1
|
Skubis-Sikora A, Hudecki A, Sikora B, Wieczorek P, Hermyt M, Hreczka M, Likus W, Markowski J, Siemianowicz K, Kolano-Burian A, Czekaj P. Toxicological Assessment of Biodegradable Poli-ε-Caprolactone Polymer Composite Materials Containing Hydroxyapatite, Bioglass, and Chitosan as Potential Biomaterials for Bone Regeneration Scaffolds. Biomedicines 2024; 12:1949. [PMID: 39335462 PMCID: PMC11428512 DOI: 10.3390/biomedicines12091949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Polycaprolactone (PCL) is a biodegradable polyester that might be used in tissue engineering to obtain scaffolds for bone reconstruction using 3D-printing technologies. New material compositions based on PCL, with improved physicochemical properties and excellent biocompatibility, would improve its applicability in bone regeneration. The aim of this study was to assess the potential toxic effects of PCL-based composite materials containing 5% hydroxyapatite (PCL/SHAP), 5% bioglass (PCL/BIO), or 5% chitosan (PCL/CH) on MG-63 human fibroblast-like cells in vitro. Material tests were carried out using X-ray diffraction, differential thermal analysis/thermal gravimetry, BET specific surface analysis, and scanning electron microscopy. The effect of the biomaterials on the MG-63 cells was then assessed based on toxicity tests using indirect and direct contact methods. The analysis showed that the tested biomaterials did not significantly affect cell morphology, viability, proliferation, or migration. We concluded that biodegradable PCL-based scaffolds may be suitable for tissue scaffold production, and the addition of bioglass improves the growth of cultured cells.
Collapse
Affiliation(s)
- Aleksandra Skubis-Sikora
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.S.-S.); (B.S.); (P.W.); (M.H.)
| | - Andrzej Hudecki
- Łukasiewicz Research Network-Institute of Non-Ferrous Metals, 44-121 Gliwice, Poland; (A.H.); (M.H.); (A.K.-B.)
| | - Bartosz Sikora
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.S.-S.); (B.S.); (P.W.); (M.H.)
| | - Patrycja Wieczorek
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.S.-S.); (B.S.); (P.W.); (M.H.)
| | - Mateusz Hermyt
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.S.-S.); (B.S.); (P.W.); (M.H.)
| | - Marek Hreczka
- Łukasiewicz Research Network-Institute of Non-Ferrous Metals, 44-121 Gliwice, Poland; (A.H.); (M.H.); (A.K.-B.)
| | - Wirginia Likus
- Department of Anatomy, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Jarosław Markowski
- Department of Laryngology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Krzysztof Siemianowicz
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Aleksandra Kolano-Burian
- Łukasiewicz Research Network-Institute of Non-Ferrous Metals, 44-121 Gliwice, Poland; (A.H.); (M.H.); (A.K.-B.)
| | - Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (A.S.-S.); (B.S.); (P.W.); (M.H.)
| |
Collapse
|
2
|
Bektas C, Lee K, Jackson A, Bhatia M, Mao Y. Bovine Placentome-Derived Extracellular Matrix: A Sustainable 3D Scaffold for Cultivated Meat. Bioengineering (Basel) 2024; 11:854. [PMID: 39199811 PMCID: PMC11352162 DOI: 10.3390/bioengineering11080854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Cultivated meat, an advancement in cellular agriculture, holds promise in addressing environmental, ethical, and health challenges associated with traditional meat production. Utilizing tissue engineering principles, cultivated meat production employs biomaterials and technologies to create cell-based structures by introducing cells into a biocompatible scaffold, mimicking tissue organization. Among the cell sources used for producing muscle-like tissue for cultivated meats, primary adult stem cells like muscle satellite cells exhibit robust capabilities for proliferation and differentiation into myocytes, presenting a promising avenue for cultivated meat production. Evolutionarily optimized for growth in a 3D microenvironment, these cells benefit from the biochemical and biophysical cues provided by the extracellular matrix (ECM), regulating cell organization, interactions, and behavior. While plant protein-based scaffolds have been explored for their utilization for cultivated meat, they lack the biological cues for animal cells unless functionalized. Conversely, a decellularized bovine placental tissue ECM, processed from discarded birth tissue, achieves the biological functionalities of animal tissue ECM without harming animals. In this study, collagen and total ECM were prepared from decellularized bovine placental tissues. The collagen content was determined to be approximately 70% and 40% in isolated collagen and ECM, respectively. The resulting porous scaffolds, crosslinked through a dehydrothermal (DHT) crosslinking method without chemical crosslinking agents, supported the growth of bovine myoblasts. ECM scaffolds exhibited superior compatibility and stability compared to collagen scaffolds. In an attempt to make cultivate meat constructs, bovine myoblasts were cultured in steak-shaped ECM scaffolds for about 50 days. The resulting construct not only resembled muscle tissues but also displayed high cellularity with indications of myogenic differentiation. Furthermore, the meat constructs were cookable and able to sustain the grilling/frying. Our study is the first to utilize a unique bovine placentome-derived ECM scaffold to create a muscle tissue-like meat construct, demonstrating a promising and sustainable option for cultivated meat production.
Collapse
Affiliation(s)
- Cemile Bektas
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA; (C.B.); (K.L.); (A.J.)
| | - Kathleen Lee
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA; (C.B.); (K.L.); (A.J.)
| | - Anisha Jackson
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA; (C.B.); (K.L.); (A.J.)
| | - Mohit Bhatia
- Atelier Meats, 666 Burrard Street, Suite 500, Vancouver, BC V6C 3P6, Canada;
| | - Yong Mao
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA; (C.B.); (K.L.); (A.J.)
| |
Collapse
|
3
|
Ferraz MP. An Overview on the Big Players in Bone Tissue Engineering: Biomaterials, Scaffolds and Cells. Int J Mol Sci 2024; 25:3836. [PMID: 38612646 PMCID: PMC11012232 DOI: 10.3390/ijms25073836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Presently, millions worldwide suffer from degenerative and inflammatory bone and joint issues, comprising roughly half of chronic ailments in those over 50, leading to prolonged discomfort and physical limitations. These conditions become more prevalent with age and lifestyle factors, escalating due to the growing elderly populace. Addressing these challenges often entails surgical interventions utilizing implants or bone grafts, though these treatments may entail complications such as pain and tissue death at donor sites for grafts, along with immune rejection. To surmount these challenges, tissue engineering has emerged as a promising avenue for bone injury repair and reconstruction. It involves the use of different biomaterials and the development of three-dimensional porous matrices and scaffolds, alongside osteoprogenitor cells and growth factors to stimulate natural tissue regeneration. This review compiles methodologies that can be used to develop biomaterials that are important in bone tissue replacement and regeneration. Biomaterials for orthopedic implants, several scaffold types and production methods, as well as techniques to assess biomaterials' suitability for human use-both in laboratory settings and within living organisms-are discussed. Even though researchers have had some success, there is still room for improvements in their processing techniques, especially the ones that make scaffolds mechanically stronger without weakening their biological characteristics. Bone tissue engineering is therefore a promising area due to the rise in bone-related injuries.
Collapse
Affiliation(s)
- Maria Pia Ferraz
- Departamento de Engenharia Metalúrgica e de Materiais, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal;
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4099-002 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4099-002 Porto, Portugal
| |
Collapse
|
4
|
Toosi S, Javid-Naderi MJ, Tamayol A, Ebrahimzadeh MH, Yaghoubian S, Mousavi Shaegh SA. Additively manufactured porous scaffolds by design for treatment of bone defects. Front Bioeng Biotechnol 2024; 11:1252636. [PMID: 38312510 PMCID: PMC10834686 DOI: 10.3389/fbioe.2023.1252636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024] Open
Abstract
There has been increasing attention to produce porous scaffolds that mimic human bone properties for enhancement of tissue ingrowth, regeneration, and integration. Additive manufacturing (AM) technologies, i.e., three dimensional (3D) printing, have played a substantial role in engineering porous scaffolds for clinical applications owing to their high level of design and fabrication flexibility. To this end, this review article attempts to provide a detailed overview on the main design considerations of porous scaffolds such as permeability, adhesion, vascularisation, and interfacial features and their interplay to affect bone regeneration and osseointegration. Physiology of bone regeneration was initially explained that was followed by analysing the impacts of porosity, pore size, permeability and surface chemistry of porous scaffolds on bone regeneration in defects. Importantly, major 3D printing methods employed for fabrication of porous bone substitutes were also discussed. Advancements of MA technologies have allowed for the production of bone scaffolds with complex geometries in polymers, composites and metals with well-tailored architectural, mechanical, and mass transport features. In this way, a particular attention was devoted to reviewing 3D printed scaffolds with triply periodic minimal surface (TPMS) geometries that mimic the hierarchical structure of human bones. In overall, this review enlighten a design pathway to produce patient-specific 3D-printed bone substitutions with high regeneration and osseointegration capacity for repairing large bone defects.
Collapse
Affiliation(s)
- Shirin Toosi
- Stem Cell and Regenerative Medicine Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Mohammad Javad Javid-Naderi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, United States
| | | | - Sima Yaghoubian
- Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Mousavi Shaegh
- Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Laboratory for Microfluidics and Medical Microsystems, BuAli Research Institute, Mashhad University of Medical Science, Mashhad, Iran
- Clinical Research Unit, Ghaem Hospital, Mashhad University of Medical Science, Mashhad, Iran
| |
Collapse
|
5
|
Halder T, Barot H, Kumar B, Kaushik V, Patel H, Bhut H, Saha B, Poddar S, Acharya N. An Insight into Biodegradable Polymers and their Biomedical Applications for Wound Healing. Curr Pharm Des 2024; 30:2425-2444. [PMID: 38982925 DOI: 10.2174/0113816128295935240425101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/31/2024] [Indexed: 07/11/2024]
Abstract
Biodegradable polymers, encompassing both natural and synthetic polymers, have demonstrated efficacy as carriers for synthetic drugs, natural bioactive molecules, and inorganic metals. This is due to their ability to control the release of these substances. As a result, various advanced materials, such as nanoparticle- loaded hydrogels, nanofibrous scaffolds, and nanocomposites, have been developed. These materials have shown promise in enhancing processes, such as cell proliferation, vascular angiogenesis, hair growth, and wound healing management. Natural polymers, including hyaluronic acid, collagen, chitosan, gelatin, and alginate, as well as synthetic polymers like polylactic acid, polyglycolic acid, polylactic co-glycolic acid, and PCA, have significant potential for promoting wound healing. This study examines the advancements in biodegradable polymers for wound healing, specifically focusing on each polymer and its distinctive formulations. It also discusses the in vitro experiments conducted using different cell lines, as well as the in vivo studies that explore the numerous uses of these polymers in wound healing. The discussion also included the exploration of modifications or combinations of several polymers, as well as surface changes, in order to produce synergistic effects and address the limitations of individual polymers. The goal was to expedite the healing process of different chronic wounds. Due to this, there have been notable advancements in the technological use of polymeric mixes, including biodegradable polymer-based scaffolds, which have accelerated the process of wound healing.
