1
|
Martone D, Vigh-Larsen JF, Vitucci D, Larsen MN, Randers MB, Olesen JL, Mohr M, Mancini A, Krustrup P, Buono P. Potential Effects of Lifelong Team Handball and Football Training and Nutritional Habits on Bone Health and Body Composition in Elderly Women. J Funct Morphol Kinesiol 2024; 9:159. [PMID: 39311267 PMCID: PMC11417710 DOI: 10.3390/jfmk9030159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES The aim of this study was to evaluate the effects of lifelong team handball/football training on regional bone health and body composition in elderly women. METHODS Seventeen elderly women team handball/football players (65.9 ± 5.7 years) and twenty-one untrained age-matched women (controls) (67.7 ± 5.1 years) participated. Whole-body and regional dual-energy X-ray absorptiometry scans of arms, legs, and lower spine (L1-L4) were performed. RESULTS We observed 8% and 9% higher bone mineral density (BMD) and bone mineral content (BMC), respectively, at the whole-body level and in the legs and 11.5% higher BMC in the legs in team handball/football players compared to untrained age-matched controls (p < 0.05). Higher total and leg lean body mass (p < 0.05), along with lower total body fat percentage (p < 0.05) and higher T- and Z-scores, markers of fragility risk fracture (0.294 ± 1.461 vs. -0.538 ± 1.031; 1.447 ± 1.278 vs. 0.724 ± 0.823, respectively), were also found in team handball/football players compared to controls (p < 0.05). No significant differences in nutritional habits were observed between groups. CONCLUSIONS Our study suggest that the beneficial effects of lifetime handball/football practice on bone preservation in elderly women occur independently from nutritional intake, which emphasize the potential role of team sports in osteoporosis prevention. Future studies should focus on the cofounding factors and causative mechanisms mediated by team sport practice in osteoporosis prevention.
Collapse
Affiliation(s)
- Domenico Martone
- Department of Economics, Law, Cybersecurity and Sports Sciences, University Parthenope, 80035 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore S.c.a.r.l, 80131 Naples, Italy; (D.V.); (A.M.)
| | - Jeppe Foged Vigh-Larsen
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, 5230 Odense, Denmark; (J.F.V.-L.); (M.N.L.); (M.B.R.); (M.M.); (P.K.)
| | - Daniela Vitucci
- CEINGE-Biotecnologie Avanzate Franco Salvatore S.c.a.r.l, 80131 Naples, Italy; (D.V.); (A.M.)
- Department of Medical, Human Movement and Well-Being Sciences, University Parthenope, 80133 Naples, Italy
| | - Malte Nejst Larsen
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, 5230 Odense, Denmark; (J.F.V.-L.); (M.N.L.); (M.B.R.); (M.M.); (P.K.)
| | - Morten Bredsgaard Randers
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, 5230 Odense, Denmark; (J.F.V.-L.); (M.N.L.); (M.B.R.); (M.M.); (P.K.)
| | | | - Magni Mohr
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, 5230 Odense, Denmark; (J.F.V.-L.); (M.N.L.); (M.B.R.); (M.M.); (P.K.)
- Centre of Health Sciences, Faculty of Health, University of Faroe Islands, FO-100 Tórshavn, Faroe Islands
| | - Annamaria Mancini
- CEINGE-Biotecnologie Avanzate Franco Salvatore S.c.a.r.l, 80131 Naples, Italy; (D.V.); (A.M.)
- Department of Medical, Human Movement and Well-Being Sciences, University Parthenope, 80133 Naples, Italy
| | - Peter Krustrup
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, 5230 Odense, Denmark; (J.F.V.-L.); (M.N.L.); (M.B.R.); (M.M.); (P.K.)
| | - Pasqualina Buono
- CEINGE-Biotecnologie Avanzate Franco Salvatore S.c.a.r.l, 80131 Naples, Italy; (D.V.); (A.M.)
- Department of Medical, Human Movement and Well-Being Sciences, University Parthenope, 80133 Naples, Italy
| |
Collapse
|
2
|
Busse E, Lee B, Nagamani SCS. Genetic Evaluation for Monogenic Disorders of Low Bone Mass and Increased Bone Fragility: What Clinicians Need to Know. Curr Osteoporos Rep 2024; 22:308-317. [PMID: 38600318 DOI: 10.1007/s11914-024-00870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to outline the principles of clinical genetic testing and to provide practical guidance to clinicians in navigating genetic testing for patients with suspected monogenic forms of osteoporosis. RECENT FINDINGS Heritability assessments and genome-wide association studies have clearly shown the significant contributions of genetic variations to the pathogenesis of osteoporosis. Currently, over 50 monogenic disorders that present primarily with low bone mass and increased risk of fractures have been described. The widespread availability of clinical genetic testing offers a valuable opportunity to correctly diagnose individuals with monogenic forms of osteoporosis, thus instituting appropriate surveillance and treatment. Clinical genetic testing may identify the appropriate diagnosis in a subset of patients with low bone mass, multiple or unusual fractures, and severe or early-onset osteoporosis, and thus clinicians should be aware of how to incorporate such testing into their clinical practices.
Collapse
Affiliation(s)
- Emily Busse
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Texas Children's Hospital, Houston, TX, USA.
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
3
|
Qiu Z, Cai W, Liu Q, Liu K, Liu C, Yang H, Huang R, Li P, Zhao Q. Unravelling novel and pleiotropic genes for cannon bone circumference and bone mineral density in Yorkshire pigs. J Anim Sci 2024; 102:skae036. [PMID: 38330300 PMCID: PMC10914368 DOI: 10.1093/jas/skae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024] Open
Abstract
Leg weakness is a prevalent health condition in pig farms. The augmentation of cannon bone circumference and bone mineral density can effectively improve limb strength in pigs and alleviate leg weakness. This study measured forelimb cannon bone circumference (fCBC) and rear limb cannon bone circumference (rCBC) using an inelastic tapeline and rear limb metatarsal area bone mineral density (raBMD) using a dual-energy X-ray absorptiometry bone density scanner. The samples of Yorkshire castrated boars were genotyped using a 50K single-nucleotide polymorphism (SNP) array. The SNP-chip data were imputed to the level of whole-genome sequencing data (iWGS). This study used iWGS data to perform genome-wide association studies and identified novel significant SNPs associated with fCBC on SSC6, SSC12, and SSC13, rCBC on SSC12 and SSC14, and raBMD on SSC7. Based on the high phenotypic and genetic correlations between CBC and raBMD, multi-trait meta-analysis was performed to identify pleiotropic SNPs. A significant potential pleiotropic quantitative trait locus (QTL) regulating both CBC and raBMD was identified on SSC15. Bayes fine mapping was used to establish the confidence intervals for these novel QTLs with the most refined confidence interval narrowed down to 56 kb (15.11 to 15.17 Mb on SSC12 for fCBC). Furthermore, the confidence interval for the potential pleiotropic QTL on SSC15 in the meta-analysis was narrowed down to 7.45 kb (137.55 to137.56 Mb on SSC15). Based on the biological functions of genes, the following genes were identified as novel regulatory candidates for different phenotypes: DDX42, MYSM1, FTSJ3, and MECOM for fCBC; SMURF2, and STC1 for rCBC; RGMA for raBMD. Additionally, RAMP1, which was determined to be located 23.68 kb upstream of the confidence interval of the QTL on SSC15 in the meta-analysis, was identified as a potential pleiotropic candidate gene regulating both CBC and raBMD. These findings offered valuable insights for identifying pathogenic genes and elucidating the genetic mechanisms underlying CBC and BMD.
Collapse
Affiliation(s)
- Zijian Qiu
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwu Cai
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Liu
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaiyue Liu
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenxi Liu
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Huilong Yang
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruihua Huang
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - Pinghua Li
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
- Huaian Academy, Nanjing Agricultural University, Huaian 223005, China
| | - Qingbo Zhao
- Key Laboratory in Nanjing for Evaluation and Utilization of Pigs Resources, Ministry of Agriculture and Rural Areas of China, Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Lu S, Liu X, Niu Y, Li F, Gong M, Zha Y, Chao Q, Lu B, Zhang B, Li N, Chen J, Liu Q, Yuan R, Jiang X. Short-term effect of apparent temperature on daily hospitalizations for osteoporotic fractures in Beijing, China: A retrospective observational study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162583. [PMID: 36870481 DOI: 10.1016/j.scitotenv.2023.162583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Studies on the associations between temperature and osteoporotic fractures (OF) hospitalizations are limited. This study aimed to assess the short-term effect of apparent temperature (AT) on the risk of OF hospitalizations. METHODS This retrospective observational study was conducted in Beijing Jishuitan Hospital from 2004 to 2021. Daily OF hospitalizations, meteorological variables and fine particulate matter were collected. A Poisson generalized linear regression model combined with a distributed lag non-linear model was applied to analyze the lag-exposure-response relationship between AT and the number of OF hospitalizations. Subgroup analysis by gender, age and fracture type was also conducted. RESULTS Total daily hospitalization visits for OF during the studied period were 35,595. The exposure-response curve of AT and OF presented a non-linear relationship, with optimum apparent temperature (OAT) at 28.40 °C. Taking OAT as the reference, the cold effect (-10.58 °C, 2.5th percentage) on single lag day had statistical significance from the current day of exposure (RR = 1.18, 95 % CI: 1.08-1.28) to lag 4 day (RR = 1.04, 95 % CI: 1.01-1.08), while the cumulative cold effect increased the risk of OF hospitalization visits from lag 0 to 14 days, with the maximum RR over lag 0-14 days (RR = 1.84, 95 % CI: 1.21-2.79). There were no significant risks of OF hospitalizations for warm effects (32.53 °C, 97.5th percentage) on single or cumulative lag days. The cold effect might be more evident among females, patients aged 80 years or older, and patients with hip fractures. CONCLUSION Exposure to cold temperatures is associated with an increased risk of OF hospitalizations. Females, patients aged 80 years or older and patients with hip fractures might be more vulnerable to the cold effect of AT.
Collapse
Affiliation(s)
- Shuai Lu
- Department of Orthopedic Trauma, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Xuejiao Liu
- Department of Medical Record Management and Statistics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Yanlin Niu
- Beijing Center for Disease Prevention and Control, Institute for Nutrition and Food Hygiene, Beijing 100035, China
| | - Feng Li
- Department of Orthopedics, The Third People's Hospital of Xiao Shan Hangzhou, Hangzhou 311251, China
| | - Maoqi Gong
- Department of Orthopedic Trauma, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Yejun Zha
- Department of Orthopedic Trauma, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Qingchen Chao
- China National Climate Center, Beijing 100081, China
| | - Bo Lu
- China National Climate Center, Beijing 100081, China
| | - Baichao Zhang
- China National Climate Center, Beijing 100081, China
| | - Ning Li
- Department of Orthopedic Trauma, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Jia Chen
- Department of Endocrinology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Qiyong Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Rui Yuan
- Department of Medical Record Management and Statistics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Xieyuan Jiang
- Department of Orthopedic Trauma, Beijing Jishuitan Hospital, Beijing 100035, China.
| |
Collapse
|
5
|
Xiao X, Wu Q. Ethnic disparities in fracture risk assessment using polygenic scores. Osteoporos Int 2023; 34:943-953. [PMID: 36840773 PMCID: PMC11225529 DOI: 10.1007/s00198-023-06712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 02/17/2023] [Indexed: 02/26/2023]
Abstract
Whether the PGS developed using data from European ancestry is predictive of fracture risk for minorities remains unclear. This study demonstrated that PGSs based on common BMD-related genetic variants discovered in the European ancestry cohort are predictive of fracture risk in people of Asian but not African ancestry. PURPOSE Large-scale genome-wide association studies (GWAS) on bone mineral density (BMD) have been conducted predominantly in European cohorts. Genetic models based on common variants associated with BMD have been evaluated using almost exclusively European data, which could potentially exacerbate health disparities due to different linkage disequilibrium among different ethnic groups. METHODS UK Biobank (UKB) is a large-scale population-based observational study starting in 2006 that recruited 502,617 individuals aged between 40 and 69 years with genotypic and phenotypic data available. Based on the summary statistics of two GWAS studies of femoral neck BMD and total body BMD, we derived four PGSs and assessed the association between each PGS and prevalent/incident fractures within each ethnic group separately using Multivariate logistic regressions and Cox proportional hazard models. All models were adjusted for age, sex, and the first four principal components. RESULTS We assessed four PGSs derived from European cohorts. Significant associations were observed between PGSs and fracture in European and Asian cohorts but not in the African cohort. Of all four PGSs, [Formula: see text] performed the best. A standard deviation decreases in [Formula: see text] were associated with an increased hazard ratio (HR) of 1.24 (1.22-1.27), 1.28 (0.83-1.99), and 1.34 (1.10-1.64) in European, African, and Asian ancestry, respectively. A low BMD-related PGS is associated with up to 2.35- and 4.31-fold increased fracture risk in European and Asian populations. CONCLUSIONS These results showed that PGSs based on common BMD-related genetic variants discovered in the European ancestry cohort are predictive of fracture risk in people of Asian but not African ancestry.
Collapse
Affiliation(s)
- Xiangxue Xiao
- Nevada Institute of Personalized Medicine, College of Science, University of Nevada, Las Vegas, NV, USA
- Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Qing Wu
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320K Lincoln Tower, 1800 Cannon Dr., Columbus, OH, 43210, USA.
| |
Collapse
|
6
|
Bierhals IO, Vaz JDS, Matijasevich A, Barros AJD, Tovo-Rodrigues L, Barros FC, Santos IS. Linear growth and relative weight gain in childhood and bone mass in adolescence: findings from the Pelotas (Brazil) 2004 birth cohort. Arch Osteoporos 2022; 18:5. [PMID: 36482131 DOI: 10.1007/s11657-022-01189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022]
Abstract
With the objective to investigate the relationship of weight and height growth with bone mass at 11 years, we found that boys who grew in weight and height, especially at 48 months, and girls, who grew in weight at 24 months and height at 11 years, gained more bone mass. PURPOSE To investigate independent relationships of linear growth and relative weight gain during defined periods of infancy, childhood, and early adolescence with areal bone mineral density (aBMD) of three sites at 11 years. METHODS Data on weight and length/height were obtained at birth, 3, 12, and 24 months, and the ages of 4, 6, and 11. The outcome was whole body, femoral neck, and lumbar spine aBMD (g/cm2) measured at 11 years using dual-energy X-ray absorptiometry. The effects of weight gain and linear growth were analyzed using conditional relative weight and conditional length/height. Associations between conditional growth and outcomes were analyzed using linear regression, adjusted for multiple confounders. RESULTS Individuals with data available for exposures and bone outcomes were 2875 and comprised the sample. For boys, the greatest magnitude of increase for whole body and height gain was at 48 months (β 0.014, 95% CI 0.010; 0.018). For girls, higher aBMD was observed for those with greater height gain at 11 years, representing for lumbar spine an increase of 0.056 g/cm2 (95% CI 0.050; 0.062). For body weight, among boys, the greatest magnitude in the whole body was also associated with weight gain at 48 months (β 0.014, 95% CI 0.010; 0.018). For girls, the highest coefficient was at 24 months, representing for lumbar spine an increase of 0.028 g/cm2, (95% CI 0.021; 0.035). CONCLUSION Positive associations were demonstrated between length/height and weight gain and aBMD in both sexes, with emphasis on girls' aBMD in response to the linear growth achieved mainly at 11 years.
