1
|
Zhang Q, Zong Q, Feng X, Luo M, Sun W, Zhai Y. Antibacterial and antifouling materials for urinary catheter coatings. Acta Biomater 2025; 192:28-47. [PMID: 39701341 DOI: 10.1016/j.actbio.2024.12.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/15/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Implantable medical devices have played a significant role in improving both medical care and patients' quality of life. Urinary Catheters (UCs) are commonly utilized as a substitute for bladder drainage and urine collection to prevent urinary retention in patients. However, bacterial colonization and biofilm formation on the catheter surface are prone to occur, leading to catheter-associated urinary tract infections (CAUTIs) and other complications. In recent years, UC coatings have garnered increasing attention. In this review, various antifouling and antibacterial materials for UC coatings are summarized and their impacts on bacterial activities are linked to potential mechanisms of action. Additionally, this review provides an in-depth understanding of the current advancements in UC coatings by presenting the advantages, limitations, notable achievements, and latest research findings. Finally, it anticipates the prospective design and development trajectories of UC coatings in this domain. This holds paramount significance in advancing medical device technology. STATEMENT OF SIGNIFICANCE: Combating catheter-associated urinary tract infections is a major healthcare challenge, and urinary catheter (UC) coatings are considered promising candidates to counter these infections. In this review, various antifouling and antibacterial materials for UCs are summarized, and their impacts on bacterial activities are linked to potential mechanisms of action. Additionally, the review provides an in-depth understanding of the current advancements in UC coatings by presenting the advantages, limitations, notable achievements, and latest research findings. This holds paramount significance in advancing medical device technology. This review not only contributes to the scientific research but also sparks interest among readerships and other researchers in the study of safer and more effective UC coatings for improved patient outcomes.
Collapse
Affiliation(s)
- Qianwen Zhang
- Department of Biomedical Engineering, School of Pharmaceutical University, Shenyang 110016, China
| | - Qida Zong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xinke Feng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Min Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wei Sun
- Department of Biomedical Engineering, School of Pharmaceutical University, Shenyang 110016, China.
| | - Yinglei Zhai
- Department of Biomedical Engineering, School of Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
2
|
Kilicay E, Erdal E, Karadag ÖK, Hazer B. Evaluation of the antimicrobial and anticancer potential of a modified silver nanoparticle-impregnated carrier system. J Microencapsul 2024:1-19. [PMID: 39718365 DOI: 10.1080/02652048.2024.2443437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024]
Abstract
This study aimed to develop silver nanoparticles embedded in poly(ricinoleic acid)-poly(methyl methacrylate)-poly(ethylene glycol) (AgNPsPRici-PMMA-PEG) nanoparticles (NPs) containing caffeic acid (Caff) and tetracycline hydrochloride (TCH) for treating infections and cancer in bone defects. The block copolymers were synthesised via free radical polymerisation. NPs were prepared using the solvent evaporation method and characterised by FTIR, HNMR, SEM, DSC, TGA, and DLS. Drug loading (LE), encapsulation efficiency (EE), antimicrobial activity, cytotoxicity, and in vitro release studies were conducted. The NPs exhibited a size of 198 ± 2.89 nm, a narrow size distribution (PDI < 0.1), and a zeta potential of -27.5 ± 0.13 mV. The EE of Caff were 73 ± 0.09% w/w and 78 ± 0.32% w/w. Caff NPs showed prolonged release (69 ± 0.23% w/w), cytotoxicity with the cell viability of 66.85 ± 10.51% in SaOS cells, and antimicrobial zones ranging from 1.5 ± 0.3 to 4.2 ± 0.2 mm. TCH-Caff-AgNPsPRici-PMMA-PEG NPs exhibited promising therapeutic potential for infection and cancer treatment in bone defects.
Collapse
Affiliation(s)
- Ebru Kilicay
- Department of Medical Laboratory Techniques, Şabanözü Vocational School, Çankırı Karatekin University, Cankiri, Turkey
| | - Ebru Erdal
- Advanced Technologies Application and Research Center, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Özge Kübra Karadag
- Graduate School of Natural and Applied Sciences, Department of Chemistry, Cankiri Karatekin University, Turkey
| | - Baki Hazer
- Department of Aircraft Airframe Engine Maintenance, Kapadokya University, Nevşehir, Turkey
- Department of Chemistry, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
3
|
Won D, Lee H, Park Y, Chae M, Kim Y, Lim B, Kang M, Ok M, Jung H, Park J. Dual-Layer Nanoengineered Urinary Catheters for Enhanced Antimicrobial Efficacy and Reduced Cytotoxicity. Adv Healthc Mater 2024; 13:e2401700. [PMID: 39036863 PMCID: PMC11650527 DOI: 10.1002/adhm.202401700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Catheter-associated urinary tract infection (CAUTI) is the most common healthcare-associated infection; however, current therapeutic strategies remain insufficient for standard clinical application. A novel urinary catheter featuring a dual-layer nanoengineering approach using zinc (Zn) and silver nanoparticles (AgNPs) is successfully fabricated. This design targets microbial resistance, minimizes cytotoxicity, and maintains long-term efficacy. The inner AgNPs layer provides immediate antibacterial effects against the UTI pathogens, while the outer porous Zn layer controls zero-order Ag release and generates reactive oxygen species, thus enhancing long-term bactericidal performance. Enhanced antibacterial properties of Zn/AgNPs-coated catheters are observed, resulting in 99.9% of E. coli and 99.7% of S. aureus reduction, respectively. The Zn/AgNPs-coated catheter significantly suppresses biofilm with sludge formation compared to AgNP-coated and uncoated catheters (all, p < 0.05). The Zn/AgNP-coated catheter in a rabbit model demonstrated a durable, effective barrier against bacterial colonization, maintaining antimicrobial properties during the catheter indwelling period with significantly reduced inflammation and epithelial disruption compared with AgNP and uncoated groups. This innovation has the potential to revolutionize the design of antimicrobial medical devices, particularly for applications requiring long-term implantation. Although further preclinical studies are required to verify its efficacy and safety, this strategy seems to be a promising approach to preventing CAUTI-related complications.
Collapse
Affiliation(s)
- Dong‐Sung Won
- Biomedical Engineering Research CenterAsan Institute for Life SciencesAsan Medical Center88 Olympic‐ro 43‐gil, Songpa‐guSeoul05505Republic of Korea
| | - Hyun Lee
- Department of Biomedical‐Chemical EngineeringThe Catholic University of KoreaBucheonGyeonggi‐do14662Republic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheon14662Republic of Korea
| | - Yubeen Park
- Biomedical Engineering Research CenterAsan Institute for Life SciencesAsan Medical Center88 Olympic‐ro 43‐gil, Songpa‐guSeoul05505Republic of Korea
- Department of Convergence MedicineAsan Medical CenterUniversity of Ulsan College of Medicine88 Olympic‐ro 43‐gil, Songpa‐guSeoul05505Republic of Korea
| | - Minjung Chae
- Biomaterials Research CenterBiomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of Materials Science and EngineeringSeoul National University (SNU)Seoul08826Republic of Korea
| | - Yu‐Chan Kim
- Biomaterials Research CenterBiomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science and Technology KIST SchoolKorea University of Science and TechnologySeoul02792Republic of Korea
| | - Bumjin Lim
- Department of UrologyAsan Medical CenterUniversity of Ulsan College of Medicine88 Olympic‐ro 43‐gil, Songpa‐guSeoul05505Republic of Korea
| | - Min‐Ho Kang
- Department of Biomedical‐Chemical EngineeringThe Catholic University of KoreaBucheonGyeonggi‐do14662Republic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheon14662Republic of Korea
| | - Myoung‐Ryul Ok
- Biomaterials Research CenterBiomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science and Technology KIST SchoolKorea University of Science and TechnologySeoul02792Republic of Korea
| | - Hyun‐Do Jung
- Division of Materials Science and EngineeringHanyang UniversitySeongdong‐guSeoul04763Republic of Korea
| | - Jung‐Hoon Park
- Biomedical Engineering Research CenterAsan Institute for Life SciencesAsan Medical Center88 Olympic‐ro 43‐gil, Songpa‐guSeoul05505Republic of Korea
- Department of Convergence MedicineAsan Medical CenterUniversity of Ulsan College of Medicine88 Olympic‐ro 43‐gil, Songpa‐guSeoul05505Republic of Korea
| |
Collapse
|
4
|
Somani M, Verma C, Nonglang FP, Bhan S, Gupta B. Surface Immobilization of Oxidized Carboxymethyl Cellulose on Polyurethane for Sustained Drug Delivery. Macromol Biosci 2024; 24:e2400229. [PMID: 39129399 DOI: 10.1002/mabi.202400229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/19/2024] [Indexed: 08/13/2024]
Abstract
Polyurethane (PU) has a diverse array of customized physical, chemical, mechanical, and structural characteristics, rendering it a superb option for biomedical applications. The current study involves modifying the polyurethane surface by the process of aminolysis (aminolyzed polyurethane; PU-A), followed by covalently immobilizing Carboxymethyl cellulose (CMC) polymer utilizing Schiff base chemistry. Oxidation of CMC periodically leads to the creation of dialdehyde groups along the CMC chain. When the aldehyde groups on the OCMC contact the amine group on a modified PU surface, they form an imine bond. Scanning electron microscopy (SEM), contact angle, and X-ray photoelectron spectroscopy (XPS) techniques are employed to analyze and confirm the immobilization of OCMC on aminolyzed PU film (PU-O). The OCMC gel incorporates Nitrofurantoin (NF) and immobilizes it on the PU surface (PU-ON), creating an antibacterial PU surface. The confirmation of medication incorporation is achieved using EDX analysis. The varying doses of NF have demonstrated concentration-dependent bacteriostatic and bactericidal effects on both Gram-positive and Gram-negative bacteria, in addition to sustained release. The proposed polyurethane (PU-ON) surface exhibited excellent infection resistance in in vivo testing. The material exhibited biocompatibility and is well-suited for biomedical applications.
