1
|
Snauwaert E, De Buyser S, Van Biesen W, Raes A, Glorieux G, Collard L, Van Hoeck K, Van Dyck M, Godefroid N, Walle JV, Eloot S. Indoxyl Sulfate Contributes to Impaired Height Velocity in (Pre)School Children. Kidney Int Rep 2024; 9:1674-1683. [PMID: 38899199 PMCID: PMC11184389 DOI: 10.1016/j.ekir.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/27/2024] [Accepted: 03/18/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Growth failure is considered the most important clinical outcome parameter in childhood chronic kidney disease (CKD). Central to the pathophysiology of growth failure is the presence of a chronic proinflammatory state, presumed to be partly driven by the accumulation of uremic toxins. In this study, we assessed the association between uremic toxin concentrations and height velocity in a longitudinal multicentric prospective pediatric CKD cohort of (pre)school-aged children and children during pubertal stages. Methods In a prospective, multicentric observational study, a selection of uremic toxin levels of children (aged 0-18 years) with CKD stage 1 to 5D was assessed every 3 months (maximum 2 years) along with clinical growth parameters. Linear mixed models with a random slope for age and a random intercept for child were fitted for height (in cm and SD scores [SDS]). A piecewise linear association between age and height was assumed. Results Data analysis included data from 560 visits of 81 children (median age 9.4 years; 2/3 male). In (pre)school aged children (aged 2-12 years), a 10% increase in concurrent indoxyl sulfate (IxS, total) concentration resulted in an estimated mean height velocity decrease of 0.002 SDS/yr (P < 0.05), given that CKD stage, growth hormone (GH), bicarbonate concentration, and dietary protein intake were held constant. No significant association with height velocity was found in children during pubertal stages (aged >12 years). Conclusion The present study demonstrated that, especially IxS contributes to a lower height velocity in (pre)school children, whereas we could not find a role for uremic toxins with height velocity during pubertal stages.
Collapse
Affiliation(s)
- Evelien Snauwaert
- Department of Pediatric Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Stefanie De Buyser
- Biostatistics Unit, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Wim Van Biesen
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Ann Raes
- Department of Pediatric Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Griet Glorieux
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Laure Collard
- Department of Pediatric Nephrology, CHC Liège, Ghent, Belgium
| | - Koen Van Hoeck
- Department of Pediatric Nephrology, Antwerp University Hospital, Antwerp, Belgium
| | - Maria Van Dyck
- Department of Pediatric Nephrology, University Hospital Leuven, Leuven, Belgium
| | - Nathalie Godefroid
- Department of Pediatric Nephrology, University Hospital Saint-Luc, Brussels, Belgium
| | - Johan Vande Walle
- Department of Pediatric Nephrology, Ghent University Hospital, Ghent, Belgium
| | - Sunny Eloot
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
2
|
Roles of Local Soluble Factors in Maintaining the Growth Plate: An Update. Genes (Basel) 2023; 14:genes14030534. [PMID: 36980807 PMCID: PMC10048135 DOI: 10.3390/genes14030534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
The growth plate is a cartilaginous tissue found at the ends of growing long bones, which contributes to the lengthening of bones during development. This unique structure contains at least three distinctive layers, including resting, proliferative, and hypertrophic chondrocyte zones, maintained by a complex regulatory network. Due to its soft tissue nature, the growth plate is the most susceptible tissue of the growing skeleton to injury in childhood. Although most growth plate damage in fractures can heal, some damage can result in growth arrest or disorder, impairing leg length and resulting in deformity. In this review, we re-visit previously established knowledge about the regulatory network that maintains the growth plate and integrate current research displaying the most recent progress. Next, we highlight local secretary factors, such as Wnt, Indian hedgehog (Ihh), and parathyroid hormone-related peptide (PTHrP), and dissect their roles and interactions in maintaining cell function and phenotype in different zones. Lastly, we discuss future research topics that can further our understanding of this unique tissue. Given the unmet need to engineer the growth plate, we also discuss the potential of creating particular patterns of soluble factors and generating them in vitro.
Collapse
|
3
|
Samvelyan HJ, Huesa C, Cui L, Farquharson C, Staines KA. The role of accelerated growth plate fusion in the absence of SOCS2 on osteoarthritis vulnerability. Bone Joint Res 2022; 11:162-170. [PMID: 35272487 PMCID: PMC8962856 DOI: 10.1302/2046-3758.113.bjr-2021-0259.r1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AIMS Osteoarthritis (OA) is the most prevalent systemic musculoskeletal disorder, characterized by articular cartilage degeneration and subchondral bone (SCB) sclerosis. Here, we sought to examine the contribution of accelerated growth to OA development using a murine model of excessive longitudinal growth. Suppressor of cytokine signalling 2 (SOCS2) is a negative regulator of growth hormone (GH) signalling, thus mice deficient in SOCS2 (Socs2 -/-) display accelerated bone growth. METHODS We examined vulnerability of Socs2 -/- mice to OA following surgical induction of disease (destabilization of the medial meniscus (DMM)), and with ageing, by histology and micro-CT. RESULTS We observed a significant increase in mean number (wild-type (WT) DMM: 532 (SD 56); WT sham: 495 (SD 45); knockout (KO) DMM: 169 (SD 49); KO sham: 187 (SD 56); p < 0.001) and density (WT DMM: 2.2 (SD 0.9); WT sham: 1.2 (SD 0.5); KO DMM: 13.0 (SD 0.5); KO sham: 14.4 (SD 0.7)) of growth plate bridges in Socs2 -/- in comparison with WT. Histological examination of WT and Socs2 -/- knees revealed articular cartilage damage with DMM in comparison to sham. Articular cartilage lesion severity scores (mean and maximum) were similar in WT and Socs2 -/- mice with either DMM, or with ageing. Micro-CT analysis revealed significant decreases in SCB thickness, epiphyseal trabecular number, and thickness in the medial compartment of Socs2 -/-, in comparison with WT (p < 0.001). DMM had no effect on the SCB thickness in comparison with sham in either genotype. CONCLUSION Together, these data suggest that enhanced GH signalling through SOCS2 deletion accelerates growth plate fusion, however this has no effect on OA vulnerability in this model. Cite this article: Bone Joint Res 2022;11(3):162-170.
