1
|
Shang G, Lei L, Peng C. Bioinformatics Study on Mechanism of Postnatal Development of Craniofacial Bone. J Craniofac Surg 2024; 35:1368-1371. [PMID: 38847500 DOI: 10.1097/scs.0000000000010354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/04/2024] [Indexed: 07/24/2024] Open
Abstract
OBJECTIVE The postnatal development of craniofacial bone plays a crucial role in shaping the overall structure and functionality of the skull and face. Understanding the underlying mechanisms of this intricate process is essential for both clinical and research purposes. In this study, the authors conducted a bioinformatics analysis using the Gene Expression Omnibus database to investigate the molecular pathways and regulatory networks involved in the postnatal development of craniofacial bone. METHODS In this study, the online Gene Expression Omnibus microarray expression profiling data set GSE27976 was used to identify differentially expressed genes (DEGs) in different age groups. Protein-Protein Interaction network analyses, functional enrichment, and hub genes analysis were performed. The differences in immune infiltration and microenvironment among different types of cells were also analyzed. RESULTS In total, 523 DEGs, including 287 upregulated and 236 downregulated genes, were identified. GO and KEGG analysis showed that the DEGs were significantly enriched in multiple signaling pathways, such as skeletal system morphogenesis, osteoblast differentiation, and stem cell differentiation. Immune infiltration and microenvironment characteristics analysis showed that there were significant differences in fibroblasts, mesenchymal stem cell, osteoblast, stroma score, and microenvironment score between the two groups. Five hub genes, including IGF1, IL1B, ICAM1, MMP2 , and brain-derived neurotrophic factor, were filled out. CONCLUSION The findings of this study showed a significant shift in gene expression towards osteogenesis during the first 12 months after birth. These findings emphasize the critical role of the postnatal period in craniofacial bone development and provide valuable insights into the molecular mechanisms underlying this process.
Collapse
Affiliation(s)
- Guangling Shang
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| | - Liu Lei
- Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Shandong University
| | - Changliang Peng
- Department of Spine Surgery, The Second Hospital of Shandong University, Shandong University, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
2
|
Han D, Wang W, Gong J, Ma Y, Li Y. Microbiota metabolites in bone: Shaping health and Confronting disease. Heliyon 2024; 10:e28435. [PMID: 38560225 PMCID: PMC10979239 DOI: 10.1016/j.heliyon.2024.e28435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/16/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
The intricate interplay between the gut microbiota and bone health has become increasingly recognized as a fundamental determinant of skeletal well-being. Microbiota-derived metabolites play a crucial role in dynamic interaction, specifically in bone homeostasis. In this sense, short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate, indirectly promote bone formation by regulating insulin-like growth factor-1 (IGF-1). Trimethylamine N-oxide (TMAO) has been found to increase the expression of osteoblast genes, such as Runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein-2 (BMP2), thus enhancing osteogenic differentiation and bone quality through BMP/SMADs and Wnt signaling pathways. Remarkably, in the context of bone infections, the role of microbiota metabolites in immune modulation and host defense mechanisms potentially affects susceptibility to infections such as osteomyelitis. Furthermore, ongoing research elucidates the precise mechanisms through which microbiota-derived metabolites influence bone cells, such as osteoblasts and osteoclasts. Understanding the multifaceted influence of microbiota metabolites on bone, from regulating homeostasis to modulating susceptibility to infections, has the potential to revolutionize our approach to bone health and disease management. This review offers a comprehensive exploration of this evolving field, providing a holistic perspective on the impact of microbiota metabolites on bone health and diseases.
Collapse
Affiliation(s)
- Dong Han
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Weijiao Wang
- Department of Otolaryngology, Yantaishan Hospital, Yantai 264000, China
| | - Jinpeng Gong
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Yupeng Ma
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Yu Li
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| |
Collapse
|
3
|
Machireddy M, Oberman AG, DeBiase L, Stephens M, Li J, Littlepage LE, Niebur GL. Controlled mechanical loading affects the osteocyte transcriptome in porcine trabecular bone in situ. Bone 2024; 181:117028. [PMID: 38309412 PMCID: PMC10923013 DOI: 10.1016/j.bone.2024.117028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
INTRODUCTION Osteocytes modulate bone adaptation in response to mechanical stimuli imparted by the deforming bone tissue in which they are encased by communicating with osteoclasts and osteoblasts as well as other osteocytes in the lacuna-canalicular network through secreted cytokines and chemokines. Understanding the transcriptional response of osteocytes to mechanical stimulation in situ could identify new targets to inhibit bone loss or enhance bone formation in the presence of diseases like osteoporosis or metastatic cancer. We compared the mechanically regulated transcriptional response of osteocytes in trabecular bone following one or three days of controlled mechanical loading. METHODS Porcine trabecular bone explants were cultured in a bioreactor for 48 h and subsequently loaded twice a day for one day or 3 days. RNA was isolated and sequenced, and the Tuxedo suite was used to identify differentially expressed genes and pathway analysis was conducted using Ingenuity Pathway Analysis (IPA). RESULTS There were about 4000 differentially expressed genes following in situ culture relative to fresh bone. One hundred six genes were differentially expressed between the loaded and non-loaded groups following one day of loading compared to 913 genes after 3 d of loading. Only 45 of these were coincident between the two time points, indicating an evolving transcriptome. Clustering and principal component analysis indicated differences between the loaded and non-loaded groups after 3 d of loading. DISCUSSION With sustained loading, there was a nine-fold increase in the number of differentially expressed genes, suggesting that osteocytes respond to loading through sequential activation of downstream genes in the same pathways. The differentially expressed genes were related to osteoarthritis, osteocyte, and chondrocyte signaling pathways. We noted that NFkB and TNF signaling are affected by early loading and this may drive downstream effects on the mechanobiological response. Moreover, these genes may regulate catabolic effects of mechanical disuse through their actions on pre-osteoclasts in the bone marrow niche.
Collapse
Affiliation(s)
- Meghana Machireddy
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA
| | - Alyssa G Oberman
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA
| | - Lucas DeBiase
- Dept. of Aerospace and Mechanical Engineering, University of Notre Dame, IN 46556, USA
| | - Melissa Stephens
- Genomics and Bioinformatics Core Facility, University of Notre Dame, IN 46556, USA
| | - Jun Li
- Dept. of Applied Mathematics, Computations, and Statistics, University of Notre Dame, IN 46556, USA
| | - Laurie E Littlepage
- Dept. of Chemistry and Biochemistry, University of Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, IN 46556, USA
| | - Glen L Niebur
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, IN 46556, USA; Dept. of Aerospace and Mechanical Engineering, University of Notre Dame, IN 46556, USA.
| |
Collapse
|
4
|
Tsuchiya Y, Takakura H, Osawa S, Izawa T. High-intensity interval training enhances mRNA expression of IGF1Ea in rat Achilles tendon. Mol Biol Rep 2024; 51:374. [PMID: 38421500 DOI: 10.1007/s11033-024-09306-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
High-intensity interval training (HIIT) reportedly enhances the functional properties of the musculoskeletal system. However, the effects of HIIT on tendons remain unclear. Sixteen male rats were randomly assigned to the control (Con) or HIIT group (n = 8 in each group). Rats in the HIIT group executed the HIIT program consisting of 2.5 min treadmill running and 4.5 min rests between the bouts, 5 days per week for 9 weeks. Running speed, number of sets, and inclination were incrementally increased during the training period. Histological analysis revealed no apparent morphological changes in the extracellular matrix structure or nuclei of tenocytes between the groups. Real-time reverse transcription polymerase chain reaction analysis revealed that Igf1Ea mRNA expression was enhanced in the HIIT group. Furthermore, Igfbp5 mRNA expression tended to be higher in the HIIT group. The 9-week HIIT program enhanced tenogenic Igf1Ea mRNA expression.
Collapse
Affiliation(s)
- Yoshifumi Tsuchiya
- Faculty of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyoto, 610-0394, Japan.
| | - Hisashi Takakura
- Faculty of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyoto, 610-0394, Japan
| | - Seita Osawa
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyoto, 610-0394, Japan
| | - Tetsuya Izawa
- Faculty of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyoto, 610-0394, Japan
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyoto, 610-0394, Japan
| |
Collapse
|
5
|
Cefis M, Chaney R, Wirtz J, Méloux A, Quirié A, Leger C, Prigent-Tessier A, Garnier P. Molecular mechanisms underlying physical exercise-induced brain BDNF overproduction. Front Mol Neurosci 2023; 16:1275924. [PMID: 37868812 PMCID: PMC10585026 DOI: 10.3389/fnmol.2023.1275924] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Accumulating evidence supports that physical exercise (EX) is the most effective non-pharmacological strategy to improve brain health. EX prevents cognitive decline associated with age and decreases the risk of developing neurodegenerative diseases and psychiatric disorders. These positive effects of EX can be attributed to an increase in neurogenesis and neuroplastic processes, leading to learning and memory improvement. At the molecular level, there is a solid consensus to involve the neurotrophin brain-derived neurotrophic factor (BDNF) as the crucial molecule for positive EX effects on the brain. However, even though EX incontestably leads to beneficial processes through BDNF expression, cellular sources and molecular mechanisms underlying EX-induced cerebral BDNF overproduction are still being elucidated. In this context, the present review offers a summary of the different molecular mechanisms involved in brain's response to EX, with a specific focus on BDNF. It aims to provide a cohesive overview of the three main mechanisms leading to EX-induced brain BDNF production: the neuronal-dependent overexpression, the elevation of cerebral blood flow (hemodynamic hypothesis), and the exerkine signaling emanating from peripheral tissues (humoral response). By shedding light on these intricate pathways, this review seeks to contribute to the ongoing elucidation of the relationship between EX and cerebral BDNF expression, offering valuable insights into the potential therapeutic implications for brain health enhancement.
Collapse
Affiliation(s)
- Marina Cefis
- Département des Sciences de l’Activité Physique, Faculté des Sciences, Université du Québec à Montréal, Montreal, QC, Canada
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Remi Chaney
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Julien Wirtz
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Alexandre Méloux
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Aurore Quirié
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Clémence Leger
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Anne Prigent-Tessier
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
| | - Philippe Garnier
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences de Santé, Dijon, France
- Département Génie Biologique, Institut Universitaire de Technologie, Dijon, France
| |
Collapse
|
6
|
Fang J, Zhang X, Chen X, Wang Z, Zheng S, Cheng Y, Liu S, Hao L. The role of insulin-like growth factor-1 in bone remodeling: A review. Int J Biol Macromol 2023; 238:124125. [PMID: 36948334 DOI: 10.1016/j.ijbiomac.2023.124125] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023]
Abstract
Insulin-like growth factor (IGF)-1 is a polypeptide hormone with vital biological functions in bone cells. The abnormal expression of IGF-1 has a serious effect on bone growth, particularly bone remodeling. Evidence from animal models and human disease suggested that both IGF-1 deficiency and excess cause changes in bone remodeling equilibrium, resulting in profound alterations in bone mass and development. Here, we first introduced the functions and mechanisms of the members of IGFs in bone. Subsequently, the critical role of IGF-1 in the process of bone remodeling were emphasized from the aspects of bone resorption and bone formation respectively. This review explains the mechanism of IGF-1 in maintaining bone mass and bone homeostasis to a certain extent and provides a theoretical basis for further research.