Collapse
Affiliation(s)
- Manali Somani
- Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi, 110016, India
| | - Chetna Verma
- Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi, 110016, India
| | | | - Surya Bhan
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Bhuvanesh Gupta
- Department of Textile and Fibre Engineering, Indian Institute of Technology, New Delhi, 110016, India
| |
Collapse
|
5
|
Bouhrour N, Nibbering PH, Bendali F. Medical Device-Associated Biofilm Infections and Multidrug-Resistant Pathogens. Pathogens 2024; 13:393. [PMID: 38787246 PMCID: PMC11124157 DOI: 10.3390/pathogens13050393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Medical devices such as venous catheters (VCs) and urinary catheters (UCs) are widely used in the hospital setting. However, the implantation of these devices is often accompanied by complications. About 60 to 70% of nosocomial infections (NIs) are linked to biofilms. The main complication is the ability of microorganisms to adhere to surfaces and form biofilms which protect them and help them to persist in the host. Indeed, by crossing the skin barrier, the insertion of VC inevitably allows skin flora or accidental environmental contaminants to access the underlying tissues and cause fatal complications like bloodstream infections (BSIs). In fact, 80,000 central venous catheters-BSIs (CVC-BSIs)-mainly occur in intensive care units (ICUs) with a death rate of 12 to 25%. Similarly, catheter-associated urinary tract infections (CA-UTIs) are the most commonlyhospital-acquired infections (HAIs) worldwide.These infections represent up to 40% of NIs.In this review, we present a summary of biofilm formation steps. We provide an overview of two main and important infections in clinical settings linked to medical devices, namely the catheter-asociated bloodstream infections (CA-BSIs) and catheter-associated urinary tract infections (CA-UTIs), and highlight also the most multidrug resistant bacteria implicated in these infections. Furthermore, we draw attention toseveral useful prevention strategies, and advanced antimicrobial and antifouling approaches developed to reduce bacterial colonization on catheter surfaces and the incidence of the catheter-related infections.
Collapse
Affiliation(s)
- Nesrine Bouhrour
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| |
Collapse
|
6
|
Chadha J, Thakur N, Chhibber S, Harjai K. A comprehensive status update on modification of foley catheter to combat catheter-associated urinary tract infections and microbial biofilms. Crit Rev Microbiol 2024; 50:168-195. [PMID: 36651058 DOI: 10.1080/1040841x.2023.2167593] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/01/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
Present-day healthcare employs several types of invasive devices, including urinary catheters, to improve medical wellness, the clinical outcome of disease, and the quality of patient life. Among urinary catheters, the Foley catheter is most commonly used in patients for bladder drainage and collection of urine. Although such devices are very useful for patients who cannot empty their bladder for various reasons, they also expose patients to catheter-associated urinary tract infections (CAUTIs). Catheter provides an ideal surface for bacterial colonization and biofilm formation, resulting in persistent bacterial infection and severe complications. Hence, rigorous efforts have been made to develop catheters that harbour antimicrobial and anti-fouling properties to resist colonization by bacterial pathogens. In this regard, catheter modification by surface functionalization, impregnation, blending, or coating with antibiotics, bioactive compounds, and nanoformulations have proved to be effective in controlling biofilm formation. This review attempts to illustrate the complications associated with indwelling Foley catheters, primarily focussing on challenges in fighting CAUTI, catheter colonization, and biofilm formation. In this review, we also collate scientific literature on catheter modification using antibiotics, plant bioactive components, bacteriophages, nanoparticles, and studies demonstrating their efficacy through in vitro and in vivo testing.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Navdisha Thakur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
7
|
Saikawa GIA, Guidone GHM, Noriler SA, Reis GF, de Oliveira AG, Nakazato G, Rocha SPD. Green-Synthesized Silver Nanoparticles in the Prevention of Multidrug-Resistant Proteus mirabilis Infection and Incrustation of Urinary Catheters BioAgNPs Against P. mirabilis Infection. Curr Microbiol 2024; 81:100. [PMID: 38372801 DOI: 10.1007/s00284-024-03616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024]
Abstract
This study aimed to assess the activity of AgNPs biosynthesized by Fusarium oxysporum (bio-AgNPs) against multidrug-resistant uropathogenic Proteus mirabilis, and to assess the antibacterial activity of catheters coated with bio-AgNPs. Broth microdilution and time-kill kinetics assays were used to determine the antibacterial activity of bio-AgNPs. Catheters were coated with two (2C) and three (3C) bio-AgNPs layers using polydopamine as crosslinker. Catheters were challenged with urine inoculated with P. mirabilis to assess the anti-incrustation activity. MIC was found to be 62.5 µmol l-1, causing total loss of viability after 4 h and bio-AgNPs inhibited biofilm formation by 76.4%. Catheters 2C and 3C avoided incrustation for 13 and 20 days, respectively, and reduced biofilm formation by more than 98%, while the pristine catheter was encrusted on the first day. These results provide evidence for the use of bio-AgNPs as a potential alternative to combat of multidrug-resistant P. mirabilis infections.
Collapse
Affiliation(s)
- Gustavo Issamu Asai Saikawa
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid PO-BOX 6001, Londrina, 86051-980, Brazil
| | - Gustavo Henrique Migliorini Guidone
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid PO-BOX 6001, Londrina, 86051-980, Brazil
| | - Sandriele Aparecida Noriler
- Laboratory of Microbial Biotechnology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Guilherme Fonseca Reis
- Laboratory of Microbial Biotechnology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Admilton Gonçalves de Oliveira
- Laboratory of Microbial Biotechnology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
- Laboratory of Electron Microscopy and Microanalysis, State University of Londrina, Londrina, Brazil
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Sergio Paulo Dejato Rocha
- Laboratory of Bacteriology, Department of Microbiology, Center of Biological Sciences, State University of Londrina, Rodovia Celso Garcia Cid PO-BOX 6001, Londrina, 86051-980, Brazil.
| |
Collapse
|
8
|
Safari MS, Mohabatkar H, Behbahani M. Novel surface biochemical modifications of urinary catheters to prevent catheter-associated urinary tract infections. J Biomed Mater Res B Appl Biomater 2024; 112:e35372. [PMID: 38359168 DOI: 10.1002/jbm.b.35372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/13/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024]
Abstract
More than 70% of hospital-acquired urinary tract infections are related to urinary catheters, which are commonly used for the treatment of about 20% of hospitalized patients. Urinary catheters are used to drain the bladder if there is an obstruction in the tube that carries urine out of the bladder (urethra). During catheter-associated urinary tract infections, microorganisms rise up in the urinary tract and reach the bladder, and cause infections. Various materials are used to fabricate urinary catheters such as silicone, polyurethane, and latex. These materials allow bacteria and fungi to develop colonies on their inner and outer surfaces, leading to bacteriuria or other infections. Urinary catheters could be modified to exert antibacterial and antifungal effects. Although so many research have been conducted over the past years on the fabrication of antibacterial and antifouling catheters, an ideal catheter needs to be developed for long-term catheterization of more than a month. In this review, we are going to introduce the recent advances in fabricating antibacterial materials to prevent catheter-associated urinary tract infections, such as nanoparticles, antibiotics, chemical compounds, antimicrobial peptides, bacteriophages, and plant extracts.
Collapse
Affiliation(s)
- Mohammad Sadegh Safari
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Hassan Mohabatkar
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mandana Behbahani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
9
|
Miao J, Wu X, Fang Y, Zeng M, Huang Z, Ouyang M, Wang R. Multifunctional hydrogel coatings with high antimicrobial loading efficiency and pH-responsive properties for urinary catheter applications. J Mater Chem B 2023; 11:3373-3386. [PMID: 37000775 DOI: 10.1039/d3tb00148b] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Catheter-associated urinary tract infections are one of the most common hospital-acquired infections. Encrustation formation results from infection of urease-producing bacteria and further complicates the situation. A typical sign of the initial onset of encrustation formation is the alkalization of the urine (pH up to 9-10). However, effective antibacterial strategies with high antimicrobial loading efficiency and pH-responsiveness of antimicrobial release are still lacking. In this study, we developed a poly(sulfobetaine methacrylate)-tannic acid (polySBMA-TA) hydrogel coating, which served as a universal, efficient, and responsive carrier for antimicrobials on urinary catheters. Common antimicrobials, including poly(vinylpyrrolidone)-iodine, copper ions, and nitrofurazone were loaded into the polySBMA-TA coating in high efficiency (several fold higher than that of the polySBMA coating), via the formation of multiple non-covalent interactions between the antimicrobials and hydrogel coating. The hydrogel coatings maintained good antibacterial properties under neutral conditions. More importantly, the pH-responsive release of antibacterial agents under alkaline conditions further enhanced the antibacterial activity of the coatings, which was advantageous for killing the urease-producing bacteria and preventing encrustation. In vitro and in vivo tests confirmed that the hydrogel coating has good biocompatibility, and could effectively inhibit bacterial colonization and encrustation formation. This study offers new opportunities for the utilization of a simple and universal antimicrobial-loaded hydrogel coating with smart pH-responsive properties to combat bacterial colonization and encrustation formation in urinary catheters.
Collapse
Affiliation(s)
- Jiru Miao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China.
| | - Xiang Wu
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China.
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Li Huili Hospital, Ningbo University School of Medicine, Ningbo, 315000, China
| | - Yue Fang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China.
| | - Mingzhu Zeng
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China.
| | - Zhimao Huang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China.
| | - Mi Ouyang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Rong Wang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| |
Collapse
|
10
|
Gonzales RR, Kumagai K, Yang Z, Yang Y, Shigemura K, Matsuyama H. Simple bio-inspired coating of ureteral stent for protein and bacterial fouling and calcium encrustation control. J Biomed Mater Res B Appl Biomater 2023. [PMID: 36941716 DOI: 10.1002/jbm.b.35250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/10/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023]
Abstract
Encrustation, caused by deposition of calcium and magnesium salts present in urine, is a common problem of indwelling urinary devices, such as ureteral stent. Encrustation was also found to be related to urinary tract infections; thus, it is necessary to prepare ureteral stents with antibacterial and antifouling surfaces to mitigate the occurrence of encrustation. In this study, commercial ureteral stent was coated with polydopamine (PDA), formed from self-polymerization of dopamine. The PDA coating was optimized in terms of dopamine concentration, pH, and coating time using response surface methodology. The chosen response parameters for optimization were calcium oxalate (CaC2 O4 ) encrustation and protein adsorption. Optimized PDA coating conditions were determined to be the following: pH 9.0, 2 mg/mL DA, and 3 days coating. The optimized PDA-coated ureteral stent exhibited outstanding resistance against CaC2 O4 encrustation, protein fouling, and bacterial adhesion due to its hydrophilic and functional coating layer. In comparison with the pristine ureteral stent, PDA coating was able to suppress approximately 97% and 87% of CaC2 O4 and protein adsorption, respectively. The PDA-coated ureteral stent was compared against those of commercially available ureteral stents and found to have superior encrustation and protein fouling mitigation performance. Finally, PDA coating was found to be highly stable for a storage period of 90 days, whether stored in wet or dry conditions.