Collapse
Affiliation(s)
- Tripti Halder
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Harshit Barot
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Bhavna Kumar
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Vishakha Kaushik
- Department of Physics, School of Physical Sciences, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Hiren Patel
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Hastik Bhut
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Bijit Saha
- Jodas Expoim Pvt Ltd, Kukatpally, Telangana, Hyderabad 500072, India
| | - Sibani Poddar
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Niyati Acharya
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| |
Collapse
|
6
|
Liu S, Al-Danakh A, Wang H, Sun Y, Wang L. Advancements in scaffold for treating ligament injuries; in vitro evaluation. Biotechnol J 2024; 19:e2300251. [PMID: 37974555 DOI: 10.1002/biot.202300251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Tendon/ligament (T/L) injuries are a worldwide health problem that affects millions of people annually. Due to the characteristics of tendons, the natural rehabilitation of their injuries is a very complex and lengthy process. Surgical treatment of a T/L injury frequently necessitates using autologous or allogeneic grafts or synthetic materials. Nonetheless, these alternatives have limitations in terms of mechanical properties and histocompatibility, and they do not permit the restoration of the original biological function of the tissue, which can negatively impact the patient's quality of life. It is crucial to find biological materials that possess the necessary properties for the successful surgical treatment of tissues and organs. In recent years, the in vitro regeneration of tissues and organs from stem cells has emerged as a promising approach for preparing autologous tissue and organs, and cell culture scaffolds play a critical role in this process. However, the biological traits and serviceability of different materials used for cell culture scaffolds vary significantly, which can impact the properties of the cultured tissues. Therefore, this review aims to analyze the differences in the biological properties and suitability of various materials based on scaffold characteristics such as cell compatibility, degradability, textile technologies, fiber arrangement, pore size, and porosity. This comprehensive analysis provides valuable insights to aid in the selection of appropriate scaffolds for in vitro tissue and organ culture.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Abdullah Al-Danakh
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haowen Wang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuan Sun
- Liaoning Laboratory of Cancer Genomics and Department of Cell Biology, Dalian Medical University, Dalian, China
| | - Lina Wang
- Department of Urology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Chen X, Fazel Anvari-Yazdi A, Duan X, Zimmerling A, Gharraei R, Sharma N, Sweilem S, Ning L. Biomaterials / bioinks and extrusion bioprinting. Bioact Mater 2023; 28:511-536. [PMID: 37435177 PMCID: PMC10331419 DOI: 10.1016/j.bioactmat.2023.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/19/2023] [Accepted: 06/08/2023] [Indexed: 07/13/2023] Open
Abstract
Bioinks are formulations of biomaterials and living cells, sometimes with growth factors or other biomolecules, while extrusion bioprinting is an emerging technique to apply or deposit these bioinks or biomaterial solutions to create three-dimensional (3D) constructs with architectures and mechanical/biological properties that mimic those of native human tissue or organs. Printed constructs have found wide applications in tissue engineering for repairing or treating tissue/organ injuries, as well as in vitro tissue modelling for testing or validating newly developed therapeutics and vaccines prior to their use in humans. Successful printing of constructs and their subsequent applications rely on the properties of the formulated bioinks, including the rheological, mechanical, and biological properties, as well as the printing process. This article critically reviews the latest developments in bioinks and biomaterial solutions for extrusion bioprinting, focusing on bioink synthesis and characterization, as well as the influence of bioink properties on the printing process. Key issues and challenges are also discussed along with recommendations for future research.
Collapse
Affiliation(s)
- X.B. Chen
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr, S7K 5A9, Saskatoon, Canada
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - A. Fazel Anvari-Yazdi
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - X. Duan
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - A. Zimmerling
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - R. Gharraei
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, S7K 5A9, Canada
| | - N.K. Sharma
- Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Dr, S7K 5A9, Saskatoon, Canada
| | - S. Sweilem
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| | - L. Ning
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| |
Collapse
|
8
|
Khandan-Nasab N, Mahdipour E, Askarian S, Kalantari MR, Ramezanian N, Oskuee RK. Design and characterization of adipose-derived mesenchymal stem cell loaded alginate/pullulan/hyaluronic acid hydrogel scaffold for wound healing applications. Int J Biol Macromol 2023; 241:124556. [PMID: 37088191 DOI: 10.1016/j.ijbiomac.2023.124556] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Recently, significant attention has been focused on the progression of skin equivalents to facilitate faster wound healing and thereby skin restoration. The main aim of this study was the design and characterization of a novel polysaccharide-based hydrogel scaffold by using alginate, pullulan, and hyaluronic acid polymers to provide an appropriate microenvironment to deliver Adipose-derived mesenchymal Stem Cells (ASC) in order to promote wound healing in an animal model. Characterization of synthesized hydrogel was done by using a field emission scanning electron microscope (FE-SEM), Fourier Transform-Infrared spectroscopy (FT-IR), and Differential Scanning Calorimetry (DSC). Also, contact angle analysis, the swelling and mechanical tests were performed. As a result of in vitro studies, cells can be attached, alive, and migrate through the prepared hydrogel scaffold. Finally, the therapeutic effect of the cell-seeded hydrogels was tested in the full-thickness animal wound model. Based on obtained results, the hydrogel-ASC treatment improved the healing process and accelerated wound closure.
Collapse
Affiliation(s)
- Niloofar Khandan-Nasab
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Mahdipour
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeede Askarian
- Non communicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mahmoud Reza Kalantari
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Ramezanian
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Toosi S, Naderi-Meshkin H, Moradi A, Daliri M, Moghimi V, Majd HM, Sahebkar AH, Heirani-Tabasi A, Behravan J. Scaphoid Bone Nonunions: Clinical and Functional Outcomes of Collagen/PGA Scaffolds and Cell-Based Therapy. ACS Biomater Sci Eng 2023; 9:1928-1939. [PMID: 36939654 DOI: 10.1021/acsbiomaterials.2c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
In this study, the procedure for treating the nonunion complication of scaphoid fractures using collagen/poly glycolic acid (CPGA) scaffolds with bone marrow mesenchymal stem cell (BM-MSC) therapy was adopted and compared with the commonly employed autologous bone tissue graft. With conducting a two-armed clinical trial, 10 patients with scaphoid nonunions were enrolled in this investigation. Patients were randomly assigned to two groups treated with (1) CPGA + cell therapy and (2) autologous iliac crest bone graft standard therapy. Treatment outcomes were evaluated three months after surgery, measuring the grip and pinch strengths and wrist range of motion, with two questionnaires: Patient-Rated Wrist Evaluation (PRWE) and Quick form of Disabilities of the Arm, Shoulder, and Hand (QDASH). We have also assessed the union rate using clinical and radiologic healing criteria one and three months post-operatively. Restorative effects of CPGA + cell therapy were similar to those of the autologous bone graft standard therapy, except for the grip strength (P = 0.048) and QDASH score (P = 0.044) changes, which were higher in the CPGA + cell therapy group. Three months following the surgery, radiographic images and computed tomography (CT) scans also demonstrated that the scaphoid union rate in the test group was comparable to that of scaphoids treated with the standard autograft method. Our findings demonstrate that the CPGA + cell therapy is a potential alternative for bone grafting in the treatment of bone nonunions.
Collapse
Affiliation(s)
- Shirin Toosi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Science, Mahhad 9177899191, Iran
| | - Hojjat Naderi-Meshkin
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad 91775-1376, Iran
| | - Ali Moradi
- Orthopedics Research Center, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
| | - Mahla Daliri
- Orthopedics Research Center, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
| | - Vahid Moghimi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad 91775-1376, Iran
| | - Hasan-Mehrad Majd
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Amir Hossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran
| | - Asieh Heirani-Tabasi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center Hospital, Tehran University of Medical Sciences, Tehran 14535, Iran
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177899191, Iran.,School of Pharmacy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
10
|
Hosseinkhani H, Domb AJ, Sharifzadeh G, Nahum V. Gene Therapy for Regenerative Medicine. Pharmaceutics 2023; 15:856. [PMID: 36986717 PMCID: PMC10057434 DOI: 10.3390/pharmaceutics15030856] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The development of biological methods over the past decade has stimulated great interest in the possibility to regenerate human tissues. Advances in stem cell research, gene therapy, and tissue engineering have accelerated the technology in tissue and organ regeneration. However, despite significant progress in this area, there are still several technical issues that must be addressed, especially in the clinical use of gene therapy. The aims of gene therapy include utilising cells to produce a suitable protein, silencing over-producing proteins, and genetically modifying and repairing cell functions that may affect disease conditions. While most current gene therapy clinical trials are based on cell- and viral-mediated approaches, non-viral gene transfection agents are emerging as potentially safe and effective in the treatment of a wide variety of genetic and acquired diseases. Gene therapy based on viral vectors may induce pathogenicity and immunogenicity. Therefore, significant efforts are being invested in non-viral vectors to enhance their efficiency to a level comparable to the viral vector. Non-viral technologies consist of plasmid-based expression systems containing a gene encoding, a therapeutic protein, and synthetic gene delivery systems. One possible approach to enhance non-viral vector ability or to be an alternative to viral vectors would be to use tissue engineering technology for regenerative medicine therapy. This review provides a critical view of gene therapy with a major focus on the development of regenerative medicine technologies to control the in vivo location and function of administered genes.
Collapse
Affiliation(s)
- Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10019, USA
| | - Abraham J. Domb
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Victoria Nahum
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
11
|
Mohammad-Pour N, Moghimi V, Bidkhori HR, Momeni-Moghaddam M, Naderi-Meshkin H. Comparing the Effects of Two Cryoprotectant Protocols, Dimethyl-Sulfoxide (DMSO) and Glycerol, on the Recovery Rate of Cultured Keratinocytes on Amniotic Membrane. INT J LOW EXTR WOUND 2023:15347346231155751. [PMID: 36794512 DOI: 10.1177/15347346231155751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Background: Off-the-shelf supply of viable engineered tissue is critical for effective and fast treatment of life-threatening injuries such as deep burns. An expanded keratinocyte sheet on the human amniotic membrane (KC sheet-HAM) is a beneficial tissue-engineering product for wound healing. To access an on-hand supply for the widespread application and overcome the time-consuming process, it is necessary to develop a cryopreservation protocol that guarantees the higher recovery of viable keratinocyte sheets after freeze-thawing. This research aimed to compare the recovery rate of KC sheet-HAM after cryopreservation by dimethyl-sulfoxide (DMSO) and glycerol. Methods: Amniotic membrane was decellularized with trypsin, and keratinocytes were cultured on it to form a multilayer, flexible, easy-to-handle KC sheet-HAM. The effects of 2 different cryoprotectants were investigated by histological analysis, live-dead staining, and proliferative capacity assessments before and after cryopreservation. Results: KCs well adhered and proliferated on the decellularized amniotic membrane and successfully represented 3 to 4 stratified layers of epithelialization after 2 to 3 weeks culture period; making it easy to cut, transfer, and cryopreserve. However, viability and proliferation assay indicated that both DMSO and glycerol cryosolutions have detrimental effects on KCs, and KCs-sheet HAM could not recover to the control level after 8 days of culture post-cryo. The KC sheet lost its stratified multilayer nature on AM, and sheet layers were reduced in both cryo-groups compared to the control. Conclusion: Expanding keratinocytes on the decellularized amniotic membrane as a multilayer sheet made a viable easy-to-handle sheet, nonetheless cryopreservation reduced viability and affected histological structure after thawing. Although some viable cells were detectable, our research highlighted the need for a better cryoprotectant protocol other than DMSO and glycerol, specific for the successful banking of viable tissue constructs.