Collapse
Affiliation(s)
- Jiayuan Fang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Xunming Zhang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Xi Chen
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Zhaoguo Wang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Shuo Zheng
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Yunyun Cheng
- College of Public Health, Jilin University, Changchun 130061, China
| | - Songcai Liu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
7
|
Esposito A, Klüppel M, Wilson BM, Meka SRK, Spagnoli A. CXCR4 mediates the effects of IGF-1R signaling in rodent bone homeostasis and fracture repair. Bone 2023; 166:116600. [PMID: 36368465 PMCID: PMC10057209 DOI: 10.1016/j.bone.2022.116600] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/10/2022]
Abstract
Non-union fractures have considerable clinical and economic burdens and yet the underlying pathogenesis remains largely undetermined. The fracture healing process involves cellular differentiation, callus formation and remodeling, and implies the recruitment and differentiation of mesenchymal stem cells that are not fully characterized. C-X-C chemokine receptor 4 (CXCR4) and Insulin-like growth factor 1 receptor (IGF-1R) are expressed in the fracture callus, but their interactions still remain elusive. We hypothesized that the regulation of CXCR4 by IGF-1R signaling is essential to maintain the bone homeostasis and to promote fracture repair. By using a combination of in vivo and in vitro approaches, we found that conditional ablation of IGF-1R in osteochondroprogenitors led to defects in bone formation and mineralization that associated with altered expression of CXCR4 by a discrete population of endosteal cells. These defects were corrected by AMD3100 (a CXCR4 antagonist). Furthermore, we found that the inducible ablation of IGF-1R in osteochondroprogenitors led to fracture healing failure, that associated with an altered expression of CXCR4. In vivo AMD3100 treatment improved fracture healing and normalized CXCR4 expression. Moreover, we determined that these effects were mediated through the IGF-1R/Insulin receptor substrate 1 (IRS-1) signaling pathway. Taken together, our studies identified a novel population of endosteal cells that is functionally regulated through the modulation of CXCR4 by IGF-1R signaling, and such control is essential in bone homeostasis and fracture healing. Knowledge gained from these studies has the potential to accelerate the development of novel therapeutic interventions by targeting CXCR4 signaling to treat non-unions.
Collapse
Affiliation(s)
- Alessandra Esposito
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Michael Klüppel
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Brittany M Wilson
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Sai R K Meka
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Anna Spagnoli
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA; Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
8
|
Chen Y, Rui Y, Wang Y, Zhao M, Liu T, Zhuang J, Feng F. Dietary glycerol monolaurate improves bone growth through the regulation of IGF-1 in the fish model. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Bone loss is ameliorated by fecal microbiota transplantation through SCFA/GPR41/ IGF1 pathway in sickle cell disease mice. Sci Rep 2022; 12:20638. [PMID: 36450880 PMCID: PMC9712597 DOI: 10.1038/s41598-022-25244-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Bone loss is common in sickle cell disease (SCD), but the molecular mechanisms is unclear. Serum insulin-like growth factor 1 (IGF1) was low in SCD subjects and SCD mice. To determine if decreased IGF1 associated with low bone mass in SCD is due to reduced SCFA production by gut microbiota, we performed reciprocal fecal microbiota transplantation (FMT) between healthy control (Ctrl) and SCD mice. uCT and histomorphometry analysis of femur showed decreased bone volume/total volume (BV/TV), trabecular number (Tb.N), osteoblast surface/bone surface (Ob.S/BS), mineralizing surface/ bone surface (MS/BS), inter-label thickness (Ir.L.Th) in SCD mice were significantly improved after receiving Ctrl feces. Bone formation genes Alp, Col1, Runx2, and Dmp1 from SCD mice were significantly decreased and were rescued after FMT from Ctrl feces. Transplantation of Ctrl feces increased the butyrate, valerate, and propionate levels in cecal content of SCD mice. Decreased G-coupled protein receptors 41 and 43 (GPR41 and GPR43) mRNA in tibia and lower IGF1 in bone and serum of SCD mice were partially restored after FMT from Ctrl feces. These data indicate that the healthy gut microbiota of Ctrl mice is protective for SCD bone loss through regulating IGF1 in response to impaired bacterial metabolites SCFAs.
Collapse
|
10
|
Tiffany AS, Harley BAC. Growing Pains: The Need for Engineered Platforms to Study Growth Plate Biology. Adv Healthc Mater 2022; 11:e2200471. [PMID: 35905390 PMCID: PMC9547842 DOI: 10.1002/adhm.202200471] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/11/2022] [Indexed: 01/27/2023]
Abstract
Growth plates, or physis, are highly specialized cartilage tissues responsible for longitudinal bone growth in children and adolescents. Chondrocytes that reside in growth plates are organized into three distinct zones essential for proper function. Modeling key features of growth plates may provide an avenue to develop advanced tissue engineering strategies and perspectives for cartilage and bone regenerative medicine applications and a platform to study processes linked to disease progression. In this review, a brief introduction of the growth plates and their role in skeletal development is first provided. Injuries and diseases of the growth plates as well as physiological and pathological mechanisms associated with remodeling and disease progression are discussed. Growth plate biology, namely, its architecture and extracellular matrix organization, resident cell types, and growth factor signaling are then focused. Next, opportunities and challenges for developing 3D biomaterial models to study aspects of growth plate biology and disease in vitro are discussed. Finally, opportunities for increasingly sophisticated in vitro biomaterial models of the growth plate to study spatiotemporal aspects of growth plate remodeling, to investigate multicellular signaling underlying growth plate biology, and to develop platforms that address key roadblocks to in vivo musculoskeletal tissue engineering applications are described.
Collapse
Affiliation(s)
- Aleczandria S. Tiffany
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Brendan A. C. Harley
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
11
|
Wang JJ, Xue Q, Wang YJ, Zhang M, Chen YJ, Zhang Q. Engineered Chimeric Peptides with IGF-1 and Titanium-Binding Functions to Enhance Osteogenic Differentiation In Vitro under T2DM Condition. MATERIALS 2022; 15:ma15093134. [PMID: 35591468 PMCID: PMC9105221 DOI: 10.3390/ma15093134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/30/2022] [Accepted: 04/24/2022] [Indexed: 02/06/2023]
Abstract
Due to the complexity of the biomolecules and titanium (Ti) combination, it is a challenge to modify the implant surface with biological cytokines. The study proposed a new method for immobilizing cytokines on implant surface to solve the problem of low osseointegration under type 2 diabetes mellitus (T2DM) condition. This new modified protein that connected Ti-binding artificial aptamer minTBP-1 with Insulin-like growth factor I (IGF-I), had a special strong affinity with Ti and a therapeutic effect on diabetic bone loss. According to the copies of minTBP-1, three proteins were prepared, namely minTBP-1-IGF-1, 2minTBP-1-IGF-1 and 3minTBP-1-IGF-1. Compared with the other modified proteins, 3minTBP-1-IGF-1 adsorbed most on the Ti surface. Additionally, this biointerface demonstrated the most uniform state and the strongest hydrophilicity. In vitro results showed that the 3minTBP-1-IGF-1 significantly increased the adhesion, proliferation, and mineralization activity of osteoblasts under T2DM conditions when compared with the control group and the other modified IGF-1s groups. Real-time PCR assay results confirmed that 3minTBP-1-IGF-1 could effectively promote the expression of osteogenic genes, that is, ALP, BMP-2, OCN, OPG, and Runx2. All these data indicated that the 3minTBP-1-IGF-1 had the most efficacious effect in promoting osteoblasts osteogenesis in diabetic conditions, and may be a promising option for further clinical use.
Collapse
Affiliation(s)
| | | | | | - Min Zhang
- Correspondence: (M.Z.); (Y.-J.C.); (Q.Z.)
| | | | - Qian Zhang
- Correspondence: (M.Z.); (Y.-J.C.); (Q.Z.)
| |
Collapse
|
12
|
Jia X, Yang R, Li J, Zhao L, Zhou X, Xu X. Gut-Bone Axis: A Non-Negligible Contributor to Periodontitis. Front Cell Infect Microbiol 2021; 11:752708. [PMID: 34869062 PMCID: PMC8637199 DOI: 10.3389/fcimb.2021.752708] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is a polymicrobial infectious disease characterized by alveolar bone loss. Systemic diseases or local infections, such as diabetes, postmenopausal osteoporosis, obesity, and inflammatory bowel disease, promote the development and progression of periodontitis. Accumulating evidences have revealed the pivotal effects of gut microbiota on bone health via gut-alveolar-bone axis. Gut pathogens or metabolites may translocate to distant alveolar bone via circulation and regulate bone homeostasis. In addition, gut pathogens can induce aberrant gut immune responses and subsequent homing of immunocytes to distant organs, contributing to pathological bone loss. Gut microbial translocation also enhances systemic inflammation and induces trained myelopoiesis in the bone marrow, which potentially aggravates periodontitis. Furthermore, gut microbiota possibly affects bone health via regulating the production of hormone or hormone-like substances. In this review, we discussed the links between gut microbiota and periodontitis, with a particular focus on the underlying mechanisms of gut-bone axis by which systemic diseases or local infections contribute to the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Xiaoyue Jia
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ran Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Wang S, Cheng Y, Liu S, Xu Y, Gao Y, Wang C, Wang Z, Feng T, Lu G, Song J, Xia P, Hao L. A synonymous mutation in IGF-1 impacts the transcription and translation process of gene expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1446-1465. [PMID: 34938600 PMCID: PMC8655398 DOI: 10.1016/j.omtn.2021.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022]
Abstract
Insulin-like growth factor 1 (IGF-1) is considered to be a crucial gene in the animal development of bone and body size. In this study, a unique synonymous mutation (c.258 A > G) of the IGF-1 gene was modified with an adenine base editor to observe the growth and developmental situation of mutant mice. Significant expression differences and molecular mechanisms among vectors with different alanine synonymous codons were explored. Although modification of a single synonymous codon rarely interferes with animal phenotypes, we observed that the expression and secretion of IGF-1 were different between 8-week-old homozygous (Ho) and wild-type (WT) mice. In addition, the IGF-1 with optimal codon combinations showed a higher expression content than other codon combination modes at both transcription and translation levels and performed proliferation promotion. The gene stability and translation initiation efficiency also changed significantly. Our findings illustrated that the synonymous mutation altered the IGF-1 gene expression in individual mice and suggested that the synonymous mutation affected the IGF-1 expression and biological function through the transcription and translation processes.