Collapse
Affiliation(s)
- Ralph Rolly Gonzales
- Research Center for Membrane and Film Technology, Kobe University, Kobe, Hyogo, Japan
| | - Kazuo Kumagai
- Research Center for Membrane and Film Technology, Kobe University, Kobe, Hyogo, Japan
- Department of Chemical Science and Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Zhe Yang
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
| | - Youngmin Yang
- Department of Urology, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Katsumi Shigemura
- Department of Urology, Kobe University Hospital, Kobe, Hyogo, Japan
- Department of International Health, Graduate School of Health Sciences, Kobe University, Kobe, Hyogo, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, Kobe, Hyogo, Japan
- Department of Chemical Science and Engineering, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
11
|
Self-Disinfecting Urethral Catheter to Overcome Urinary Infections: From Antimicrobial Photodynamic Action to Antibacterial Biochemical Entities. Microorganisms 2022; 10:microorganisms10122484. [PMID: 36557737 PMCID: PMC9785902 DOI: 10.3390/microorganisms10122484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Medical-device-related infections are considered a worldwide public health problem. In particular, urinary catheters are responsible for 75% of cases of hospital urinary infections (a mortality rate of 2.3%) and present a high cost for public and private health systems. Some actions have been performed and described aiming to avoid it, including clinical guidelines for catheterization procedure, antibiotic prophylaxis, and use of antimicrobial coated-urinary catheters. In this review paper, we present and discuss the functionalization of urinary catheters surfaces with antimicrobial entities (e.g., photosensitizers, antibiotics, polymers, silver salts, oxides, bacteriophage, and enzymes) highlighting the immobilization of photosensitizing molecules for antimicrobial photodynamic applications. Moreover, the characterization techniques and (photo)antimicrobial effects of the coated-urinary catheters are described and discussed. We highlight the most significant examples in the last decade (2011-2021) concerning the antimicrobial coated-urinary catheter and their potential use, limitations, and future perspectives.
Collapse
|
12
|
Yao Q, Wu C, Yu X, Chen X, Pan G, Chen B. Current material engineering strategies to prevent catheter encrustation in urinary tracts. Mater Today Bio 2022; 16:100413. [PMID: 36118951 PMCID: PMC9474921 DOI: 10.1016/j.mtbio.2022.100413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/19/2022] Open
Abstract
Catheters and ureteric stents have played a vital role in relieving urinary obstruction in many urological conditions. With the increasing use of urinary catheters/stents, catheter/stent-related complications such as infection and encrustation are also increasing because of their design defects. Long-term use of antibiotics and frequent replacement of catheters not only increase the economic burden on patients but also bring the pain of catheter replacement. This is unfavorable for patients with long indwelling catheters or stents but inconvenient to replace. In recent years, some promising technologies and mechanisms have been used to prevent infection and encrustation, mainly drug loading coatings, functional coatings, biodegradable polymers and metallic materials for urinary devices. Obvious effects in anti-encrustation and anti-infection experiments of the above strategies in vivo or in vitro have been conducted, which is very helpful for further clinical trials. This review mainly introduces catheter/stent technology and mechanisms in the past ten years to address the potential impact of anti-encrustation coating of catheter/stent materials for the prevention of encrustation and to analyze the progress made in this field.
Collapse
Affiliation(s)
- Qin Yao
- Department of Urology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, Jiangsu, 212001, PR China
| | - Chengshuai Wu
- Department of Urology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, Jiangsu, 212001, PR China
| | - Xiaoyu Yu
- Department of Urology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, Jiangsu, 212001, PR China
| | - Xu Chen
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 304 Xuefu Road, Zhenjiang, Jiangsu, 212013, PR China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 304 Xuefu Road, Zhenjiang, Jiangsu, 212013, PR China
| | - Binghai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang, Jiangsu, 212001, PR China
| |
Collapse
|
13
|
Gomes M, Gomes LC, Teixeira-Santos R, Pereira MF, Soares OS, Mergulhão FJ. Carbon nanotube-based surfaces: Effect on the inhibition of single- and dual-species biofilms of Escherichia coli and Enterococcus faecalis. RESULTS IN SURFACES AND INTERFACES 2022. [DOI: 10.1016/j.rsurfi.2022.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Zhao YQ, Xiu Z, Wu R, Zhang L, Ding X, Zhao N, Duan S, Xu FJ. A Near‐Infrared‐Responsive Quaternary Ammonium/Gold Nanorod Hybrid Coating with Enhanced Antibacterial Properties. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Yu-Qing Zhao
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Zongpeng Xiu
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Ruonan Wu
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Lujiao Zhang
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Nana Zhao
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
15
|
Pasparakis G. Recent developments in the use of gold and silver nanoparticles in biomedicine. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1817. [PMID: 35775611 PMCID: PMC9539467 DOI: 10.1002/wnan.1817] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/18/2022]
Abstract
Gold and silver nanoparticles (NPs) are widely used in the biomedical research both in the therapeutic and the sensing/diagnostics fronts. Both metals share some common optical properties with surface plasmon resonance being the most widely exploited property in therapeutics and diagnostics. Au NPs exhibit excellent light‐to‐heat conversion efficiencies and hence have found applications primarily in precision oncology, while Ag NPs have excellent antibacterial properties which can be harnessed in biomaterials' design. Both metals constitute excellent biosensing platforms owing to their plasmonic properties and are now routinely used in various optical platforms. The utilization of Au and Ag NPs in the COVID‐19 pandemic was rapidly expanded mostly in biosensing and point‐of‐care platforms and to some extent in therapeutics. In this review article, the main physicochemical properties of Au and Ag NPs are discussed with selective examples from the recent literature. This article is categorized under:Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vitro Nanoparticle‐Based Sensing Nanotechnology Approaches to Biology > Nanoscale Systems in Biology
Collapse
Affiliation(s)
- George Pasparakis
- Department of Chemical Engineering University of Patras Patras Greece
| |
Collapse
|
16
|
Jordan DA. The role of the district nurse in managing blocked urinary catheters. Br J Community Nurs 2022; 27:350-356. [PMID: 35776559 DOI: 10.12968/bjcn.2022.27.7.350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This article will investigate the district nurse's role in managing urinary catheter blockages, looking at why people require long-term catheterisation and the causes of blockages and then reviewing treatment methods. Current practice will be critically analysed and compared to the most up to date research and literature to inform district nurses of best evidence-based practice in the hopes of improving service user outcomes and quality of life and reducing the impact this problem has upon district nursing services with regards to time and resources.
Collapse
|
17
|
Sarvari R, Naghili B, Agbolaghi S, Abbaspoor S, Bannazadeh Baghi H, Poortahmasebi V, Sadrmohammadi M, Hosseini M. Organic/polymeric antibiofilm coatings for surface modification of medical devices. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2066668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Raana Sarvari
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sadrmohammadi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hosseini
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
18
|
Zhu Y, McHale G, Dawson J, Armstrong S, Wells G, Han R, Liu H, Vollmer W, Stoodley P, Jakubovics N, Chen J. Slippery Liquid-Like Solid Surfaces with Promising Antibiofilm Performance under Both Static and Flow Conditions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6307-6319. [PMID: 35099179 PMCID: PMC9096797 DOI: 10.1021/acsami.1c14533] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Biofilms are central to some of the most urgent global challenges across diverse fields of application, from medicine to industries to the environment, and exert considerable economic and social impact. A fundamental assumption in anti-biofilms has been that the coating on a substrate surface is solid. The invention of slippery liquid-infused porous surfaces─a continuously wet lubricating coating retained on a solid surface by capillary forces─has led to this being challenged. However, in situations where flow occurs, shear stress may deplete the lubricant and affect the anti-biofilm performance. Here, we report on the use of slippery omniphobic covalently attached liquid (SOCAL) surfaces, which provide a surface coating with short (ca. 4 nm) non-cross-linked polydimethylsiloxane (PDMS) chains retaining liquid-surface properties, as an antibiofilm strategy stable under shear stress from flow. This surface reduced biofilm formation of the key biofilm-forming pathogens Staphylococcus epidermidis and Pseudomonas aeruginosa by three-four orders of magnitude compared to the widely used medical implant material PDMS after 7 days under static and dynamic culture conditions. Throughout the entire dynamic culture period of P. aeruginosa, SOCAL significantly outperformed a typical antibiofilm slippery surface [i.e., swollen PDMS in silicone oil (S-PDMS)]. We have revealed that significant oil loss occurred after 2-7 day flow for S-PDMS, which correlated to increased contact angle hysteresis (CAH), indicating a degradation of the slippery surface properties, and biofilm formation, while SOCAL has stable CAH and sustainable antibiofilm performance after 7 day flow. The significance of this correlation is to provide a useful easy-to-measure physical parameter as an indicator for long-term antibiofilm performance. This biofilm-resistant liquid-like solid surface offers a new antibiofilm strategy for applications in medical devices and other areas where biofilm development is problematic.
Collapse
Affiliation(s)
- Yufeng Zhu
- School
of Engineering, Newcastle University, Newcastle Upon Tyne NE1
7RU, U.K.
| | - Glen McHale
- School
of Engineering, University of Edinburgh, Edinburgh EH9 3FB, U.K.
| | - Jack Dawson
- School
of Engineering, Newcastle University, Newcastle Upon Tyne NE1
7RU, U.K.
| | - Steven Armstrong
- School
of Engineering, University of Edinburgh, Edinburgh EH9 3FB, U.K.
| | - Gary Wells
- School
of Engineering, University of Edinburgh, Edinburgh EH9 3FB, U.K.
| | - Rui Han
- School
of Engineering, Newcastle University, Newcastle Upon Tyne NE1
7RU, U.K.
| | - Hongzhong Liu
- School
of Mechanical Engineering, Xi’an
Jiaotong University, Xi’an 710054, China
| | - Waldemar Vollmer
- Centre
for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle
Upon Tyne NE2 4AX, U.K.
| | - Paul Stoodley
- Department
of Microbial Infection and Immunity and the Department of Orthopaedics, The Ohio State University, Columbus, Ohio 43210, United States
- National
Centre for Advanced Tribology at Southampton (nCATS), National Biofilm
Innovation Centre (NBIC), Mechanical Engineering, University of Southampton, Southampton S017 1BJ, U.K.
| | - Nicholas Jakubovics
- School
of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle
Upon Tyne NE2 4BW, U.K.
| | - Jinju Chen
- School
of Engineering, Newcastle University, Newcastle Upon Tyne NE1
7RU, U.K.