Collapse
Affiliation(s)
- Najmeh Mohammad-Pour
- Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Vahid Moghimi
- Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
- Blood Borne Infections Research Center, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Madjid Momeni-Moghaddam
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Hojjat Naderi-Meshkin
- Stem Cells and Regenerative Medicine Department, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
- Wellcome-Wolfson Institute for Experimental Medicine, Belfast, UK
| |
Collapse
|
12
|
Toosi S, Naderi-Meshkin H, Esmailzadeh Z, Behravan G, Ramakrishna S, Behravan J. Bioactive glass-collagen/poly (glycolic acid) scaffold nanoparticles exhibit improved biological properties and enhance osteogenic lineage differentiation of mesenchymal stem cells. Front Bioeng Biotechnol 2022; 10:963996. [PMID: 36159698 PMCID: PMC9490118 DOI: 10.3389/fbioe.2022.963996] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Today’s using tissue engineering and suitable scaffolds have got attention to increase healing of non-union bone fractures. In this study, we aimed to prepare and characterize scaffolds with functional and mechanical properties suitable for bone regeneration. Porous scaffolds containing collagen-poly glycolic acid (PGA) blends and various quantities of bioactive glass (BG) 45S5 were fabricated. Scaffolds with different compositions (BG/collagen-PGA ratios (w/w): 0/100; 40/60; 70/30) were characterized for their morphological properties, bioactivity, and mechanical behavior. Then, biocompatibility and osteogenic differentiation potential of the scaffolds were analyzed by seeding mesenchymal stem cells (MSCs). Scaffolds made with collagen-PGA combined with the BG (45S5) were found to have interconnected pores (average pore diameter size 75–115 µm) depending on the percentage of the BG added. Simulated body fluid (SBF) soaking experiments indicated the stability of scaffolds in SBF regardless of their compositions, while the scaffolds retained their highly interconnected structure. The elastic moduli, cell viability, osteogenic differentiation of the BG/collagen-PGA 40/60 and 70/30 scaffolds were superior to the original BG/collagen-PGA (0/100). These results suggest that BG incorporation enhanced the physical stability of our collagen-PGA scaffold previously reported. This new scaffold composition provides a promising platform to be used as a non-toxic scaffold for bone regeneration and tissue engineering.
Collapse
Affiliation(s)
- Shirin Toosi
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- *Correspondence: Shirin Toosi, ; Javad Behravan,
| | - Hojjat Naderi-Meshkin
- Stem Cells and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran
| | - Zohreh Esmailzadeh
- Stem Cells and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad, Iran
| | - Ghazal Behravan
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
- *Correspondence: Shirin Toosi, ; Javad Behravan,
| |
Collapse
|
13
|
Zhou J, Nie Y, Jin C, Zhang JXJ. Engineering Biomimetic Extracellular Matrix with Silica Nanofibers: From 1D Material to 3D Network. ACS Biomater Sci Eng 2022; 8:2258-2280. [PMID: 35377596 DOI: 10.1021/acsbiomaterials.1c01525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biomaterials at nanoscale is a fast-expanding research field with which extensive studies have been conducted on understanding the interactions between cells and their surrounding microenvironments as well as intracellular communications. Among many kinds of nanoscale biomaterials, mesoporous fibrous structures are especially attractive as a promising approach to mimic the natural extracellular matrix (ECM) for cell and tissue research. Silica is a well-studied biocompatible, natural inorganic material that can be synthesized as morpho-genetically active scaffolds by various methods. This review compares silica nanofibers (SNFs) to other ECM materials such as hydrogel, polymers, and decellularized natural ECM, summarizes fabrication techniques for SNFs, and discusses different strategies of constructing ECM using SNFs. In addition, the latest progress on SNFs synthesis and biomimetic ECM substrates fabrication is summarized and highlighted. Lastly, we look at the wide use of SNF-based ECM scaffolds in biological applications, including stem cell regulation, tissue engineering, drug release, and environmental applications.
Collapse
Affiliation(s)
- Junhu Zhou
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Yuan Nie
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Congran Jin
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - John X J Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
14
|
Gonzalez-Vilchis RA, Piedra-Ramirez A, Patiño-Morales CC, Sanchez-Gomez C, Beltran-Vargas NE. Sources, Characteristics, and Therapeutic Applications of Mesenchymal Cells in Tissue Engineering. Tissue Eng Regen Med 2022; 19:325-361. [PMID: 35092596 PMCID: PMC8971271 DOI: 10.1007/s13770-021-00417-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 01/31/2023] Open
Abstract
Tissue engineering (TE) is a therapeutic option within regenerative medicine that allows to mimic the original cell environment and functional organization of the cell types necessary for the recovery or regeneration of damaged tissue using cell sources, scaffolds, and bioreactors. Among the cell sources, the utilization of mesenchymal cells (MSCs) has gained great interest because these multipotent cells are capable of differentiating into diverse tissues, in addition to their self-renewal capacity to maintain their cell population, thus representing a therapeutic alternative for those diseases that can only be controlled with palliative treatments. This review aimed to summarize the state of the art of the main sources of MSCs as well as particular characteristics of each subtype and applications of MSCs in TE in seven different areas (neural, osseous, epithelial, cartilage, osteochondral, muscle, and cardiac) with a systemic revision of advances made in the last 10 years. It was observed that bone marrow-derived MSCs are the principal type of MSCs used in TE, and the most commonly employed techniques for MSCs characterization are immunodetection techniques. Moreover, the utilization of natural biomaterials is higher (41.96%) than that of synthetic biomaterials (18.75%) for the construction of the scaffolds in which cells are seeded. Further, this review shows alternatives of MSCs derived from other tissues and diverse strategies that can improve this area of regenerative medicine.
Collapse
Affiliation(s)
- Rosa Angelica Gonzalez-Vilchis
- Molecular Biology Undergraduate Program, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, 05340, CDMX, Mexico
| | - Angelica Piedra-Ramirez
- Molecular Biology Undergraduate Program, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, 05340, CDMX, Mexico
| | - Carlos Cesar Patiño-Morales
- Research Laboratory of Developmental Biology and Experimental Teratogenesis, Children's Hospital of Mexico Federico Gomez, 06720, CDMX, Mexico
| | - Concepcion Sanchez-Gomez
- Research Laboratory of Developmental Biology and Experimental Teratogenesis, Children's Hospital of Mexico Federico Gomez, 06720, CDMX, Mexico
| | - Nohra E Beltran-Vargas
- Department of Processes and Technology, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, Cuajimalpa. Vasco de Quiroga 4871. Cuajimalpa de Morelos, 05348, CDMX, Mexico.
| |
Collapse
|
15
|
Injectable pH-responsive adhesive hydrogels for bone tissue engineering inspired by the underwater attachment strategy of marine mussels. BIOMATERIALS ADVANCES 2022; 133:112606. [PMID: 35525750 PMCID: PMC9933951 DOI: 10.1016/j.msec.2021.112606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022]
Abstract
A major challenge in tissue engineering is the development of alternatives to traditional bone autografts and allografts that can regenerate critical-sized bone defects. Here we present the design of injectable pH-responsive double-crosslinked adhesive hydrogels inspired by the molecular mechanism and environmental post-processing of marine mussel adhesive. Nine adhesive hydrogel formulations were developed through the conjugation of crosslinkable catechol functional groups (DOPA) and the synthetic oligomer oligo[poly(ethylene glycol) fumarate] (OPF), varying the DOPA content (w/w%) and molecular weight (MW) of the OPF backbone to produce formulations with a range of swelling ratios, porosities, and crosslink densities. DOPA incorporation altered the surface chemistry, mechanical properties, and surface topography of hydrogels, resulting in an increase in material stiffness, slower degradation, and enhanced pre-osteoblast cell attachment and proliferation. When injected within simulated bone defects, DOPA-mediated interfacial adhesive interactions also prevented the displacement of scaffolds, an effect that was maintained even after swelling within physiological conditions. Taken together, OPF-DOPA hydrogels represent a promising new material to enhanced tissue integration and the prevention of the post-implantation migration of scaffolds that can occur due to biomechanical loading in vivo.
Collapse
|
16
|
A Collagen(Col)/nano-hydroxyapatite (nHA) biological composite bone scaffold with double multi-level interface reinforcement. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
17
|
Bahraminasab M, Janmohammadi M, Arab S, Talebi A, Nooshabadi VT, Koohsarian P, Nourbakhsh MS. Bone Scaffolds: An Incorporation of Biomaterials, Cells, and Biofactors. ACS Biomater Sci Eng 2021; 7:5397-5431. [PMID: 34797061 DOI: 10.1021/acsbiomaterials.1c00920] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Large injuries to bones are still one of the most challenging musculoskeletal problems. Tissue engineering can combine stem cells, scaffold biomaterials, and biofactors to aid in resolving this complication. Therefore, this review aims to provide information on the recent advances made to utilize the potential of biomaterials for making bone scaffolds and the assisted stem cell therapy and use of biofactors for bone tissue engineering. The requirements and different types of biomaterials used for making scaffolds are reviewed. Furthermore, the importance of stem cells and biofactors (growth factors and extracellular vesicles) in bone regeneration and their use in bone scaffolds and the key findings are discussed. Lastly, some of the main obstacles in bone tissue engineering and future trends are highlighted.
Collapse
Affiliation(s)
- Marjan Bahraminasab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Mahsa Janmohammadi
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, Semnan University, Semnan 3513119111, Iran
| | - Samaneh Arab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Athar Talebi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Vajihe Taghdiri Nooshabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Parisa Koohsarian
- Department of Biochemistry and Hematology, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | | |
Collapse
|
18
|
Qin D, Wang N, You XG, Zhang AD, Chen XG, Liu Y. Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: ongoing research and perspectives. Biomater Sci 2021; 10:318-353. [PMID: 34783809 DOI: 10.1039/d1bm01294k] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone is a hard-connective tissue composed of matrix, cells and bioactive factors with a hierarchical structure, where the matrix is mainly composed of type I collagen and hydroxyapatite. Collagen fibers assembled by collagen are the template for mineralization and make an important contribution to bone formation and the bone remodeling process. Therefore, collagen has been widely clinically used for bone/cartilage defect regeneration. However, pure collagen implants, such as collagen scaffolds or sponges, have limitations in the bone/cartilage regeneration process due to their poor mechanical properties and osteoinductivity. Different forms of collagen-based composites prepared by incorporating natural/artificial polymers or bioactive inorganic substances are characterized by their interconnected porous structure and promoting cell adhesion, while they improve the mechanical strength, structural stability and osteogenic activities of the collagen matrix. In this review, various forms of collagen-based biocomposites, such as scaffolds, sponges, microspheres/nanoparticles, films and microfibers/nanofibers prepared by natural/synthetic polymers, bioactive ceramics and carbon-based materials compounded with collagen are reviewed. In addition, the application of collagen-based biocomposites as cytokine, cell or drug (genes, proteins, peptides and chemosynthetic) delivery platforms for proangiogenesis and bone/cartilage tissue regeneration is also discussed. Finally, the potential application, research and development direction of collagen-based biocomposites in future bone/cartilage tissue regeneration are discussed.
