl Med 2019; 17:383. [PMID: 31752920 PMCID: PMC6873477 DOI: 10.1186/s12967-019-02137-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Liver, as a vital organ, is responsible for a wide range of biological functions to maintain homeostasis and any type of damages to hepatic tissue contributes to disease progression and death. Viral infection, trauma, carcinoma, alcohol misuse and inborn errors of metabolism are common causes of liver diseases are a severe known reason for leading to end-stage liver disease or liver failure. In either way, liver transplantation is the only treatment option which is, however, hampered by the increasing scarcity of organ donor. Over the past years, considerable efforts have been directed toward liver regeneration aiming at developing new approaches and methodologies to enhance the transplantation process. These approaches include producing decellularized scaffolds from the liver organ, 3D bio-printing system, and nano-based 3D scaffolds to simulate the native liver microenvironment. The application of small molecules and micro-RNAs and genetic manipulation in favor of hepatic differentiation of distinct stem cells could also be exploited. All of these strategies will help to facilitate the application of stem cells in human medicine. This article reviews the most recent strategies to generate a high amount of mature hepatocyte-like cells and updates current knowledge on liver regenerative medicine.
Collapse
Affiliation(s)
- Vahid Hosseini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Nazari Soltan Ahmad
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Sahoo A, Kumar NK, Suryanarayanan R. Crosslinking: An avenue to develop stable amorphous solid dispersion with high drug loading and tailored physical stability. J Control Release 2019; 311-312:212-224. [DOI: 10.1016/j.jconrel.2019.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022]
|
18
|
Stapleton LM, Steele AN, Wang H, Lopez Hernandez H, Yu AC, Paulsen MJ, Smith AAA, Roth GA, Thakore AD, Lucian HJ, Totherow KP, Baker SW, Tada Y, Farry JM, Eskandari A, Hironaka CE, Jaatinen KJ, Williams KM, Bergamasco H, Marschel C, Chadwick B, Grady F, Ma M, Appel EA, Woo YJ. Use of a supramolecular polymeric hydrogel as an effective post-operative pericardial adhesion barrier. Nat Biomed Eng 2019; 3:611-620. [DOI: 10.1038/s41551-019-0442-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/08/2019] [Indexed: 01/24/2023]
|
19
|
Burke G, Barron V, Geever T, Geever L, Devine DM, Higginbotham CL. Evaluation of the materials properties, stability and cell response of a range of PEGDMA hydrogels for tissue engineering applications. J Mech Behav Biomed Mater 2019; 99:1-10. [PMID: 31319331 DOI: 10.1016/j.jmbbm.2019.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 05/16/2019] [Accepted: 07/06/2019] [Indexed: 01/12/2023]
Abstract
The main aim of this study was to examine the stability of a range of polyethyleneglycol dimethacrylate (PEGDMA) hydrogels over a 28-day period in simulated physiological solution. Upon optimisation of the ultraviolet (UV) curing conditions, the PEGDMA hydrogels were prepared using four different monomer concentrations (25, 50, 75 and 100 wt% PEGDMA) in water and cross-linked by photopolymerisation. Initial results revealed a correlation between monomer concentration and swelling behaviour, where a decrease in swelling was observed with increase in monomer content. On storage in physiological solutions at 37 °C, a decrease in the weight remaining of the hydrogels and the pH of the solutions was observed over a 28-day period. Using scanning electron microscopy, the surface topography of the hydrogels appeared to get smoother and in parallel changes in hydrophilicty were observed, with the biggest changes observed for the higher monomer concentrations where water contact angle values were seen to increase toward 90°. However, the mechanical properties remained relatively unaffected and there was no adverse effect on cell metabolic activity observed for cells grown in the presence of PEGDMA samples or using elution methods. Looking at the combination of mechanical chemical and thermal properties shown these results are an important finding for scaffolds intended for tissue engineering applications, where provision of mechanical support without the elicitation of an inflammatory response due to polymer degradation products is crucial for successful integration and neotissue formation during the first 28 days post implantation.
Collapse
Affiliation(s)
- Gavin Burke
- Materials Research Institute, Athlone Institute of Technology, Dublin Road, Co. Westmeath, Ireland
| | - Valerie Barron
- Materials Research Institute, Athlone Institute of Technology, Dublin Road, Co. Westmeath, Ireland
| | - Tess Geever
- Materials Research Institute, Athlone Institute of Technology, Dublin Road, Co. Westmeath, Ireland
| | - Luke Geever
- Materials Research Institute, Athlone Institute of Technology, Dublin Road, Co. Westmeath, Ireland
| | - Declan M Devine
- Materials Research Institute, Athlone Institute of Technology, Dublin Road, Co. Westmeath, Ireland.
| | - Clement L Higginbotham
- Materials Research Institute, Athlone Institute of Technology, Dublin Road, Co. Westmeath, Ireland.
