1
|
van der Putten C, Sahin G, Grant R, D’Urso M, Giselbrecht S, Bouten CVC, Kurniawan NA. Dimensionality Matters: Exploiting UV-Photopatterned 2D and Two-Photon-Printed 2.5D Contact Guidance Cues to Control Corneal Fibroblast Behavior and Collagen Deposition. Bioengineering (Basel) 2024; 11:402. [PMID: 38671823 PMCID: PMC11048187 DOI: 10.3390/bioengineering11040402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
In the event of disease or injury, restoration of the native organization of cells and extracellular matrix is crucial for regaining tissue functionality. In the cornea, a highly organized collagenous tissue, keratocytes can align along the anisotropy of the physical microenvironment, providing a blueprint for guiding the organization of the collagenous matrix. Inspired by this physiological process, anisotropic contact guidance cues have been employed to steer the alignment of keratocytes as a first step to engineer in vitro cornea-like tissues. Despite promising results, two major hurdles must still be overcome to advance the field. First, there is an enormous design space to be explored in optimizing cellular contact guidance in three dimensions. Second, the role of contact guidance cues in directing the long-term deposition and organization of extracellular matrix proteins remains unknown. To address these challenges, here we combined two microengineering strategies-UV-based protein patterning (2D) and two-photon polymerization of topographies (2.5D)-to create a library of anisotropic contact guidance cues with systematically varying height (H, 0 µm ≤ H ≤ 20 µm) and width (W, 5 µm ≤ W ≤ 100 µm). With this unique approach, we found that, in the short term (24 h), the orientation and morphology of primary human fibroblastic keratocytes were critically determined not only by the pattern width, but also by the height of the contact guidance cues. Upon extended 7-day cultures, keratocytes were shown to produce a dense, fibrous collagen network along the direction of the contact guidance cues. Moreover, increasing the heights also increased the aligned fraction of deposited collagen and the contact guidance response of cells, all whilst the cells maintained the fibroblastic keratocyte phenotype. Our study thus reveals the importance of dimensionality of the physical microenvironment in steering both cellular organization and the formation of aligned, collagenous tissues.
Collapse
Affiliation(s)
- Cas van der Putten
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Gozde Sahin
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering cBITE, 6229 ER Maastricht, The Netherlands
| | - Rhiannon Grant
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering cBITE, 6229 ER Maastricht, The Netherlands
| | - Mirko D’Urso
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Stefan Giselbrecht
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering cBITE, 6229 ER Maastricht, The Netherlands
| | - Carlijn V. C. Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Nicholas A. Kurniawan
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
2
|
Thomasy SM, Leonard BC, Greiner MA, Skeie JM, Raghunathan VK. Squishy matters - Corneal mechanobiology in health and disease. Prog Retin Eye Res 2024; 99:101234. [PMID: 38176611 PMCID: PMC11193890 DOI: 10.1016/j.preteyeres.2023.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
The cornea, as a dynamic and responsive tissue, constantly interacts with mechanical forces in order to maintain its structural integrity, barrier function, transparency and refractive power. Cells within the cornea sense and respond to various mechanical forces that fundamentally regulate their morphology and fate in development, homeostasis and pathophysiology. Corneal cells also dynamically regulate their extracellular matrix (ECM) with ensuing cell-ECM crosstalk as the matrix serves as a dynamic signaling reservoir providing biophysical and biochemical cues to corneal cells. Here we provide an overview of mechanotransduction signaling pathways then delve into the recent advances in corneal mechanobiology, focusing on the interplay between mechanical forces and responses of the corneal epithelial, stromal, and endothelial cells. We also identify species-specific differences in corneal biomechanics and mechanotransduction to facilitate identification of optimal animal models to study corneal wound healing, disease, and novel therapeutic interventions. Finally, we identify key knowledge gaps and therapeutic opportunities in corneal mechanobiology that are pressing for the research community to address especially pertinent within the domains of limbal stem cell deficiency, keratoconus and Fuchs' endothelial corneal dystrophy. By furthering our understanding corneal mechanobiology, we can contextualize discoveries regarding corneal diseases as well as innovative treatments for them.
Collapse
Affiliation(s)
- Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States; Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Davis, CA, United States; California National Primate Research Center, Davis, CA, United States.
| | - Brian C Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California - Davis, Davis, CA, United States; Department of Ophthalmology & Vision Science, School of Medicine, University of California - Davis, Davis, CA, United States
| | - Mark A Greiner
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Iowa Lions Eye Bank, Coralville, IA, United States
| | - Jessica M Skeie
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, United States; Iowa Lions Eye Bank, Coralville, IA, United States
| | | |
Collapse
|
3
|
Kim C, Robitaille M, Christodoulides J, Ng Y, Raphael M, Kang W. Hs27 fibroblast response to contact guidance cues. Sci Rep 2023; 13:21691. [PMID: 38066191 PMCID: PMC10709656 DOI: 10.1038/s41598-023-48913-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Contact guidance is the phenomena of how cells respond to the topography of their external environment. The morphological and dynamic cell responses are strongly influenced by topographic features such as lateral and vertical dimensions, namely, ridge and groove widths and groove depth ([Formula: see text], respectively). However, experimental studies that independently quantify the effect of the individual dimensions as well as their coupling on cellular function are still limited. In this work, we perform extensive parametric studies in the dimensional space-well beyond the previously studied range in the literature-to explore topographical effects on morphology and migration of Hs27 fibroblasts via static and dynamic analyses of live cell images. Our static analysis reveals that the [Formula: see text] is most significant, followed by the [Formula: see text]. The fibroblasts appear to be more elongated and aligned in the groove direction as the [Formula: see text] increases, but their trend changes after 725 nm. Interestingly, the cell shape and alignment show a very strong correlation regardless of [Formula: see text]. Our dynamic analysis confirms that directional cell migration is also strongly influenced by the [Formula: see text], while the effect of the [Formula: see text] and [Formula: see text] is statistically insignificant. Directional cell migration, as observed in the static cell behavior, shows the statistically significant transition when the [Formula: see text] is 725 nm, showing the intimate links between cell morphology and migration. We propose possible scenarios to offer mechanistic explanations of the observed cell behavior.
Collapse
Affiliation(s)
- C Kim
- Mechanical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - M Robitaille
- US Naval Research Laboratory, Washington, DC, 20375, USA
| | | | - Y Ng
- Mechanical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - M Raphael
- US Naval Research Laboratory, Washington, DC, 20375, USA
| | - W Kang
- Mechanical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85281, USA.
| |
Collapse
|
4
|
Chen J, Chen X, Ma Y, Liu Y, Li J, Peng K, Dai Y, Chen X. Effect of Anisotropic Structural Depth on Orientation and Differentiation Behavior of Skeletal Muscle Cells. ACS OMEGA 2023; 8:41374-41382. [PMID: 37969971 PMCID: PMC10634202 DOI: 10.1021/acsomega.3c04981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/03/2023] [Indexed: 11/17/2023]
Abstract
Extensive research has been conducted to examine how substrate topological factors are involved in modulating the cell behavior. Among numerous topological factors, the vital influence of the touchable depth of substrates on cell behaviors has already been extensively characterized, but the response of cells to the topological structure at untouchable depth is still elusive. Herein, the influences of substrate depth on myoblast behaviors are systematically investigated using substrates with depths ranging from touchable depth (microgrooved) to untouchable depth (microbridges). The results show that an increase in microgroove depth is accompanied by an inhibited cell spreading, an enhanced elongation, and a more obvious orientation along microgrooves. Interestingly, myoblasts located on microbridges show a more pronounced elongation with increasing culture time but a position-dependent orientation. Myoblasts on the center and parallel boundary of microbridges orient along the bridges, while myoblasts on the vertical boundary align perpendicular to the microbridges. Moreover, the differentiation results of the myoblasts indicate that the differentiated myotubes can maintain this position-dependent orientation. The simulation of the stress field in cell monolayers suggests that the position-dependent orientation is caused by the comprehensive response of myoblasts to the substrate discontinuity and substrate depth. These findings provide valuable insights into the mechanism of cell depth sensing and could inform the design of tissue engineering scaffolds for skeletal muscle and biohybrid actuation.
Collapse
Affiliation(s)
- Jianfeng Chen
- School
of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Xuefei Chen
- School
of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Yihao Ma
- School
of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Yiran Liu
- School
of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Jin Li
- School
of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Kai Peng
- School
of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Yichuan Dai
- School
of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Xiaoxiao Chen
- School
of Advanced Manufacturing, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| |
Collapse
|
5
|
Bril M, Saberi A, Jorba I, van Turnhout MC, Sahlgren CM, Bouten CV, Schenning AP, Kurniawan NA. Shape-Morphing Photoresponsive Hydrogels Reveal Dynamic Topographical Conditioning of Fibroblasts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303136. [PMID: 37740666 PMCID: PMC10625123 DOI: 10.1002/advs.202303136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/22/2023] [Indexed: 09/25/2023]
Abstract
The extracellular environment defines a physical boundary condition with which cells interact. However, to date, cell response to geometrical environmental cues is largely studied in static settings, which fails to capture the spatiotemporally varying cues cells receive in native tissues. Here, a photoresponsive spiropyran-based hydrogel is presented as a dynamic, cell-compatible, and reconfigurable substrate. Local stimulation with blue light (455 nm) alters hydrogel swelling, resulting in on-demand reversible micrometer-scale changes in surface topography within 15 min, allowing investigation into cell response to controlled geometry actuations. At short term (1 h after actuation), fibroblasts respond to multiple rounds of recurring topographical changes by reorganizing their nucleus and focal adhesions (FA). FAs form primarily at the dynamic regions of the hydrogel; however, this propensity is abolished when the topography is reconfigured from grooves to pits, demonstrating that topographical changes dynamically condition fibroblasts. Further, this dynamic conditioning is found to be associated with long-term (72 h) maintenance of focal adhesions and epigenetic modifications. Overall, this study offers a new approach to dissect the dynamic interplay between cells and their microenvironment and shines a new light on the cell's ability to adapt to topographical changes through FA-based mechanotransduction.
