1
|
Tanese K, Ogata D. The role of macrophage migration inhibitory factor family and CD74 in the pathogenesis of melanoma. Exp Dermatol 2024; 33:e15122. [PMID: 38884501 DOI: 10.1111/exd.15122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Melanoma is an aggressive tumour with poor prognosis that arises from the malignant transformation of melanocytes. Over the past few decades, intense research into the pathogenesis of melanoma has led to the development of BRAF and immune checkpoint inhibitors, including antibodies against programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4), which have shown clinically significant efficacy. However, some tumours do not respond to these therapies initially or become treatment resistant. Most melanoma tissues appear to possess biological characteristics that allow them to evade these treatments, and identifying these characteristics is one of the major challenges facing cancer researchers. One such characteristic that has recently gained attention is the role of macrophage migration inhibitory factor (MIF) and its receptor CD74. This review outlines the cellular and molecular functions of CD74, MIF and their family of proteins. We then review their roles in tumours based on previous reports, highlight their pathological significance in melanoma and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Keiji Tanese
- Department of Dermatology, Toho University School of Medicine, Tokyo, Japan
| | - Dai Ogata
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
2
|
Parol‐Kulczyk M, Durślewicz J, Blonkowska L, Wujec R, Gzil A, Piątkowska D, Ligmanowska J, Grzanka D. Macrophage migration inhibitory factor (MIF) predicts survival in patients with clear cell renal cell carcinoma. J Pathol Clin Res 2024; 10:e12365. [PMID: 38436543 PMCID: PMC10910479 DOI: 10.1002/2056-4538.12365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/28/2023] [Accepted: 01/19/2024] [Indexed: 03/05/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common subtypes of renal cancer, with 30% of patients presenting with systemic disease at diagnosis. This aggressiveness is a consequence of the activation of epithelial-mesenchymal transition (EMT) caused by many different inducers or regulators, signaling cascades, epigenetic regulation, and the tumor environment. Alterations in EMT-related genes and transcription factors are associated with poor prognosis in ccRCC. EMT-related factors suppress E-cadherin expression and are associated with tumor progression, local invasion, and metastasis. The aim of this study was to investigate the expression levels and prognostic significance of macrophage migration inhibitory factor (MIF), β-catenin, and E-cadherin in ccRCC patients. We examined these proteins immunohistochemically in tumor areas and adjacent normal tissues resected from patients with ccRCC. Analysis of the cancer genome atlas (TCGA) cohort was performed to verify our results. Kaplan-Meier analysis showed that median overall survival (OS) was significantly shorter in patients with tumors exhibiting high MIFn and MIFm-c levels compared to those with low MIFn and MIFm-c levels (p = 0.03 and p = 0.007, respectively). In the TCGA cohort, there was a significant correlation between MIF expression and OS (p < 0.0001). In conclusion, this study provides further evidence for the biological and prognostic value of MIF in the context of EMT as a potential early prognostic marker for advanced-stage ccRCC.
Collapse
Affiliation(s)
- Martyna Parol‐Kulczyk
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in BydgoszczNicolaus Copernicus UniversityTorunPoland
| | - Justyna Durślewicz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in BydgoszczNicolaus Copernicus UniversityTorunPoland
| | - Laura Blonkowska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in BydgoszczNicolaus Copernicus UniversityTorunPoland
| | - Radosław Wujec
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in BydgoszczNicolaus Copernicus UniversityTorunPoland
| | - Arkadiusz Gzil
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in BydgoszczNicolaus Copernicus UniversityTorunPoland
| | - Daria Piątkowska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in BydgoszczNicolaus Copernicus UniversityTorunPoland
| | - Joanna Ligmanowska
- Department of Pathophysiology, Faculty of Pharmacy, Collegium Medicum in BydgoszczNicolaus Copernicus UniversityTorunPoland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in BydgoszczNicolaus Copernicus UniversityTorunPoland
| |
Collapse
|
3
|
Lee SY, Fontana F, Sugatani T, Portales Castillo I, Leanza G, Coler-Reilly A, Civitelli R. Connexin43 in mesenchymal lineage cells regulates body adiposity and energy metabolism in mice. JCI Insight 2024; 9:e170016. [PMID: 38349739 PMCID: PMC11063945 DOI: 10.1172/jci.insight.170016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Connexin43 (Cx43) is the most abundant gap junction protein present in the mesenchymal lineage. In mature adipocytes, Cx43 mediates white adipose tissue (WAT) beiging in response to cold exposure and maintains the mitochondrial integrity of brown adipose tissue (BAT). We found that genetic deletion of Gja1 (Cx43 gene) in cells that give rise to chondro-osteogenic and adipogenic precursors driven by the Dermo1/Twist2 promoter led to lower body adiposity and partial protection against the weight gain and metabolic syndrome induced by a high-fat diet (HFD) in both sexes. These protective effects were related to increased locomotion, fuel utilization, energy expenditure, nonshivering thermogenesis, and better glucose tolerance in conditionally Gja1-ablated mice. Accordingly, Gja1-mutant mice exhibited reduced adipocyte hypertrophy, partially preserved insulin sensitivity, increased BAT lipolysis, and decreased whitening under HFD. This metabolic phenotype was not reproduced with more restricted Gja1 ablation in differentiated adipocytes, suggesting that Cx43 in adipocyte progenitors or other targeted cells restrains energy expenditures and promotes fat accumulation. These results reveal what we believe is a hitherto unknown action of Cx43 in adiposity, and offer a promising new pharmacologic target for improving metabolic balance in diabetes and obesity.