Collapse
Affiliation(s)
- S.Y. Wang
- College of Animal Science, Jilin University, Changchun 130062, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Y.Y. Cheng
- Ministry of Health Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - S.C. Liu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Y.X. Xu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Y. Gao
- College of Animal Science, Jilin University, Changchun 130062, China
| | - C.L. Wang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Z.G. Wang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - T.Q. Feng
- College of Animal Science, Jilin University, Changchun 130062, China
| | - G.H. Lu
- College of Animal Science, Jilin University, Changchun 130062, China
| | - J. Song
- College of Animal Science, Jilin University, Changchun 130062, China
| | - P.J. Xia
- College of Animal Science, Jilin University, Changchun 130062, China
| | - L.L. Hao
- College of Animal Science, Jilin University, Changchun 130062, China
- Corresponding author: Linlin Hao, College of Animal Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
14
|
Joshi AS, Hatch NE, Hayami T, Jheon A, Kapila S. IGF-1 TMJ injections enhance mandibular growth and bone quality in juvenile rats. Orthod Craniofac Res 2021; 25:183-191. [PMID: 34324793 PMCID: PMC8799756 DOI: 10.1111/ocr.12524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Dentofacial orthopaedic treatment of mandibular hypoplasia has unpredictable skeletal outcomes. Although several biomodulators including insulin-like growth factor 1 (IGF-1) are known to contribute to chondrocyte proliferation, their efficacy in modulating mandibular growth has not been validated. The aim of this study was to determine the effect of locally delivered IGF-1 on mandibular growth and condylar bone quality/quantity in juvenile rats. SETTING AND SAMPLE POPULATION Institutional vivarium using twenty-four 35-day-old male Sprague-Dawley rats. METHODS PBS or 40 µg/kg (low-dose) IGF-1 or 80 µg/kg (high-dose) IGF-1 was injected bilaterally into the temporomandibular joints of the rats at weekly intervals for four weeks. Cephalometric and micro-computed tomography measurements were used to determine mandibular dimensions. Bone and tissue mineral density, volume fraction and mineral content were determined, and serum IGF-1 concentrations assayed. RESULTS Intra-articular administration of high-dose IGF-1 contributed to a significant 6%-12% increase in mandibular body and condylar length compared to control and low-dose IGF-1-treated animals. Additionally, IGF-1 treatment resulted in a significant decrease in the angulation of the lower incisors to mandibular plane. Condylar bone volume, bone volume fraction, mineral content and mineral density were significantly increased with high-dose IGF-1 relative to control and low-dose IGF-1 groups. Serum IGF-1 levels were similar between all groups confirming limited systemic exposure to the locally administered IGF-1. CONCLUSION Local administration of high-dose 80 µg/kg IGF-1 enhances mandibular growth and condylar bone quality and quantity in growing rats. The findings have implications for modulating mandibular growth and potentially enhancing condylar bone health and integrity.
Collapse
Affiliation(s)
- Ashwini S Joshi
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Nan E Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Takayuki Hayami
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Andrew Jheon
- Division of Orthodontics, University of California San Francisco, San Francisco, CA, USA
| | - Sunil Kapila
- Division of Orthodontics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
15
|
Khattab MS, AbuBakr HO, El Iraqi KG, AbdElKader NA, Kamel MM, Salem KH, Steitz J, Afify M. Intra-iliac bone marrow injection as a novel alternative to intra-tibial inoculation in rat model. Stem Cell Res Ther 2021; 12:336. [PMID: 34112243 PMCID: PMC8194056 DOI: 10.1186/s13287-021-02413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background Intra-bone marrow injection (IBMI) in rats is adopted in many studies for stem cell and hematopoietic cell transplantation. IBMI in the tibia or the femur results in severe distress to the animal. Therefore, this study aims to evaluate intra-iliac injections as an alternative approach for IBMI. Methods Twenty-seven Sprague Dawley rats were assigned into 3 groups, 9 rats each, for 4 weeks. The control group rats were not injected. Tibia group rats were injected intra-tibial and the iliac group rats were injected intra-iliac with saline. Behavioral, radiological, histopathological, and stress evaluation was performed. Total bilirubin, cortisol, and insulin-like growth factor-1 (IGF1) were measured. Results Behavioral measurements revealed deviation compared to control, in both injected groups, on the 1st and 2nd week. By the 3rd week, it was equivalent to control in the iliac group only. Bilirubin and cortisol levels were increased by intra-tibial injection compared to intra-iliac injection. The IGF-1 gene expression increased compared to control at 1st and 2nd weeks in intra-iliac injection and decreased by intra-tibial injection at 2nd week. The thickness of the iliac crest was not different from the control group, whereas there were significant differences between the control and tibia groups. Healing of the iliac crest was faster compared to the tibia. In the 3rd week, the tibia showed fibrosis at the site of injection whereas the iliac crest showed complete bone reconstruction. Conclusion Intra-iliac injections exert less distress on animals, and by 3 weeks, they regained their normal activity in comparison to intra-tibial injections.
Collapse
Affiliation(s)
- Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Huda O AbuBakr
- Department of Biochemistry and Molecular Biology, Cairo University, Giza, Egypt
| | - Kassem G El Iraqi
- Department of Veterinary Hygiene and Management, Cairo University, Giza, Egypt
| | - Naglaa A AbdElKader
- Department of Surgery, Anesthesiology & Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mervat M Kamel
- Department of Veterinary Hygiene and Management, Cairo University, Giza, Egypt
| | - Khaled Hamed Salem
- Department of Orthopedic Surgery, Faculty of Medicine, Cairo University, Giza, Egypt.,Department of Orthopedic Surgery, RWTH Aachen University Faculty of Medicine, Aachen, Germany
| | - Julia Steitz
- Institute for Laboratory Animal Science, RWTH Aachen University Faculty of Medicine, Aachen, Germany
| | - Mamdouh Afify
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
16
|
Tu Y, Yang R, Xu X, Zhou X. The microbiota-gut-bone axis and bone health. J Leukoc Biol 2021; 110:525-537. [PMID: 33884666 DOI: 10.1002/jlb.3mr0321-755r] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/16/2021] [Accepted: 04/05/2021] [Indexed: 02/05/2023] Open
Abstract
The gastrointestinal tract is colonized by trillions of microorganisms, consisting of bacteria, fungi, and viruses, known as the "second gene pool" of the human body. In recent years, the microbiota-gut-bone axis has attracted increasing attention in the field of skeletal health/disorders. The involvement of gut microbial dysbiosis in multiple bone disorders has been recognized. The gut microbiota regulates skeletal homeostasis through its effects on host metabolism, immune function, and hormonal secretion. Owing to the essential role of the gut microbiota in skeletal homeostasis, novel gut microbiota-targeting therapeutics, such as probiotics and prebiotics, have been proven effective in preventing bone loss. However, more well-controlled clinical trials are still needed to evaluate the long-term efficacy and safety of these ecologic modulators in the treatment of bone disorders.
Collapse
Affiliation(s)
- Ye Tu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Ran Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
17
|
Xiang C, Tenkumo T, Ogawa T, Kanda Y, Nakamura K, Shirato M, Sokolova V, Epple M, Kamano Y, Egusa H, Sasaki K. Gene transfection achieved by utilizing antibacterial calcium phosphate nanoparticles for enhanced regenerative therapy. Acta Biomater 2021; 119:375-389. [PMID: 33166711 DOI: 10.1016/j.actbio.2020.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Protamine-coated multi-shell calcium phosphate (CaP) was developed as a non-viral vector for tissue regeneration therapy. CaP nanoparticles loaded with different amounts of plasmid DNA encoding bone morphogenetic protein 2 (BMP-2) and insulin-like growth factor 1 (IGF-1) were used to treat MC3T3E1 cells, and the yield of the released BMP-2 or IGF-1 was measured using ELISA 3 days later. Collagen scaffolds containing CaP nanoparticles were implanted into rat cranial bone defects, and BMP-2 and IGF-1 yields, bone formation, and bone mineral density enhancement were evaluated 28 days after gene transfer. The antibacterial effects of CaP nanoparticles against Streptococcus mutans and Aggregatibacter actinomycetemcomitans increased with an increase in the protamine dose, while they were lower for Staphylococcus aureus and Porphyromonas gingivalis. In the combination treatment with BMP-2 and IGF-1, the concentration ratio of BMP-2 and IGF-1 is an important factor affecting bone formation activity. The calcification activity and OCN mRNA of MC3T3E1 cells subjected to a BMP-2:IGF-1 concentration ratio of 1:4 was higher at 14 days. During gene transfection treatment, BMP-2 and IGF-1 were released simultaneously after gene transfer; the loaded dose of the plasmid DNA encoding IGF-1 did not impact the BMP-2 or IGF-1 yield or new bone formation ratio in vitro and in vivo. In conclusion, two growth factor-releasing systems were developed using an antibacterial gene transfer vector, and the relationship between the loaded plasmid DNA dose and resultant growth factor yield was determined in vitro and in vivo.
Collapse
|
18
|
Long Z, Wu J, Xiang W, Zeng Z, Yu G, Li J. Exploring the Mechanism of Icariin in Osteoporosis Based on a Network Pharmacology Strategy. Med Sci Monit 2020; 26:e924699. [PMID: 33230092 PMCID: PMC7697664 DOI: 10.12659/msm.924699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/11/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND With the aging of the world's population, the incidence of osteoporosis (OP) has become a public health problem of worldwide concern. Research shows that icariin may have a therapeutic effect on OP. MATERIAL AND METHODS PharmMapper was utilized to predict the potential targets of icariin. GeneCards and Online Mendelian Inheritance in Man (OMIM) were used for the collection of OP genes. The STRING database was utilized to obtain the protein-protein interaction (PPI) data. We used Cytoscape 3.7.2 to construct and analyze the networks. The genes and targets in the networks were input into the Database for Annotation, Visualization and Integrated Discovery (DAVID) to undergo Gene Ontology (GO) and pathway enrichment analysis. Finally, animal experiments were performed to verify the prediction results of this study. RESULTS A total of 297 icariin potential targets and 262 OP genes were obtained, and an icariin-OP PPI network was constructed and analyzed. The results of the GO enrichment analysis showed that icariin can regulate the steroid hormone-mediated signaling pathway, skeletal system development, extracellular space, cytosol, and steroid hormone receptor activity. The results of the pathway enrichment analysis showed that icariin can regulate osteoclast differentiation, FoxO, estrogen, and PPAR signaling pathways. The results of the experiments showed that icariin can increase estradiol, ß-catenin, and Receptor Activator of Nuclear Factor-к B Ligand (RANKL)/osteoprotegerin (OPG) ratio in postmenopausal OP rats (P<0.05). CONCLUSIONS This research found that the icariin can regulate OP-related biological processes, cell components, molecular functions, and signaling pathways.