Collapse
Affiliation(s)
- Di Qin
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Na Wang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xin-Guo You
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - An-Di Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xi-Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| |
Collapse
|
19
|
Mirshahi M, Amel Farzad S, Peyvandi M, Hahsemi M, Kalalinia F. Evaluation of the osteogenic potential of crocin-incorporated collagen scaffold on the bone marrow mesenchymal stem cells. Drug Dev Ind Pharm 2021; 47:1439-1446. [PMID: 34726966 DOI: 10.1080/03639045.2021.2001487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The present study aimed to evaluate the effect of crocin (CRO)-loaded collagen (COL) scaffold on the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (BM-MSCs). SIGNIFICANCE Different studies have been conducted to develop an efficient strategy to accelerate and improve the recovery process of bone defects. It was shown that CRO, extracted from saffron, could induce osteogenic differentiation of rat BM-MSCs. Scaffolds can also provide a three-dimensional environment for migration, adhesion, growth, and proliferation of MSCs. METHODS Collagen scaffolds were fabricated through freeze-drying followed by cross-linking by dehydrothermal method. Then, CRO was incorporated into the scaffolds. Physicochemical characterization of the scaffolds was evaluated. Rat BM-MSCs were seeded on CRO-loaded COL scaffolds and cultured for 14 days. Osteogenic differentiation was evaluated using alizarin red (ALZ) staining and alkaline phosphatase (ALP) activity assay and compared to the positive control group. RESULTS The average pore size of the COL scaffolds was about 97 ± 6.7 µm. Formation of amide cross-links was confirmed by FTIR. The scaffolds were capable of uptaking water up to 50 times more than their initial dry weight and releasing above 90% of their uploaded CRO during 24 h. Collagen scaffolds containing CRO (25 and 50 μM) increased ALZ intensity (3.16 ± 0.3 and 7.32 ± 0.3 folds, respectively) and ALP activity (13.7 ± 1.1 and 12.2 ± 9.4 folds, respectively) in comparison with the positive control group. CONCLUSION Crocin-loaded COL scaffold could effectively enhance calcium deposition and ALP activity in BM-MSCs and therefore proposed as a good candidate to accelerate the healing process of vital bone defects.
Collapse
Affiliation(s)
- Mahshid Mirshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Amel Farzad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadtaghi Peyvandi
- Orthopedic Research Center, Shahid Kamyab Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Hahsemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Kalalinia
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Liu C, Yang H, Shen NA, Li J, Chen Y, Wang JY. Improvement of mechanical properties of zein porous scaffold by quenching/electrospun fiber reinforcement. Biomed Mater 2021; 16. [PMID: 34517347 DOI: 10.1088/1748-605x/ac265d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/13/2021] [Indexed: 11/11/2022]
Abstract
As a novel bone substitute material, zein-based scaffolds (ZS) should have suitable mechanical properties and porosity. ZS has shown good compressive properties matching cancellous bone, but there is still a demand to improve its mechanical properties, especially tensile and bending properties without adding plasticizers. The present study explored two simple and environment-friendly factors for this purpose: fiber reinforcement and quenching. Addition of electrospun zein fibers enhanced all mechanical properties significantly including compressive, tensile, and bending moduli; compressive and bending strengths of ZS with both higher (70-80%) and lower (50-60%) porosities, no matter whether heating treated or not treated. Especially, all these parameters were further enhanced significantly by addition of heating treated fibers. AFM provided evidence that high temperature modification could significantly alter the micro-elastic properties of zein electrospun fibers, i.e., increased stiffness of fibers. Quenching treatment also enhanced compressive, tensile, and bending strengths significantly. Finally, quenching treated ZS were implanted into critical-sized bone defects (15 mm) of the rabbit model to compare the repair efficacy with a commercial β-tricalcium phosphate product. The results demonstrated that there were no remarkable differences in bone reconstructions between these two materials.
Collapse
Affiliation(s)
- Chang Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China, 86-21-34205822
| | - Hui Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China, 86-21-34205822
| | - Nai-An Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China, 86-21-34205822
| | - Juehong Li
- Department of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 201306, China
| | - Yunsu Chen
- Department of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 201306, China
| | - Jin-Ye Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China, 86-21-34205822.,Jiaxing Yaojiao Medical Device Co. Ltd, 321 Jiachuang Road, Jiaxing 314032, China
| |
Collapse
|
21
|
Pereira AR, Lipphaus A, Ergin M, Salehi S, Gehweiler D, Rudert M, Hansmann J, Herrmann M. Modeling of the Human Bone Environment: Mechanical Stimuli Guide Mesenchymal Stem Cell-Extracellular Matrix Interactions. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4431. [PMID: 34442954 PMCID: PMC8398413 DOI: 10.3390/ma14164431] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023]
Abstract
In bone tissue engineering, the design of in vitro models able to recreate both the chemical composition, the structural architecture, and the overall mechanical environment of the native tissue is still often neglected. In this study, we apply a bioreactor system where human bone-marrow hMSCs are seeded in human femoral head-derived decellularized bone scaffolds and subjected to dynamic culture, i.e., shear stress induced by continuous cell culture medium perfusion at 1.7 mL/min flow rate and compressive stress by 10% uniaxial load at 1 Hz for 1 h per day. In silico modeling revealed that continuous medium flow generates a mean shear stress of 8.5 mPa sensed by hMSCs seeded on 3D bone scaffolds. Experimentally, both dynamic conditions improved cell repopulation within the scaffold and boosted ECM production compared with static controls. Early response of hMSCs to mechanical stimuli comprises evident cell shape changes and stronger integrin-mediated adhesion to the matrix. Stress-induced Col6 and SPP1 gene expression suggests an early hMSC commitment towards osteogenic lineage independent of Runx2 signaling. This study provides a foundation for exploring the early effects of external mechanical stimuli on hMSC behavior in a biologically meaningful in vitro environment, opening new opportunities to study bone development, remodeling, and pathologies.
Collapse
Affiliation(s)
- Ana Rita Pereira
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (A.R.P.); (M.E.)
- Bernhard-Heine-Centrum for Locomotion Research, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Andreas Lipphaus
- Biomechanics Research Group, Ruhr-University Bochum, 44801 Bochum, Germany;
| | - Mert Ergin
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (A.R.P.); (M.E.)
- Department of Biomaterials, Center of Energy Technology und Materials Science (TAO), University of Bayreuth, 95447 Bayreuth, Germany;
| | - Sahar Salehi
- Department of Biomaterials, Center of Energy Technology und Materials Science (TAO), University of Bayreuth, 95447 Bayreuth, Germany;
| | | | - Maximilian Rudert
- Department of Orthopedic Surgery, Koenig-Ludwig-Haus, University of Wuerzburg, 97074 Wuerzburg, Germany;
| | - Jan Hansmann
- Fraunhofer Institute for Silicate Research, Translational Center for Regenerative Therapies, 97082 Wuerzburg, Germany;
| | - Marietta Herrmann
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, 97070 Wuerzburg, Germany; (A.R.P.); (M.E.)
- Bernhard-Heine-Centrum for Locomotion Research, University of Wuerzburg, 97074 Wuerzburg, Germany
| |
Collapse
|
22
|
Pishavar E, Luo H, Naserifar M, Hashemi M, Toosi S, Atala A, Ramakrishna S, Behravan J. Advanced Hydrogels as Exosome Delivery Systems for Osteogenic Differentiation of MSCs: Application in Bone Regeneration. Int J Mol Sci 2021; 22:ijms22126203. [PMID: 34201385 PMCID: PMC8228022 DOI: 10.3390/ijms22126203] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Hydrogels are known as water-swollen networks formed from naturally derived or synthetic polymers. They have a high potential for medical applications and play a crucial role in tissue repair and remodeling. MSC-derived exosomes are considered to be new entities for cell-free treatment in different human diseases. Recent progress in cell-free bone tissue engineering via combining exosomes obtained from human mesenchymal stem cells (MSCs) with hydrogel scaffolds has resulted in improvement of the methodologies in bone tissue engineering. Our research has been actively focused on application of biotechnological methods for improving osteogenesis and bone healing. The following text presents a concise review of the methodologies of fabrication and preparation of hydrogels that includes the exosome loading properties of hydrogels for bone regenerative applications.
Collapse
Affiliation(s)
- Elham Pishavar
- Biotechnology Research Center, Pharmaceutical Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran; (E.P.); (M.N.); (M.H.); (S.T.)
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA;
| | - Hongrong Luo
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China;
| | - Mahshid Naserifar
- Biotechnology Research Center, Pharmaceutical Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran; (E.P.); (M.N.); (M.H.); (S.T.)
| | - Maryam Hashemi
- Biotechnology Research Center, Pharmaceutical Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran; (E.P.); (M.N.); (M.H.); (S.T.)
| | - Shirin Toosi
- Biotechnology Research Center, Pharmaceutical Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran; (E.P.); (M.N.); (M.H.); (S.T.)
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA;
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore
- Correspondence: (S.R.); (J.B.)
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad 91735, Iran; (E.P.); (M.N.); (M.H.); (S.T.)
- School of Pharmacy, University of Waterloo, Waterloo, ON N2G 1C5, Canada
- Center for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON N2G 1C5, Canada
- Correspondence: (S.R.); (J.B.)
| |
Collapse
|
23
|
Sellappan LK, Sanmugam A, Manoharan S. Fabrication of dual layered biocompatible herbal biopatch from biological waste for skin - tissue regenerative applications. Int J Biol Macromol 2021; 183:1106-1118. [PMID: 33984381 DOI: 10.1016/j.ijbiomac.2021.05.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/23/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022]
Abstract
A dual layered herbal biopolymeric patch (biopatch) with enhanced wound healing efficiency and skin mimicking functions was fabricated for skin-tissue regenerative applications. In this study, hoof keratin (KE) extracted from biological waste and gelatin (GE) was employed for KE-GE biosheet fabrication using a simple casting method. Further, the top layer of the fabricated KE-GE biosheet was coated with bioactive Matricaria recutita (Chamomile flower) extract (CH) with gelatin through an electrospraying method. The optimized dual layered herbal biopatch (KE-GE/GE-CH) exhibits strong physiochemical (FTIR, XRD TG-DTA), mechanical (tensile strength) and biological (in vitro and in vivo) studies. Moreover, the morphology (SEM) of soft mimetic biopatch possesses excellent cell-material interaction and cell proliferation which accelerates the wound healing process. Biopatch demonstrates a proven degradation profile with good swelling features to achieve more than 80% herbal drug release in 96 h. Antimicrobial properties also reveal the potential activity of biopatch against bacterial microbes. In addition, in vitro cell viability using NIH 3T3 fibroblast cell lines and in vivo investigations revealed that the biopatch is non-cytotoxic, increases collagen deposition and shows rapid reepithelialization at the wound site as a potential wound dressing. We anticipated that the biological hoof keratin and bioactive herbal extract coated biopatch could serve as a desirable wound dressing candidate to suit various skin tissue regenerative applications.