Collapse
|
4
|
Varisli L, Vlahopoulos S. Epithelial-Mesenchymal Transition in Acute Leukemias. Int J Mol Sci 2024; 25:2173. [PMID: 38396852 PMCID: PMC10889420 DOI: 10.3390/ijms25042173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a metabolic process that confers phenotypic flexibility to cells and the ability to adapt to new functions. This transition is critical during embryogenesis and is required for the differentiation of many tissues and organs. EMT can also be induced in advanced-stage cancers, leading to further malignant behavior and chemotherapy resistance, resulting in an unfavorable prognosis for patients. Although EMT was long considered and studied only in solid tumors, it has been shown to be involved in the pathogenesis of hematological malignancies, including acute leukemias. Indeed, there is increasing evidence that EMT promotes the progression of acute leukemias, leading to the emergence of a more aggressive phenotype of the disease, and also causes chemotherapy resistance. The current literature suggests that the levels and activities of EMT inducers and markers can be used to predict prognosis, and that targeting EMT in addition to conventional therapies may increase treatment success in acute leukemias.
Collapse
Affiliation(s)
- Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece
| |
Collapse
|
5
|
Lee SY, Fontana F, Sugatani T, Castillo IP, Leanza G, Coler-Reilly A, Civitelli R. Connexin43 in mesenchymal lineage cells regulates body adiposity and energy metabolism in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574415. [PMID: 38260624 PMCID: PMC10802316 DOI: 10.1101/2024.01.05.574415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Connexin43 (Cx43) is the most abundant gap junction protein present in the mesenchymal lineage. In mature adipocytes, Cx43 mediates white adipose tissue (WAT) "beiging" in response to cold exposure and maintains the mitochondrial integrity of brown adipose tissue (BAT). We found that genetic deletion of Gja1 (Cx43 gene) in cells that give rise to chondro-osteogenic and adipogenic precursors driven by the Dermo1/Twist2 promoter leads to lower body adiposity and partial protection against the weight gain and metabolic syndrome induced by a high fat diet (HFD) in both sexes. These protective effects from obesogenic diet are related to increased locomotion, fuel utilization, energy expenditure, non-shivering thermogenesis, and better glucose tolerance in conditionally Gja1 ablated mice. Accordingly, Gja1 mutant mice exhibit reduced adipocyte hypertrophy, partially preserved insulin sensitivity, increased BAT lipolysis and decreased whitening under HFD. This metabolic phenotype is not reproduced with more restricted Gja1 ablation in differentiated adipocytes, suggesting that Cx43 has a hitherto unknown function in adipocyte progenitors or other targeted cells, resulting in restrained energy expenditures and fat accumulation. These results disclose an hitherto unknown action of Cx43 in adiposity, and offer a promising new pharmacologic target for improving metabolic balance in diabetes and obesity.
