1
|
Sadeghi S, Tapak M, Ghazanfari T, Mosaffa N. A review of Sulfur Mustard-induced pulmonary immunopathology: An Alveolar Macrophage Approach. Toxicol Lett 2020; 333:115-129. [PMID: 32758513 DOI: 10.1016/j.toxlet.2020.07.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/27/2022]
Abstract
Despite many studies investigating the mechanism of Sulfur Mustard (SM) induced lung injury, the underlying mechanism is still unclear. Inflammatory and subsequent fibroproliferative stages of SM-toxicity are based upon several highly-related series of events controlled by the immune system. The inhalation of SM gas variably affects different cell populations within the lungs. Various studies have shown the critical role of macrophages in triggering a pulmonary inflammatory response as well as its maintenance, resolution, and repair. Importantly, macrophages can serve as either pro-inflammatory or anti-inflammatory populations depending on the present conditions at any pathological stage. Different characteristics of macrophages, including their differentiation, phenotypic, and functional properties, as well as interactions with other cell populations determine the outcomes of lung diseases and the extent of long- or short-term pulmonary damage induced by SM. In this paper, we summarize the current state of knowledge regarding the role of alveolar macrophages and their mediators in the pathogenesis of SM in pulmonary injury. Investigating the specific cells and mechanisms involved in SM-lung injury may be useful in finding new target opportunities for treatment of this injury.
Collapse
Affiliation(s)
- Somaye Sadeghi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahtab Tapak
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran; Department of Immunology, Shahed University, Tehran, Iran.
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Yu D, Bei YY, Li Y, Han W, Zhong YX, Liu F, Zhao YL, Zhu XJ, Zhao J. In vitro the differences of inflammatory and oxidative reactions due to sulfur mustard induced acute pulmonary injury underlying intraperitoneal injection and intratracheal instillation in rats. Int Immunopharmacol 2017; 47:78-87. [DOI: 10.1016/j.intimp.2017.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 01/06/2023]
|
3
|
Roy SS, Mukherjee S, Das SK. Effects of intratracheal exposure of 2-chloroethyl ethyl sulfide (CEES) on the activation of CCAAT-enhancer-binding protein (C/EBP) and its protection by antioxidant liposome. J Biochem Mol Toxicol 2016; 31. [PMID: 27900814 DOI: 10.1002/jbt.21882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 11/11/2022]
Abstract
Exposure of 2-chloroethyl ethyl sulfide (CEES) to guinea pigs causes lung injury by infiltration of neutrophils in interstitial lung spaces. A unique MAPK-regulated transcription factor, C/EBP (CCAAT-enhancer-binding protein), regulates the expression of intracellular adhesion molecule-1 (ICAM-1), involved in recruiting neutrophils in lung. The present study was to determine if CEES exposure causes activation of C/EBP, in particular the predominant β-isoform and if so whether it can be prevented by intratracheal delivery of an antioxidant liposome containing N-acetyl cysteine and tocopherols. Lung injury was developed in guinea pigs by intratracheal exposure of CEES (0.5 mg/kg). The antioxidant liposome was given intratracheally 5 min after CEES exposure, and the animals were sacrificed after 30 days. CEES exposure caused a 2.3-fold increase in the activation of C/EBP accompanied with a 45% and 121% increase in the protein level of C/EBP β and ICAM-1, respectively, and this effect was counteracted by the antioxidant liposome.
Collapse
Affiliation(s)
- Somdutta Sinha Roy
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, 37208
| | - Shyamali Mukherjee
- Department of Professional & Medical Education: Neuroscience & Pharmacology, Meharry Medical College, Nashville, TN, 37208
| | - Salil K Das
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, 37208
| |
Collapse
|
4
|
Khazdair MR, Boskabady MH, Ghorani V. Respiratory effects of sulfur mustard exposure, similarities and differences with asthma and COPD. Inhal Toxicol 2015; 27:731-44. [PMID: 26635274 DOI: 10.3109/08958378.2015.1114056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Previous research has found relationships between sulfur mustard (SM) toxicity and its adverse effects. OBJECTIVE SM is highly toxic to the respiratory system, leading to hacking cough, rhinorrheachest tightness, acute pharyngitis and laryngitis, chronic bronchitis and lung fibrosis. In this review, based on the scientific literature, we provide an updated summary of information on SM exposures and their differences with asthma and COPD. METHOD Information of this review was obtained by searching Medline/PubMed, ScienceDirect, Scopus, Google Scholar, ISI Web of Knowledge and Chemical Abstracts. RESULTS SM exposure can decrease pulmonary function tests (PFTs) values. In addition, inflammatory cell accumulation in the respiratory tract and increased expression of some pro-inflammatory cytokines including tumor necrosis factor-α (TNFα), IL-1a, IL-1β, and reactive oxygen radicals due to SM exposure have been shown. Matrix metalloproteinase (MMP) which degrade extracellular matrix proteins, contributing to inflammatory cell recruitment, tissue injury and fibrosis are also up-regulated in the lung after SM exposure. In the lung, SM exposure also can cause serious pathological changes including airway inflammation, parenchymal tissue destruction and airway obstruction which can lead to asthma or chronic obstructive pulmonary disease (COPD). Following SM poisoning, DNA damage, apoptosis and autophagy are observed in the lung along with the increased expression of activated caspases and DNA repair enzymes. CONCLUSION In the present article, respiratory symptoms, changes in PFTs, lung pathology and lung inflammation due to SM exposure and the similarities and differences between them and those observed in asthma and COPD were reviewed.
