1
|
Ran S, Xue L, Wei X, Huang J, Yan X, He TC, Tang Z, Zhang H, Gu M. Recent advances in injectable hydrogel therapies for periodontitis. J Mater Chem B 2024; 12:6005-6032. [PMID: 38869470 DOI: 10.1039/d3tb03070a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Periodontitis is an immune-inflammatory disease caused by dental plaque, and deteriorates the periodontal ligament, causes alveolar bone loss, and may lead to tooth loss. To treat periodontitis, antibacterial and anti-inflammation approaches are required to reduce bone loss. Thus, appropriate drug administration methods are significant. Due to their "syringeability", biocompatibility, and convenience, injectable hydrogels and associated methods have been extensively studied and used for periodontitis therapy. Such hydrogels are made from natural and synthetic polymer materials using physical and/or chemical cross-linking approaches. Interestingly, some injectable hydrogels are stimuli-responsive hydrogels, which respond to the local microenvironment and form hydrogels that release drugs. Therefore, as injectable hydrogels are different and highly varied, we systematically reviewed the periodontal treatment field from three perspectives: raw material sources, cross-linking methods, and stimuli-responsive methods. We then discussed current challenges and opportunities for the translation of hydrogels to clinic, which may guide further injectable hydrogel designs for periodontitis.
Collapse
Affiliation(s)
- Shidian Ran
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Linyu Xue
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Xiaorui Wei
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Jindie Huang
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Xingrui Yan
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Zhurong Tang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Hongmei Zhang
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| | - Mengqin Gu
- Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, the Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China.
| |
Collapse
|
2
|
Arısoy S, Bux K, Herwig R, Şalva E. Development, Evaluation, and Molecular Dynamics Study of Ampicillin-Loaded Chitosan-Hyaluronic Acid Films as a Drug Delivery System. ACS OMEGA 2024; 9:19805-19815. [PMID: 38737032 PMCID: PMC11079874 DOI: 10.1021/acsomega.3c08076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024]
Abstract
Periodontitis is an inflammatory periodontal disease defined by the progressive loss of tissues surrounding the tooth. Ampicillin is an antibiotic for managing and treating specific bacterial infections, including periodontitis. Periodontal pockets occur due to periodontal disease progression and act as a natural reservoir that is easily reachable for the insertion of a delivery system, and the amount of drug to be released has a major role in the efficiency of treatment of the disease. Polyelectrolyte complexes (PECs), particularly those based on chitosan and hyaluronic acid combinations, offer a promising avenue to overcome the challenges associated with drug delivery. These complexes are both biodegradable and biocompatible, making them an optimal choice for enabling targeted drug delivery. This study centers on developing and assessing the structure and dynamic attributes of a drug-PEC system encompassing ampicillin and chitosan-hyaluronic acid components, which represents a targeted drug delivery system to better alleviate the periodontitis. To achieve this goal, we conducted experiments including weight and drug content uniformity, swelling ındex, drug release %, FT-IR and SEM analyses, and atomistic molecular dynamics simulations on the drug PECs loaded with ampicillin with varying amounts of hyaluronic acid. All simulations and the experimental analysis suggested that increased HA amount resulted in an increase in drug release % and swelling index. The simulation outcomes provide insights into the nature of the drug and PEC interactions alongside transport properties such as drug diffusion coefficients. These coefficients offer valuable insights into the molecular behavior of ampicillin-PEC drug delivery systems, particularly in the context of their application in periodontitis treatment.
Collapse
Affiliation(s)
- Sema Arısoy
- Faculty
of Pharmacy, Department of Pharmaceutical Technology, Selcuk University, Selcuklu, Konya 42250, Turkey
| | - Khair Bux
- Faculty
of Life Sciences, Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Clifton, Karachi 75600 Pakistan
| | - Ralf Herwig
- Laboratories
PD Dr. R. Herwig, 80337Munich ,Germany
- Heimerer-College, Pristina 10000, Kosovo
| | - Emine Şalva
- Faculty
of Pharmacy, Department of Pharmaceutical Biotechnology, Inonu University, Battalgazi, Malatya 44210, Turkey
| |
Collapse
|
3
|
Mascarenhas R, Hegde S, Manaktala N. Chitosan nanoparticle applications in dentistry: a sustainable biopolymer. Front Chem 2024; 12:1362482. [PMID: 38660569 PMCID: PMC11039901 DOI: 10.3389/fchem.2024.1362482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
The epoch of Nano-biomaterials and their application in the field of medicine and dentistry has been long-lived. The application of nanotechnology is extensively used in diagnosis and treatment aspects of oral diseases. The nanomaterials and its structures are being widely involved in the production of medicines and drugs used for the treatment of oral diseases like periodontitis, oral carcinoma, etc. and helps in maintaining the longevity of oral health. Chitosan is a naturally occurring biopolymer derived from chitin which is seen commonly in arthropods. Chitosan nanoparticles are the latest in the trend of nanoparticles used in dentistry and are becoming the most wanted biopolymer for use toward therapeutic interventions. Literature search has also shown that chitosan nanoparticles have anti-tumor effects. This review highlights the various aspects of chitosan nanoparticles and their implications in dentistry.
Collapse
Affiliation(s)
- Roma Mascarenhas
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Shreya Hegde
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Nidhi Manaktala
- Department of Oral Pathology and Microbiology, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
4
|
Alnada AM, Almahdi WH, Fawaz MA. The Effect of Chitosan Gel 15% in the Surgical Treatment of Stage III Periodontitis: A Case Report of Two Cases. Cureus 2024; 16:e58965. [PMID: 38800269 PMCID: PMC11126890 DOI: 10.7759/cureus.58965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Periodontal diseases are widely spread, particularly in adults. Chitosan has non-toxicity and biocompatibility properties, as it has been studied in many studies in various surgical applications. This case report includes two female patients (aged 23 and 48) who were treated by the application of Chitosan gel 15% during open flap debridement in an aggregate of 26 periodontal pockets. Several clinical measurements were evaluated (probing depth, gingival recession, and bleeding on probing) for the treated periodontal pockets, between two periods, the first in baseline and then after six months. The results showed a reduction in probing depth of (3.30±0.27) after six months. The bleeding on probing also decreased from 84.61% to 0%. This case report concluded that the application of Chitosan gel 15% reduced pocket depth and bleeding on probing when applied in open flap debridement.
Collapse
Affiliation(s)
| | | | - Mohamad A Fawaz
- Public Health, Central Michigan University, Mount Pleasant, USA
| |
Collapse
|
5
|
Feng M, Zeng X, Lin Q, Wang Y, Wei H, Yang S, Wang G, Chen X, Guo M, Yang X, Hu J, Zhang Y, Yang X, Du Y, Zhao Y. Characterization of Chitosan-Gallic Acid Graft Copolymer for Periodontal Dressing Hydrogel Application. Adv Healthc Mater 2024; 13:e2302877. [PMID: 38041691 DOI: 10.1002/adhm.202302877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/09/2023] [Indexed: 12/03/2023]
Abstract
The postoperative periodontal wound is in a complex physiological environment; the bacteria accumulation, the saliva stimulation, and the food residues retention will aggravate the wound deterioration. Commercial periodontal dressings have been widely used for postoperative periodontal treatment, and there still exists some problems, such as poor biocompatibility, weak adhesion, insufficient antibacterial, and anti-inflammatory properties. In this study, a chitosan-gallic acid graft copolymer (CS-GA) is synthesized as a potential periodontal dressing hydrogel. CS-GA possesses high swelling rate, adjustable degradability, self-healing ability, biocompatibility, strong adhesion ability, high mechanical properties and toughness. Furthermore, CS-GA has good scavenging ability for ·OH, O2 - , and 1 O2. And CS-GA has good inhibition effect on different bacterial through bacterial membranes damage. CS-GA can stop bleeding in a short time and adsorb erythrocytes to form physical blood clots to enhance the hemostatic performance. In addition, CS-GA can reduce inflammatory factors expressions, increase collagen fibers deposition, and neovascularization to promote wounds healing, which makes it as a potential periodontal dressing for postoperative tissue restoration.
Collapse
Affiliation(s)
- Mengge Feng
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Xuelian Zeng
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Quan Lin
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yunxiao Wang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Hongjiang Wei
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Shanyi Yang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Guangwei Wang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xingyu Chen
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Mengqin Guo
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xin Yang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Jiangxia Laboratory, Wuhan, 430200, P. R. China
| | - Yufeng Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yangge Du
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
6
|
İlhan H, Cakici EB, Cakici F. The comparative of chitosan and chitosan nanoparticle versus ethylenediaminetetraacetic acid on the smear layer removal: A systematic review and meta-analysis of in vitro study. Microsc Res Tech 2024; 87:181-190. [PMID: 37732467 DOI: 10.1002/jemt.24423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/20/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023]
Abstract
The purpose of this systematic review of meta-analysis was to compare the effectiveness of removing the smearing layer using EDTA versus Chitosan (Ch) and Chitosan nanoparticles (Ch-NPs). A search was performed in four electronic databases (Web of Science, PubMed, Scopus, and Cochrane). The included studies were assessed by two reviewers using Joanna Briggs Institute's critical appraisal checklist for the quasi-experimental studies. Outcomes obtained by scanning electron microscopy (SEM) and conventional methods were presented as standardized mean differences alongside 95% confidence intervals. Seven investigations employed 212 single-root teeth. In the apical section (p = .317, 95% CI = -0.820 to 0.266, Tau2 = 0.387), middle segment (p = .914, 95% CI = -1.019 to 0.912, Tau2 = 1.027), and coronal segment (p = .277, 95% CI = -1.008 to 0.289, Tau2 = 0.378). This meta-analysis found no difference between Ch, Ch-NPs, and EDTA in removing the smear layer in the three segments. This systematic review is designed to show evidence related to the PICO question, in which our outcome is smear layer removal and not the clinical success of such a treatment. RESEARCH HIGHLIGHTS: The study aimed to compare the effectiveness of chitosan and chitosan nanoparticles with ethylenediaminetetraacetic acid (EDTA) in removing the smear layer, a layer of debris and organic material on the tooth surface, through a systematic review and meta-analysis. The removal of the smear layer is crucial for successful dental treatments, as it enhances the adhesion of restorative materials and improves the penetration of antimicrobial agents into dentinal tubules. The researchers conducted a systematic review and meta-analysis, searching various databases of electron microscopy results for relevant in vitro studies comparing the effects of chitosan or chitosan nanoparticles with EDTA on smear layer removal. The results encourage further exploration of chitosan and chitosan nanoparticles for clinical use in dentistry, while considering their specific applications and long-term effects.