Collapse
Affiliation(s)
- Seung-Yon Lee
- Department of Medicine, Division of Bone and Mineral Diseases; Musculoskeletal Research Center; Washington University School of Medicine, St. Louis, MO. USA
| | - Francesca Fontana
- Department of Medicine, Division of Bone and Mineral Diseases; Musculoskeletal Research Center; Washington University School of Medicine, St. Louis, MO. USA
| | - Toshifumi Sugatani
- Department of Medicine, Division of Bone and Mineral Diseases; Musculoskeletal Research Center; Washington University School of Medicine, St. Louis, MO. USA
| | - Ignacio Portales Castillo
- Department of Medicine, Division of Bone and Mineral Diseases; Musculoskeletal Research Center; Washington University School of Medicine, St. Louis, MO. USA
| | - Giulia Leanza
- Department of Medicine, Division of Bone and Mineral Diseases; Musculoskeletal Research Center; Washington University School of Medicine, St. Louis, MO. USA
| | - Ariella Coler-Reilly
- Department of Medicine, Division of Bone and Mineral Diseases; Musculoskeletal Research Center; Washington University School of Medicine, St. Louis, MO. USA
| | - Roberto Civitelli
- Department of Medicine, Division of Bone and Mineral Diseases; Musculoskeletal Research Center; Washington University School of Medicine, St. Louis, MO. USA
| |
Collapse
|
6
|
Mierke CT. Physical and biological advances in endothelial cell-based engineered co-culture model systems. Semin Cell Dev Biol 2023; 147:58-69. [PMID: 36732105 DOI: 10.1016/j.semcdb.2023.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Scientific knowledge in the field of cell biology and mechanobiology heavily leans on cell-based in vitro experiments and models that favor the examination and comprehension of certain biological processes and occurrences across a variety of environments. Cell culture assays are an invaluable instrument for a vast spectrum of biomedical and biophysical investigations. The quality of experimental models in terms of simplicity, reproducibility, and combinability with other methods, and in particular the scale at which they depict cell fate in native tissues, is critical to advancing the knowledge of the comprehension of cell-cell and cell-matrix interactions in tissues and organs. Typically, in vitro models are centered on the experimental tinkering of mammalian cells, most often cultured as monolayers on planar, two-dimensional (2D) materials. Notwithstanding the significant advances and numerous findings that have been accomplished with flat biology models, their usefulness for generating further new biological understanding is constrained because the simple 2D setting does not reproduce the physiological response of cells in natural living tissues. In addition, the co-culture systems in a 2D stetting weakly mirror their natural environment of tissues and organs. Significant advances in 3D cell biology and matrix engineering have resulted in the creation and establishment of a new type of cell culture shapes that more accurately represents the in vivo microenvironment and allows cells and their interactions to be analyzed in a biomimetic approach. Contemporary biomedical and biophysical science has novel advances in technology that permit the design of more challenging and resilient in vitro models for tissue engineering, with a particular focus on scaffold- or hydrogel-based formats, organotypic cultures, and organs-on-chips, which cover the purposes of co-cultures. Even these complex systems must be kept as simplified as possible in order to grasp a particular section of physiology too very precisely. In particular, it is highly appreciated that they bridge the space between conventional animal research and human (patho)physiology. In this review, the recent progress in 3D biomimetic culturation is presented with a special focus on co-cultures, with an emphasis on the technological building blocks and endothelium-based co-culture models in cancer research that are available for the development of more physiologically relevant in vitro models of human tissues under normal and diseased conditions. Through applications and samples of various physiological and disease models, it is possible to identify the frontiers and future engagement issues that will have to be tackled to integrate synthetic biomimetic culture systems far more successfully into biomedical and biophysical investigations.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, Leipzig, Germany.
| |
Collapse
|
7
|
Hallmarks of Cancer Affected by the MIF Cytokine Family. Cancers (Basel) 2023; 15:cancers15020395. [PMID: 36672343 PMCID: PMC9856758 DOI: 10.3390/cancers15020395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
New diagnostic methods and treatments have significantly decreased the mortality rates of cancer patients, but further improvements are warranted based on the identification of novel tumor-promoting molecules that can serve as therapeutic targets. The macrophage migration inhibitory factor (MIF) family of cytokines, comprising MIF and DDT (also known as MIF2), are overexpressed in almost all cancer types, and their high expressions are related to a worse prognosis for the patients. MIF is involved in 9 of the 10 hallmarks of cancer, and its inhibition by antibodies, nanobodies, or small synthetic molecules has shown promising results. Even though DDT is also proposed to be involved in several of the hallmarks of cancer, the available information about its pro-tumoral role and mechanism of action is more limited. Here, we provide an overview of the involvement of both MIF and DDT in cancer, and we propose that blocking both cytokines is needed to obtain the maximum anti-tumor response.
Collapse
|
8
|
Galán-Díez M, Borot F, Ali AM, Zhao J, Gil-Iturbe E, Shan X, Luo N, Liu Y, Huang XP, Bisikirska B, Labella R, Kurland I, Roth BL, Quick M, Mukherjee S, Rabadán R, Carroll M, Raza A, Kousteni S. Subversion of Serotonin Receptor Signaling in Osteoblasts by Kynurenine Drives Acute Myeloid Leukemia. Cancer Discov 2022; 12:1106-1127. [PMID: 35046097 PMCID: PMC8983599 DOI: 10.1158/2159-8290.cd-21-0692] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/08/2021] [Accepted: 01/04/2022] [Indexed: 01/09/2023]
Abstract
Remodeling of the microenvironment by tumor cells can activate pathways that favor cancer growth. Molecular delineation and targeting of such malignant-cell nonautonomous pathways may help overcome resistance to targeted therapies. Herein we leverage genetic mouse models, patient-derived xenografts, and patient samples to show that acute myeloid leukemia (AML) exploits peripheral serotonin signaling to remodel the endosteal niche to its advantage. AML progression requires the presence of serotonin receptor 1B (HTR1B) in osteoblasts and is driven by AML-secreted kynurenine, which acts as an oncometabolite and HTR1B ligand. AML cells utilize kynurenine to induce a proinflammatory state in osteoblasts that, through the acute-phase protein serum amyloid A (SAA), acts in a positive feedback loop on leukemia cells by increasing expression of IDO1-the rate-limiting enzyme for kynurenine synthesis-thereby enabling AML progression. This leukemia-osteoblast cross-talk, conferred by the kynurenine-HTR1B-SAA-IDO1 axis, could be exploited as a niche-focused therapeutic approach against AML, opening new avenues for cancer treatment. SIGNIFICANCE AML remains recalcitrant to treatments due to the emergence of resistant clones. We show a leukemia-cell nonautonomous progression mechanism that involves activation of a kynurenine-HTR1B-SAA-IDO1 axis between AML cells and osteoblasts. Targeting the niche by interrupting this axis can be pharmacologically harnessed to hamper AML progression and overcome therapy resistance. This article is highlighted in the In This Issue feature, p. 873.