| |
Collapse
|
19
|
Sharma S, Basu B. Biomaterials assisted reconstructive urology: The pursuit of an implantable bioengineered neo-urinary bladder. Biomaterials 2021; 281:121331. [PMID: 35016066 DOI: 10.1016/j.biomaterials.2021.121331] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022]
Abstract
Urinary bladder is a dynamic organ performing complex physiological activities. Together with ureters and urethra, it forms the lower urinary tract that facilitates urine collection, low-pressure storage, and volitional voiding. However, pathological disorders are often liable to cause irreversible damage and compromise the normal functionality of the bladder, necessitating surgical intervention for a reconstructive procedure. Non-urinary autologous grafts, primarily derived from gastrointestinal tract, have long been the gold standard in clinics to augment or to replace the diseased bladder tissue. Unfortunately, such treatment strategy is commonly associated with several clinical complications. In absence of an optimal autologous therapy, a biomaterial based bioengineered platform is an attractive prospect revolutionizing the modern urology. Predictably, extensive investigative research has been carried out in pursuit of better urological biomaterials, that overcome the limitations of conventional gastrointestinal graft. Against the above backdrop, this review aims to provide a comprehensive and one-stop update on different biomaterial-based strategies that have been proposed and explored over the past 60 years to restore the dynamic function of the otherwise dysfunctional bladder tissue. Broadly, two unique perspectives of bladder tissue engineering and total alloplastic bladder replacement are critically discussed in terms of their status and progress. While the former is pivoted on scaffold mediated regenerative medicine; in contrast, the latter is directed towards the development of a biostable bladder prosthesis. Together, these routes share a common aspiration of designing and creating a functional equivalent of the bladder wall, albeit, using fundamentally different aspects of biocompatibility and clinical needs. Therefore, an attempt has been made to systematically analyze and summarize the evolution of various classes as well as generations of polymeric biomaterials in urology. Considerable emphasis has been laid on explaining the bioengineering methodologies, pre-clinical and clinical outcomes. Some of the unaddressed challenges, including vascularization, innervation, hollow 3D prototype fabrication and urinary encrustation, have been highlighted that currently delay the successful commercial translation. More importantly, the rapidly evolving and expanding concepts of bioelectronic medicine are discussed to inspire future research efforts towards the further advancement of the field. At the closure, crucial insights are provided to forge the biomaterial assisted reconstruction as a long-term therapeutic strategy in urological practice for patients' care.
Collapse
Affiliation(s)
- Swati Sharma
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India; Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
20
|
Domingues B, Pacheco M, Cruz JE, Carmagnola I, Teixeira‐Santos R, Laurenti M, Can F, Bohinc K, Moutinho F, Silva JM, Aroso IM, Lima E, Reis RL, Ciardelli G, Cauda V, Mergulhão FJ, Gálvez FS, Barros AA. Future Directions for Ureteral Stent Technology: From Bench to the Market. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Beatriz Domingues
- 3B's Research Group‐Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark‐Parque Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães 4805‐017 Portugal
| | - Margarida Pacheco
- 3B's Research Group‐Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark‐Parque Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães 4805‐017 Portugal
| | - Julia E. Cruz
- Endourology‐Endoscopy Department Minimally Invasive Surgery Centre Jesús Usón Cáceres 10071 Spain
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering Politecnico di Torino Turin 10129 Italy
- Polito BIOMedLAB Politecnico di Torino Turin 10129 Italy
| | - Rita Teixeira‐Santos
- LEPABE–Laboratory for Process Engineering Environment Biotechnology and Energy Faculty of Engineering University of Porto Porto 4200‐465 Portugal
| | - Marco Laurenti
- Department of Applied Science and Technology Politecnico di Torino Turin 10129 Italy
| | - Fusun Can
- Department of Medical Microbiology School of Medicine Koc University Istanbul 34450 Turkey
| | - Klemen Bohinc
- Faculty of Health Sciences University of Ljubljana Ljubljana 1000 Slovenia
| | - Fabíola Moutinho
- i3S‐Instituto de Investigação e Inovação em Saúde Universidade do Porto Porto 4200‐135 Portugal
- INEB‐Instituto de Engenharia Biomédica Universidade do Porto Porto 4200‐135 Portugal
| | - Joana M. Silva
- 3B's Research Group‐Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark‐Parque Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães 4805‐017 Portugal
| | - Ivo M. Aroso
- 3B's Research Group‐Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark‐Parque Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães 4805‐017 Portugal
| | - Estêvão Lima
- School of Health Sciences Life and Health Sciences Research Institute (ICVS) University of Minho Braga 4710‐057 Portugal
| | - Rui L. Reis
- 3B's Research Group‐Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark‐Parque Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães 4805‐017 Portugal
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering Politecnico di Torino Turin 10129 Italy
- Polito BIOMedLAB Politecnico di Torino Turin 10129 Italy
| | - Valentina Cauda
- Department of Applied Science and Technology Politecnico di Torino Turin 10129 Italy
| | - Filipe J. Mergulhão
- LEPABE–Laboratory for Process Engineering Environment Biotechnology and Energy Faculty of Engineering University of Porto Porto 4200‐465 Portugal
| | - Federico S. Gálvez
- Endourology‐Endoscopy Department Minimally Invasive Surgery Centre Jesús Usón Cáceres 10071 Spain
| | - Alexandre A. Barros
- 3B's Research Group‐Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark‐Parque Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães 4805‐017 Portugal
| |
Collapse
|
21
|
Mazzocchi T, Lucarini G, Roehrer I, Menciassi A, Ricotti L. PDMS and DLC-coated unidirectional valves for artificial urinary sphincters: Opening performance after 126 days of immersion in urine. J Biomed Mater Res B Appl Biomater 2021; 110:817-827. [PMID: 34726338 PMCID: PMC9298115 DOI: 10.1002/jbm.b.34961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/05/2022]
Abstract
In this work, unidirectional valves made of bare polydimethylsiloxane (PDMS) and PDMS provided with a micrometric diamond‐like carbon (DLC) coating were fabricated and characterized, in terms of surface properties and opening pressure. The valve performance was also tested over 1250 repeated cycles of opening/closure in water, finding a slight decrease in the opening pressure after such cycles (10%) for the PDMS valves, while almost no variation for the PDMS + DLC ones. The valves were then immersed in urine for 126 days, evaluating the formation of encrustations and the trend of the opening pressure over time. Results showed that PDMS valves were featured by a thin layer of encrustations after 126 days, but the overall encrustation level was much smaller than the one shown by PDMS in static conditions. Furthermore, the opening pressure was almost not affected by such a thin layer of crystals. DLC‐coated valves showed even less encrustations at the same time‐point, with no significant loss of performance over time, although they were featured by a higher variability. These results suggest that most encrustations can be removed by the mechanical action of the valve during daily openings/closures. Such a self‐cleaning behavior with respect to a static condition opens exciting scenarios for the long‐term functionality of mobile devices operating in the urinary environment.
Collapse
Affiliation(s)
- Tommaso Mazzocchi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Gioia Lucarini
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Irene Roehrer
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Arianna Menciassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
22
|
Liu C, Feng S, Ma L, Sun M, Wei Z, Wang J, Chen Z, Guo Y, Shi J, Wu Q. An Amphiphilic Carbonaceous/Nanosilver Composite-Incorporated Urinary Catheter for Long-Term Combating Bacteria and Biofilms. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38029-38039. [PMID: 34357763 DOI: 10.1021/acsami.1c07399] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biofilms formed on urinary catheters remain a major headache in the modern healthcare system. Among the various kinds of biocide-releasing urinary catheters that have been developed to prevent biofilm formation, Ag nanoparticles (AgNPs)-coated catheters are of great promising potential. However, the deposition of AgNPs on the surface of catheters suffers from several inherent shortcomings, such as damage to the urethral mucosa, uncontrollable Ag ion kinetics, and unexpected systematic toxicity. Here, AgNPs-decorated amphiphilic carbonaceous particles (ACPs@AgNPs) with commendable dispersity in solvents of different polarities and broad-spectrum antibacterial activity are first prepared. The resulting ACPs@AgNPs exert good compatibility with silicone rubber, which enables the easy fabrication of urinary catheters using a laboratory-made mold. Therefore, ACPs@AgNPs not only endow the urinary catheter with forceful biocidal activity but also improve its mechanical properties and surface wettability. Hence, the designed urinary catheter possesses excellent capacity to resist bacterial adhesion and biofilm formation both in vitro and in an in vivo rabbit model. Specifically, a long-term antibacterial study highlights its sustainable antibacterial activity. Of note, no obvious toxicity or inflammation in rabbits was triggered by the designed urinary catheter in vivo. Overall, the hybrid urinary catheter may serve as a promising biocide-releasing urinary catheter for antibacterial and antibiofilm applications.
Collapse
Affiliation(s)
- Chaoqun Liu
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| | - Shan Feng
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| | - Longyu Ma
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| | - Mengyao Sun
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| | - Zhihong Wei
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| | - Jiaqi Wang
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| | - Zhaowei Chen
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yuheng Guo
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jiahua Shi
- Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, China
| | - Qiang Wu
- College of Pharmacy, Institutes of Environment and Medicine, Henan University, Kaifeng 475004, China
| |
Collapse
|
23
|
Abstract
LEARNING OBJECTIVES After studying this article, the participant should be able to: 1. Understand the basics of biofilm infection and be able to distinguish between planktonic and biofilm modes of growth. 2. Have a working knowledge of conventional and emerging antibiofilm therapies and their modes of action as they pertain to wound care. 3. Understand the challenges associated with testing and marketing antibiofilm strategies and the context within which these strategies may have effective value. SUMMARY The Centers for Disease Control and Prevention estimate for human infectious diseases caused by bacteria with a biofilm phenotype is 65 percent and the National Institutes of Health estimate is closer to 80 percent. Biofilms are hostile microbial aggregates because, within their polymeric matrix cocoons, they are protected from antimicrobial therapy and attack from host defenses. Biofilm-infected wounds, even when closed, show functional deficits such as deficient extracellular matrix and impaired barrier function, which are likely to cause wound recidivism. The management of invasive wound infection often includes systemic antimicrobial therapy in combination with débridement of wounds to a healthy tissue bed as determined by the surgeon who has no way of visualizing the biofilm. The exceedingly high incidence of false-negative cultures for bacteria in a biofilm state leads to missed diagnoses of wound infection. The use of topical and parenteral antimicrobial therapy without wound débridement have had limited impact on decreasing biofilm infection, which remains a major problem in wound care. Current claims to manage wound biofilm infection rest on limited early-stage data. In most cases, such data originate from limited experimental systems that lack host immune defense. In making decisions on the choice of commercial products to manage wound biofilm infection, it is important to critically appreciate the mechanism of action and significance of the relevant experimental system. In this work, the authors critically review different categories of antibiofilm products, with emphasis on their strengths and limitations as evident from the published literature.