Collapse
Affiliation(s)
- Hasan İlhan
- Department of Chemistry, Faculty of Art and Science, Ordu University, Ordu, Turkey
| | - Elif Bahar Cakici
- Department of Endodontics, Faculty of Dentistry, Ordu University, Ordu, Turkey
| | - Fatih Cakici
- Department of Endodontics, Faculty of Dentistry, Ordu University, Ordu, Turkey
| |
Collapse
|
7
|
Nasrabadi N, Ramezanian N, Ghorbanian P, Forouzanfar A, Mohammadipour HS. Evaluation of Cytotoxicity and Antimicrobial Activity of Experimental Composites Containing Chitosan-Silver Oxide Particles Against Two Main Pathogenic Bacteria in Periodontal Disease. Protein Pept Lett 2024; 31:97-106. [PMID: 37921156 DOI: 10.2174/0109298665240242231016103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 07/25/2023] [Accepted: 09/04/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Bacterial biofilm is known as the main cause of periodontal disease. Generally, the anaerobic Gram-negative, such as Porphyromonas gingivalis and Fusobacterium nucleatum, are considered the most identified bacteria. OBJECTIVE This study aimed to investigate the antimicrobial effect and cytotoxicity of two experimental composites containing chitosan-silver oxide (CH-Ag2O) particles. MATERIALS AND METHODS Four experimental groups, including Ag2O and CH, along with two composites of CH-Ag2O 20 and CH-Ag2O 60 mg, were prepared. Antimicrobial activity was performed against Porphyromonas gingivalis (ATCC#33277) and Fusobacterium nucleatum (ATCC#25586) using the agar dilution method. Moreover, the cytotoxicity assay was performed on human gingival fibroblasts (HGF) by the use of the MTT method. The obtained data were analyzed with descriptive methods, one-way ANOVA, and Tukey's LSD tests. RESULTS The antibacterial activity of both composites was higher than both CH and Ag2O, and the greatest antibacterial properties were presented in CH-Ag2O 60. In all three measurements (24, 48, and 72 h), the greatest cytotoxicity was seen in Ag2O, followed by CH, CH-Ag2O 20, and CHAg2O 60 in descending order, respectively. The cytotoxicity of these components was related to the concentration and not to the time of exposure. The results showed that Ag2O in 3.7 and 7.5 μg/ml concentrations and CH-containing groups in 250 and 500 μg/ml were toxic to the cultured HGF. CONCLUSION The experimental composite containing CH-Ag2O 60 showed the greatest antibacterial properties against two periodontal pathogens evaluated. In order to clarify the clinical significance of composite cytotoxicity, further clinical studies are necessary.
Collapse
Affiliation(s)
- Nahid Nasrabadi
- Department of Periodontics, Dental Research Center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Ramezanian
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Parisa Ghorbanian
- School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Forouzanfar
- Department of Periodontics, Dental Research Center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Sadat Mohammadipour
- Department of Cosmetic and Restorative Dentistry, Dental Materials Research Center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Potaś J, Wach RA, Rokita B, Wróblewska M, Winnicka K. Evaluation of the impact of tragacanth/xanthan gum interpolymer complexation with chitosan on pharmaceutical performance of gels with secnidazole as potential periodontal treatment. Eur J Pharm Sci 2024; 192:106657. [PMID: 38040098 DOI: 10.1016/j.ejps.2023.106657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Periodontitis consists a group of dental disorders that affect about 70 % of the world population. The therapy mainly relies on mechanical removing bacterial biofilm, nevertheless, local or systemic antibacterial agents play a key role in treating the acute conditions. Secnidazole is a newer derivative of commonly used metronidazole with high safety profile and broad spectrum of antimicrobial activity. The aim of the study was to evaluate the applicability of polyelectrolyte complex-based hydrogels composed of anionic tragacanth with addition of xanthan gum and cationic chitosan as carriers for buccal/intra pocket delivery of secnidazole. Prepared hydrogels with 5 % and 10 % (w/w) drug content were evaluated pharmaceutically towards inter alia physicomechanical, rheological and thermal properties, drug release kinetics, swelling behavior or antimicrobial activity. Cytotoxicity against human primary umbilical vein endothelial cells was also assessed with two independent method. Stable compositions with secnidazole were obtained, however, various miscibility of the drug with the polymers was noted. By adding chitosan, antibacterial activity and swelling performance of the gels were improved, nevertheless, drop of the mucoadhesiveness was also recorded. Hydrogels with 5 % secnidazole were selected as effective antimicrobial compositions with the highest cytocompatibility. They might be considered as promising for oromucosal application with special attention given to SEC as an alternative locally administered antimicrobial agent.
Collapse
Affiliation(s)
- Joanna Potaś
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Białystok, Mickiewicza 2C, Białystok 15-222, Poland.
| | - Radosław A Wach
- Department of Institute of Applied Radiation Chemistry, Faculty of Chemistry, Łódź University of Technology, Wróblewskiego 15, Łódź 93-590, Poland
| | - Bożena Rokita
- Department of Institute of Applied Radiation Chemistry, Faculty of Chemistry, Łódź University of Technology, Wróblewskiego 15, Łódź 93-590, Poland
| | - Magdalena Wróblewska
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Białystok, Mickiewicza 2C, Białystok 15-222, Poland
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical University of Białystok, Mickiewicza 2C, Białystok 15-222, Poland
| |
Collapse
|
9
|
Moradi Haghgoo J, Torkzaban P, Hashemi P, Sarvari R, Hashemi S, Fakhri E, Alafchi B. Clinical evaluation of chitosan/polycaprolactone nanofibrous scaffolds releasing tetracycline hydrochloride in periodontal pockets of patients with chronic periodontitis. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2023; 15:74-79. [PMID: 38357337 PMCID: PMC10862042 DOI: 10.34172/japid.2023.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/30/2023] [Indexed: 02/16/2024]
Abstract
Background The role of bacteria in the initiation and progression of periodontitis has led to a great interest in using antibiotics to suppress pathogenic microbiota. Considering the drawbacks of systemic antibiotics' application, local delivery systems directly in the periodontal pocket can be helpful. Therefore, the effect of an efficient tetracycline-loaded delivery system was investigated on the clinical parameters of periodontitis. Methods In this clinical trial with a split-mouth design, 10 patients with periodontitis with pocket depths≥5 mm were included. After scaling and root planing (SRP) for all the patients, one side of the mouth was randomly considered as the control group, and on the other side, chitosan/polycaprolactone (PCL) nanofibrous films containing tetracycline (5%) were placed in pockets of 5 mm and deeper. Clinical measurements of pocket probing depth (PPD), clinical attachment loss (CAL), and bleeding on probing (BOP) indices were made at the beginning and after 8 weeks of intervention. PPD, CAL, and BOP parameters were compared between the control and test groups before and after the intervention with paired t tests using SPSS 24. The significance level of the tests was considered at P<0.05. Results The mean PPD, CAL, and BOP in both the control (SRP) and test (LDDs) groups decreased after 8 weeks. A significant difference was detected in reducing PPD, BOP, and CAL after 8 weeks in 5-mm pockets, and the mean values were higher in the test group than in the control (P<0.05). Conclusion The local drug delivery system using chitosan/PCL nanofibrous films containing tetracycline can effectively control periodontal diseases by reducing pocket depth and inflammation and improving CAL without offering side effects, although further evaluations are needed.
Collapse
Affiliation(s)
- Janet Moradi Haghgoo
- Department of Periodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parviz Torkzaban
- Department of Periodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parisa Hashemi
- Department of Periodontics, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rana Sarvari
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sana Hashemi
- Department of Prosthodontics, School of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elahe Fakhri
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Alafchi
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
10
|
Camilo NG, Gonçalves ADR, Flauzino LP, Bernardes CMR, Aranha AMF, Lazari-Carvalho PC, de Carvalho MA, de Oliveira HF. Influence of Chitosan 0.2% in Various Final Cleaning Methods on the Bond Strength of Fiberglass Post to Intrarradicular Dentin. Polymers (Basel) 2023; 15:4409. [PMID: 38006133 PMCID: PMC10675818 DOI: 10.3390/polym15224409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The purpose of this study was to analyze the influence of Chitosan 0.2% in various final cleaning methods on the bond strength of fiberglass post (FP) to intrarradicular dentin. Ninety bovine incisors were sectioned to obtain root remnants measuring 18 mm in length. The roots were divided: G1: EDTA 17%; G2: EDTA 17% + PUI; G3: EDTA 17% + EA; G4: EDTA 17% + XPF; G5: Chitosan 2%; G6: Chitosan 2% + PUI; G7: Chitosan 2% + EA; G8: Chitosan 2% +XPF. After carrying out the cleaning methods, the posts were installed, and the root was cleaved to generate two disks from each root third. Bond strength values (MPa) obtained from the micro push-out test data were assessed by using Kruskal-Wallis and Dwass-Steel-Critchlow-Fligner tests for multiple comparisons (α = 5%). Differences were observed in the cervical third between G1 and G8 (p = 0.038), G4 and G8 (p = 0.003), G6 and G8 (p = 0.049), and Control and G8 (p = 0.019). The final cleaning method influenced the adhesion strength of cemented FP to intrarradicular dentin. Chitosan 0.2% + XPF positively influenced adhesion strength, with the highest values in the cervical third.
Collapse
Affiliation(s)
- Naira Geovana Camilo
- Department of Endodontics, School of Dentistry, Evangelical University of Goiás, Anápolis 75083-515, GO, Brazil; (N.G.C.); (A.d.R.G.); (C.M.R.B.)
| | - Alex da Rocha Gonçalves
- Department of Endodontics, School of Dentistry, Evangelical University of Goiás, Anápolis 75083-515, GO, Brazil; (N.G.C.); (A.d.R.G.); (C.M.R.B.)
| | - Larissa Pinzan Flauzino
- Department of Oral Biology, School of Dentistry, University of Cuiabá, Cuiabá 78065-900, MT, Brazil; (L.P.F.); (A.M.F.A.)
| | | | - Andreza Maria Fábio Aranha
- Department of Oral Biology, School of Dentistry, University of Cuiabá, Cuiabá 78065-900, MT, Brazil; (L.P.F.); (A.M.F.A.)
| | - Priscilla Cardoso Lazari-Carvalho
- Department of Restorative Sciences, School of Dentistry, Evangelical University of Goiás, Anápolis 75083-515, GO, Brazil; (P.C.L.-C.); (M.A.d.C.)
| | - Marco Aurélio de Carvalho
- Department of Restorative Sciences, School of Dentistry, Evangelical University of Goiás, Anápolis 75083-515, GO, Brazil; (P.C.L.-C.); (M.A.d.C.)
| | - Helder Fernandes de Oliveira
- Department of Endodontics, School of Dentistry, Evangelical University of Goiás, Anápolis 75083-515, GO, Brazil; (N.G.C.); (A.d.R.G.); (C.M.R.B.)
| |
Collapse
|
11
|
Figuero E, Serrano J, Arweiler NB, Auschill TM, Gürkan A, Emingil G. Supra and subgingival application of antiseptics or antibiotics during periodontal therapy. Periodontol 2000 2023. [PMID: 37766668 DOI: 10.1111/prd.12511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/17/2023] [Accepted: 06/22/2023] [Indexed: 09/29/2023]
Abstract
Periodontal diseases (gingivitis and periodontitis) are characterized by inflammatory processes which arise as a result of disruption of the balance in the oral ecosystem. According to the current S3 level clinical practice guidelines, therapy of patients with periodontitis involves a stepwise approach that includes the control of the patient's risk factors and the debridement of supra and subgingival biofilm. This debridement can be performed with or without the use of some adjuvant therapies, including physical or chemical agents, host modulating agents, subgingivally locally delivered antimicrobials, or systemic antimicrobials. Therefore, the main aim of this article is to review in a narrative manner the existing literature regarding the adjuvant application of local agents, either subgingivally delivered antibiotics and antiseptics or supragingivally applied rinses and dentifrices, during the different steps in periodontal therapy performed in Europe.