Collapse
Affiliation(s)
- Logesh Kumar Sellappan
- Department of Biomedical Engineering, Dr. N.G.P. Institute of Technology, Coimbatore 641048, India.
| | - Anandhavelu Sanmugam
- Department of Chemistry, Vel Tech Multi Tech Engineering College, Chennai 600062, India.
| | - Swathy Manoharan
- Department of Biomedical Engineering, K.P.R. Institute of Engineering and Technology, Coimbatore 641407, India
| |
Collapse
|
24
|
Bayart M, Charlon S, Soulestin J. Fused filament fabrication of scaffolds for tissue engineering; how realistic is shape-memory? A review. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Low-temperature 3D printing of collagen and chitosan composite for tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111963. [PMID: 33812591 DOI: 10.1016/j.msec.2021.111963] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
Three-dimensional (3D) printing is a promising method to prepare scaffolds for tissue regeneration. Collagen and chitosan composites are superior materials for tissue engineering scaffold but rarely printed due to their poor printability. Here, we prepared a series of tunable hybrid collagen/chitosan bioinks with significantly improved printability through hydrogen bond interaction and printed them into scaffolds by carefully controlling the temperature. Rheological tests proved the printable bioinks had sound shear thinning behavior, dramatical viscosity variation with temperature, and the gelation temperature from 7 to 10 °C. Chitosan could decrease the swelling ratio of the printed scaffolds, while their degradation rate increased with collagen proportion and the values of Young's modulus and tensile strength increased with chitosan proportion. Moreover, the scaffolds containing 2% (m/v) collagen and 2% (m/v) chitosan had a homogeneous and compact honeycomb-like structure, demonstrating the strengthening effect of chitosan. Cell viability assay presented vigorous cell growth on the surface of scaffolds, meanwhile, live cells were also found inside and at the bottom of the scaffolds, indicating the migration of cells. Therefore, chitosan can improve the printability of collagen and the hybrid collagen/chitosan bioinks can be printed into scaffolds with regulated properties, thus can fit different applications in tissue engineering.
Collapse
|
26
|
Vimalraj S, Yuvashree R, Hariprabu G, Subramanian R, Murali P, Veeraiyan DN, Thangavelu L. Zebrafish as a potential biomaterial testing platform for bone tissue engineering application: A special note on chitosan based bioactive materials. Int J Biol Macromol 2021; 175:379-395. [PMID: 33556401 DOI: 10.1016/j.ijbiomac.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
Biomaterials function as an essential aspect of tissue engineering and have a profound impact on cell growth and subsequent tissue regeneration. The development of new biomaterials requires a potential platform to understand the host-biomaterial interaction, which is crucial for successful biomaterial implantation. Biomaterials analyzed in rodent models for in vivo research are cost-effective but tedious, and the practice has many technical difficulties. As an alternative, zebrafish provide an excellent biomaterial testing platform over the current rodent models. During growth and recovery, zebrafish bone morphogenesis shows a variety of inductive signals involved in the cycle that are close to those influencing differentiation of bone and cartilage in mammals, including humans. This platform is cheap, optically transparent, quick to change genes, and provides reliable reproducibility on short life cycles. Chitosan is a well-known biomaterial in the field of tissue engineering. In view of its documented use in bone regeneration, the biological characterization of chitosan-based bioactive materials in the zebrafish model has been featured in an outstanding note. We, therefore, outlined this review of the zebrafish as a potential in vivo research model for the rapid characterization of the biological properties of new biomaterials for bone tissue engineering applications.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India; Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India.
| | | | - Gopal Hariprabu
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Raghunandhakumar Subramanian
- Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India
| | - Palraju Murali
- Department of Zoology, N.M.S.S. Vellaichamy Nadar College, Nagamalai, Madurai, Tamil Nadu, India
| | - Deepak Nallaswamy Veeraiyan
- Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India
| | - Lakshmi Thangavelu
- Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India
| |
Collapse
|
27
|
Shuai C, Yang W, Feng P, Peng S, Pan H. Accelerated degradation of HAP/PLLA bone scaffold by PGA blending facilitates bioactivity and osteoconductivity. Bioact Mater 2021; 6:490-502. [PMID: 32995675 PMCID: PMC7493133 DOI: 10.1016/j.bioactmat.2020.09.001] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
The incorporation of hydroxyapatite (HAP) into poly-l-lactic acid (PLLA) matrix serving as bone scaffold is expected to exhibit bioactivity and osteoconductivity to those of the living bone. While too low degradation rate of HAP/PLLA scaffold hinders the activity because the embedded HAP in the PLLA matrix is difficult to contact and exchange ions with body fluid. In this study, biodegradable polymer poly (glycolic acid) (PGA) was blended into the HAP/PLLA scaffold fabricated by laser 3D printing to accelerate the degradation. The results indicated that the incorporation of PGA enhanced the degradation rate of scaffold as indicated by the weight loss increasing from 3.3% to 25.0% after immersion for 28 days, owing to the degradation of high hydrophilic PGA and the subsequent accelerated hydrolysis of PLLA chains. Moreover, a lot of pores produced by the degradation of the scaffold promoted the exposure of HAP from the matrix, which not only activated the deposition of bone like apatite on scaffold but also accelerated apatite growth. Cytocompatibility tests exhibited a good osteoblast adhesion, spreading and proliferation, suggesting the scaffold provided a suitable environment for cell cultivation. Furthermore, the scaffold displayed excellent bone defect repair capacity with the formation of abundant new bone tissue and blood vessel tissue, and both ends of defect region were bridged after 8 weeks of implantation.
Collapse
Affiliation(s)
- Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang, 330013, China
- Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Wenjing Yang
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang, 330013, China
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang, 330013, China
| | - Hao Pan
- Department of Periodontics & Oral Mucosal Section, Xiangya Stomatological Hospital, Central South University, Changsha, 410013, China
| |
Collapse
|
28
|
Alonzo M, Kumar SA, Allen S, Delgado M, Alvarez-Primo F, Suggs L, Joddar B. Hydrogel scaffolds with elasticity-mimicking embryonic substrates promote cardiac cellular network formation. Prog Biomater 2020; 9:125-137. [PMID: 32978746 PMCID: PMC7544760 DOI: 10.1007/s40204-020-00137-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
Hydrogels are a class of biomaterials used for a wide range of biomedical applications, including as a three-dimensional (3D) scaffold for cell culture that mimics the extracellular matrix (ECM) of native tissues. To understand the role of the ECM in the modulation of cardiac cell function, alginate was used to fabricate crosslinked gels with stiffness values that resembled embryonic (2.66 ± 0.84 kPa), physiologic (8.98 ± 1.29 kPa) and fibrotic (18.27 ± 3.17 kPa) cardiac tissues. The average pore diameter and hydrogel swelling were seen to decrease with increasing substrate stiffness. Cardiomyocytes cultured within soft embryonic gels demonstrated enhanced cell spreading, elongation, and network formation, while a progressive increase in gel stiffness diminished these behaviors. Cell viability decreased with increasing hydrogel stiffness. Furthermore, cells in fibrotic gels showed enhanced protein expression of the characteristic cardiac stress biomarker, Troponin-I, while reduced protein expression of the cardiac gap junction protein, Connexin-43, in comparison to cells within embryonic gels. The results from this study demonstrate the role that 3D substrate stiffness has on cardiac tissue formation and its implications in the development of complex matrix remodeling-based conditions, such as myocardial fibrosis.
Collapse
Affiliation(s)
- Matthew Alonzo
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), El Paso, USA
- Department of Metallurgical, Materials and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Shweta Anil Kumar
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), El Paso, USA
- Department of Metallurgical, Materials and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Shane Allen
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, Austin, TX, 78712, USA
| | - Monica Delgado
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), El Paso, USA
- Department of Metallurgical, Materials and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Fabian Alvarez-Primo
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), El Paso, USA
- Department of Metallurgical, Materials and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Laura Suggs
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, Austin, TX, 78712, USA
| | - Binata Joddar
- Inspired Materials and Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), El Paso, USA.
- Department of Metallurgical, Materials and Biomedical Engineering, M201 Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA.
- Border Biomedical Research Center, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA.
| |
Collapse
|
29
|
Conrad B, Hayashi C, Yang F. Gelatin-Based Microribbon Hydrogels Support Robust MSC Osteogenesis across a Broad Range of Stiffness. ACS Biomater Sci Eng 2020; 6:3454-3463. [PMID: 33463171 PMCID: PMC10154176 DOI: 10.1021/acsbiomaterials.9b01792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Scaffold macroporosity has been shown to be critical for promoting bone regeneration. Although injectable materials are preferred for minimally invasive delivery, conventional macroporous scaffolds were not injectable and do not support homogeneous cell encapsulation. We recently reported a gelatin-based microribbon (μRB) scaffold that offers macroporosity while also supporting homogeneous cell encapsulation. Compared to conventional gelatin hydrogels, macroporous gelatin μRB scaffolds demonstrated great advantage in enhancing mesenchymal stem cell (MSC)-based cartilage formation. However, whether gelatin-based μRBs support MSC osteogenesis and bone formation remains unknown. The goal of this study is to assess the potential of gelatin-based μRBs for supporting MSC-based osteogenesis and bone formation in vitro. Given recent evidence from the literature that osteogenesis is sensitive to substrate stiffness, we further investigate how varying μRB stiffness modulates MSC osteogenesis. We first determine the maximal stiffness range of gelatin μRBs that can be fabricated (13-57 kPa), which supports both retention of μRB shape and macroporosity within scaffolds after inter-cross-linking. Interestingly, varying μRB stiffness across a broad range of stiffness did not significantly impact osteogenesis, with all groups supporting upregulation of bone markers and extensive collagen deposition. All gelatin μRBs also supported a comparable level of cell spreading and upregulation of mechanosensing markers. However, soft μRB (13 kPa) scaffolds did not maintain structural integrity and condensed into a pellet over time. Both intermediate and stiff gelatin μRB-based scaffolds maintained their integrity and supported robust bone formation, leading to a more than 10-fold increase in the compressive moduli of engineered bone after 5 weeks of culture in osteogenic media. Incorporating hydroxyapatite (HA) nanoparticle coating onto the gelatin μRB surface further accelerated the maturation of MSCs into osteoblasts and mineralization. Together, these results validate that gelatin μRBs can support MSC osteogenesis across a broad range of stiffness and offers an injectable macroporous scaffold for enhancing stem-cell-based bone regeneration.
Collapse
Affiliation(s)
- Bogdan Conrad
- Program of Stem Cell Biology and Regenerative Medicine, Stanford University, 300 Pasteur Drive, Edward Building Room 114, Stanford, California94305, United States
| | - Camila Hayashi
- Department of Chemical Engineering, Stanford University Shriram Center, Room 129, Stanford, California94305, United States
| | - Fan Yang
- Department of Orthopaedic Surgery Department of Bioengineering, Stanford University300 Pasteur Drive, Edward Building Room 114, Stanford, California94305, United States
| |
Collapse
|
30
|
Toosi S, Behravan J. Osteogenesis and bone remodeling: A focus on growth factors and bioactive peptides. Biofactors 2020; 46:326-340. [PMID: 31854489 DOI: 10.1002/biof.1598] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/30/2019] [Indexed: 12/14/2022]
Abstract
Bone is one of the most frequently transplanted tissues. The bone structure and its physiological function and stem cells biology were known to be closely related to each other for many years. Bone is considered a home to the well-known systems of postnatal mesenchymal stem cells (MSCs). These bone resident MSCs provide a range of growth factors (GF) and cytokines to support cell growth following injury. These GFs include a group of proteins and peptides produced by different cells which are regulators of important cell functions such as division, migration, and differentiation. GF signaling controls the formation and development of the MSCs condensation and plays a critical role in regulating osteogenesis, chondrogenesis, and bone/mineral homeostasis. Thus, a combination of both MSCs and GFs receives high expectations in regenerative medicine, particularly in bone repair applications. It is known that the delivery of exogenous GFs to the non-union bone fracture site remarkably improves healing results. Here we present updated information on bone tissue engineering with a specific focus on GF characteristics and their application in cellular functions and tissue healing. Moreover, the interrelation of GFs with the damaged bone microenvironment and their mechanistic functions are discussed.