Collapse
Affiliation(s)
- Hasmik Jasmine Samvelyan
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
- Centre for Stress and Age-Related Disease, University of Brighton, Brighton, UK
- The Faculty of Health, Education, Medicine and Social Care, School of Medicine, Anglia Ruskin University, Chelmsford, UK
| | - Carmen Huesa
- Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Lin Cui
- The Roslin Institute, The University of Edinburgh, Edinburgh, UK
| | | | - Katherine Ann Staines
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
- Centre for Stress and Age-Related Disease, University of Brighton, Brighton, UK
| |
Collapse
|
4
|
Wu RW, Lian WS, Chen YS, Kuo CW, Ke HC, Hsieh CK, Wang SY, Ko JY, Wang FS. MicroRNA-29a Counteracts Glucocorticoid Induction of Bone Loss through Repressing TNFSF13b Modulation of Osteoclastogenesis. Int J Mol Sci 2019; 20:ijms20205141. [PMID: 31627291 PMCID: PMC6829322 DOI: 10.3390/ijms20205141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 01/05/2023] Open
Abstract
Glucocorticoid excess escalates osteoclastic resorption, accelerating bone mass loss and microarchitecture damage, which ramps up osteoporosis development. MicroRNA-29a (miR-29a) regulates osteoblast and chondrocyte function; however, the action of miR-29a to osteoclastic activity in the glucocorticoid-induced osteoporotic bone remains elusive. In this study, we showed that transgenic mice overexpressing an miR-29a precursor driven by phosphoglycerate kinase exhibited a minor response to glucocorticoid-mediated bone mineral density loss, cortical bone porosity and overproduction of serum resorption markers C-teleopeptide of type I collagen and tartrate-resistant acid phosphatase 5b levels. miR-29a overexpression compromised trabecular bone erosion and excessive osteoclast number histopathology in glucocorticoid-treated skeletal tissue. Ex vivo, the glucocorticoid-provoked osteoblast formation and osteoclastogenic markers (NFATc1, MMP9, V-ATPase, carbonic anhydrase II and cathepsin K) along with F-actin ring development and pit formation of primary bone-marrow macrophages were downregulated in miR-29a transgenic mice. Mechanistically, tumor necrosis factor superfamily member 13b (TNFSF13b) participated in the glucocorticoid-induced osteoclast formation. miR-29a decreased the suppressor of cytokine signaling 2 (SOCS2) enrichment in the TNFSF13b promoter and downregulated the cytokine production. In vitro, forced miR-29a expression and SOCS2 knockdown attenuated the glucocorticoid-induced TNFSF13b expression in osteoblasts. miR-29a wards off glucocorticoid-mediated excessive bone resorption by repressing the TNFSF13b modulation of osteoclastic activity. This study sheds new light onto the immune-regulatory actions of miR-29a protection against glucocorticoid-mediated osteoporosis.
Collapse
Affiliation(s)
- Re-Wen Wu
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostic, Kaohisung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (C.-W.K.); (H.-C.K.); (C.-K.H.)
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Yu-Shan Chen
- Core Laboratory for Phenomics and Diagnostic, Kaohisung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (C.-W.K.); (H.-C.K.); (C.-K.H.)
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Chung-Wen Kuo
- Core Laboratory for Phenomics and Diagnostic, Kaohisung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (C.-W.K.); (H.-C.K.); (C.-K.H.)
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Huei-Ching Ke
- Core Laboratory for Phenomics and Diagnostic, Kaohisung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (C.-W.K.); (H.-C.K.); (C.-K.H.)
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Chin-Kuei Hsieh
- Core Laboratory for Phenomics and Diagnostic, Kaohisung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (C.-W.K.); (H.-C.K.); (C.-K.H.)
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Shao-Yu Wang
- Core Laboratory for Phenomics and Diagnostic, Kaohisung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (C.-W.K.); (H.-C.K.); (C.-K.H.)
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Jih-Yang Ko
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- Correspondence: (J.-Y.K.); (F.-S.W.); Tel.: +886-7-731-7123 (ext. 6406) (F.-S.W.)
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostic, Kaohisung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (Y.-S.C.); (C.-W.K.); (H.-C.K.); (C.-K.H.)
- Department of Medical Research, Kaohisung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Correspondence: (J.-Y.K.); (F.-S.W.); Tel.: +886-7-731-7123 (ext. 6406) (F.-S.W.)
| |
Collapse
|
5
|
Xue H, Tao D, Weng Y, Fan Q, Zhou S, Zhang R, Zhang H, Yue R, Wang X, Wang Z, Sun Y. Glycosylation of dentin matrix protein 1 is critical for fracture healing via promoting chondrogenesis. Front Med 2019; 13:575-589. [DOI: 10.1007/s11684-019-0693-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/25/2019] [Indexed: 10/26/2022]
|
6
|
Tajan M, Pernin-Grandjean J, Beton N, Gennero I, Capilla F, Neel BG, Araki T, Valet P, Tauber M, Salles JP, Yart A, Edouard T. Noonan syndrome-causing SHP2 mutants impair ERK-dependent chondrocyte differentiation during endochondral bone growth. Hum Mol Genet 2019; 27:2276-2289. [PMID: 29659837 DOI: 10.1093/hmg/ddy133] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/09/2018] [Indexed: 01/30/2023] Open
Abstract
Growth retardation is a constant feature of Noonan syndrome (NS) but its physiopathology remains poorly understood. We previously reported that hyperactive NS-causing SHP2 mutants impair the systemic production of insulin-like growth factor 1 (IGF1) through hyperactivation of the RAS/extracellular signal-regulated kinases (ERK) signalling pathway. Besides endocrine defects, a direct effect of these mutants on growth plate has not been explored, although recent studies have revealed an important physiological role for SHP2 in endochondral bone growth. We demonstrated that growth plate length was reduced in NS mice, mostly due to a shortening of the hypertrophic zone and to a lesser extent of the proliferating zone. These histological features were correlated with decreased expression of early chondrocyte differentiation markers, and with reduced alkaline phosphatase staining and activity, in NS murine primary chondrocytes. Although IGF1 treatment improved growth of NS mice, it did not fully reverse growth plate abnormalities, notably the decreased hypertrophic zone. In contrast, we documented a role of RAS/ERK hyperactivation at the growth plate level since 1) NS-causing SHP2 mutants enhance RAS/ERK activation in chondrocytes in vivo (NS mice) and in vitro (ATDC5 cells) and 2) inhibition of RAS/ERK hyperactivation by U0126 treatment alleviated growth plate abnormalities and enhanced chondrocyte differentiation. Similar effects were obtained by chronic treatment of NS mice with statins. In conclusion, we demonstrated that hyperactive NS-causing SHP2 mutants impair chondrocyte differentiation during endochondral bone growth through a local hyperactivation of the RAS/ERK signalling pathway, and that statin treatment may be a possible therapeutic approach in NS.