Collapse
Affiliation(s)
- Elena Figuero
- Department of Dental Clinical Specialties, Etiology and Therapy of Periodontal and Peri-implant Research Group, Faculty of Dentistry, University Complutense of Madrid, Madrid, Spain
- Etiology and Therapy of Periodontal and Peri-implant Research Group, University Complutense of Madrid, Madrid, Spain
| | - Jorge Serrano
- Etiology and Therapy of Periodontal and Peri-implant Research Group, University Complutense of Madrid, Madrid, Spain
| | - Nicole Birgit Arweiler
- Department of Periodontology and Peri-implant Diseases, Philipps University of Marburg, Marburg, Germany
| | - Thorsten Mathias Auschill
- Department of Periodontology and Peri-implant Diseases, Philipps University of Marburg, Marburg, Germany
| | - Ali Gürkan
- Department of Peridontology, Ege University School of Dentistry, Bornova, Turkey
| | - Gülnur Emingil
- Department of Peridontology, Ege University School of Dentistry, Bornova, Turkey
| |
Collapse
|
12
|
Viglianisi G, Santonocito S, Lupi SM, Amato M, Spagnuolo G, Pesce P, Isola G. Impact of local drug delivery and natural agents as new target strategies against periodontitis: new challenges for personalized therapeutic approach. Ther Adv Chronic Dis 2023; 14:20406223231191043. [PMID: 37720593 PMCID: PMC10501082 DOI: 10.1177/20406223231191043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/07/2023] [Indexed: 09/19/2023] Open
Abstract
Periodontitis is a persistent inflammation of the soft tissue around the teeth that affects 60% of the population in the globe. The self-maintenance of the inflammatory process can cause periodontal damage from the alveolar bone resorption to tooth loss in order to contrast the effects of periodontitis, the main therapy used is scaling and root planing (SRP). At the same time, studying the physiopathology of periodontitis has shown the possibility of using a local drug delivery system as an adjunctive therapy. Using local drug delivery devices in conjunction with SRP therapy for periodontitis is a potential tool since it increases drug efficacy and minimizes negative effects by managing drug release. This review emphasized how the use of local drug delivery agents and natural agents could be promising adjuvants for the treatment of periodontitis patients affected or not by cardiovascular disease, diabetes, and other system problems. Moreover, the review evidences the current issues and new ideas that can inspire potential later study for both basic research and clinical practice for a tailored approach.
Collapse
Affiliation(s)
- Gaia Viglianisi
- Department of General Surgery and Surgical-Medical Specialities, School of Dentistry, University of Catania, Catania, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialities, School of Dentistry, University of Catania, Catania, Italy
| | - Saturnino Marco Lupi
- Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Mariacristina Amato
- Department of General Surgery and Surgical-Medical Specialities, School of Dentistry, University of Catania, Catania, Italy
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, Naples, Italy
| | - Paolo Pesce
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialities, School of Dentistry, University of Catania, Via Santa Sofia 78, Catania 95123, Italy
| |
Collapse
|
13
|
Gegout PY, Stutz C, Huck O. Gels as adjuvant to non-surgical periodontal therapy: A systematic review and meta-analysis. Heliyon 2023; 9:e17789. [PMID: 37455970 PMCID: PMC10345361 DOI: 10.1016/j.heliyon.2023.e17789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Objective This systematic review and meta-analysis evaluated the effect of the use of available drugs loaded gels used as adjunct to non-surgical periodontal therapy. Methods Systematic research on PubMed/MEDLINE, Cochrane Central register of Controlled Trials, and Embase databases up to December 2021 was performed. Randomized clinical trials (RCT) which compared the outcomes of scaling and root planing (SRP) + local adjuvant administration (gel) versus SRP + placebo or SRP alone in Humans were included. The primary outcome measures were PPD and CAL changes at 3 months. Results After articles screening, 77 articles were included and assessed for quality. Then, a meta-analysis was conducted in studies with at least 3 months of follow-up. Clinical improvements were found to be significant for tetracyclines (-0.51 [-0.71;-0.31] p < 0.001), macrolides (-0.71 [-1.04;-0.38] p < 0.001), statins (-0.84 [-0.98;-0.70] p < 0.001), metformin (-1.47 [-1.66;-1.29] p < 0.001) and hyaluronan (-1.61 [-2.28;-0.94] p < 0.001) loaded gels, but non-significant for chlorhexidine (-0.48 [-1.10; 0.14] p = 0.13), metronidazole (-0.50 [-1.20; 0.20] p = 0.16) and bisphosphonates (-0.42 [-1.39; 0.54] p = 0.539) gels. Conclusion Adjunctive use of drugs loaded gels to non-surgical periodondal treatment could improve PPD reduction at 3 months. However, huge disparities remain when comparing the outcomes of the differents drugs used. Future comparative studies should be considered to determine precisely short and long term benefits of such treatments.
Collapse
Affiliation(s)
- Pierre-Yves Gegout
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Periodontology, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Pôle de Médecine et Chirurgie Bucco-dentaires, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Céline Stutz
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Olivier Huck
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Periodontology, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg, Pôle de Médecine et Chirurgie Bucco-dentaires, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| |
Collapse
|
14
|
Amato M, Santonocito S, Polizzi A, Tartaglia GM, Ronsivalle V, Viglianisi G, Grippaudo C, Isola G. Local Delivery and Controlled Release Drugs Systems: A New Approach for the Clinical Treatment of Periodontitis Therapy. Pharmaceutics 2023; 15:pharmaceutics15041312. [PMID: 37111796 PMCID: PMC10143241 DOI: 10.3390/pharmaceutics15041312] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Periodontitis is an inflammatory disease of the gums characterized by the degeneration of periodontal ligaments, the formation of periodontal pockets, and the resorption of the alveolar bone, which results in the destruction of the teeth's supporting structure. Periodontitis is caused by the growth of diverse microflora (particularly anaerobes) in the pockets, releasing toxins and enzymes and stimulating the immune system. Various approaches, both local and systemic, have been used to treat periodontitis effectively. Successful treatment depends on reducing bacterial biofilm, bleeding on probing (BOP), and reducing or eliminating pockets. Currently, the use of local drug delivery systems (LDDSs) as an adjunctive therapy to scaling and root planing (SRP) in periodontitis is a promising strategy, resulting in greater efficacy and fewer adverse effects by controlling drug release. Selecting an appropriate bioactive agent and route of administration is the cornerstone of a successful periodontitis treatment plan. In this context, this review focuses on applications of LDDSs with varying properties in treating periodontitis with or without systemic diseases to identify current challenges and future research directions.
Collapse
Affiliation(s)
- Mariacristina Amato
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy
| | - Vincenzo Ronsivalle
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Gaia Viglianisi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| | - Cristina Grippaudo
- Department of Head and Neck, Division of Oral Surgery and Implantology, Catholic University of the Sacred Heart, Fondazione Policlinico Gemelli IRCCS, 00168 Rome, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy
| |
Collapse
|
15
|
Constantin M, Lupei M, Bucatariu SM, Pelin IM, Doroftei F, Ichim DL, Daraba OM, Fundueanu G. PVA/Chitosan Thin Films Containing Silver Nanoparticles and Ibuprofen for the Treatment of Periodontal Disease. Polymers (Basel) 2022; 15:polym15010004. [PMID: 36616354 PMCID: PMC9824025 DOI: 10.3390/polym15010004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022] Open
Abstract
Local delivery of drugs or antimicrobial agents is a suitable approach in the management of periodontitis when the infection is localized deep in the pockets and does not adequately respond to mechanical debridement and/or systemic antibiotic treatment. In this context, the objective of this study was to prepare new biocomposite films with antimicrobial, anti-inflammatory, and good mechanical properties to be applied in periodontal pockets. The composite film is eco-friendly synthesized from poly(vinyl alcohol) (PVA) cross-linked with oxidized chitosan (OxCS). Silver nanoparticles (AgNps) were inserted during film synthesis by adding freshly chitosan-capped AgNps colloidal solution to the polymer mixture; the addition of AgNps up to 1.44 wt.% improves the physico-chemical properties of the film. The characterization of the films was performed by FT-IR, atomic mass spectrometry, X-ray spectroscopy, and SEM. The films displayed a high swelling ratio (162%), suitable strength (1.46 MPa), and excellent mucoadhesive properties (0.6 N). Then, ibuprofen (IBF) was incorporated within the best film formulation, and the IBF-loaded PVA/OxCS-Ag films could deliver the drug in a sustained manner up to 72 h. The biocomposite films have good antimicrobial properties against representative pathogens for oral cavities. Moreover, the films are biocompatible, as demonstrated by in vitro tests on HDFa cell lines.
Collapse
Affiliation(s)
- Marieta Constantin
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania
- Correspondence: (M.C.); (G.F.); Tel.: +40-332-880155 (M.C.); +40-332-880225 (G.F.); Fax: +40-332-211299 (M.C.); +40-332-211299 (G.F.)
| | - Mihail Lupei
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Sanda-Maria Bucatariu
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Irina Mihaela Pelin
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania
| | - Florica Doroftei
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania
| | | | - Oana Maria Daraba
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
| | - Gheorghe Fundueanu
- “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, 700487 Iasi, Romania
- Correspondence: (M.C.); (G.F.); Tel.: +40-332-880155 (M.C.); +40-332-880225 (G.F.); Fax: +40-332-211299 (M.C.); +40-332-211299 (G.F.)
| |
Collapse
|
16
|
Elangwe CN, Morozkina SN, Olekhnovich RO, Krasichkov A, Polyakova VO, Uspenskaya MV. A Review on Chitosan and Cellulose Hydrogels for Wound Dressings. Polymers (Basel) 2022; 14:polym14235163. [PMID: 36501559 PMCID: PMC9741326 DOI: 10.3390/polym14235163] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Wound management remains a challenging issue around the world, although a lot of wound dressing materials have been produced for the treatment of chronic and acute wounds. Wound healing is a highly dynamic and complex regulatory process that involves four principal integrated phases, including hemostasis, inflammation, proliferation, and remodeling. Chronic non-healing wounds are wounds that heal significantly more slowly, fail to progress to all the phases of the normal wound healing process, and are usually stalled at the inflammatory phase. These wounds cause a lot of challenges to patients, such as severe emotional and physical stress and generate a considerable financial burden on patients and the general public healthcare system. It has been reported that about 1-2% of the global population suffers from chronic non-healing wounds during their lifetime in developed nations. Traditional wound dressings are dry, and therefore cannot provide moist environment for wound healing and do not possess antibacterial properties. Wound dressings that are currently used consist of bandages, films, foams, patches and hydrogels. Currently, hydrogels are gaining much attention as a result of their water-holding capacity, providing a moist wound-healing milieu. Chitosan is a biopolymer that has gained a lot of attention recently in the pharmaceutical industry due to its unique chemical and antibacterial nature. However, with its poor mechanical properties, chitosan is incorporated with other biopolymers, such as the cellulose of desirable biocompatibility, at the same time having the improved mechanical and physical properties of the hydrogels. This review focuses on the study of biopolymers, such as cellulose and chitosan hydrogels, for wound treatment.