Collapse
Affiliation(s)
- Isabel Oliveira Bierhals
- Postgraduate Program in Epidemiology, Faculty of Medicine, Federal University of Pelotas, Rua Marechal Deodoro, 1160, 3° Andar, Pelotas, RS, CEP 96020-220, Brazil.
| | - Juliana Dos Santos Vaz
- Postgraduate Program in Epidemiology, Faculty of Medicine, Federal University of Pelotas, Rua Marechal Deodoro, 1160, 3° Andar, Pelotas, RS, CEP 96020-220, Brazil
- Faculty of Nutrition, Federal University of Pelotas, Pelotas, Brazil
| | - Alicia Matijasevich
- Postgraduate Program in Epidemiology, Faculty of Medicine, Federal University of Pelotas, Rua Marechal Deodoro, 1160, 3° Andar, Pelotas, RS, CEP 96020-220, Brazil
- Faculdade de Medicina FMUSP, Departamento de Medicina Preventiva, Universidade de São Paulo, São Paulo, Brazil
| | - Aluísio J D Barros
- Postgraduate Program in Epidemiology, Faculty of Medicine, Federal University of Pelotas, Rua Marechal Deodoro, 1160, 3° Andar, Pelotas, RS, CEP 96020-220, Brazil
| | - Luciana Tovo-Rodrigues
- Postgraduate Program in Epidemiology, Faculty of Medicine, Federal University of Pelotas, Rua Marechal Deodoro, 1160, 3° Andar, Pelotas, RS, CEP 96020-220, Brazil
| | - Fernando C Barros
- Postgraduate Program in Epidemiology, Faculty of Medicine, Federal University of Pelotas, Rua Marechal Deodoro, 1160, 3° Andar, Pelotas, RS, CEP 96020-220, Brazil
- Postgraduation Program in Health and Behavior, Catholic University of Pelotas, Pelotas, RS, Brazil
| | - Iná S Santos
- Postgraduate Program in Epidemiology, Faculty of Medicine, Federal University of Pelotas, Rua Marechal Deodoro, 1160, 3° Andar, Pelotas, RS, CEP 96020-220, Brazil
- Postgraduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Osteotropic Effect of Parenteral Obesity in Programmed Male Rats Fed a Calorically Differentiated Diet during Growth and Development. Animals (Basel) 2022; 12:ani12182314. [PMID: 36139175 PMCID: PMC9495023 DOI: 10.3390/ani12182314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Parental obesity affects skeletal metabolism in offspring. This relationship is called “nutritional programming”. During the weaning period, they are more highly mineralized and mechanically resistant. It was interesting for us whether changing or continuing the feeding of male offspring with a standard or high-energy diet may have different metabolic effects on bone tissue. Our previous studies on females have shown that the beneficial direction of change is the replacement of the standard diet with a high-energy diet; the reduction of the caloric content of food (change from a high-energy to a properly balanced diet) leads to disorders of skeletal growth and development. In males, any change in diet inhibited skeletal development, and the bones were weaker. The most effective was the continuation of high-energy nutrition, which, in males at 49 and 90 days of age, was manifested by stronger bones. This proves that males and females react differently to a change in the caloric content of the diet during the period of growth and development. Abstract The experiment was undertaken to assess whether the continuation or change of the parents’ diet affects the previously programmed bone metabolism of the male offspring during its growth and development. A total of 16 male and 32 female Wistar rats were divided into groups and fed a standard (diet S) or high-energy (diet F). After the induction of obesity, the rats from groups S and F, as the parent generation, were used to obtain male offspring, which were kept with their mothers until the weaning day (21 days of age). In our earlier study, we documented the programming effects of the diet used in parents on the skeletal system of offspring measured on the weaning day. Weaned male offspring constitute one control group—parents and offspring fed the S diet. There were three experimental groups, where: parents received diet S and offspring were fed with the F diet; parents were treated with the diet F, while offspring received the S diet; and parents and offspring were fed with the diet F. The analyses were performed at 49 and 90 days of life. After sacrifice, cleaned-off soft tissue femora were assessed using peripheral quantitative computed tomography (pQCT), dual X-ray absorptiometry (DXA), and a three-point bending test. We observed that changing and continuation of nutrition, applied previously in parents, significantly influenced the metabolism of the bone tissue in male offspring, and the osteotropic effects differed, depending on the character of the nutrition modification and age. Additionally, an important conclusion of our study, regarding the previous, is that nutrition modification, affecting the metabolism of bone tissue, also depends on the sex.
Collapse
|
8
|
Caetano da Silva C, Edouard T, Fradin M, Aubert-Mucca M, Ricquebourg M, Raman R, Salles JP, Charon V, Guggenbuhl P, Muller M, Cohen-Solal M, Collet C. WNT11, a new gene associated with early onset osteoporosis, is required for osteoblastogenesis. Hum Mol Genet 2022; 31:1622-1634. [PMID: 34875064 PMCID: PMC9122655 DOI: 10.1093/hmg/ddab349] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/12/2022] Open
Abstract
Monogenic early onset osteoporosis (EOOP) is a rare disease defined by low bone mineral density (BMD) that results in increased risk of fracture in children and young adults. Although several causative genes have been identified, some of the EOOP causation remains unresolved. Whole-exome sequencing revealed a de novo heterozygous loss-of-function mutation in Wnt family member 11 (WNT11) (NM_004626.2:c.677_678dup p.Leu227Glyfs*22) in a 4-year-old boy with low BMD and fractures. We identified two heterozygous WNT11 missense variants (NM_004626.2:c.217G > A p.Ala73Thr) and (NM_004626.2:c.865G > A p.Val289Met) in a 51-year-old woman and in a 61-year-old woman, respectively, both with bone fragility. U2OS cells with heterozygous WNT11 mutation (NM_004626.2:c.690_721delfs*40) generated by CRISPR-Cas9 showed reduced cell proliferation (30%) and osteoblast differentiation (80%) as compared with wild-type U2OS cells. The expression of genes in the Wnt canonical and non-canonical pathways was inhibited in these mutant cells, but recombinant WNT11 treatment rescued the expression of Wnt pathway target genes. Furthermore, the expression of RSPO2, a WNT11 target involved in bone cell differentiation, and its receptor leucine-rich repeat containing G protein-coupled receptor 5 (LGR5), was decreased in WNT11 mutant cells. Treatment with WNT5A and WNT11 recombinant proteins reversed LGR5 expression, but Wnt family member 3A (WNT3A) recombinant protein treatment had no effect on LGR5 expression in mutant cells. Moreover, treatment with recombinant RSPO2 but not WNT11 or WNT3A activated the canonical pathway in mutant cells. In conclusion, we have identified WNT11 as a new gene responsible for EOOP, with loss-of-function variant inhibiting bone formation via Wnt canonical and non-canonical pathways. WNT11 may activate Wnt signaling by inducing the RSPO2-LGR5 complex via the non-canonical Wnt pathway.
Collapse
Affiliation(s)
- Caroline Caetano da Silva
- INSERM U1132 and Université de Paris, Reference Centre for Rare Bone Diseases, Hospital Lariboisière, Paris F-75010, France
| | - Thomas Edouard
- Endocrine Bone Diseases and Genetics Unit, Reference Centre for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Clinical Research Unit, Children’s Hospital, RESTORE INSERM U1301, Toulouse University Hospital, Toulouse 31300, France
| | - Melanie Fradin
- Service de Génétique Clinique, Centre de Référence des Anomalies du Développement de l'Ouest, Hôpital Sud de Rennes, Rennes F-35033, France
| | - Marion Aubert-Mucca
- Endocrine Bone Diseases and Genetics Unit, Reference Centre for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Clinical Research Unit, Children’s Hospital, RESTORE INSERM U1301, Toulouse University Hospital, Toulouse 31300, France
| | - Manon Ricquebourg
- INSERM U1132 and Université de Paris, Reference Centre for Rare Bone Diseases, Hospital Lariboisière, Paris F-75010, France
| | - Ratish Raman
- Laboratory for Organogenesis and Regeneration (LOR), GIGA-Research, Liège University, Liège 4000, Belgium
| | - Jean Pierre Salles
- Endocrine Bone Diseases and Genetics Unit, Reference Centre for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Pediatric Clinical Research Unit, Children’s Hospital, RESTORE INSERM U1301, Toulouse University Hospital, Toulouse 31300, France
| | - Valérie Charon
- Department of Radiology, CHU de Rennes, Rennes F-35000, France
| | | | - Marc Muller
- Laboratory for Organogenesis and Regeneration (LOR), GIGA-Research, Liège University, Liège 4000, Belgium
| | - Martine Cohen-Solal
- INSERM U1132 and Université de Paris, Reference Centre for Rare Bone Diseases, Hospital Lariboisière, Paris F-75010, France
| | - Corinne Collet
- INSERM U1132 and Université de Paris, Reference Centre for Rare Bone Diseases, Hospital Lariboisière, Paris F-75010, France
- Département de Génétique, UF de Génétique Moléculaire, Hôpital Robert Debré, APHP, Paris F-75019, France
| |
Collapse
|
9
|
Skripnikova IA, Kolchina MA, Meshkov AN, Kiseleva AV, Drapkina OM. Arterial calcification, atherosclerosis and osteoporosis: only clinical associations or a genetic platform? КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2021. [DOI: 10.15829/1728-8800-2021-3034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The review is devoted to the comorbidity of two multifactorial diseases — atherosclerosis and osteoporosis. Numerous epidemiological, experimental and clinical studies have confirmed the relationship between these diseases based on common risk factors and pathogenetic mechanisms. At the same time, to assess the associations between osteoporosis and atherosclerosis-related cardiovascular diseases, the following surrogate markers are used: vascular calcification, vascular stiffness, bone mineral density. It is known that atherosclerosis and osteoporosis depend on the human genotype, and they are caused by the interaction between the environment and genes. The modifiable risk factors for these diseases are largely similar, and the common features of atherosclerosis and osteoporosis pathogenesis make it possible to formulate the concept of a unified genetic basis of their development. Advances in molecular technology have made it possible to conduct a genome-wide association study (GWAS) and successfully identify genetic markers associated with both atherosclerosis and osteoporosis. The review aim was to describe the genes associated with developing atherosclerosis, arterial calcification and osteoporosis, as well as to provide information on the current understanding of the general genetic basis for plaque formation, vascular calcium deposition, and a decrease in bone mass. The analysis of publications from the PubMed, Medline, Web of Science and Cochrane Library databases since 2000 have been carried out. The article describes the genetic markers associated with atherosclerosis and osteoporosis, as well as considers the achievements in studying genetics of osteoporosis and atherosclerosis-related cardiovascular diseases. In addition, modern approaches and directions for further research of these diseases was established. The review can be useful for medical practitioners to clarify various genetic associations and mechanisms that lead to this comorbidity.
Collapse
Affiliation(s)
- I. A. Skripnikova
- National Medical Research Center for Therapy and Preventive Medicine
| | - M. A. Kolchina
- National Medical Research Center for Therapy and Preventive Medicine
| | - A. N. Meshkov
- National Medical Research Center for Therapy and Preventive Medicine
| | - A. V. Kiseleva
- National Medical Research Center for Therapy and Preventive Medicine
| | - O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| |
Collapse
|
10
|
Yau MS, Kuipers AL, Price R, Nicolas A, Tajuddin SM, Handelman SK, Arbeeva L, Chesi A, Hsu YH, Liu CT, Karasik D, Zemel BS, Grant SFA, Jordan JM, Jackson RD, Evans MK, Harris TB, Zmuda JM, Kiel DP. A Meta-Analysis of the Transferability of Bone Mineral Density Genetic Loci Associations From European to African Ancestry Populations. J Bone Miner Res 2021; 36:469-479. [PMID: 33249669 PMCID: PMC8353846 DOI: 10.1002/jbmr.4220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
Genetic studies of bone mineral density (BMD) largely have been conducted in European populations. We therefore conducted a meta-analysis of six independent African ancestry cohorts to determine whether previously reported BMD loci identified in European populations were transferable to African ancestry populations. We included nearly 5000 individuals with both genetic data and assessments of BMD. Genotype imputation was conducted using the 1000G reference panel. We assessed single-nucleotide polymorphism (SNP) associations with femoral neck and lumbar spine BMD in each cohort separately, then combined results in fixed effects (or random effects if study heterogeneity was high, I2 index >60) inverse variance weighted meta-analyses. In secondary analyses, we conducted locus-based analyses of rare variants using SKAT-O. Mean age ranged from 12 to 68 years. One cohort included only men and another cohort included only women; the proportion of women in the other four cohorts ranged from 52% to 63%. Of 56 BMD loci tested, one locus, 6q25 (C6orf97, p = 8.87 × 10-4 ), was associated with lumbar spine BMD and two loci, 7q21 (SLC25A13, p = 2.84 × 10-4 ) and 7q31 (WNT16, p = 2.96 × 10-5 ), were associated with femoral neck BMD. Effects were in the same direction as previously reported in European ancestry studies and met a Bonferroni-adjusted p value threshold, the criteria for transferability to African ancestry populations. We also found associations that met locus-specific Bonferroni-adjusted p value thresholds in 11q13 (LRP5, p < 2.23 × 10-4 ), 11q14 (DCDC5, p < 5.35 × 10-5 ), and 17p13 (SMG6, p < 6.78 × 10-5 ) that were not tagged by European ancestry index SNPs. Rare single-nucleotide variants in AKAP11 (p = 2.32 × 10-2 ), MBL2 (p = 4.09 × 10-2 ), MEPE (p = 3.15 × 10-2 ), SLC25A13 (p = 3.03 × 10-2 ), STARD3NL (p = 3.35 × 10-2 ), and TNFRSF11A (p = 3.18 × 10-3 ) were also associated with BMD. The majority of known BMD loci were not transferable. Larger genetic studies of BMD in African ancestry populations will be needed to overcome limitations in statistical power and to identify both other loci that are transferable across populations and novel population-specific variants. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Michelle S Yau
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Allison L Kuipers
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan Price
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Aude Nicolas
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Salman M Tajuddin
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Baltimore, MD, USA
| | - Samuel K Handelman
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Liubov Arbeeva
- Thurston Arthritis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alessandra Chesi
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yi-Hsiang Hsu
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - David Karasik
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Babette S Zemel
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Struan FA Grant
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joanne M Jordan
- Thurston Arthritis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebecca D Jackson
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Baltimore, MD, USA
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Baltimore, MD, USA
| | - Joseph M Zmuda
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Facioni MS, Raspini B, Pivari F, Dogliotti E, Cena H. Nutritional management of lactose intolerance: the importance of diet and food labelling. J Transl Med 2020; 18:260. [PMID: 32590986 PMCID: PMC7318541 DOI: 10.1186/s12967-020-02429-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Worldwide, 70% of the adult population has limited expression of lactase enzyme with a wide variation among different regions and countries. Lactase deficiency may lead to lactose intolerance (LI). Depending both on the amount of lactose ingested and on the lactase activity, people who suffer from lactose malabsorption might experience numerous gastrointestinal and extra-intestinal symptoms and manifestations. Treatment of LI mainly consists of reducing or eliminating lactose from the diet until the symptoms disappear as well as supplementing lactase, and inducing colon microbiome adaptation by probiotics. Cow’s milk is one of the major source of calcium and several other vitamins and minerals. Thus, a complete exclusion of dairy products may favor the development of bone diseases such as osteopenia and osteoporosis. Therefore, the dietetic approach has a crucial role in the management of LI patients. Additionally, the use of lactose and milk-derived products in non-dairy products (e.g., baked goods, breakfast cereals, drinks, and processed meat) has become widespread in the modern industry (the so-called “hidden lactose”). In this regard, a strict adherence to the lactose-free diet becomes challenging for LI patients, forced to continuous check of all products and food labels. In fact, lactose-free product labeling is still controversial. Considering that nowadays a specific cut-off value establishing “lactose-free” labeling policy is lacking and that there is no universal law regulating the production and commercialization of “delactosed” products, identification of specific safe and suitable products with a well-recognized lactose-free logo might help consumers. This narrative review aims to identify the dietary management for lactose intolerant people, avoiding symptoms and nutrients deficiencies, helped by the use of specific labelling to guide them to choose the safer product on the market.