Collapse
Affiliation(s)
- Mylène Tajan
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC)
| | - Julie Pernin-Grandjean
- INSERM UMR 1043, Centre of Pathophysiology of Toulouse Purpan (CPTP), University of Toulouse Paul Sabatier, Toulouse, France
| | - Nicolas Beton
- INSERM UMR 1043, Centre of Pathophysiology of Toulouse Purpan (CPTP), University of Toulouse Paul Sabatier, Toulouse, France
| | - Isabelle Gennero
- INSERM UMR 1043, Centre of Pathophysiology of Toulouse Purpan (CPTP), University of Toulouse Paul Sabatier, Toulouse, France
| | - Florence Capilla
- INSERM, US006, ANEXPLO/CREFRE, Histopathology Unit, Purpan Hospital, Toulouse, France
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, NYU-Langone Medical Center, NY 10016, USA
| | - Toshiyuki Araki
- Laura and Isaac Perlmutter Cancer Center, NYU-Langone Medical Center, NY 10016, USA
| | - Philippe Valet
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC)
| | - Maithé Tauber
- INSERM UMR 1043, Centre of Pathophysiology of Toulouse Purpan (CPTP), University of Toulouse Paul Sabatier, Toulouse, France.,Pediatric Department, Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Jean-Pierre Salles
- INSERM UMR 1043, Centre of Pathophysiology of Toulouse Purpan (CPTP), University of Toulouse Paul Sabatier, Toulouse, France.,Pediatric Department, Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Armelle Yart
- INSERM UMR 1048, Institute of Cardiovascular and Metabolic Diseases (I2MC)
| | - Thomas Edouard
- INSERM UMR 1043, Centre of Pathophysiology of Toulouse Purpan (CPTP), University of Toulouse Paul Sabatier, Toulouse, France.,Pediatric Department, Endocrine, Bone Diseases, and Genetics Unit, Children's Hospital, Toulouse University Hospital, Toulouse, France
| |
Collapse
|
7
|
Abstract
The ex vivo organ culture of bone provides many of the advantages of both the whole organism and isolated cell strategies and can deliver valuable insight into the network of processes and activities that are fundamental to bone and cartilage biology. Through maintaining the bone and/or cartilage cells in their native environment, this model system provides the investigator with a powerful experimental protocol to address specific facets of skeletal growth and development. In this chapter, we outline the basic protocols and possible readouts of organ culture models to replicate; (a) linear bone growth (murine metatarsal culture model), (b) bone and cartilage metabolism (murine femoral head culture model), (c) bone response to mechanical stimulation (bovine trabecular core culture model), and (d) bone resorption and formation (murine calvaria culture model).
Collapse
|
8
|
Liu CZ, Luo Y, Limbu SM, Chen LQ, Du ZY. IGF-1 induces SOCS-2 but not SOCS-1 and SOCS-3 transcription in juvenile Nile tilapia ( Oreochromis niloticus). ACTA ACUST UNITED AC 2018; 221:jeb.179291. [PMID: 29650756 DOI: 10.1242/jeb.179291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/08/2018] [Indexed: 12/11/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) plays a crucial role in regulating growth in vertebrates whereas suppressors of cytokine signaling (SOCS) act as feedback inhibitors of the GH/IGF-1 axis. Although SOCS-2 binds the IGF-1 receptor and inhibits IGF-1-induced STAT3 activation, presently there is no clear evidence as to whether IGF-1 could induce SOCS gene expression. The current study aimed to determine whether IGF-1 could induce the transcription of SOCS in juvenile Nile tilapia (Oreochromis niloticus). We show that there is a common positive relationship between the mRNA expression of IGF-I and SOCS-2 under different nutritional statuses and stimulants, but not the mRNA expression of SOCS-1 and SOCS-3 Furthermore, rhIGF-1 treatment and transcriptional activity assay confirmed the hypothesis that IGF-1 could induce SOCS-2 expression, whereas it had no effect or even decreased the expression of SOCS-1 and SOCS-3 Overall, we obtained evidence that the transcription of SOCS-2, but not SOCS-1 or SOCS-3, could be induced by IGF signaling, suggesting that SOCS-2 serves as a feedback suppressor of the IGF-1 axis in juvenile Nile tilapia.
Collapse
Affiliation(s)
- Cai-Zhi Liu
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai 200241, People's Republic of China
| | - Yuan Luo
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai 200241, People's Republic of China
| | - Samwel Mchele Limbu
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai 200241, People's Republic of China.,Department of Aquatic Sciences and Fisheries Technology, P. O. Box 35064, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Li-Qiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai 200241, People's Republic of China
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai 200241, People's Republic of China
| |
Collapse
|
9
|
Goto H, Nishio M, To Y, Oishi T, Miyachi Y, Maehama T, Nishina H, Akiyama H, Mak TW, Makii Y, Saito T, Yasoda A, Tsumaki N, Suzuki A. Loss of Mob1a/b in mice results in chondrodysplasia due to YAP1/TAZ-TEAD-dependent repression of SOX9. Development 2018; 145:dev.159244. [PMID: 29511023 DOI: 10.1242/dev.159244] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/19/2018] [Indexed: 12/30/2022]
Abstract
Hippo signaling is modulated in response to cell density, external mechanical forces, and rigidity of the extracellular matrix (ECM). The Mps one binder kinase activator (MOB) adaptor proteins are core components of Hippo signaling and influence Yes-associated protein 1 (YAP1) and transcriptional co-activator with PDZ-binding motif (TAZ), which are potent transcriptional regulators. YAP1/TAZ are key contributors to cartilage and bone development but the molecular mechanisms by which the Hippo pathway controls chondrogenesis are largely unknown. Cartilage is rich in ECM and also subject to strong external forces - two upstream factors regulating Hippo signaling. Chondrogenesis and endochondral ossification are tightly controlled by growth factors, morphogens, hormones, and transcriptional factors that engage in crosstalk with Hippo-YAP1/TAZ signaling. Here, we generated tamoxifen-inducible, chondrocyte-specific Mob1a/b-deficient mice and show that hyperactivation of endogenous YAP1/TAZ impairs chondrocyte proliferation and differentiation/maturation, leading to chondrodysplasia. These defects were linked to suppression of SOX9, a master regulator of chondrogenesis, the expression of which is mediated by TEAD transcription factors. Our data indicate that a MOB1-dependent YAP1/TAZ-TEAD complex functions as a transcriptional repressor of SOX9 and thereby negatively regulates chondrogenesis.