Collapse
Affiliation(s)
- Collins N. Elangwe
- Chemical Engineering Center, ITMO University, Kronverkskiy Prospect, 49A, Saint Petersburg 197101, Russia
- Correspondence: ; Tel.: +7-960-272-3495
| | - Svetlana N. Morozkina
- Chemical Engineering Center, ITMO University, Kronverkskiy Prospect, 49A, Saint Petersburg 197101, Russia
| | - Roman O. Olekhnovich
- Chemical Engineering Center, ITMO University, Kronverkskiy Prospect, 49A, Saint Petersburg 197101, Russia
| | - Alexander Krasichkov
- Departments of Radio Engineering Systems, Electrotechnical University “LETI”, Prof. Popova Street 5F, Saint Petersburg 197022, Russia
| | - Victoriya O. Polyakova
- St. Petersburg Research Institute of Phthisiopulmonology, Ligovsky 2-4, Saint Petersburg 191036, Russia
| | - Mayya V. Uspenskaya
- Chemical Engineering Center, ITMO University, Kronverkskiy Prospect, 49A, Saint Petersburg 197101, Russia
| |
Collapse
|
17
|
Periodontal Therapy Using Bioactive Glasses: A Review. PROSTHESIS 2022. [DOI: 10.3390/prosthesis4040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This paper reviews the use of bioactive glasses as materials for periodontal repair. Periodontal disease causes bone loss, resulting in tooth loosening and eventual tooth loss. However, it can be reversed using bioactive glass, typically the original 45S5 formulation (Bioglass®) at the defect site. This is done either by plcing bioactive glass granules or a bioactive glass putty at the defect. This stimulates bone repair and causes the defect to disappear. Another use of bioactive glass in periodontics is to repair so-called furcation defects, i.e., bone loss due to infection at the intersection of the roots in multi-rooted teeth. This treatment also gives good clinical outcomes. Finally, bioactive glass has been used to improve outcomes with metallic implants. This involves either placing bioactive glass granules into the defect prior to inserting the metal implant, or coating the implant with bioactive glass to improve the likelihood of osseointegration. This needs the glass to be formulated so that it does not crack or debond from the metal. This approach has been very successful, and bioactive glass coatings perform better than those made from hydroxyapatite.
Collapse
|
18
|
Dorileo MCGO, Guiraldo RD, Lopes MB, de Almeida Decurcio D, Guedes OA, Aranha AMF, Borges ÁH, Júnior AG. Effect of 0.2% Chitosan Associated with Different Final Irrigant Protocols on the Fiber Post Bond Strength to Root Canal Dentin of Bovine Teeth: An In-vitro Study. Open Dent J 2022. [DOI: 10.2174/18742106-v16-e2205310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective:
This in-vitro study investigated the effect of 0.2% Chitosan associated with different final irrigant protocols on the bond strength of fiber posts (FP) to root canal dentin.
Methods:
Fifty bovine incisors roots were prepared using the ProTaper Universal system, irrigated with 2.5% sodium hypochlorite, and divided into one control group (n=10) with no final irrigant protocol and four experimental groups (n=10), which were defined according to the combination of chelating solution (17% EDTA and 0.2% Chitosan) and irrigant activation/delivery method [conventional irrigation (CI), and passive ultrasonic irrigation (PUI)]. Post spaces were prepared to a depth of 12 mm using #1-5 Largo drills, and the FP were cemented using self-adhesive resin cement. Two slices of 2 mm in thickness from each third were obtained and submitted to the micropush-out test. After testing the push-out strength, the slices were analyzed under a stereomicroscope at 40× magnification for bond failure patterns determination. Statistical analysis was performed using three-way ANOVA followed by Tukey’s test (α = 0.05).
Results:
The control and 17% EDTA + CI groups exhibited significantly lower bond strength than 0.2% Chitosan + CI, 17% EDTA + PUI, and 0.2% Chitosan + PUI groups in the cervical third (P = 0.00). The cervical third had higher values than the middle and apical thirds in control (P = 0.00), 17% EDTA + PUI (P = 0.00), and 0.2% Chitosan + PUI groups (P = 0.00). Adhesive cement-dentin failure type was predominant in all groups.
Conclusion:
The use of 0.2% chitosan did not affect the bond strength of FP to root dentin. Passive ultrasonic activation of chelating solutions resulted in an improvement in bonding strength.
Collapse
|
19
|
Kaval ME, Cakir B, Polatli E, Rençber S, Karavana SY, Nalbantsoy A, Güneri P. IL-1ß, IL-6 and TNF-α expression levels of macrophage cells induced by benzydamine hydrochloride, benzydamine hydrochloride with chitosan, calcium hydroxide and chlorhexidine medicaments: An ELISA study. Dent Mater J 2022; 41:545-551. [PMID: 35676045 DOI: 10.4012/dmj.2021-265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of the present study was to evaluate IL-1ß, IL-6 and TNF-α expression levels of macrophage cells induced by benzydamine hydrochloride (BNZ), BNZ with chitosan, calcium hydroxide (CH) and chlorhexidine (CHX) medicaments. Half maximal inhibitory concentrations (IC50) were assessed on THP-1, Saos-2, and CRL-2014 cells using MTT assay. THP-1 cells were differentiated into macrophages with phorbol12-myristate13-acetate and activated with lipopolysaccharide. IL-1β, IL-6 and TNF-α levels in supernatants were determined using enzyme-linked immunosorbent assay (ELISA). The data were examined with one-way ANOVA and Tukey's multiple comparison test (p=0.05). At the selected concentrations, the cell viability was higher than 50% for chitosan and CH, whereas CHX presented lower IC50 values than BNZ and BNZ+chitosan. According to ELISA results, the lowest IL-1β, IL-6 and TNF-α values were observed with BNZ+Chitosan 50 µg/mL and BNZ 50 µg/mL. BNZ+chitosan 50 µg/mL combination has revealed promising anti-inflammatory effects. Nevertheless, these findings need to be examined in clinical conditions.
Collapse
Affiliation(s)
| | - Büşra Cakir
- Department of Bioengineering, Faculty of Engineering, Ege University
| | - Elifsu Polatli
- Department of Bioengineering, Faculty of Engineering, Ege University
| | - Seda Rençber
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Izmir Katip Celebi University
| | | | - Ayşe Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University
| | - Pelin Güneri
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Ege University
| |
Collapse
|
20
|
Hussain B, Karaca EO, Kuru BE, Gursoy H, Haugen HJ, Wohlfahrt JC. Treatment of residual pockets using an oscillating chitosan device versus regular curettes alone-A randomized, feasibility parallel-arm clinical trial. J Periodontol 2022; 93:780-789. [PMID: 34710240 DOI: 10.1002/jper.21-0496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND A brush made of chitosan has shown to be an effective and harmless device for non-surgical treatment of mild to moderate peri-implantitis. To date, no study has evaluated the use of a chitosan brush in the non-surgical treatment of residual pockets in periodontal treatment. METHODS Seventy-eight patients with periodontitis were included in this multicenter, randomized, examiner-blind clinical trial of 6 months duration. Patients with residual probing pocket depth (PPD) of ≥5 mm and ≤7 mm following previous active periodontal treatment were included. Patients were assigned either subgingival treatment with curettes (control) or an oscillating chitosan brush (test). Changes in bleeding on probing (BoP) and PPD between baseline and terminal evaluation at 6 months were evaluated. RESULTS A significant reduction in both PPD and BoP was seen within both groups. There was no significant difference in BoP between test and control groups after 6 months, but the reduction in PPD was significantly improved in the test group (P ≤ 0.01). The combined outcome of no BOP and PPD ≤4 mm was significantly better in the test group (P ≤ 0.01). No adverse reactions were seen. CONCLUSION Treatment of residual periodontal pockets (PPD = 5 to 7 mm) with a chitosan brush disclosed equal or better clinical results as compared to regular curettes. This study supports that a chitosan brush can be used for subgingival biofilm removal and soft tissue curretage in the treatment of periodontitis.
Collapse
Affiliation(s)
- Badra Hussain
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Ebru Ozkan Karaca
- Department of Periodontology, Yeditepe University School of Dentistry, Istanbul, Turkey
| | - Bahar Eren Kuru
- Department of Periodontology, Yeditepe University School of Dentistry, Istanbul, Turkey
| | - Hare Gursoy
- Department of Periodontology, Yeditepe University School of Dentistry, Istanbul, Turkey
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Johan Caspar Wohlfahrt
- Department of Periodontology, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway.,Bjerke Tannmedisin, Oslo, Norway
| |
Collapse
|
21
|
Hamedi H, Moradi S, Hudson SM, Tonelli AE, King MW. Chitosan based bioadhesives for biomedical applications: A review. Carbohydr Polym 2022; 282:119100. [DOI: 10.1016/j.carbpol.2022.119100] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/21/2021] [Accepted: 01/02/2022] [Indexed: 11/02/2022]
|
22
|
Anggani HS, Rusli V, Bachtiar EW. Chitosan gel prevents the growth of Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola in mini-implant during orthodontic treatment. Saudi Dent J 2021; 33:1024-1028. [PMID: 34938045 PMCID: PMC8665160 DOI: 10.1016/j.sdentj.2021.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 11/24/2022] Open
Abstract
Aims We evaluated the effect of chitosan gel on total oral bacteria, Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola, during orthodontic treatment with mini-implants. Material and methods Thirty subjects with 52 orthodontic mini-implants were divided into three groups: one group was treated with chitosan gel, the other group with chlorhexidine gel, and the control group with placebo. The plaque of the orthodontic peri-mini-implant area was collected before and after gel treatment. The total oral bacteria and red-complex bacteria of P. pingivalis, T. forsythia, and T. denticola were determined with reverse transcription-quantitative PCR. Results Thirty-four orthodontic mini-implants (65.38%) appeared as healthy and showed no clinical signs of inflammation. The total number of bacteria was reduced after chitosan gel application. The highest decrease in the proportion of P. gingivalis was observed in the chlorhexidine gel application group, which showed a value of 70.86%, whereas the chitosan gel application showed a reduction of only 26.59%, and the control gel application showed the lowest reduction effect of only 2.55%. The difference in the reduction between gel application groups was significant (P < 0.05) for T. denticola and T. forsythia. Conclusion The gel containing chitosan reduced the levels of total oral bacteria and red-complex bacteria.