| |
Collapse
|
20
|
Kolewe KW, Kalasin S, Shave M, Schiffman JD, Santore MM. Mechanical Properties and Concentrations of Poly(ethylene glycol) in Hydrogels and Brushes Direct the Surface Transport of Staphylococcus aureus. ACS APPLIED MATERIALS & INTERFACES 2019; 11:320-330. [PMID: 30595023 PMCID: PMC6771038 DOI: 10.1021/acsami.8b18302] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Surface-associated transport of flowing bacteria, including cell rolling, is a mechanism for otherwise immobile bacteria to migrate on surfaces and could be associated with biofilm formation or the spread of infection. This work demonstrates how the moduli and/or local polymer concentration play critical roles in sustaining contact, dynamic adhesion, and transport of bacterial cells along a hydrogel or hydrated brush surface. In particular, stiffer more concentrated hydrogels and brushes maintained the greatest dynamic contact, still allowing cells to travel along the surface in flow. This study addressed how the mechanical properties, molecular architectures, and thicknesses of minimally adhesive poly(ethylene glycol) (PEG)-based coatings influence the flow-driven surface motion of Staphylococcus aureus MS2 cells. Three protein-repellant PEG-dimethylacrylate hydrogel films (∼100 μm thick) and two protein-repellant PEG brushes (8-16 nm thick) were sufficiently fouling-resistant to prevent the accumulation of flowing bacteria. However, the rolling or hopping-like motions of gently flowing S. aureus cells along the surfaces were specific to the particular hydrogel or brush, distinguishing these coatings in terms of their mechanical properties (with moduli from 2 to 1300 kPa) or local PEG concentrations (in the range 10-50% PEG). On the stiffer hydrogel coatings having higher PEG concentrations, S. aureus exhibited long runs of surface rolling, 20-50 μm in length, an increased tendency of cells to repeatedly return to some surfaces after rolling and escaping, and relatively long integrated contact times. By contrast, on the softer more dilute hydrogels, bacteria tended to encounter the surface for brief periods before escaping without return. The dynamic adhesion and motion signatures of the cells on the two brushes were bracketed by those on the soft and stiff hydrogels, demonstrating that PEG coating thickness was not important in these studies where the vertically oriented surfaces minimized the impact of gravitational forces. Control studies with similarly sized poly(ethylene oxide)-coated rigid spherical microparticles, that also did not arrest on the PEG coatings, established that the bacterial skipping and rolling signatures were specific to the S. aureus cells and not simply diffusive. Dynamic adhesion of the S. aureus cells on the PEG hydrogel surfaces correlated well with quiescent 24 h adhesion studies in the literature, despite the orientation of the flow studies that eliminated the influence of gravity on bacteria-coating normal forces.
Collapse
Affiliation(s)
- Kristopher W. Kolewe
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Surachate Kalasin
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Molly Shave
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Jessica D. Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Maria M. Santore
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
21
|
|
22
|
Pérez-Luna VH, González-Reynoso O. Encapsulation of Biological Agents in Hydrogels for Therapeutic Applications. Gels 2018; 4:E61. [PMID: 30674837 PMCID: PMC6209244 DOI: 10.3390/gels4030061] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 01/03/2023] Open
Abstract
Hydrogels are materials specially suited for encapsulation of biological elements. Their large water content provides an environment compatible with most biological molecules. Their crosslinked nature also provides an ideal material for the protection of encapsulated biological elements against degradation and/or immune recognition. This makes them attractive not only for controlled drug delivery of proteins, but they can also be used to encapsulate cells that can have therapeutic applications. Thus, hydrogels can be used to create systems that will deliver required therapies in a controlled manner by either encapsulation of proteins or even cells that produce molecules that will be released from these systems. Here, an overview of hydrogel encapsulation strategies of biological elements ranging from molecules to cells is discussed, with special emphasis on therapeutic applications.
Collapse
Affiliation(s)
- Víctor H Pérez-Luna
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, 10 West 33rd Street, Chicago, IL 60616, USA.
| | - Orfil González-Reynoso
- Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán # 1451, Guadalajara, Jalisco C.P. 44430, Mexico.