Collapse
Affiliation(s)
- Zhiyong Long
- Shantou University Medical College, Shantou University, Shantou, Guangdong, P.R. China
- Department of Rehabilitation Medicine, Institute of Geriatric Medicine, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, Guangdong, P.R. China
| | - Jiamin Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Wang Xiang
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, P.R. China
| | - Zhican Zeng
- Tianjin Medical University, Tianjin, P.R. China
| | - Ganpeng Yu
- Department of Orthopaedics, People’s Hospital of Ningxiang City, Ningxiang, Hunan, P.R. China
| | - Jun Li
- Department of Orthopaedics, People’s Hospital of Ningxiang City, Ningxiang, Hunan, P.R. China
| |
Collapse
|
19
|
Knuth MM, Mahapatra D, Jima D, Wan D, Hammock BD, Law M, Kullman SW. Vitamin D deficiency serves as a precursor to stunted growth and central adiposity in zebrafish. Sci Rep 2020; 10:16032. [PMID: 32994480 PMCID: PMC7524799 DOI: 10.1038/s41598-020-72622-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022] Open
Abstract
Emerging evidence demonstrates the importance of sufficient vitamin D (1α, 25-dihydroxyvitamin D3) levels during early life stage development with deficiencies associated with long-term effects into adulthood. While vitamin D has traditionally been associated with mineral ion homeostasis, accumulating evidence suggests non-calcemic roles for vitamin D including metabolic homeostasis. In this study, we examined the hypothesis that vitamin D deficiency (VDD) during early life stage development precedes metabolic disruption. Three dietary cohorts of zebrafish were placed on engineered diets including a standard laboratory control diet, a vitamin D null diet, and a vitamin D enriched diet. Zebrafish grown on a vitamin D null diet between 2-12 months post fertilization (mpf) exhibited diminished somatic growth and enhanced central adiposity associated with accumulation and enlargement of visceral and subcutaneous adipose depots indicative of both adipocyte hypertrophy and hyperplasia. VDD zebrafish exhibited elevated hepatic triglycerides, attenuated plasma free fatty acids and attenuated lipoprotein lipase activity consistent with hallmarks of dyslipidemia. VDD induced dysregulation of gene networks associated with growth hormone and insulin signaling, including induction of suppressor of cytokine signaling. These findings indicate that early developmental VDD impacts metabolic health by disrupting the balance between somatic growth and adipose accumulation.
Collapse
Affiliation(s)
- Megan M Knuth
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, NC, 27695-7633, USA.
| | - Debabrata Mahapatra
- Comparative Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| | - Dereje Jima
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27606, USA
| | - Debin Wan
- Department of Entomology and Nematology and University of California Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and University of California Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, USA
| | - Mac Law
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| | - Seth W Kullman
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, NC, 27695-7633, USA.
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27606, USA.
| |
Collapse
|
20
|
Wu L, Zhang G, Guo C, Pan Y. Intracellular Ca2+ signaling mediates IGF-1-induced osteogenic differentiation in bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 2020; 527:200-206. [DOI: 10.1016/j.bbrc.2020.04.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/12/2020] [Indexed: 12/20/2022]
|
21
|
Bahamonde M, Misra M. Potential applications for rhIGF-I: Bone disease and IGFI. Growth Horm IGF Res 2020; 52:101317. [PMID: 32252004 PMCID: PMC7231643 DOI: 10.1016/j.ghir.2020.101317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/09/2020] [Accepted: 03/21/2020] [Indexed: 12/18/2022]
Abstract
Growth hormone (GH) and insulin like growth factor-I (IGFI) are key bone trophic hormones, whose rising levels during puberty are critical for pubertal bone accrual. Conditions of GH deficiency and genetic resistance impact cortical and trabecular bone deleteriously with reduced estimates of bone strength. In humans, conditions of undernutrition (as in anorexia nervosa (AN), or subsequent to chronic illnesses) are associated with low IGF-I levels, which correlate with disease severity, and also with lower bone mineral density (BMD), impaired bone structure and lower strength estimates. In adolescents and adults with AN, studies have demonstrated a nutritionally acquired GH resistance with low IGF-I levels despite high concentrations of GH. IGF-I levels go up with increasing body weight, and are associated with rising levels of bone turnover markers. In short-term studies lasting 6-10 days, recombinant human IGF-I (rhIGF-I) administration in physiologic replacement doses normalized IGF-I levels and increased levels of bone formation markers in both adults and adolescents with AN. In a randomized controlled trial in adults with AN in which participants were randomized to one of four arms: (i) rhIGF-I with oral estrogen-progesterone (EP), (ii) rhIGF-I alone, (iii) EP alone, or (iv) neither for 9 months, a significant increase in bone formation markers was noted in the groups that received rhIGF-I, and a significant decrease in bone resorption markers in the groups that received EP. The group that received both rhIGF-I and EP had a significant increase in bone density at the spine and hip compared to the group that received neither. Side effects were minimal, with no documented fingerstick glucose of <50 mg/dl. These data thus suggest a potential role for rhIGF-I administration in optimizing bone accrual in states of undernutrition associated with low IGF-I.
Collapse
Affiliation(s)
- Marisol Bahamonde
- Department of Pediatrics, Universidad San Francisco de Quito (USFQ), Cumbayá, Ecuador
| | - Madhusmita Misra
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children, USA; Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
22
|
Zhang Z, Cao Y, Tao Y, E M, Tang J, Liu Y, Li F. Sulfonylurea and fracture risk in patients with type 2 diabetes mellitus: A meta-analysis. Diabetes Res Clin Pract 2020; 159:107990. [PMID: 31866530 DOI: 10.1016/j.diabres.2019.107990] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/03/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
AIMS This meta-analysis was conducted to investigate the fracture risk among patients with T2DM treated with sulfonylurea. METHODS The PubMed and other databases were searched for eligible studies. Both randomized controlled trials and observational studies that compared the fracture risk of sulfonylurea to other hypoglycemic agents were included. Pooled risk ratios and 95% confidence intervals were calculated. Subgroup analysis and meta-regression analyses were conducted to explore the source of heterogeneity. RESULTS A total of 11 studies involving 255,644 individuals were included in our meta-analysis. In comparing sulfonylurea users with patients who had not taken sulfonylurea, the pooled risk ratio for developing fracture was 1.14 (95% confifidence interval, 1.08-1.19). In subgroup analyses, the pooled risk ratio of bone fracture in patients receiving sulfonylurea versus thiazolidinedione, metformin and insulin was 0.90 (95% CI, 0.76-1.06), 1.25 (95% CI, 1.18-1.32) and 0.81 (95% CI, 0.74-0.89) respectively. Meta regression showed that age and gender were not related to the effect of sulfonylurea on fracture. CONCLUSIONS Sulfonylurea use was associated with 14% increase in the risk of developing fracture in T2DM. The risk of fracture caused by sulfonylurea was similar to thiazolidinedione, higher than metformin and lower than insulin.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Endocrinology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yang Cao
- Department of Endocrinology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yujia Tao
- Department of Cardiology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Meng E
- Yangzhou Center for Disease Control and Prevention, Yang Zhou, China
| | - Jiahao Tang
- Department of Endocrinology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yongcui Liu
- The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Fangping Li
- Department of Endocrinology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
23
|
Disser NP, Sugg KB, Talarek JR, Sarver DC, Rourke BJ, Mendias CL. Insulin-like growth factor 1 signaling in tenocytes is required for adult tendon growth. FASEB J 2019; 33:12680-12695. [PMID: 31536390 DOI: 10.1096/fj.201901503r] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tenocytes serve to synthesize and maintain collagen fibrils and other extracellular matrix proteins in tendon. Despite the high prevalence of tendon injury, the underlying biologic mechanisms of postnatal tendon growth and repair are not well understood. IGF1 plays an important role in the growth and remodeling of numerous tissues but less is known about IGF1 in tendon. We hypothesized that IGF1 signaling is required for proper tendon growth in response to mechanical loading through regulation of collagen synthesis and cell proliferation. To test this hypothesis, we conditionally deleted the IGF1 receptor (IGF1R) in scleraxis (Scx)-expressing tenocytes using a tamoxifen-inducible Cre-recombinase system and caused tendon growth in adult mice via mechanical overload of the plantaris tendon. Compared with control Scx-expressing IGF1R-positive (Scx:IGF1R+) mice, in which IGF1R is present in tenocytes, mice that lacked IGF1R in their tenocytes [Scx-expressing IGF1R-negative (Scx:IGF1RΔ) mice] demonstrated reduced cell proliferation and smaller tendons in response to mechanical loading. Additionally, we identified that both the PI3K/protein kinase B and ERK pathways are activated downstream of IGF1 and interact in a coordinated manner to regulate cell proliferation and protein synthesis. These studies indicate that IGF1 signaling is required for proper postnatal tendon growth and support the potential use of IGF1 in the treatment of tendon disorders.-Disser, N. P., Sugg, K. B., Talarek, J. R., Sarver, D. C., Rourke, B. J., Mendias, C. L. Insulin-like growth factor 1 signaling in tenocytes is required for adult tendon growth.
Collapse
Affiliation(s)
| | - Kristoffer B Sugg
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Section of Plastic and Reconstructive Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jeffrey R Talarek
- Hospital for Special Surgery, New York, New York, USA.,Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Dylan C Sarver
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Brennan J Rourke
- Hospital for Special Surgery, New York, New York, USA.,Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Christopher L Mendias
- Hospital for Special Surgery, New York, New York, USA.,Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
24
|
de Sousa Gomes P, Daugela P, Poskevicius L, Mariano L, Fernandes MH. Molecular and Cellular Aspects of Socket Healing in the Absence and Presence of Graft Materials and Autologous Platelet Concentrates: a Focused Review. J Oral Maxillofac Res 2019; 10:e2. [PMID: 31620264 PMCID: PMC6788423 DOI: 10.5037/jomr.2019.10302] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The present manuscript aims to critically detail the physiologic process of socket healing, in the absence or presence of grafting materials or platelet concentrates, addressing the associated molecular and cellular events that culminate in the restoration of the lost tissue architecture and functionality. MATERIAL AND METHODS An electronic search in the National Library of Medicine database MEDLINE through its online site PubMed and Web of Science from inception until May 2019 was conducted to identify articles concerning physiologic process of socket healing, in the absence or presence of grafting materials or platelet concentrates. The search was restricted to English language articles without time restriction. Additionally, a hand search was carried out in oral surgery, periodontology and dental implants related journals. RESULTS In total, 122 literature sources were obtained and reviewed. The detailed biological events, at the molecular and cellular level, that occur in the alveolus after tooth extraction and socket healing process modulated by grafting materials or autologous platelet concentrates were presented as two entities. CONCLUSIONS Tooth extraction initiates a convoluted set of orderly biological events in the alveolus, aiming wound closure and socket healing. The healing process comprises a wide range of events, regulated by the interplay of cytokines, chemokines and growth factors that determine cellular recruitment, proliferation and differentiation in the healing milieu, in a space- and time-dependent choreographic interplay. Additionally, the healing process may further be modulated by the implantation of grafting materials or autologous platelet concentrates within the tooth socket, aiming to enhance the regenerative outcome.
Collapse
Affiliation(s)
- Pedro de Sousa Gomes
- BoneLab, Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, U. Porto, PortoPortugal.
- LAQV/REQUIMTE, Faculty of Dental Medicine, U. Porto, PortoPortugal.
| | - Povilas Daugela
- Department of Maxillofacial Surgery, Lithuanian University of Health Sciences, KaunasLithuania.
| | - Lukas Poskevicius
- Department of Maxillofacial Surgery, Lithuanian University of Health Sciences, KaunasLithuania.
| | - Lorena Mariano
- BoneLab, Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, U. Porto, PortoPortugal.
| | - Maria Helena Fernandes
- BoneLab, Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, U. Porto, PortoPortugal.