Collapse
Affiliation(s)
- Haru Setyo Anggani
- Department of Orthodontic Faculty of Dentistry Universitas Indonesia, Salemba Raya 4, Jakarta 10430, Indonesia
| | - Victoria Rusli
- Department of Orthodontic Faculty of Dentistry Universitas Indonesia, Salemba Raya 4, Jakarta 10430, Indonesia
| | - Endang W Bachtiar
- Departement of Oral Biology and Oral Science Research Center, Faculty of Dentistry Universitas Indonesia, Salemba Raya 4, Jakarta 10430, Indonesia
| |
Collapse
|
23
|
Antimicrobial and Regenerative Effects of Placental Multipotent Mesenchymal Stromal Cell Secretome-Based Chitosan Gel on Infected Burns in Rats. Pharmaceuticals (Basel) 2021; 14:ph14121263. [PMID: 34959663 PMCID: PMC8707738 DOI: 10.3390/ph14121263] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 01/08/2023] Open
Abstract
Background: There is a need for better strategies to promote burn wound healing and prevent infection. The aim of our study was to develop an easy-to-use placental multipotent mesenchymal stromal cell (MMSC) secretome-based chitosan hydrogel (MSC-Ch-gel) and estimate its antimicrobial and regenerative activity in Staphylococcus aureus-infected burn wounds in rats. Methods: Proteomic studies of the MMSC secretome revealed proteins involved in regeneration, angiogenesis, and defence responses. The MMSC secretome was collected from cultured cells and mixed with water-soluble chitosan to prepare the placental MSC-Ch-gel, which was stored in liquid phase at 4 °C. The wounds of rats with established II-IIIa-degree burns were then infected with S. aureus and externally covered with the MSC-Ch-gel. Three additional rat groups were treated with medical Vaseline oil, the antiseptic drug Miramistin®, or the drug Bepanthen® Plus. Skin wound samples were collected 4 and 8 days after burning for further microbiological and histological analysis. Blood samples were also collected for biochemical analysis. Results: Application of the MSC-Ch-gel cleared the wound of microorganisms (S. aureus wasn’t detected in the washings from the burned areas), decreased inflammation, enhanced re-epithelialisation, and promoted the formation of well-vascularised granulation tissue. Conclusions: MSC-Ch-gel effectively promotes infected wound healing in rats with third-degree burns. Gel preparation can be easily implemented into clinical practice.
Collapse
|
24
|
Natural Polymers for the Maintenance of Oral Health: Review of Recent Advances and Perspectives. Int J Mol Sci 2021; 22:ijms221910337. [PMID: 34638678 PMCID: PMC8508910 DOI: 10.3390/ijms221910337] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022] Open
Abstract
The success of modern dental treatment is strongly dependent on the materials used both temporarily and permanently. Among all dental materials, polymers are a very important class with a wide spectrum of applications. This review aims to provide a state-of-the-art overview of the recent advances in the field of natural polymers used to maintain or restore oral health. It focuses on the properties of the most common proteins and polysaccharides of natural origin in terms of meeting the specific biological requirements in the increasingly demanding field of modern dentistry. The use of naturally derived polymers in different dental specialties for preventive and therapeutic purposes has been discussed. The major fields of application cover caries and the management of periodontal diseases, the fabrication of membranes and scaffolds for the regeneration of dental structures, the manufacturing of oral appliances and dentures as well as providing systems for oral drug delivery. This paper also includes a comparative characteristic of natural and synthetic dental polymers. Finally, the current review highlights new perspectives, possible future advancements, as well as challenges that may be encountered by researchers in the field of dental applications of polymers of natural origin.
Collapse
|
25
|
Thangavelu A, Stelin KS, Vannala V, Mahabob N, Hayyan FMB, Sundaram R. An Overview of Chitosan and Its Role in Periodontics. J Pharm Bioallied Sci 2021; 13:S15-S18. [PMID: 34447035 PMCID: PMC8375799 DOI: 10.4103/jpbs.jpbs_701_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 11/23/2022] Open
Abstract
Chitosan is a biopolymer with numerous biological properties such as antibacterial, anti-inflammatory, and wound healing. Chitosan also stimulates cell proliferation and osteogenesis and thus used as a scaffold material in tissue engineering. The physical proprieties of chitosan such as biocompatibility and biodegradability give promising results in periodontal therapies. This review gives an updated explanation of the applications of chitosan in dentistry and periodontics. Furthermore, the review demonstrates the actions of chitosan in detail and its role in the regeneration of periodontal structures.
Collapse
Affiliation(s)
- Arthiie Thangavelu
- Department of Periodontics, JKK Nattraja Dental College, Komarapalayam, India
| | - K Sahaya Stelin
- Professor, Prudent Dental Clinic, Dindigul, Tamil Nadu, India
| | - Venkataramana Vannala
- Department of Preventive Dental Sciences, College of Dentistry, Gulf Medical University, Ajman, UAE
| | - Nazargi Mahabob
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Faisal Mansour Bin Hayyan
- Department of Preventive Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | |
Collapse
|
26
|
Wei Y, Deng Y, Ma S, Ran M, Jia Y, Meng J, Han F, Gou J, Yin T, He H, Wang Y, Zhang Y, Tang X. Local drug delivery systems as therapeutic strategies against periodontitis: A systematic review. J Control Release 2021; 333:269-282. [PMID: 33798664 DOI: 10.1016/j.jconrel.2021.03.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/27/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022]
Abstract
Periodontitis is a chronic inflammation of the soft tissue surrounding and supporting the teeth, which causes periodontal structural damage, alveolar bone resorption, and even tooth loss. Its prevalence is very high, with nearly 60% of the global population affected. Hence, periodontitis is an important public health concern, and the development of effective healing treatments for oral diseases is a major target of the health sciences. Currently, the application of local drug delivery systems (LDDS) as an adjunctive therapy to scaling and root planning (SRP) in periodontitis is a promising strategy, giving higher efficacy and fewer side effects by controlling drug release. The cornerstone of successful periodontitis therapy is to select an appropriate bioactive agent and route of administration. In this context, this review highlights applications of LDDS with different properties in the treatment of periodontitis with or without systemic diseases, in order to reveal existing challenges and future research directions.
Collapse
Affiliation(s)
- Ying Wei
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Yaxin Deng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Shuting Ma
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Meixin Ran
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Yannan Jia
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao 028000, Neimenggu, China
| | - Jia Meng
- Liaoning Institute of Basic Medicine, Shenyang 110016, Liaoning, China
| | - Fei Han
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China.
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Yanjiao Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China.
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| |
Collapse
|
27
|
Current status and future of delivery systems for prevention and treatment of infections in the oral cavity. Drug Deliv Transl Res 2021; 11:1703-1734. [PMID: 33770415 PMCID: PMC7995675 DOI: 10.1007/s13346-021-00961-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/23/2022]
Abstract
Oral health reflects the general health, and it is fundamental to well-being and quality of life. An infection in the oral cavity can be associated with serious complications in human health. Local therapy of these infections offers many advantages over systemic drug administration, targeting directly to the diseased area while minimizing systemic side effects. Specialized drug delivery systems into the oral cavity have to be designed in such a fashion that they resist to the aqueous environment that is constantly bathed in saliva and subject to mechanical forces. Additionally, a prolonged release of drug should also be provided, which would enhance the efficacy and also decrease the repeated dosing. This review is aimed to summarize the current most relevant findings related to local drug delivery of various drug groups for prevention and treatment of infections (viral, bacterial, fungal) and infection-related manifestations in the oral cavity. Current therapeutic challenges in regard to effective local drug delivery systems will be discussed, and the recent approaches to overcome these obstacles will be reviewed. Finally, future prospects will be overviewed to promote novel strategies that can be implemented in clinical management for prevention and treatment of oral infections.
Collapse
|
28
|
Herrera D, Matesanz P, Martín C, Oud V, Feres M, Teughels W. Adjunctive effect of locally delivered antimicrobials in periodontitis therapy: A systematic review and meta-analysis. J Clin Periodontol 2021; 47 Suppl 22:239-256. [PMID: 31912531 DOI: 10.1111/jcpe.13230] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To answer the following PICOS question: in adult patients with periodontitis, which is the efficacy of adjunctive locally delivered antimicrobials, in comparison with subgingival debridement alone or plus a placebo, in terms of probing pocket depth (PPD) reduction, in randomized clinical trials with at least 6 months of follow-up. MATERIAL AND METHODS A systematic search was conducted: 59 papers, reporting 50 different studies, were included. Data on clinical outcome variables changes were pooled and analysed using weighted mean differences (WMDs) and 95% confidence intervals (CI), and prediction intervals (PI), in case of significant heterogeneity. RESULTS Statistically significant differences were observed, in 6- to 9-month studies, for PPD (WMD = 0.365, 95% CI [0.262; 0.468], PI [-0.29; 1.01]) and clinical attachment level (CAL) (WMD = 0.263, 95% CI [0.123; 0.403], PI [-0.43; 0.96]). For long-term studies, significant differences were observed for PPD (WMD = 0.190, 95% CI [0.059; 0.321]), but not for CAL. For adverse events, no differences were observed. Results were affected by study design (split-mouth versus parallel studies) and assessment (full- or partial-mouth), as well as by the formulation tested. CONCLUSIONS The use adjunctive locally delivered antimicrobials in periodontitis therapy results in statistically significant benefits in clinical outcomes, without relevant side effects.
Collapse
Affiliation(s)
- David Herrera
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain
| | - Paula Matesanz
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain
| | - Conchita Martín
- BIOCRAN (Craniofacial Biology) Research Group, University Complutense, Madrid, Spain
| | - Valerie Oud
- Department of Oral Health Sciences, KU Leuven & Dentistry (Periodontology), University Hospitals Leuven, Leuven, Belgium
| | - Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, Brazil
| | - Wim Teughels
- Department of Oral Health Sciences, KU Leuven & Dentistry (Periodontology), University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Ssekatawa K, Byarugaba DK, Wampande EM, Moja TN, Nxumalo E, Maaza M, Sackey J, Ejobi F, Kirabira JB. Isolation and characterization of chitosan from Ugandan edible mushrooms, Nile perch scales and banana weevils for biomedical applications. Sci Rep 2021; 11:4116. [PMID: 33602952 PMCID: PMC7892825 DOI: 10.1038/s41598-021-81880-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/13/2021] [Indexed: 01/11/2023] Open
Abstract
Of recent, immense attention has been given to chitosan in the biomedical field due to its valuable biochemical and physiological properties. Traditionally, the chief source of chitosan is chitin from crab and shrimp shells. Chitin is also an important component of fish scales, insects and fungal cell walls. Thus, the aim of this study was to isolate and characterize chitosan from locally available material for potential use in the biomedical field. Chitosan ash and nitrogen contents ranged from 1.55 to 3.5% and 6.6 to 7.0% respectively. Molecular weight varied from 291 to 348KDa. FTIR spectra revealed high degree of similarity between locally isolated chitosan and commercial chitosan with DD ranging from 77.8 to 79.1%. XRD patterns exhibited peaks at 2θ values of 19.5° for both mushroom and banana weevil chitosan while Nile perch scales chitosan registered 3 peaks at 2θ angles of 12.3°, 20.1° and 21.3° comparable to the established commercial chitosan XRD pattern. Locally isolated chitosan exhibited antimicrobial activity at a very high concentration. Ash content, moisture content, DD, FTIR spectra and XRD patterns revealed that chitosan isolated from locally available materials has physiochemical properties comparable to conventional chitosan and therefore it can be used in the biomedical field.