| |
Collapse
|
23
|
Bhagat V, Becker ML. Degradable Adhesives for Surgery and Tissue Engineering. Biomacromolecules 2017; 18:3009-3039. [DOI: 10.1021/acs.biomac.7b00969] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Vrushali Bhagat
- Department
of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Matthew L. Becker
- Department
of Polymer Science and ‡Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
24
|
Zhao X, Sun X, Yildirimer L, Lang Q, Lin ZYW, Zheng R, Zhang Y, Cui W, Annabi N, Khademhosseini A. Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomater 2017; 49:66-77. [PMID: 27826004 PMCID: PMC5296408 DOI: 10.1016/j.actbio.2016.11.017] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/21/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022]
Abstract
Development of natural protein-based fibrous scaffolds with tunable physical properties and biocompatibility is highly desirable to construct three-dimensional (3D), fully cellularized scaffolds for wound healing. Herein, we demonstrated a simple and effective technique to construct electrospun 3D fibrous scaffolds for accelerated wound healing using a photocrosslinkable hydrogel based on gelatin methacryloyl (GelMA). We found that the physical properties of the photocrosslinkable hydrogel including water retention, stiffness, strength, elasticity and degradation can be tailored by changing the light exposure time. We further observed that the optimized hydrogel fibrous scaffolds which were soft and elastic could support cell adhesion, proliferation and migration into the whole scaffolds, facilitating regeneration and formation of cutaneous tissues within two weeks. Such tunable characteristics of the fibrous GelMA scaffolds distinguished them from other reported substrates developed for reconstruction of wound defects including glutaraldehyde-crosslinked gelatin or poly (lactic-co-glycolic acid) (PLGA), whose physical and chemical properties were difficult to modify to allow cell infiltration into the 3D scaffolds for tissue regeneration. We anticipate that the ability to become fully cellularized will make the engineered GelMA fibrous scaffolds suitable for widespread applications as skin substitutes or wound dressings. STATEMENT OF SIGNIFICANCE In present study, we generate three-dimensional photocrosslinkable gelatin (GelMA)-based fibrous scaffolds with tunable physical and biological properties by using a combined photocrosslinking/electrospinning approach. The developed GelMA fibrous scaffolds can not only support cell viability and cell adhesion, but also facilitate cell migration and proliferation, accelerating regeneration and formation of cutaneous tissues. In addition, the physical properties of the engineered fibrous GelMA hydrogel including water retention capability, mechanical properties and biodegradability can be tuned to accommodate different patients' needs, making it a promising candidate for skin tissue engineering.
Collapse
Affiliation(s)
- Xin Zhao
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA; School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Shaanxi 710049, China
| | - Xiaoming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University of Medicine, Shanghai 200011, China
| | - Lara Yildirimer
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Qi Lang
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Zhi Yuan William Lin
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Reila Zheng
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Yuguang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiaotong University of Medicine, Shanghai 200011, China
| | - Wenguo Cui
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA; Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou, Jiangsu 215006, China.
| | - Nasim Annabi
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
| |
Collapse
|
25
|
Resmi R, Unnikrishnan S, Krishnan LK, Kalliyana Krishnan V. Synthesis and characterization of silver nanoparticle incorporated gelatin-hydroxypropyl methacrylate hydrogels for wound dressing applications. J Appl Polym Sci 2016. [DOI: 10.1002/app.44529] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Rajalekshmi Resmi
- Dental Products Laboratory; Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology; Trivandrum 695012 Kerala India
| | - Sivan Unnikrishnan
- Thrombosis Research Laboratory; Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology; Trivandrum 695012 Kerala India
| | - Lissy K. Krishnan
- Thrombosis Research Laboratory; Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology; Trivandrum 695012 Kerala India
| | - V. Kalliyana Krishnan
- Dental Products Laboratory; Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology; Trivandrum 695012 Kerala India
| |
Collapse
|
26
|
Fakhari A, Anand Subramony J. Engineered in-situ depot-forming hydrogels for intratumoral drug delivery. J Control Release 2015; 220:465-475. [PMID: 26585504 DOI: 10.1016/j.jconrel.2015.11.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 01/17/2023]
Abstract
Chemotherapy is the traditional treatment for intermediate and late stage cancers. The search for treatment options with minimal side effects has been ongoing for several years. Drug delivery technologies that result in minimal or no side effects with improved ease of use for the patients are receiving increased attention. Polymer drug conjugates and nanoparticles can potentially offset the volume of drug distribution while enhancing the accumulation of the active drug in tumors thereby reducing side effects. Additionally, development of localized drug delivery platforms is being investigated as another key approach to target tumors with minimal or no toxicity. Development of in-situ depot-forming gel systems for intratumoral delivery of immuno-oncology actives can enhance drug bioavailability to the tumor site and reduce systemic toxicity. This field of drug delivery is critical to develop given the advent of immunotherapy and the availability of novel biological molecules for treating solid tumors. This article reviews the advances in the field of engineered in-situ gelling platforms as a practical tool for local delivery of active oncolytic agents to tumor sites.