- LAQV/REQUIMTE, Faculty of Dental Medicine, U. Porto, PortoPortugal.
| |
Collapse
|
25
|
Asadollahpour Nanaei H, Ayatollahi Mehrgardi A, Esmailizadeh A. Comparative population genomics unveils candidate genes for athletic performance in Hanoverians. Genome 2019; 62:279-285. [DOI: 10.1139/gen-2018-0151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Equine athletes have a genetic heritage that has been evolved for millions of years, which provides an opportunity to study the genetics of locomotion pattern and performance in mammals. The Hanoverian, a breed originating in Germany, is arguably among the most athletic of horse breeds, as well as possessing a balanced character and beautiful appearance. Here, we compared the whole genomes of Hanoverian with three other horse breeds (Akhal-Teke, Franches-Montagnes, and Standardbred), using the fixation index (Fst) and cross-population composite likelihood ratio (XP-CLR) methods for testing the multi-locus allele frequency differentiation between populations. We identified 299 and 485 positively selected genes using the Fst and XP-CLR methods, respectively. Further functional analyses showed that the ACTA1 gene is potentially involved in athletic performance in the Hanoverian breed, consistent with its role observed in human population. In addition, three other loci on chromosomes 1 and 20 were identified to be potentially involved in equine physical performance. The selected candidate genes identified in this study may be useful in current breeding efforts to develop improved breeds in regard to athletic performance.
Collapse
Affiliation(s)
- Hojjat Asadollahpour Nanaei
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran
| | - Ahmad Ayatollahi Mehrgardi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB 76169-133, Iran
| |
Collapse
|
26
|
Polymorphisms of IGF-IR gene and their association with economic traits in two indigenous Chinese dairy goat breeds. Gene 2019; 695:51-56. [PMID: 30738961 DOI: 10.1016/j.gene.2019.01.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/08/2019] [Accepted: 01/22/2019] [Indexed: 01/08/2023]
Abstract
The insulin like growth factor 1 receptor (IGF-IR) plays an important role in regulating growth and development. To investigate the effects of IGF-IR polymorphisms on the economic traits of dairy goats, polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods were used to screen single nucleotide polymorphisms (SNPs) within 9 IGF-IR fragments in Xinong Saanen dairy goat (XS, n = 268) and Guanzhong dairy goat (GZ, n = 440). Consequently, two SNPs, including NC_007319: g.26688 C>T (Leu 608 Leu) and NC_007319: g.28273 T>C within exon 9 and intron 10 were identified in R8 and R9 loci, respectively. At R8 locus, three genotypes were found, including CC, CT and TT, with genotypic frequencies of 0.11, 0.65 and, 0.24 respectively in XS goats, and 0.13, 0.78 and 0.09 in GZ goats; three genotypes which are C1C1, C1T1 and T1T1 were also found in R9 locus, with the genotypic frequencies of 0.48, 0.20 and 0.32 in XS goats, and 0.43, 0.22 and 0.35 in GZ goats, respectively. Based on χ2 test, both XS and GZ populations were deviated from Hardy-Weinberg equilibrium at above two loci. The association analysis revealed that XS goats with CC genotype at R8 locus had heavier milk density than the CT ones (P < 0.05). At R9 locus, the body height of GZ goats with C1C1 and T1T1 genotypes was significantly higher than those with C1T1 genotype (P < 0.01 or P < 0.05). The individuals of GZ goat with C1C1 genotype had longer body length than those with T1T1 genotype (P < 0.05). The individuals of XS with T1T1 and C1T1 genotypes had higher body height than those with C1C1 genotype (P < 0.05). This study can provide theoretical and practical significances to improve the milk production traits and promote the growth and development in two Chinese indigenous dairy goat breeds.
Collapse
|
27
|
Chen Y, Lv H, Li L, Wang E, Zhang L, Zhao Q. Expression of PAPP-A2 and IGF Pathway-Related Proteins in the Hip Joint of Normal Rat and Those with Developmental Dysplasia of the Hip. Int J Endocrinol 2019; 2019:7691531. [PMID: 30915115 PMCID: PMC6402211 DOI: 10.1155/2019/7691531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/16/2018] [Accepted: 01/02/2019] [Indexed: 01/21/2023] Open
Abstract
Developmental dysplasia of the hip (DDH) is one of the major causes of child disability and early osteoarthritis. Genetic factors play an important role, but which still remain unclear. Pregnancy-associated plasma protein-A2 (PAPP-A2), a special hydrolase of insulin-like growth factor binding protein-5 (IGFBP-5), has been confirmed to be associated with DDH by previous studies. The aim of this study was firstly, to investigate the expression of PAPP-A2 and insulin-like growth factor (IGF) pathway-related proteins in normal rat's hip joints; secondly, to compare the variations of those proteins between DDH model rats and normal ones. The DDH model was established by swaddling the rat's hind legs in hip adduction and extension position. The hip joints were collected for expression study of fetal rats, normal newborn rats, and DDH model rats. Positive expression of PAPP-A2 and IGF pathway-related proteins was observed in all the hip joints of growing-stage rats. Ultimately, IGF1 was downregulated; insulin-like growth factor 1 receptor (IGF1R) showed an opposite trend in DDH rats when compared with normal group. The PAPP-A2 and IGF pathway-associated proteins may also be involved in the development of the rat's hip joint, which bring the foundation for further revealing the pathogenic mechanism of DDH.
Collapse
Affiliation(s)
- Yufan Chen
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang City 110004, China
| | - Haixiang Lv
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang City 110004, China
| | - Lianyong Li
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang City 110004, China
| | - Enbo Wang
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang City 110004, China
| | - Lijun Zhang
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang City 110004, China
| | - Qun Zhao
- Department of Pediatric Orthopedics, Shengjing Hospital of China Medical University, Shenyang City 110004, China
| |
Collapse
|
28
|
Liso A, Capitanio N, Gerli R, Conese M. From fever to immunity: A new role for IGFBP-6? J Cell Mol Med 2018; 22:4588-4596. [PMID: 30117676 PMCID: PMC6156343 DOI: 10.1111/jcmm.13738] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
Fever is a fundamental response to infection and a hallmark of inflammatory disease, which has been conserved and shaped through millions of years of natural selection. Although fever is able to stimulate both innate and adaptive immune responses, the very nature of all the molecular thermosensors, the timing and the detailed mechanisms translating a physical trigger into a fundamental biological response are incompletely understood. Here we discuss the consequence of hyperthermic stress in dendritic cells (DCs), and how the sole physical input is sensed as an alert stimulus triggering a complex transition in a very narrow temporal window. Importantly, we review recent findings demonstrating the significant and specific changes discovered in gene expression and in the metabolic phenotype associated with hyperthermia in DCs. Furthermore, we discuss the results that support a model based on a thermally induced autocrine signalling, which rewires and sets a metabolism checkpoint linked to immune activation of dendritic cells. Importantly, in this context, we highlight the novel regulatory functions discovered for IGFBP‐6 protein: induction of chemotaxis; capacity to increase oxidative burst and degranulation of neutrophils, ability to induce metabolic changes in DCs. Finally, we discuss the role of IGFBP‐6 in autoimmune disease and how novel mechanistic insights could lead to exploit thermal stress‐related mechanisms in the context of cancer therapy.
Collapse
Affiliation(s)
- Arcangelo Liso
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Roberto Gerli
- Department of Medicine, University of Perugia, Perugia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
29
|
Poinsot P, Schwarzer M, Peretti N, Leulier F. The emerging connections between IGF1, the intestinal microbiome, Lactobacillus strains and bone growth. J Mol Endocrinol 2018; 61:T103-T113. [PMID: 29789323 DOI: 10.1530/jme-17-0292] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 03/29/2018] [Indexed: 12/29/2022]
Abstract
In most animal species, postnatal growth is controlled by conserved insulin/insulin-like growth factor (IGF) signaling. In mammals, juvenile growth is characterized by a longitudinal bone growth resulting from the ossification of the growth plate. This ossification is under IGF1 influence through endocrine and paracrine mechanisms. Moreover, the nutritional status has been largely described as an important factor influencing the insulin/insulin-like growth factor signaling. It is now well established that the gut microbiota modulates the nutrient availability of its host. Hence, studies of the interaction between nutritional status, gut microbiota and bone growth have recently emerged. Here, we review recent findings using experimental models about the impact of gut bacteria on the somatotropic axis and its consequence on the bone growth. We also discuss the perspectives of these studies in opening an entire field for clinical interventions.
Collapse
Affiliation(s)
- Pierre Poinsot
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, Lyon, France
- Univ Lyon, CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon1, INSA Lyon, Charles Merieux Medical School, Oullins, France
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | - Noël Peretti
- Univ Lyon, CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon1, INSA Lyon, Charles Merieux Medical School, Oullins, France
- Departement of Pediatric Nutrition, Hôpital Femme Mère Enfant, Univ Lyon, Hospice Civil de Lyon, Bron, France
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
30
|
Commensal Microbiota Enhance Both Osteoclast and Osteoblast Activities. Molecules 2018; 23:molecules23071517. [PMID: 29937485 PMCID: PMC6100304 DOI: 10.3390/molecules23071517] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/19/2022] Open
Abstract
Recent studies suggest that the commensal microbiota affects not only host energy metabolism and development of immunity but also bone remodeling by positive regulation of osteoclast activity. However, the mechanism of regulation of bone cells by the commensal microbiota has not been elucidated. In this study, 8-week-old specific pathogen-free (SPF) and germ-free (GF) mice were compared in terms of alveolar bones and primary osteoblasts isolated from calvarias. Micro-CT analysis showed that SPF mice had larger body size associated with lower bone mineral density and bone volume fraction in alveolar bones compared with GF mice. Greater numbers of osteoclasts in alveolar bone and higher serum levels of tartrate-resistant acid phosphatase 5b were observed in SPF mice. Tissue extracts from SPF alveolar bone showed higher levels of cathepsin K, indicating higher osteoclast activity. SPF alveolar extracts also showed elevated levels of γ-carboxylated glutamic acid⁻osteocalcin as a marker of mature osteoblasts compared with GF mice. Polymerase chain reaction (PCR) array analysis of RNA directly isolated from alveolar bone showed that in SPF mice, expression of mRNA of osteocalcin, which also acts as an inhibitor of bone mineralization, was strongly enhanced compared with GF mice. Cultured calvarial osteoblasts from SPF mice showed reduced mineralization but significantly enhanced expression of mRNAs of osteocalcin, alkaline phosphatase, insulin-like growth factor-I/II, and decreased ratio of osteoprotegerin/receptor activator of nuclear factor-kappa B ligand compared with GF mice. Furthermore, PCR array analyses of transcription factors in cultured calvarial osteoblasts showed strongly upregulated expression of Forkhead box g1. In contrast, Gata-binding protein 3 was strongly downregulated in SPF osteoblasts. These results suggest that the commensal microbiota prevents excessive mineralization possibly by stimulating osteocalcin expression in osteoblasts, and enhances both osteoblast and osteoclast activity by regulating specific transcription factors.