Collapse
Affiliation(s)
- Chandan K Sen
- From the Indiana University Health Comprehensive Wound Center, the Indiana Center for Regenerative Medicine & Engineering, and the Indiana University School of Medicine
| | - Sashwati Roy
- From the Indiana University Health Comprehensive Wound Center, the Indiana Center for Regenerative Medicine & Engineering, and the Indiana University School of Medicine
| | - Shomita S Mathew-Steiner
- From the Indiana University Health Comprehensive Wound Center, the Indiana Center for Regenerative Medicine & Engineering, and the Indiana University School of Medicine
| | - Gayle M Gordillo
- From the Indiana University Health Comprehensive Wound Center, the Indiana Center for Regenerative Medicine & Engineering, and the Indiana University School of Medicine
| |
Collapse
|
24
|
Liu L, Shi H, Yu H, Yan S, Luan S. The recent advances in surface antibacterial strategies for biomedical catheters. Biomater Sci 2021; 8:4095-4108. [PMID: 32555809 DOI: 10.1039/d0bm00659a] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As one of the most common hospital-acquired infections, catheter-related infections (CRIs) which are caused by microbial colonization lead to increasing morbidity and mortality of patients and life threat for medical staffs. In this case, a variety of efforts have been made to design functional materials to limit bacterial colonization and biofilm formation. In this review, we focus on the recent advances in surface modification strategies of biomedical catheters used to prevent CRIs. The tests for the evaluation of the performances of modified catheters are listed. Future prospects of surface antibacterial strategies for biomedical catheters are also outlined.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Huan Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shunjie Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and National Engineering Laboratory of Medical Implantable Devices & Key Laboratory for Medical Implantable Devices of Shandong Province, WEGO Holding Company Limited, Weihai 264210, P. R. China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
25
|
In Vitro Coliform Resistance to Bioactive Compounds in Urinary Infection, Assessed in a Lab Catheterization Model. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bioactive compounds and phenolic compounds are viable alternatives to antibiotics in recurrent urinary tract infections. This study aimed to use a natural functional product, based on the bioactive compounds’ composition, to inhibit the uropathogenic strains of Escherichia coli. E.coli ATCC 25922 was used to characterize the IVCM (new in vitro catheterization model). As support for reducing bacterial proliferation, the cytotoxicity against a strain of Candida albicans was also determined (over 75% at 1 mg/mL). The results were correlated with the analysis of the distribution of biologically active compounds (trans-ferulic acid-268.44 ± 0.001 mg/100 g extract and an equal quantity of Trans-p-coumaric acid and rosmarinic acid). A pronounced inhibitory effect against the uropathogenic strain E. coli 317 (4 log copy no./mL after 72 h) was determined. The results showed a targeted response to the product for tested bacterial strains. The importance of research resulted from the easy and fast characterization of the functional product with antimicrobial effect against uropathogenic strains of E. coli. This study demonstrated that the proposed in vitro model was a valuable tool for assessing urinary tract infections with E. coli.
Collapse
|
26
|
Gayani B, Dilhari A, Kottegoda N, Ratnaweera DR, Weerasekera MM. Reduced Crystalline Biofilm Formation on Superhydrophobic Silicone Urinary Catheter Materials. ACS OMEGA 2021; 6:11488-11496. [PMID: 34056304 PMCID: PMC8154006 DOI: 10.1021/acsomega.1c00560] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/09/2021] [Indexed: 05/14/2023]
Abstract
Crystalline biofilm formation in indwelling urinary catheters is a serious health problem as it creates a barrier for antibacterial coatings. This emphasizes the failure of antibacterial coatings that do not have a mechanism to reduce crystal deposition on catheter surfaces. In this study, trifluoropropyl spray-coated polydimethylsiloxane (TFP-PDMS) has been employed as an antibiofilm forming surface without any antibacterial agent. Here, TFP was coated on half-cured PDMS using the spray coating technique to obtain a durable superhydrophobic coating for a minimum five cycles of different sterilization methods. The crystalline biofilm-forming ability of Proteus mirabilis in artificial urine, under static and flow conditions, was assessed on a TFP-PDMS surface. In comparison to the commercially available silver-coated latex and silicone catheter surfaces, TFP-PDMS displayed reduced bacterial attachment over 14 days. Moreover, the elemental analysis determined by atomic absorption spectroscopy and energy-dispersive X-ray analysis revealed that the enhanced antibiofilm forming ability of TFP-PDMS was due to the self-cleaning activity of the surface. We believe that this modified surface will significantly reduce biofilm formation in indwelling urinary catheters and further warrant future clinical studies.
Collapse
Affiliation(s)
- Buddhika Gayani
- Department
of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
- Centre
for Advanced Material Research, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - Ayomi Dilhari
- Department
of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - Nilwala Kottegoda
- Department
of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
- Centre
for Advanced Material Research, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - Dilru R. Ratnaweera
- Department
of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
- Centre
for Advanced Material Research, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - Manjula Manoji Weerasekera
- Department
of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
- Department
of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| |
Collapse
|
27
|
Srisang S, Boongird A, Ungsurungsie M, Wanasawas P, Nasongkla N. In vivo catheterization study of chlorhexidine-loaded nanoparticle coated Foley urinary catheters in male New Zealand white rabbits. J Biomed Mater Res B Appl Biomater 2021; 109:1836-1843. [PMID: 33856102 DOI: 10.1002/jbm.b.34844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/09/2021] [Accepted: 03/31/2021] [Indexed: 01/07/2023]
Abstract
Foley urinary catheters were coated with chlorhexidine-loaded nanoparticles (CHX-NPs), encapsulated in the form of micelles and nanospheres. Both of nanoparticles were deposited by multilayer nanocoating through dip and spray coating on the catheter surface both inner and outer surface. In our previous studies, the nanocoating of Foley urinary catheters was studied for chlorhexidine release, degradation, antibacterial evaluation, cytotoxicity assessment, hemocompatibility, skin irritation, skin sensitization, and stability during storage. The results demonstrated the antimicrobial functions and biocompatibility of the coated catheters. In this study, coated urinary catheters were inserted in the bladders of rabbits for 7 day to investigate their efficacy. Histopathology results showed no inflammation, redness, or swelling on bladder and urethra tissues. Surface morphology comparison of uncoated catheters in the control group and coated catheters in the treatment group revealed more encrustation and crystallization on uncoated catheter than on coated catheter, indicating that catheters coated with CHX-NPs showed efficacy in delaying encrustation and bacterial colonization. These findings suggest that nanocoating of urinary catheters can potentially enhance the biocompatibility of medical devices.
Collapse
Affiliation(s)
- Siriwan Srisang
- Department of Engineering, King Mongkut's Institute of Technology Ladkrabung, Chumphon, Thailand
| | - Atthaporn Boongird
- Department of Surgery, Neurosurgical Unit, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Pimpaka Wanasawas
- S&J International Enterprises Public Company Limited, Bangkok, Thailand
| | - Norased Nasongkla
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
28
|
Koc H, Kilicay E, Karahaliloglu Z, Hazer B, Denkbas EB. Prevention of urinary infection through the incorporation of silver-ricinoleic acid-polystyrene nanoparticles on the catheter surface. J Biomater Appl 2021; 36:385-405. [PMID: 33530824 DOI: 10.1177/0885328220983552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nosocominal infections associated with biofilm formation on urinary catheters cause serious complications. The aim of this study was to investigate the feasibility of the polyurethane (PU) catheter modified with tetracycline hydrochloride (TCH) attached Ag nanoparticles embedded PolyRicinoleic acid-Polystyrene Nanoparticles (PU-TCH-AgNPs-PRici-PS NPs) and the influence on antimicrobial and antibiofilm activity of urinary catheters infected by Escherichia coli and Staphylococcus aureus. For this purpose, AgNPs embedded PRici graft PS graft copolymers (AgNPs-PRici-g-PS) were synthesized via free radical polymerization and characterized by FTIR, HNMR and DSC. AgNPs-PRici-PS NPs were prepared and optimized by the different parameters and the optimized size of nanoparticle was found as about 150 ± 1 nm. The characterization of the nanoparticles and the morphological evaluation were carried out by FTIR and SEM. Short term stability of nanoparticles was realised at 4°C for 30 days. In vitro release profiles of TCH and Ag NPs were also investigated. The formation of biofilm on PU modified TCH-Ag NPs-PRici-PS NPs, was evaluated and the biocompatibility test of the nanoparticles was realized via the mouse fibroblast (L929) and mouse urinary bladder cells (G/G An1). This is the first time that TCH-AgNPs-PRici-PS NPs used in the modification of PU catheter demonstrated high antimicrobial and antibiofilm activities against the urinary tract infection.
Collapse
Affiliation(s)
- Hazal Koc
- Nanotechnology Engineering Department, Institute of Science, Bülent Ecevit University, Zonguldak, Turkey
| | - Ebru Kilicay
- Vocational School of Eldivan Health Services, Karatekin University, Cankiri, Turkey
| | | | - Baki Hazer
- Department of Aircraft Airflame Engine Maintenance, Kapadokya University, Ürgüp, Turkey.,Department of Chemistry, Bulent Ecevit University, Zonguldak, Turkey
| | - Emir B Denkbas
- Bioengineering Division, Institute of Pure and Applied Sciences, Hacettepe University, Ankara, Turkey.,Faculty of Engineering, Department of Biomedical Engineering, Başkent University, Ankara, Turkey
| |
Collapse
|
29
|
Abstract
AbstractThese days, sensors are widely used in a variety of underwater sites like marine monitoring, fish-farming and water quality monitoring. However, to achieve reliable sensor data from long-term monitoring in aqueous solution, several challenges still need to be solved. Biofilm formation both on sensor housings and membranes is among one of the most serious challenges, which strongly influences the sensor responds and the validity of the results. To prevent biofilm growth, a series of graphene oxide (GO)/silver nanoparticles (Ag NPs) nanocomposites (GOA) have been developed and coated on sensor housing materials, e.g. polypropylene. The antifouling property of the GOA nanocomposite has been demonstrated by antifouling tests using Halomonas. Pacifica (Baumann et al.) Dobson and Franzmann (ATCC® 27122) (H. Pacifica) and a mixture of marine algae. The antifouling property of GOA composites has been proved to be closely related to the dispersibility of Ag NP. The overall work might provide valuable insight into developing antifouling materials for sensors in general.
Collapse
|
30
|
Kaabipour S, Hemmati S. A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:102-136. [PMID: 33564607 PMCID: PMC7849236 DOI: 10.3762/bjnano.12.9] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/14/2020] [Indexed: 05/08/2023]
Abstract
The significance of silver nanostructures has been growing considerably, thanks to their ubiquitous presence in numerous applications, including but not limited to renewable energy, electronics, biosensors, wastewater treatment, medicine, and clinical equipment. The properties of silver nanostructures, such as size, size distribution, and morphology, are strongly dependent on synthesis process conditions such as the process type, equipment type, reagent type, precursor concentration, temperature, process duration, and pH. Physical and chemical methods have been among the most common methods to synthesize silver nanostructures; however, they possess substantial disadvantages and short-comings, especially compared to green synthesis methods. On the contrary, the number of green synthesis techniques has been increasing during the last decade and they have emerged as alternative routes towards facile and effective synthesis of silver nanostructures with different morphologies. In this review, we have initially outlined the most common and popular chemical and physical methodologies and reviewed their advantages and disadvantages. Green synthesis methodologies are then discussed in detail and their advantages over chemical and physical methods have been noted. Recent studies are then reviewed in detail and the effects of essential reaction parameters, such as temperature, pH, precursor, and reagent concentration, on silver nanostructure size and morphology are discussed. Also, green synthesis techniques used for the synthesis of one-dimensional (1D) silver nanostructures have been reviewed, and the potential of alternative green reagents for their synthesis has been discussed. Furthermore, current challenges regarding the green synthesis of 1D silver nanostructures and future direction are outlined. To sum up, we aim to show the real potential of green nanotechnology towards the synthesis of silver nanostructures with various morphologies (especially 1D ones) and the possibility of altering current techniques towards more environmentally friendly, more energy-efficient, less hazardous, simpler, and cheaper procedures.