Collapse
Affiliation(s)
- Maaike Bril
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Aref Saberi
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Ignasi Jorba
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Mark C. van Turnhout
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Cecilia M. Sahlgren
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Faculty of Science and EngineeringÅbo Akademi UniversityTurkuFI‐20520Finland
| | - Carlijn V.C. Bouten
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Albert P.H.J. Schenning
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Department of Chemical Engineering & ChemistryEindhoven University of TechnologyEindhoven5612 AEThe Netherlands
| | - Nicholas A. Kurniawan
- Department of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| |
Collapse
|
6
|
Moore BA, Jalilian I, Kim S, Mizutani M, Mukai M, Chang C, Entringer AM, Dhamodaran K, Raghunathan VK, Teixeira LBC, Murphy CJ, Thomasy SM. Collagen crosslinking impacts stromal wound healing and haze formation in a rabbit phototherapeutic keratectomy model. Mol Vis 2023; 29:102-116. [PMID: 37859806 PMCID: PMC10584030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/14/2023] [Indexed: 10/21/2023] Open
Abstract
Purpose The purpose of this study was to evaluate the elastic modulus, keratocyte-fibroblast-myocyte transformation, and haze formation of the corneal stroma following combined phototherapeutic keratectomy (PTK) and epithelium-off UV-A/riboflavin corneal collagen crosslinking (CXL) using an in vivo rabbit model. Methods Rabbits underwent PTK and CXL, PTK only, or CXL 35 days before PTK. Rebound tonometry, Fourier-domain optical coherence tomography, and ultrasound pachymetry were performed on days 7, 14, 21, 42, 70, and 90 post-operatively. Atomic force microscopy, histologic inflammation, and immunohistochemistry for α-smooth muscle actin (α-SMA) were assessed post-mortem. Results Stromal haze formation following simultaneous PTK and CXL was significantly greater than in corneas that received PTK only and persisted for more than 90 days. No significant difference in stromal haze was noted between groups receiving simultaneous CXL and PTK and those receiving CXL before PTK. Stromal inflammation did not differ between groups at any time point, although the intensity of α-SMA over the number of nuclei was significantly greater at day 21 between groups receiving simultaneous CXL and PTK and those receiving CXL before PTK. The elastic modulus was significantly greater in corneas receiving simultaneous CXL and PTK compared with those receiving PTK alone. Conclusions We showed that stromal haze formation and stromal stiffness is significantly increased following CXL, regardless of whether it is performed at or before the time of PTK. Further knowledge of the biophysical cues involved in determining corneal wound healing duration and outcomes will be important for understanding scarring following CXL and for the development of improved therapeutic options.
Collapse
Affiliation(s)
- Bret A. Moore
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL
| | - Iman Jalilian
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Soohyun Kim
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Makiko Mizutani
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Madison Mukai
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Connor Chang
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA
| | - Alec M. Entringer
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX
| | - Kamesh Dhamodaran
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX
| | - Vijay Krishna Raghunathan
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX
| | - Leandro B. C. Teixeira
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI
| | - Christopher J. Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA
- Department of Ophthalmology & Vision Science, School of Medicine, University of California-Davis, Sacramento, CA
| | - Sara M. Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA
- Department of Ophthalmology & Vision Science, School of Medicine, University of California-Davis, Sacramento, CA
| |
Collapse
|
7
|
Yang S, Zhang J, Tan Y, Wang Y. Unraveling the mechanobiology of cornea: From bench side to the clinic. Front Bioeng Biotechnol 2022; 10:953590. [PMID: 36263359 PMCID: PMC9573972 DOI: 10.3389/fbioe.2022.953590] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
The cornea is a transparent, dome-shaped structure on the front part of the eye that serves as a major optic element and a protector from the external environment. Recent evidence shows aberrant alterations of the corneal mechano-environment in development and progression of various corneal diseases. It is, thus, critical to understand how corneal cells sense and respond to mechanical signals in physiological and pathological conditions. In this review, we summarize the corneal mechano-environment and discuss the impact of these mechanical cues on cellular functions from the bench side (in a laboratory research setting). From a clinical perspective, we comprehensively review the mechanical changes of corneal tissue in several cornea-related diseases, including keratoconus, myopia, and keratectasia, following refractive surgery. The findings from the bench side and clinic underscore the involvement of mechanical cues in corneal disorders, which may open a new avenue for development of novel therapeutic strategies by targeting corneal mechanics.
Collapse
Affiliation(s)
- Shu Yang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin, China
- Department of Ophthalmology, The First People’s Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Jing Zhang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin, China
- School of Optometry, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Youhua Tan
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong SAR, China
- *Correspondence: Youhua Tan, ; Yan Wang,
| | - Yan Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
- Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin, China
- *Correspondence: Youhua Tan, ; Yan Wang,
| |
Collapse
|
8
|
Zhang Y, Habibovic P. Delivering Mechanical Stimulation to Cells: State of the Art in Materials and Devices Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110267. [PMID: 35385176 DOI: 10.1002/adma.202110267] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Biochemical signals, such as growth factors, cytokines, and transcription factors are known to play a crucial role in regulating a variety of cellular activities as well as maintaining the normal function of different tissues and organs. If the biochemical signals are assumed to be one side of the coin, the other side comprises biophysical cues. There is growing evidence showing that biophysical signals, and in particular mechanical cues, also play an important role in different stages of human life ranging from morphogenesis during embryonic development to maturation and maintenance of tissue and organ function throughout life. In order to investigate how mechanical signals influence cell and tissue function, tremendous efforts have been devoted to fabricating various materials and devices for delivering mechanical stimuli to cells and tissues. Here, an overview of the current state of the art in the design and development of such materials and devices is provided, with a focus on their design principles, and challenges and perspectives for future research directions are highlighted.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
9
|
Robitaille MC, Christodoulides JA, Calhoun PJ, Byers JM, Raphael MP. Interfacing Live Cells with Surfaces: A Concurrent Control Technique for Quantifying Surface Ligand Activity. ACS APPLIED BIO MATERIALS 2021; 4:7856-7864. [PMID: 35006767 DOI: 10.1021/acsabm.1c00797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surface ligand activity is a key design parameter for successfully interfacing surfaces with cells─whether in the context of in vitro investigations for understanding cellular signaling pathways or more applied applications in drug delivery and medical implants. Unlike other crucial surface parameters, such as stiffness and roughness, surface ligand activity is typically based on a set of assumptions rather than directly measured, giving rise to interpretations of cell adhesion that can vary with the assumptions made. To fill this void, we have developed a concurrent control technique for directly characterizing in vitro ligand surface activity. Pairs of gold-coated glass chips were biofunctionalized with RGD ligand in a parallel workflow: one chip for in vitro applications and the other for surface plasmon resonance (SPR)-based RGD activity characterization. Recombinant αVβ3 integrins were injected over the SPR chip surface as mimics of the cellular-membrane-bound receptors and the resulting binding kinetics parameterized to quantify surface ligand activity. These activity measurements were correlated with cell morphological features, measured by interfacing MDA-MB-231 cells with the in vitro chip surfaces on the live cell microscope. We demonstrate how the interpretation of a cell phenotype based on direct activity measurements can vary markedly from interpretations based on assumed activity. The SPR concurrent control approach has multiple advantages due to the fact that SPR is a standardized technique and has the sensitivity to measure ligand activity across the most relevant range of extracellular surface densities, while the in vitro chip design can be used with all commonly used light microscopy modalities (e.g., phase contrast, DIC, and fluorescence) so that a wide range of phenotypic and molecular markers can be correlated to the ligand surface activity.
Collapse
Affiliation(s)
- Michael C Robitaille
- Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375-5320, United States
| | | | | | - Jeff M Byers
- Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375-5320, United States
| | - Marc P Raphael
- Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375-5320, United States
| |
Collapse
|
10
|
Robertson SYT, Roberts JS, Deng SX. Regulation of Limbal Epithelial Stem Cells: Importance of the Niche. Int J Mol Sci 2021; 22:11975. [PMID: 34769405 PMCID: PMC8584795 DOI: 10.3390/ijms222111975] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
Limbal epithelial stem/progenitor cells (LSCs) reside in a niche that contains finely tuned balances of various signaling pathways including Wnt, Notch, BMP, Shh, YAP, and TGFβ. The activation or inhibition of these pathways is frequently dependent on the interactions of LSCs with various niche cell types and extracellular substrates. In addition to receiving molecular signals from growth factors, cytokines, and other soluble molecules, LSCs also respond to their surrounding physical structure via mechanotransduction, interaction with the ECM, and interactions with other cell types. Damage to LSCs or their niche leads to limbal stem cell deficiency (LSCD). The field of LSCD treatment would greatly benefit from an understanding of the molecular regulation of LSCs in vitro and in vivo. This review synthesizes current literature around the niche factors and signaling pathways that influence LSC function. Future development of LSCD therapies should consider all these niche factors to achieve improved long-term restoration of the LSC population.
Collapse
Affiliation(s)
| | | | - Sophie X. Deng
- Jules Stein Eye Institute, University of California, Los Angeles, CA 94143, USA; (S.Y.T.R.); (J.S.R.)
| |
Collapse
|
11
|
Ryan C, Pugliese E, Shologu N, Gaspar D, Rooney P, Islam MN, O'Riordan A, Biggs M, Griffin M, Zeugolis D. A combined physicochemical approach towards human tenocyte phenotype maintenance. Mater Today Bio 2021; 12:100130. [PMID: 34632361 PMCID: PMC8488312 DOI: 10.1016/j.mtbio.2021.100130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 02/08/2023] Open
Abstract
During in vitro culture, bereft of their optimal tissue context, tenocytes lose their phenotype and function. Considering that tenocytes in their native tissue milieu are exposed simultaneously to manifold signals, combination approaches (e.g. growth factor supplementation and mechanical stimulation) are continuously gaining pace to control cell fate during in vitro expansion, albeit with limited success due to the literally infinite number of possible permutations. In this work, we assessed the potential of scalable and potent physicochemical approaches that control cell fate (substrate stiffness, anisotropic surface topography, collagen type I coating) and enhance extracellular matrix deposition (macromolecular crowding) in maintaining human tenocyte phenotype in culture. Cell morphology was primarily responsive to surface topography. The tissue culture plastic induced the largest nuclei area, the lowest aspect ratio, and the highest focal adhesion kinase. Collagen type I coating increased cell number and metabolic activity. Cell viability was not affected by any of the variables assessed. Macromolecular crowding intensely enhanced and accelerated native extracellular matrix deposition, albeit not in an aligned fashion, even on the grooved substrates. Gene analysis at day 14 revealed that the 130 kPa grooved substrate without collagen type I coating and under macromolecular crowding conditions positively regulated human tenocyte phenotype. Collectively, this work illustrates the beneficial effects of combined physicochemical approaches in controlling cell fate during in vitro expansion.