Collapse
|
31
|
Effects of goat milk fractions on the stability of IGF-I in simulated gastrointestinal conditions. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Ibáñez L, Rouleau M, Wakkach A, Blin-Wakkach C. Gut microbiome and bone. Joint Bone Spine 2018; 86:43-47. [PMID: 29654948 DOI: 10.1016/j.jbspin.2018.02.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2018] [Indexed: 12/19/2022]
Abstract
The gut microbiome is now viewed as a tissue that interacts bidirectionally with the gastrointestinal, immune, endocrine and nervous systems, affecting the cellular responses in numerous organs. Evidence is accumulating of gut microbiome involvement in a growing number of pathophysiological processes, many of which are linked to inflammatory responses. More specifically, data acquired over the last decade point to effects of the gut microbiome on bone mass regulation and on the development of bone diseases (such as osteoporosis) and of inflammatory joint diseases characterized by bone loss. Mice lacking a gut microbiome have bone mass alteration that can be reversed by gut recolonization. Changes in the gut microbiome composition have been reported in mice with estrogen-deficiency osteoporosis and have also been found in a few studies in humans. Probiotic therapy decreases bone loss in estrogen-deficient animals. The effect of the gut microbiome on bone tissue involves complex mechanisms including modulation of CD4+T cell activation, control of osteoclastogenic cytokine production and modifications in hormone levels. This complexity may contribute to explain the discrepancies observed betwwen some studies whose results vary depending on the age, gender, genetic background and treatment duration. Further elucidation of the mechanisms involved is needed. However, the available data hold promise that gut microbiome manipulation may prove of interest in the management of bone diseases.
Collapse
Affiliation(s)
- Lidia Ibáñez
- CNRS UMR7370, LP2M, faculté de médecine, 28, avenue de Valombrose, 06107 Nice cedex 2, France; Université Nice-Sophia-Antipolis, 06100 Nice, France; Department of Pharmacy, Cardenal Herrera-CEU University, 46115 Alfara del Patriarca, València, Spain
| | - Matthieu Rouleau
- CNRS UMR7370, LP2M, faculté de médecine, 28, avenue de Valombrose, 06107 Nice cedex 2, France; Université Nice-Sophia-Antipolis, 06100 Nice, France
| | - Abdelilah Wakkach
- CNRS UMR7370, LP2M, faculté de médecine, 28, avenue de Valombrose, 06107 Nice cedex 2, France; Université Nice-Sophia-Antipolis, 06100 Nice, France
| | - Claudine Blin-Wakkach
- CNRS UMR7370, LP2M, faculté de médecine, 28, avenue de Valombrose, 06107 Nice cedex 2, France; Université Nice-Sophia-Antipolis, 06100 Nice, France.
| |
Collapse
|
33
|
Gilsanz V, Wren TAL, Ponrartana S, Mora S, Rosen CJ. Sexual Dimorphism and the Origins of Human Spinal Health. Endocr Rev 2018; 39:221-239. [PMID: 29385433 PMCID: PMC5888211 DOI: 10.1210/er.2017-00147] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/24/2018] [Indexed: 12/26/2022]
Abstract
Recent observations indicate that the cross-sectional area (CSA) of vertebral bodies is on average 10% smaller in healthy newborn girls than in newborn boys, a striking difference that increases during infancy and puberty and is greatest by the time of sexual and skeletal maturity. The smaller CSA of female vertebrae is associated with greater spinal flexibility and could represent the human adaptation to fetal load in bipedal posture. Unfortunately, it also imparts a mechanical disadvantage that increases stress within the vertebrae for all physical activities. This review summarizes the potential endocrine, genetic, and environmental determinants of vertebral cross-sectional growth and current knowledge of the association between the small female vertebrae and greater risk for a broad array of spinal conditions across the lifespan.
Collapse
Affiliation(s)
- Vicente Gilsanz
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027.,Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027.,Department of Orthopaedic Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Tishya A L Wren
- Department of Orthopaedic Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Skorn Ponrartana
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California 90027
| | - Stefano Mora
- Laboratory of Pediatric Endocrinology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Clifford J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine 04074
| |
Collapse
|
34
|
Dirkes RK, Richard MW, Meers GM, Butteiger DN, Krul ES, Thyfault JP, Rector RS, Hinton PS. Soy Protein Isolate Suppresses Bone Resorption and Improves Trabecular Microarchitecture in Spontaneously Hyperphagic, Rapidly Growing Male OLETF Rats. Curr Dev Nutr 2018; 2:nzy010. [PMID: 30019033 PMCID: PMC6041976 DOI: 10.1093/cdn/nzy010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/27/2017] [Accepted: 01/18/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Traditionally, milk proteins have been recommended for skeletal health; recently, soy proteins have emerged as popular alternatives. Excess adiposity appears detrimental to skeletal health, as obese adolescents have increased fracture rates compared with healthy controls. However, soy protein effects on skeletal health during excess adiposity remain unknown. OBJECTIVE The study objective was to examine the effects of isocaloric diets containing milk protein isolate (MPI), soy protein isolate (SPI), or a 50/50 combination (MIX) as the sole protein source on metabolic health indicators and bone outcomes in rapidly growing, hyperphagic, male Otsuka Long Evans Tokushima Fatty (OLETF) rats. METHODS OLETF rats, aged 4 wk, were randomly assigned to 3 treatment groups (MPI, SPI, or MIX, n = 20 per group) and provided with access to experimental diets ad libitum for 16 wk. RESULTS Body mass did not differ between the groups, but SPI had lower percentage body fat than MPI (P = 0.026). Insulin was lower in MPI than in MIX (P = 0.033) or SPI (P = 0.044), but fasting blood glucose was not different between the groups. SPI significantly reduced serum cholesterol compared with MPI (P = 0.001) and MIX (P = 0.002). N-terminal propeptide of type I collagen (P1NP) was higher in MIX than MPI (P = 0.05); C-terminal telopeptide of type 1 collagen (CTx) was higher in MPI than SPI (P < 0.001) and MIX (P < 0.001); the P1NP to CTx ratio was significantly higher in SPI and MIX than in MPI (P < 0.001). Trabecular separation was reduced in SPI compared with MPI (P = 0.030) and MIX (P = 0.008); trabecular number was increased in SPI compared with MIX (P = 0.038). No differences were seen in cortical geometry and biomechanical properties. CONCLUSIONS In the context of excess adiposity, soy- and milk-based proteins have comparable effects on cortical bone geometry and biomechanical properties, whereas soy-based proteins favorably affect the trabecular microarchitecture, and the combination of both proteins may offer additional benefits to bone remodeling in rapidly growing male OLETF rats.
Collapse
Affiliation(s)
- Rebecca K Dirkes
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
| | - Matthew W Richard
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
| | - Grace M Meers
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
| | | | | | - John P Thyfault
- University of Kansas Medical Center and Kansas City VA, Kansas City, MO
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
| | - Pamela S Hinton
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO
| |
Collapse
|
35
|
Gouveia CHA, Miranda-Rodrigues M, Martins GM, Neofiti-Papi B. Thyroid Hormone and Skeletal Development. VITAMINS AND HORMONES 2018; 106:383-472. [PMID: 29407443 DOI: 10.1016/bs.vh.2017.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thyroid hormone (TH) is essential for skeletal development from the late fetal life to the onset of puberty. During this large window of actions, TH has key roles in endochondral and intramembranous ossifications and in the longitudinal bone growth. There is evidence that TH acts directly in skeletal cells but also indirectly, specially via the growth hormone/insulin-like growth factor-1 axis, to control the linear skeletal growth and maturation. The presence of receptors, plasma membrane transporters, and activating and inactivating enzymes of TH in skeletal cells suggests that direct actions of TH in these cells are crucial for skeletal development, which has been confirmed by several in vitro and in vivo studies, including mouse genetic studies, and clinical studies in patients with resistance to thyroid hormone due to dominant-negative mutations in TH receptors. This review examines progress made on understanding the mechanisms by which TH regulates the skeletal development.
Collapse
Affiliation(s)
- Cecilia H A Gouveia
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Experimental Pathophysiology Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil.
| | | | - Gisele M Martins
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Experimental Pathophysiology Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil; Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Bianca Neofiti-Papi
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Experimental Pathophysiology Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
36
|
Sachse G, Church C, Stewart M, Cater H, Teboul L, Cox RD, Ashcroft FM. FTO demethylase activity is essential for normal bone growth and bone mineralization in mice. Biochim Biophys Acta Mol Basis Dis 2017; 1864:843-850. [PMID: 29203346 PMCID: PMC5798602 DOI: 10.1016/j.bbadis.2017.11.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/20/2017] [Accepted: 11/29/2017] [Indexed: 12/26/2022]
Abstract
The Fto gene locus has been linked to increased body weight
and obesity in human population studies, but the role of the actual FTO protein in
adiposity has remained controversial. Complete loss of FTO protein in mouse and of
FTO function in human patients has multiple and variable effects. To determine which
effects are due to the ability of FTO to demethylate mRNA, we genetically engineered
a mouse with a catalytically inactive form of FTO. Our results demonstrate that FTO
catalytic activity is not required for normal body composition although it is
required for normal body size and viability. Strikingly, it is also essential for
normal bone growth and mineralization, a previously unreported FTO
function. A mouse model for a human lethal FTO catalytic null
mutation was established. Lean/fat body composition and energy metabolism parameters
were unaffected. FTO catalytic activity was required for normal body size
and viability. Lack of FTO enzymatic activity caused substantial bone
demineralization.
Collapse
Affiliation(s)
- Gregor Sachse
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
| | - Chris Church
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire, OX11 0RD, UK.
| | - Michelle Stewart
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire, OX11 0RD, UK.
| | - Heather Cater
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire, OX11 0RD, UK.
| | - Lydia Teboul
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire, OX11 0RD, UK.
| | - Roger D Cox
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire, OX11 0RD, UK.
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK.
| |
Collapse
|
37
|
Adil M, Khan RA, Kalam A, Venkata SK, Kandhare AD, Ghosh P, Sharma M. Effect of anti-diabetic drugs on bone metabolism: Evidence from preclinical and clinical studies. Pharmacol Rep 2017; 69:1328-1340. [DOI: 10.1016/j.pharep.2017.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/25/2017] [Accepted: 05/22/2017] [Indexed: 12/18/2022]
|
38
|
Poudel SB, Bhattarai G, Kook SH, Shin YJ, Kwon TH, Lee SY, Lee JC. Recombinant human IGF-1 produced by transgenic plant cell suspension culture enhances new bone formation in calvarial defects. Growth Horm IGF Res 2017; 36:1-10. [PMID: 28787635 DOI: 10.1016/j.ghir.2017.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 07/20/2017] [Accepted: 07/28/2017] [Indexed: 12/16/2022]
Abstract
Transgenic plant cell suspension culture systems have been utilized extensively as convenient and efficient expression systems for the production of recombinant human growth factors. We produced insulin-like growth factor-1 using a plant suspension culture system (p-IGF-1) and explored its effect on new bone formation in calvarial defects. We also compared the bone regenerating potential of p-IGF-1 with commercial IGF-1 derived from Escherichia coli (e-IGF-1). Male C57BL/6 mice underwent calvarial defect surgery, and the defects were loaded with absorbable collagen sponge (ACS) only (ACS group) or ACS impregnated with 13μg of p-IGF-1 (p-IGF-1 group) or e-IGF-1 (e-IGF-1 group). The sham group did not receive any treatment with ACS or IGFs after surgery. Live μCT and histological analyses showed critical-sized bone defects in the sham group, whereas greater bone formation was observed in the p-IGF-1 and e-IGF-1 groups than the ACS group both 5 and 10weeks after surgery. Bone mineral density, bone volume, and bone surface values were also higher in the IGF groups than in the ACS group. Local delivery of p-IGF-1 or e-IGF-1 more greatly enhanced the expression of osteoblast-specific markers, but inhibited osteoclast formation, in newly formed bone compared with ACS control group. Specifically, p-IGF-1 treatment induced higher expression of alkaline phosphatase, osteocalcin, and osteopontin in the defect site than did e-IGF-1. Furthermore, treatment with p-IGF-1, but not e-IGF-1, increased mineralization of MC3T3-E1 cells, with the attendant upregulation of osteogenic marker genes. Collectively, our findings suggest the potential of p-IGF-1 in promoting the processes required for bone regeneration.