Collapse
Affiliation(s)
- Amir Fakhari
- Drug Delivery and Device Development, Medimmune LLC, United States
| | | |
Collapse
|
27
|
Sakai S, Ueda K, Taya M. Peritoneal adhesion prevention by a biodegradable hyaluronic acid-based hydrogel formed in situ through a cascade enzyme reaction initiated by contact with body fluid on tissue surfaces. Acta Biomater 2015; 24:152-8. [PMID: 26102338 DOI: 10.1016/j.actbio.2015.06.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/13/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
Postsurgical peritoneal adhesion is a serious surgical complication. In situ hydrogel formation on the surface of tissues, which will develop adhesions, is a recent feasible approach to prevent peritoneal adhesion. Here, we report on-tissue surface formation of a hyaluronic acid-based hydrogel by administration of a pre-hydrogel aqueous solution. The hydrogelation was initiated by contact with body fluid containing glucose on tissue surfaces. During the hydrogelation, a hyaluronic acid derivative possessing phenolic hydroxyl moieties (HA-Ph) was cross-linked by a cascade reaction of glucose oxidase (GOx) and horseradish peroxidase (HRP). About 5s of hydrogelation was accomplished using a solution containing 1.5% (w/v) HA-Ph, 5U/mL HRP, and 2.5U/mL GOx in 1mg/mL glucose that is equivalent to the normal blood glucose concentration. The hydrogel was degradable by hyaluronidase and much softer than rat peritoneal sidewalls. We confirmed the efficiency of the hydrogel to prevent post-operative peritoneal adhesions by applying the solution containing HA-Ph, GOx, and HRP to animals with bowel abrasion-abdominal sidewall defects. A significant reduction in the development of peritoneal adhesions was found compared with animals applied with phosphate-buffered saline or saline containing HA-Ph alone. STATEMENT OF SIGNIFICANCE Postsurgical peritoneal adhesion is a serious surgical complication. In this paper, we report a novel system for preventing it through an on-tissue surface formation of a biodegradable and biocompatible hyaluronic acid-based hydrogel by administration of a pre-hydrogel aqueous solution. The in situ hydrogelation is mediated by a cascade enzyme reaction of glucose oxidase (GOx) and horseradish peroxidase (HRP) initiated by contacting with body fluid containing glucose. The efficiency of the system was confirmed by applying the system to animals with bowel abrasion-abdominal sidewall defects.
Collapse
|
28
|
Regulation of tissue ingrowth into proteolytically degradable hydrogels. Acta Biomater 2015; 24:44-52. [PMID: 26079677 DOI: 10.1016/j.actbio.2015.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/23/2015] [Accepted: 06/08/2015] [Indexed: 12/28/2022]
Abstract
Regulation of the rate of cell ingrowth into and within a matrix is desirable for efficient tissue regeneration. Polyethylene glycol hydrogels crosslinked with matrix metalloproteinase (MMP) susceptible peptide sequences permit cell-controlled invasion. In this study, hydrogels of the same stiffness polymerised using different ratios of a readily degradable MMP peptide sequence (PAN-MMP) and a MMP peptide with a limited degradation capacity (MMP-9) were assessed both in vitro and in vivo for cellular invasion. The degree of invasion into the various hydrogels was found to be tightly linked to the relative proportion of each peptide both in vitro and in vivo. Furthermore a good correlation between in vitro and in vivo ingrowth was observed. These findings demonstrate a highly tunable model for regulating cellular invasion which is readily translatable to in vivo models. This finding may allow for further optimisation of aspects of regenerative scaffolds such as tissue invasion, growth factor release and cellular encapsulation. STATEMENT OF SIGNIFICANCE Degradable hydrogels are used in a wide range of tissue regeneration approaches. A particularly advantageous variant of these hydrogels is where due to peptide based crosslinking of the polymeric hydrogels, cell invasion rate is dependent on cellular enzymatic activity. This present study demonstrates a further refinement whereby both cellular and tissue invasion rates are finely regulated through the polymerisation of a hydrogel with varying combinations of enzymatically degradable peptides. Importantly this allows for invasion rates to be controlled without altering the biomechanical properties of the hydrogel such as stiffness. The latter can further influence cellular behaviour thus potentially interfering with the desired outcome.
Collapse
|
29
|
|
30
|
Park EJ, Gevrek TN, Sanyal R, Sanyal A. Indispensable Platforms for Bioimmobilization: Maleimide-Based Thiol Reactive Hydrogels. Bioconjug Chem 2014; 25:2004-11. [DOI: 10.1021/bc500375r] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Eun Ju Park
- Department
of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| | - Tugce Nihal Gevrek
- Department
of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| | - Rana Sanyal
- Department
of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| | - Amitav Sanyal
- Department
of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| |
Collapse
|
31
|
Hoare T, Yeo Y, Bellas E, Bruggeman JP, Kohane DS. Prevention of peritoneal adhesions using polymeric rheological blends. Acta Biomater 2014; 10:1187-93. [PMID: 24365709 DOI: 10.1016/j.actbio.2013.12.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/25/2013] [Accepted: 12/13/2013] [Indexed: 10/25/2022]
Abstract
The effectiveness of rheological blends of high molecular weight hyaluronic acid (HA) and low molecular weight hydroxypropyl methylcellulose (HPMC) in the prevention of peritoneal adhesions post-surgery is demonstrated. The physical mixture of the two carbohydrates increased the dwell time in the peritoneum while significantly improving the injectability of the polymer compared with HA alone. HA-HPMC treatment decreased the total adhesion area by ∼ 70% relative to a saline control or no treatment in a repeated cecal injury model in the rabbit. No significant cytotoxicity and minimal inflammation were associated with the blend. Furthermore, no chemical or physical processing was required prior to their use beyond simple mixing.