Collapse
Affiliation(s)
| | - Benedetta Raspini
- Dietetics and Clinical Nutrition Laboratory, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Francesca Pivari
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, Milan, Italy.
| | | | - Hellas Cena
- Dietetics and Clinical Nutrition Laboratory, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.,Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, ICS Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
12
|
Maïmoun L, Garnero P, Mura T, Nocca D, Lefebvre P, Philibert P, Seneque M, Gaspari L, Vauchot F, Courtet P, Sultan A, Piketty ML, Sultan C, Renard E, Guillaume S, Mariano-Goulart D. Specific Effects of Anorexia Nervosa and Obesity on Bone Mineral Density and Bone Turnover in Young Women. J Clin Endocrinol Metab 2020; 105:5672712. [PMID: 31821467 DOI: 10.1210/clinem/dgz259] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/09/2019] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The threefold aim was to (1) compare areal bone mineral density (aBMD), bone turnover markers, and periostin levels in young women with either anorexia nervosa (AN) or obesity (OB) and controls (CON); (2) model the profiles according to age; and (3) determine the parameters associated with aBMD. SUBJECTS AND METHODS One hundred and fifty-two young women with ages ranging from 16.0 to 27.0 years were subdivided into 3 groups (AN, OB, CON). The CON group was age-matched by ±6 months. aBMD, bone turnover markers, and periostin levels were evaluated. RESULTS aBMD modeling showed that hip aBMD was higher in OB than in the other 2 groups from 19 years, and AN presented lower values than CON from 21 years. aBMD at the lumbar spine was higher in older OB and CON women, starting from 20 to 22 years, but in AN the difference with the other 2 groups increased with age. Periostin levels were lower in OB than in AN or CON, but no variation with age was observed. Compared with controls, OB and AN presented similarly lower markers of bone formation, although markers of bone resorption were lower in OB and higher in AN. A modeling approach showed that markers of bone formation and resorption were lower in older than in younger CON, whereas the values of these bone markers remained relatively constant in AN and OB. In all groups, lean body mass (LBM) was the parameter most positively correlated with aBMD. CONCLUSION This study demonstrated that weight extremes (AN or OB) influence aBMD, bone remodeling and periostin profiles. Moreover, factors related to aBMD were specific to each condition, but LBM was the parameter most consistently associated with aBMD.
Collapse
Affiliation(s)
- Laurent Maïmoun
- Département de Médecine Nucléaire, Hôpital Lapeyronie, Centre Hospitalier Régional Universitaire (CHRU) Montpellier, Montpellier, France
- PhyMedExp, Université de Montpellier (UM), INSERM, CNRS, Montpellier, France
| | | | - Thibault Mura
- Unité de Recherche Clinique et Epidémiologie, Hôpital Lapeyronie, CHRU Montpellier, Montpellier, France
| | - David Nocca
- Département de Chirurgie Digestive, Hôpital St Eloi, CHRU Montpellier
| | - Patrick Lefebvre
- Departement d'Endocrinologie, Diabète, Nutrition, Hôpital Lapeyronie, CHRU Montpellier, Montpellier, France
| | - Pascal Philibert
- Departement de Biochimie et d'Hormonologie, Hôpital Lapeyronie, CHRU Montpellier, Montpellier, France
| | - Maude Seneque
- Département d'Urgence et Post-Urgence Psychiatrique, Hôpital Lapeyronie, CHRU Montpellier, UM, INSERM U1061, Montpellier, France
| | - Laura Gaspari
- Unité d'Endocrinologie et Gynécologie Pédiatrique, Département de Pédiatrie, Hôpital Arnaud de Villeneuve, CHRU Montpellier et UM, Montpellier, France
| | - Fabien Vauchot
- Département de Médecine Nucléaire, Hôpital Lapeyronie, Centre Hospitalier Régional Universitaire (CHRU) Montpellier, Montpellier, France
| | - Philippe Courtet
- Département d'Urgence et Post-Urgence Psychiatrique, Hôpital Lapeyronie, CHRU Montpellier, UM, INSERM U1061, Montpellier, France
| | - Ariane Sultan
- PhyMedExp, Université de Montpellier (UM), INSERM, CNRS, Montpellier, France
- Département Endocrinologie, Nutrition, Diabète; Equipe Nutrition, Diabète, Hôpital Lapeyronie, CHRU Montpellier, Montpellier, France
| | | | - Charles Sultan
- Unité d'Endocrinologie et Gynécologie Pédiatrique, Département de Pédiatrie, Hôpital Arnaud de Villeneuve, CHRU Montpellier et UM, Montpellier, France
| | - Eric Renard
- Departement d'Endocrinologie, Diabète, Nutrition, Hôpital Lapeyronie, CHRU Montpellier, Montpellier, France
- CIC INSERM 1001, Hôpital Gui de Chauliac, CHRU Montpellier, France
- Institut de Génomique Fonctionnelle, CNRS UMR 5203/INSERM U661/UM, Montpellier, France
| | - Sébastien Guillaume
- Département d'Urgence et Post-Urgence Psychiatrique, Hôpital Lapeyronie, CHRU Montpellier, UM, INSERM U1061, Montpellier, France
| | - Denis Mariano-Goulart
- Département de Médecine Nucléaire, Hôpital Lapeyronie, Centre Hospitalier Régional Universitaire (CHRU) Montpellier, Montpellier, France
- PhyMedExp, Université de Montpellier (UM), INSERM, CNRS, Montpellier, France
| |
Collapse
|
13
|
Mullin BH, Tickner J, Zhu K, Kenny J, Mullin S, Brown SJ, Dudbridge F, Pavlos NJ, Mocarski ES, Walsh JP, Xu J, Wilson SG. Characterisation of genetic regulatory effects for osteoporosis risk variants in human osteoclasts. Genome Biol 2020; 21:80. [PMID: 32216834 PMCID: PMC7098081 DOI: 10.1186/s13059-020-01997-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background Osteoporosis is a complex disease with a strong genetic contribution. A recently published genome-wide association study (GWAS) for estimated bone mineral density (eBMD) identified 1103 independent genome-wide significant association signals. Most of these variants are non-coding, suggesting that regulatory effects may drive many of the associations. To identify genes with a role in osteoporosis, we integrate the eBMD GWAS association results with those from our previous osteoclast expression quantitative trait locus (eQTL) dataset. Results We identify sixty-nine significant cis-eQTL effects for eBMD GWAS variants after correction for multiple testing. We detect co-localisation of eBMD GWAS and osteoclast eQTL association signals for 21 of the 69 loci, implicating a number of genes including CCR5, ZBTB38, CPE, GNA12, RIPK3, IQGAP1 and FLCN. Summary-data-based Mendelian Randomisation analysis of the eBMD GWAS and osteoclast eQTL datasets identifies significant associations for 53 genes, with TULP4 presenting as a strong candidate for pleiotropic effects on eBMD and gene expression in osteoclasts. By performing analysis using the GARFIELD software, we demonstrate significant enrichment of osteoporosis risk variants among high-confidence osteoclast eQTL across multiple GWAS P value thresholds. Mice lacking one of the genes of interest, the apoptosis/necroptosis gene RIPK3, show disturbed bone micro-architecture and increased osteoclast number, highlighting a new biological pathway relevant to osteoporosis. Conclusion We utilise a unique osteoclast eQTL dataset to identify a number of potential effector genes for osteoporosis risk variants, which will help focus functional studies in this area.
Collapse
Affiliation(s)
- Benjamin H Mullin
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia. .,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.
| | - Jennifer Tickner
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Kun Zhu
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Jacob Kenny
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Shelby Mullin
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Suzanne J Brown
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Frank Dudbridge
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Nathan J Pavlos
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Edward S Mocarski
- Department of Microbiology and Immunology, Emory Vaccine Center, School of Medicine, Emory University, Atlanta, GA, USA
| | - John P Walsh
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,Medical School, The University of Western Australia, Crawley, WA, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Scott G Wilson
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia.,Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| |
Collapse
|
14
|
Dimitri P. The Impact of Childhood Obesity on Skeletal Health and Development. J Obes Metab Syndr 2019; 28:4-17. [PMID: 31089575 PMCID: PMC6484936 DOI: 10.7570/jomes.2019.28.1.4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/24/2019] [Accepted: 02/18/2019] [Indexed: 12/26/2022] Open
Abstract
Increased risk of fracture identified in obese children has led to a focus on the relationship between fat, bone, and the impact of obesity during skeletal development. Early studies have suggested that despite increased fracture risk, obese children have a higher bone mass. However, body size corrections applied to account for wide variations in size between children led to the finding that obese children have a lower total body and regional bone mass relative to their body size. Advances in skeletal imaging have shifted the focus from quantity of bone in obese children to evaluating the changes in bone microarchitecture that result in a change in bone quality and strength. The findings suggest that bone strength in the appendicular skeleton does not appropriately adapt to an increase in body size which results in a mismatch between bone strength and force from falls. Recent evidence points to differing influences of fat compartments on skeletal development-visceral fat may have a negative impact on bone which may be related to the associated adverse metabolic environment, while marrow adipose tissue may have an independent effect on trabecular bone development in obese children. The role of brown fat has received recent attention, demonstrating differences in the influence on bone mass between white and brown adipose tissues. Obesity results in a shift in growth and pubertal hormones as well as influences bone development through the altered release of adipokines. The change in the hormonal milieu provides an important insight into the skeletal changes observed in childhood obesity.
Collapse
Affiliation(s)
- Paul Dimitri
- Academic Unit of Child Health, The University of Sheffield, Sheffield, UK
| |
Collapse
|
15
|
Wang T, Sun CH, Zhong HB, Gong Y, Cui ZK, Xie J, Wang YP, Liang C, Cao HH, Chen XR, Zou ZP, Li SF, Bai XC. N-(3-methoxybenzyl)-(9Z,12Z,15Z)-octadecatrienamide promotes bone formation via the canonical Wnt/β-catenin signaling pathway. Phytother Res 2019; 33:1074-1083. [PMID: 30768733 DOI: 10.1002/ptr.6301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 12/14/2018] [Accepted: 01/10/2019] [Indexed: 11/07/2022]
Abstract
Osteoporosis is characterized by low bone mineral density and microarchitectural deterioration of bone tissue. N-(3-methoxybenzyl)-(9Z,12Z,15Z)-octadecatrienamide (MBOC) is one of the macamides isolated from Maca (Lepidium meyenii Walp.), a cruciferous plant from the Andes of Peru. In this study, C3H/10T1/2 mesenchymal stem cells were treated with MBOC in osteogenic induction medium. An ovariectomized (OVX) mouse model was used to investigate the effect of 1-month MBOC treatment on the prevention of postmenopausal osteoporosis. Remarkably, trabecular thickness, trabecular number, and bone volume/tissue volume of the distal femoral metaphysis were significantly increased in OVX + MBOC mice compared with OVX mice, as revealed by microcomputed tomography analysis. Trabecular separation was decreased in OVX + MBOC mice compared with OVX mice. Consistently, MBOC increased the levels of osteocalcin and runt-related transcription factor 2 in OVX mice, as well as the expression of runt-related transcription factor 2, osterix, and alkaline phosphatase in C3H/10T1/2 cells. Mechanistically, MBOC activates the canonical Wnt/β-catenin signaling pathway via inhibiting phosphorylation of GSK-3β at Tyr216 and maintaining β-catenin expression. Collectively, the current study demonstrates the robustness of MBOC in the induction of mesenchymal stem cells osteogenic differentiation and consequent bone formation, suggesting that MBOC may be a potentially effective drug to treat postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Chun-Han Sun
- Department of Orthopedics, Huizhou First People's Hospital, Huizhou, Guangdong, China
| | - Hao-Bo Zhong
- Department of Orthopedics, Huizhou First People's Hospital, Huizhou, Guangdong, China
| | - Yan Gong
- Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhong-Kai Cui
- Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Xie
- Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Peng Wang
- Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuang Liang
- Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - He-He Cao
- Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao-Rui Chen
- Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhi-Peng Zou
- Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Sheng-Fa Li
- Department of Orthopedics, Huizhou First People's Hospital, Huizhou, Guangdong, China
| | - Xiao-Chun Bai
- Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Meng D, Ding X, Lan J, Peng F, Zhu W, Cheng Z, Jia H, Xu H, Shi C, Pang L, Wang WS. Association of vitamin D receptor ApaI gene polymorphism with osteoporosis susceptibility in postmenopausal Han Chinese women in Xinjiang. Biomed Rep 2018; 9:483-490. [PMID: 30546875 PMCID: PMC6256115 DOI: 10.3892/br.2018.1155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 09/20/2018] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis is a polygenic disorder and has been demonstrated to be associated with ~30 candidate genes, the majority of which have also been implicated in the regulation of bone mineral density (BMD). Vitamin D receptor (VDR) is the candidate gene that has been most extensively studied. Certain studies have reported that the VDR single nucleotide polymorphism ApaI is associated with the risk of osteoporosis in Caucasian and African women. However, this association has not yet been studied in postmenopausal Han Chinese women in the Xinjiang area. In the present study, ApaI polymorphisms of VDR were defined by polymerase chain reaction-restriction fragment length polymorphism, in order to analyze the distribution of ApaI polymorphisms in postmenopausal Han Chinese women from Xinjiang. BMD was measured by dual energy X-ray absorptiometry at the lumbar spine (L2-4), Ward's triangle, great trochanter and femoral shaft. A total of 336 women were included in this study. The genotype distribution of ApaI was consistent with the Hardy-Weinberg equilibrium (all P>0.05). There were no significant differences in ApaI genotype frequencies between the 90 cases in the osteoporosis group and 246 cases in the non-osteoporosis group (P=0.946). Meanwhile, it was identified that BMD values of the tested locations were negatively correlated with age (P<0.05) and positively correlated with body mass index (BMI; P<0.05). On further attribution risk analysis, BMD was identified as a risk factor [odds ratio (OR): 0.464, 95% confidence interval (CI): 0.372-0.580, P=0.001] and BMI a protective factor (OR: 1.502, 95% CI: 1.008-2.240, P=0.032) in osteoporosis. When BMD was adjusted for confounding factors including age and BMI, it was observed that the ApaI polymorphism was not associated with BMD at the sites tested (P>0.05). In conclusion, the present study identified no significant association of the common VDR polymorphism ApaI with BMD at several skeletal sites in postmenopausal Han Chinese women in the Xinjiang area. Age was negatively correlated with BMD at different sites and identified as a risk factor; while BMI was positively correlated with BMD and identified as a protective factor.
Collapse
Affiliation(s)
- Defeng Meng
- Department of Orthopedics, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832000, P.R. China
| | - Xiao Ding
- Department of Orthopedics, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832000, P.R. China
| | - Jiaojiao Lan
- Department of Orthopedics, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832000, P.R. China
| | - Fangliang Peng
- Department of Orthopedics, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832000, P.R. China
| | - Weiguo Zhu
- Department of Orthopedics, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832000, P.R. China
| | - Zeyu Cheng
- Department of Orthopedics, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832000, P.R. China
| | - Haoruo Jia
- Department of Orthopedics, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832000, P.R. China
| | - Hao Xu
- Department of Orthopedics, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832000, P.R. China
| | - Chenhui Shi
- Department of Orthopedics, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832000, P.R. China
| | - Lijuan Pang
- Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832000, P.R. China
| | - Wei Shan Wang
- Department of Pathology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832000, P.R. China
| |
Collapse
|
17
|
Zeng D, Yao P, Zhao H. P2X7, a critical regulator and potential target for bone and joint diseases. J Cell Physiol 2018; 234:2095-2103. [PMID: 30317598 DOI: 10.1002/jcp.27544] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/13/2018] [Indexed: 12/18/2022]
Abstract
Abundant evidence indicted that P2X7 receptor show a essential role in human health and some human diseases including hypertension, atherosclerosis, pulmonary inflammation, tuberculosis infection, psychiatric disorders, and cancer. P2X7 receptor also has an important role in some central nervous system diseases such as neurodegenerative disorders. Recently, more research suggested that P2X7 receptor also plays a crucial role in bone and joint diseases. But the effect of P2X7 receptor on skeletal and joint diseases has not been systematically reviewed. In this article, the role of P2X7 receptor in skeletal and joint diseases is elaborated. The activation of P2X7 receptor can ameliorate osteoporosis by inducing a fine balance between osteoclastic resorption and osteoblastic bone formation. The activation of P2X7 receptor can relieve the stress fracture injury by increasing the response to mechanical loading and inducing osteogenesis. But the activation of P2X7 receptor mediates the cell growth and cell proliferation in bone cancer. In addition, the activation of P2X7 receptor can aggravate the process of some joint diseases such as osteoarthritis, rheumatoid arthritis, and acute gouty arthritis. The inhibition of P2X7 receptor can alleviate the pathological process of joint disease to some extent. In conclusion, P2X7 receptor may be a critical regulator and therapeutic target for bone and joint diseases.