Collapse
Affiliation(s)
- Sher Bahadur Poudel
- Cluster for Craniofacial Development & Regeneration Research, Institute of Oral Biosciences, Chonbuk National University, Jeonju 54896, South Korea
| | - Govinda Bhattarai
- Cluster for Craniofacial Development & Regeneration Research, Institute of Oral Biosciences, Chonbuk National University, Jeonju 54896, South Korea
| | - Sung-Ho Kook
- Cluster for Craniofacial Development & Regeneration Research, Institute of Oral Biosciences, Chonbuk National University, Jeonju 54896, South Korea; Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Chonbuk National University, Jeonju 54896, South Korea
| | - Yun-Ji Shin
- Natural Bio-Materials Inc., Iksan 54631, South Korea
| | - Tae-Ho Kwon
- Natural Bio-Materials Inc., Iksan 54631, South Korea
| | - Seung-Youp Lee
- Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54896, South Korea.
| | - Jeong-Chae Lee
- Cluster for Craniofacial Development & Regeneration Research, Institute of Oral Biosciences, Chonbuk National University, Jeonju 54896, South Korea; Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Chonbuk National University, Jeonju 54896, South Korea.
| |
Collapse
|
39
|
Fu J, Hao L, Tian Y, Liu Y, Gu Y, Wu J. miR-199a-3p is involved in estrogen-mediated autophagy through the IGF-1/mTOR pathway in osteocyte-like MLO-Y4 cells. J Cell Physiol 2017; 233:2292-2303. [PMID: 28708244 DOI: 10.1002/jcp.26101] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/13/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Jiayao Fu
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University; Shanghai Engineering Research Center of Tooth Restoration and Regeneration; Shanghai China
| | - Lingyu Hao
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University; Shanghai Engineering Research Center of Tooth Restoration and Regeneration; Shanghai China
| | - Yawen Tian
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University; Shanghai Engineering Research Center of Tooth Restoration and Regeneration; Shanghai China
| | - Yang Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University; Shanghai Engineering Research Center of Tooth Restoration and Regeneration; Shanghai China
| | - Yijing Gu
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University; Shanghai Engineering Research Center of Tooth Restoration and Regeneration; Shanghai China
| | - Junhua Wu
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University; Shanghai Engineering Research Center of Tooth Restoration and Regeneration; Shanghai China
| |
Collapse
|
40
|
Sun X, Wang H, Huang W, Yu H, Shen T, Song M, Han Y, Li Y, Zhu Y. Inhibition of bone formation in rats by aluminum exposure via Wnt/β-catenin pathway. CHEMOSPHERE 2017; 176:1-7. [PMID: 28249195 DOI: 10.1016/j.chemosphere.2017.02.086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 01/20/2017] [Accepted: 02/15/2017] [Indexed: 06/06/2023]
Abstract
The previous research found that aluminum trichloride (AlCl3) inhibited rat osteoblastic differentiation through inactivation of Wnt/β-catenin signaling pathway in vitro. On that basis, the experiment in vivo was conducted in this study. Rats were orally exposed to 0 (control group) and 0.4 g/L AlCl3 (AlCl3-treated group) for 30, 60, 90 or 120 days, respectively. We found that mRNA expressions of type I collagen and insulin-like growth factor-1, mRNA and protein expressions of Runx2 and survivin, ratio of p-GSK3β/GSK3β and protein expression of β-catenin were all decreased, whereas the mRNA and protein expressions Dkk1 and sFRP1 and the mRNA expressions and activity of Caspase-3 were increased in the AlCl3-treated group compared with the control group with time prolonged. These results suggest that AlCl3 inhibits bone formation and induces bone impairment by inhibiting the Wnt/β-catenin signaling pathway in young growing rats.
Collapse
Affiliation(s)
- Xudong Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Haoran Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Wanyue Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hongyan Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Tongtong Shen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| | - Yanzhu Zhu
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China.
| |
Collapse
|
41
|
Wu H, Wu Z, Li P, Cong Q, Chen R, Xu W, Biswas S, Liu H, Xia X, Li S, Hu W, Zhang Z, Habib SL, Zhang L, Zou J, Zhang H, Zhang W, Li B. Bone Size and Quality Regulation: Concerted Actions of mTOR in Mesenchymal Stromal Cells and Osteoclasts. Stem Cell Reports 2017; 8:1600-1616. [PMID: 28479301 PMCID: PMC5469920 DOI: 10.1016/j.stemcr.2017.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 01/25/2023] Open
Abstract
The bone size and quality, acquired during adolescent growth under the influence of anabolic hormones, growth factors, and nutrients, determine the height and bone stability and forecast osteoporosis risks in late life. Yet bone size and quality control mechanisms remain enigmatic. To study the roles of mammalian target of rapamycin (mTOR) signaling, sensor of growth factors and nutrients, in bone size and quality regulation, we ablated Tsc1, a suppressor of mTOR, in mesenchymal stromal cells (MSCs), monocytes, or their progenies osteoblasts and osteoclasts. mTOR activation in MSCs, but much less in osteoblasts, increased bone width and mass due to MSC hyperproliferation, but decreased bone length and mineral contents due to defective MSC differentiation. mTOR activation promotes bone mineral accretion by inhibiting osteoclast differentiation and activity directly or via coupling with MSCs. Tuberous sclerosis complex patient studies confirmed these findings. Thus, mTOR regulates bone size via MSCs and bone quality by suppressing catabolic activities of osteoclasts.
Collapse
Affiliation(s)
- Hongguang Wu
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhixiang Wu
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Cong
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rongrong Chen
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Wenrui Xu
- Department of Radiology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Soma Biswas
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huijuan Liu
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuechun Xia
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shanshan Li
- Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated with Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Weiwei Hu
- Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated with Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Zhenlin Zhang
- Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated with Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Samy L Habib
- Department of Cellular and Structural Biology, South Texas Veterans Health Care System, San Antonio, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lingli Zhang
- Scientific Research Department, Shanghai University of Sport, 399 Changhai Road, Yangpu District, Shanghai, 200438, China
| | - Jun Zou
- Scientific Research Department, Shanghai University of Sport, 399 Changhai Road, Yangpu District, Shanghai, 200438, China
| | - Hongbing Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Weihong Zhang
- Department of Radiology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Baojie Li
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China; Scientific Research Department, Shanghai University of Sport, 399 Changhai Road, Yangpu District, Shanghai, 200438, China.
| |
Collapse
|
42
|
Siddiqui JA, Partridge NC. Physiological Bone Remodeling: Systemic Regulation and Growth Factor Involvement. Physiology (Bethesda) 2017; 31:233-45. [PMID: 27053737 DOI: 10.1152/physiol.00061.2014] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bone remodeling is essential for adult bone homeostasis. It comprises two phases: bone formation and resorption. The balance between the two phases is crucial for sustaining bone mass and systemic mineral homeostasis. This review highlights recent work on physiological bone remodeling and discusses our knowledge of how systemic and growth factors regulate this process.
Collapse
Affiliation(s)
- Jawed A Siddiqui
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - Nicola C Partridge
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| |
Collapse
|
43
|
Pelosi P, Lapi E, Cavalli L, Verrotti A, Pantaleo M, de Martino M, Stagi S. Bone Status in a Patient with Insulin-Like Growth Factor-1 Receptor Deletion Syndrome: Bone Quality and Structure Evaluation Using Dual-Energy X-Ray Absorptiometry, Peripheral Quantitative Computed Tomography, and Quantitative Ultrasonography. Front Endocrinol (Lausanne) 2017; 8:227. [PMID: 28936199 PMCID: PMC5595156 DOI: 10.3389/fendo.2017.00227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 08/21/2017] [Indexed: 01/02/2023] Open
Abstract
Haploinsufficiency of the insulin-like growth factor (IGF)-1 receptor (IGF1R) gene is a rare, probably under-diagnosed, cause of short stature. However, the effects of IGF1R haploinsufficiency on glucose metabolism, bone status, and metabolism have rarely been investigated. We report the case of a patient referred to our center at the age of 18 months for short stature, failure to thrive, and Silver-Russell-like phenotype. Genetic analysis did not show hypomethylation of the 11p15.5 region or uniparental disomy of chromosome 7. Growth hormone (GH) stimulation tests revealed GH deficiency, whereas IGF-1 was 248 ng/mL. r-hGH treatment showed only a slight improvement (from -4.4 to -3.5 SDS). At 10 years of age, the child was re-evaluated: CGH-array identified a heterozygous de novo 4.92 Mb deletion in 15q26.2, including the IGF1R gene. Dual-energy X-ray absorptiometry showed a normal bone mineral density z-score, while peripheral quantitative computed tomography revealed reduced cortical and increased trabecular elements. A phalangeal bone quantitative ultrasonography showed significantly reduced amplitude-dependent speed of sound and bone transmission time values. The changes in bone architecture, quality, and metabolism in heterozygous IGF1R deletion patients, support the hypothesis that IGF-1 can be a key factor in bone modeling and accrual.
Collapse
Affiliation(s)
- Paola Pelosi
- Department of Health Sciences, University of Florence, Anna Meyer Children’s University Hospital, Florence, Italy
| | - Elisabetta Lapi
- Genetics and Molecular Medicine Unit, Anna Meyer Children’s University Hospital, Florence, Italy
| | - Loredana Cavalli
- Department of Neuroscience, Neurorehabilitation Section, University of Pisa, Pisa, Italy
| | - Alberto Verrotti
- Department of Paediatrics, University of L’Aquila, L’Aquila, Italy
| | - Marilena Pantaleo
- Genetics and Molecular Medicine Unit, Anna Meyer Children’s University Hospital, Florence, Italy
| | - Maurizio de Martino
- Department of Health Sciences, University of Florence, Anna Meyer Children’s University Hospital, Florence, Italy
| | - Stefano Stagi
- Department of Health Sciences, University of Florence, Anna Meyer Children’s University Hospital, Florence, Italy
- *Correspondence: Stefano Stagi,
| |
Collapse
|
44
|
Abstract
Appreciation of the role of the gut microbiome in regulating vertebrate metabolism has exploded recently. However, the effects of gut microbiota on skeletal growth and homeostasis have only recently begun to be explored. Here, we report that colonization of sexually mature germ-free (GF) mice with conventional specific pathogen-free (SPF) gut microbiota increases both bone formation and resorption, with the net effect of colonization varying with the duration of colonization. Although colonization of adult mice acutely reduces bone mass, in long-term colonized mice, an increase in bone formation and growth plate activity predominates, resulting in equalization of bone mass and increased longitudinal and radial bone growth. Serum levels of insulin-like growth factor 1 (IGF-1), a hormone with known actions on skeletal growth, are substantially increased in response to microbial colonization, with significant increases in liver and adipose tissue IGF-1 production. Antibiotic treatment of conventional mice, in contrast, decreases serum IGF-1 and inhibits bone formation. Supplementation of antibiotic-treated mice with short-chain fatty acids (SCFAs), products of microbial metabolism, restores IGF-1 and bone mass to levels seen in nonantibiotic-treated mice. Thus, SCFA production may be one mechanism by which microbiota increase serum IGF-1. Our study demonstrates that gut microbiota provide a net anabolic stimulus to the skeleton, which is likely mediated by IGF-1. Manipulation of the microbiome or its metabolites may afford opportunities to optimize bone health and growth.