Collapse
|
32
|
Holowka EP, Bhatia SK. Hydrogel Materials. Drug Deliv 2014. [DOI: 10.1007/978-1-4939-1998-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
33
|
El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob Cardiol Sci Pract 2013; 2013:316-42. [PMID: 24689032 PMCID: PMC3963751 DOI: 10.5339/gcsp.2013.38] [Citation(s) in RCA: 413] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/11/2013] [Indexed: 12/18/2022] Open
Abstract
Designing of biologically active scaffolds with optimal characteristics is one of the key factors for successful tissue engineering. Recently, hydrogels have received a considerable interest as leading candidates for engineered tissue scaffolds due to their unique compositional and structural similarities to the natural extracellular matrix, in addition to their desirable framework for cellular proliferation and survival. More recently, the ability to control the shape, porosity, surface morphology, and size of hydrogel scaffolds has created new opportunities to overcome various challenges in tissue engineering such as vascularization, tissue architecture and simultaneous seeding of multiple cells. This review provides an overview of the different types of hydrogels, the approaches that can be used to fabricate hydrogel matrices with specific features and the recent applications of hydrogels in tissue engineering. Special attention was given to the various design considerations for an efficient hydrogel scaffold in tissue engineering. Also, the challenges associated with the use of hydrogel scaffolds were described.
Collapse
Affiliation(s)
- Ibrahim M El-Sherbiny
- Center for Materials Science, University of Science and Technology, Zewail City of Science and Technology, 6th October City, 12588 Giza, Egypt
| | - Magdi H Yacoub
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
34
|
Van Hove AH, Wilson BD, Benoit DSW. Microwave-assisted functionalization of poly(ethylene glycol) and on-resin peptides for use in chain polymerizations and hydrogel formation. J Vis Exp 2013:e50890. [PMID: 24193366 PMCID: PMC3968890 DOI: 10.3791/50890] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
One of the main benefits to using poly(ethylene glycol) (PEG) macromers in hydrogel formation is synthetic versatility. The ability to draw from a large variety of PEG molecular weights and configurations (arm number, arm length, and branching pattern) affords researchers tight control over resulting hydrogel structures and properties, including Young’s modulus and mesh size. This video will illustrate a rapid, efficient, solvent-free, microwave-assisted method to methacrylate PEG precursors into poly(ethylene glycol) dimethacrylate (PEGDM). This synthetic method provides much-needed starting materials for applications in drug delivery and regenerative medicine. The demonstrated method is superior to traditional methacrylation methods as it is significantly faster and simpler, as well as more economical and environmentally friendly, using smaller amounts of reagents and solvents. We will also demonstrate an adaptation of this technique for on-resin methacrylamide functionalization of peptides. This on-resin method allows the N-terminus of peptides to be functionalized with methacrylamide groups prior to deprotection and cleavage from resin. This allows for selective addition of methacrylamide groups to the N-termini of the peptides while amino acids with reactive side groups (e.g. primary amine of lysine, primary alcohol of serine, secondary alcohols of threonine, and phenol of tyrosine) remain protected, preventing functionalization at multiple sites. This article will detail common analytical methods (proton Nuclear Magnetic Resonance spectroscopy (;H-NMR) and Matrix Assisted Laser Desorption Ionization Time of Flight mass spectrometry (MALDI-ToF)) to assess the efficiency of the functionalizations. Common pitfalls and suggested troubleshooting methods will be addressed, as will modifications of the technique which can be used to further tune macromer functionality and resulting hydrogel physical and chemical properties. Use of synthesized products for the formation of hydrogels for drug delivery and cell-material interaction studies will be demonstrated, with particular attention paid to modifying hydrogel composition to affect mesh size, controlling hydrogel stiffness and drug release.