Collapse
Affiliation(s)
- Dehui Zeng
- Department of Orthopedics, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Pingbo Yao
- Department of Orthopedics, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Hong Zhao
- Institute of Pharmacy and Pharmacology, Nursing College, University of South China, Hengyang, China
| |
Collapse
|
18
|
Gregson CL, Newell F, Leo PJ, Clark GR, Paternoster L, Marshall M, Forgetta V, Morris JA, Ge B, Bao X, Duncan Bassett JH, Williams GR, Youlten SE, Croucher PI, Davey Smith G, Evans DM, Kemp JP, Brown MA, Tobias JH, Duncan EL. Genome-wide association study of extreme high bone mass: Contribution of common genetic variation to extreme BMD phenotypes and potential novel BMD-associated genes. Bone 2018; 114:62-71. [PMID: 29883787 PMCID: PMC6086337 DOI: 10.1016/j.bone.2018.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/13/2018] [Accepted: 06/02/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Generalised high bone mass (HBM), associated with features of a mild skeletal dysplasia, has a prevalence of 0.18% in a UK DXA-scanned adult population. We hypothesized that the genetic component of extreme HBM includes contributions from common variants of small effect and rarer variants of large effect, both enriched in an extreme phenotype cohort. METHODS We performed a genome-wide association study (GWAS) of adults with either extreme high or low BMD. Adults included individuals with unexplained extreme HBM (n = 240) from the UK with BMD Z-scores ≥+3.2, high BMD females from the Anglo-Australasian Osteoporosis Genetics Consortium (AOGC) (n = 1055) with Z-scores +1.5 to +4.0 and low BMD females also part of AOGC (n = 900), with Z-scores -1.5 to -4.0. Following imputation, we tested association between 6,379,332 SNPs and total hip and lumbar spine BMD Z-scores. For potential target genes, we assessed expression in human osteoblasts and murine osteocytes. RESULTS We observed significant enrichment for associations with established BMD-associated loci, particularly those known to regulate endochondral ossification and Wnt signalling, suggesting that part of the genetic contribution to unexplained HBM is polygenic. Further, we identified associations exceeding genome-wide significance between BMD and four loci: two established BMD-associated loci (5q14.3 containing MEF2C and 1p36.12 containing WNT4) and two novel loci: 5p13.3 containing NPR3 (rs9292469; minor allele frequency [MAF] = 0.33%) associated with lumbar spine BMD and 11p15.2 containing SPON1 (rs2697825; MAF = 0.17%) associated with total hip BMD. Mouse models with mutations in either Npr3 or Spon1 have been reported, both have altered skeletal phenotypes, providing in vivo validation that these genes are physiologically important in bone. NRP3 regulates endochondral ossification and skeletal growth, whilst SPON1 modulates TGF-β regulated BMP-driven osteoblast differentiation. Rs9292469 (downstream of NPR3) also showed some evidence for association with forearm BMD in the independent GEFOS sample (n = 32,965). We found Spon1 was highly expressed in murine osteocytes from the tibiae, femora, humeri and calvaria, whereas Npr3 expression was more variable. CONCLUSION We report the most extreme-truncate GWAS of BMD performed to date. Our findings, suggest potentially new anabolic bone regulatory pathways that warrant further study.
Collapse
Affiliation(s)
- Celia L Gregson
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Felicity Newell
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD, Australia
| | - Paul J Leo
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD, Australia
| | - Graeme R Clark
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD, Australia
| | | | - Mhairi Marshall
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD, Australia
| | - Vincenzo Forgetta
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - John A Morris
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Bing Ge
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada; Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Xiao Bao
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD, Australia
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Scott E Youlten
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Peter I Croucher
- The Garvan Institute of Medical Research, Sydney, New South Wales, Australia; St Vincent's Clinical School, University of New South Wales Medicine, Sydney, New South Wales, Australia
| | | | - David M Evans
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - John P Kemp
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Matthew A Brown
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD, Australia
| | - Jon H Tobias
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emma L Duncan
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology at Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD, Australia; Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
19
|
Evensen E, Skeie G, Wilsgaard T, Christoffersen T, Dennison E, Furberg AS, Grimnes G, Winther A, Emaus N. How Is Adolescent Bone Mass and Density Influenced by Early Life Body Size and Growth? The Tromsø Study: Fit Futures-A Longitudinal Cohort Study From Norway. JBMR Plus 2018; 2:268-280. [PMID: 30283908 PMCID: PMC6139726 DOI: 10.1002/jbm4.10049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/13/2018] [Accepted: 03/26/2018] [Indexed: 01/21/2023] Open
Abstract
The effect of birth weight and childhood body mass index (BMI) on adolescents’ bone parameters is not established. The aim of this longitudinal, population‐based study was to investigate the association of birth weight, childhood BMI, and growth, with adolescent bone mass and bone density in a sample of 633 adolescents (48% girls) from The Tromsø Study: Fit Futures. This population‐based cohort study was conducted in 2010–2011 and 2012–2013 in Tromsø, Norway. Bone mineral content (BMC) and areal BMD (aBMD) were measured at total hip (TH) and total body (TB) by dual‐energy X‐ray absorptiometry (DXA) and converted to internal Z‐scores. Birth weight and childhood anthropometric measurements were retrospectively obtained from the Medical Birth Registry of Norway and childhood health records. Associations between birth weight, BMI, and growth were evaluated by fitting linear mixed models with repeated measures of BMC and aBMD at ages 15 to 17 and 18 to 20 years as the outcome. In crude analysis, a significant positive association (p < 0.05) with TB BMC was observed per 1 SD score increase in birth weight, observed in both sexes. Higher rate of length growth, conditioned on earlier size, from birth to age 2.5 years, and higher rate of weight gain from ages 6.0 to 16.5 years, conditioned on earlier size and concurrent height growth, revealed stronger associations with bone accrual at ages 15 to 20 years compared with other ages. Compared with being normal weight, overweight/obesity at age 16.5 years was associated with higher aBMD Z‐scores: β coefficient (95% confidence interval [CI]) of 0.78 (0.53, 1.03) and 1.08 (0.85, 1.31) in girls, 0.63 (0.42, 0.85) and 0.74 (0.54, 0.95) in boys at TH and TB, respectively. Similar associations were found for BMC. Being underweight was consistently negatively associated with bone parameters in adolescence. In conclusion, birth weight influences adolescent bone mass but less than later growth and BMI in childhood and adolescence. © 2018 The Authors. JBMR Plus Published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research
Collapse
Affiliation(s)
- Elin Evensen
- Department of Clinical Research University Hospital of North Norway Tromsø Norway.,Department of Health and Care Sciences Faculty of Health Sciences UiT The Arctic University of Norway Tromsø Norway
| | - Guri Skeie
- Department of Community Medicine Faculty of Health Sciences UiT The Arctic University of Norway Tromsø Norway
| | - Tom Wilsgaard
- Department of Clinical Research University Hospital of North Norway Tromsø Norway.,Department of Community Medicine Faculty of Health Sciences UiT The Arctic University of Norway Tromsø Norway
| | - Tore Christoffersen
- Department of Health and Care Sciences Faculty of Health Sciences UiT The Arctic University of Norway Tromsø Norway.,Finnmark Hospital Trust Alta Norway
| | - Elaine Dennison
- MRC Lifecourse Epidemiology Unit Southampton UK.,Victoria University Wellington New Zealand
| | - Anne-Sofie Furberg
- Department of Community Medicine Faculty of Health Sciences UiT The Arctic University of Norway Tromsø Norway.,Department of Microbiology and Infection Control University Hospital of North Norway Tromsø Norway
| | - Guri Grimnes
- Endocrinology Research Group Institute of Clinical Medicine UiT The Arctic University of Norway Tromsø Norway.,Division of Internal Medicine University Hospital of North Norway Tromsø Norway
| | - Anne Winther
- Division of Neurosciences Orthopedics, and Rehabilitation Services University Hospital of North Norway Tromsø Norway
| | - Nina Emaus
- Department of Health and Care Sciences Faculty of Health Sciences UiT The Arctic University of Norway Tromsø Norway
| |
Collapse
|
20
|
Brommage R, Ohlsson C. Translational studies provide insights for the etiology and treatment of cortical bone osteoporosis. Best Pract Res Clin Endocrinol Metab 2018; 32:329-340. [PMID: 29779585 DOI: 10.1016/j.beem.2018.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increasing attention is being focused on the important contributions of cortical bone to bone strength, fractures and osteoporosis therapies. Recent progress in human genome wide association studies in combination with high-throughput mouse gene knockout phenotyping efforts of multiple genes and advanced conditional gene inactivation in mouse models have successfully identified genes with crucial roles in cortical bone homeostasis. Particular attention in this review is given to genes, such as WNT16, POSTN and SFRP4, that differentially affect cortical and trabecular bone architecture. We propose that animal models of cortical bone metabolism will substantially contribute to developing anabolic osteoporosis therapies that improve cortical bone mass and reduce non-vertebral fracture risk.
Collapse
Affiliation(s)
- Robert Brommage
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
21
|
Baldan A, Tagliati S, Saccomandi D, Brusaferro A, Busoli L, Scala A, Malaventura C, Maggiore G, Borgna-Pignatti C. Assessment of Lactose-Free Diet on the Phalangeal Bone Mineral Status in Italian Adolescents Affected by Adult-Type Hypolactasia. Nutrients 2018; 10:E558. [PMID: 29723971 PMCID: PMC5986438 DOI: 10.3390/nu10050558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 01/08/2023] Open
Abstract
Adult-type hypolactasia (ATH) is a clinical syndrome of primary lactase deficiency. A lactose-free diet is advisable to avoid the symptoms linked to the condition, but this potentially creates problems for optimal bone mineralization due to reduced calcium intake. To evaluate the effect of the lactose-free diet on the bone mineral status (BMS), we compared the phalangeal BMS of adolescents with ATH to that of peers on a normal diet. Also, we analyzed the correlations between BMS and dietary behavior, physical exercise, and calcium and vitamin D intake. A total of 102 cases and 102 healthy controls filled out a diet record and underwent phalangeal Quantitative Ultrasound (QUS). No difference in BMS was observed. The time spent on lactose-free diet (4.8 ± 3.1 years) was inversely correlated to the BMS. More than 98% of cases consumed lactose-free milk, but calcium and vitamin D intake were significantly lower. Calcium intake was correlated to physical exercise but not to BMS. Our results suggest that a lactose-free diet does not affect the phalangeal BMS of adolescents with primary lactase deficiency when their diet includes lactose-free cow’s milk. However, there is still a significantly lower calcium intake than in the population reference. The inverse correlation observed between the BMS and the time spent on a lactose-free diet suggests that a long-term follow-up is advisable.
Collapse
Affiliation(s)
- Alessandro Baldan
- Department of Medical Sciences, Section of Pediatrics, University of Ferrara, Via A. Moro 8, 44124 Ferrara, Italy.
| | - Sylvie Tagliati
- Department of Medical Sciences, Section of Pediatrics, University of Ferrara, Via A. Moro 8, 44124 Ferrara, Italy.
| | - Daniela Saccomandi
- Department of Medical Sciences, Section of Pediatrics, University of Ferrara, Via A. Moro 8, 44124 Ferrara, Italy.
| | - Andrea Brusaferro
- Department of Medical Sciences, Section of Pediatrics, University of Ferrara, Via A. Moro 8, 44124 Ferrara, Italy.
| | - Laura Busoli
- Department of Medical Sciences, Section of Pediatrics, University of Ferrara, Via A. Moro 8, 44124 Ferrara, Italy.
| | - Andrea Scala
- Department of Medical Sciences, Section of Pediatrics, University of Ferrara, Via A. Moro 8, 44124 Ferrara, Italy.
| | - Cristina Malaventura
- Department of Medical Sciences, Section of Pediatrics, University of Ferrara, Via A. Moro 8, 44124 Ferrara, Italy.
| | - Giuseppe Maggiore
- Department of Medical Sciences, Section of Pediatrics, University of Ferrara, Via A. Moro 8, 44124 Ferrara, Italy.
| | - Caterina Borgna-Pignatti
- Department of Medical Sciences, Section of Pediatrics, University of Ferrara, Via A. Moro 8, 44124 Ferrara, Italy.
| |
Collapse
|
22
|
Yang Y, Pan F, Wu F, Squibb K, Thomson R, Winzenberg T, Jones G. Familial resemblance in trabecular and cortical volumetric bone mineral density and bone microarchitecture as measured by HRpQCT. Bone 2018; 110:76-83. [PMID: 29382612 DOI: 10.1016/j.bone.2018.01.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/16/2018] [Accepted: 01/26/2018] [Indexed: 11/29/2022]
Abstract
To estimate the heritability of bone geometry, volumetric bone mineral density (vBMD) and microarchitecture of trabecular (Tb) and cortical (Ct) bone measured by high resolution peripheral quantitative computerised tomography (HRpQCT) at the distal radius and tibia and to investigate the genetic correlations of these measures. Participants were 177 mother-offspring pairs from 162 families (mothers, mean age (SD) = 52.1 (4.7) years; offspring, 25.6 (0.73) years). Trabecular and cortical bone measures were obtained by HRpQCT. Multivariable linear regression was used to analyse the association of bone measures between mother and offspring. Sequential Oligogenic Linkage Analysis Routines (SOLAR) software was utilised to conduct quantitative genetic analyses. All maternal bone measures were independently associated with the corresponding bone measures in the offspring before and after adjustment for age, sex, weight and height. Heritability estimates ranged from 24% to 67% at the radius and from 42% to 74% at the tibia. The relationship for most bone geometry measures was significantly stronger in mother-son pairs (n = 107) compared with mother-daughter pairs (n = 70) (p < 0.05). In contrast, the heritability for most vBMD and microarchitecture measures were higher in mother-daughter pairs. Bivariate analyses found moderate to strong genetic correlations across all measures between radius and tibia (Rg = 0.49 to 0.93). Genetic factors have an important role in the development of bone geometry, vBMD and microarchitecture. These factors are strongly shared for the radius and tibia but vary by sex implying a role for imprinting.