Collapse
Affiliation(s)
- Sina Kaabipour
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| | - Shohreh Hemmati
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma, 74078, USA
| |
Collapse
|
31
|
Ricardo SIC, Anjos IIL, Monge N, Faustino CMC, Ribeiro IAC. A Glance at Antimicrobial Strategies to Prevent Catheter-Associated Medical Infections. ACS Infect Dis 2020; 6:3109-3130. [PMID: 33245664 DOI: 10.1021/acsinfecdis.0c00526] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Urinary and intravascular catheters are two of the most used invasive medical devices; however, microbial colonization of catheter surfaces is responsible for most healthcare-associated infections (HAIs). Several antimicrobial-coated catheters are available, but recurrent antibiotic therapy can decrease their potential activity against resistant bacterial strains. The aim of this Review is to question the actual effectiveness of currently used (coated) catheters and describe the progress and promise of alternative antimicrobial coatings. Different strategies have been reviewed with the common goal of preventing biofilm formation on catheters, including release-based approaches using antibiotics, antiseptics, nitric oxide, 5-fluorouracil, and silver as well as contact-killing approaches employing quaternary ammonium compounds, chitosan, antimicrobial peptides, and enzymes. All of these strategies have given proof of antimicrobial efficacy by modifying the physiology of pathogens or disrupting their structural integrity. The aim for synergistic approaches using multitarget processes and the combination of both antifouling and bactericidal properties holds potential for the near future. Despite intensive research in biofilm preventive strategies, laboratorial studies still present some limitations since experimental conditions usually are not the same and also differ from biological conditions encountered when the catheter is inserted in the human body. Consequently, in most cases, the efficacy data obtained from in vitro studies is not properly reflected in the clinical setting. Thus, further well-designed clinical trials and additional cytotoxicity studies are needed to prove the efficacy and safety of the developed antimicrobial strategies in the prevention of biofilm formation at catheter surfaces.
Collapse
Affiliation(s)
- Susana I. C. Ricardo
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Inês I. L. Anjos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Nuno Monge
- Centro Interdisciplinar de Estudos Educacionais (CIED), Escola Superior de Educação de Lisboa, Instituto Politécnico de Lisboa, Campus de Benfica do IPL, 1549-003 Lisboa, Portugal
| | - Célia M. C. Faustino
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Isabel A. C. Ribeiro
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
32
|
Shen Y, Wu Z, Tao J, Jia Z, Chen H, Liu S, Jiang J, Wang Z. Spraying Preparation of Eco-Friendly Superhydrophobic Coatings with Ultralow Water Adhesion for Effective Anticorrosion and Antipollution. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25484-25493. [PMID: 32406672 DOI: 10.1021/acsami.0c06074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sustainability, eco-efficiency, and green chemistry guide the development of new materials in various fields. Herein, we designed and fabricated bio-based superhydrophobic coatings by means of a facile spraying synthesized method. The as-prepared superhydrophobic coatings exhibited high water repellency with higher water contact angle being up to 156.9 ± 2.7° and a lower sliding angle of only 4.3 ± 0.6°. Also, the water adhesion on the superhydrophobic coatings was as low as 11 μN, which was far less than that (346 μN) of the normal polyurethane surfaces. The superhydrophobic properties still retained high stability under the conditions of soaking in acid solution (pH = 1) and alkaline solution (pH = 13). Meanwhile, the as-prepared bio-based superhydrophobic coatings were verified for effective corrosion and pollution protection ability. The electrochemical measurements showed excellent corrosion resistance with a higher corrosion voltage of -204.7 mV and lower corrosion current of 1.494 × 10-5 A/cm2. The corrosion protection efficiency reached a value of 95.2%, and meantime, the superhydrophobic coatings displayed higher antipollution performance without any stains when they were removed from the polluted liquids. On this basis, the underlying physical-chemical mechanisms clearly revealed that the surface micro-nanostructures could capture the continuous and stable air layer to segregate the corrosion and pollution media.
Collapse
Affiliation(s)
- Yizhou Shen
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Zhengwei Wu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Jie Tao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Zhenfeng Jia
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Haifeng Chen
- School of Engineering, Huzhou University, Huzhou Centre Hospital, Huzhou 313000, P. R. China
| | - Senyun Liu
- Key Laboratory of Icing and Anti/De-icing, China Aerodynamics Research and Development Center, Mianyang 621000, P. R. China
| | - Jiawei Jiang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Zhen Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| |
Collapse
|
33
|
Ahmadabadi HY, Yu K, Kizhakkedathu JN. Surface modification approaches for prevention of implant associated infections. Colloids Surf B Biointerfaces 2020; 193:111116. [PMID: 32447202 DOI: 10.1016/j.colsurfb.2020.111116] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023]
Abstract
In this highlight, we summarize the surface modification approaches for development of infection-resistant coatings for biomedical devices and implants. We discuss the relevant key and highly cited research that have been published over the last five years which report the generation of infection-resistant coatings. An important strategy utilized to prevent bacterial adhesion and biofilm formation on device/implant surface is anti-adhesive protein repellant polymeric coatings based on polymer brushes or highly hydrated hydrogel networks. Further, the attachment of antimicrobial agents that can efficiently kill bacteria on the surface while also prevent bacterial adhesion on the surface is also investigated. Other approaches include the incorporation of antimicrobial agents to the surface coating resulting in a depot of bactericides which can be released on-demand or with time to prevent bacterial colonization on the surface that kill the adhered bacteria on the surface to make surface infection resistant.
Collapse
Affiliation(s)
- Hossein Yazdani Ahmadabadi
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Kai Yu
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada; Department of Chemistry, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
34
|
Rajkumar D, Rubini D, Sudharsan M, Suresh D, Nithyanand P. Novel thiazolinyl-picolinamide based palladium(II) complex-impregnated urinary catheters quench the virulence and disintegrate the biofilms of uropathogens. BIOFOULING 2020; 36:351-367. [PMID: 32401555 DOI: 10.1080/08927014.2020.1765159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Pseudomonas aeruginosa and Serratia marcescens are prominent members belonging to the group of ESKAPE pathogens responsible for Urinary Tract Infections (UTI) and nosocomial infections. Both the pathogens regulate several virulence factors, including biofilm formation through quorum sensing (QS), an intercellular communication mechanism. The present study describes the anti-biofilm and QS quenching effect of thiazolinyl-picolinamide based palladium(II) complexes against P. aeruginosa and S. marcescens. Palladium(II) complexes showed quorum sensing inhibitory potential in inhibiting swarming motility behaviour, pyocyanin production and other QS mediated virulence factors in both P. aeruginosa and S. marcescens. In addition, the establishment of biofilms was prevented on palladium (II) coated catheters. Overall, the present study demonstrates that thiazolinyl-picolinamide based palladium (II) complexes will be a promising strategy to combat device-mediated UTI infections.
Collapse
Affiliation(s)
- Deeksha Rajkumar
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Tamil Nadu, India
| | - Durairajan Rubini
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Tamil Nadu, India
| | - M Sudharsan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - D Suresh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Tamil Nadu, India
| |
Collapse
|
35
|
Sidrim JJ, Amando BR, Gomes FI, do Amaral MS, de Sousa PC, Ocadaque CJ, Brilhante RS, A Cordeiro RD, Rocha MF, Scm Castelo-Branco DD. Chlorpromazine-impregnated catheters as a potential strategy to control biofilm-associated urinary tract infections. Future Microbiol 2020; 14:1023-1034. [PMID: 31469013 DOI: 10.2217/fmb-2019-0092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aim: This study proposes the impregnation of Foley catheters with chlorpromazine (CPZ) to control biofilm formation by Escherichia coli, Proteus mirabilis and Klebsiella pneumoniae. Materials & methods: The minimum inhibitory concentrations (MICs) for CPZ and the effect of CPZ on biofilm formation were assessed. Afterward, biofilm formation and the effect of ciprofloxacin and meropenem (at MIC) on mature biofilms grown on CPZ-impregnated catheters were evaluated. Results: CPZ MIC range was 39.06-625 mg/l. CPZ significantly reduced (p < 0.05) biofilm formation in vitro and on impregnated catheters. In addition, CPZ-impregnation potentiated the antibiofilm activity of ciprofloxacin and meropenem. Conclusion: These findings bring perspectives for the use of CPZ as an adjuvant for preventing and treating catheter-associated urinary tract infections.
Collapse
Affiliation(s)
- José Jc Sidrim
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Cel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Bruno R Amando
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Cel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Francisco If Gomes
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Cel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Marilia Smg do Amaral
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Cel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Paulo Cp de Sousa
- Walter Cantídio University Hospital, Rua Capitão Francisco Pedro, 1290 - Rodolfo Teófilo, Fortaleza, CE 60430-372, Brazil
| | - Crister J Ocadaque
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Cel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Raimunda Sn Brilhante
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Cel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Rossana de A Cordeiro
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Cel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| | - Marcos Fg Rocha
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Cel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil.,College of Veterinary, State University of Ceará. Av. Dr. Silas Munguba, 1700, Campus do Itaperi - CEP 60714-903, Fortaleza, Ceará, Brazil
| | - Débora de Scm Castelo-Branco
- Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Specialized Medical Mycology Center, Federal University of Ceará, Rua Cel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil.,Department of Pathology & Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Rua Cel, Nunes de Melo, 1315 - Rodolfo Teófilo - CEP 60430-275, Fortaleza, Ceará, Brazil
| |
Collapse
|
36
|
Tian J, Liu Y, Miao S, Yang Q, Hu X, Han Q, Xue L, Yang P. Amyloid-like protein aggregates combining antifouling with antibacterial activity. Biomater Sci 2020; 8:6903-6911. [DOI: 10.1039/d0bm00760a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new class of biopolymer coating based on amyloid-like protein aggregates is reported to combine both antifouling and antibacterial activity.