Collapse
Affiliation(s)
- Hiroki Goto
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Miki Nishio
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Yoko To
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Tatsuya Oishi
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yosuke Miyachi
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Gifu University School of Medicine, Gifu 501-1194, Japan
| | - Tak Wah Mak
- Campbell Family Institute for Breast Cancer Research at the Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C1, Canada; Department of Medical Biophysics, University of Toronto, University Health Network, Toronto M5G 2C1, Canada
| | - Yuma Makii
- Department of Sensory and Motor System Medicine, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Taku Saito
- Department of Sensory and Motor System Medicine, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan
| | - Akihiro Yasoda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Noriyuki Tsumaki
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Akira Suzuki
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan .,Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| |
Collapse
|
10
|
Cirillo F, Lazzeroni P, Catellani C, Sartori C, Amarri S, Street ME. MicroRNAs link chronic inflammation in childhood to growth impairment and insulin-resistance. Cytokine Growth Factor Rev 2018; 39:1-18. [DOI: 10.1016/j.cytogfr.2017.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
|
11
|
Dobie R, MacRae VE, Pass C, Milne EM, Ahmed SF, Farquharson C. Suppressor of cytokine signaling 2 ( Socs2) deletion protects bone health of mice with DSS-induced inflammatory bowel disease. Dis Model Mech 2018; 11:dmm.028456. [PMID: 29343614 PMCID: PMC5818069 DOI: 10.1242/dmm.028456] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/06/2017] [Indexed: 12/15/2022] Open
Abstract
Individuals with inflammatory bowel disease (IBD) often present with poor bone health. The development of targeted therapies for this bone loss requires a fuller understanding of the underlying cellular mechanisms. Although bone loss in IBD is multifactorial, the altered sensitivity and secretion of growth hormone (GH) and insulin-like growth factor-1 (IGF-1) in IBD is understood to be a critical contributing mechanism. The expression of suppressor of cytokine signaling 2 (SOCS2), a well-established negative regulator of GH signaling, is stimulated by proinflammatory cytokines. Therefore, it is likely that SOCS2 expression represents a critical mediator through which proinflammatory cytokines inhibit GH/IGF-1 signaling and decrease bone quality in IBD. Using the dextran sodium sulfate (DSS) model of colitis, we reveal that endogenously elevated GH function in the Socs2−/− mouse protects the skeleton from osteopenia. Micro-computed tomography assessment of DSS-treated wild-type (WT) mice revealed a worsened trabecular architecture compared to control mice. Specifically, DSS-treated WT mice had significantly decreased bone volume, trabecular thickness and trabecular number, and a resulting increase in trabecular separation. In comparison, the trabecular bone of Socs2-deficient mice was partially protected from the adverse effects of DSS. The reduction in a number of parameters, including bone volume, was less, and no changes were observed in trabecular thickness or separation. This protected phenotype was unlikely to be a consequence of improved mucosal health in the DSS-treated Socs2−/− mice but rather a result of unregulated GH signaling directly on bone. These studies indicate that the absence of SOCS2 is protective against bone loss typical of IBD. This study also provides an improved understanding of the relative effects of GH/IGF-1 signaling on bone health in experimental colitis, information that is essential before these drugs are explored as bone protective agents in children and adults with IBD. Summary: Using a mouse model of inflammatory bowel disease, this article provides an improved understanding of the relative effects of GH/IGF-1 on bone health in experimental colitis.
Collapse
Affiliation(s)
- Ross Dobie
- Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian, Edinburgh EH25 9RG, UK
| | - Vicky E MacRae
- Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian, Edinburgh EH25 9RG, UK
| | - Chloe Pass
- Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian, Edinburgh EH25 9RG, UK
| | - Elspeth M Milne
- Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian, Edinburgh EH25 9RG, UK
| | - S Faisal Ahmed
- School of Medicine, University of Glasgow, Royal Hospital for Children, Govan Road, Glasgow G51 4TF, UK
| | - Colin Farquharson
- Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian, Edinburgh EH25 9RG, UK
| |
Collapse
|
12
|
Cirillo F, Lazzeroni P, Sartori C, Street ME. Inflammatory Diseases and Growth: Effects on the GH-IGF Axis and on Growth Plate. Int J Mol Sci 2017; 18:E1878. [PMID: 28858208 PMCID: PMC5618527 DOI: 10.3390/ijms18091878] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/23/2017] [Accepted: 08/29/2017] [Indexed: 02/08/2023] Open
Abstract
This review briefly describes the most common chronic inflammatory diseases in childhood, such as cystic fibrosis (CF), inflammatory bowel diseases (IBDs), juvenile idiopathic arthritis (JIA), and intrauterine growth restriction (IUGR) that can be considered, as such, for the changes reported in the placenta and cord blood of these subjects. Changes in growth hormone (GH) secretion, GH resistance, and changes in the insulin-like growth factor (IGF) system are described mainly in relationship with the increase in nuclear factor-κB (NF-κB) and pro-inflammatory cytokines. Changes in the growth plate are also reported as well as a potential role for microRNAs (miRNAs) and thus epigenetic changes in chronic inflammation. Many mechanisms leading to growth failure are currently known; however, it is clear that further research in the field is still warranted.
Collapse
Affiliation(s)
- Francesca Cirillo
- Division of Paediatric Endocrinology and Diabetology, Department of Obstetrics, Gynaecology and Paediatrics, Azienda AUSL-IRCCS, Viale Risorgimento, 80, 42123 Reggio Emilia, Italy.
| | - Pietro Lazzeroni
- Division of Paediatric Endocrinology and Diabetology, Department of Obstetrics, Gynaecology and Paediatrics, Azienda AUSL-IRCCS, Viale Risorgimento, 80, 42123 Reggio Emilia, Italy.
| | - Chiara Sartori
- Division of Paediatric Endocrinology and Diabetology, Department of Obstetrics, Gynaecology and Paediatrics, Azienda AUSL-IRCCS, Viale Risorgimento, 80, 42123 Reggio Emilia, Italy.
| | - Maria Elisabeth Street
- Division of Paediatric Endocrinology and Diabetology, Department of Obstetrics, Gynaecology and Paediatrics, Azienda AUSL-IRCCS, Viale Risorgimento, 80, 42123 Reggio Emilia, Italy.
| |
Collapse
|
13
|
Houston DA, Staines KA, MacRae VE, Farquharson C. Culture of Murine Embryonic Metatarsals: A Physiological Model of Endochondral Ossification. J Vis Exp 2016. [PMID: 28060328 PMCID: PMC5226350 DOI: 10.3791/54978] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The fundamental process of endochondral ossification is under tight regulation in the healthy individual so as to prevent disturbed development and/or longitudinal bone growth. As such, it is imperative that we further our understanding of the underpinning molecular mechanisms involved in such disorders so as to provide advances towards human and animal patient benefit. The mouse metatarsal organ explant culture is a highly physiological ex vivo model for studying endochondral ossification and bone growth as the growth rate of the bones in culture mimic that observed in vivo. Uniquely, the metatarsal organ culture allows the examination of chondrocytes in different phases of chondrogenesis and maintains cell-cell and cell-matrix interactions, therefore providing conditions closer to the in vivo situation than cells in monolayer or 3D culture. This protocol describes in detail the intricate dissection of embryonic metatarsals from the hind limb of E15 murine embryos and the subsequent analyses that can be performed in order to examine endochondral ossification and longitudinal bone growth.