Collapse
|
45
|
Tuzcu S, Durmaz ŞA, Carlıoğlu A, Demircan Z, Tuzcu A, Beyaz C, Tay A. The effects of high serum growth hormone and IGF-1 levels on bone mineral density in acromegaly. Z Rheumatol 2016; 76:716-722. [DOI: 10.1007/s00393-016-0171-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Devesa J, Almengló C, Devesa P. Multiple Effects of Growth Hormone in the Body: Is it Really the Hormone for Growth? Clin Med Insights Endocrinol Diabetes 2016; 9:47-71. [PMID: 27773998 PMCID: PMC5063841 DOI: 10.4137/cmed.s38201] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 12/17/2022] Open
Abstract
In this review, we analyze the effects of growth hormone on a number of tissues and organs and its putative role in the longitudinal growth of an organism. We conclude that the hormone plays a very important role in maintaining the homogeneity of tissues and organs during the normal development of the human body or after an injury. Its effects on growth do not seem to take place during the fetal period or during the early infancy and are mediated by insulin-like growth factor I (IGF-I) during childhood and puberty. In turn, IGF-I transcription is dependent on an adequate GH secretion, and in many tissues, it occurs independent of GH. We propose that GH may be a prohormone, rather than a hormone, since in many tissues and organs, it is proteolytically cleaved in a tissue-specific manner giving origin to shorter GH forms whose activity is still unknown.
Collapse
Affiliation(s)
- Jesús Devesa
- Scientific Direction, Medical Center Foltra, Teo, Spain
| | | | - Pablo Devesa
- Research and Development, Medical Center Foltra, 15886-Teo, Spain
| |
Collapse
|
47
|
Silva DF, Friis TE, Camargo NHA, Xiao Y. Characterization of mesoporous calcium phosphates from calcareous marine sediments containing Si, Sr and Zn for bone tissue engineering. J Mater Chem B 2016; 4:6842-6855. [PMID: 32263578 DOI: 10.1039/c6tb02255c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Calcium phosphates (CAPs) can be produced from either biologically sourced materials or mineral deposits. The raw materials impart unique properties to the CAPs due to innate trace amounts of elements that affect the crystal structure, morphology and stoichiometry. Using calcium carbonate (CaCO3) precursors derived from fossilized calcareous marine sediments (FCMSs), we have synthesized a novel class of CAP biomaterials, termed fm-CaPs, with defined Ca/P molar ratios of 1.4 and 1.7 using a wet synthesis method. Compared with commercially available CAP biomaterials, such as hydroxyapatite (HA) and beta-tricalcium phosphate (β-TCP), fm-CaP1.7 had a biphasic composition consisting of an HA phase (in a hexagonal system) and a β-TCP phase (in a rhombohedral crystalline system), which is desirable for the current design of bone substitutes, whereas fm-CaP1.4 consisted of an HA phase and a beta-dicalcium pyrophosphate phase (in a tetragonal system). These bioceramics exhibited a fringe structure of regular crystallographic orientation with well-ordered mesoporous channels. The FCMS raw material imparted trace amounts of silicon (Si), strontium (Sr) and zinc (Zn) to fm-CaPs; these are elements that are important for bone formation. The cyto-compatibility of these biomaterials and their effects on cellular activity were evaluated using osteoblast cells. Cell proliferation assays revealed no signs of cytotoxicity, whereas cells growth was equal to or better than HA and β-TCP controls. The SEM analysis of the cell and material interactions showed good cell spreading on the fm-CaP materials that was comparable to β-TCP and in vitro assays suggested robust osteogenic differentiation, as seen by increased mineralization (alizarin red) and upregulation of osteogenic gene expression. Our results indicate that fm-CaP1.7, in particular, has chemical, physical and morphological properties that make this material suitable for applications that promote bone tissue regeneration.
Collapse
Affiliation(s)
- D F Silva
- Programa de Pós Graduação em Ciência e Engenharia de Materiais, Universidade do Estado de Santa Catarina, 89.223-100, Joinville, SC, Brazil.
| | | | | | | |
Collapse
|
48
|
Lindsey RC, Mohan S. Skeletal effects of growth hormone and insulin-like growth factor-I therapy. Mol Cell Endocrinol 2016; 432:44-55. [PMID: 26408965 PMCID: PMC4808510 DOI: 10.1016/j.mce.2015.09.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 10/23/2022]
Abstract
The growth hormone/insulin-like growth factor (GH/IGF) axis is critically important for the regulation of bone formation, and deficiencies in this system have been shown to contribute to the development of osteoporosis and other diseases of low bone mass. The GH/IGF axis is regulated by a complex set of hormonal and local factors which can act to regulate this system at the level of the ligands, receptors, IGF binding proteins (IGFBPs), or IGFBP proteases. A combination of in vitro studies, transgenic animal models, and clinical human investigations has provided ample evidence of the importance of the endocrine and local actions of both GH and IGF-I, the two major components of the GH/IGF axis, in skeletal growth and maintenance. GH- and IGF-based therapies provide a useful avenue of approach for the prevention and treatment of diseases such as osteoporosis.
Collapse
Affiliation(s)
- Richard C Lindsey
- Musculoskeletal Disease Center, Loma Linda VA Healthcare System, Loma Linda, CA 92357, USA; Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; Department of Biochemistry, Loma Linda University, Loma Linda, CA 92354, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Loma Linda VA Healthcare System, Loma Linda, CA 92357, USA; Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; Department of Biochemistry, Loma Linda University, Loma Linda, CA 92354, USA.
| |
Collapse
|
49
|
Xiao L, Andemariam B, Taxel P, Adams DJ, Zempsky WT, Dorcelus V, Hurley MM. Loss of Bone in Sickle Cell Trait and Sickle Cell Disease Female Mice Is Associated With Reduced IGF-1 in Bone and Serum. Endocrinology 2016; 157:3036-46. [PMID: 27171384 DOI: 10.1210/en.2015-2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Characterization of the bone phenotype of 24-week-old female transgenic sickle cell disease (SCD), sickle cell trait (SCT) revealed significant reductions in bone mineral density and bone mineral content relative to control with a further significant decreased in SCD compared with SCT. By microcomputed tomography, femur middiaphyseal cortical area was significantly reduced in SCT and SCD. Cortical thickness was significantly decreased in SCD vs control. Diaphysis structural stiffness and strength were significantly reduced in SCT and SCD. Histomorphometry showed a significant increase in osteoclast perimeter in SCD and significantly decreased bone formation in SCD and SCT compared with control with a further significant decrease in SCD compared with SCT. Collagen-I mRNA was significantly decreased in tibiae from SCT and SCD and osterix, Runx2, osteoclacin, and Dmp-1 mRNA were significantly decreased in tibiae of SCD compared with control. Serum osteocalcin was significantly decreased and ferritin was significantly increased in SCD compared with control. Igf1 mRNA and serum IGF1 were significantly decreased in SCD and SCT. IGF1 protein was decreased in bone marrow stromal cells from SCT and SCD cultured in osteogenic media. Crystal violet staining revealed fewer cells and significantly reduced alkaline phosphatase positive mineralized nodules in SCT and SCD that was rescued by IGF1 treatment. We conclude that reduced bone mass in SCD and SCT mice carries architectural consequences that are detrimental to the mechanical integrity of femoral diaphysis. Furthermore reduced IGF1 and osteoblast terminal differentiation contributed to reduced bone formation in SCT and SCD mice.
Collapse
MESH Headings
- Anemia, Sickle Cell/blood
- Anemia, Sickle Cell/complications
- Anemia, Sickle Cell/metabolism
- Anemia, Sickle Cell/pathology
- Animals
- Bone Density
- Bone Diseases, Metabolic/blood
- Bone Diseases, Metabolic/metabolism
- Bone Diseases, Metabolic/pathology
- Bone Resorption/blood
- Bone Resorption/metabolism
- Bone Resorption/pathology
- Bone and Bones/metabolism
- Cells, Cultured
- Disease Models, Animal
- Female
- Insulin-Like Growth Factor I/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Sickle Cell Trait/blood
- Sickle Cell Trait/complications
- Sickle Cell Trait/metabolism
- Sickle Cell Trait/pathology
Collapse
Affiliation(s)
- Liping Xiao
- Departments of Medicine (L.X., B.A., P.T., V.D., M.M.H.) and Orthopedic Surgery (D.J.A.), UConn Health, Farmington, Connecticut 06030-3105; and Connecticut Children's Hospital (W.T.Z.), Hartford, Connecticut 06106-3322
| | - Biree Andemariam
- Departments of Medicine (L.X., B.A., P.T., V.D., M.M.H.) and Orthopedic Surgery (D.J.A.), UConn Health, Farmington, Connecticut 06030-3105; and Connecticut Children's Hospital (W.T.Z.), Hartford, Connecticut 06106-3322
| | - Pam Taxel
- Departments of Medicine (L.X., B.A., P.T., V.D., M.M.H.) and Orthopedic Surgery (D.J.A.), UConn Health, Farmington, Connecticut 06030-3105; and Connecticut Children's Hospital (W.T.Z.), Hartford, Connecticut 06106-3322
| | - Douglas J Adams
- Departments of Medicine (L.X., B.A., P.T., V.D., M.M.H.) and Orthopedic Surgery (D.J.A.), UConn Health, Farmington, Connecticut 06030-3105; and Connecticut Children's Hospital (W.T.Z.), Hartford, Connecticut 06106-3322
| | - William T Zempsky
- Departments of Medicine (L.X., B.A., P.T., V.D., M.M.H.) and Orthopedic Surgery (D.J.A.), UConn Health, Farmington, Connecticut 06030-3105; and Connecticut Children's Hospital (W.T.Z.), Hartford, Connecticut 06106-3322
| | - Valerie Dorcelus
- Departments of Medicine (L.X., B.A., P.T., V.D., M.M.H.) and Orthopedic Surgery (D.J.A.), UConn Health, Farmington, Connecticut 06030-3105; and Connecticut Children's Hospital (W.T.Z.), Hartford, Connecticut 06106-3322
| | - Marja M Hurley
- Departments of Medicine (L.X., B.A., P.T., V.D., M.M.H.) and Orthopedic Surgery (D.J.A.), UConn Health, Farmington, Connecticut 06030-3105; and Connecticut Children's Hospital (W.T.Z.), Hartford, Connecticut 06106-3322
| |
Collapse
|
50
|
Juncao C, Pingyang C, Huaxue Q, Danhong H. Puerarin affects bone biomarkers in the serum of rats with intrauterine growth restriction. J TRADIT CHIN MED 2016; 36:211-6. [DOI: 10.1016/s0254-6272(16)30029-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|