Collapse
Affiliation(s)
- Amy H Van Hove
- Department of Biomedical Engineering, University of Rochester
| | | | | |
Collapse
|
35
|
Yao X, Peng R, Ding J. Cell-material interactions revealed via material techniques of surface patterning. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:5257-5286. [PMID: 24038153 DOI: 10.1002/adma.201301762] [Citation(s) in RCA: 369] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/15/2013] [Indexed: 06/02/2023]
Abstract
Cell-material interactions constitute a key fundamental topic in biomaterials study. Various cell cues and matrix cues as well as soluble factors regulate cell behaviors on materials. These factors are coupled with each other as usual, and thus it is very difficult to unambiguously elucidate the role of each regulator. The recently developed material techniques of surface patterning afford unique ways to reveal the underlying science. This paper reviews the pertinent material techniques to fabricate patterns of microscale and nanoscale resolutions, and corresponding cell studies. Some issues are emphasized, such as cell localization on patterned surfaces of chemical contrast, and effects of cell shape, cell size, cell-cell contact, and seeding density on differentiation of stem cells. Material cues to regulate cell adhesion, cell differentiation and other cell events are further summed up. Effects of some physical properties, such as surface topography and matrix stiffness, on cell behaviors are also discussed; nanoscaled features of substrate surfaces to regulate cell fate are summarized as well. The pertinent work sheds new insight into the cell-material interactions, and is stimulating for biomaterial design in regenerative medicine, tissue engineering, and high-throughput detection, diagnosis, and drug screening.
Collapse
Affiliation(s)
- Xiang Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, 200433, Shanghai, China
| | | | | |
Collapse
|
36
|
Minhas MU, Ahmad M, Ali L, Sohail M. Synthesis of chemically cross-linked polyvinyl alcohol-co-poly (methacrylic acid) hydrogels by copolymerization; a potential graft-polymeric carrier for oral delivery of 5-fluorouracil. ACTA ACUST UNITED AC 2013; 21:44. [PMID: 23721569 PMCID: PMC3704659 DOI: 10.1186/2008-2231-21-44] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/28/2013] [Indexed: 11/16/2022]
Abstract
Background of the Study The propose of the present work was to develop chemically cross-linked polyvinyl alcohol-co-poly(methacrylic acid) hydrogel (PVA-MAA hydrogel) for pH responsive delivery of 5-Fluorouracil (5-FU). Methods PVA based hydrogels were prepared by free radical copolymerization. PVA has been cross-linked chemically with monomer (methacrylic acid) in aqueous medium, cross-linking agent was ethylene glycol di-methacrylate (EGDMA) and benzoyl peroxide was added as reaction initiator. 5-FU was loaded as model drug. FTIR, XRD, TGA and DSC were performed for characterization of copolymer. Surface morphology was studied by SEM. pH sensitive properties were evaluated by swelling dynamics and equilibrium swelling ratio at low and higher pH. Results FTIR, XRD, TGA and DSC studies confirmed the formation of new copolymer. Formulations with higher MAA contents showed maximum swelling at 7.4 pH. High drug loading and higher drug release has been observed at pH 7.4. Conclusions The current study concludes that a stable copolymeric network of PVA was developed with MAA. The prepared hydrogels were highly pH responsive. This polymeric network could be a potential delivery system for colon targeting of 5-FU in colorectal cancers.
Collapse
Affiliation(s)
- Muhammad Usman Minhas
- Faculty of Pharmacy and Alternative Medicine, the Islamia University of Bahawalpur-63100, Punjab, Pakistan.
| | | | | | | |
Collapse
|
37
|
Silk constructs for delivery of musculoskeletal therapeutics. Adv Drug Deliv Rev 2012; 64:1111-22. [PMID: 22522139 DOI: 10.1016/j.addr.2012.03.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 02/28/2012] [Accepted: 03/05/2012] [Indexed: 12/13/2022]
Abstract
Silk fibroin (SF) is a biopolymer with distinguishing features from many other bio- as well as synthetic polymers. From a biomechanical and drug delivery perspective, SF combines remarkable versatility for scaffolding (solid implants, hydrogels, threads, solutions), with advanced mechanical properties and good stabilization and controlled delivery of entrapped protein and small molecule drugs, respectively. It is this combination of mechanical and pharmaceutical features which renders SF so exciting for biomedical applications. This pattern along with the versatility of this biopolymer has been translated into progress for musculoskeletal applications. We review the use and potential of silk fibroin for systemic and localized delivery of therapeutics in diseases affecting the musculoskeletal system. We also present future directions for this biopolymer as well as the necessary research and development steps for their achievement.