Collapse
Affiliation(s)
- C.N.M. Ryan
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - E. Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - N. Shologu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - D. Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - P. Rooney
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Md N. Islam
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Discipline of Biochemistry, School of Natural Sciences, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - A. O'Riordan
- Tyndall National Institute, University College Cork (UCC), Cork, Ireland
| | - M.J. Biggs
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - M.D. Griffin
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - D.I. Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
12
|
Luo Y, Kang KB, Sartaj R, Sun MG, Zhou Q, Guaiquil VH, Rosenblatt MI. Silk films with nanotopography and extracellular proteins enhance corneal epithelial wound healing. Sci Rep 2021; 11:8168. [PMID: 33854156 PMCID: PMC8046786 DOI: 10.1038/s41598-021-87658-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 03/30/2021] [Indexed: 02/08/2023] Open
Abstract
Corneal wound healing depends on extracellular matrix (ECM) and topographical cues that modulate migration and proliferation of regenerating cells. In our study, silk films with either flat or nanotopography patterned parallel ridge widths of 2000, 1000, 800 nm surfaces were combined with ECMs which include collagen type I (collagen I), fibronectin, laminin, and Poly-D-Lysine to accelerate corneal wound healing. Silk films with 800 nm ridge width provided better cell spreading and wound recovery than other size topographies. Coating 800 nm patterned silk films with collagen I proves to optimally further increased mouse and rabbit corneal epithelial cells growth and wound recovery. This enhanced cellular response correlated with redistribution and increase in size and total amount of focal adhesion. Transcriptomics and signaling pathway analysis suggested that silk topography regulates cell behaviors via actin nucleation ARP-WASP complex pathway, which regulate filopodia formation. This mechanism was further explored and inhibition of Cdc42, a key protein in this pathway, delayed wound healing and decreased the length, density, and alignment of filopodia. Inhibition of Cdc42 in vivo resulted in delayed re-epithelization of injured corneas. We conclude that silk film nanotopography in combination with collagen I constitutes a better substrate for corneal wound repair than either nanotopography or ECM alone.
Collapse
Affiliation(s)
- Yuncin Luo
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor Street, MC648, Chicago, IL, 60612, USA
| | - Kai B Kang
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor Street, MC648, Chicago, IL, 60612, USA
| | - Rachel Sartaj
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor Street, MC648, Chicago, IL, 60612, USA
| | - Michael G Sun
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor Street, MC648, Chicago, IL, 60612, USA
| | - Qiang Zhou
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor Street, MC648, Chicago, IL, 60612, USA
| | - Victor H Guaiquil
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor Street, MC648, Chicago, IL, 60612, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor Street, MC648, Chicago, IL, 60612, USA.
| |
Collapse
|
13
|
Sun MG, Luo Y, Teng T, Guaiquil V, Zhou Q, McGinn L, Nazzal O, Walsh M, Lee J, Rosenblatt MI. Silk Film Stiffness Modulates Corneal Epithelial Cell Mechanosignaling. MACROMOL CHEM PHYS 2021; 222:2170013. [PMID: 34149247 PMCID: PMC8208642 DOI: 10.1002/macp.202170013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Silk fibroin films are excellent candidate biomaterials for corneal tissue engineering due to their optical transparency, biocompatibility, and mechanical strength. Their tunable chemical and mechanical properties open the possibility of engineering cellular microenvironments that can both mimic native corneal tissue and provide stimuli to actively promote wound regeneration. While silk film mechanical properties, such as surface topography, have demonstrated the ability to control corneal epithelial cell wound regenerating behavior, few studies have explored the stiffness tunability of these films and its cellular effects. Cells are known actively sense the stiffness of their surroundings and processes such as cell adhesion, migration, proliferation, and expression of stem markers can be strongly influenced by matrix stiffness. This study develops technical solutions that allow for both the fabrication of films with stiffnesses similar to corneal tissue and also for their characterization in an aqueous, native-like environment at a scale relevant to cellular forces. Physiological evidence demonstrates that corneal epithelial cells are mechanosensitive to films of different stiffnesses and show that cell spreading, cytoskeletal tension, and molecular mechanotransducer localization are associated with film stiffness. These results indicate that silk film stiffness can be used to regulate cell behavior for the purposes of ocular surface repair.
Collapse
Affiliation(s)
- M G Sun
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St., Chicago, IL 60612
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60607
| | - Y Luo
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St., Chicago, IL 60612
| | - T Teng
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60607
| | - V Guaiquil
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St., Chicago, IL 60612
| | - Q Zhou
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St., Chicago, IL 60612
| | - L McGinn
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St., Chicago, IL 60612
| | - O Nazzal
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, Chicago, IL 60612
| | - M Walsh
- Department of Material Sciences and Engineering, University of Wisconsin - Eau Claire, 101 Roosevelt Ave., Eau Claire, WI 54701
| | - J Lee
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60607
| | - M I Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St., Chicago, IL 60612
| |
Collapse
|
14
|
Sun MG, Luo Y, Teng T, Guaiquil V, Zhou Q, McGinn L, Nazzal O, Walsh M, Lee J, Rosenblatt MI. Silk Film Stiffness Modulates Corneal Epithelial Cell Mechanosignaling. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael G. Sun
- Department of Ophthalmology and Visual Sciences University of Illinois at Chicago 1855 West Taylor Street Chicago IL 60612 USA
- Department of Bioengineering University of Illinois at Chicago 851 S. Morgan St. Chicago IL 60607 USA
| | - Yuncin Luo
- Department of Ophthalmology and Visual Sciences University of Illinois at Chicago 1855 West Taylor Street Chicago IL 60612 USA
| | - Tao Teng
- Department of Bioengineering University of Illinois at Chicago 851 S. Morgan St. Chicago IL 60607 USA
| | - Victor Guaiquil
- Department of Ophthalmology and Visual Sciences University of Illinois at Chicago 1855 West Taylor Street Chicago IL 60612 USA
| | - Qiang Zhou
- Department of Ophthalmology and Visual Sciences University of Illinois at Chicago 1855 West Taylor Street Chicago IL 60612 USA
| | - Lander McGinn
- Department of Ophthalmology and Visual Sciences University of Illinois at Chicago 1855 West Taylor Street Chicago IL 60612 USA
| | - Osayd Nazzal
- Department of Pathology University of Illinois at Chicago 840 S. Wood St., Suite 130 CSN Chicago IL 60612 USA
| | - Michael Walsh
- Department of Material Sciences and Engineering University of Wisconsin – Eau Claire 101 Roosevelt Ave Eau Claire WI 54701 USA
| | - James Lee
- Department of Bioengineering University of Illinois at Chicago 851 S. Morgan St. Chicago IL 60607 USA
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences University of Illinois at Chicago 1855 West Taylor Street Chicago IL 60612 USA
| |
Collapse
|
15
|
Bacterial Nanocellulose in Dentistry: Perspectives and Challenges. Molecules 2020; 26:molecules26010049. [PMID: 33374301 PMCID: PMC7796422 DOI: 10.3390/molecules26010049] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 11/17/2022] Open
Abstract
Bacterial cellulose (BC) is a natural polymer that has fascinating attributes, such as biocompatibility, low cost, and ease of processing, being considered a very interesting biomaterial due to its options for moldability and combination. Thus, BC-based compounds (for example, BC/collagen, BC/gelatin, BC/fibroin, BC/chitosan, etc.) have improved properties and/or functionality, allowing for various biomedical applications, such as artificial blood vessels and microvessels, artificial skin, and wounds dressing among others. Despite the wide applicability in biomedicine and tissue engineering, there is a lack of updated scientific reports on applications related to dentistry, since BC has great potential for this. It has been used mainly in the regeneration of periodontal tissue, surgical dressings, intraoral wounds, and also in the regeneration of pulp tissue. This review describes the properties and advantages of some BC studies focused on dental and oral applications, including the design of implants, scaffolds, and wound-dressing materials, as well as carriers for drug delivery in dentistry. Aligned to the current trends and biotechnology evolutions, BC-based nanocomposites offer a great field to be explored and other novel features can be expected in relation to oral and bone tissue repair in the near future.
Collapse
|
16
|
Raghunathan V, Edwards SG, Leonard BC, Kim S, Evashenk AT, Song Y, Rewinski E, Marangakis Price A, Hoehn A, Chang C, Reilly CM, Muppala S, Murphy CJ, Thomasy SM. Differential effects of Hsp90 inhibition on corneal cells in vitro and in vivo. Exp Eye Res 2020; 202:108362. [PMID: 33220237 DOI: 10.1016/j.exer.2020.108362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 10/23/2022]
Abstract
The transformation of quiescent keratocytes to activated fibroblasts and myofibroblasts (KFM transformation) largely depends on transforming growth factor beta (TGFβ) signaling. Initiation of the TGFβ signaling cascade results from binding of TGFβ to the labile type I TGFβ receptor (TGFβRI), which is stabilized by the 90 kDa heat shock protein (Hsp90). Since myofibroblast persistence within the corneal stroma can result in stromal haze and corneal fibrosis in patients undergoing keratorefractive therapy, modulation of TGFβ signaling through Hsp90 inhibition would represent a novel approach to prevent myofibroblast persistence. In vitro, rabbit corneal fibroblasts (RCFs) or stratified immortalized human corneal epithelial cells (hTCEpi) were treated with a Hsp90 inhibitor (17AAG) in the presence/absence of TGFβ1. RCFs were cultured either on tissue culture plastic, anisotropically patterned substrates, and hydrogels of varying stiffness. Cellular responses to both cytoactive and variable substrates were assessed by morphologic changes to the cells, and alterations in expression patterns of key keratocyte and myofibroblast proteins using PCR, Western blotting and immunocytochemistry. Transepithelial electrical resistance (TEER) measurements were performed to establish epithelial barrier integrity. In vivo, the corneas of New Zealand White rabbits were wounded by phototherapeutic keratectomy (PTK) and treated with 17AAG (3× or 6× daily) either immediately or 7 days after wounding for 28 days. Rabbits underwent clinical ophthalmic examinations, SPOTS scoring and advanced imaging on days 0, 1, 3, 7, 10, 14, 21 and 28. On day 28, rabbits were euthanized and histopathology/immunohistochemistry was performed. In vitro data demonstrated that 17AAG inhibited KFM transformation with the de-differentiation of spindle shaped myofibroblasts to dendritic keratocyte-like cells accompanied by significant upregulation of corneal crystallins and suppression of myofibroblast markers regardless of TGFβ1 treatment. RCFs cultured on soft hydrogels or patterned substrates exhibited elevated expression of α-smooth muscle actin (αSMA) in the presence of 17AAG. Treatment of hTCEpi cells disrupted zonula occludens 1 (ZO-1) adherens junction formation. In vivo, there were no differences detected in nearly all clinical parameters assessed between treatment groups. However, rabbits treated with 17AAG developed greater stromal haze formation compared with controls, irrespective of frequency of administration. Lastly, there was increased αSMA positive myofibroblasts in the stroma of 17AAG treated animals when compared with controls. Hsp90 inhibition promoted reversion of the myofibroblast to keratocyte phenotype, although this only occurred on rigid substrates. By contrast, in vivo Hsp90 inhibition was detrimental to corneal wound healing likely due to impairment in corneal epithelial closure and barrier function restoration. Collectively, our data demonstrated a strong interplay in vitro between biophysical cues and soluble signaling molecules in determining corneal stromal cell phenotype.