Collapse
Affiliation(s)
- Shirin Toosi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical, Mashhad, Iran
- Food and Drug Administration, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical, Mashhad, Iran
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
31
|
Sharmila G, Muthukumaran C, Kirthika S, Keerthana S, Kumar NM, Jeyanthi J. Fabrication and characterization of Spinacia oleracea extract incorporated alginate/carboxymethyl cellulose microporous scaffold for bone tissue engineering. Int J Biol Macromol 2020; 156:430-437. [PMID: 32294496 DOI: 10.1016/j.ijbiomac.2020.04.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/19/2020] [Accepted: 04/07/2020] [Indexed: 01/07/2023]
Abstract
In recent years, plant based scaffold due to its inherent properties such as mechanical stability, renewability, easy mass production, inexpensiveness, biocompatibility and biodegradability with low toxic effects have received much attention in the field of bone tissue engineering. Design of good tissue compatible plant based polymer scaffold plays a vital role in biomedicine, nanomedicine and in various tissue engineering applications. The present study focused on the fabrication of a novel herbal scaffold using the medicinal plants Spinacia oleracea (SO) and Cissus quadrangularis (CQ) extracts incorporated with Alginate (Alg), Carboxy Methyl Cellulose (CMC) by lyophilization method. The structural nature and the properties of prepared scaffold were analyzed by XRD, FE-SEM, FTIR, EDAX, TGA, swelling ratio, porosity, in-vitro degradation and cell viability studies. The biocompatible nature of the plant based polymer scaffold was assessed using MG-63 Human Osteosarcoma cell line. The investigation of biocompatibility study showed that Alg/CMC/SO scaffold expressed higher cell viability than Alg/CMC/SO-CQ scaffold, which possess better cellular biocompatibility. The results of the present study suggested that plant based Alg/CMC/SO scaffold serve as a potential biopolymer scaffold which could be further exploited for bone tissue applications.
Collapse
Affiliation(s)
- Govindasamy Sharmila
- Bioprocess Laboratory, Department of Industrial Biotechnology, Government College of Technology, Coimbatore 641 013, Tamilnadu, India.
| | - Chandrasekaran Muthukumaran
- Bioprocess Laboratory, Department of Industrial Biotechnology, Government College of Technology, Coimbatore 641 013, Tamilnadu, India
| | - Shanmugam Kirthika
- Bioprocess Laboratory, Department of Industrial Biotechnology, Government College of Technology, Coimbatore 641 013, Tamilnadu, India
| | - Sundarapandian Keerthana
- Bioprocess Laboratory, Department of Industrial Biotechnology, Government College of Technology, Coimbatore 641 013, Tamilnadu, India
| | - Narasimhan Manoj Kumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamilnadu, India
| | - Jeyadharmarajan Jeyanthi
- Department of Civil Engineering, Government College of Technology, Coimbatore 641 013, Tamilnadu, India
| |
Collapse
|
32
|
Singh BN, Veeresh V, Mallick SP, Sinha S, Rastogi A, Srivastava P. Generation of scaffold incorporated with nanobioglass encapsulated in chitosan/chondroitin sulfate complex for bone tissue engineering. Int J Biol Macromol 2020; 153:1-16. [PMID: 32084482 DOI: 10.1016/j.ijbiomac.2020.02.173] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023]
Abstract
Over the past decade, various composite materials fabricated using natural or synthetic biopolymers incorporated with bioceramic have been widely investigated for the regeneration of segmental bone defect. In the present study, nano-bioglass incorporated osteoconductive composite scaffolds were fabricated through polyelectrolyte complexation/phase separation and resuspension of separated complex in gelatin matrix. Developed scaffold exhibits controlled bioreactivity, minimize abrupt pH rise (~7.8), optimal swelling behavior (2.6+-3.1) and enhances mechanical strength (0.62 ± 0.18 MPa) under wet condition. Moreover, in-vitro cell study shows that the fabricated scaffold provide suitable template for cellular attachment, spreading, biomineralization and collagen based matrix deposition. Also, the developed scaffold was evaluated for biocompatibility and bone tissue regeneration potential through implantation in non-union segmental bone defect created in rabbit animal model. The obtained histological analysis indicates strong potential of the composite scaffold for bone tissue regeneration, vascularization and reconstruction of defects. Thus, the developed composite scaffold might be a suitable biomaterial for bone tissue engineering applications.
Collapse
Affiliation(s)
- Bhisham Narayan Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Vivek Veeresh
- Department of Orthopedics, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | | | - Shivam Sinha
- Department of Orthopedics, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Amit Rastogi
- Department of Orthopedics, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
33
|
Liu S, Yu J, Li H, Wang K, Wu G, Wang B, Liu M, Zhang Y, Wang P, Zhang J, Wu J, Jing Y, Li F, Zhang M. Controllable Drug Release Behavior of Polylactic Acid (PLA) Surgical Suture Coating with Ciprofloxacin (CPFX)-Polycaprolactone (PCL)/Polyglycolide (PGA). Polymers (Basel) 2020; 12:E288. [PMID: 32024179 PMCID: PMC7077375 DOI: 10.3390/polym12020288] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023] Open
Abstract
Polylactic acid (PLA) surgical suture can be absorbed by human body. In order to avoid surgical site infections (SSIs), the drug is usually loaded on the PLA suture, and then the drug can release directly to the wound. Because the different types of wounds heal at different times, it is needed to control the drug release rate of PLA suture to consistent to the wound healing time. Two biopolymers, polyglycolide (PGA) and polycaprolactone (PCL), were selected as the carrier of ciprofloxacin (CPFX) drug, and then the CPFX-PCL/PGA was coated on the PLA suture. The degradation rate of drug-carrier can be controlled by adjusting the proportion of PCL/PGA, which can regulate the rate of CPFX drug release from PLA suture. The results show that the surface of PLA suture, coating with PCL/PGA, was very rough, which led to increased stitching resistance when we were suturing the wound. These materials, such as the PLA suture, the PCL/PGA carriers and the CPFX drug, were just physically mixed rather than chemically reacted, which was very useful for ensuring the original efficacy of CPFX drug. With the increasing of PCL in the carriers, both the breaking strength and elongation of these un-degraded sutures increased. During degradation, the breaking strength of all sutures gradually decreased, and the more PCL in the coating materials, the longer effective strength-time for the suture. With the increasing of PCL in the drug-carrier, the rate of drug releasing became lower. The drug release mechanism of CPFX-PCL/PGA was a synergistic effect of drug diffusion and PCL/PGA carrier dissolution.
Collapse
Affiliation(s)
- Shuqiang Liu
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
- Biomedical Textile Laboratory, Taiyuan University of Technology, Jinzhong 030600, China
| | - Juanjuan Yu
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Huimin Li
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Kaiwen Wang
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Gaihong Wu
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Bowen Wang
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Mingfang Liu
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Yao Zhang
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Peng Wang
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Jie Zhang
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Jie Wu
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Yifan Jing
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
| | - Fu Li
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
- Biomedical Textile Laboratory, Taiyuan University of Technology, Jinzhong 030600, China
| | - Man Zhang
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (J.Y.); (H.L.); (K.W.); (B.W.); (M.L.); (Y.Z.); (P.W.); (J.Z.); (J.W.); (Y.J.); (F.L.); (M.Z.)
- Biomedical Textile Laboratory, Taiyuan University of Technology, Jinzhong 030600, China
| |
Collapse
|
34
|
da Silva Morais A, Oliveira JM, Reis RL. Biomaterials and Microfluidics for Liver Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1230:65-86. [DOI: 10.1007/978-3-030-36588-2_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Kim T, See CW, Li X, Zhu D. Orthopedic implants and devices for bone fractures and defects: Past, present and perspective. ENGINEERED REGENERATION 2020. [DOI: 10.1016/j.engreg.2020.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
36
|
Shen L, Bu H, Yang H, Xu S, Li G. pH‐responsive variation of biomineralization via collagen self‐assembly and the simultaneous formation of apatite minerals. J Appl Polym Sci 2019. [DOI: 10.1002/app.48876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lirui Shen
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education)Sichuan University Chengdu 610065 China
| | - Honghong Bu
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu 610065 China
| | - Huan Yang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education)Sichuan University Chengdu 610065 China
| | - Songcheng Xu
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu 610065 China
| | - Guoying Li
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education)Sichuan University Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu 610065 China
| |
Collapse
|
37
|
Hosseini V, Maroufi NF, Saghati S, Asadi N, Darabi M, Ahmad SNS, Hosseinkhani H, Rahbarghazi R. Current progress in hepatic tissue regeneration by tissue engineering. J Transl Med 2019; 17:383. [PMID: 31752920 PMCID: PMC6873477 DOI: 10.1186/s12967-019-02137-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Liver, as a vital organ, is responsible for a wide range of biological functions to maintain homeostasis and any type of damages to hepatic tissue contributes to disease progression and death. Viral infection, trauma, carcinoma, alcohol misuse and inborn errors of metabolism are common causes of liver diseases are a severe known reason for leading to end-stage liver disease or liver failure. In either way, liver transplantation is the only treatment option which is, however, hampered by the increasing scarcity of organ donor. Over the past years, considerable efforts have been directed toward liver regeneration aiming at developing new approaches and methodologies to enhance the transplantation process. These approaches include producing decellularized scaffolds from the liver organ, 3D bio-printing system, and nano-based 3D scaffolds to simulate the native liver microenvironment. The application of small molecules and micro-RNAs and genetic manipulation in favor of hepatic differentiation of distinct stem cells could also be exploited. All of these strategies will help to facilitate the application of stem cells in human medicine. This article reviews the most recent strategies to generate a high amount of mature hepatocyte-like cells and updates current knowledge on liver regenerative medicine.