Collapse
Affiliation(s)
- Dean A Houston
- Developmental Biology, The Roslin Institute and R(D)SVS, The University of Edinburgh;
| | - Katherine A Staines
- Developmental Biology, The Roslin Institute and R(D)SVS, The University of Edinburgh
| | - Vicky E MacRae
- Developmental Biology, The Roslin Institute and R(D)SVS, The University of Edinburgh
| | - Colin Farquharson
- Developmental Biology, The Roslin Institute and R(D)SVS, The University of Edinburgh
| |
Collapse
|
14
|
Marino S, Staines KA, Brown G, Howard-Jones RA, Adamczyk M. Models of ex vivo explant cultures: applications in bone research. BONEKEY REPORTS 2016; 5:818. [PMID: 27408711 PMCID: PMC4926536 DOI: 10.1038/bonekey.2016.49] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/04/2016] [Indexed: 01/09/2023]
Abstract
Ex vivo explant culture models are powerful tools in bone research. They allow investigation of bone and cartilage responses to specific stimuli in a controlled manner that closely mimics the in vivo processes. Because of limitations in obtaining healthy human bone samples the explant growth of animal tissue serves as a platform to study the complex physico-chemical properties of the bone. Moreover, these models enable preserving important cell-cell and cell-matrix interactions in order to better understand the behaviour of cells in their natural three-dimensional environment. Thus, the use of bone ex vivo explant cultures can frequently be of more physiological relevance than the use of two-dimensional primary cells grown in vitro. Here, we describe isolation and ex vivo growth of different animal bone explant models including metatarsals, femoral heads, calvaria, mandibular slices and trabecular cores. We also describe how these explants are utilised to study bone development, cartilage and bone metabolism, cancer-induced bone diseases, stem cell-driven bone repair and mechanoadaptation. These techniques can be directly used to understand mechanisms linked with bone physiology or bone-associated diseases.
Collapse
Affiliation(s)
- Silvia Marino
- Academic Unit of Bone Biology, Department of Oncology and Metabolism, Mellanby Centre for Bone Research, Medical School, The University of Sheffield, Sheffield, UK
| | | | - Genevieve Brown
- Department of Biomedical Engineering, Columbia University, New York, USA
| | - Rachel Anne Howard-Jones
- Oral and Biomedical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Magdalena Adamczyk
- Academic Unit of Bone Biology, Department of Oncology and Metabolism, Mellanby Centre for Bone Research, Medical School, The University of Sheffield, Sheffield, UK
- Oral and Biomedical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
15
|
Wong SC, Dobie R, Altowati MA, Werther GA, Farquharson C, Ahmed SF. Growth and the Growth Hormone-Insulin Like Growth Factor 1 Axis in Children With Chronic Inflammation: Current Evidence, Gaps in Knowledge, and Future Directions. Endocr Rev 2016; 37:62-110. [PMID: 26720129 DOI: 10.1210/er.2015-1026] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Growth failure is frequently encountered in children with chronic inflammatory conditions like juvenile idiopathic arthritis, inflammatory bowel disease, and cystic fibrosis. Delayed puberty and attenuated pubertal growth spurt are often seen during adolescence. The underlying inflammatory state mediated by proinflammatory cytokines, prolonged use of glucocorticoid, and suboptimal nutrition contribute to growth failure and pubertal abnormalities. These factors can impair growth by their effects on the GH-IGF axis and also directly at the level of the growth plate via alterations in chondrogenesis and local growth factor signaling. Recent studies on the impact of cytokines and glucocorticoid on the growth plate further advanced our understanding of growth failure in chronic disease and provided a biological rationale of growth promotion. Targeting cytokines using biological therapy may lead to improvement of growth in some of these children, but approximately one-third continue to grow slowly. There is increasing evidence that the use of relatively high-dose recombinant human GH may lead to partial catch-up growth in chronic inflammatory conditions, although long-term follow-up data are currently limited. In this review, we comprehensively review the growth abnormalities in children with juvenile idiopathic arthritis, inflammatory bowel disease, and cystic fibrosis, systemic abnormalities of the GH-IGF axis, and growth plate perturbations. We also systematically reviewed all the current published studies of recombinant human GH in these conditions and discussed the role of recombinant human IGF-1.
Collapse
Affiliation(s)
- S C Wong
- Developmental Endocrinology Research Group (S.C.W., M.A.A., S.F.A.), University of Glasgow, Royal Hospital for Children, Glasgow G51 4TF, United Kingdom; Division of Developmental Biology (R.D., C.F.), Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and Hormone Research (G.A.W.), Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - R Dobie
- Developmental Endocrinology Research Group (S.C.W., M.A.A., S.F.A.), University of Glasgow, Royal Hospital for Children, Glasgow G51 4TF, United Kingdom; Division of Developmental Biology (R.D., C.F.), Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and Hormone Research (G.A.W.), Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - M A Altowati
- Developmental Endocrinology Research Group (S.C.W., M.A.A., S.F.A.), University of Glasgow, Royal Hospital for Children, Glasgow G51 4TF, United Kingdom; Division of Developmental Biology (R.D., C.F.), Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and Hormone Research (G.A.W.), Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - G A Werther
- Developmental Endocrinology Research Group (S.C.W., M.A.A., S.F.A.), University of Glasgow, Royal Hospital for Children, Glasgow G51 4TF, United Kingdom; Division of Developmental Biology (R.D., C.F.), Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and Hormone Research (G.A.W.), Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - C Farquharson
- Developmental Endocrinology Research Group (S.C.W., M.A.A., S.F.A.), University of Glasgow, Royal Hospital for Children, Glasgow G51 4TF, United Kingdom; Division of Developmental Biology (R.D., C.F.), Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and Hormone Research (G.A.W.), Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - S F Ahmed
- Developmental Endocrinology Research Group (S.C.W., M.A.A., S.F.A.), University of Glasgow, Royal Hospital for Children, Glasgow G51 4TF, United Kingdom; Division of Developmental Biology (R.D., C.F.), Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and Hormone Research (G.A.W.), Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| |
Collapse
|
16
|
Abstract
The regulation of organ size is essential to human health and has fascinated biologists for centuries. Key to the growth process is the ability of most organs to integrate organ-extrinsic cues (eg, nutritional status, inflammatory processes) with organ-intrinsic information (eg, genetic programs, local signals) into a growth response that adapts to changing environmental conditions and ensures that the size of an organ is coordinated with the rest of the body. Paired organs such as the vertebrate limbs and the long bones within them are excellent models for studying this type of regulation because it is possible to manipulate one member of the pair and leave the other as an internal control. During development, growth plates at the end of each long bone produce a transient cartilage model that is progressively replaced by bone. Here, we review how proliferation and differentiation of cells within each growth plate are tightly controlled mainly by growth plate-intrinsic mechanisms that are additionally modulated by extrinsic signals. We also discuss the involvement of several signaling hubs in the integration and modulation of growth-related signals and how they could confer remarkable plasticity to the growth plate. Indeed, long bones have a significant ability for "catch-up growth" to attain normal size after a transient growth delay. We propose that the characterization of catch-up growth, in light of recent advances in physiology and cell biology, will provide long sought clues into the molecular mechanisms that underlie organ growth regulation. Importantly, catch-up growth early in life is commonly associated with metabolic disorders in adulthood, and this association is not completely understood. Further elucidation of the molecules and cellular interactions that influence organ size coordination should allow development of novel therapies for human growth disorders that are noninvasive and have minimal side effects.