Collapse
Affiliation(s)
- Marta Galán-Díez
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York.,Corresponding Authors: Stavroula Kousteni, Phone: 212-305-2068; E-mail: ; and Marta Galán-Díez, Department of Physiology and Cellular Biophysics, Columbia University, 650 W. 168th Street, New York, NY 10032. Phone: 212-305-2481; E-mail:
| | - Florence Borot
- Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, New York
| | - Abdullah Mahmood Ali
- Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, New York.,Myelodysplastic Syndromes Center, Columbia University, New York, New York
| | - Junfei Zhao
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, New York.,Edward P. Evans Center for Myelodysplastic Syndromes at Columbia University, New York, New York
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University, New York, New York
| | - Xiaochuan Shan
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Na Luo
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York
| | - Yongfeng Liu
- NIMH Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina
| | - Xi-Ping Huang
- NIMH Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina
| | - Brygida Bisikirska
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York
| | - Rossella Labella
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York
| | - Irwin Kurland
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Bryan L. Roth
- NIMH Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina.,Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matthias Quick
- Department of Psychiatry, Columbia University, New York, New York.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York
| | - Siddhartha Mukherjee
- Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, New York.,Myelodysplastic Syndromes Center, Columbia University, New York, New York.,Edward P. Evans Center for Myelodysplastic Syndromes at Columbia University, New York, New York
| | - Raul Rabadán
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, New York.,Department of Biomedical Informatics, Columbia University, New York, New York
| | - Martin Carroll
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Azra Raza
- Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, New York.,Myelodysplastic Syndromes Center, Columbia University, New York, New York.,Edward P. Evans Center for Myelodysplastic Syndromes at Columbia University, New York, New York
| | - Stavroula Kousteni
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York.,Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, New York.,Edward P. Evans Center for Myelodysplastic Syndromes at Columbia University, New York, New York.,Columbia Stem Cell Initiative, Columbia University, New York, New York.,Corresponding Authors: Stavroula Kousteni, Phone: 212-305-2068; E-mail: ; and Marta Galán-Díez, Department of Physiology and Cellular Biophysics, Columbia University, 650 W. 168th Street, New York, NY 10032. Phone: 212-305-2481; E-mail:
| |
Collapse
|
9
|
Fox GC, Su X, Davis JL, Xu Y, Kwakwa KA, Ross MH, Fontana F, Xiang J, Esser AK, Cordell E, Pagliai K, Dang HX, Sivapackiam J, Stewart SA, Maher CA, Bakewell SJ, Fitzpatrick JAJ, Sharma V, Achilefu S, Veis DJ, Lanza GM, Weilbaecher KN. Targeted Therapy to β3 Integrin Reduces Chemoresistance in Breast Cancer Bone Metastases. Mol Cancer Ther 2021; 20:1183-1198. [PMID: 33785647 PMCID: PMC8442608 DOI: 10.1158/1535-7163.mct-20-0931] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/04/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022]
Abstract
Breast cancer bone metastases are common and incurable. Tumoral integrin β3 (β3) expression is induced through interaction with the bone microenvironment. Although β3 is known to promote bone colonization, its functional role during therapy of established bone metastases is not known. We found increased numbers of β3+ tumor cells in murine bone metastases after docetaxel chemotherapy. β3+ tumor cells were present in 97% of post-neoadjuvant chemotherapy triple-negative breast cancer patient samples (n = 38). High tumoral β3 expression was associated with worse outcomes in both pre- and postchemotherapy triple-negative breast cancer groups. Genetic deletion of tumoral β3 had minimal effect in vitro, but significantly enhanced in vivo docetaxel activity, particularly in the bone. Rescue experiments confirmed that this effect required intact β3 signaling. Ultrastructural, transcriptomic, and functional analyses revealed an alternative metabolic response to chemotherapy in β3-expressing cells characterized by enhanced oxygen consumption, reactive oxygen species generation, and protein production. We identified mTORC1 as a candidate for therapeutic targeting of this β3-mediated, chemotherapy-induced metabolic response. mTORC1 inhibition in combination with docetaxel synergistically attenuated murine bone metastases. Furthermore, micelle nanoparticle delivery of mTORC1 inhibitor to cells expressing activated αvβ3 integrins enhanced docetaxel efficacy in bone metastases. Taken together, we show that β3 integrin induction by the bone microenvironment promotes resistance to chemotherapy through an altered metabolic response that can be defused by combination with αvβ3-targeted mTORC1 inhibitor nanotherapy. Our work demonstrates the importance of the metastatic microenvironment when designing treatments and presents new, bone-specific strategies for enhancing chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Gregory C Fox
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Xinming Su
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Jennifer L Davis
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Yalin Xu
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Kristin A Kwakwa