Collapse
Affiliation(s)
- VijayKrishna Raghunathan
- Department of Basic Sciences, United States; The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX, United States.
| | - Sydney Garrison Edwards
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Brian C Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Soohyun Kim
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Alexander T Evashenk
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Yeonju Song
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Eva Rewinski
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Ariana Marangakis Price
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Alyssa Hoehn
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Connor Chang
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Christopher M Reilly
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Santoshi Muppala
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States; Department of Ophthalmology and Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, United States; Department of Ophthalmology and Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States.
| |
Collapse
|
17
|
Leclech C, Villard C. Cellular and Subcellular Contact Guidance on Microfabricated Substrates. Front Bioeng Biotechnol 2020; 8:551505. [PMID: 33195116 PMCID: PMC7642591 DOI: 10.3389/fbioe.2020.551505] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Topography of the extracellular environment is now recognized as a major biophysical regulator of cell behavior and function. The study of the influence of patterned substrates on cells, named contact guidance, has greatly benefited from the development of micro and nano-fabrication techniques, allowing the emergence of increasingly diverse and elaborate engineered platforms. The purpose of this review is to provide a comprehensive view of the process of contact guidance from cellular to subcellular scales. We first classify and illustrate the large diversity of topographies reported in the literature by focusing on generic cellular responses to diverse topographical cues. Subsequently, and in a complementary fashion, we adopt the opposite approach and highlight cell type-specific responses to classically used topographies (arrays of pillars or grooves). Finally, we discuss recent advances on the key subcellular and molecular players involved in topographical sensing. Throughout the review, we focus particularly on neuronal cells, whose unique morphology and behavior have inspired a large body of studies in the field of topographical sensing and revealed fascinating cellular mechanisms. We conclude by using the current understanding of the cell-topography interactions at different scales as a springboard for identifying future challenges in the field of contact guidance.
Collapse
Affiliation(s)
- Claire Leclech
- Hydrodynamics Laboratory, CNRS UMR 7646, Ecole Polytechnique, Palaiseau, France
| | - Catherine Villard
- Physico-Chimie Curie, CNRS UMR 168, Université PSL, Sorbonne Université, Paris, France
| |
Collapse
|
18
|
Krishna L, Nilawar S, Ponnalagu M, Subramani M, Jayadev C, Shetty R, Chatterjee K, Das D. Fiber Diameter Differentially Regulates Function of Retinal Pigment and Corneal Epithelial Cells on Nanofibrous Tissue Scaffolds. ACS APPLIED BIO MATERIALS 2020; 3:823-837. [DOI: 10.1021/acsabm.9b00897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lekshmi Krishna
- Stem Cell Research Laboratory, GROW Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore 560 099, Karnataka, India
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Sagar Nilawar
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| | - Murugeswari Ponnalagu
- Stem Cell Research Laboratory, GROW Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore 560 099, Karnataka, India
| | - Murali Subramani
- Stem Cell Research Laboratory, GROW Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore 560 099, Karnataka, India
| | - Chaitra Jayadev
- Vitreoretina Services, Narayana Nethralaya Eye Hospital, Bangalore 560 010, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore 560 010, Karnataka, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| | - Debashish Das
- Stem Cell Research Laboratory, GROW Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore 560 099, Karnataka, India
| |
Collapse
|
19
|
Xiong S, Gao H, Qin L, Jia YG, Ren L. Engineering topography: Effects on corneal cell behavior and integration into corneal tissue engineering. Bioact Mater 2019; 4:293-302. [PMID: 31709312 PMCID: PMC6829100 DOI: 10.1016/j.bioactmat.2019.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/23/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022] Open
Abstract
Cell-material interactions are important to tissue engineering. Inspired by the natural topographic structures on the extracellular matrix, a growing number of studies have integrated engineering topography into investigations of cell behavior on biomaterials. Engineering topography has a significant influence on cell behaviors. These cell-topography interactions play an important role in regenerative medicine and tissue engineering. Similarly, cell-topography interactions are important to corneal reconstruction and regeneration. In this review, we primarily summarized the effects of topographic cues on the behaviors of corneal cells, including cell morphology, adhesion, migration, and proliferation. Furthermore, the integration of engineering surface topography into corneal tissue engineering was also discussed.
Collapse
Affiliation(s)
- Sijia Xiong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
| | - HuiChang Gao
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Lanfeng Qin
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
- Sino-Singapore International Joint Research Institute, Guangzhou, 510555, China
| |
Collapse
|
20
|
Kang KB, Lawrence BD, Gao XR, Guaiquil VH, Liu A, Rosenblatt MI. The Effect of Micro- and Nanoscale Surface Topographies on Silk on Human Corneal Limbal Epithelial Cell Differentiation. Sci Rep 2019; 9:1507. [PMID: 30728382 PMCID: PMC6365498 DOI: 10.1038/s41598-018-37804-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/13/2018] [Indexed: 11/09/2022] Open
Abstract
We previously reported that micro- and nano-scale topographic pitch created on silk films mimic features of the corneal basement membrane by providing biophysical cues to direct corneal epithelial cell adherence and migration. However, the effect of these topographical features on corneal limbal epithelial cell differentiation has not been explored. We hypothesize in the current study that various topographical pitch created on silk may affect corneal epithelial stem cell differentiation and alter the expression of genes involved in cell differentiation and self-renewal. We patterned silk films with different topographic pitch via soft lithography and observed human corneal limbal epithelial cell behavior. Colony forming assay demonstrated increased colony forming efficiency on patterned silk films. Cells cultured on nanoscale patterned silk films also expressed lower levels of putative keratocyte differentiation markers and higher levels of putative limbal stem cell markers. RNA-Seq analysis further implicated the involvement of pathways related to stem cell differentiation and self-renewal, including Notch, ERK/MAPK and Wnt/β-catenin signaling. We conclude that patterned silk film substrates can be used as scaffolds and provide biophysical cues to corneal limbal stem cells that may maintain corneal epithelial stem cells at a less differentiated state.
Collapse
Affiliation(s)
- Kai B Kang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Brian D Lawrence
- Department of Ophthalmology, Weill Cornell Medical College, New York, NY, USA
| | - X Raymond Gao
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Victor H Guaiquil
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | - Aihong Liu
- Department of Ophthalmology, Weill Cornell Medical College, New York, NY, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
21
|
Xiong S, Gao H, Qin L, Jia Y, Gao M, Ren L. Microgrooved collagen-based corneal scaffold for promoting collective cell migration and antifibrosis. RSC Adv 2019; 9:29463-29473. [PMID: 35528407 PMCID: PMC9071845 DOI: 10.1039/c9ra04009a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/19/2019] [Indexed: 02/04/2023] Open
Abstract
Microgrooved collagen membrane can effectively promote the epithelialization of corneal epithelial cells and inhibit the fibrosis of corneal stromal cells.
Collapse
Affiliation(s)
- Sijia Xiong
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Centre for Tissue Restoration and Reconstruction
| | - Huichang Gao
- School of Medicine
- South China University of Technology
- Guangzhou 510006
- China
| | - Lanfeng Qin
- National Engineering Research Centre for Tissue Restoration and Reconstruction
- Guangzhou 510006
- China
- Guangdong Province Key Laboratory of Biomedical Engineering
- South China University of Technology
| | - Yongguang Jia
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Centre for Tissue Restoration and Reconstruction
| | - Meng Gao
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Centre for Tissue Restoration and Reconstruction
| | - Li Ren
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
- National Engineering Research Centre for Tissue Restoration and Reconstruction
| |
Collapse
|
22
|
Prina E, Mistry P, Sidney LE, Yang J, Wildman RD, Bertolin M, Breda C, Ferrari B, Barbaro V, Hopkinson A, Dua HS, Ferrari S, Rose FRAJ. 3D Microfabricated Scaffolds and Microfluidic Devices for Ocular Surface Replacement: a Review. Stem Cell Rev Rep 2018; 13:430-441. [PMID: 28573367 DOI: 10.1007/s12015-017-9740-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, there has been increased research interest in generating corneal substitutes, either for use in the clinic or as in vitro corneal models. The advancement of 3D microfabrication technologies has allowed the reconstruction of the native microarchitecture that controls epithelial cell adhesion, migration and differentiation. In addition, such technology has allowed the inclusion of a dynamic fluid flow that better mimics the physiology of the native cornea. We review the latest innovative products in development in this field, from 3D microfabricated hydrogels to microfluidic devices.
Collapse
Affiliation(s)
- Elisabetta Prina
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Pritesh Mistry
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Laura E Sidney
- Academic Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Jing Yang
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Ricky D Wildman
- Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Marina Bertolin
- Fondazione Banca degli Occhi del Veneto, c/o Padiglione G. Rama - Via Paccagnella 11, 30174 Zelarino, Venice, Italy
| | - Claudia Breda
- Fondazione Banca degli Occhi del Veneto, c/o Padiglione G. Rama - Via Paccagnella 11, 30174 Zelarino, Venice, Italy
| | - Barbara Ferrari
- Fondazione Banca degli Occhi del Veneto, c/o Padiglione G. Rama - Via Paccagnella 11, 30174 Zelarino, Venice, Italy
| | - Vanessa Barbaro
- Fondazione Banca degli Occhi del Veneto, c/o Padiglione G. Rama - Via Paccagnella 11, 30174 Zelarino, Venice, Italy
| | - Andrew Hopkinson
- Academic Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Harminder S Dua
- Academic Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Stefano Ferrari
- Fondazione Banca degli Occhi del Veneto, c/o Padiglione G. Rama - Via Paccagnella 11, 30174 Zelarino, Venice, Italy.
| | - Felicity R A J Rose
- Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
23
|
Kang KB, Lawrence BD, Gao XR, Luo Y, Zhou Q, Liu A, Guaiquil VH, Rosenblatt MI. Micro- and Nanoscale Topographies on Silk Regulate Gene Expression of Human Corneal Epithelial Cells. Invest Ophthalmol Vis Sci 2017; 58:6388-6398. [PMID: 29260198 PMCID: PMC5736325 DOI: 10.1167/iovs.17-22213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose Corneal basement membrane has topographical features that provide biophysical cues to direct cell adherence, migration, and proliferation. In this study, we hypothesize that varying topographic pitch created on silk films can alter epithelial cell morphology, adhesion, and the genetic expression involved in cytoskeletal dynamics-related pathways. Methods Silicon wafers with parallel ridge widths of 2000, 1000, and 800 nm were produced and used to pattern silk films via soft lithography. Human corneal epithelial cells were cultured onto silk. After 72 hours of incubation, images were taken to study cell morphology and alignment. Cytoskeletal structures were studied by immunofluorescent staining. RNA was collected from cultured cells to perform RNA-Seq transcriptome analysis using the Illumina Hiseq 2500 sequencing system. Differentially expressed genes were identified using DNAstar Qseq then verified using quantitative real-time PCR. These genes were used to perform pathway analyses using Ingenuity Pathways Analysis. Results Primary human corneal epithelial cell alignment to the surface pattern was the greatest on 1000-nm features. Fluorescent microscopy of f-actin staining showed cell cytoskeleton alignment either in parallel (2000 nm) or perpendicular (1000 and 800 nm) to the long feature axis. Z-stack projection of vinculin staining indicated increased focal adhesion formation localized on the cellular basal surface. RNA-seq analysis revealed differentially expressed genes involved in actin organization, integrin signaling, and focal adhesion kinase signaling (−log (P)>5). Conclusions Patterned silk film substrates may serve as a scaffold and provide biophysical cues to corneal epithelial cells that change their gene expression, alter cellular adherence, morphology, and may offer a promising customizable material for use in ocular surface repair.