Collapse
Affiliation(s)
- Yi Yang
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Australia.
| | - Feng Pan
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Australia.
| | - Feitong Wu
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Australia.
| | - Kathryn Squibb
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Australia.
| | - Russell Thomson
- Centre for Research in Mathematics, School of Engineering, Mathematics and Computing, Western Sydney University, Sydney 2751, Australia.
| | - Tania Winzenberg
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Australia; Faculty of Health, University of Tasmania, Hobart 7000, Australia.
| | - Graeme Jones
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Australia.
| |
Collapse
|
23
|
Correa-Rodríguez M, Viatte S, Massey J, Schmidt-RioValle J, Rueda-Medina B, Orozco G. Analysis of SNP-SNP interactions and bone quantitative ultrasound parameter in early adulthood. BMC MEDICAL GENETICS 2017; 18:107. [PMID: 28974197 PMCID: PMC5627468 DOI: 10.1186/s12881-017-0468-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/27/2017] [Indexed: 11/18/2022]
Abstract
Background Osteoporosis individual susceptibility is determined by the interaction of multiple genetic variants and environmental factors. The aim of this study was to conduct SNP-SNP interaction analyses in candidate genes influencing heel quantitative ultrasound (QUS) parameter in early adulthood to identify novel insights into the mechanism of disease. Methods The study population included 575 healthy subjects (mean age 20.41; SD 2.36). To assess bone mass QUS was performed to determine Broadband ultrasound attenuation (BUA, dB/MHz). A total of 32 SNPs mapping to loci that have been characterized as genetic markers for QUS and/or BMD parameters were selected as genetic markers in this study. The association of all possible SNP pairs with QUS was assessed by linear regression and a SNP-SNP interaction was defined as a significant departure from additive effects. Results The pairwise SNP-SNP analysis showed multiple interactions. The interaction comprising SNPs rs9340799 and rs3736228 that map in the ESR1 and LRP5 genes respectively, revealed the lowest p value after adjusting for confounding factors (p-value = 0.001, β (95% CI) = 14.289 (5.548, 23.029). In addition, our model reported others such as TMEM135-WNT16 (p = 0.007, β(95%CI) = 9.101 (2.498, 15.704), ESR1-DKK1 (p = 0.012, β(95%CI) = 13.641 (2.959, 24.322) or OPG-LRP5 (p = 0.012, β(95%CI) = 8.724 (1.936, 15.512). However, none of the detected interactions remain significant considering the Bonferroni significance threshold for multiple testing (p<0.0001). Conclusion Our analysis of SNP-SNP interaction in candidate genes of QUS in Caucasian young adults reveal several interactions, especially between ESR1 and LRP5 genes, that did not reach statistical significance. Although our results do not support a relevant genetic contribution of SNP-SNP epistatic interactions to QUS in young adults, further studies in larger independent populations would be necessary to support these preliminary findings.
Collapse
Affiliation(s)
- María Correa-Rodríguez
- Faculty of Health Sciences, University of Granada, Av. Ilustración, 60, 18016, Granada, Spain.
| | - Sebastien Viatte
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Jonathan Massey
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | | | - Blanca Rueda-Medina
- Faculty of Health Sciences, University of Granada, Av. Ilustración, 60, 18016, Granada, Spain
| | - Gisela Orozco
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
24
|
Mäkitie RE, Kämpe AJ, Taylan F, Mäkitie O. Recent Discoveries in Monogenic Disorders of Childhood Bone Fragility. Curr Osteoporos Rep 2017; 15:303-310. [PMID: 28646443 DOI: 10.1007/s11914-017-0388-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review summarizes our current knowledge on primary osteoporosis in children with focus on recent genetic findings. RECENT FINDINGS Advances in genetic research, particularly next-generation sequencing, have found several genetic loci that associate with monogenic forms of inherited osteoporosis, widening the scope of primary osteoporosis beyond classical osteogenesis imperfecta. New forms of primary osteoporosis, such as those related to WNT1, PLS3, and XYLT2, have identified defects outside the extracellular matrix components and collagen-related pathways, in intracellular cascades directly affecting bone cell function. Primary osteoporosis can lead to severe skeletal morbidity, including abnormal longitudinal growth, compromised bone mass gain, and noticeable fracture tendency beginning at childhood. Early diagnosis and timely care are warranted to ensure the best achievable bone health. Future research will most likely broaden the spectrum of primary osteoporosis, hopefully provide more insight into the genetics governing bone health, and offer new targets for treatment.
Collapse
Affiliation(s)
- Riikka E Mäkitie
- Folkhälsan Institute of Genetics, University of Helsinki, P. O. Box 63, FIN-00014, Helsinki, Finland
| | - Anders J Kämpe
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics, University of Helsinki, P. O. Box 63, FIN-00014, Helsinki, Finland.
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
25
|
Association study of estrogen receptor alpha gene polymorphisms with bone mass assessed by quantitative ultrasound in young adults. Rheumatol Int 2017; 37:1281-1286. [DOI: 10.1007/s00296-017-3748-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
|
26
|
Chesi A, Mitchell JA, Kalkwarf HJ, Bradfield JP, Lappe JM, Cousminer DL, Roy SM, McCormack SE, Gilsanz V, Oberfield SE, Hakonarson H, Shepherd JA, Kelly A, Zemel BS, Grant SF. A Genomewide Association Study Identifies Two Sex-Specific Loci, at SPTB and IZUMO3, Influencing Pediatric Bone Mineral Density at Multiple Skeletal Sites. J Bone Miner Res 2017; 32:1274-1281. [PMID: 28181694 PMCID: PMC5466475 DOI: 10.1002/jbmr.3097] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 01/21/2017] [Accepted: 01/25/2017] [Indexed: 12/27/2022]
Abstract
Failure to achieve optimal bone mineral accretion during childhood and adolescence results in subsequent suboptimal peak bone mass, contributing to osteoporosis risk later in life. To identify novel genetic factors that influence pediatric bone mass at discrete skeletal sites, we performed a sex-stratified genomewide association study of areal bone mineral density (BMD) measured by dual-energy X-ray absorptiometry at the 1/3 distal radius, spine, total hip, and femoral neck in a cohort of 933 healthy European American children. We took forward signals with p < 5 × 10-5 and minor allele frequency (MAF) >5% into an independent cohort of 486 European American children in search of replication. In doing so, we identified five loci that achieved genome wide significance in the combined cohorts (nearest genes: CPED1, IZUMO3, RBFOX1, SPBT, and TBPL2), of which the last four were novel and two were sex-specific (SPTB in females and IZUMO3 in males), with all of them yielding associations that were particularly strong at a specific skeletal site. Annotation of potential regulatory function, expression quantitative trait loci (eQTL) effects and pathway analyses identified several potential target genes at these associated loci. This study highlights the importance of sex-stratified analyses at discrete skeletal sites during the critical period of bone accrual, and identifies novel loci for further functional follow-up to pinpoint key genes and better understand the regulation of bone development in children. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Alessandra Chesi
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jonathan A. Mitchell
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Heidi J. Kalkwarf
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jonathan P. Bradfield
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joan M. Lappe
- Division of Endocrinology, Department of Medicine, Creighton University, Omaha, NE, USA
| | - Diana L. Cousminer
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia
| | - Sani M. Roy
- Division of Endocrinology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shana E. McCormack
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Vicente Gilsanz
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Sharon E. Oberfield
- Division of Pediatric Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Columbia University Medical Center, New York; NY, USA
| | - Hakon Hakonarson
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - John A. Shepherd
- Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - Andrea Kelly
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Babette S. Zemel
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Struan F.A. Grant
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Endocrinology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
27
|
Sandhu HS, Puri S, Sharma R, Sokhi J, Singh G, Matharoo K, Bhanwer AJS. Associating genetic variation at Perilipin 1, Complement Factor D and Adiponectin loci to the bone health status in North Indian population. Gene 2017; 610:80-89. [DOI: 10.1016/j.gene.2017.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 01/09/2017] [Accepted: 02/06/2017] [Indexed: 12/20/2022]
|
28
|
Freudenthal B, Logan J, Croucher PI, Williams GR, Bassett JHD. Rapid phenotyping of knockout mice to identify genetic determinants of bone strength. J Endocrinol 2016; 231:R31-46. [PMID: 27535945 PMCID: PMC5064764 DOI: 10.1530/joe-16-0258] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/17/2016] [Indexed: 12/27/2022]
Abstract
The genetic determinants of osteoporosis remain poorly understood, and there is a large unmet need for new treatments in our ageing society. Thus, new approaches for gene discovery in skeletal disease are required to complement the current genome-wide association studies in human populations. The International Knockout Mouse Consortium (IKMC) and the International Mouse Phenotyping Consortium (IMPC) provide such an opportunity. The IKMC generates knockout mice representing each of the known protein-coding genes in C57BL/6 mice and, as part of the IMPC initiative, the Origins of Bone and Cartilage Disease project identifies mutants with significant outlier skeletal phenotypes. This initiative will add value to data from large human cohorts and provide a new understanding of bone and cartilage pathophysiology, ultimately leading to the identification of novel drug targets for the treatment of skeletal disease.
Collapse
Affiliation(s)
- Bernard Freudenthal
- Molecular Endocrinology LaboratoryDepartment of Medicine, Imperial College London, London, UK
| | - John Logan
- Molecular Endocrinology LaboratoryDepartment of Medicine, Imperial College London, London, UK
| | - Peter I Croucher
- Garvan Institute of Medical ResearchSydney, New South Wales, Australia
| | - Graham R Williams
- Molecular Endocrinology LaboratoryDepartment of Medicine, Imperial College London, London, UK
| | - J H Duncan Bassett
- Molecular Endocrinology LaboratoryDepartment of Medicine, Imperial College London, London, UK
| |
Collapse
|
29
|
Jiang ZS, Hao ZH. An insertion/deletion polymorphism within the 3'‑untranslated region of COL1A2 confers susceptibility to osteoporosis. Mol Med Rep 2016; 14:4415-4421. [PMID: 27665867 DOI: 10.3892/mmr.2016.5755] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 11/06/2015] [Indexed: 11/06/2022] Open
Abstract
Polymorphisms located in microRNA (miRNA) binding sites may interfere with the interaction between miRNAs and mRNAs, and thereby alter the expression of genes. The current study aimed to investigate the association between an insertion/deletion (INS/DEL) polymorphism in the 3'‑untranslated region (3'‑UTR) of COL1A2 and the risk of developing osteoporosis. In the present study, COL1A2 was identified as a target gene of let‑7g in osteoblast cells obtained from patients, using a luciferase reporter system. This was further confirmed by the observation that exogenous overexpression of let‑7g in the osteoblast cells downregulated the expression of COL1A2 in the cells in the INS/INS group, however not in the DEL/DEL group. In addition, a total of 487 subjects were enrolled in the present study and their bone mineral density (BMD) was measured. The BMD at the four tested sites, the femoral neck, total left hip, L1‑L4 and intertrochanteric areas, were significantly reduced in the INS/DEL or DEL/DEL group compared with the INS/INS group. Furthermore, the levels of COL1A2 and let‑7g were measured in the primary osteoblasts obtained from 48 patients with osteoporosis. While the let‑7g levels were comparable between each genotype group, the expression level of COL1A2 in the DEL/DEL and INS/DEL group was significantly greater compared with the INS/INS group. In conclusion, the present study demonstrated that the INS/DEL polymorphism in the 3'‑UTR of COL1A2 is able to interfere with the interaction between miRNA and mRNA. In addition, it is the first study, to the best of our knowledge, to indicate that the minor allele (Del) is associated with a reduced risk of developing osteoporosis.
Collapse
Affiliation(s)
- Zhen-Song Jiang
- Department of Spinal Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| | - Zhen-Hai Hao
- Department of Trauma Orthopedics, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
30
|
Boudin E, Fijalkowski I, Hendrickx G, Van Hul W. Genetic control of bone mass. Mol Cell Endocrinol 2016; 432:3-13. [PMID: 26747728 DOI: 10.1016/j.mce.2015.12.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/16/2015] [Accepted: 12/28/2015] [Indexed: 01/01/2023]
Abstract
Bone mineral density (BMD) is a quantitative traits used as a surrogate phenotype for the diagnosis of osteoporosis, a common metabolic disorder characterized by increased fracture risk as a result of a decreased bone mass and deterioration of the microarchitecture of the bone. Normal variation in BMD is determined by both environmental and genetic factors. According to heritability studies, 50-85% of the variance in BMD is controlled by genetic factors which are mostly polygenic. In contrast to the complex etiology of osteoporosis, there are disorders with deviating BMD values caused by one mutation with a large impact. These mutations can result in monogenic bone disorders with either an extreme high (sclerosteosis, Van Buchem disease, osteopetrosis, high bone mass phenotype) or low BMD (osteogenesis imperfecta, juvenile osteoporosis, primary osteoporosis). Identification of the disease causing genes, increased the knowledge on the regulation of BMD and highlighted important signaling pathways and novel therapeutic targets such as sclerostin, RANKL and cathepsin K. Genetic variation in genes involved in these pathways are often also involved in the regulation of normal variation in BMD and osteoporosis susceptibility. In the last decades, identification of genetic factors regulating BMD has proven to be a challenge. Several approaches have been tested such as linkage studies and candidate and genome wide association studies. Although, throughout the years, technological developments made it possible to study increasing numbers of genetic variants in populations with increasing sample sizes at the same time, only a small fraction of the genetic impact can yet be explained. In order to elucidate the missing heritability, the focus shifted to studying the role of rare variants, copy number variations and epigenetic influences. This review summarizes the genetic cause of different monogenic bone disorders with deviating BMD and the knowledge on genetic factors explaining normal variation in BMD and osteoporosis risk.
Collapse
Affiliation(s)
- Eveline Boudin
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Igor Fijalkowski
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Gretl Hendrickx
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
31
|
Wu J, Shang DP, Yang S, Fu DP, Ling HY, Hou SS, Lu JM. Association between the vitamin D receptor gene polymorphism and osteoporosis. Biomed Rep 2016; 5:233-236. [PMID: 27446548 DOI: 10.3892/br.2016.697] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/02/2016] [Indexed: 01/11/2023] Open
Abstract
The influence of the vitamin D receptor (VDR) gene for the risk of osteoporosis remains to be elucidated. The aim of the present study was to understand the distribution of various single-nucleotide polymorphisms (SNPs) within the VDR gene and its association with the risk of osteoporosis. In total, 378 subjects without a genetic relationship were recruited to the study between January 2013 and July 2015. The subjects were divided into three groups, which were the normal (n=234), osteoporosis (n=65) and osteoporosis with osteoporotic fracture (n=79) groups. Three pertinent SNPs of the VDR gene rs17879735 (ApaI, Allele A/a, SNP C>A) were examined with polymerase chain reaction-restriction fragment length polymorphism. The bone mineral density (BMD) of the lumbar spine (L2-L4), femoral neck, Ward's and Tro was measured using dual-energy X-ray absorptiometry. The distributions of genotype frequencies aa, AA and Aa were 48.68, 42.86 and 8.46%, separately. Following analysis of each site, BMD, body mass index (BMI) and age, BMD for each site was negatively correlated with age (P<0.01) and positively correlated with BMI (P<0.01). Correction analysis revealed that there were significant differences in the Ward's triangle BMD among each genotype (P<0.05), in which the aa genotype exhibited the lower BMD (P<0.05). No significant difference was identified among the different genotypes in the occurrence of osteoporosis with osteoporotic fracture (P>0.05). In conclusion, these indicated that the VDR gene ApaI polymorphisms had an important role in the osteoporosis risk.
Collapse
Affiliation(s)
- Ju Wu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - De-Peng Shang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Sheng Yang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Da-Peng Fu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Hao-Yi Ling
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Shuang-Shuang Hou
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Jian-Min Lu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P.R. China
| |
Collapse
|
32
|
Jia F, Sun R, Li J, Li Q, Chen G, Fu W. Interactions of Pri-miRNA-34b/c and TP53 Polymorphisms on the Risk of Osteoporosis. Genet Test Mol Biomarkers 2016; 20:398-401. [PMID: 27227383 DOI: 10.1089/gtmb.2015.0282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Osteoporosis (OP) is a common, multifactorial disorder. Here, we investigated the association between polymorphisms in pri-miR-34b/c (rs4938723) and TP53 (Arg72Pro) and the prevalence of OP. METHODS A total of 681 individuals were assessed in a case-control study, including 310 patients with OP and 371 controls. Variants in pri-miR-34b/c and TP53 were identified using a polymerase chain reaction-restriction fragment length polymorphism method. RESULTS The presence of the CC and CT/CC pri-miR-34b/c genotypes were associated with a significantly reduced risk of OP compared with the TT genotype (CC vs. TT: odds ratio [OR] = 0.32, 95% confidence intervals [CI] = 0.17-0.59; p < 0.001; CT/CC vs. TT: OR = 0.69, 95% CI = 0.51-0.93; p = 0.016). The CC genotype was also associated with a significantly reduced OP risk compared with the TT/CT genotypes (OR = 0.35, 95% CI = 0.19-0.64; p < 0.001). Furthermore, compared with the carriers of the Arg72Pro GG genotype, carriers of the CC genotype had a 2.21-fold increased OP risk (95% CI = 1.45-3.37; p < 0.001) and CG/CC genotypes carriers had a 1.96-fold increased OP risk (95% CI = 1.39-2.76; p < 0.001). CONCLUSIONS The present findings indicate that pri-miR-34b/c rs4938723 and TP53 Arg72Pro polymorphisms may contribute to the risk of OP.