Collapse
Affiliation(s)
- Vahid Hosseini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Fathi Maroufi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, 5166614756, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Nazari Soltan Ahmad
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
38
|
Toosi S, Esmaeilzadeh Z, Naderi‐Meshkin H, Heirani‐Tabasi A, Peivandi MT, Behravan J. Adipocyte lineage differentiation potential of MSCs isolated from reaming material. J Cell Physiol 2019; 234:20066-20071. [DOI: 10.1002/jcp.28605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Shirin Toosi
- Biotechnology Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
| | - Zohreh Esmaeilzadeh
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education Culture and Research (ACECR), Khorasan Razavi Branch Mashhad Iran
| | - Hojjat Naderi‐Meshkin
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education Culture and Research (ACECR), Khorasan Razavi Branch Mashhad Iran
| | - Asieh Heirani‐Tabasi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education Culture and Research (ACECR), Khorasan Razavi Branch Mashhad Iran
| | - Mohammad Taghi Peivandi
- Department of Orthopedic Surgery, Orthopedic and Trauma Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy University of Waterloo Waterloo Ontario Canada
- Center for Bioengineering and Biotechnology University of Waterloo Waterloo Ontario Canada
| |
Collapse
|
39
|
Ma Y, Hu N, Liu J, Zhai X, Wu M, Hu C, Li L, Lai Y, Pan H, Lu WW, Zhang X, Luo Y, Ruan C. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9415-9424. [PMID: 30698946 DOI: 10.1021/acsami.8b20323] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Synthetic biodegradable polymeric scaffolds with uniformly interconnected pore structure, appropriate mechanical properties, excellent biocompatibility, and even enhanced osteogenesis ability are urgently required for in situ bone regeneration. In this study, for the first time, a series of biodegradable piperazine (PP)-based polyurethane-urea (P-PUU) scaffolds with a gradient of PP contents were developed by air-driven extrusion 3D printing technology. The P-PUU ink of 60 wt % concentration was demonstrated to have appropriate viscosity for scaffold fabrication. The 3D-printed P-PUU scaffolds exhibited an interconnected porous structure of about 450 μm in macropore size and about 75% in porosity. By regulating the contents of PP in P-PUU scaffolds, their mechanical properties could be moderated, and P-PUU1.4 scaffolds with the highest PP contents exhibited the highest compressive modulus (155.9 ± 5.7 MPa) and strength (14.8 ± 1.1 MPa). Moreover, both in vitro and in vivo biological results suggested that the 3D-printed P-PUU scaffolds possessed excellent biocompatibility and osteoconductivity to facilitate new bone formation. The small molecular PP itself was confirmed for the first time to regulate osteogenesis of osteoblasts in a dose-dependent manner and the optimum concentration for osteoconductivity was about ∼0.5 mM, which suggests that PP molecules, together with the mechanical behavior, nitrogen-contents, and hydrophilicity of P-PUUs, play an important role in enhancing the osteoconductive ability of P-PUU scaffolds. Therefore, the 3D-printed P-PUU scaffolds, with suitable interconnected pore structure, appropriate mechanical properties, and intrinsically osteoconductive ability, should provide a promising alternative for bone regeneration.
Collapse
Affiliation(s)
- Yufei Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , Chongqing 400030 , China
| | - Nan Hu
- Key Laboratory of Shenzhen Renal Diseases, Department of Nephrology, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University , Shenzhen People's Hospital , Shenzhen , Guangdong 518020 , China
| | - Juan Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , Chongqing 400030 , China
| | - Xinyun Zhai
- Department of Orthopaedic and Traumatology , The University of Hong Kong , 21 Sassoon Road , Pokfulam , Hong Kong 999077 , China
| | | | | | | | | | | | - William Weijia Lu
- Department of Orthopaedic and Traumatology , The University of Hong Kong , 21 Sassoon Road , Pokfulam , Hong Kong 999077 , China
| | - Xinzhou Zhang
- Key Laboratory of Shenzhen Renal Diseases, Department of Nephrology, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University , Shenzhen People's Hospital , Shenzhen , Guangdong 518020 , China
| | - Yanfeng Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , Chongqing 400030 , China
| | | |
Collapse
|
40
|
Toosi S, Naderi-Meshkin H, Kalalinia F, HosseinKhani H, Heirani-Tabasi A, Havakhah S, Nekooei S, Jafarian AH, Rezaie F, Peivandi MT, Mesgarani H, Behravan J. Bone defect healing is induced by collagen sponge/polyglycolic acid. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:33. [PMID: 30840143 DOI: 10.1007/s10856-019-6235-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
We have evaluated the capability of a collagen/poly glycolic acid (PGA) scaffold in regeneration of a calvarial bone defects in rabbits. 4 bone critical size defects (CSD) were created in the calvarial bone of each rabbit. The following 4 treatment modalities were tested (1) a collagen/PGA scaffold (0.52% w/w); (2) the collagen/PGA scaffold (0.52% w/w) seeded with adipose-derived mesenchymal stem cells (AD-MSCs, 1 × 106 cells per each defect); (3) AD-MSCs (1 × 106 cells) no scaffold material, and (4) blank control. The rabbits were then divided into 3 random groups (of 5) and the treatment outcomes were evaluated at 4, 8 and 12 weeks. New bone formation was histologically assessed. Experimental groups were analyzed by CT scan and real-time PCR. Histological analysis of bone defects treated with collagen/PGA alone exhibited significant fibrous connective tissue formation at the 12 weeks of treatments (P ≤ 0.05). There was no significant difference between collagen/PGA alone and collagen/PGA + AD-MSCs groups. The results were confirmed by CT scan data showing healing percentages of 34.20% for the collage/PGA group alone as compared to the control group and no difference with collagen/PGA containing AD-MSCs (1 × 106 cells). RT-PCR analysis also indicated no significant differences between collagen/PGA and collagen/PGA + AD-MSC groups, although both scaffold containing groups significantly express ALP and SIO rather than groups without scaffolds. Although there was no significant difference between the scaffolds containing cells with non-cellular scaffolds, our results indicated that the Collagen/PGA scaffold itself had a significant effect on wound healing as compared to the control group. Therefore, the collagen/PGA scaffold seems to be a promising candidate for research in bone regeneration.
Collapse
Affiliation(s)
- Shirin Toosi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- NanoSBY Knowledge Based Corporation, Mashhad, Iran
| | - Hojjat Naderi-Meshkin
- NanoSBY Knowledge Based Corporation, Mashhad, Iran
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Fatemeh Kalalinia
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein HosseinKhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY, 10029, USA
| | - Asieh Heirani-Tabasi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Shahrzad Havakhah
- Physiology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sirous Nekooei
- Department of Radiology, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Fahimeh Rezaie
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Mohammad Taghi Peivandi
- Department of Orthopedic Surgery, Orthopedic and Trauma Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hooman Mesgarani
- Department of Veterinary Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- NanoSBY Knowledge Based Corporation, Mashhad, Iran.
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada.
- Center for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
41
|
Versteegden LR, Sloff M, Hoogenkamp HR, Pot MW, Pang J, Hafmans TG, de Jong T, Smit TH, Leeuwenburgh SC, Oosterwijk E, Feitz WF, Daamen WF, van Kuppevelt TH. A salt-based method to adapt stiffness and biodegradability of porous collagen scaffolds. RSC Adv 2019; 9:36742-36750. [PMID: 35539087 PMCID: PMC9075161 DOI: 10.1039/c9ra06651a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/26/2019] [Indexed: 11/21/2022] Open
Abstract
Type I collagen scaffolds for tissue reconstruction often have impaired mechanical characteristics such as limited stiffness and lack of strength. In this study, a new technique is presented to fine-tune stiffness and biodegradability of collagen scaffolds by treatment with concentrated salt solutions. Collagen scaffolds were prepared by a casting, freezing and lyophilization process. Scaffolds were treated with 90% saturated salt solutions, the salts taken from the Hofmeister series, followed by chemical crosslinking. Treatment with salts consisting of a divalent cation in combination with a monovalent anion, e.g. CaCl2, resulted in fast shrinkage of the scaffolds up to approximately 10% of the original surface area. Effective salts were mostly at the chaotropic end of the Hofmeister series. Shrunken scaffolds were more than 10 times stiffer than non-shrunken control scaffolds, and displayed reduced pore sizes and swollen, less organized collagen fibrils. The effect could be pinpointed to the level of individual collagen molecules and indicates the shrinking effect to be driven by disruption of stabilizing hydrogen bonds within the triple helix. No calcium deposits remained in CaCl2 treated scaffolds. Subcutaneous implantation in rats showed similar biocompatibility compared to H2O and NaCl treated scaffolds, but reduced cellular influx and increased structural integrity without signs of major degradation after 3 months. In conclusion, high concentrations of chaotropic salts can be used to adjust the mechanical characteristics of collagen scaffolds without affecting biocompatibility. This technique may be used in regenerative medicine to stiffen collagen scaffolds to better comply with the surrounding tissues, but may also be applied for e.g. slow release drug delivery systems. Treatment of collagen scaffolds with salts taken from the Hofmeister series induce fast shrinkage and increased stiffness. Subcutaneous implantation in rats shows similar biocompatibility as control scaffolds, but reduced cellular influx and increased structural integrity.![]()
Collapse
Affiliation(s)
- Luuk R. Versteegden
- Department of Biochemistry, Route 280
- Radboud Institute for Molecular Life Sciences
- Radboud university medical center
- 6500 HB Nijmegen
- The Netherlands
| | - Marije Sloff
- Department of Urology, Route 267
- Radboud Institute for Molecular Life Sciences
- Radboud university medical center
- 6500 HB Nijmegen
- The Netherlands
| | - Henk R. Hoogenkamp
- Department of Biochemistry, Route 280
- Radboud Institute for Molecular Life Sciences
- Radboud university medical center
- 6500 HB Nijmegen
- The Netherlands
| | - Michiel W. Pot
- Department of Biochemistry, Route 280
- Radboud Institute for Molecular Life Sciences
- Radboud university medical center
- 6500 HB Nijmegen
- The Netherlands
| | - Jeffrey Pang
- Department of Biochemistry, Route 280
- Radboud Institute for Molecular Life Sciences
- Radboud university medical center
- 6500 HB Nijmegen
- The Netherlands
| | - Theo G. Hafmans
- Department of Biochemistry, Route 280
- Radboud Institute for Molecular Life Sciences
- Radboud university medical center
- 6500 HB Nijmegen
- The Netherlands
| | - Thijs de Jong
- Department of Medical Biology and Department of Orthopaedics
- Amsterdam Movement Sciences
- Amsterdam University Medical Centers
- 1085AZ Amsterdam
- The Netherlands
| | - Theo H. Smit
- Department of Medical Biology and Department of Orthopaedics
- Amsterdam Movement Sciences
- Amsterdam University Medical Centers
- 1085AZ Amsterdam
- The Netherlands
| | - Sander C. Leeuwenburgh
- Department of Dentistry, Route 309
- Radboud university medical center
- 6500 HB Nijmegen
- The Netherlands
| | - Egbert Oosterwijk
- Department of Urology, Route 267
- Radboud Institute for Molecular Life Sciences
- Radboud university medical center
- 6500 HB Nijmegen
- The Netherlands
| | - Wout F. Feitz
- Department of Urology, Route 267
- Radboud Institute for Molecular Life Sciences
- Radboud university medical center
- 6500 HB Nijmegen
- The Netherlands
| | - Willeke F. Daamen
- Department of Biochemistry, Route 280
- Radboud Institute for Molecular Life Sciences
- Radboud university medical center
- 6500 HB Nijmegen
- The Netherlands
| | - Toin H. van Kuppevelt
- Department of Biochemistry, Route 280
- Radboud Institute for Molecular Life Sciences
- Radboud university medical center
- 6500 HB Nijmegen
- The Netherlands
| |
Collapse
|
42
|
Toosi S, Behravan N, Behravan J. Nonunion fractures, mesenchymal stem cells and bone tissue engineering. J Biomed Mater Res A 2018; 106:2552-2562. [PMID: 29689623 DOI: 10.1002/jbm.a.36433] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/22/2018] [Accepted: 04/10/2018] [Indexed: 12/15/2022]
Abstract
Depending on the duration of healing process, 5-10% of bone fractures may result in either nonunion or delayed union. Because nonunions remain a clinically important problem, there is interest in the utilization of tissue engineering strategies to augment bone fracture repair. Three basic biologic elements that are required for bone regeneration include cells, extracellular matrix scaffolds and biological adjuvants for growth, differentiation and angiogenesis. Mesenchymal stem cells (MSCs) are capable to differentiate into various types of the cells including chondrocytes, myoblasts, osteoblasts, and adipocytes. Due to their potential for multilineage differentiation, MSCs are considered important contributors in bone tissue engineering research. In this review we highlight the progress in the application of biomaterials, stem cells and tissue engineering in promoting nonunion bone fracture healing. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A:2551-2561, 2018.