Collapse
Affiliation(s)
- Juanhua Tian
- Department of Urology
- The Second Affiliated Hospital of Xi'an Jiaotong University
- Xi'an 710004
- China
| | - Yongchun Liu
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
| | - Shuting Miao
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
| | - Qingmin Yang
- School of Chemistry and Chemical Engineering
- Northwestern Polytechnical University
- Xi'an 710072
- China
| | - Xinyi Hu
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
| | - Qian Han
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
| | - Li Xue
- Department of Urology
- The Second Affiliated Hospital of Xi'an Jiaotong University
- Xi'an 710004
- China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
| |
Collapse
|
37
|
Zhou Q, Wang T, Wang C, Wang Z, Yang Y, Li P, Cai R, Sun M, Yuan H, Nie L. Synthesis and characterization of silver nanoparticles-doped hydroxyapatite/alginate microparticles with promising cytocompatibility and antibacterial properties. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124081] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Yassin MA, Elkhooly TA, Elsherbiny SM, Reicha FM, Shokeir AA. Facile coating of urinary catheter with bio-inspired antibacterial coating. Heliyon 2019; 5:e02986. [PMID: 31886428 PMCID: PMC6921108 DOI: 10.1016/j.heliyon.2019.e02986] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/19/2019] [Accepted: 12/02/2019] [Indexed: 01/08/2023] Open
Abstract
Formation of bacterial biofilm on indwelling urinary catheters usually causes catheter-associated urinary tract infections (CAUTIs) that represent high percent of nosocomial infections worldwide. Therefore, coating urinary catheter with antibacterial and antifouling coating using facile technique is in great demand. In this study, commercial urinary catheter was coated with a layer of the self-polymerized polydopamine which acts as active platform for the in situ formation of silver nanoparticle (AgNPs) on catheter surface. The formed coating was intensively characterized using spectroscopic and microscopic techniques. The coated catheter has the potential to release silver ion in a sustained manner with a concentration of about 2-4 μg ml-1. Disk diffusion test and colony forming unites assay verified the significant bactericidal potential of the AgNPs coated catheter against both gram-positive and gram-negative bacteria as a consequence of silver ion release. In contrast to commercial catheter, the AgNPs coated catheter prevented the adherence of bacterial cells and biofilm formation on their surfaces. Interestingly, scanning electron microscope investigations showed that AgNPs coated catheter possess greater antifouling potential against gram-positive bacteria than against gram-negative bacteria. Overall, the remarkable antibacterial and antifouling potential of the coated catheter supported the use of such facile approach for coating of different medical devices for the prevention of nosocomial infections.
Collapse
Affiliation(s)
- Mohamed A. Yassin
- Packaging Materials Department, National Research Centre, Giza, Egypt
- Advanced Materials and Nanotechnology Lab., Center of Excellence, National Research Centre, Giza, Egypt
| | - Tarek A. Elkhooly
- Refractories, Ceramics and Building Materials Department, National Research Centre, Giza, Egypt
| | - Shereen M. Elsherbiny
- Biological Advanced Materials, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Fikry M. Reicha
- Biological Advanced Materials, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ahmed A. Shokeir
- Center of Excellence of Genome and Cancer Research, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| |
Collapse
|
39
|
Patel K, Kushwaha P, Kumar S, Kumar R. Lysine and α-Aminoisobutyric Acid Conjugated Bioinspired Polydopamine Surfaces for the Enhanced Antibacterial Performance of the Foley Catheter. ACS APPLIED BIO MATERIALS 2019; 2:5799-5809. [PMID: 35021573 DOI: 10.1021/acsabm.9b00794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Khushbu Patel
- Department of Applied Chemistry, S.V. National Institute of Technology, Surat-395007, Gujarat, India
| | - Prem Kushwaha
- Centre for Biochemistry and Microbial Science, School of Basic and Applied Sciences, Central University of Punjab, Bathinda-151001, Punjab, India
| | - Shashank Kumar
- Centre for Biochemistry and Microbial Science, School of Basic and Applied Sciences, Central University of Punjab, Bathinda-151001, Punjab, India
| | - Rajender Kumar
- Department of Applied Chemistry, S.V. National Institute of Technology, Surat-395007, Gujarat, India
| |
Collapse
|
40
|
Majeed A, Sagar F, Latif A, Hassan H, Iftikhar A, Darouiche RO, Mohajer MA. Does antimicrobial coating and impregnation of urinary catheters prevent catheter-associated urinary tract infection? A review of clinical and preclinical studies. Expert Rev Med Devices 2019; 16:809-820. [PMID: 31478395 DOI: 10.1080/17434440.2019.1661774] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Catheter-associated urinary tract infection (CAUTI) is one of the most common nosocomial infections in hospitals, accounting for 36% of all health care-associated infections. Areas covered: We aimed to address the potential impact of antimicrobial coating of catheter materials for the prevention of CAUTI and to analyze the progress made in this field. We conducted literature searches in the PubMed, Embase, and Cochrane Library databases, and found 578 articles. Data from 60 articles in either the preclinical or clinical stage were analyzed in this expert review. Expert opinion: The literature review revealed many promising methods for preventing CAUTI. Recent studies have suggested the combination of silver-based products and antibiotics, owing to their synergistic effect, to help address the problem of antibiotic resistance. Other coating materials that have been tested include nitric oxide, chlorhexidine, antimicrobial peptides, enzymes, and bacteriophages. Because of heterogeneity among studies, it is difficult to reliably comment on the clinical efficacy of different coating materials. Future research should focus on double-blind randomized clinical trials for evaluating the role of these potential coating agents.
Collapse
Affiliation(s)
- Aneela Majeed
- Division of Infectious Diseases, Department of Medicine, Stanford University , Stanford , CA , USA
| | - Fnu Sagar
- Department of Medicine, University of Arizona , Tucson , AZ , USA
| | - Azka Latif
- Department of Medicine, Creighton University , Omaha , NE , USA
| | - Hamza Hassan
- Department of Medicine, Rochester General Hospital , Rochester , NY , USA
| | - Ahmad Iftikhar
- Department of Medicine, University of Arizona , Tucson , AZ , USA
| | - Rabih O Darouiche
- Section of Infectious Diseases, Michael E. DeBakey Veterans Affairs Medical Center Baylor College of Medicine , Houston , TX , USA.,Section of Infectious Diseases, Baylor College of Medicine , Houston , TX , USA
| | - Mayar Al Mohajer
- Section of Infectious Diseases, Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
41
|
Wang L, Zhang S, Keatch R, Corner G, Nabi G, Murdoch S, Davidson F, Zhao Q. In-vitro antibacterial and anti-encrustation performance of silver-polytetrafluoroethylene nanocomposite coated urinary catheters. J Hosp Infect 2019; 103:55-63. [DOI: 10.1016/j.jhin.2019.02.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/16/2019] [Indexed: 10/27/2022]
|
42
|
Alkekhia D, Shukla A. Influence of poly‐
l
‐lysine molecular weight on antibacterial efficacy in polymer multilayer films. J Biomed Mater Res A 2019; 107:1324-1339. [DOI: 10.1002/jbm.a.36645] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/10/2019] [Accepted: 01/28/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Dahlia Alkekhia
- School of Engineering Brown University Providence Rhode Island
- Center for Biomedical Engineering Brown University Providence Rhode Island
- Institute for Molecular and Nanoscale Innovation Brown University Providence Rhode Island
| | - Anita Shukla
- School of Engineering Brown University Providence Rhode Island
- Center for Biomedical Engineering Brown University Providence Rhode Island
- Institute for Molecular and Nanoscale Innovation Brown University Providence Rhode Island
| |
Collapse
|
43
|
Liu Q, Liu L. Novel Light-Responsive Hydrogels with Antimicrobial and Antifouling Capabilities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1450-1457. [PMID: 30056704 DOI: 10.1021/acs.langmuir.8b01663] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Smart materials with both bactericidal and bacteria-resistant functions are promising for combating the infection concern of medical devices. Current work mostly utilizes hydrolysis to switch materials from antimicrobial to antifouling forms by incubating materials in aqueous solutions for hours to days. In this work, a new photoresponsive poly[2-((4,5-dimethoxy-2-nitrobenzyl)oxy)- N-(2-(methacryloyloxy)ethyl)- N, N-dimethyl-2-oxoethan-1-aminium] (polyCBNA) hydrogel was developed, incorporating the photolabile 4,5-dimethoxy-2-nitrobenzyl and cationic quaternary ammonium groups. The photolabile groups were readily cleaved from the hydrogel shortly upon UV irradiation at 365 nm (a long wavelength widely used for biomedical applications), leading to polymer surface charge switching from cationic to zwitterionic form. Protein adsorbed significantly on polyCBNA but easily desorbed from surfaces after UV irradiation. The cationic hydrogel as a precursor was shown to effectively kill the attached bacteria, and then quickly switched to zwitterionic antifouling form via photolysis, which released the attached bacteria from surfaces and prevented further bacterial attachment. Moreover, the adhered endothelial cells were easily detached from polyCBNA surfaces triggered by light, providing a facile and less destructive nonenzymatic approach to harvest cells. This smart photoresponsive polyCBNA polymer, with integrated antimicrobial and antifouling properties, holds great potential in biomedical applications such as self-sterilizing and self-cleaning coatings for implants, cell harvesting, and cell patterning.
Collapse
Affiliation(s)
- Qingsheng Liu
- Department of Chemical and Biomolecular Engineering , The University of Akron , Akron , Ohio 44325 , United States
| | - Lingyun Liu
- Department of Chemical and Biomolecular Engineering , The University of Akron , Akron , Ohio 44325 , United States
| |
Collapse
|
44
|
Xin X, Li P, Zhu Y, Shi L, Yuan J, Shen J. Mussel-Inspired Surface Functionalization of PET with Zwitterions and Silver Nanoparticles for the Dual-Enhanced Antifouling and Antibacterial Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1788-1797. [PMID: 30089363 DOI: 10.1021/acs.langmuir.8b01603] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Herein, we designed and constructed a dual functional surface with antimicrobial and antifouling abilities to prevent protein and bacterial attachment that are significant challenges in biomedical devices. Primary amino-group-capped sulfobetaine of DMMSA was synthesized and then grafted onto polydopamine pretreated PET sheets via click chemistry. The sheets were subsequently immersed into silver ion solution, in which the absorbed silver ions were reduced to silver nanoparticles (AgNPs) in situ by a polydopamine layer. The antifouling assays demonstrated that the resultant PET/DMMSA/AgNPs sheets exhibited great antifouling performances against bovine serum albumin (BSA), bovine fibrinogen (BFG), platelets, and bacteria, the critical proteins/microorganisms leading to implant failure. The antibacterial data suggested that the sheets had dual functions as inhibitors of bacterial growth and bactericide and could efficiently delay the biofilm formation. This repelling and killing approach is green and simple, with potential biomedical applications.