Collapse
Affiliation(s)
- Kai B Kang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Brian D Lawrence
- Department of Ophthalmology, Weill Cornell Medical College, New York, New York, United States
| | - X Raymond Gao
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Yuncin Luo
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Qiang Zhou
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Aihong Liu
- Department of Ophthalmology, Weill Cornell Medical College, New York, New York, United States
| | - Victor H Guaiquil
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
24
|
Santander-Borrego M, Chirila TV, Shadforth AMA, Whittaker AK, Blakey I. Effect of changes in the surface chemistry and topography of poly(2-hydroxyethyl methacrylate) on the in vitro attachment of human corneal epithelial cells. J BIOACT COMPAT POL 2017. [DOI: 10.1177/0883911517744572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Miriem Santander-Borrego
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Traian V Chirila
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
- Queensland Eye Institute, South Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia
- Faculty of Science, The University of Western Australia, Crawley, WA, Australia
| | | | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
- Queensland Eye Institute, South Brisbane, QLD, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, Australia
| | - Idriss Blakey
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
- Queensland Eye Institute, South Brisbane, QLD, Australia
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
25
|
Masciullo C, Dell'Anna R, Tonazzini I, Böettger R, Pepponi G, Cecchini M. Hierarchical thermoplastic rippled nanostructures regulate Schwann cell adhesion, morphology and spatial organization. NANOSCALE 2017; 9:14861-14874. [PMID: 28948996 DOI: 10.1039/c7nr02822a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Periodic ripples are a variety of anisotropic nanostructures that can be realized by ion beam irradiation on a wide range of solid surfaces. Only a few authors have investigated these surfaces for tuning the response of biological systems, probably because it is challenging to directly produce them in materials that well sustain long-term cellular cultures. Here, hierarchical rippled nanotopographies with a lateral periodicity of ∼300 nm are produced from a gold-irradiated germanium mold in polyethylene terephthalate (PET), a biocompatible polymer approved by the US Food and Drug Administration for clinical applications, by a novel three-step embossing process. The effects of nano-ripples on Schwann Cells (SCs) are studied in view of their possible use for nerve-repair applications. The data demonstrate that nano-ripples can enhance short-term SC adhesion and proliferation (3-24 h after seeding), drive their actin cytoskeleton spatial organization and sustain long-term cell growth. Notably, SCs are oriented perpendicularly with respect to the nanopattern lines. These results provide information about the possible use of hierarchical nano-rippled elements for nerve-regeneration protocols.
Collapse
Affiliation(s)
- Cecilia Masciullo
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy.
| | | | | | | | | | | |
Collapse
|
26
|
Sousa MP, Caridade SG, Mano JF. Control of Cell Alignment and Morphology by Redesigning ECM-Mimetic Nanotopography on Multilayer Membranes. Adv Healthc Mater 2017; 6:10.1002/adhm.201601462. [PMID: 28371516 PMCID: PMC6398568 DOI: 10.1002/adhm.201601462] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/11/2017] [Indexed: 01/08/2023]
Abstract
Inspired by native extracellular matrix (ECM) together with the multilevel architecture observed in nature, a material which topography recapitulates topographic features of the ECM and the internal architecture mimics the biological materials organization is engineered. The nanopatterned design along the XY plane is combined with a nanostructured organization along the Z axis on freestanding membranes prepared by layer-by-layer deposition of chitosan and chondroitin sulfate. Cellular behavior is monitored using two different mammalian cell lines, fibroblasts (L929) and myoblasts (C2C12), in order to perceive the response to topography. Viability, proliferation, and morphology of L929 are sensitively controlled by topography; also differentiation of C2C12 into myotubes is influenced by the presence of nanogrooves. This kind of nanopatterned structure has also been associated with strong cellular alignment. To the best of the knowledge, it is the first time that such a straightforward and inexpensive strategy is proposed to produce nanopatterned freestanding multilayer membranes. Controlling cellular alignment plays a critical role in many human tissues, such as muscles, nerves, or blood vessels, so these membranes can be potentially useful in specific tissue regeneration strategies.
Collapse
|
27
|
Raghunathan VK, Thomasy SM, Strøm P, Yañez-Soto B, Garland SP, Sermeno J, Reilly CM, Murphy CJ. Tissue and cellular biomechanics during corneal wound injury and repair. Acta Biomater 2017; 58:291-301. [PMID: 28559158 DOI: 10.1016/j.actbio.2017.05.051] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/27/2017] [Accepted: 05/26/2017] [Indexed: 10/19/2022]
Abstract
Corneal wound healing is an enormously complex process that requires the simultaneous cellular integration of multiple soluble biochemical cues, as well as cellular responses to the intrinsic chemistry and biophysical attributes associated with the matrix of the wound space. Here, we document how the biomechanics of the corneal stroma are altered through the course of wound repair following keratoablative procedures in rabbits. Further we documented the influence that substrate stiffness has on stromal cell mechanics. Following corneal epithelial debridement, New Zealand white rabbits underwent phototherapeutic keratectomy (PTK) on the right eye (OD). Wound healing was monitored using advanced imaging modalities. Rabbits were euthanized and corneas were harvested at various time points following PTK. Tissues were characterized for biomechanics with atomic force microscopy and with histology to assess inflammation and fibrosis. Factor analysis was performed to determine any discernable patterns in wound healing parameters. The matrix associated with the wound space was stiffest at 7days post PTK. The greatest number of inflammatory cells were observed 3days after wounding. The highest number of myofibroblasts and the greatest degree of fibrosis occurred 21days after wounding. While all clinical parameters returned to normal values 400days after wounding, the elastic modulus remained greater than pre-surgical values. Factor analysis demonstrated dynamic remodeling of stroma occurs between days 10 and 42 during corneal stromal wound repair. Elastic modulus of the anterior corneal stroma is dramatically altered following PTK and its changes coincide initially with the development of edema and inflammation, and later with formation of stromal haze and population of the wound space with myofibroblasts. Factor analysis demonstrates strongest correlation between elastic modulus, myofibroblasts, fibrosis and stromal haze thickness, and between edema and central corneal thickness. STATEMENT OF SIGNIFICANCE Tissue biomechanics during the course of corneal wound healing is documented for the first time through atomic force microscopy, and is correlated with advanced clinical imaging and immunohistochemistry. Parameters obtained from the study are applied in a multivariate statistical model to cluster the data for better classification and monitor the wound repair process. Elastic modulus of the anterior corneal stroma is dramatically altered following wounding and correlates initially with the development of edema and inflammation, and later with formation of stromal haze and population of the wound space with myofibroblasts. Importantly, the occurrence of myofibroblasts is preceded by changes in tissue mechanics, which is important to consider in light of crosslinking procedures applied to treat corneal diseases.
Collapse
|
28
|
Skoog SA, Kumar G, Narayan RJ, Goering PL. Biological responses to immobilized microscale and nanoscale surface topographies. Pharmacol Ther 2017; 182:33-55. [PMID: 28720431 DOI: 10.1016/j.pharmthera.2017.07.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cellular responses are highly influenced by biochemical and biomechanical interactions with the extracellular matrix (ECM). Due to the impact of ECM architecture on cellular responses, significant research has been dedicated towards developing biomaterials that mimic the physiological environment for design of improved medical devices and tissue engineering scaffolds. Surface topographies with microscale and nanoscale features have demonstrated an effect on numerous cellular responses, including cell adhesion, migration, proliferation, gene expression, protein production, and differentiation; however, relationships between biological responses and surface topographies are difficult to establish due to differences in cell types and biomaterial surface properties. Therefore, it is important to optimize implant surface feature characteristics to elicit desirable biological responses for specific applications. The goal of this work was to review studies investigating the effects of microstructured and nanostructured biomaterials on in vitro biological responses through fabrication of microscale and nanoscale surface topographies, physico-chemical characterization of material surface properties, investigation of protein adsorption dynamics, and evaluation of cellular responses in specific biomedical applications.
Collapse
Affiliation(s)
- Shelby A Skoog
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States; Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC, United States
| | - Girish Kumar
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC, United States
| | - Peter L Goering
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States.
| |
Collapse
|
29
|
Wang J, Schneider IC. Myosin phosphorylation on stress fibers predicts contact guidance behavior across diverse breast cancer cells. Biomaterials 2017; 120:81-93. [PMID: 28039755 PMCID: PMC5291342 DOI: 10.1016/j.biomaterials.2016.11.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 11/24/2022]
Abstract
During cancer progression the extracellular matrix is remodeled, forming aligned collagen fibers that proceed radially from the tumor, resulting in invasion. We have recently shown that different invasive breast cancer cells respond to epitaxially grown, aligned collagen fibrils differently. This article develops insight into why these cells differ in their contact guidance fidelity. Small changes in contractility or adhesion dramatically alter directional persistence on aligned collagen fibrils, while migration speed remains constant. The directionality of highly contractile and adhesive MDA-MB-231 cells can be diminished by inhibiting Rho kinase or β1 integrin binding. Inversely, the directionality of less contractile and adhesive MTLn3 cells can be enhanced by activating contractility or integrins. Subtle, but quantifiable alterations in myosin II regulatory light chain phosphorylation on stress fibers explain the tuning of contact guidance fidelity, separate from migration per se indicating that the contractile and adhesive state of the cell in combination with collagen organization in the tumor microenvironment determine the efficiency of migration. Understanding how distinct cells respond to contact guidance cues will not only illuminate mechanisms for cancer invasion, but will also allow for the design of environments to separate specific subpopulations of cells from patient-derived tissues by leveraging differences in responses to directional migration cues.