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael H Ross
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Francesca Fontana
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, St. Louis, Missouri
| | - Jingyu Xiang
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Alison K Esser
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Elizabeth Cordell
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Kristen Pagliai
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Ha X Dang
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Jothilingam Sivapackiam
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
- ICCE Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Sheila A Stewart
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
- ICCE Institute, Washington University School of Medicine, St. Louis, Missouri
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Christopher A Maher
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri
| | - Suzanne J Bakewell
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - James A J Fitzpatrick
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri
| | - Vijay Sharma
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
- ICCE Institute, Washington University School of Medicine, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri
- Deparment of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Samuel Achilefu
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Deborah J Veis
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- Musculoskeletal Research Center, Histology and Morphometry Core, Washington University School of Medicine, St. Louis, Missouri
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Gregory M Lanza
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, St. Louis, Missouri
| | - Katherine N Weilbaecher
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, Missouri.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
10
|
Zhang Q, Greenbaum J, Shen H, Zhao LJ, Zhang WD, Sun CQ, Deng HW. Detecting causal relationship between metabolic traits and osteoporosis using multivariable Mendelian randomization. Osteoporos Int 2021; 32:715-725. [PMID: 32970198 PMCID: PMC7987914 DOI: 10.1007/s00198-020-05640-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
UNLABELLED By adopting the extension approaches of Mendelian randomization, we successfully detected and prioritized the potential causal risk factors for BMD traits, which might provide us novel insights for treatment and intervention into bone-related complex traits and diseases. INTRODUCTION Osteoporosis (OP) is a common metabolic skeletal disease characterized by reduced bone mineral density (BMD). The identified SNPs for BMD can only explain approximately 10% of the variability, and very few causal factors have been identified so far. METHODS The Mendelian randomization (MR) approach enables us to assess the potential causal effect of a risk factor on the outcome by using genetic IVs. By using extension methods of MR-multivariable MR (mvMR) and MR based on Bayesian model averaging (MR-BMA)-we intend to estimate the causal relationship between fifteen metabolic risk factors for BMD and try to prioritize the most potential causal risk factors for BMD. RESULTS Our analysis identified three risk factors T2D, FG, and HCadjBMI for FN BMD; four risk factors FI, T2D, HCadjBMI, and WCadjBMI for FA BMD; and three risk factors FI, T2D, and HDL cholesterol for LS BMD, and all risk factors were causally associated with heel BMD except for triglycerides and WCadjBMI. Consistent with the mvMR results, MR-BMA confirmed those risk factors as top risk factors for each BMD trait individually. CONCLUSIONS By combining MR approaches, we identified the potential causal risk factors for FN, FA, LS, and heel BMD individually and we also prioritized and ranked the potential causal risk factors for BMD, which might provide us novel insights for treatment and intervention into bone-related complex traits and diseases.
Collapse
Affiliation(s)
- Q Zhang
- School of Nursing and Health, Zhengzhou University, NO.101 Kexue Road, High-Tech Development Zone of States, Zhengzhou, 450001, People's Republic of China
- Center for Bioinformatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - J Greenbaum
- Center for Bioinformatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - H Shen
- Center for Bioinformatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - L-J Zhao
- Center for Bioinformatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - W-D Zhang
- Deparment of Epidemiology and Statistics, College of Public Health, Zhengzhou University, NO.100 Kexue Road, High-Tech Development Zone of States, Zhengzhou, 450001, People's Republic of China
| | - C-Q Sun
- School of Nursing and Health, Zhengzhou University, NO.101 Kexue Road, High-Tech Development Zone of States, Zhengzhou, 450001, People's Republic of China
- Deparment of Epidemiology and Statistics, College of Public Health, Zhengzhou University, NO.100 Kexue Road, High-Tech Development Zone of States, Zhengzhou, 450001, People's Republic of China
| | - H-W Deng
- Center for Bioinformatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
11
|
N-cadherin in osteolineage cells modulates stromal support of tumor growth. J Bone Oncol 2021; 28:100356. [PMID: 33912383 PMCID: PMC8065282 DOI: 10.1016/j.jbo.2021.100356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/02/2022] Open
Abstract
N-cadherin in osteolineage, Osterix+ cells restrains extraskeletal tumor growth. Osterix+ cells are present in the stromal microenvironment of extraskeletal tumors. Osterix+ cells are present in normal tissues frequent sites of metastasis. N-cadherin modulates pro-tumorigenic signaling in tumor associated Osterix+ cells.