Collapse
Affiliation(s)
- Alberto Roselló-Díez
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| |
Collapse
|
17
|
Gabusi E, Paolella F, Manferdini C, Gambari L, Schiavinato A, Lisignoli G. Age-independent effects of hyaluronan amide derivative and growth hormone on human osteoarthritic chondrocytes. Connect Tissue Res 2015; 56:440-51. [PMID: 26075645 DOI: 10.3109/03008207.2015.1047928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM Increased age is the most prominent risk factor for the initiation and progression of osteoarthritis (OA). The effects of human growth hormone (hGH) combined or not with hyaluronan amide derivative (HAD) were evaluated on human OA chondrocytes, to define their biological action and potentiality in OA treatment. MATERIAL AND METHODS Cell viability, metabolic activity, gene expression and factors released were tested at different time points on chondrocytes treated with different concentrations of hGH (0.01-10 μg/ml) alone or in combination with HAD (1 mg/ml). RESULTS We found that OA chondrocytes express GH receptor and that the different doses of hGH tested did not affect cell viability, metabolic activity or the expression of collagen type 2, 1, or 10 nor did it induce the release of IGF-1 or FGF-2. Conversely, hGH treatment increased the expression of hyaluronan receptor CD44. HAD combined with hGH reduced metabolic activity, IL6 release and gene expression, but not the suppressor of cytokine signaling 2 (SOCS2), which was significantly induced and translocated into the nucleus. The parameters analyzed, independently of the treatments used proportionally decreased with increasing age of the patients. CONCLUSIONS hGH only induced CD44 receptor on OA chondrocytes but did not affect other parameters, such as chondrocytic gene markers or IGF-1 or FGF-2 release. HAD reduced all the effects induced by hGH partially through a significant induction of SOCS2. These data show that GH or HAD treatment does not influence the response of the OA chondrocytes, thus the modulation of cellular response is age-independent.
Collapse
Affiliation(s)
- Elena Gabusi
- a Laboratorio RAMSES , Istituto Ortopedico Rizzoli , Bologna , Italy
| | | | - Cristina Manferdini
- a Laboratorio RAMSES , Istituto Ortopedico Rizzoli , Bologna , Italy .,b SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale , Istituto Ortopedico Rizzoli , Bologna , Italy , and
| | - Laura Gambari
- b SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale , Istituto Ortopedico Rizzoli , Bologna , Italy , and
| | | | - Gina Lisignoli
- a Laboratorio RAMSES , Istituto Ortopedico Rizzoli , Bologna , Italy .,b SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale , Istituto Ortopedico Rizzoli , Bologna , Italy , and
| |
Collapse
|
18
|
Dobie R, Ahmed SF, Staines KA, Pass C, Jasim S, MacRae VE, Farquharson C. Increased linear bone growth by GH in the absence of SOCS2 is independent of IGF-1. J Cell Physiol 2015; 230:2796-806. [PMID: 25833299 PMCID: PMC4949688 DOI: 10.1002/jcp.25006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 03/30/2015] [Indexed: 11/12/2022]
Abstract
Growth hormone (GH) signaling is essential for postnatal linear bone growth, but the relative importance of GHs actions on the liver and/or growth plate cartilage remains unclear. The importance of liver derived insulin like‐growth factor‐1 (IGF‐1) for endochondral growth has recently been challenged. Here, we investigate linear growth in Suppressor of Cytokine Signaling‐2 (SOCS2) knockout mice, which have enhanced growth despite normal systemic GH/IGF‐1 levels. Wild‐type embryonic ex vivo metatarsals failed to exhibit increased linear growth in response to GH, but displayed increased Socs2 transcript levels (P < 0.01). In the absence of SOCS2, GH treatment enhanced metatarsal linear growth over a 12 day period. Despite this increase, IGF‐1 transcript and protein levels were not increased in response to GH. In accordance with these data, IGF‐1 levels were unchanged in GH‐challenged postnatal Socs2‐/‐ conditioned medium despite metatarsals showing enhanced linear growth. Growth‐plate Igf1 mRNA levels were not elevated in juvenile Socs2‐/‐ mice. GH did however elevate IGF‐binding protein 3 levels in conditioned medium from GH challenged metatarsals and this was more apparent in Socs2‐/‐ metatarsals. GH did not enhance the growth of Socs2‐/‐ metatarsals when the IGF receptor was inhibited, suggesting that IGF receptor mediated mechanisms are required. IGF‐2 may be responsible as IGF‐2 promoted metatarsal growth and Igf2 expression was elevated in Socs2‐/‐ (but not WT) metatarsals in response to GH. These studies emphasise the critical importance of SOCS2 in regulating GHs ability to promote bone growth. Also, GH appears to act directly on the metatarsals of Socs2‐/‐ mice, promoting growth via a mechanism that is independent of IGF‐1. J. Cell. Physiol. 9999: 2796–2806, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ross Dobie
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Syed F Ahmed
- Developmental Endocrinology Research Group, School of Medicine, University of Glasgow, Yorkhill, Glasgow, Scotland, UK
| | - Katherine A Staines
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Chloe Pass
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Seema Jasim
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Vicky E MacRae
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Colin Farquharson
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| |
Collapse
|
19
|
Moon PD, Kim MH, Lim HS, Oh HA, Nam SY, Han NR, Kim MJ, Jeong HJ, Kim HM. Taurine, a major amino acid of oyster, enhances linear bone growth in a mouse model of protein malnutrition. Biofactors 2015; 41:190-7. [PMID: 25963419 DOI: 10.1002/biof.1213] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/19/2015] [Indexed: 01/04/2023]
Abstract
Oysters (Oys) contain various beneficial components, such as, antioxidants and amino acids. However, the effects of Oys or taurine (Tau), a major amino acid in Oys on bone growth have not been determined. In the present study, we evaluated the effects of Oys or Tau on linear bone growth in a mouse model of protein malnutrition. To make the protein malnutrition in a mouse, we used a low protein diet. Growth plate thickness was increased by Oys or Tau. Bone volume/tissue volume, trabecular thickness, trabecular number, connection density, and total porosity were also improved by Oys or Tau. Oys or Tau increased insulin-like growth factor-1 (IGF-1) levels in serum, liver, and tibia-growth plate. Phosphorylations of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 5 (STAT5) were increased by Oys and by Tau. These findings show that Oys or Tau may increase growth plate thickness by elevating IGF-1 levels and by promoting the phosphorylations of JAK2-STAT5, and suggest that Oys or Tau are growth-promoting substances of potential use in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Phil-Dong Moon
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Min-Ho Kim
- Department of Computer Aided Mechanical Engineering, Sohae College, Gunsan, Jeonbuk, 573-717, Republic of Korea
| | - Hun-Sun Lim
- Du Wha Com., Deokjeong-ri, Samseong-myeon, Eumseong-gun, Chungbuk, 369-833, Republic of Korea
| | - Hyun-A Oh
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Sun-Young Nam
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Na-Ra Han
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Myong-Jo Kim
- Oriental Bio-herb Research Institute, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Hyun-Ja Jeong
- Inflammatory Disease Research Center and Biochip Research Center, Hoseo University, 165 Sechul-ri, Baebang-myun, Asan, Chungnam, 336-795, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| |
Collapse
|
20
|
Wu J, Niu JK, Miao YL. Impaired growth and puberty in pediatric patients with inflammatory bowel disease: Etiology and treatment. Shijie Huaren Xiaohua Zazhi 2015; 23:221-228. [DOI: 10.11569/wcjd.v23.i2.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Growth failure associated with delayed puberty is a unique feature in pediatric patients with inflammatory bowel disease (IBD), especially those with Crohn's disease, which has a negative effect on quality of life, emotional functioning, social functioning, and body image. Although the underlying mechanisms are not fully clear, the condition may be induced by the effects of malnutrition, inflammatory process and glucocorticoid on the growth hormone/insulin-like growth factor-1 axis or on the growth plate. Nutrition, biologic agents, intestinal resection and glucocorticoids are main treatments. Standards for monitoring and treatment of impaired growth and development in pediatric IBD patients need to be formulated. To achieve optimal growth, the efforts of hospitals, families and society are necessary.