Collapse
Affiliation(s)
- Juan Wang
- Department of Chemical and Biological Engineering, Iowa State University, USA
| | - Ian C Schneider
- Department of Chemical and Biological Engineering, Iowa State University, USA; Department of Genetics, Development and Cell Biology, Iowa State University, USA.
| |
Collapse
|
30
|
Yang Y, Wang K, Gu X, Leong KW. Biophysical Regulation of Cell Behavior-Cross Talk between Substrate Stiffness and Nanotopography. ENGINEERING (BEIJING, CHINA) 2017; 3:36-54. [PMID: 29071164 PMCID: PMC5653318 DOI: 10.1016/j.eng.2017.01.014] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The stiffness and nanotopographical characteristics of the extracellular matrix (ECM) influence numerous developmental, physiological, and pathological processes in vivo. These biophysical cues have therefore been applied to modulate almost all aspects of cell behavior, from cell adhesion and spreading to proliferation and differentiation. Delineation of the biophysical modulation of cell behavior is critical to the rational design of new biomaterials, implants, and medical devices. The effects of stiffness and topographical cues on cell behavior have previously been reviewed, respectively; however, the interwoven effects of stiffness and nanotopographical cues on cell behavior have not been well described, despite similarities in phenotypic manifestations. Herein, we first review the effects of substrate stiffness and nanotopography on cell behavior, and then focus on intracellular transmission of the biophysical signals from integrins to nucleus. Attempts are made to connect extracellular regulation of cell behavior with the biophysical cues. We then discuss the challenges in dissecting the biophysical regulation of cell behavior and in translating the mechanistic understanding of these cues to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Yong Yang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Kai Wang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
31
|
Pilipchuk SP, Monje A, Jiao Y, Hao J, Kruger L, Flanagan CL, Hollister SJ, Giannobile WV. Integration of 3D Printed and Micropatterned Polycaprolactone Scaffolds for Guidance of Oriented Collagenous Tissue Formation In Vivo. Adv Healthc Mater 2016; 5:676-87. [PMID: 26820240 DOI: 10.1002/adhm.201500758] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/16/2015] [Indexed: 12/20/2022]
Abstract
Scaffold design incorporating multiscale cues for clinically relevant, aligned tissue regeneration has potential to improve structural and functional integrity of multitissue interfaces. The objective of this preclinical study is to develop poly(ε-caprolactone) (PCL) scaffolds with mesoscale and microscale architectural cues specific to human ligament progenitor cells and assess their ability to form aligned bone-ligament-cementum complexes in vivo. PCL scaffolds are designed to integrate a 3D printed bone region with a micropatterned PCL thin film consisting of grooved pillars. The patterned film region is seeded with human ligament cells, fibroblasts transduced with bone morphogenetic protein-7 genes seeded within the bone region, and a tooth dentin segment positioned on the ligament region prior to subcutaneous implantation into a murine model. Results indicate increased tissue alignment in vivo using micropatterned PCL films, compared to random-porous PCL. At week 6, 30 μm groove depth significantly enhances oriented collagen fiber thickness, overall cell alignment, and nuclear elongation relative to 10 μm groove depth. This study demonstrates for the first time that scaffolds with combined hierarchical mesoscale and microscale features can align cells in vivo for oral tissue repair with potential for improving the regenerative response of other bone-ligament complexes.
Collapse
Affiliation(s)
- Sophia P. Pilipchuk
- Department of Biomedical Engineering; 1101 Beal Ave; University of Michigan; Ann Arbor MI 48109 USA
- Department of Periodontics and Oral Medicine; 1011 N. University Ave; University of Michigan; Ann Arbor MI 48109 USA
| | - Alberto Monje
- Department of Periodontics and Oral Medicine; 1011 N. University Ave; University of Michigan; Ann Arbor MI 48109 USA
| | - Yizu Jiao
- Department of Periodontics and Oral Medicine; 1011 N. University Ave; University of Michigan; Ann Arbor MI 48109 USA
| | - Jie Hao
- Department of Periodontics and Oral Medicine; 1011 N. University Ave; University of Michigan; Ann Arbor MI 48109 USA
| | - Laura Kruger
- Department of Periodontics and Oral Medicine; 1011 N. University Ave; University of Michigan; Ann Arbor MI 48109 USA
| | - Colleen L. Flanagan
- Department of Biomedical Engineering; 1101 Beal Ave; University of Michigan; Ann Arbor MI 48109 USA
| | - Scott J. Hollister
- Department of Biomedical Engineering; 1101 Beal Ave; University of Michigan; Ann Arbor MI 48109 USA
- Department of Mechanical Engineering; Department of Surgery; University of Michigan; Ann Arbor MI 48109 USA
| | - William V. Giannobile
- Department of Biomedical Engineering; 1101 Beal Ave; University of Michigan; Ann Arbor MI 48109 USA
- Department of Periodontics and Oral Medicine; 1011 N. University Ave; University of Michigan; Ann Arbor MI 48109 USA
| |
Collapse
|
32
|
São Pedro A, Fernandes R, Flora Villarreal C, Fialho R, Cabral Albuquerque E. Opioid-based micro and nanoparticulate formulations: alternative approach on pain management. J Microencapsul 2016; 33:18-29. [DOI: 10.3109/02652048.2015.1134687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
High aspect ratio nanoimprinted grooves of poly(lactic-co-glycolic acid) control the length and direction of retraction fibers during fibroblast cell division. Biointerphases 2015; 10:041008. [PMID: 26652706 DOI: 10.1116/1.4936589] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Retraction fibers (RFs) determine orientation of the cell division axis and guide the spreading of daughter cells. Long and unidirectional RFs, which are especially apparent during mitosis of cells in three-dimensional (3D) environments, enable improved control over cell fate, following division. However, 3D gel environments lack the cues necessary for predetermining the orientation of RFs to direct tissue architecture. While patterning of focal adhesion regions by microcontact printing can determine orientation of the RFs through enhancing focal adhesion numbers along particular directions, the RFs remain short due to the two-dimensional culture environment. Herein, the authors demonstrate that nanoimprinted grooves of polylactic acid glycolic acid (PLGA) with a high aspect ratio (A.R. of 2.0) can provide the cues necessary to control the direction of RFs, as well as enable the maintenance of long and unidirectional RFs as observed within 3D cultures, while the same is not possible with PLGA grooves of lower A.R. (1.0 or lower). Based on enhanced levels of contact guidance of premitotic fibroblast protrusions at high A.R. grooves and deeper levels of focal adhesion due to filopodia extensions into these grooves, it is suggested that submicron (800 nm width) PLGA grooves with A.R. of 2 are capable of supporting mechanical forces from cell protrusions to a greater depth, thereby enabling the maintenance of the protrusions as long and unidirectional RFs during cell division. Given the scalability and versatility of nanoimprint techniques, the authors envision a platform for designing nanostructures to direct tissue regeneration and developmental biology.
Collapse
|
34
|
Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym 2015; 128:41-51. [DOI: 10.1016/j.carbpol.2015.04.007] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 04/03/2015] [Accepted: 04/08/2015] [Indexed: 11/30/2022]
|
35
|
Gao J, Raghunathan VK, Reid B, Wei D, Diaz RC, Russell P, Murphy CJ, Zhao M. Biomimetic stochastic topography and electric fields synergistically enhance directional migration of corneal epithelial cells in a MMP-3-dependent manner. Acta Biomater 2015; 12:102-112. [PMID: 25311684 PMCID: PMC4798428 DOI: 10.1016/j.actbio.2014.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 10/02/2014] [Accepted: 10/04/2014] [Indexed: 01/14/2023]
Abstract
Directed migration of corneal epithelial cells (CECs) is critical for maintenance of corneal homeostasis as well as wound healing. Soluble cytoactive factors and the intrinsic chemical attributes of the underlying extracellular matrix (ECM) participate in stimulating and directing migration. The central importance of the intrinsic biophysical attributes of the microenvironment of the cell in modulating an array of fundamental epithelial behaviors including migration has been widely documented. Among the best measures of these attributes are the intrinsic topography and stiffness of the ECM and electric fields (EFs). How cells integrate these multiple simultaneous inputs is not well understood. Here, we present a method that combines the use of (i) topographically patterned substrates (mean pore diameter 800nm) possessing features that approximate those found in the native corneal basement membrane; and (ii) EFs (0-150mVmm(-1)) mimicking those at corneal epithelial wounds that the cells experience in vivo. We found that topographic cues and EFs synergistically regulated directional migration of human CECs and that this was associated with upregulation of matrix metalloproteinase-3 (MMP3). MMP3 expression and activity were significantly elevated with 150mVmm(-1) applied-EF while MMP2/9 remained unaltered. MMP3 expression was elevated in cells cultured on patterned surfaces against planar surfaces. The highest single-cell migration rate was observed with 150mVmm(-1) applied EF on patterned and planar surfaces. When cultured as a confluent sheet, EFs induced collective cell migration on stochastically patterned surfaces compared with dissociated single-cell migration on planar surfaces. These results suggest significant interaction of biophysical cues in regulating cell behaviors and will help define design parameters for corneal prosthetics and help to better understand corneal wound healing.
Collapse
Affiliation(s)
- Jing Gao
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; School of Life Science, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China
| | - Vijay Krishna Raghunathan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Brian Reid
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Dongguang Wei
- Department of Otolaryngology, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Rodney C Diaz
- Department of Otolaryngology, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Paul Russell
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA; Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Sacramento, CA 95817, USA.
| | - Min Zhao
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; School of Life Science, Yunnan Normal University, Kunming, Yunnan 650500, People's Republic of China; Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
36
|
Raghunathan VK, Dreier B, Morgan JT, Tuyen BC, Rose BW, Reilly CM, Russell P, Murphy CJ. Involvement of YAP, TAZ and HSP90 in contact guidance and intercellular junction formation in corneal epithelial cells. PLoS One 2014; 9:e109811. [PMID: 25290150 PMCID: PMC4188597 DOI: 10.1371/journal.pone.0109811] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/03/2014] [Indexed: 11/20/2022] Open
Abstract
The extracellular environment possesses a rich milieu of biophysical and biochemical signaling cues that are simultaneously integrated by cells and influence cellular phenotype. Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (WWTR1; TAZ), two important signaling molecules of the Hippo pathway, have been recently implicated as nuclear relays of cytoskeletal changes mediated by substratum rigidity and topography. These proteins intersect with other important intracellular signaling pathways (e.g. Wnt and TGFβ). In the cornea, epithelial cells adhere to the stroma through a 3-dimensional topography-rich basement membrane, with features in the nano-submicron size-scale that are capable of profoundly modulating a wide range of fundamental cell behaviors. The influences of substratum-topography, YAP/TAZ knockdown, and HSP90 inhibition on cell morphology, YAP/TAZ localization, and the expression of TGFβ2 and CTGF, were investigated. The results demonstrate (a) that knockdown of TAZ enhances contact guidance in a YAP dependent manner, (b) that CTGF is predominantly regulated by YAP and not TAZ, and (c) that TGFβ2 is regulated by both YAP and TAZ in these cells. Additionally, inhibition of HSP90 resulted in nuclear localization and subsequent transcriptional-activation of YAP, formation of cell-cell junctions and co-localization of E-cadherin and β-catenin at adherens junctions. Results presented in this study reflect the complexities underlying the molecular relationships between the cytoskeleton, growth factors, heat shock proteins, and co-activators of transcription that impact mechanotransduction. The data reveal the importance of YAP/TAZ on the cell behaviors, and gene and protein expression.