Tumor growth and metastases are dependent on interactions between cancer cells and the local environment. Expression of the cell–cell adhesion molecule N-cadherin (Ncad) is associated with highly aggressive cancers, and its expression by osteogenic cells has been proposed to provide a molecular “dock” for disseminated tumor cells to establish in pre-metastatic niches within the bone. To test this biologic model, we conditionally deleted the Ncad gene (Cdh2) in osteolineage cells using Osx-cre (cKO). Contrary to expectations, the metastatic breast cancer cell line PyMT-BO1 was able to form tumors in bone and to induce osteolysis in cKO as well as in control mice. Despite absence of Ncad, bone marrow stromal cells isolated from cKO mice were able to engage in direct cell–cell interactions with tumor cells expressing either N- or E-cadherin. However, subcutaneous PyMT-BO1 and B16F10 tumors grew larger in cKO relative to control littermates. Cell tracking experiments using the Ai9 reporter revealed the presence of Osx+ and Ncad+ cells in the stroma of extra-skeletal tumors and in a small population of lung cells. Gene expression analysis by RNAseq of Osx+ cells isolated from extra-skeletal tumors revealed alterations of pro-tumorigenic signaling pathways in cKO cells relative to control Osx+ cells. Thus, Ncad in Osx+ cells is not necessary for the establishment of bone metastases, but in extra-skeletal tumors it regulates pro-tumorigenic support by the microenvironment.
Collapse
|
12
|
Ricci B, Tycksen E, Celik H, Belle JI, Fontana F, Civitelli R, Faccio R. Osterix-Cre marks distinct subsets of CD45- and CD45+ stromal populations in extra-skeletal tumors with pro-tumorigenic characteristics. eLife 2020; 9:e54659. [PMID: 32755539 PMCID: PMC7428306 DOI: 10.7554/elife.54659] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 07/27/2020] [Indexed: 01/08/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a heterogeneous population of mesenchymal cells supporting tumor progression, whose origin remains to be fully elucidated. Osterix (Osx) is a marker of osteogenic differentiation, expressed in skeletal progenitor stem cells and bone-forming osteoblasts. We report Osx expression in CAFs and by using Osx-cre;TdTomato reporter mice we confirm the presence and pro-tumorigenic function of TdTOSX+ cells in extra-skeletal tumors. Surprisingly, only a minority of TdTOSX+ cells expresses fibroblast and osteogenic markers. The majority of TdTOSX+ cells express the hematopoietic marker CD45, have a genetic and phenotypic profile resembling that of tumor infiltrating myeloid and lymphoid populations, but with higher expression of lymphocytic immune suppressive genes. We find Osx transcript and Osx protein expression early during hematopoiesis, in subsets of hematopoietic stem cells and multipotent progenitor populations. Our results indicate that Osx marks distinct tumor promoting CD45- and CD45+ populations and challenge the dogma that Osx is expressed exclusively in cells of mesenchymal origin.
Collapse
Affiliation(s)
- Biancamaria Ricci
- Department of Orthopedics, Washington University School of MedicineSt. LouisUnited States
| | - Eric Tycksen
- Genome Technology Access Center, Department of Genetics, Washington University School of MedicineSt. LouisUnited States
| | - Hamza Celik
- Department of Medicine, Division of Oncology, Washington University School of MedicineSt. LouisUnited States
| | - Jad I Belle
- Department of Medicine, Division of Oncology, Washington University School of MedicineSt. LouisUnited States
| | - Francesca Fontana
- Department of Medicine, Division of Oncology, Washington University School of MedicineSt. LouisUnited States
| | - Roberto Civitelli
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University School of MedicineSt. LouisUnited States
| | - Roberta Faccio
- Department of Orthopedics, Washington University School of MedicineSt. LouisUnited States
- Shriners Children HospitalSt. LouisUnited States
| |
Collapse
|
13
|
Human Umbilical Vein Endothelial Cells (HUVECs) Co-Culture with Osteogenic Cells: From Molecular Communication to Engineering Prevascularised Bone Grafts. J Clin Med 2019; 8:jcm8101602. [PMID: 31623330 PMCID: PMC6832897 DOI: 10.3390/jcm8101602] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022] Open
Abstract
The repair of bone defects caused by trauma, infection or tumor resection is a major clinical orthopedic challenge. The application of bone grafts in orthopedic procedures is associated with a problem of inadequate vascularization in the initial phase after implantation. Meanwhile, the survival of cells within the implanted graft and its integration with the host tissue is strongly dependent on nutrient and gaseous exchange, as well as waste product removal, which are effectuated by blood microcirculation. In the bone tissue, the vasculature also delivers the calcium and phosphate indispensable for the mineralization process. The critical role of vascularization for bone healing and function, led the researchers to the idea of generating a capillary-like network within the bone graft in vitro, which could allow increasing the cell survival and graft integration with a host tissue. New strategies for engineering pre-vascularized bone grafts, that apply the co-culture of endothelial and bone-forming cells, have recently gained interest. However, engineering of metabolically active graft, containing two types of cells requires deep understanding of the underlying mechanisms of interaction between these cells. The present review focuses on the best-characterized endothelial cells-human umbilical vein endothelial cells (HUVECs)-attempting to estimate whether the co-culture approach, using these cells, could bring us closer to development and possible clinical application of prevascularized bone grafts.