Collapse
|
38
|
Gong C, Yang B, Qian Z, Zhao X, Wu Q, Qi X, Wang Y, Guo G, Kan B, Luo F, Wei Y. Improving intraperitoneal chemotherapeutic effect and preventing postsurgical adhesions simultaneously with biodegradable micelles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:963-73. [DOI: 10.1016/j.nano.2011.10.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 08/25/2011] [Accepted: 10/25/2011] [Indexed: 12/13/2022]
|
39
|
Kempe S, Mäder K. In situ forming implants — an attractive formulation principle for parenteral depot formulations. J Control Release 2012; 161:668-79. [DOI: 10.1016/j.jconrel.2012.04.016] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/04/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
|
40
|
Bottino MC, Thomas V, Schmidt G, Vohra YK, Chu TMG, Kowolik MJ, Janowski GM. Recent advances in the development of GTR/GBR membranes for periodontal regeneration—A materials perspective. Dent Mater 2012; 28:703-21. [DOI: 10.1016/j.dental.2012.04.022] [Citation(s) in RCA: 368] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/21/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
|
41
|
Zhang Z, Ni J, Chen L, Yu L, Xu J, Ding J. Encapsulation of cell-adhesive RGD peptides into a polymeric physical hydrogel to prevent postoperative tissue adhesion. J Biomed Mater Res B Appl Biomater 2012; 100:1599-609. [DOI: 10.1002/jbm.b.32728] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 03/06/2012] [Accepted: 04/04/2012] [Indexed: 01/22/2023]
|
42
|
Loh XJ. The effect of pH on the hydrolytic degradation of poly(ε-caprolactone)-block-poly(ethylene glycol) copolymers. J Appl Polym Sci 2012. [DOI: 10.1002/app.37712] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
RAMSHAW JOHNAM, VAUGHAN PAULR, WERKMEISTER JEROMEA. APPLICATIONS OF COLLAGEN IN MEDICAL DEVICES. BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS 2012. [DOI: 10.4015/s1016237201000042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Collagen is the most abundant natural protein found in living systems. While there is a whole family of different collagen types, each differing in sequence, the properties that make this protein so attractive as the building blocks for medical devices, are reflected largely by the unique fibrillar structure of the molecule, as well as defined functional regions that interact with the surrounding cells and other matrix components. As a commercial medical product, collagen can be part of the natural tissue used in the device, or it can be fabricated as a reconstituted product from animal or recombinant sources. Both types of uses have distinct properties that convey advantages and disadvantages to the end product. This review examines the chemistry and biology of collagen and describes some well-documented examples of collagen-based medical devices produced in one or other of these formats.
Collapse
|
44
|
Bernard AB, Lin CC, Anseth KS. A microwell cell culture platform for the aggregation of pancreatic β-cells. Tissue Eng Part C Methods 2012; 18:583-92. [PMID: 22320435 DOI: 10.1089/ten.tec.2011.0504] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cell-cell contact between pancreatic β-cells is important for maintaining survival and normal insulin secretion. Various techniques have been developed to promote cell-cell contact between β-cells, but a simple yet robust method that affords precise control over three-dimensional (3D) β-cell cluster size has not been demonstrated. To address this need, we developed a poly(ethylene glycol) (PEG) hydrogel microwell platform using photolithography. This microwell cell-culture platform promotes the formation of 3D β-cell aggregates of defined sizes from 25 to 210 μm in diameter. Using this platform, mouse insulinoma 6 (MIN6) β-cells formed aggregates with cell-cell adherin junctions. These naturally formed cell aggregates with controllable sizes can be removed from the microwells for macroencapsulation, implantation, or other biological assays. When removed and subsequently encapsulated in PEG hydrogels, the aggregated cell clusters demonstrated improved cellular viability (>90%) over 7 days in culture, while the β-cells encapsulated as single cells maintained only 20% viability. Aggregated MIN6 cells also exhibited more than fourfold higher insulin secretion in response to a glucose challenge compared with encapsulated single β-cells. Further, the cell aggregates stained positively for E-cadherin, indicative of the formation of cell junctions. Using this hydrogel microwell cell-culture method, viable and functional β-cell aggregates of specific sizes were created, providing a platform from which other biologically relevant questions may be answered.
Collapse
Affiliation(s)
- Abigail B Bernard
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
| | | | | |
Collapse
|
45
|
Affiliation(s)
- Tina Vermonden
- Department of Pharmaceutics, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands.
| | | | | |
Collapse
|
46
|
Yang B, Gong C, Zhao X, Zhou S, Li Z, Qi X, Zhong Q, Luo F, Qian Z. Preventing postoperative abdominal adhesions in a rat model with PEG-PCL-PEG hydrogel. Int J Nanomedicine 2012; 7:547-57. [PMID: 22346350 PMCID: PMC3277435 DOI: 10.2147/ijn.s26141] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Poly (ethylene glycol)-poly (ɛ-caprolactone)-poly (ethylene glycol) (PEG-PCL-PEG, PECE) hydrogel has been demonstrated to be biocompatible and thermosensitive. In this study, its potential efficacy and mechanisms of preventing postsurgical abdominal adhesions were investigated. Results PECE hydrogel was transformed into gel state from sol state in less than 20 seconds at 37°C. None of the animals treated with the hydrogel (n = 15) developed adhesions. In contrast, all untreated animals (n = 15) had adhesions that could only be separated by sharp dissection (P < 0.001). The hydrogel adhered to the peritoneal wounds, gradually disappeared from the wounds within 7 days, and transformed into viscous fluid, being completely absorbed within 12 days. The parietal and visceral peritoneum were remesothelialized in about 5 and 9 days, respectively. The hydrogel prevented the formation of fibrinous adhesion and the invasion of fibroblasts. Also, along with the hydrogel degradation, a temporary inflammatory cell barrier was formed which could effectively delay the invasion of fibroblasts during the critical period of mesothelial regeneration. Conclusion The results suggested that PECE hydrogel could effectively prevent postsurgical intra-abdominal adhesions, which possibly result from the prevention of the fibrinous adhesion formation and the fibroblast invasion, the promotion of the remesothelialization, and the hydroflotation effect.