Collapse
Affiliation(s)
- Vijay Krishna Raghunathan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Britta Dreier
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Joshua T. Morgan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Binh C. Tuyen
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Brad W. Rose
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Christopher M. Reilly
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Paul Russell
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Christopher J. Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
- Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Davis, CA, United States of America
- * E-mail:
| |
Collapse
|
37
|
Soleas JP, Waddell TK, McGuigan AP. Topographically grooved gel inserts for aligning epithelial cells during air-liquid-interface culture. Biomater Sci 2014. [PMID: 26214196 DOI: 10.1039/c4bm00237g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epithelial tissues are a critical component of all tubular organs. Engineering artificial epithelium requires an understanding of the polarization of epithelia: both apicobasal and in a planar fashion. Air liquid interface (ALI) culture is typically used to generate apicobasal polarized airway epithelium in vitro; however, this approach does not provide any signalling cues to induce morphological planar polarization of the generated epithelial layer. Here we describe a microgrooved gelatin hydrogel insert that can induce alignment of confluent epithelial cell sheets under ALI conditions to induce both apicobasal and morphologically planar polarized epithelium. Microgrooves are imprinted into the surface of the gelatin insert using elastomeric stamps moulded from a diffraction grating film and gels are stabilized by crosslinking with glutaraldehyde. We show that microgrooved gelatin inserts produce alignment of 3T3 fibroblasts and a number of epithelial cell lines (ARPE-19, BEAS2B and IMCD3 cells). Furthermore, we show that BEAS2B apicobasally polarize and form a similar density of cilia on both gelatin inserts and standard transwell filters used for ALI culture but that as apicobasal polarization progresses cell alignment on the grooves is lost. Our method provides a simple strategy that can easily be adopted by labs without microfabrication expertise for manipulating epithelial organization in transwell culture and studying the interplay of various polarization forces.
Collapse
Affiliation(s)
- John P Soleas
- Institute of Medical Science, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada
| | | | | |
Collapse
|
38
|
Garland SP, McKee CT, Chang YR, Raghunathan VK, Russell P, Murphy CJ. A cell culture substrate with biologically relevant size-scale topography and compliance of the basement membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:2101-8. [PMID: 24524303 PMCID: PMC3983385 DOI: 10.1021/la403590v] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/31/2014] [Indexed: 05/31/2023]
Abstract
A growing body of literature broadly documents that a wide array of fundamental cell behaviors are modulated by the physical attributes of the cellular microenvironment, yet in vitro assays are typically carried out using tissue culture plastic or glass substrates that lack the 3-dimensional topography present in vivo and have stiffness values that far exceed that of cellular and stromal microenvironments. This work presents a method for the fabrication of thin hydrogel films that can replicate arbitrary topographies with a resolution of 400 nm that possess an elastic modulus of approximately 250 kPa. Material characterization including swelling behavior and mechanics were performed and reported. Cells cultured on these surfaces patterned with anisotropic ridges and grooves react to the biophysical cues present and show an alignment response.
Collapse
Affiliation(s)
- Shaun P. Garland
- Department of Biomedical
Engineering, University of California, Davis, Davis, California 95616, United States
| | - Clayton T. McKee
- Department of Surgical and Radiological Sciences, School of Veterinary
Medicine, University of California, Davis, Davis, California 95616, United States
| | - Yow-Ren Chang
- Department of Surgical and Radiological Sciences, School of Veterinary
Medicine, University of California, Davis, Davis, California 95616, United States
| | - Vijay Krishna Raghunathan
- Department of Surgical and Radiological Sciences, School of Veterinary
Medicine, University of California, Davis, Davis, California 95616, United States
| | - Paul Russell
- Department of Surgical and Radiological Sciences, School of Veterinary
Medicine, University of California, Davis, Davis, California 95616, United States
| | - Christopher J. Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary
Medicine, University of California, Davis, Davis, California 95616, United States
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
39
|
Raghunathan V, McKee C, Cheung W, Naik R, Nealey PF, Russell P, Murphy CJ. Influence of extracellular matrix proteins and substratum topography on corneal epithelial cell alignment and migration. Tissue Eng Part A 2014; 19:1713-22. [PMID: 23488816 DOI: 10.1089/ten.tea.2012.0584] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The basement membrane (BM) of the corneal epithelium presents biophysical cues in the form of topography and compliance that can impact the phenotype and behaviors of cells and their nuclei through modulation of cytoskeletal dynamics. In addition, it is also well known that the intrinsic biochemical attributes of BMs can modulate cell behaviors. In this study, the influence of the combination of exogenous coating of extracellular matrix proteins (ECM) (fibronectin-collagen [FNC]) with substratum topography was investigated on cytoskeletal architecture as well as alignment and migration of immortalized corneal epithelial cells. In the absence of FNC coating, a significantly greater percentage of cells aligned parallel with the long axis of the underlying anisotropically ordered topographic features; however, their ability to migrate was impaired. Additionally, changes in the surface area, elongation, and orientation of cytoskeletal elements were differentially influenced by the presence or absence of FNC. These results suggest that the effects of topographic cues on cells are modulated by the presence of surface-associated ECM proteins. These findings have relevance to experiments using cell cultureware with biomimetic biophysical attributes as well as the integration of biophysical cues in tissue-engineering strategies and the development of improved prosthetics.
Collapse
Affiliation(s)
- Vijaykrishna Raghunathan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Paz AC, Soleas J, Poon JC, Trieu D, Waddell TK, McGuigan AP. Challenges and Opportunities for Tissue-Engineering Polarized Epithelium. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:56-72. [DOI: 10.1089/ten.teb.2013.0144] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ana C. Paz
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - John Soleas
- Latner Thoracic Surgery Research Laboratories, McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - James C.H. Poon
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Surgery Research Laboratories, McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Dennis Trieu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Latner Thoracic Surgery Research Laboratories, McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Thomas K. Waddell
- Latner Thoracic Surgery Research Laboratories, McEwen Centre for Regenerative Medicine, Toronto General Hospital, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Alison P. McGuigan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Karamichos D, Funderburgh ML, Hutcheon AEK, Zieske JD, Du Y, Wu J, Funderburgh JL. A role for topographic cues in the organization of collagenous matrix by corneal fibroblasts and stem cells. PLoS One 2014; 9:e86260. [PMID: 24465995 PMCID: PMC3897697 DOI: 10.1371/journal.pone.0086260] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/10/2013] [Indexed: 12/13/2022] Open
Abstract
Human corneal fibroblasts (HCF) and corneal stromal stem cells (CSSC) each secrete and organize a thick stroma-like extracellular matrix in response to different substrata, but neither cell type organizes matrix on tissue-culture polystyrene. This study compared cell differentiation and extracellular matrix secreted by these two cell types when they were cultured on identical substrata, polycarbonate Transwell filters. After 4 weeks in culture, both cell types upregulated expression of genes marking differentiated keratocytes (KERA, CHST6, AQP1, B3GNT7). Absolute expression levels of these genes and secretion of keratan sulfate proteoglycans were significantly greater in CSSC than HCF. Both cultures produced extensive extracellular matrix of aligned collagen fibrils types I and V, exhibiting cornea-like lamellar structure. Unlike HCF, CSSC produced little matrix in the presence of serum. Construct thickness and collagen organization was enhanced by TGF-ß3. Scanning electron microscopic examination of the polycarbonate membrane revealed shallow parallel grooves with spacing of 200–300 nm, similar to the topography of aligned nanofiber substratum which we previously showed to induce matrix organization by CSSC. These results demonstrate that both corneal fibroblasts and stromal stem cells respond to a specific pattern of topographical cues by secreting highly organized extracellular matrix typical of corneal stroma. The data also suggest that the potential for matrix secretion and organization may not be directly related to the expression of molecular markers used to identify differentiated keratocytes.
Collapse
Affiliation(s)
- Dimitrios Karamichos
- Schepens Eye Research Institute/Massachusetts Eye and Ear and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Martha L. Funderburgh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Audrey E. K. Hutcheon
- Schepens Eye Research Institute/Massachusetts Eye and Ear and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James D. Zieske
- Schepens Eye Research Institute/Massachusetts Eye and Ear and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jian Wu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - James L. Funderburgh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
42
|
López-Bosque MJ, Tejeda-Montes E, Cazorla M, Linacero J, Atienza Y, Smith KH, Lladó A, Colombelli J, Engel E, Mata A. Fabrication of hierarchical micro-nanotopographies for cell attachment studies. NANOTECHNOLOGY 2013; 24:255305. [PMID: 23727615 DOI: 10.1088/0957-4484/24/25/255305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report on the development of micro/nanofabrication processes to create hierarchical surface topographies that expand from 50 nm to microns in size on different materials. Three different approaches (named FIB1, FIB2, and EBL) that combine a variety of techniques such as photolithography, reactive ion etching, focused ion beam lithography, electron beam lithography, and soft lithography were developed, each one providing different advantages and disadvantages. The EBL approach was employed to fabricate substrates comprising channels with features between 200 nm and 10 μm in size on polymethylmethacrylate (PMMA), which were then used to investigate the independent or competitive effects of micro- and nanotopographies on cell adhesion and morphology. Rat mesenchymal stem cells (rMSCs) were cultured on four different substrates including 10 μm wide and 500 nm deep channels separated by 10 μm distances (MICRO), 200 nm wide and 100 nm deep nanochannels separated by 200 nm distances (NANO), their combination in parallel (PARAL), and in a perpendicular direction (PERP). Rat MSCs behaved differently on all tested substrates with a high degree of alignment (as measured by both number of aligned cells and average angle) on both NANO and MICRO. Furthermore, cells exhibited the highest level of alignment on PARAL, suggesting a synergetic effect of the two scales of topographies. On the other hand, cells on PERP exhibited the lowest alignment and a consistent change in morphology over time that seemed to be the result of interactions with both micro- and nanochannels positioned in the perpendicular direction, also suggesting a competitive effect of the topographies.
Collapse
Affiliation(s)
- M J López-Bosque
- The Nanotechnology Platform, Parc Científic Barcelona, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Li JY, Ho YC, Chung YC, Lin FC, Liao WL, Tsai WB. Preparation of micron/submicron hybrid patterns via a two-stage UV-imprint technique and their dimensional effects on cell adhesion and alignment. Biofabrication 2013; 5:035003. [PMID: 23714853 DOI: 10.1088/1758-5082/5/3/035003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cell adhesion, movement and proliferation on a biomaterial have been broadly explored and known to be induced by the morphology and structure of material surfaces. In order to explore the effects of hybrid structures (combination of micro- and nanofeatures on a pattern) on cell adhesion and alignment, a micro-featured mold was firstly prepared using partial UV-irradiation and the protruding top of the mold was then imprinted with nano-featured templates via successive UV irradiation. An oxygen inhibition effect was utilized in the course of UV curing and a two-step molding process, to form multiscale hybrid structures. The poly(dimethyl siloxane) (PDMS) replica of the hybrid mold was manufactured and employed to fabricate hybrid polymeric patterns for cell attachment. The underlying micro-feature was chosen to be a 25-µm-wide pattern and the nanostructures on the protrusions of the micropattern were different ruled nanogrooves, either parallel or perpendicular to the micro-featured pattern. In cell attachment measurement, 3T3 fibroblasts attached to poly(methyl methacrylate) (PMMA) samples seemed to be preferentially located on the recessed area of the hybrid patterns; however, 3T3 fibroblasts were aligned with nano-features, no matter if the nanogrooves were parallel or perpendicular to the micro-featured patterns. The nanogroove size was found to determine the effectiveness of cell alignment.