Collapse
Affiliation(s)
- Kenneth Ssekatawa
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
- Department of Biochemistry Faculty of Biomedical Science, Kampala International University-Western Campus, P. O. Box 71, Bushenyi, Uganda
| | - Denis K Byarugaba
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Eddie M Wampande
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Tlou N Moja
- University of South Africa-Florida, Campus Private Bag X6, Florida, 1710, South Africa
| | - Edward Nxumalo
- University of South Africa-Florida, Campus Private Bag X6, Florida, 1710, South Africa
| | - Malik Maaza
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Old Faure Road, Somerset West, 7129, South Africa
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
| | - Juliet Sackey
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Old Faure Road, Somerset West, 7129, South Africa
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria, South Africa
| | - Francis Ejobi
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - John Baptist Kirabira
- African Center of Excellence in Materials, Product Development and Nanotechnology, College of Engineering, Design, Art and Technology, Makerere University, P. O. Box 7062, Kampala, Uganda.
| |
Collapse
|
30
|
Özdoğan A, Akca G, Şenel S. Development and in vitro evaluation of gel formulation of atorvastatin solid dispersions. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Szewczyk A, Skwira A, Ginter M, Tajer D, Prokopowicz M. Microwave-Assisted Fabrication of Mesoporous Silica-Calcium Phosphate Composites for Dental Application. Polymers (Basel) 2020; 13:E53. [PMID: 33375650 PMCID: PMC7796352 DOI: 10.3390/polym13010053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Herein, the microwave-assisted wet precipitation method was used to obtain materials consisting of mesoporous silica (SBA-15) and calcium orthophosphates (CaP). Composites were prepared through immersion of mesoporous silica in different calcification coating solutions and then exposed to microwave radiation. The composites were characterized in terms of molecular structure, crystallinity, morphology, chemical composition, and mineralization potential by Fourier-transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), and scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM-EDX). The application of microwave irradiation resulted in the formation of different types of calcium orthophosphates such as calcium deficient hydroxyapatite (CDHA), octacalcium phosphate (OCP), and amorphous calcium phosphate (ACP) on the SBA-15 surface, depending on the type of coating solution. The composites for which the progressive formation of hydroxyapatite during incubation in simulated body fluid was observed were further used in the production of final pharmaceutical forms: membranes, granules, and pellets. All of the obtained pharmaceutical forms preserved mineralization properties.
Collapse
Affiliation(s)
- Adrian Szewczyk
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.S.); (A.S.); (M.G.); (D.T.)
| | - Adrianna Skwira
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.S.); (A.S.); (M.G.); (D.T.)
| | - Marta Ginter
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.S.); (A.S.); (M.G.); (D.T.)
- Scientific Circle of Students, Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Polland
| | - Donata Tajer
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.S.); (A.S.); (M.G.); (D.T.)
- Scientific Circle of Students, Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Polland
| | - Magdalena Prokopowicz
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.S.); (A.S.); (M.G.); (D.T.)
| |
Collapse
|
32
|
Preparation and application of chitosan biomaterials in dentistry. Int J Biol Macromol 2020; 167:1198-1210. [PMID: 33202273 DOI: 10.1016/j.ijbiomac.2020.11.073] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 02/05/2023]
Abstract
Chitosan is a biodegradable and biocompatible natural polysaccharide that has a wide range of applications in the field of dentistry due to its functional versatility and ease of access. Recent studies find that chitosan and its derivatives can be embedded in materials for dental adhesives, barrier membranes, bone replacement, tissue regeneration, and antimicrobial agent to better manage oral diseases. In this paper, we provide a comprehensive overview on the preparation, applications, and major breakthroughs of chitosan biomaterials. Furthermore, incorporation of chitosan additives for the modification and improvement of dental materials has been discussed in depth to promote more advanced chitosan-related research in the future.
Collapse
|
33
|
Fakhri E, Eslami H, Maroufi P, Pakdel F, Taghizadeh S, Ganbarov K, Yousefi M, Tanomand A, Yousefi B, Mahmoudi S, Kafil HS. Chitosan biomaterials application in dentistry. Int J Biol Macromol 2020; 162:956-974. [DOI: 10.1016/j.ijbiomac.2020.06.211] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022]
|
34
|
Penumaka R, Konagala RK, Shaik J, Ram Sunil CH, Reddy PL, Kiran Naik MK. Scanning electron microscopy evaluation of chitosan and carboxymethyl chitosan as retrograde smear layer removing agents. J Conserv Dent 2020; 22:573-577. [PMID: 33088068 PMCID: PMC7542078 DOI: 10.4103/jcd.jcd_50_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/25/2020] [Accepted: 07/03/2020] [Indexed: 11/26/2022] Open
Abstract
Background: The smear layer acts as a physical barrier against penetration of root canal medicaments and sealers, thus compromising the seal leading to microleakage. Objectives: This study was conducted to evaluate the efficacy of 17% ethylenediaminetetraacetic acid (EDTA), 0.2% chitosan solution, and 0.2% carboxymethyl chitosan (CMC) used as smear layer removing agents in retrograde root canal preparation using scanning electron microscopy (SEM). Materials and Methodology: Eighty single-rooted teeth extracted for periodontal reasons were collected for the study. Root canals were prepared and obturated with gutta-percha coated with AH plus resin sealer. Apical 3 mm of each root resected and Class I retrograde preparation carried out using ultrasonic handpiece and ultrasonic retro tips to a depth of 3 mm along the root long axis. In Group 1 (control), normal saline solution alone was used for smear layer removal. In Group II, 17% EDTA, Group III and IV were treated with 5 ml of 0.2% chitosan and 0.2% carboxyl methyl chitosan, respectively, for 3 min. Blinded evaluation of specimens using SEM was performed independently by two operators who registered the amount of the smear layer present on the surface of the canal walls based on the score described by Hülsmann et al. Results: Group I (saline) was least efficient in the removal of the smear layer. Group II (17% EDTA), Group III (0.2% Chitosan), and Group IV (0.2% CMC) efficiently removed the smear layer from the retrograde cavity with mean scores 1.35, 1.60, and 1.35, respectively. Statistically, no significant difference found in Group II (17% EDTA), Group III (0.2% Chitosan), and Group IV (0.2% CMC). Conclusions: About 0.2% CMC and 0.2% chitosan can be better alternatives to 17% EDTA for smear layer removal due to their biological advantages.
Collapse
Affiliation(s)
- Ramesh Penumaka
- Department of Conservative Dentistry and Endodontics, St. Joseph Dental College and Hospital, Eluru, Andhra Pradesh, India
| | - Ravi Kumar Konagala
- Department of Conservative Dentistry and Endodontics, GITAM Dental College and Hospital, Visakhapatnam, Andhra Pradesh, India
| | - Jaheer Shaik
- Department of Conservative Dentistry and Endodontics, SIBAR Dental College, Guntur, Andhra Pradesh, India
| | - C H Ram Sunil
- Department of Conservative Dentistry and Endodontics, SIBAR Dental College, Guntur, Andhra Pradesh, India
| | - Pramod L Reddy
- Department of Conservative Dentistry and Endodontics, St. Joseph Dental College and Hospital, Eluru, Andhra Pradesh, India
| | - Madhu K Kiran Naik
- Department of Conservative Dentistry and Endodontics, SIBAR Dental College, Guntur, Andhra Pradesh, India
| |
Collapse
|
35
|
Kirchberg M, Eick S, Buchholz M, Rosche F, Kiesow A, Sarembe S, Mäder K. Controlled release minocycline-lipid-complex extrudates for the therapy of periodontitis with enhanced flexibility. Int J Pharm 2020; 586:119578. [PMID: 32615242 DOI: 10.1016/j.ijpharm.2020.119578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 11/16/2022]
Abstract
We describe the development of flexible minocycline-lipid-complex extrudates with optimized mechanical and drug release properties. These extrudates contain a minocycline - magnesium stearate chelate complex with a higher stability in aqueous media, which has now been incorporated in a PEG-PLGA (polyethylene glycol - poly(lactic-co-glycolic acid)) matrix. PEG 1500 has been utilized in different concentrations to serve as plasticizer. The novel formulations have been characterized by texture analysis, X-Ray powder diffraction (XRPD) and differential scanning calorimetry (DSC). Extrudates with a reduced diameter of 300 µm (previously 600 µm) were introduced, and a more sensitive quantification method with a tandem-mass spectrometry detector was developed. From all tested formulations, the extrudates consisting of Expansorb DLG 50 - 6P (PEG-PLGA, molar weight 30-60 kDa) paired with 10% PEG 1500 emerged as best formulation. These extrudates feature a drug content of 11.5% and a controlled release over at least 42 days. The release profile is without a lag time and shows initially a slightly higher release rate, which is desired. Compared to previous developments, the extrudates now offer a high flexibility combined with a large mechanical resilience, which will ease the handling and administration.
Collapse
Affiliation(s)
- Martin Kirchberg
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, 06120 Halle (Saale), Germany.
| | - Sigrun Eick
- School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland.
| | - Mirko Buchholz
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Drug Design and Analytical Chemistry, Weinbergweg 22, 06120 Halle (Saale), Germany; Periotrap Pharmaceuticals GmbH, Weinbergweg 22, 06120 Halle (Saale), Germany.
| | - Fred Rosche
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Drug Design and Analytical Chemistry, Weinbergweg 22, 06120 Halle (Saale), Germany.
| | - Andreas Kiesow
- Fraunhofer Institute for Microstructures and Materials IMWS, Characterization of Medical and Cosmetic Products, Walter-Hülse-Strasse 1, 06120 Halle (Saale), Germany.
| | - Sandra Sarembe
- Fraunhofer Institute for Microstructures and Materials IMWS, Characterization of Medical and Cosmetic Products, Walter-Hülse-Strasse 1, 06120 Halle (Saale), Germany.
| | - Karsten Mäder
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, 06120 Halle (Saale), Germany.
| |
Collapse
|
36
|
Soe HMSH, Luckanagul JA, Pavasant P, Jansook P. Development of in situ gel containing asiaticoside/cyclodextrin complexes. Evaluation in culture human periodontal ligament cells (HPLDCs). Int J Pharm 2020; 586:119589. [PMID: 32634457 DOI: 10.1016/j.ijpharm.2020.119589] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 11/17/2022]
Abstract
Asiaticoside (AS), an active herbal compound isolated from Centella asiatica, has the potential benefit in promoting type I collagen (COL I) synthesis and osteogenic differentiation in human periodontal ligament cells (HPDLCs). However, it has low aqueous solubility which may hamper the bioavailability. Thus, the aim of this study was to develop thermoresponsive in situ gel containing AS/cyclodextrin (CD) complexes. The non-encapsulated formulations consisted of AS/hydroxypropyl β-CD (HPβCD) complexes and encapsulated formulations containing AS loaded sulfobutylether β-CD/chitosan nanoparticles (SBEβCD/CS NPs) were prepared. The appearance, pH and viscosity of all formulations were within the acceptable range. All formulations formed relatively rapid sol-to-gel transition when contacted with simulated salivary fluid at body temperature. Compared to non-encapsulated formulations, in vitro gelation and rheological studies of encapsulated formulations displayed gel formation that remained longer with high mechanical strength. In vitro mucoadhesion and in vitro release studies revealed that nanoencapsulated in situ gel had excellent mucoadhesive property and could release AS in a sustained manner. These formulations exhibited no cytotoxic effects to HPDCLs. The SBEβCD/CS NPs containing low AS content could express the COL I synthesis. Thus, nanoencapsulated platform could serve as a promising carrier to deliver AS for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Hay Man Saung Hnin Soe
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai rd., Pathumwan, Bangkok 10330, Thailand
| | - Jittima Amie Luckanagul
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai rd., Pathumwan, Bangkok 10330, Thailand
| | - Prasit Pavasant
- Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
| | - Phatsawee Jansook
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai rd., Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
37
|
Chitosan-based particulate systems for drug and vaccine delivery in the treatment and prevention of neglected tropical diseases. Drug Deliv Transl Res 2020; 10:1644-1674. [PMID: 32588282 DOI: 10.1007/s13346-020-00806-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neglected tropical diseases (NTDs) are a diverse group of infections which are difficult to prevent or control, affecting impoverished communities that are unique to tropical or subtropical regions. In spite of the low number of drugs that are currently used for the treatment of these diseases, progress on new drug discovery and development for NTDs is still very limited. Therefore, strategies on the development of new delivery systems for current drugs have been the main focus of formulators to provide improved efficacy and safety. In recent years, particulate delivery systems at micro- and nanosize, including polymeric micro- and nanoparticles, liposomes, solid lipid nanoparticles, metallic nanoparticles, and nanoemulsions, have been widely investigated in the treatment and control of NTDs. Among these polymers used for the preparation of such systems is chitosan, which is a marine biopolymer obtained from the shells of crustaceans. Chitosan has been investigated as a delivery system due to the versatility of its physicochemical properties as well as bioadhesive and penetration-enhancing properties. Furthermore, chitosan can be also used to improve treatment due to its bioactive properties such as antimicrobial, tissue regeneration, etc. In this review, after giving a brief introduction to neglected diseases and particulate systems developed for the treatment and control of NTDs, the chitosan-based systems will be described in more detail and the recent studies on these systems will be reviewed. Graphical abstract.