Collapse
|
14
|
Liu Y, Kuang B, Rothrauff BB, Tuan RS, Lin H. Robust bone regeneration through endochondral ossification of human mesenchymal stem cells within their own extracellular matrix. Biomaterials 2019; 218:119336. [PMID: 31310952 DOI: 10.1016/j.biomaterials.2019.119336] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/25/2019] [Accepted: 07/04/2019] [Indexed: 01/23/2023]
Abstract
Mesenchymal stem cells (MSCs) embedded in their secreted extracellular matrix (mECM) constitute an exogenous scaffold-free construct capable of generating different types of tissues. Whether MSC-mECM constructs can recapitulate endochondral ossification (ECO), a developmental process during in vivo skeletogenesis, remains unknown. In this study, MSC-mECM constructs are shown to result in robust bone formation both in vitro and in vivo through the process of endochondral ossification when sequentially exposed to chondrogenic and osteogenic cues. Of interest, a novel trypsin pre-treatment was introduced to change cell morphology, which allowed MSC-mECM constructs to undergo the N-cadherin-mediated developmental condensation process and subsequent chondrogenesis. Furthermore, bone formation by MSC-mECM constructs were significantly enhanced by the ECO protocol, as compared to conventional in vitro culture in osteogenic medium alone. This was designed to promote direct bone formation as seen in intramembranous ossification (IMO). The developmentally informed method reported in this study represents a robust and efficacious approach for stem-cell based bone generation, which is superior to the conventional osteogenic induction procedure.
Collapse
Affiliation(s)
- Yuwei Liu
- Department of Orthopaedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15217, USA
| | - Biao Kuang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15217, USA; Xiangya Third Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Benjamin B Rothrauff
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15217, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15217, USA; The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15217, USA.
| |
Collapse
|
15
|
Mrozik KM, Blaschuk OW, Cheong CM, Zannettino ACW, Vandyke K. N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer 2018; 18:939. [PMID: 30285678 PMCID: PMC6167798 DOI: 10.1186/s12885-018-4845-0] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
In many types of solid tumours, the aberrant expression of the cell adhesion molecule N-cadherin is a hallmark of epithelial-to-mesenchymal transition, resulting in the acquisition of an aggressive tumour phenotype. This transition endows tumour cells with the capacity to escape from the confines of the primary tumour and metastasise to secondary sites. In this review, we will discuss how N-cadherin actively promotes the metastatic behaviour of tumour cells, including its involvement in critical signalling pathways which mediate these events. In addition, we will explore the emerging role of N-cadherin in haematological malignancies, including bone marrow homing and microenvironmental protection to anti-cancer agents. Finally, we will discuss the evidence that N-cadherin may be a viable therapeutic target to inhibit cancer metastasis and increase tumour cell sensitivity to existing anti-cancer therapies.
Collapse
Affiliation(s)
- Krzysztof Marek Mrozik
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | | | - Chee Man Cheong
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew Christopher William Zannettino
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.,Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Kate Vandyke
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia. .,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.