Collapse
Affiliation(s)
- Fu Jia
- 1 Department of Orthopedic Surgery, West China Hospital of Sichuan University , Chengdu, China .,2 Department of Orthopedic, National Clinical Key Specialty, Yunnan Hospital, Kunming Medical University , Kunming, China
| | - Ruifen Sun
- 3 Central Laboratory, Yunnan University of Chinese Traditional Medicine , Kunming, China
| | - Jian Li
- 1 Department of Orthopedic Surgery, West China Hospital of Sichuan University , Chengdu, China
| | - Qi Li
- 1 Department of Orthopedic Surgery, West China Hospital of Sichuan University , Chengdu, China
| | - Gang Chen
- 1 Department of Orthopedic Surgery, West China Hospital of Sichuan University , Chengdu, China
| | - Weili Fu
- 1 Department of Orthopedic Surgery, West China Hospital of Sichuan University , Chengdu, China
| |
Collapse
|
33
|
Mitchell JA, Chesi A, Elci O, McCormack SE, Roy SM, Kalkwarf HJ, Lappe JM, Gilsanz V, Oberfield SE, Shepherd JA, Kelly A, Grant SFA, Zemel BS. Genetic Risk Scores Implicated in Adult Bone Fragility Associate With Pediatric Bone Density. J Bone Miner Res 2016; 31:789-95. [PMID: 26572781 PMCID: PMC4826827 DOI: 10.1002/jbmr.2744] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/05/2015] [Accepted: 11/12/2015] [Indexed: 11/12/2022]
Abstract
Using adult identified bone mineral density (BMD) loci, we calculated genetic risk scores (GRS) to determine if they were associated with changes in BMD during childhood. Longitudinal data from the Bone Mineral Density in Childhood Study were analyzed (N = 798, 54% female, all European ancestry). Participants had up to 6 annual dual energy X-ray scans, from which areal BMD (aBMD) Z-scores for the spine, total hip, and femoral neck were estimated, as well as total body less head bone mineral content (TBLH-BMC) Z-scores. Sixty-three single-nucleotide polymorphisms (SNPs) were genotyped, and the percentage of BMD-lowering alleles carried was calculated (overall adult GRS). Subtype GRS that include SNPs associated with fracture risk, pediatric BMD, WNT signaling, RANK-RANKL-OPG, and mesenchymal stem cell differentiation were also calculated. Linear mixed effects models were used to test associations between each GRS and bone Z-scores, and if any association differed by sex and/or chronological age. The overall adult, fracture, and WNT signaling GRS were associated with lower Z-scores (eg, spine aBMD Z-score: βadult = -0.04, p = 3.4 × 10(-7) ; βfracture = -0.02, p = 8.9 × 10(-6) ; βWNT = -0.01, p = 3.9 × 10(-4) ). The overall adult GRS was more strongly associated with lower Z-scores in females (p-interaction ≤ 0.05 for all sites). The fracture GRS was more strongly associated with lower Z-scores with increasing age (p-interaction ≤ 0.05 for all sites). The WNT GRS associations remained consistent for both sexes and all ages (p-interaction > 0.05 for all sites). The RANK-RANKL-OPG GRS was more strongly associated in females with increasing age (p-interaction < 0.05 for all sites). The mesenchymal stem cell GRS was associated with lower total hip and femoral neck Z-scores, in both boys and girls, across all ages. No associations were observed between the pediatric GRS and bone Z-scores. In conclusion, adult identified BMD loci associated with BMD and BMC in the pediatric setting, especially in females and in loci involved in fracture risk and WNT signaling.
Collapse
Affiliation(s)
- Jonathan A Mitchell
- Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alessandra Chesi
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Okan Elci
- Biostatistics and Data Management Core, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shana E McCormack
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sani M Roy
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Heidi J Kalkwarf
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Joan M Lappe
- Division of Endocrinology, Department of Medicine, Creighton University, Omaha, NE, USA
| | - Vicente Gilsanz
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Sharon E Oberfield
- Division of Pediatric Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - John A Shepherd
- Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - Andrea Kelly
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Struan FA Grant
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Babette S Zemel
- Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM, Lewis R, O'Karma M, Wallace TC, Zemel BS. The National Osteoporosis Foundation's position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int 2016; 27:1281-1386. [PMID: 26856587 PMCID: PMC4791473 DOI: 10.1007/s00198-015-3440-3] [Citation(s) in RCA: 762] [Impact Index Per Article: 95.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/10/2015] [Indexed: 12/21/2022]
Abstract
Lifestyle choices influence 20-40 % of adult peak bone mass. Therefore, optimization of lifestyle factors known to influence peak bone mass and strength is an important strategy aimed at reducing risk of osteoporosis or low bone mass later in life. The National Osteoporosis Foundation has issued this scientific statement to provide evidence-based guidance and a national implementation strategy for the purpose of helping individuals achieve maximal peak bone mass early in life. In this scientific statement, we (1) report the results of an evidence-based review of the literature since 2000 on factors that influence achieving the full genetic potential for skeletal mass; (2) recommend lifestyle choices that promote maximal bone health throughout the lifespan; (3) outline a research agenda to address current gaps; and (4) identify implementation strategies. We conducted a systematic review of the role of individual nutrients, food patterns, special issues, contraceptives, and physical activity on bone mass and strength development in youth. An evidence grading system was applied to describe the strength of available evidence on these individual modifiable lifestyle factors that may (or may not) influence the development of peak bone mass (Table 1). A summary of the grades for each of these factors is given below. We describe the underpinning biology of these relationships as well as other factors for which a systematic review approach was not possible. Articles published since 2000, all of which followed the report by Heaney et al. [1] published in that year, were considered for this scientific statement. This current review is a systematic update of the previous review conducted by the National Osteoporosis Foundation [1]. [Table: see text] Considering the evidence-based literature review, we recommend lifestyle choices that promote maximal bone health from childhood through young to late adolescence and outline a research agenda to address current gaps in knowledge. The best evidence (grade A) is available for positive effects of calcium intake and physical activity, especially during the late childhood and peripubertal years-a critical period for bone accretion. Good evidence is also available for a role of vitamin D and dairy consumption and a detriment of DMPA injections. However, more rigorous trial data on many other lifestyle choices are needed and this need is outlined in our research agenda. Implementation strategies for lifestyle modifications to promote development of peak bone mass and strength within one's genetic potential require a multisectored (i.e., family, schools, healthcare systems) approach.
Collapse
Affiliation(s)
- C M Weaver
- Department of Nutritional Sciences, Women's Global Health Institute, Purdue University, 700 W. State Street, West Lafayette, IN, 47907, USA
| | - C M Gordon
- Division of Adolescent and Transition Medicine, Cincinnati Children's Hospital, 3333 Burnet Avenue, MLC 4000, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45267, USA
| | - K F Janz
- Departments of Health and Human Physiology and Epidemiology, University of Iowa, 130 E FH, Iowa City, IA, 52242, USA
| | - H J Kalkwarf
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7035, Cincinnati, OH, 45229, USA
| | - J M Lappe
- Schools of Nursing and Medicine, Creighton University, 601 N. 30th Street, Omaha, NE, 68131, USA
| | - R Lewis
- Department of Foods and Nutrition, University of Georgia, Dawson Hall, Athens, GA, 30602, USA
| | - M O'Karma
- The Children's Hospital of Philadelphia Research Institute, 3535 Market Street, Room 1560, Philadelphia, PA, 19104, USA
| | - T C Wallace
- Department of Nutrition and Food Studies, George Mason University, MS 1 F8, 10340 Democracy Lane, Fairfax, VA, 22030, USA.
- National Osteoporosis Foundation, 1150 17th Street NW, Suite 850, Washington, DC, 20036, USA.
- National Osteoporosis Foundation, 251 18th Street South, Suite 630, Arlington, VA, 22202, USA.
| | - B S Zemel
- University of Pennsylvania Perelman School of Medicine, 3535 Market Street, Room 1560, Philadelphia, PA, 19104, USA
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia, 3535 Market Street, Room 1560, Philadelphia, PA, 19104, USA
| |
Collapse
|
35
|
Correa-Rodríguez M, Schmidt Rio-Valle J, Rueda-Medina B. Polymorphisms of the WNT16 gene are associated with the heel ultrasound parameter in young adults. Osteoporos Int 2016; 27:1057-1061. [PMID: 26510844 DOI: 10.1007/s00198-015-3379-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/20/2015] [Indexed: 11/30/2022]
Abstract
SUMMARY Bone mineral content is influenced by genetic factors. We investigated the role of WNT16 in bone properties determined using quantitative ultrasound (QUS) on young adults. Three WNT16 genetic markers (rs2908007, rs2908004, and rs2707466) were found to have a significant association with the broadband ultrasound attenuation (BUA) measurement, suggesting that WNT16 influences bone mass in young adults. INTRODUCTION The aim of this study was to investigate whether genetic markers on the WNT16 gene are associated with bone mass, as assessed using QUS in a population of healthy young Spanish adults. METHODS A cross-sectional study was conducted on 575 individuals (mean age 20.41 ± 2.69). Bone quality was assessed using BUA measurements (dB/MHz) on the right calcaneus. Six single nucleotide polymorphisms (SNPs) (rs2908007, rs2908004, rs3801387, rs3801385, rs2707466, and rs2536184) covering the WNT16 gene were selected as genetic markers and genotyped to test their association with BUA variations. RESULTS The rs2908007, rs2908004, and rs2707466 SNPs were found to have a significant association with BUA (p = 0.004, p = 0.001, and p = 0.004, respectively). CONCLUSION We demonstrate for the first time that WNT16 genetic polymorphisms influence QUS traits in a population of young adults. This finding suggests that WNT16 might be an important genetic factor in determining peak bone mass acquisition.
Collapse
Affiliation(s)
- M Correa-Rodríguez
- Department of Nursing, Faculty of Health Sciences, University of Granada (Spain), Av. Ilustración S/N, 18007, Granada, Spain.
| | - J Schmidt Rio-Valle
- Department of Nursing, Faculty of Health Sciences, University of Granada (Spain), Av. Ilustración S/N, 18007, Granada, Spain
| | - B Rueda-Medina
- Department of Nursing, Faculty of Health Sciences, University of Granada (Spain), Av. Ilustración S/N, 18007, Granada, Spain
| |
Collapse
|
36
|
Mitchell JA, Chesi A, Elci O, McCormack SE, Kalkwarf HJ, Lappe JM, Gilsanz V, Oberfield SE, Shepherd JA, Kelly A, Zemel BS, Grant SFA. Genetics of Bone Mass in Childhood and Adolescence: Effects of Sex and Maturation Interactions. J Bone Miner Res 2015; 30:1676-83. [PMID: 25762182 PMCID: PMC4839534 DOI: 10.1002/jbmr.2508] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/20/2014] [Accepted: 03/08/2015] [Indexed: 11/10/2022]
Abstract
We aimed to determine if adult bone mineral density (BMD) susceptibility loci were associated with pediatric bone mass and density, and if sex and pubertal stage influenced any association. We analyzed prospective areal BMD (aBMD) and bone mineral content (BMC) data from the Bone Mineral Density in Childhood Study (n = 603, European ancestry, 54% female). Linear mixed models were used to assess if 77 single-nucleotide polymorphisms (SNPs) near known adult BMD susceptibility loci interacted with sex and pubertal stage to influence the aBMD/BMC; adjusting for age, BMI, physical activity, and dietary calcium. The strongest main association was observed between an SNP near C7orf58 and distal radius aBMD. However, this association had a significant sex • SNP interaction, revealing a significant association only in females (b = -0.32, p = 1.8 × 10(-6)). Furthermore, the C12orf23 locus had significant interactions with both sex and pubertal stage, revealing associations in females during Tanner stage I for total hip aBMD (b = 0.24, p = 0.001) and femoral neck aBMD (b = 0.27, p = 3.0 × 10(-5)). In contrast, the sex • SNP interactions for loci near LRP5 and WNT16 uncovered associations that were only in males for total body less head BMC (b = 0.22, p = 4.4 × 10(-4)) and distal radius aBMD (b = 0.27, p = 0.001), respectively. Furthermore, the LRP5 locus interacted with both sex and pubertal stage, demonstrating associations that were exclusively in males during Tanner V for total hip aBMD (b = 0.29, p = 0.003). In total, significant sex • SNP interactions were found at 15 loci; pubertal stage • SNP interactions at 23 loci and 19 loci interacted with both sex and pubertal stage. In conclusion, variants originally associated with adult BMD influence bone mass in children of European ancestry, highlighting the fact that many of these loci operate early in life. However, the direction and magnitude of associations for a large number of SNPs only became evident when accounting for sex and maturation.
Collapse
Affiliation(s)
- Jonathan A Mitchell
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alessandra Chesi
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Okan Elci
- Biostatistics and Data Management Core, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shana E McCormack
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia
| | - Heidi J Kalkwarf
- Division of General and Community Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Joan M Lappe
- Division of Endocrinology, Department of Medicine, Creighton University, Omaha, NE, USA
| | - Vicente Gilsanz
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Sharon E Oberfield
- Division of Pediatric Endocrinology, Diabetes, and Metabolism, Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - John A Shepherd
- Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - Andrea Kelly
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia
| | - Babette S Zemel
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Struan FA Grant
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology and Diabetes, The Children’s Hospital of Philadelphia, Philadelphia
| |
Collapse
|
37
|
Jin HS, Kim J, Park S, Park E, Kim BY, Choi VN, Yoo YH, Kim BT, Jeong SY. Association of the I264T variant in the sulfide quinone reductase-like (SQRDL) gene with osteoporosis in Korean postmenopausal women. PLoS One 2015; 10:e0135285. [PMID: 26258864 PMCID: PMC4530967 DOI: 10.1371/journal.pone.0135285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/20/2015] [Indexed: 01/21/2023] Open
Abstract
To identify novel susceptibility variants for osteoporosis in Korean postmenopausal women, we performed a genome-wide association analysis of 1180 nonsynonymous single nucleotide polymorphisms (nsSNPs) in 405 individuals with osteoporosis and 722 normal controls of the Korean Association Resource cohort. A logistic regression analysis revealed 72 nsSNPs that showed a significant association with osteoporosis (p<0.05). The top 10 nsSNPs showing the lowest p-values (p = 5.2×10-4-8.5×10-3) were further studied to investigate their effects at the protein level. Based on the results of an in silico prediction of the protein's functional effect based on amino acid alterations and a sequence conservation evaluation of the amino acid residues at the positions of the nsSNPs among orthologues, we selected one nsSNP in the SQRDL gene (rs1044032, SQRDL I264T) as a meaningful genetic variant associated with postmenopausal osteoporosis. To assess whether the SQRDL I264T variant played a functional role in the pathogenesis of osteoporosis, we examined the in vitro effect of the nsSNP on bone remodeling. Overexpression of the SQRDL I264T variant in the preosteoblast MC3T3-E1 cells significantly increased alkaline phosphatase activity, mineralization, and the mRNA expression of osteoblastogenesis markers, Runx2, Sp7, and Bglap genes, whereas the SQRDL wild type had no effect or a negative effect on osteoblast differentiation. Overexpression of the SQRDL I264T variant did not affect osteoclast differentiation of the primary-cultured monocytes. The known effects of hydrogen sulfide (H2S) on bone remodeling may explain the findings of the current study, which demonstrated the functional role of the H2S-catalyzing enzyme SQRDL I264T variant in osteoblast differentiation. In conclusion, the results of the statistical and experimental analyses indicate that the SQRDL I264T nsSNP may be a significant susceptibility variant for osteoporosis in Korean postmenopausal women that is involved in osteoblast differentiation.