Collapse
|
38
|
Petit C, Batool F, Stutz C, Anton N, Klymchenko A, Vandamme T, Benkirane-Jessel N, Huck O. Development of a thermosensitive statin loaded chitosan-based hydrogel promoting bone healing. Int J Pharm 2020; 586:119534. [PMID: 32531451 DOI: 10.1016/j.ijpharm.2020.119534] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 01/04/2023]
Abstract
Statins have been proposed as potential adjuvant to periodontal treatment due to their pleiotropic properties. A new thermosensitive chitosan hydrogel loaded with statins (atorvastatin and lovastatin) nanoemulsions was synthesized to allow a spatially controlled local administration of active compounds at lesion site. Spontaneous nano-emulsification method was used to synthesize statins loaded nanoemulsions. In vitro, atorvastatin and lovastatin loaded nanoemulsions were cytocompatible and were able to be uptake by oral epithelial cells. Treatment of Porphyromonas gingivalis infected oral epithelial cells and gingival fibroblasts with atorvastatin and lovastatin loaded nanoemulsions decreased significantly pro-inflammatory markers expression (TNF-α and IL-1β) and pro-osteoclastic RANKL. Nevertheless, such treatment induced the expression of Bone sialoprotein 2 (BSP2) in osteoblast emphasizing the pro-healing properties of atorvastatin and lovastatin nanoemulsions. In vivo, in a calvarial bone defect model (2 mm), treatment with the hydrogel loaded with atorvastatin and lovastatin nanoemulsions induced a significant increase of the neobone formation in comparison with systemic administration of statins. This study demonstrates the potential of this statins loaded hydrogel to improve bone regeneration and to decrease soft tissue inflammation. Its use in the specific context of periodontitis management could be considered in the future with a reduced risk of side effects.
Collapse
Affiliation(s)
- Catherine Petit
- INSERM, UMR 1260 'Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France; Pôle de Médecine et de Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Fareeha Batool
- INSERM, UMR 1260 'Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Céline Stutz
- INSERM, UMR 1260 'Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Nicolas Anton
- Université de Strasbourg, CNRS, CAMB UMR 7199, Strasbourg, France
| | - Andrey Klymchenko
- Université de Strasbourg, CNRS, LBP UMR 7021, F-67000 Strasbourg, France
| | - Thierry Vandamme
- Université de Strasbourg, CNRS, CAMB UMR 7199, Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM, UMR 1260 'Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Olivier Huck
- INSERM, UMR 1260 'Regenerative Nanomedicine', Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France; Pôle de Médecine et de Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|
39
|
Supotngarmkul A, Panichuttra A, Ratisoontorn C, Nawachinda M, Matangkasombut O. Antibacterial property of chitosan against E. faecalis standard strain and clinical isolates. Dent Mater J 2020; 39:456-463. [PMID: 32037384 DOI: 10.4012/dmj.2018-343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To investigate applications of chitosan as antibacterial agent for endodontic treatments, we tested its activity against Enterococcus faecalis standard strain (ATCC29212) and clinical isolates. We determined the minimum bactericidal concentration (MBC) of 6 types of chitosan against ATCC29212; the most effective types were selected for further tests. Four clinical isolates were cultured from endodontically treated-teeth and identified by biochemical assays and polymerase chain reactions. Bacterial cultures were exposed to 1,700 and 2,100 kDa chitosan at MBC for 1, 3, 5, 10, and 60 min in time-kill assays and plated on brain-heart-infusion (BHI) agar for colony counts. Both types of chitosan showed significantly lower numbers of remaining bacteria (log colony forming units per millimeter, logCFUs/mL) than negative controls (0.1% acetic acid and BHI) at 10 min, and completely eliminated the bacteria at 60 min for all strains. Thus, chitosan could be developed as alternative biocompatible antimicrobial irrigant/medication for endodontic treatments.
Collapse
Affiliation(s)
- Apimon Supotngarmkul
- Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University
| | - Anchana Panichuttra
- Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University
| | | | - Mettachit Nawachinda
- Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University
| | - Oranart Matangkasombut
- Department of Microbiology and Research Unit on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University.,Laboratory of Biotechnology, Chulabhorn Research Institute
| |
Collapse
|
40
|
|
41
|
Antunes PVS, Flamini LES, Chaves JFM, Silva RG, Cruz Filho AMD. Comparative effects of final canal irrigation with chitosan and EDTA. J Appl Oral Sci 2019; 28:e20190005. [PMID: 31800870 PMCID: PMC6886396 DOI: 10.1590/1678-7757-2019-0005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/24/2019] [Indexed: 11/21/2022] Open
Abstract
Chitosan is a natural, biocompatible chelating substance with potential for dental use. This study compared the effects of final canal irrigation with chitosan and EDTA on dentin microhardness, sealer dentin tubules penetration capacity, and push-out strength.
Collapse
Affiliation(s)
- Polliana Vilaça Silva Antunes
- Universidade de São Paulo, Faculdade de Odontologia de Ribeirão Preto, Departamento de Odontologia Restauradora, Ribeirão Preto, SP, Brasil
| | - Luis Eduardo Souza Flamini
- Universidade de São Paulo, Faculdade de Odontologia de Ribeirão Preto, Departamento de Odontologia Restauradora, Ribeirão Preto, SP, Brasil
| | - Jardel Francisco Mazzi Chaves
- Universidade de São Paulo, Faculdade de Odontologia de Ribeirão Preto, Departamento de Odontologia Restauradora, Ribeirão Preto, SP, Brasil
| | - Ricardo Gariba Silva
- Universidade de São Paulo, Faculdade de Odontologia de Ribeirão Preto, Departamento de Odontologia Restauradora, Ribeirão Preto, SP, Brasil
| | - Antonio Miranda da Cruz Filho
- Universidade de São Paulo, Faculdade de Odontologia de Ribeirão Preto, Departamento de Odontologia Restauradora, Ribeirão Preto, SP, Brasil
| |
Collapse
|
42
|
Pichaiaukrit W, Thamrongananskul N, Siralertmukul K, Swasdison S. Fluoride varnish containing chitosan demonstrated sustained fluoride release. Dent Mater J 2019; 38:1036-1042. [PMID: 31611494 DOI: 10.4012/dmj.2018-112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fluoride varnish is a professionally applied product that prevents dental caries. However, fluoride varnishes do not provide sustained fluoride release. The objective of this study was to prepare fluoride varnish formulations containing various amounts of chitosan that would generate sustained fluoride release. We evaluated their chemical structure, viscosity, and in vitro fluoride release. Furthermore, the 3-(4, 5-dimethylthiazolyl-2)-2,5diphenyltetrazolium bromide (MTT) assay and direct contact test were used to determine varnish cytotoxicity. We found that all fluoride varnish formulations had the same chemical structure. Their viscosity demonstrated a chitosan concentration-dependent increase. In vitro fluoride release showed a sustained fluoride release. The chitosan fluoride varnishes were cytotoxic to human gingival fibroblasts. We propose the new fluoride varnish formulation as a potential material to be used as a sustained release fluoride varnish.
Collapse
Affiliation(s)
- Woradej Pichaiaukrit
- Dental Biomaterials Science, Graduate School-Interdisciplinary Program, Chulalongkorn University
| | | | | | - Somporn Swasdison
- Department of Oral Medicine, College of Dental Medicine, Rangsit University
| |
Collapse
|
43
|
Aggarwal G, Verma S, Gupta M, Nagpal M. Local Drug Delivery Based Treatment Approaches for Effective Management of Periodontitis. CURRENT DRUG THERAPY 2019. [DOI: 10.2174/1574885514666190103112855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Periodontal disease is an immuno-inflammatory condition of
tissues that surround and hold the teeth. It is the disease which succeeds in all races,
groups and both genders. Almost 10 to15% of the global population gets suffered from
severe periodontitis as per WHO reports. Periodontal disease may likely cause other systemic
diseases such as cardiovascular disease and pre-term low birth weight infants. Mechanical
removal of plaques and calculus deposits from supra and subgingival environment
is the backbone of periodontal treatment till date whereas complete elimination of
these deleterious agents is quite unrealistic as the pocket depth increases.
Recent Approaches:
Recently controlled local drug delivery application is more encouraging
in comparison to systemic approach as it mainly targets to enhance the therapeutic
efficacy by maintaining site-specificity, avoiding first pass metabolism, reduction in gastrointestinal
(GI) side effects and decreasing the dose. Several drugs such as antiseptics
and antibiotics alongwith various carriers are being formulated as local drug delivery systems
for effective management of the disease. Various local delivery systems reported are
fibers, films, strips, compacts, injectables, microparticles, vesicular carriers, gels and
nanoparticles. These local carriers provide effective prolonged treatment at the site of
infection at reduced doses. This review enlightens detailed pathophysiology and various
phases of periodontitis, challenges in treatment of disease and various antimicrobial
agents (along with their marketed formulations) used. The main emphasis of the review is
to cover all carrier systems developed so far for local delivery application in the effective
management of periodontitis, as a patient compliant drug therapy.
Collapse
Affiliation(s)
- Geeta Aggarwal
- Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Sector-3 MB Road, New Delhi-110017, India
| | - Sonia Verma
- Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Sector-3 MB Road, New Delhi-110017, India
| | - Madhu Gupta
- Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Sector-3 MB Road, New Delhi-110017, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway, Rajpura, Patiala-140401, India
| |
Collapse
|
44
|
Efeoğlu C, Sipahi Çalış A, Karasu Z, Koca H, Boyacıoğlu H. Prospective randomized single-blind study of post-operative bleeding after minor oral surgery in patients with cirrhosis. TURKISH JOURNAL OF GASTROENTEROLOGY 2019; 30:171-176. [PMID: 30457557 DOI: 10.5152/tjg.2018.18078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIMS The management of patients with cirrhosis requiring dental extractions is complicated due to an increased risk of post-operative bleeding. Topical hemostatic agents are usually required to control bleeding in these cases, as an adjunct to systemic measures of hemostasis. The aims of this randomized, prospective, single-blind clinical study are twofold. The primary aim is to compare the hemostatic efficacy of chitosan and surgicel in patients with cirrhosis after a tooth extraction, and the secondary aim is to assess the value of the current setting as a clinical model of post-operative bleeding following minor oral surgery. MATERIAL AND METHODS Fifty patients with cirrhosis scheduled for a tooth extraction under local anesthesia were prospectively included in the study in a randomized fashion. Patients were blinded to the treatment group they were in. The cirrhosis classification, bleeding time, trauma score, and corrected bleeding time (during post-operative reviews) were recorded. Statistical evaluations were done. RESULTS Study groups had an equal number of teeth extractions (40 teeth each). There were no statistically significant differences between the groups with respect to patient demographics, cirrhosis classification, trauma score, and bleeding time. No side effects were noted. CONCLUSION Both Celox and Surgicel are effective for controlling bleeding and are safe after a tooth extraction in patients with cirrhosis.