Collapse
|
21
|
Dobie R, MacRae VE, Huesa C, van't Hof R, Ahmed SF, Farquharson C. Direct stimulation of bone mass by increased GH signalling in the osteoblasts of Socs2-/- mice. J Endocrinol 2014; 223:93-106. [PMID: 25074853 PMCID: PMC4166176 DOI: 10.1530/joe-14-0292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The suppressor of cytokine signalling (Socs2(-/-))-knockout mouse is characterised by an overgrowth phenotype due to enhanced GH signalling. The objective of this study was to define the Socs2(-/-) bone phenotype and determine whether GH promotes bone mass via IGF1-dependent mechanisms. Despite no elevation in systemic IGF1 levels, increased body weight in 4-week-old Socs2(-/-) mice following GH treatment was associated with increased cortical bone area (Ct.Ar) (P<0.01). Furthermore, detailed bone analysis of male and female juvenile and adult Socs2(-/-) mice revealed an altered cortical and trabecular phenotype consistent with the known anabolic effects of GH. Indeed, male Socs2(-/-) mice had increased Ct.Ar (P<0.05) and thickness associated with increased strength. Despite this, there was no elevation in hepatic Igf1 expression, suggesting that the anabolic bone phenotype was the result of increased local GH action. Mechanistic studies showed that in osteoblasts and bone of Socs2(-/-) mice, STAT5 phosphorylation was significantly increased in response to GH. Conversely, overexpression of SOCS2 decreased GH-induced STAT5 signalling. Although an increase in Igf1 expression was observed in Socs2(-/-) osteoblasts following GH, it was not evident in vivo. Igf1 expression levels were not elevated in response to GH in 4-week-old mice and no alterations in expression was observed in bone samples of 6-week-old Socs2(-/-) mice. These studies emphasise the critical role of SOCS2 in controlling the local GH anabolic bone effects. We provide compelling evidence implicating SOCS2 in the regulation of GH osteoblast signalling and ultimately bone accrual, which maybe via mechanisms that are independent of IGF1 production in vivo.
Collapse
Affiliation(s)
- R Dobie
- Division of Developmental BiologyThe Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, Edinburgh EH25 9RG, Scotland, UKInstitute of Ageing and Chronic DiseaseUniversity of Liverpool, Daulby Street, Liverpool L69 3GA, UKDevelopmental Endocrinology Research GroupSchool of Medicine, University of Glasgow, Yorkhill, Glasgow G3 8SJ, Scotland, UK
| | - V E MacRae
- Division of Developmental BiologyThe Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, Edinburgh EH25 9RG, Scotland, UKInstitute of Ageing and Chronic DiseaseUniversity of Liverpool, Daulby Street, Liverpool L69 3GA, UKDevelopmental Endocrinology Research GroupSchool of Medicine, University of Glasgow, Yorkhill, Glasgow G3 8SJ, Scotland, UK
| | - C Huesa
- Division of Developmental BiologyThe Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, Edinburgh EH25 9RG, Scotland, UKInstitute of Ageing and Chronic DiseaseUniversity of Liverpool, Daulby Street, Liverpool L69 3GA, UKDevelopmental Endocrinology Research GroupSchool of Medicine, University of Glasgow, Yorkhill, Glasgow G3 8SJ, Scotland, UK
| | - R van't Hof
- Division of Developmental BiologyThe Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, Edinburgh EH25 9RG, Scotland, UKInstitute of Ageing and Chronic DiseaseUniversity of Liverpool, Daulby Street, Liverpool L69 3GA, UKDevelopmental Endocrinology Research GroupSchool of Medicine, University of Glasgow, Yorkhill, Glasgow G3 8SJ, Scotland, UK
| | - S F Ahmed
- Division of Developmental BiologyThe Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, Edinburgh EH25 9RG, Scotland, UKInstitute of Ageing and Chronic DiseaseUniversity of Liverpool, Daulby Street, Liverpool L69 3GA, UKDevelopmental Endocrinology Research GroupSchool of Medicine, University of Glasgow, Yorkhill, Glasgow G3 8SJ, Scotland, UK
| | - C Farquharson
- Division of Developmental BiologyThe Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, Edinburgh EH25 9RG, Scotland, UKInstitute of Ageing and Chronic DiseaseUniversity of Liverpool, Daulby Street, Liverpool L69 3GA, UKDevelopmental Endocrinology Research GroupSchool of Medicine, University of Glasgow, Yorkhill, Glasgow G3 8SJ, Scotland, UK
| |
Collapse
|
22
|
Lui JC, Nilsson O, Baron J. Recent research on the growth plate: Recent insights into the regulation of the growth plate. J Mol Endocrinol 2014; 53:T1-9. [PMID: 24740736 PMCID: PMC4133284 DOI: 10.1530/jme-14-0022] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For most bones, elongation is driven primarily by chondrogenesis at the growth plates. This process results from chondrocyte proliferation, hypertrophy, and extracellular matrix secretion, and it is carefully orchestrated by complex networks of local paracrine factors and modulated by endocrine factors. We review here recent advances in the understanding of growth plate physiology. These advances include new approaches to study expression patterns of large numbers of genes in the growth plate, using microdissection followed by microarray. This approach has been combined with genome-wide association studies to provide insights into the regulation of the human growth plate. We also review recent studies elucidating the roles of bone morphogenetic proteins, fibroblast growth factors, C-type natriuretic peptide, and suppressor of cytokine signaling in the local regulation of growth plate chondrogenesis and longitudinal bone growth.