Collapse
Affiliation(s)
- Xuanxuan Xin
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Pengfei Li
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Yinyan Zhu
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Leigang Shi
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Jiang Yuan
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Jian Shen
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| |
Collapse
|
45
|
Ke D, Vu AA, Bandyopadhyay A, Bose S. Compositionally graded doped hydroxyapatite coating on titanium using laser and plasma spray deposition for bone implants. Acta Biomater 2019; 84:414-423. [PMID: 30500448 PMCID: PMC6485960 DOI: 10.1016/j.actbio.2018.11.041] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
Abstract
Plasma sprayed hydroxyapatite (HA) coating is known to improve the osteoconductivity of metallic implants. However, the adhesive bond strength of the coating is affected due to a mismatch in coefficients of thermal expansion (CTE) between the metal and HA ceramic. In this study, a gradient HA coating was prepared on Ti6Al4V by laser engineered net shaping (LENS™) followed by plasma spray deposition. In addition, 1 wt% MgO and 2 wt% Ag2O were mixed with HA to improve the biological and antibacterial properties of the coated implant. Results showed that the presence of an interfacial layer by LENS™ enhanced adhesive bond strength from 26 ± 2 MPa for just plasma spray coating to 39 ± 4 MPa for LENS™ and plasma spray coatings. Presence of MgO and Ag2O did not influence the adhesive bond strength. Also, Ag+ ions release dropped by 70% less with a gradient HA LENS™ layer due to enhanced crystallization of the HA layer. In vitro human osteoblast cell culture revealed presence of Ag2O had no deleterious effect on proliferation and differentiation when compared to pure HA as control and provided antibacterial properties against E. coli and S. aureus bacterial strands. This study presents an innovative way to improve interfacial mechanical and antibacterial properties of plasma sprayed HA coating for load-bearing orthopedic as well as dental implants. STATEMENT OF SIGNIFICANCE: Implants are commonly composed of metals that lack osteoconductivity. Osteoconductivity is a property where bone grows on the surface meaning the material is compatible with the surrounding bone tissue. Plasma sprayed hydroxyapatite (HA) coating improves the osteoconductivity of metallic implants, however, the adhesive bond strength can be weak. This study incorporates a gradient HA coating by using an additive manufacturing technique, laser engineered net shaping (LENS™), followed by plasma spray deposition to enhance the adhesive bond strength by incorporating a thermal barrier. The proposed system has not been well studied in the current literature and the results presented bring forth an innovative way to improve the interfacial mechanical and antibacterial properties of plasma sprayed HA coating for load-bearing orthopedic implants.
Collapse
Affiliation(s)
- Dongxu Ke
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA
| | - Ashley A Vu
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA
| | - Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA.
| |
Collapse
|
46
|
Mitra D, Li M, Kang ET, Neoh KG. Transparent Copper-Based Antibacterial Coatings with Enhanced Efficacy against Pseudomonas aeruginosa. ACS APPLIED MATERIALS & INTERFACES 2019; 11:73-83. [PMID: 30525426 DOI: 10.1021/acsami.8b09640] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Bacterial surface contamination is a major cause of hospital-associated infections. Antibacterial coatings can play an important role in reducing bacterial transmission via inanimate surfaces in healthcare settings. In this work, transparent copper-based antibacterial coatings were fabricated on commercial poly(vinyl fluoride) and stainless steel. Acrylated quaternized chitosan and ethylenediaminetetraacetic acid were covalently grafted on the substrate for complexation with copper ions. The number of viable Staphylococcus aureus in a droplet [containing ∼104 colony forming units (CFU)], deposited on the copper-containing coating decreased by ∼96% within 60 min at 25 °C. With Pseudomonas aeruginosa, one of the most virulent and hardest to kill bacteria, no CFU could be observed within the same time span (killing efficacy >99.8% based on the detection limit). An increase in copper release from the coating was observed in the presence of P. aeruginosa, which was postulated to be due to the proteolytic activity of P. aeruginosa. The higher efficacy of the coating against P. aeruginosa compared to S. aureus is thus attributed to this increased copper release from the coating, which resulted in extensive bacterial membrane damage and death. The copper-containing coating on poly(vinyl fluoride) retained its antibacterial efficacy after 100 wipes with a water-wetted cloth or isopropanol wipes, demonstrating its durability and long-term efficacy. The coating did not exhibit significant cytotoxicity toward mammalian fibroblasts, further demonstrating its potential for mitigating bacterial transmission in a clinical setting.
Collapse
Affiliation(s)
- Debirupa Mitra
- Department of Chemical and Biomolecular Engineering , National University of Singapore , Kent Ridge, 117576 , Singapore
| | - Min Li
- Department of Chemical and Biomolecular Engineering , National University of Singapore , Kent Ridge, 117576 , Singapore
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering , National University of Singapore , Kent Ridge, 117576 , Singapore
| | - Koon Gee Neoh
- Department of Chemical and Biomolecular Engineering , National University of Singapore , Kent Ridge, 117576 , Singapore
| |
Collapse
|
47
|
Cardona A, Iacovacci V, Mazzocchi T, Menciassi A, Ricotti L. Novel Nanostructured Coating on PDMS Substrates Featuring High Resistance to Urine. ACS APPLIED BIO MATERIALS 2018; 2:255-265. [DOI: 10.1021/acsabm.8b00586] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Angelo Cardona
- Scuola Superiore Sant’anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera (PI), Italy
| | - Veronica Iacovacci
- Scuola Superiore Sant’anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera (PI), Italy
| | - Tommaso Mazzocchi
- Scuola Superiore Sant’anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera (PI), Italy
| | - Arianna Menciassi
- Scuola Superiore Sant’anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera (PI), Italy
| | - Leonardo Ricotti
- Scuola Superiore Sant’anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera (PI), Italy
| |
Collapse
|
48
|
Zhu Z, Wang Z, Li S, Yuan X. Antimicrobial strategies for urinary catheters. J Biomed Mater Res A 2018; 107:445-467. [PMID: 30468560 DOI: 10.1002/jbm.a.36561] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/03/2018] [Accepted: 10/04/2018] [Indexed: 01/12/2023]
Abstract
Over 75% of hospital-acquired or nosocomial urinary tract infections are initiated by urinary catheters, which are used during the treatment of 16% of hospitalized patients. Taking the United States as an example, the costs of catheter-associated urinary tract infections (CAUTI) are in excess of $451 million dollars/year. The biofilm formation by pathogenic microbes that protects pathogens from host immune defense and antimicrobial agents is the leading cause for CAUTI. Thus, tremendous efforts have been devoted to antimicrobial coating for urinary catheters in the past few decades, and it has been demonstrated to be one of the most direct and efficient strategies to reduce infections. In this article, we briefly summarize the current methods for preparation of antimicrobial coatings based on different stages in the biofilm formation, highlight recent progress in the urinary catheter coating material design and selection, discuss approaches to improving their long-term antimicrobial efficacy, biocompatibility, multidrug resistance and recurrent infections, and finally outline future requirements and prospects in antimicrobial coating material design. The scope of the works surveyed is confined to antimicrobial urinary catheters. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 445-467, 2019.
Collapse
Affiliation(s)
- Zhiling Zhu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Ziping Wang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Weifang, Shandong 262700, China
| | - Siheng Li
- Department of Chemistry, University of Houston, Houston, Texas 77204, USA
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| |
Collapse
|
49
|
Cortese YJ, Wagner VE, Tierney M, Devine D, Fogarty A. Review of Catheter-Associated Urinary Tract Infections and In Vitro Urinary Tract Models. JOURNAL OF HEALTHCARE ENGINEERING 2018; 2018:2986742. [PMID: 30405898 PMCID: PMC6204192 DOI: 10.1155/2018/2986742] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/01/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022]
Abstract
Catheter-associated urinary tract infections (CAUTIs) are one of the most common nosocomial infections and can lead to numerous medical complications from the mild catheter encrustation and bladder stones to the severe septicaemia, endotoxic shock, and pyelonephritis. Catheters are one of the most commonly used medical devices in the world and can be characterised as either indwelling (ID) or intermittent catheters (IC). The primary challenges in the use of IDs are biofilm formation and encrustation. ICs are increasingly seen as a solution to the complications caused by IDs as ICs pose no risk of biofilm formation due to their short time in the body and a lower risk of bladder stone formation. Research on IDs has focused on the use of antimicrobial and antibiofilm compounds, while research on ICs has focused on preventing bacteria entering the urinary tract or coming into contact with the catheter. There is an urgent need for in vitro urinary tract models to facilitate faster research and development for CAUTI prevention. There are currently three urinary tract models that test IDs; however, there is only a single very limited model for testing ICs. There is currently no standardised urinary tract model to test the efficacies of ICs.
Collapse
Affiliation(s)
- Yvonne J. Cortese
- Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | | | | | - Declan Devine
- Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - Andrew Fogarty
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| |
Collapse
|
50
|
Bhandari TR, Shahi S, Mahaseth N. Massive encrustations as a consequence of longterm indwelling urethral catheter: A rare case report. Ann Med Surg (Lond) 2018; 34:14-16. [PMID: 30186600 PMCID: PMC6123059 DOI: 10.1016/j.amsu.2018.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/21/2018] [Accepted: 08/08/2018] [Indexed: 11/30/2022] Open
Abstract
Longterm indwelling urethral catheter can cause several complications such as lower urinary tract infections, tissue damage, pain, hemorrhage and encrustation of catheter leading to blockage. A 55- year old male presented with suprapubic pain for three months owing to poorly draining Foley catheter. He had undergone surgery for bladder calculi two and half a years back. He had been discharged with Foley catheter. He did not show up at the hospital for two and half years. The catheter was never changed during this period. Plain X-ray abdomen revealed a large encrustation with radiopacity surrounding the foley's bulb. Open suprapubic cystostomy was performed. The intact Foley catheter with encrusted bulb was removed. His postoperative period was uneventful. Surgical removal is the only treatment of choice for unusual massive encrustations in long-term indwelling urethral catheter. Minimally invasive technique is getting popularity, however we performed open cystostomy and removal due to the lack of expertise and instruments in our hospital setting. Catheterization under aseptic condition, frequent catheter change, early treatment of urinary infection and proper patient education on catheter hygiene are few methods that can reduce the complications of longterm indwelling urinary catheter.
Collapse
Affiliation(s)
- Tika Ram Bhandari
- Department of General Surgery, Universal College of Medical Sciences, Bhairahawa, Nepal
| | - Sudha Shahi
- Department of ENT, National Academy of Medical Sciences, Kathmandu, Nepal
| | - Naveen Mahaseth
- Department of General Surgery, Universal College of Medical Sciences, Bhairahawa, Nepal
| |
Collapse
|