Collapse
Affiliation(s)
- Candan Efeoğlu
- Department of Oral Surgery, Ege University School of Dentistry, İzmir, Turkey
| | - Aylin Sipahi Çalış
- Department of Oral Surgery, Ege University School of Dentistry, İzmir, Turkey
| | - Zeki Karasu
- Department of Gastroenterology, Ege University School of Medicine, İzmir, Turkey
| | - Hüseyin Koca
- Department of Oral Surgery, Ege University School of Dentistry, İzmir, Turkey
| | - Hayal Boyacıoğlu
- Department of Statistics, Ege University School of Science, İzmir, Turkey
| |
Collapse
|
45
|
Timur SS, Yüksel S, Akca G, Şenel S. Localized drug delivery with mono and bilayered mucoadhesive films and wafers for oral mucosal infections. Int J Pharm 2019; 559:102-112. [PMID: 30682450 DOI: 10.1016/j.ijpharm.2019.01.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 12/12/2018] [Accepted: 01/14/2019] [Indexed: 11/29/2022]
Abstract
Local drug delivery into oral cavity offers many advantages over systemic administration in treatment of the oral infections. In this study, monolayer and bilayered mucoadhesive film and wafer formulations were developed as local drug delivery platforms using chitosan and hydroxypropyl methylcellulose (HPMC). Cefuroxime axetil (CA) was used as the model drug. Surface morphology, mechanical strength, water uptake, in vitro adhesion, disintegration and in vitro release properties of the formulations were investigated. Furthermore, antimicrobial activity of the formulations was evaluated against E. coli and S. aureus. HPMC based formulations were found to disintegrate within <30 min whereas chitosan based formulations remained intact up to 6 h. Significantly higher drug release was obtained with wafer formulations. Antimicrobial activity was found to increase in presence of chitosan, and HPMC was also observed to contribute to this action. Bilayered wafer formulation, with adhesive chitosan backing layer and HPMC based drug loaded layer, providing prolonged drug release and suitable adhesive properties, with suitable mechanical strength, would be suggested as a promising local delivery system for treatment of the infections in the oral cavity.
Collapse
Affiliation(s)
- Selin Seda Timur
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey
| | - Selin Yüksel
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey
| | - Gülçin Akca
- Gazi University, Faculty of Dentistry, Department of Medical Microbiology, 06510 Ankara, Turkey
| | - Sevda Şenel
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey.
| |
Collapse
|
46
|
Kloster AP, Lourenço Neto N, Costa SAD, Oliveira TM, Oliveira RCD, Machado MAAM. In Vitro Antimicrobial Effect of Bioadhesive Oral Membrane with Chlorhexidine Gel. Braz Dent J 2019; 29:354-358. [PMID: 30462761 DOI: 10.1590/0103-6440201801743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/23/2018] [Indexed: 11/22/2022] Open
Abstract
This study aimed to evaluate in vitro the antimicrobial effect of a bioadhesive chitosan-based oral membrane with chlorhexidine for local treatment of infections in the oral tissues. Five oral membranes of different compositions were tested: 5% chitosan (G1); 5% chitosan ± 0.2% chlorhexidine (G2), 5% chitosan ± 0.6% chlorhexidine (G3), 5% chitosan ± 1.0% chlorhexidine (G4), and 5% chitosan ± 2.0% chlorhexidine (G5). Also, five gel types were tested according to the following compositions: 5% chitosan gel (G6), 0.2% chlorhexidine gel (G7), 2.0% chlorhexidine gel (G8), 5% chitosan gel ± 0.2% chlorhexidine gel (G9), and 5% chitosan gel ± 2.0% chlorhexidine gel (G10). The antimicrobial action of the samples was tested against Candida albicans and Streptococcus mutans through antibiogram by measuring the inhibition halos. Data were statistically analyzed by Kruskal-Wallis and one-way ANOVA followed by Tukey test (p<0.05). The 2.0% chlorhexidine membrane (G5) and the disks containing 2.0% chlorhexidine gel (G8) showed the greatest inhibition halos for both microorganisms, with statistically significant difference when compared to others tested groups (p=0.008) only for Candida albicans inhibitions results. All the other formulations of membranes and gels showed inhibition halos, but without statistically significant difference. The bioadhesive chitosan-based oral membrane with 2% chlorhexidine and 2% chlorhexidine gel were the most effective in inhibiting the tested microorganisms.
Collapse
Affiliation(s)
- Annelyze Podolan Kloster
- Department of Pediatric Dentistry, Orthodontics and Community Dentistry, Bauru Dental School, USP - Universidade de São Paulo, Bauru, SP, Brazil
| | - Natalino Lourenço Neto
- Department of Pediatric Dentistry, Orthodontics and Community Dentistry, Bauru Dental School, USP - Universidade de São Paulo, Bauru, SP, Brazil
| | - Silgia Aparecida da Costa
- Course on Textiles and Fashion, School of Arts, Sciences and Humanities, USP - Universidade de São Paulo, São Paulo, SP, Brazil
| | - Thais Marchini Oliveira
- Department of Pediatric Dentistry, Orthodontics and Community Dentistry, Bauru Dental School, USP - Universidade de São Paulo, Bauru, SP, Brazil
| | - Rodrigo Cardoso de Oliveira
- Department of Biological Sciences, Discipline of Biochemistry, Bauru Dental School, USP - Universidade de São Paulo, Bauru, SP, Brazil
| | | |
Collapse
|
47
|
Sah AK, Dewangan M, Suresh PK. Potential of chitosan-based carrier for periodontal drug delivery. Colloids Surf B Biointerfaces 2019; 178:185-198. [PMID: 30856588 DOI: 10.1016/j.colsurfb.2019.02.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 10/27/2022]
Abstract
Periodontal diseases are chronic infectious diseases and are a major oral health burden. With the progress in the understanding of etiology, epidemiology and pathogenesis of periodontal diseases coupled with the understanding of the polymicrobial synergy in the dysbiotic oral microbial flora, several new therapeutic targets have been identified. The strategies to curb bacterial growth and production of factors that gradually destroy the tissue surrounding and supporting the teeth have been the cornerstone for inhibiting periodontitis. Systemic administration of antibiotics for the treatment of periodontitis have shown several drawbacks including: inadequate antibiotic concentration at the site of the periodontal pocket, a rapid decline of the plasma antibiotic concentration to sub-therapeutic levels, the development of microbial resistance due to sub-therapeutic drug levels and peak-plasma antibiotic concentrations which may be associated with various side effects. These obvious disadvantages have evoked an interest in the development of localized drug delivery systems that can provide an effective concentration of antibiotic at the periodontal site for the duration of the treatment with minimal side effects. A targeted sustained release device which could be inserted in the periodontal pocket and prolong the therapeutic levels at the site of action at a much lower dose is the need of the hour. Chitosan, a deacetylated derivative of chitin has attracted considerable attention owing to its special properties including antimicrobial efficacy, biodegradability, biocompatibility and non-toxicity. It also has the propensity to act as hydrating agent and display tissue healing and osteoinducting effect. The aim of this review is to shine a spotlight on the chitosan based devices developed for drug delivery application in the effective treatment of various periodontal disorders. The chitosan based carriers like fibers, films, sponge, microparticles, nanoparticles, gels that have been designed for sustained release of drug into the periodontal pocket are highlighted.
Collapse
Affiliation(s)
- Abhishek K Sah
- Department of Pharmacy, Shri G. S. Institute of Technology & Science, 23-Park Road, Indore, 452003, MP, India
| | - Mahendra Dewangan
- Department of Pharmaceutics, University Institute of Pharmacy, Faculty of Technology, Pt. Ravishankar Shukla University, Raipur, 492010, CG, India
| | - Preeti K Suresh
- Department of Pharmaceutics, University Institute of Pharmacy, Faculty of Technology, Pt. Ravishankar Shukla University, Raipur, 492010, CG, India.
| |
Collapse
|
48
|
Şenel S, Aksoy EA, Akca G. Application of Chitosan Based Scaffolds for Drug Delivery and Tissue Engineering in Dentistry. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/978-981-13-8855-2_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Efeoğlu C, Sipahi Çalış A, Karasu Z, Koca H, Boyacıoğlu H. Prospective randomized single-blind study of post-operative bleeding after minor oral surgery in patients with cirrhosis. TURKISH JOURNAL OF GASTROENTEROLOGY 2018. [PMID: 30457557 DOI: 10.5152/tjg.2018.18078.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND/AIMS The management of patients with cirrhosis requiring dental extractions is complicated due to an increased risk of post-operative bleeding. Topical hemostatic agents are usually required to control bleeding in these cases, as an adjunct to systemic measures of hemostasis. The aims of this randomized, prospective, single-blind clinical study are twofold. The primary aim is to compare the hemostatic efficacy of chitosan and surgicel in patients with cirrhosis after a tooth extraction, and the secondary aim is to assess the value of the current setting as a clinical model of post-operative bleeding following minor oral surgery. MATERIAL AND METHODS Fifty patients with cirrhosis scheduled for a tooth extraction under local anesthesia were prospectively included in the study in a randomized fashion. Patients were blinded to the treatment group they were in. The cirrhosis classification, bleeding time, trauma score, and corrected bleeding time (during post-operative reviews) were recorded. Statistical evaluations were done. RESULTS Study groups had an equal number of teeth extractions (40 teeth each). There were no statistically significant differences between the groups with respect to patient demographics, cirrhosis classification, trauma score, and bleeding time. No side effects were noted. CONCLUSION Both Celox and Surgicel are effective for controlling bleeding and are safe after a tooth extraction in patients with cirrhosis.
Collapse
Affiliation(s)
- Candan Efeoğlu
- Department of Oral Surgery, Ege University School of Dentistry, İzmir, Turkey
| | - Aylin Sipahi Çalış
- Department of Oral Surgery, Ege University School of Dentistry, İzmir, Turkey
| | - Zeki Karasu
- Department of Gastroenterology, Ege University School of Medicine, İzmir, Turkey
| | - Hüseyin Koca
- Department of Oral Surgery, Ege University School of Dentistry, İzmir, Turkey
| | - Hayal Boyacıoğlu
- Department of Statistics, Ege University School of Science, İzmir, Turkey
| |
Collapse
|
50
|
Hamedi H, Moradi S, Hudson SM, Tonelli AE. Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydr Polym 2018; 199:445-460. [DOI: 10.1016/j.carbpol.2018.06.114] [Citation(s) in RCA: 319] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 01/06/2023]
|