Collapse
Affiliation(s)
- Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, Republic of Korea
| | - Jeonghyun Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Sangwook Park
- Department of Biomedical Laboratory Science, College of Health, Kyungwoon University, Gumi, Republic of Korea
| | - Eunkuk Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Bo-Young Kim
- Division of Intractable Disease, Center for Biomedical Sciences, National Institute of Health, Korea Centers for Disease Control & Prevention, Cheongju, Republic of Korea
| | - Vit-Na Choi
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Young-Hyun Yoo
- Department of Anatomy and Cell Biology and Mitochondria Hub Regulation Center, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Bom-Taeck Kim
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seon-Yong Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
38
|
Warrington NM, Kemp JP, Tilling K, Tobias JH, Evans DM. Genetic variants in adult bone mineral density and fracture risk genes are associated with the rate of bone mineral density acquisition in adolescence. Hum Mol Genet 2015; 24:4158-66. [PMID: 25941325 PMCID: PMC4476449 DOI: 10.1093/hmg/ddv143] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/09/2015] [Accepted: 04/19/2015] [Indexed: 01/27/2023] Open
Abstract
Previous studies have identified 63 single-nucleotide polymorphisms (SNPs) associated with bone mineral density (BMD) in adults. These SNPs are thought to reflect variants that influence bone maintenance and/or loss in adults. It is unclear whether they affect the rate of bone acquisition during adolescence. Bone measurements and genetic data were available on 6397 individuals from the Avon Longitudinal Study of Parents and Children at up to five follow-up clinics. Linear mixed effects models with smoothing splines were used for longitudinal modelling of BMD and its components bone mineral content (BMC) and bone area (BA), from 9 to 17 years. Genotype data from the 63 adult BMD associated SNPs were investigated individually and as a genetic risk score in the longitudinal model. Each additional BMD lowering allele of the genetic risk score was associated with lower BMD at age 13 [per allele effect size, 0.002 g/cm(2) (SE = 0.0001, P = 1.24 × 10(-38))] and decreased BMD acquisition from 9 to 17 years (P = 9.17 × 10(-7)). This association was driven by changes in BMC rather than BA. The genetic risk score explained ∼2% of the variation in BMD at 9 and 17 years, a third of that explained in adults (6%). Genetic variants that putatively affect bone maintenance and/or loss in adults appear to have a small influence on the rate of bone acquisition through adolescence.
Collapse
Affiliation(s)
- Nicole M Warrington
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia,
| | - John P Kemp
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia, MRC Integrative Epidemiology Unit, School of Social and Community Medicine and
| | - Kate Tilling
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine and
| | | | - David M Evans
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia, MRC Integrative Epidemiology Unit, School of Social and Community Medicine and
| |
Collapse
|
39
|
Huang T, Liu H, Zhao W, Li J, Wang Y. Gene-dietary fat interaction, bone mineral density and bone speed of sound in children: a twin study in China. Mol Nutr Food Res 2015; 59:544-51. [PMID: 25546604 DOI: 10.1002/mnfr.201400076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 11/24/2014] [Accepted: 11/27/2014] [Indexed: 12/27/2022]
Abstract
SCOPE Dietary fat correlates with bone mineral density (BMD). We tested the association between fat intake and BMD, and tested if fat intake modified the degree of genetic influence on BMD and bone speed of sound (SOS). METHODS AND RESULTS We included 622 twins aged 7-15 from South China. Data on anthropometry, dietary intake, BMD, and SOS were collected. Quantitative genetic analyses of structural equation models were fit using the Mx statistical package. The within-pair intraclass correlations for BMD in dizygotic twins were nearly half of that for monozygotic twins (intraclass correlations = 0.39 versus 0.70). The heritability of BMD and SOS were 71 and 79%. Phenotypic correlation between fat intake and SOS was significant (r = -0.19, p = 0.04). SOS was negatively correlated with fat intake in boys (r = -0.11, p = 0.05), but not in girls. Full Cholesky decomposition models showed SOS has a strong genetic correlation with fat intake (rA = -0.88, 95% confidence interval = -0.94, 0.01); the environmental correlation between fat intake and SOS was weak (rE = -0.04, 95% confidence interval = -0.20, 0.13). Fat intake modified the additive genetic effects on BMD. CONCLUSION Genetic factors explained 71 and 79% of individual variance in BMD and SOS, respectively. Low fat intake counteracts genetic predisposition to low BMD.
Collapse
Affiliation(s)
- Tao Huang
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
40
|
Xiong Q, Xin L, Zhang L, Mao Z, Tang P. Association between calcitonin receptor AluI gene polymorphism and bone mineral density: A meta-analysis. Exp Ther Med 2014; 9:65-76. [PMID: 25452778 PMCID: PMC4247317 DOI: 10.3892/etm.2014.2083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 11/05/2014] [Indexed: 12/31/2022] Open
Abstract
The association between calcitonin receptor (CTR) AluI gene polymorphism and bone mineral density (BMD) remains unclear. In order to elucidate this association, a meta-analysis was performed to provide a comprehensive assessment of the studies carried out to date. PubMed, the Cochrane Library, Web of Science and the China National Knowledge Infrastructure database were searched to identify eligible studies. The data were extracted independently by two authors using a standard form, the studies were meta-analyzed and disagreements were resolved through discussion. Fifteen eligible studies involving 3,093 females and 654 males were included for analysis. Overall, the male subjects with the CC genotype had non-statistically different lumbar spine and femoral neck BMD compared to subjects with the CT/TT and CT genotypes. The BMD of female subjects with the CC genotype was similar to that of patients with the CT or CT/TT genotypes. In Chinese male subjects, those with the CC genotype had almost the same BMD as those with the CT and CT/TT genotypes. The results also demonstrated that Chinese female subjects with the CC genotype had similar BMD at the lumbar spine and femoral neck to subjects with the CT and CT/TT genotypes. Furthermore, Southern Chinese subjects with CC genotypes did not have a different BMD at the lumbar spine and femoral neck compared to patients with CT and CT/TT genotypes. Notably, Northern Chinese subjects with the CC genotype had a higher BMD at the lumbar spine compared to subjects with CT/TT genotypes and a lower BMD at the femoral neck compared to subjects with CT/TT genotypes. Among Northern Chinese females, those with CC genotypes also had a higher BMD at the lumbar spine compared to those with CT/TT genotypes, while no difference was observed in the BMD of the lumbar spine and femoral neck between patients with CC and CT genotypes. In Southern Chinese females, no significant difference was found in the BMD at the lumbar spine and femoral neck between those with CC and those with CT or CT/TT genotypes. In conclusion, the AluI gene polymorphism may have an association with BMD in Northern Chinese subjects and the CC genotype may have a protective effect on spine BMD; however, the CC genotype may be a risk factor for low femoral neck BMD in Northern Chinese subjects. Further studies are required to fully investigate the potential association between AluI gene polymorphism and BMD.
Collapse
Affiliation(s)
- Qi Xiong
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| | - Lingli Xin
- Department of Obstetrics and Gynecology, The Second Artillery General Hospital of Chinese PLA, Beijing 100088, P.R. China
| | - Lihai Zhang
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| | - Zhi Mao
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| | - Peifu Tang
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| |
Collapse
|
41
|
Torres-Costoso A, Gracia-Marco L, Sánchez-López M, García-Prieto JC, García-Hermoso A, Díez-Fernández A, Martínez-Vizcaíno V. Lean mass as a total mediator of the influence of muscular fitness on bone health in schoolchildren: a mediation analysis. J Sports Sci 2014; 33:817-30. [PMID: 25385511 DOI: 10.1080/02640414.2014.964750] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This report aims to analyse the independent association of lean mass and muscle fitness with bone mineral content (BMC) and bone mineral density (BMD), and to examine whether the relationship between muscle fitness and bone health is mediated by lean mass. Body composition (by dual energy X-ray absorptiometry (DXA)), muscle fitness, physical activity, age and height were measured in 132 schoolchildren (62 boys, aged 8-11 years). Analysis of covariance tested differences in bone-related variables by lean mass and muscle fitness, controlling for different sets of confounders. Linear regression models fitted for mediation analyses examined whether the association between muscle fitness and bone mass was mediated by lean mass. Children with good performance in handgrip and standing long jump had better and worse bone health, respectively. These differences disappeared after controlling for lean mass. Children with high lean mass had higher values in all bone-related variables. In addition, the relationship between muscle fitness and bone mass was fully mediated by lean mass. In conclusion, the relationship between upper-limbs muscle fitness and bone health seems to be dependent on lean mass but not on muscle fitness. Schoolchildren with high lean mass have more BMC and BMD in all regions. Lean mass mediates the association between muscle fitness and bone mass.
Collapse
Affiliation(s)
- Ana Torres-Costoso
- a School of Nursing and Physiotherapy , University of Castilla La Mancha , Toledo , Spain
| | | | | | | | | | | | | |
Collapse
|
42
|
Xiang R, Lee AMC, Eindorf T, Javadmanesh A, Ghanipoor-Samami M, Gugger M, Fitzsimmons CJ, Kruk ZA, Pitchford WS, Leviton AJ, Thomsen DA, Beckman I, Anderson GI, Burns BM, Rutley DL, Xian CJ, Hiendleder S. Widespread differential maternal and paternal genome effects on fetal bone phenotype at mid-gestation. J Bone Miner Res 2014; 29:2392-404. [PMID: 24753181 DOI: 10.1002/jbmr.2263] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 03/09/2014] [Accepted: 04/03/2014] [Indexed: 11/06/2022]
Abstract
Parent-of-origin-dependent (epi)genetic factors are important determinants of prenatal development that program adult phenotype. However, data on magnitude and specificity of maternal and paternal genome effects on fetal bone are lacking. We used an outbred bovine model to dissect and quantify effects of parental genomes, fetal sex, and nongenetic maternal effects on the fetal skeleton and analyzed phenotypic and molecular relationships between fetal muscle and bone. Analysis of 51 bone morphometric and weight parameters from 72 fetuses recovered at day 153 gestation (54% term) identified six principal components (PC1-6) that explained 80% of the variation in skeletal parameters. Parental genomes accounted for most of the variation in bone wet weight (PC1, 72.1%), limb ossification (PC2, 99.8%), flat bone size (PC4, 99.7%), and axial skeletal growth (PC5, 96.9%). Limb length showed lesser effects of parental genomes (PC3, 40.8%) and a significant nongenetic maternal effect (gestational weight gain, 29%). Fetal sex affected bone wet weight (PC1, p < 0.0001) and limb length (PC3, p < 0.05). Partitioning of variation explained by parental genomes revealed strong maternal genome effects on bone wet weight (74.1%, p < 0.0001) and axial skeletal growth (93.5%, p < 0.001), whereas paternal genome controlled limb ossification (95.1%, p < 0.0001). Histomorphometric data revealed strong maternal genome effects on growth plate height (98.6%, p < 0.0001) and trabecular thickness (85.5%, p < 0.0001) in distal femur. Parental genome effects on fetal bone were mirrored by maternal genome effects on fetal serum 25-hydroxyvitamin D (96.9%, p < 0.001) and paternal genome effects on alkaline phosphatase (90.0%, p < 0.001) and their correlations with maternally controlled bone wet weight and paternally controlled limb ossification, respectively. Bone wet weight and flat bone size correlated positively with muscle weight (r = 0.84 and 0.77, p < 0.0001) and negatively with muscle H19 expression (r = -0.34 and -0.31, p < 0.01). Because imprinted maternally expressed H19 regulates growth factors by miRNA interference, this suggests muscle-bone interaction via epigenetic factors.
Collapse
Affiliation(s)
- Ruidong Xiang
- Robinson Research Institute, The University of Adelaide, Adelaide, Australia; JS Davies Epigenetics and Genetics Group, School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Adelaide, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sarrión P, Mellibovsky L, Urreizti R, Civit S, Cols N, García-Giralt N, Yoskovitz G, Aranguren A, Malouf J, Di Gregorio S, Río LD, Güerri R, Nogués X, Díez-Pérez A, Grinberg D, Balcells S. Genetic analysis of high bone mass cases from the BARCOS cohort of Spanish postmenopausal women. PLoS One 2014; 9:e94607. [PMID: 24736728 PMCID: PMC3988071 DOI: 10.1371/journal.pone.0094607] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/17/2014] [Indexed: 12/17/2022] Open
Abstract
The aims of the study were to establish the prevalence of high bone mass (HBM) in a cohort of Spanish postmenopausal women (BARCOS) and to assess the contribution of LRP5 and DKK1 mutations and of common bone mineral density (BMD) variants to a HBM phenotype. Furthermore, we describe the expression of several osteoblast-specific and Wnt-pathway genes in primary osteoblasts from two HBM cases. A 0.6% of individuals (10/1600) displayed Z-scores in the HBM range (sum Z-score >4). While no mutation in the relevant exons of LRP5 was detected, a rare missense change in DKK1 was found (p.Y74F), which cosegregated with the phenotype in a small pedigree. Fifty-five BMD SNPs from Estrada et al. [NatGenet 44:491-501,2012] were genotyped in the HBM cases to obtain risk scores for each individual. In this small group of samples, Z-scores were found inversely related to risk scores, suggestive of a polygenic etiology. There was a single exception, which may be explained by a rare penetrant genetic variant, counterbalancing the additive effect of the risk alleles. The expression analysis in primary osteoblasts from two HBM cases and five controls suggested that IL6R, DLX3, TWIST1 and PPARG are negatively related to Z-score. One HBM case presented with high levels of RUNX2, while the other displayed very low SOX6. In conclusion, we provide evidence of lack of LRP5 mutations and of a putative HBM-causing mutation in DKK1. Additionally, we present SNP genotyping and expression results that suggest additive effects of several genes for HBM.