Collapse
Affiliation(s)
- Bing Yang
- State Key Laboratory of Biotherapy, West China University Hospital, Sichuan University, Chengdu, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Pierce BF, Tronci G, Rößle M, Neffe AT, Jung F, Lendlein A. Photocrosslinked Co-Networks from Glycidylmethacrylated Gelatin and Poly(ethylene glycol) Methacrylates. Macromol Biosci 2011; 12:484-93. [DOI: 10.1002/mabi.201100232] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/20/2011] [Indexed: 12/12/2022]
|
48
|
Peng R, Yao X, Ding J. Effect of cell anisotropy on differentiation of stem cells on micropatterned surfaces through the controlled single cell adhesion. Biomaterials 2011; 32:8048-57. [DOI: 10.1016/j.biomaterials.2011.07.035] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/11/2011] [Indexed: 10/17/2022]
|
49
|
Hydrogel-electrospun fiber composite materials for hydrophilic protein release. J Control Release 2011; 158:165-70. [PMID: 22001869 DOI: 10.1016/j.jconrel.2011.09.094] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/15/2011] [Accepted: 09/27/2011] [Indexed: 11/23/2022]
Abstract
Although hydrogels are widely used in controlled-release systems, obtaining extended, uniform drug release with little initial burst has been challenging. However, recently researchers have shown that combining hydrogels with another drug delivery material can dramatically improve release kinetics. Here we describe a novel hydrogel-based composite material that exhibits stable, near-linear, sustained release of a model hydrophilic protein (e.g., bovine albumin serum, BSA) for over two months with a significant reduction in initial burst release (7% vs. 20%). The composite is comprised of poly(ε-caprolactone) (PCL) electrospun fiber mats coupled with poly(ethylene glycol)-poly(ε-caprolactone) diacrylate (PEGPCL) hydrogels through photo-polymerization. It is believed that the additional diffusion barrier provided by hydrophobic electrospun fiber mats reduces hydrogel swelling and water penetration rates and increases the diffusion path length, resulting in delayed, more uniform drug release. Further, released proteins remain bioactive as demonstrated by PC12 cell neurite extension in response to released nerve growth factor (NGF). The use of electrospun fiber mats to modulate hydrogel drug release provides a new method to control release kinetics of hydrophilic proteins, reducing burst release and extending the release duration.
Collapse
|
50
|
Madan M, Bajaj A, Lewis S, Udupa N, Baig JA. In situ forming polymeric drug delivery systems. Indian J Pharm Sci 2011; 71:242-51. [PMID: 20490289 PMCID: PMC2865781 DOI: 10.4103/0250-474x.56015] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 04/01/2009] [Accepted: 05/10/2009] [Indexed: 11/27/2022] Open
Abstract
In situ forming polymeric formulations are drug delivery systems that are in sol form before administration in the body, but once administered, undergo gelation in situ, to form a gel. The formation of gels depends on factors like temperature modulation, pH change, presence of ions and ultra violet irradiation, from which the drug gets released in a sustained and controlled manner. Various polymers that are used for the formulation of in situ gels include gellan gum, alginic acid, xyloglucan, pectin, chitosan, poly(DL-lactic acid), poly(DL-lactide-co-glycolide) and poly-caprolactone. The choice of solvents like water, dimethylsulphoxide, N-methyl pyrrolidone, triacetin and 2-pyrrolidone for these formulations depends on the solubility of polymer used. Mainly in situ gels are administered by oral, ocular, rectal, vaginal, injectable and intraperitoneal routes. The in situ gel forming polymeric formulations offer several advantages like sustained and prolonged action in comparison to conventional drug delivery systems. The article presents a detailed review of these types of polymeric systems, their evaluation, advancements and their commercial formulations. From a manufacturing point of view, the production of such devices is less complex and thus lowers the investment and manufacturing cost.
Collapse
Affiliation(s)
- M Madan
- C. U. Shah College of Pharmacy, S. N. D.T. Women's University, Mumbai-400 049, India
| | | | | | | | | |
Collapse
|