| |
Collapse
|
16
|
Wang FS, Wu RW, Lain WS, Tsai TC, Chen YS, Sun YC, Ke HJ, Li JC, Hwang J, Ko JY. Sclerostin vaccination mitigates estrogen deficiency induction of bone mass loss and microstructure deterioration. Bone 2018; 112:24-34. [PMID: 29653294 DOI: 10.1016/j.bone.2018.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/19/2018] [Accepted: 04/09/2018] [Indexed: 12/21/2022]
Abstract
Sclerostin (SOST) is a Wnt signaling inhibitor detrimental to osteogenic differentiation and bone mineral acquisition. While control of SOST action delays the pathogenesis of skeletal disorders, the effects of SOST vaccination on the estrogen deficiency-induced bone deterioration remain elusive. In this study, we generated a SOST-Fc fusion protein which was composed of a SOST peptide Pro-Asn-Ala-Ile-Gly along with an IgG Fc fragment. SOST-Fc vaccination increased serum anti-SOST antibody levels and reduced serum SOST concentrations in mice. In vitro, anti-SOST serum attenuated the SOST-induced inhibition of osteogenic gene expression in osteoblast cultures. Administration with SOST-Fc increased serum levels of bone formation marker osteocalcin and alleviated the ovariectomy escalation of serum resorption markers CTX-1 and TRAP5b concentrations. It remarkably lessened the estrogen deficiency-mediated deterioration of bone mineral density, morphometric characteristics of trabecular bone, and mechanical strength of femurs and lumbar spines. The SOST-Fc-treated skeletal tissue exhibited moderate responses to the adverse actions of ovariectomy to bone mineral accretion, osteoclast surface, trabecular separation, and fatty marrow histopathology. SOST-Fc treatment increased serum osteoclast-inhibitory factor osteoprotegrin levels in conjunction with strong Wnt3a, β-catenin, and TCF4 immunostaining in osteoblasts, whereas it weakened the estrogen deficiency enhancement of osteoclast-promoting factor receptor activator of nuclear factor-κB ligand. Taken together, blockade of SOST action by SOST-Fc vaccination sustains Wnt signaling, which harmonizes bone mineral accretion and resorption reactions and thereby ameliorates ovariectomy-induced bone loss. This study highlights SOST-Fc fusion protein as a new molecular therapeutic potential for preventing from osteoporotic disorders.
Collapse
Affiliation(s)
- Feng-Sheng Wang
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Core Laboratory for Phenomics and Diagonistics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Re-Wen Wu
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Wei-Shiung Lain
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Core Laboratory for Phenomics and Diagonistics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Tsai-Chen Tsai
- Core Laboratory for Phenomics and Diagonistics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Shan Chen
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Core Laboratory for Phenomics and Diagonistics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-Chih Sun
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Core Laboratory for Phenomics and Diagonistics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Huei-Jing Ke
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Core Laboratory for Phenomics and Diagonistics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Jui-Chen Li
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Core Laboratory for Phenomics and Diagonistics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Jaulang Hwang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jih-Yang Ko
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
17
|
Silva DI, Santos BPD, Leng J, Oliveira H, Amédée J. Dorsal root ganglion neurons regulate the transcriptional and translational programs of osteoblast differentiation in a microfluidic platform. Cell Death Dis 2017; 8:3209. [PMID: 29238079 PMCID: PMC5870602 DOI: 10.1038/s41419-017-0034-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 11/17/2022]
Abstract
Innervation by the sensory nervous system plays a key role in skeletal development and in orchestration of bone remodeling and regeneration. However, it is unclear how and in which bone cells can sensory nerves act to control these processes. Here, we show a microfluidic coculture system comprising dorsal root ganglion (DRG) neurons and mesenchymal stem cells (MSCs) that more faithfully represents the in vivo scenario of bone sensory innervation. We report that DRG neurons promote the osteogenic differentiation capacity of MSCs, by mediating the increase of alkaline phosphatase activity and the upregulation of osteoblast-specific genes. Furthermore, we show that DRG neurons have a positive impact on Cx43 levels in MSCs during osteoblastogenesis, especially at an early stage of this process. Conversely, we described a negative impact of DRG neurons on MSCs N-cadherin expression at a later stage. Finally, we demonstrate a cytoplasmic accumulation of β-catenin translocation into the nucleus, and subsequently Lymphoid Enhancer Binding Factor 1—responsive transcriptional activation of downstream genes in cocultured MSCs. Together, our study provides a robust body of evidence that the direct interaction of DRG neurons with MSCs in a bone-like microenvironment leads to an enhancement of osteoblast differentiation potential of MSCs. The osteogenic effect of DRG neurons on MSCs is mediated through the regulation of Cx43 and N-cadherin expression and activation of the canonical/β-catenin Wnt signaling pathway.
Collapse
Affiliation(s)
- Diana Isabel Silva
- Tissue Bioengineering, University of Bordeaux, U1026, 33076, Bordeaux, France. .,Tissue Bioengineering, INSERM, U1026, 33076, Bordeaux, France.
| | - Bruno Paiva Dos Santos
- Tissue Bioengineering, University of Bordeaux, U1026, 33076, Bordeaux, France.,Tissue Bioengineering, INSERM, U1026, 33076, Bordeaux, France
| | - Jacques Leng
- University of Bordeaux, LOF, UMR5258, 33600, Pessac, France.,CNRS, LOF, UMR5258, 33600, Pessac, France.,Solvay, LOF, UMR5258, 33600, Pessac, France
| | - Hugo Oliveira
- Tissue Bioengineering, University of Bordeaux, U1026, 33076, Bordeaux, France.,Tissue Bioengineering, INSERM, U1026, 33076, Bordeaux, France
| | - Joëlle Amédée
- Tissue Bioengineering, University of Bordeaux, U1026, 33076, Bordeaux, France.,Tissue Bioengineering, INSERM, U1026, 33076, Bordeaux, France
| |
Collapse
|