Collapse
Affiliation(s)
- J-Y Li
- Department of Chemical and materials Engineering, National University of Kaohsiung, #700, Kaohsiung University Rd., Nan-Tsu District, Kaohsiung 811, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
44
|
Dreier B, Gasiorowski JZ, Morgan JT, Nealey PF, Russell P, Murphy CJ. Early responses of vascular endothelial cells to topographic cues. Am J Physiol Cell Physiol 2013; 305:C290-8. [PMID: 23703527 DOI: 10.1152/ajpcell.00264.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular endothelial cells in vivo are exposed to multiple biophysical cues provided by the basement membrane, a specialized extracellular matrix through which vascular endothelial cells are attached to the underlying stroma. The importance of biophysical cues has been widely reported, but the signaling pathways that mediate cellular recognition and response to these cues remain poorly understood. Anisotropic topographically patterned substrates with nano- through microscale feature dimensions were fabricated to investigate cellular responses to topographic cues. The present study focuses on early events following exposure of human umbilical vein endothelial cells (HUVECs) to these patterned substrates. In serum-free medium and on substrates without protein coating, HUVECs oriented parallel to the long axis of underlying ridges in as little as 30 min. Immunocytochemistry showed clear differences in the localization of the focal adhesion proteins Src, p130Cas, and focal adhesion kinase (FAK) in HUVECs cultured on topographically patterned surfaces and on planar surfaces, suggesting involvement of these proteins in mediating the response to topographic features. Knockdown experiments demonstrated that FAK was not necessary for HUVEC alignment in response to topographic cues, although FAK knockdown did modulate HUVEC migration. These data identify key events early in the cellular response to biophysical stimuli.
Collapse
Affiliation(s)
- Britta Dreier
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | | | | | | | | | | |
Collapse
|
45
|
Yañez-Soto B, Liliensiek S, Murphy CJ, Nealey PF. Biochemically and topographically engineered poly(ethylene glycol) diacrylate hydrogels with biomimetic characteristics as substrates for human corneal epithelial cells. J Biomed Mater Res A 2013; 101:1184-94. [PMID: 23255502 PMCID: PMC3581740 DOI: 10.1002/jbm.a.34412] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/18/2012] [Accepted: 08/06/2012] [Indexed: 11/11/2022]
Abstract
Incorporation of biophysical and biochemical cues into the design of biomaterials is an important strategy for tissue engineering, the design of biomedical implants and cell culture. Hydrogels synthesized from poly(ethylene glycol) diacrylate (PEGDA) were investigated as a platform to simultaneously present human corneal epithelial cells (HCECs) in vitro with topography and adhesion peptides to mimic the native physical and chemical attributes of the basement membrane underlying the epithelium in vivo. Hydrogels synthesized from aqueous solutions of 20% PEGDA (M(w) = 3400 g/mol) prevented nonspecific cell adhesion and were functionalized with the integrin-binding peptide Arg-Gly-Asp (RGD) in concentrations from 5 to 20 mM. The hydrogels swelled minimally after curing and were molded with ridge and groove features with lateral dimensions from 200 to 2000 nm and 300-nm depth. HCECs were cultured on topographic surfaces functionalized with RGD and compared with control unfunctionalized topographic substrates. HCEC alignment, either parallel or perpendicular to ridges, was influenced by the culture media on substrates promoting nonspecific attachment. In contrast, the alignment of HCECs cultured on RGD hydrogels showed substantially less dependence on the culture media. In the latter case, the moldable RGD-functionalized hydrogels allowed for decoupling the cues from surface chemistry, soluble factors, and topography that simultaneously impact HCEC behavior.
Collapse
Affiliation(s)
- B. Yañez-Soto
- Department of Chemical and Biological Engineering, School of Engineering, University of Wisconsin, Madison, 53706, WI, USA
| | - S.J. Liliensiek
- Department of Chemical and Biological Engineering, School of Engineering, University of Wisconsin, Madison, 53706, WI, USA
| | - C. J. Murphy
- Department of Veterinary Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA
- Department of Ophthalmology and Vision Sciences, School of Medicine, University of California, Davis, Davis, CA, 95817, USA
| | - P. F. Nealey
- Department of Chemical and Biological Engineering, School of Engineering, University of Wisconsin, Madison, 53706, WI, USA
| |
Collapse
|
46
|
Anisotropic rigidity sensing on grating topography directs human mesenchymal stem cell elongation. Biomech Model Mechanobiol 2013; 13:27-39. [PMID: 23529613 DOI: 10.1007/s10237-013-0483-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/10/2013] [Indexed: 10/27/2022]
Abstract
Through mechanotransduction, cells can sense physical cues from the extracellular environment and convert them into internal signals that affect various cellular functions. For example, human mesenchymal stem cells (hMSCs) cultured on topographical gratings have been shown to elongate and differentiate to different extents depending on grating width. Using a combination of experiments and mathematical modeling, the physical parameters of substrate topography that direct cell elongation were determined. On a variety of topographical gratings with different grating widths, heights and rigidity, elongation of hMSCs was measured and a monotonic increase was observed for grating aspect ratio (crosssectional height to line-width ratio) between 0.035 and 2. The elongation was also dependent on the grating substrate rigidity over a range of 0.18-1.43 MPa. A mathematical model was developed to explain our observations by relating cell elongation to the anisotropic deformation of the gratings and how this anisotropy depends on the aspect ratio and rigidity of the gratings. Our model was in good agreement with the experimental data for the range of grating aspect ratio and substrate rigidity studied. In addition, we also showed that the percentage of aligned cells, which had a strong linear correlation with elongation for slightly elongated cells, saturated toward 100 % at higher level of cell elongation. Our results may be useful in designing gratings to elicit specific cellular responses that may depend on the extent of cell elongation.
Collapse
|
47
|
Tocce E, Liliensiek S, Broderick A, Jiang Y, Murphy K, Murphy C, Lynn D, Nealey P. The influence of biomimetic topographical features and the extracellular matrix peptide RGD on human corneal epithelial contact guidance. Acta Biomater 2013; 9:5040-51. [PMID: 23069317 DOI: 10.1016/j.actbio.2012.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/18/2012] [Accepted: 10/05/2012] [Indexed: 10/27/2022]
Abstract
A major focus in the field of tissue engineering is the regulation of essential cell behaviors through biophysical and biochemical cues from the local extracellular environment. The impact of nanotopographical cues on human corneal epithelial cell (HCEC) contact guidance, proliferation, migration and adhesion have previously been demonstrated. In the current report we have expanded our study of HCEC responses to include both biophysical and controlled biochemical extracellular cues. By exploiting methods for the layer-by-layer coating of substrates with reactive poly(ethylene imine)/poly(2-vinyl-4,4-dimethylazlactone)-based multilayer thin films we have incorporated a single adhesion peptide motif, Arg-Gly-Asp (RGD), on topographically patterned substrates. This strategy eliminates protein adsorption onto the surface, thus decoupling the effects of the HCEC response to topographical cues from adsorbed proteins and soluble media proteins. The direction of cell alignment was dependent on the scale of the topographical cues and, to less of an extent, the culture medium. In EpiLife® medium cell alignment to unmodified-NOA81 topographical features, which allowed protein adsorption, differed significantly from cell alignment on RGD-modified features. These results demonstrate that the surface chemical composition significantly affects how HCECs respond to topographical cues. In summary, we have demonstrated modulation of the HCEC response to environmental cues through critical substrate and soluble parameters.
Collapse
|
48
|
|
49
|
Dreier B, Raghunathan VK, Russell P, Murphy CJ. Focal adhesion kinase knockdown modulates the response of human corneal epithelial cells to topographic cues. Acta Biomater 2012; 8:4285-94. [PMID: 22813850 DOI: 10.1016/j.actbio.2012.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 06/15/2012] [Accepted: 07/10/2012] [Indexed: 11/17/2022]
Abstract
A rapidly expanding literature broadly documents the impact of biophysical cues on cellular behaviors. In spite of increasing research efforts in this field, the underlying signaling processes are poorly understood. One of the candidate molecules for being involved in mechanotransduction is focal adhesion kinase (FAK). To examine the role of FAK in the response of immortalized human corneal epithelial (hTCEpi) cells to topographic cues, FAK was depleted by siRNA transfection. Contrary to expectations, FAK knockdown resulted in an enhanced response with a greater number of hTCEpi cells aligned to the long axis of anisotropically ordered surface ridges and grooves. Both underlying topographic features and FAK depletion modulated the migration of corneal epithelial cells. The impact of FAK knockdown on both migration and alignment varied depending on the topographic cues to which the cells were exposed, with the most significant change observed on the biologically relevant size scale (400nm). Additionally, a change in expression of genes encoding perinuclear Nesprins 1 and 2 (SYNE1, 2) was observed in response to topographic cues. SYNE1/2 expression was also altered by FAK depletion, suggesting that these proteins might represent a link between cytosolic and nuclear signaling processes. The data presented here have relevance to our understanding of the fundamental processes involved in corneal cell behavior to topographic cues. These results highlight the importance of incorporating biophysical cues in the conduction of in vitro studies and into the design and fabrication of implantable prosthetics.
Collapse
Affiliation(s)
- Britta Dreier
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, One Shields Avenue, University of California Davis, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
50
|
Kearns VR, Williams RL, Mirvakily F, Doherty PJ, Martin N. Guided gingival fibroblast attachment to titanium surfaces: an in vitro study. J Clin Periodontol 2012; 40:99-108. [PMID: 23134265 DOI: 10.1111/jcpe.12025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 08/20/2012] [Accepted: 09/09/2012] [Indexed: 11/29/2022]
Abstract
AIM To assess the potential of gingival fibroblasts to attach in a predetermined linear orientation to a nano-topography of aligned fibres on titanium surfaces and determine the ability of such cells to deposit aligned collagen fibre matrix. MATERIALS AND METHODS smooth glass and rough titanium substrates were coated with polytetrafluoroethylene (PTFE) nano-fibres. Ammonia plasma treatment was used to modify the surface chemistry. Human gingival fibroblasts were cultured on substrates and orientation and collagen deposition was assessed. RESULTS Straight, unidirectional, parallel PTFE nano-fibres were deposited over the titanium features. By 7 days, the majority of cells were observed to orient to untreated fibres despite the presence of competing titanium surface features. On plasma-treated fibre-coated titanium substrates, cell orientation was mixed. On uncoated substrates, the majority of cells oriented to the titanium surface features. On fibre-coated glass substrates, cells oriented themselves with untreated and plasma-treated fibres and secreted collagen in the same direction after 1 week. On uncoated glass substrates, there was no preferred direction of collagen orientation. CONCLUSION Polytetrafluoroethylene nano-fibres induced cell and collagen orientation. Surface chemistry appeared only to affect cell behaviour at early time points. An implant surface that controls cell orientation may also influence the orientation of collagen, providing improved gingival support.
Collapse
Affiliation(s)
- Victoria R Kearns
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.
| | | | | | | | | |
Collapse
|