Collapse
Affiliation(s)
- Patricia Sarrión
- Departament de Genètica, Universitat de Barcelona, IBUB, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Institut de Biomedicina Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Leonardo Mellibovsky
- Unitat de Recerca en Fisiologia Òssia i Articular (URFOA), Institut Municipal d'Investigacions Mèdiques (IMIM), Hospital del Mar, Barcelona, Spain
- Red Tematica de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Instituto de Salud Carlos III, Barcelona, Spain
| | - Roser Urreizti
- Departament de Genètica, Universitat de Barcelona, IBUB, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Institut de Biomedicina Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Sergi Civit
- Departament d'Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Neus Cols
- Departament de Genètica, Universitat de Barcelona, IBUB, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Institut de Biomedicina Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Natàlia García-Giralt
- Unitat de Recerca en Fisiologia Òssia i Articular (URFOA), Institut Municipal d'Investigacions Mèdiques (IMIM), Hospital del Mar, Barcelona, Spain
- Red Tematica de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Instituto de Salud Carlos III, Barcelona, Spain
| | - Guy Yoskovitz
- Unitat de Recerca en Fisiologia Òssia i Articular (URFOA), Institut Municipal d'Investigacions Mèdiques (IMIM), Hospital del Mar, Barcelona, Spain
- Red Tematica de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Instituto de Salud Carlos III, Barcelona, Spain
| | - Alvaro Aranguren
- Departament de Genètica, Universitat de Barcelona, IBUB, Barcelona, Spain
| | - Jorge Malouf
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Silvana Di Gregorio
- Red Tematica de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Instituto de Salud Carlos III, Barcelona, Spain
- CETIR Medical Imaging Centre, Barcelona, Spain
| | - Luís Del Río
- Red Tematica de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Instituto de Salud Carlos III, Barcelona, Spain
- CETIR Medical Imaging Centre, Barcelona, Spain
| | - Roberto Güerri
- Unitat de Recerca en Fisiologia Òssia i Articular (URFOA), Institut Municipal d'Investigacions Mèdiques (IMIM), Hospital del Mar, Barcelona, Spain
- Red Tematica de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Instituto de Salud Carlos III, Barcelona, Spain
| | - Xavier Nogués
- Unitat de Recerca en Fisiologia Òssia i Articular (URFOA), Institut Municipal d'Investigacions Mèdiques (IMIM), Hospital del Mar, Barcelona, Spain
- Red Tematica de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Instituto de Salud Carlos III, Barcelona, Spain
| | - Adolfo Díez-Pérez
- Unitat de Recerca en Fisiologia Òssia i Articular (URFOA), Institut Municipal d'Investigacions Mèdiques (IMIM), Hospital del Mar, Barcelona, Spain
- Red Tematica de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Instituto de Salud Carlos III, Barcelona, Spain
| | - Daniel Grinberg
- Departament de Genètica, Universitat de Barcelona, IBUB, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Institut de Biomedicina Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Susana Balcells
- Departament de Genètica, Universitat de Barcelona, IBUB, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Institut de Biomedicina Universitat de Barcelona (IBUB), Barcelona, Spain
- * E-mail:
| |
Collapse
|
44
|
Hendrickx G, Boudin E, Fijałkowski I, Nielsen TL, Andersen M, Brixen K, Van Hul W. Variation in the Kozak sequence of WNT16 results in an increased translation and is associated with osteoporosis related parameters. Bone 2014; 59:57-65. [PMID: 24185276 DOI: 10.1016/j.bone.2013.10.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 11/28/2022]
Abstract
The importance of WNT16 in the regulation of bone metabolism was recently confirmed by several genome-wide association studies and by a Wnt16 (Wnt16(-/-)) knockout mouse model. The aim of this study was thus to replicate and further elucidate the effect of common genetic variation in WNT16 on osteoporosis related parameters. Hereto, we performed a WNT16 candidate gene association study in a population of healthy Caucasian men from the Odense Androgen Study (OAS). Using HapMap, five tagSNPs and one multimarker test were selected for genotyping to cover most of the common genetic variation in and around WNT16 (MAF>5%). This study confirmed previously reported associations for rs3801387 and rs2707466 with bone mineral density (BMD) at several sites. Furthermore, we additionally demonstrated that rs2908007 is strongly associated with BMD at several sites in the young, elderly and complete OAS population. The observed effect of these three associated SNPs on the respective phenotypes is comparable and we can conclude that the presence of the minor allele results in an increase in BMD. Additionally, we performed re-sequencing of WNT16 on two cohorts selected from the young OAS cohort, based on their extreme BMD values. On this basis, rs55710688 was selected for an in vitro translation experiment since it is located in the Kozak sequence of WNT16a. We observed an increased translation efficiency and thus a higher amount of WNT16a for the Kozak sequence that was significantly more prevalent in the high BMD cohort. This observation is in line with the results of the Wnt16(-/-) mice. Finally, a WNT luciferase reporter assay was performed and showed no activation of the β-catenin dependent pathway by Wnt16. We did detect a dose-dependent inhibitory effect of Wnt16 on WNT1 activation of this canonical WNT pathway. Increased translation of WNT16 can thus lead to an increased inhibitory action of WNT16 on canonical WNT signaling. This statement is in contrast with the known activating effect of canonical WNT signaling on bone formation and suggests a stimulatory effect on bone metabolism via noncanonical WNT signaling. More research is required to not only confirm this hypothesis, but also to further elucidate the role of non-canonical WNT pathways in bone metabolism and the general mechanisms of interplay between the different WNT signaling pathways.
Collapse
Affiliation(s)
- Gretl Hendrickx
- Department of Medical Genetics, University of Antwerp, Belgium.
| | - Eveline Boudin
- Department of Medical Genetics, University of Antwerp, Belgium.
| | | | | | | | - Kim Brixen
- Department of Endocrinology, Odense University Hospital, Denmark.
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Belgium.
| |
Collapse
|
45
|
Thandrayen K, Norris SA, Micklesfield LK, Pettifor JM. Fracture patterns and bone mass in South African adolescent-mother pairs: the Birth to Twenty cohort. Osteoporos Int 2014; 25:693-700. [PMID: 23943166 PMCID: PMC3906554 DOI: 10.1007/s00198-013-2477-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/26/2013] [Indexed: 11/30/2022]
Abstract
UNLABELLED The associations of fracture prevalence and bone mass in adolescents with maternal fracture history and bone mass have not been investigated previously in South Africa. Maternal bone mass has a significant inverse association with their adolescents' fracture rates and bone mass across all ethnic groups. INTRODUCTION Differences in fracture rates and bone mass between families and individuals of different ethnic origins may be due to differing lifestyles and/or genetic backgrounds. This study aimed to assess associations of fracture prevalence and bone mass in adolescents with maternal fracture history and bone mass, and sibling fracture history. METHODS Data from 1,389 adolescent-biological mother pairs from the Birth to Twenty longitudinal study were obtained. Questionnaires were completed on adolescent fractures until 17/18 years of age and on sibling fractures. Biological mothers completed questionnaires on their own fractures prior to the age of 18 years. Anthropometric and bone mass data on adolescent-biological mother pairs were collected. RESULTS An adolescent's risk of lifetime fracture decreased with increasing maternal lumbar spine (LS) bone mineral content (BMC; 24 % reduction in fracture risk for every unit increase in maternal LS BMC Z-score) and increased if they were white, male, or had a sibling with a history of fracture. Adolescent height, weight, male gender, maternal bone area and BMC, and white ethnicity were positive predictors of adolescent bone mass. White adolescents and their mothers had a higher fracture prevalence (adolescents 42 %, mothers 31 %) compared to the black (adolescents 20 %, mothers 6 %) and mixed ancestry (adolescents 20 %, mothers 16 %) groups. CONCLUSION Maternal bone mass has a significant inverse association with their adolescent off-springs' fracture risk and bone mass. Furthermore, there is a strong familial component in fracture patterns among South African adolescents and their siblings.
Collapse
Affiliation(s)
- K. Thandrayen
- MRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Paediatrics, Chris Hani Baragwanath Hospital, PO Bertsham, Johannesburg, 2013 South Africa
| | - S. A. Norris
- MRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - L. K. Micklesfield
- MRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - J. M. Pettifor
- MRC/Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
46
|
Wagner H, Melhus H, Pedersen NL, Michaëlsson K. Genetic influence on bone phenotypes and body composition: a Swedish twin study. J Bone Miner Metab 2013; 31:681-9. [PMID: 23564006 DOI: 10.1007/s00774-013-0455-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/13/2013] [Indexed: 01/20/2023]
Abstract
Bone mineral density (BMD), bone size and bone turnover are independent determinants of fractures in elderly. Earlier twin studies of these phenotypes have revealed high heritability for BMD and bone area, and more moderate heritability for bone turnover markers. No previous Scandinavian study has evaluated the genetic and environmental contribution to the variance of these phenotypes, despite the fact that Scandinavian countries have the highest incidence of osteoporotic fractures worldwide. Participants were selected from the Swedish Twin Registry. All intact like-sexed twin pairs born in 1965 or earlier and living in the county of Uppsala were invited to participate. A total of 102 twin pairs (45 monozygotic and 57 dizygotic) accepted the invitation to participate. All twins underwent measurement of BMD and bone area using dual-energy X-ray absorptiometry. Hip geometry was also calculated. Markers for bone formation (osteocalcin) and bone resorption (CrossLaps) were measured in serum. We observed a substantial heritability for BMD at the lumbar spine (0.85; 95 % CI 0.54-0.90), the femoral neck (0.75; 95 % CI 0.62-0.83), and the proximal femur (0.84; 95 % CI 0.74-0.90). The values for bone area were approximately similar to those for BMD. Bone turnover markers had a slightly lower genetic influence with a value of 0.69 (0.53-0.80) for osteocalcin and 0.58 (95 % CI 0.33-0.75) for CrossLaps. As a comparison, the heritabilities of body height and weight were 0.95 and 0.82, respectively. The high heritability on bone phenotypes among Swedish middle-aged and older men and women should encourage further work on the identification of specific genetic pathways. Continuing research in this area could reveal the mechanisms behind the strong genetic susceptibility of bone-related phenotypes.
Collapse
Affiliation(s)
- Helene Wagner
- Section of Orthopedics, Department of Surgical Sciences, Uppsala University, S75185, Uppsala, Sweden,
| | | | | | | |
Collapse
|
47
|
Mullin BH, Mamotte C, Prince RL, Spector TD, Dudbridge F, Wilson SG. Conditional testing of multiple variants associated with bone mineral density in the FLNB gene region suggests that they represent a single association signal. BMC Genet 2013; 14:107. [PMID: 24176111 PMCID: PMC3818969 DOI: 10.1186/1471-2156-14-107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Low bone mineral density (BMD) is a primary risk factor for osteoporosis and is a highly heritable trait, but appears to be influenced by many genes. Genome-wide linkage studies have highlighted the chromosomal region 3p14-p22 as a quantitative trait locus for BMD (LOD 1.1 - 3.5). The FLNB gene, which is thought to have a role in cytoskeletal actin dynamics, is located within this chromosomal region and presents as a strong candidate for BMD regulation. We have previously identified significant associations between four SNPs in the FLNB gene and BMD in women. We have also previously identified associations between five SNPs located 5' of the transcription start site (TSS) and in intron 1 of the FLNB gene and expression of FLNB mRNA in osteoblasts in vitro. The latter five SNPs were genotyped in this study to test for association with BMD parameters in a family-based population of 769 Caucasian women. RESULTS Using FBAT, significant associations were seen for femoral neck BMD Z-score with the SNPs rs11720285, rs11130605 and rs9809315 (P = 0.004 - 0.043). These three SNPs were also found to be significantly associated with total hip BMD Z-score (P = 0.014 - 0.026). We then combined the genotype data for these three SNPs with the four SNPs we previously identified as associated with BMD and performed a conditional analysis to determine whether they represent multiple independent associations with BMD. The results from this analysis suggested that these variants represent a single association signal. CONCLUSIONS The SNPs identified in our studies as associated with BMD appear to be part of a single association signal between the FLNB gene and BMD in our data. FLNB is one of several genes located in 3p14-p22 that has been identified as significantly associated with BMD in Caucasian women.
Collapse
Affiliation(s)
- Benjamin H Mullin
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Biomedical Sciences and CHIRI Biosciences, Curtin University of Technology, Bentley, Western Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia
| | - Cyril Mamotte
- School of Biomedical Sciences and CHIRI Biosciences, Curtin University of Technology, Bentley, Western Australia, Australia
| | - Richard L Prince
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia
| | - Tim D Spector
- Twin & Genetic Epidemiology Research Unit, St Thomas’ Hospital Campus, King’s College London, London, UK
| | - Frank Dudbridge
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Scott G Wilson
- Department of Endocrinology & Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia
- Twin & Genetic Epidemiology Research Unit, St Thomas’ Hospital Campus, King’s College London, London, UK
| |
Collapse
|
48
|
Singh M, Singh P, Singh S, Juneja PK, Kaur T. Vitamin D receptor (VDR) gene polymorphism influences the risk of osteoporosis in postmenopausal women of Northwest India. Arch Osteoporos 2013; 8:147. [PMID: 23975234 DOI: 10.1007/s11657-013-0147-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/02/2013] [Indexed: 02/03/2023]
Abstract
SUMMARY The influence of VDR gene for the risk of osteoporosis has remained inconclusive. VDR gene polymorphism in relation to BMD in postmenopausal women of Northwest India revealed a susceptibility haplotype AGT. Possession of this haplotype exacerbates the risk of osteoporosis by 2.8 times, which manifests in recessive mode of inheritance. PURPOSE The purpose of this study is to understand the influence of coordinated effect of various single nucleotide polymorphisms (SNPs) within vitamin D receptor (VDR) gene for the risk of osteoporosis, which has remained undefined so far. METHODS Four pertinent SNPs of VDR gene, i.e., rs2228570, rs1544410, rs17879735, and rs731236 were examined with polymerase chain reaction-restriction fragment length polymorphism in dual energy X-ray absorptiometry verified 188 osteoporotics, 115 osteopenics, and 147 normal postmenopausal women of Northwest India. RESULTS Minor allele 'T' of rs2228570 showed significant influence for the risk of osteoporosis (OR 1.60, 95%CI 1.16-2.20, P=0.004) and also in dominant (OR 2.32, 95%CI 1.47-3.64, P=0.0006) and additive model (OR 2.41, 95%CI 1.49-3.87, P=0.0006) after Bonferroni correction. Minor allele (T) of rs2228570 showed an allele dose effect with BMD of L1-L4 (P=0.009) and FN (P=0.036). Disease association analysis exposed a susceptibility haplotype AGT which influences the risk of osteopenia (OR 2.04, 95%CI 1.03-4.08, P=0.036) and osteoporosis (OR 2.90, 95%CI 1.61-5.38, P=0.00005) after adjusting the effects of age, BMI and years since menopause. This haplotype is significantly associated with BMDs at lumbar spine (P=0.0001) and femoral neck (P=0.016). CONCLUSION In-depth analysis of this haplotype with other methods of Wald statistics and Akaike information criterion confirmed that carriers of each unit of this haplotype AGT increases the risk of osteoporosis by a factor of 2.80±0.34 (β±SE) which manifests (P=0.1 × 10⁻⁶) in its recessive mode of inheritance.
Collapse
Affiliation(s)
- Monica Singh
- Molecular Genetics Laboratory, Department of Human Genetics, Punjabi University, Patiala, Punjab, India
| | | | | | | | | |
Collapse
|
49
|
Das S, Crockett JC. Osteoporosis - a current view of pharmacological prevention and treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:435-48. [PMID: 23807838 PMCID: PMC3686324 DOI: 10.2147/dddt.s31504] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Indexed: 12/12/2022]
Abstract
Postmenopausal osteoporosis is the most common bone disease, associated with low bone mineral
density (BMD) and pathological fractures which lead to significant morbidity. It is defined
clinically by a BMD of 2.5 standard deviations or more below the young female adult mean (T-score
=−2.5). Osteoporosis was a huge global problem both socially and economically
– in the UK alone, in 2011 £6 million per day was spent on treatment and social care
of the 230,000 osteoporotic fracture patients – and therefore viable preventative and
therapeutic approaches are key to managing this problem within the aging population of today. One of
the main issues surrounding the potential of osteoporosis management is diagnosing patients at risk
before they develop a fracture. We discuss the current and future possibilities for identifying
susceptible patients, from fracture risk assessment to shape modeling and in relation to the high
heritability of osteoporosis now that a plethora of genes have been associated with low BMD and
osteoporotic fracture. This review highlights the current therapeutics in clinical use (including
bisphosphonates, anti-RANKL [receptor activator of NF-κB ligand],
intermittent low dose parathyroid hormone, and strontium ranelate) and some of those in development
(anti-sclerostin antibodies and cathepsin K inhibitors). By highlighting the intimate relationship
between the activities of bone forming (osteoblasts) and bone-resorbing (osteoclasts) cells, we
include an overview and comparison of the molecular mechanisms exploited in each therapy.
Collapse
Affiliation(s)
- Subhajit Das
- Musculoskeletal Research Programme, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | | |
Collapse
|
50
|
Abstract
Osteoporosis has traditionally been considered a disorder of postmenopausal women, but low bone mass and accelerated bone loss can also occur early in life causing premenopausal osteoporosis. There are a few risk factors that increase a woman's risk of premenopausal osteoporosis, including drugs, hormonal and nutritional factors, and physical in-activity, which need to be identified and managed accordingly. Lifestyle modification is of importance in preventing progressive bone loss in premenopausal women and should be actively encouraged.
Collapse
Affiliation(s)
- Marilyn Lee Cheng
- Department of Endocrinology, Khoo Teck Puat Hospital, 90 Yishun Central, Singapore
| | - Vishal Gupta
- Department of Endocrinology, Jaslok Hospital and Research Centre, Mumbai, India
| |
Collapse
|