Collapse
Affiliation(s)
- Julian C Lui
- Program in Developmental Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive, MSC 1103, Bethesda, Maryland 20892-1103, USACenter for Molecular Medicine and Pediatric Endocrinology UnitDepartment of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Ola Nilsson
- Program in Developmental Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive, MSC 1103, Bethesda, Maryland 20892-1103, USACenter for Molecular Medicine and Pediatric Endocrinology UnitDepartment of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, SwedenProgram in Developmental Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive, MSC 1103, Bethesda, Maryland 20892-1103, USACenter for Molecular Medicine and Pediatric Endocrinology UnitDepartment of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Jeffrey Baron
- Program in Developmental Endocrinology and GeneticsEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, CRC, Room 1-3330, 10 Center Drive, MSC 1103, Bethesda, Maryland 20892-1103, USACenter for Molecular Medicine and Pediatric Endocrinology UnitDepartment of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
23
|
Sederquist B, Fernandez-Vojvodich P, Zaman F, Sävendahl L. Recent research on the growth plate: Impact of inflammatory cytokines on longitudinal bone growth. J Mol Endocrinol 2014; 53:T35-44. [PMID: 24711646 DOI: 10.1530/jme-14-0006] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Children with inflammatory diseases usually display abnormal growth patterns as well as delayed puberty. This is a result of several factors related to the disease itself, such as malnutrition, hypercortisolism, and elevated levels of pro-inflammatory cytokines. These factors in combination with glucocorticoid treatment contribute to growth retardation during chronic inflammation by systemically affecting the major regulator of growth, the GH/IGF1 axis. However, recent studies have also shown evidence of a direct effect of these factors at the growth plate level. In conditions of chronic inflammation, pro-inflammatory cytokines are upregulated and released into the circulation. The most abundant of these, tumor necrosis factor α, interleukin 1β (IL1β), and IL6, are all known to directly act on growth plate cartilage to induce apoptosis and thereby suppress bone growth. Both clinical and experimental studies have shown that growth retardation can partly be rescued when these cytokines are blocked. Therefore, therapy modulating the local actions of these cytokines may be effective for preventing growth failure in patients with chronic inflammatory disorders. In this review, we report the current knowledge of inflammatory cytokines and their role in regulating bone growth.
Collapse
Affiliation(s)
- Bettina Sederquist
- Pediatric Endocrinology Unit Q2:08Department of Women's and Children's Health, Karolinska University Hospital, SE-171 76 Stockholm, SwedenDevelopmental and Stem Cell BiologyThe Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Paola Fernandez-Vojvodich
- Pediatric Endocrinology Unit Q2:08Department of Women's and Children's Health, Karolinska University Hospital, SE-171 76 Stockholm, SwedenDevelopmental and Stem Cell BiologyThe Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Farasat Zaman
- Pediatric Endocrinology Unit Q2:08Department of Women's and Children's Health, Karolinska University Hospital, SE-171 76 Stockholm, SwedenDevelopmental and Stem Cell BiologyThe Hospital for Sick Children, University of Toronto, Toronto, Ontario, CanadaPediatric Endocrinology Unit Q2:08Department of Women's and Children's Health, Karolinska University Hospital, SE-171 76 Stockholm, SwedenDevelopmental and Stem Cell BiologyThe Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Lars Sävendahl
- Pediatric Endocrinology Unit Q2:08Department of Women's and Children's Health, Karolinska University Hospital, SE-171 76 Stockholm, SwedenDevelopmental and Stem Cell BiologyThe Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Growth in children with chronic kidney disease: role of nutrition, growth hormone, dialysis, and steroids. Curr Opin Pediatr 2014; 26:187-92. [PMID: 24535500 DOI: 10.1097/mop.0000000000000070] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Children with chronic kidney disease (CKD) have impaired growth that leads to short stature in adulthood. The problem persists even with successful transplantation and steroid withdrawal protocols. The aim of this review is to provide an overview of the pressing issues related to growth failure in children with CKD both before and after transplantation. RECENT FINDINGS Although great strides have been made in dialysis and transplantation, the incidence of abnormal adult height in children growing up with CKD remains as high as 45-60%. The lack of catch-up growth and resultant short stature is a critical issue for self-esteem and quality of life in many children with CKD. Aggressive daily dialysis, improved nutrition, treatment of metabolic bone disease, and the use of recombinant human growth hormone provide some hope for catch-up growth in select patients. SUMMARY The causes of growth failure in the setting of CKD are multifactorial. Attention to all the details by optimizing nutritional, bone and mineral metabolism, correcting metabolic acidosis and anemia, achieving excellent blood pressure control, reversing cardiovascular complications such as left ventricular hypertrophy, and minimizing the use of corticosteroids is the current standard of care. Aggressive daily dialysis can reverse many of the uremic derangements. For patients not yet on dialysis or for those after renal transplant, early institution of recombinant human growth hormone can promote growth. Improved understanding of the mechanisms of hormone resistance may offer novel targets or measurements of treatment effectiveness.
Collapse
|
25
|
Abstract
Inflammatory bowel disease, particularly Crohn's disease (CD), can potentially cause growth failure during childhood as well as a reduction in final adult height. The underlying mechanism is multifactorial and includes poor nutrition, chronic inflammation, and the prolonged use of steroids. Despite major advances in the treatment of CD, current cohorts of children continue to display a deficit in linear growth and may qualify for growth-promoting hormonal therapy. However, currently there is limited evidence to support the use of endocrine therapy directed primarily at improving growth. This review is aimed at summarising the current evidence for growth impairment in inflammatory bowel disease and discusses the rationale for using growth promoting therapy.
Collapse
|
26
|
Farquharson C, Ahmed SF. Inflammation and linear bone growth: the inhibitory role of SOCS2 on GH/IGF-1 signaling. Pediatr Nephrol 2013; 28:547-56. [PMID: 22886280 DOI: 10.1007/s00467-012-2271-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/16/2012] [Accepted: 07/11/2012] [Indexed: 12/29/2022]
Abstract
Linear bone growth is widely recognized to be adversely affected in children with chronic kidney disease (CKD) and other chronic inflammatory disorders. The growth hormone (GH)/insulin-like growth factor-1 (IGF-1) pathway is anabolic to the skeleton and inflammatory cytokines compromise bone growth through a number of different mechanisms, which include interference with the systemic as well as the tissue-level GH/IGF-1 axis. Despite attempts to promote growth and control disease, there are an increasing number of reports of the persistence of poor growth in a substantial proportion of patients receiving rhGH and/or drugs that block cytokine action. Thus, there is an urgent need to consider better and alternative forms of therapy that are directed specifically at the mechanism of the insult which leads to abnormal bone health. Suppressor of cytokine signaling 2 (SOCS2) expression is increased in inflammatory conditions including CKD, and is a recognized inhibitor of GH signaling. Therefore, in this review, we will focus on the premise that SOCS2 signaling represents a critical pathway in growth plate chondrocytes through which pro-inflammatory cytokines alter both GH/IGF-1 signaling and cellular function.
Collapse
Affiliation(s)
- Colin Farquharson
- Division of Developmental Biology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | | |
Collapse
|