Collapse
Affiliation(s)
- Shirin Toosi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Behravan
- Exceptionally Talented Students Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
43
|
Guo J, Zhang Q, Li J, Liu Y, Hou Z, Chen W, Jin L, Tian Y, Ju L, Liu B, Dong T, Zhang F, Zhang Y. Local application of an ibandronate/collagen sponge improves femoral fracture healing in ovariectomized rats. PLoS One 2017; 12:e0187683. [PMID: 29108027 PMCID: PMC5673204 DOI: 10.1371/journal.pone.0187683] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/24/2017] [Indexed: 01/11/2023] Open
Abstract
Non-union is a major clinical problem in the healing of fractures, especially in patients with osteoporosis. The systemic administration of drugs is time consuming and large doses are demanding and act slowly, whereas local release acts rapidly, increases the quality and quantity of the bone tissue. We hypothesize that local delivery demonstrates better therapeutic effects on an osteoporotic fracture. The aim of this paper is to investigate the effect of the local application of ibandronate loaded with a collagen sponge on regulating bone formation and remodeling in an osteoporotic rat model of fracture healing. We found that the local delivery of ibandronate exhibited excellent effects on improving the bone microarchitecture and suppressed effects on bone remodeling. At 4 weeks, more callus formation and improvement of mechanical character and microstructure were observed in a local delivery via μCT, mechanical test, histological research and serum analysis. The suppression of bone remodeling was compared with a systemic treatment at 12 weeks, and the structural mechanical properties and microarchitecture were also improved with local delivery. This research identifies an earlier, safer and integrated approach for local delivery of ibandronate with collagen and provides a better strategy for the treatment of osteoporotic fracture in rats.
Collapse
Affiliation(s)
- Jialiang Guo
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, P. R., China
- Key Laboratory of Orthopaedic Biomechanics of Hebei Province, Shijiazhuang, P. R., China
- Orthopaedic Research Institution of Hebei Province, Hebei, P. R., China
| | - Qi Zhang
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, P. R., China
- Key Laboratory of Orthopaedic Biomechanics of Hebei Province, Shijiazhuang, P. R., China
- Orthopaedic Research Institution of Hebei Province, Hebei, P. R., China
| | - Jia Li
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, P. R., China
- Key Laboratory of Orthopaedic Biomechanics of Hebei Province, Shijiazhuang, P. R., China
- Orthopaedic Research Institution of Hebei Province, Hebei, P. R., China
| | - Yansong Liu
- VSD Medical Science & Technology Co., Ltd, Hubei, P. R., China
| | - Zhiyong Hou
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, P. R., China
- Key Laboratory of Orthopaedic Biomechanics of Hebei Province, Shijiazhuang, P. R., China
| | - Wei Chen
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, P. R., China
- Key Laboratory of Orthopaedic Biomechanics of Hebei Province, Shijiazhuang, P. R., China
- Orthopaedic Research Institution of Hebei Province, Hebei, P. R., China
| | - Lin Jin
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, P. R., China
- Key Laboratory of Orthopaedic Biomechanics of Hebei Province, Shijiazhuang, P. R., China
- Orthopaedic Research Institution of Hebei Province, Hebei, P. R., China
| | - Ye Tian
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, P. R., China
- Key Laboratory of Orthopaedic Biomechanics of Hebei Province, Shijiazhuang, P. R., China
- Orthopaedic Research Institution of Hebei Province, Hebei, P. R., China
| | - Linlin Ju
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, P. R., China
- Key Laboratory of Orthopaedic Biomechanics of Hebei Province, Shijiazhuang, P. R., China
- Orthopaedic Research Institution of Hebei Province, Hebei, P. R., China
| | - Bo Liu
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, P. R., China
- Key Laboratory of Orthopaedic Biomechanics of Hebei Province, Shijiazhuang, P. R., China
- Orthopaedic Research Institution of Hebei Province, Hebei, P. R., China
| | - Tianhua Dong
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, P. R., China
- Key Laboratory of Orthopaedic Biomechanics of Hebei Province, Shijiazhuang, P. R., China
- Orthopaedic Research Institution of Hebei Province, Hebei, P. R., China
| | - Fei Zhang
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, P. R., China
- Key Laboratory of Orthopaedic Biomechanics of Hebei Province, Shijiazhuang, P. R., China
- Orthopaedic Research Institution of Hebei Province, Hebei, P. R., China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, P. R., China
- Key Laboratory of Orthopaedic Biomechanics of Hebei Province, Shijiazhuang, P. R., China
- Orthopaedic Research Institution of Hebei Province, Hebei, P. R., China
- * E-mail:
| |
Collapse
|
44
|
Ruan C, Hu N, Ma Y, Li Y, Liu J, Zhang X, Pan H. The interfacial pH of acidic degradable polymeric biomaterials and its effects on osteoblast behavior. Sci Rep 2017; 7:6794. [PMID: 28754984 PMCID: PMC5533751 DOI: 10.1038/s41598-017-06354-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/12/2017] [Indexed: 12/27/2022] Open
Abstract
A weak alkaline environment is established to facilitate the growth of osteoblasts. Unfortunately, this is inconsistent with the application of biodegradable polymer in bone regeneration, as the degradation products are usually acidic. In this study, the variation of the interfacial pH of poly (D, L-lactide) and piperazine-based polyurethane ureas (P-PUUs), as the representations of acidic degradable materials, and the behavior of osteoblasts on these substrates with tunable interfacial pH were investigated in vitro. These results revealed that the release of degraded products caused a rapid decrease in the interfacial pH, and this could be relieved by the introduction of alkaline segments. On the contrary, when culturing with osteoblasts, the variation of the interfacial pH revealed an upward tendency, indicating that cell could construct the microenvironment by secreting cellular metabolites to satisfy its own survival. In addition, the behavior of osteoblasts on substrates exhibited that P-PUUs with the most PP units were better for cell growth and osteogenic differentiation of cells. This is due to the hydrophilic surface and the moderate N% in P-PUUs, key factors in the promotion of the early stages of cellular responses, and the interfacial pH contributing to the enhanced effect on osteogenic differentiation.
Collapse
Affiliation(s)
- Changshun Ruan
- Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Nan Hu
- Key Renal Laboratory of Shenzhen, Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, 518020, China
| | - Yufei Ma
- Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yuxiao Li
- Department of Biochemistry and Molecular Biology, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Juan Liu
- Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Xinzhou Zhang
- Key Renal Laboratory of Shenzhen, Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, 518020, China.
| | - Haobo Pan
- Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
45
|
Gulati K, Meher MK, Poluri KM. Glycosaminoglycan-based resorbable polymer composites in tissue refurbishment. Regen Med 2017. [DOI: 10.2217/rme-2017-0012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Regeneration of tissue structure with the aid of bioactive polymer matrices/composites and scaffolds for respective applications is one of the emerging areas of biomedical engineering. Recent advances in conjugated glycosaminoglycan (GAG) hybrids using natural and synthetic polymers have opened new avenues for producing a wide variety of resorbable polymer matrices. These hybrid scaffolds are low-immunogenic, highly biocompatible and biodegradable with incredible mechanical and tensile properties. GAG-based resorbable polymeric matrices are being exploited in migration of stem cells, cartilage and bone replacement/regeneration and production of scaffolds for various tissue engineering applications. In the current review, we will discuss the role of GAG-based resorbable polymer matrices in the field of regenerative medicine.
Collapse
Affiliation(s)
- Khushboo Gulati
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Mukesh Kumar Meher
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
46
|
Zhu Y, Wang Z, Zhou H, Li L, Zhu Q, Zhang P. An injectable hydroxyapatite/poly(lactide-co-glycolide) composite reinforced by micro/nano-hybrid poly(glycolide) fibers for bone repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:326-334. [PMID: 28866171 DOI: 10.1016/j.msec.2017.04.121] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 01/26/2023]
Abstract
Porous nanocomposite of hydroxyapatite/poly(lactide-co-glycolide) (HA/PLGA) is conventionally used in bone tissue engineering but seldom in load-bearing orthopedic applications due to poor mechanical property. This study aimed to fabricate an injectable ternary composite by incorporating different contents of poly(glycolide) (PGA) fibers (0, 30, 50 and 70wt%) into the nanocomposite HA/PLGA matrix as reinforcing fillers for bone tissue repair. The fibers were obtained from melt-spinning and fiber diameter ranged from 70nm to 191μm. The injectability, mechanical strength, solidification rate and cytotoxicity of injectable composites were characterized. All composites achieved the acceptable injectability under an injection force of 100N. The mechanical properties of composites were gradually enhanced by increasing PGA fiber contents. The compression strength of composite with 70wt% content of PGA fibers was up to 31.1MPa, which was four times stronger than that of composite without PGA fibers. In the solidification rate analysis, the compression strength of composites with 50 or 70wt% PGA fibers in immersion time of only 45min was similar to that of composite without fibers in immersion time of 4-5h. The MTT test showed that exceeding 70% cells could survive in the fourfold dilution of extract, and its cytotoxicity focused on the first 4h after immersing. This study have revealed that the PGA fiber-reinforced HA/PLGA composite is a promising candidate for orthopedic applications.
Collapse
Affiliation(s)
- Yuhang Zhu
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun 130033, PR China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Hongli Zhou
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun 130033, PR China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Linlong Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China.; University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, PR China
| | - Qingsan Zhu
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun 130033, PR China.
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China..
| |
Collapse
|
47
|
Zhu Y, Wang Z, Li L, Gao D, Xu Q, Zhu Q, Zhang P. In vitro degradation behavior of a hydroxyapatite/poly(lactide-co-glycolide) composite reinforced by micro/nano-hybrid poly(glycolide) fibers for bone repair. J Mater Chem B 2017; 5:8695-8706. [DOI: 10.1039/c7tb02364b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A poly(glycolide) (PGA) fiber-reinforced hydroxyapatite/poly(lactide-co-glycolide) (HA/PLGA) composite with high mechanical strength has been prepared previously.
Collapse
Affiliation(s)
- Yuhang Zhu
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Linlong Li
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Daqian Gao
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Qinli Xu
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Qingsan Zhu
- Department of Orthopedics
- China-Japan Union Hospital
- Jilin University
- Changchun 130033
- P. R. China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|