Collapse
Affiliation(s)
- Mohammad Reza Khazdair
- a Pharmaceutical Research Center and Department of Physiology, School of Medicine .,b Student Research Committee , and
| | - Mohammad Hossein Boskabady
- c Neurogenic Inflammation Research Centre and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Vahideh Ghorani
- a Pharmaceutical Research Center and Department of Physiology, School of Medicine
| |
Collapse
|
5
|
Panahi Y, Gholami N, Ghojazadeh M, Moslemi F, Naghavi-Behzad M, Azami-Aghdash S, Ghaffari A, Piri R. Complications and Carcinogenic Effects of Mustard Gas - a Systematic Review and Meta-Analysis in Iran. Asian Pac J Cancer Prev 2015; 16:7567-73. [DOI: 10.7314/apjcp.2015.16.17.7567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
6
|
Kumar D, Tewari-Singh N, Agarwal C, Jain AK, Inturi S, Kant R, White CW, Agarwal R. Nitrogen mustard exposure of murine skin induces DNA damage, oxidative stress and activation of MAPK/Akt-AP1 pathway leading to induction of inflammatory and proteolytic mediators. Toxicol Lett 2015; 235:161-71. [PMID: 25891025 DOI: 10.1016/j.toxlet.2015.04.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/11/2015] [Accepted: 04/12/2015] [Indexed: 01/01/2023]
Abstract
Our recent studies in SKH-1 hairless mice have demonstrated that topical exposure to nitrogen mustard (NM), an analog of sulfur mustard (SM), triggers the inflammatory response, microvesication and apoptotic cell death. Here, we sought to identify the mechanism/s involved in these NM-induced injury responses. Results obtained show that NM exposure of SKH-1 hairless mouse skin caused H2A.X and p53 phosphorylation and increased p53 accumulation, indicating DNA damage. In addition, NM also induced the activation of MAPKs/ERK1/2, JNK1/2 and p38 as well as that of Akt together with the activation of transcription factor AP1. Also, NM exposure induced robust expression of pro-inflammatory mediators namely cyclooxygenase 2 and inducible nitric oxide synthase and cytokine tumor necrosis factor alpha, and increased the levels of proteolytic mediator matrix metalloproteinase 9. NM exposure of skin also increased lipid peroxidation, 5,5-dimethyl-2-(8-octanoic acid)-1-pyrroline N-oxide protein adduct formation, protein and DNA oxidation indicating an elevated oxidative stress. We also found NM-induced increase in the homologous recombinant repair pathway, suggesting its involvement in the repair of NM-induced DNA damage. Collectively, these results indicate that NM induces oxidative stress, mainly a bi-phasic response in DNA damage and activation of MAPK and Akt pathways, which activate transcription factor AP1 and induce the expression of inflammatory and proteolytic mediators, contributing to the skin injury response by NM. In conclusion, this study for the first time links NM-induced mechanistic changes with our earlier reported murine skin injury lesions with NM, which could be valuable to identify potential therapeutic targets and rescue agents.
Collapse
Affiliation(s)
- Dileep Kumar
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Neera Tewari-Singh
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Anil K Jain
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Swetha Inturi
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Carl W White
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora 80045, CO, USA.
| |
Collapse
|
7
|
Xiaoji Z, Xiao M, Rui X, Haibo C, Chao Z, Chengjin L, Tao W, Wenjun G, Shengming Z. Mechanism underlying acute lung injury due to sulfur mustard exposure in rats. Toxicol Ind Health 2014; 32:1345-1357. [PMID: 25537624 DOI: 10.1177/0748233714560603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sulfur mustard (SM), a bifunctional alkylating agent that causes severe lung damage, is a significant threat to both military and civilian populations. The mechanisms mediating the cytotoxic effects of SM are unknown and were investigated in this study. The purpose of this study was to establish a rat model of SM-induced lung injury to observe the resulting changes in the lungs. Male rats (Sprague Dawley) were anesthetized, intratracheally intubated, and exposed to 2 mg/kg of SM by intratracheal instillation. Animals were euthanized 6, 24, 48, and 72 h post-exposure, and bronchoalveolar lavage fluid (BALF) and lung tissues were collected. Exposure of rats to SM resulted in rapid pulmonary toxicity, including partial bronchiolar epithelium cell shedding, focal ulceration, and an increased amount of inflammatory exudate and number of cells in the alveoli. There was also evidence that the protein content and cell count of BALF peaked at 48 h, and the alveolar septum was widened and filled with lymphocytes. SM exposure also resulted in partial loss of type I alveolar epithelial cell membranes, fuzzy mitochondrial cristae, detachment and dissociation of ribosomes attached to the surface of rough endoplasmic reticulum, cracked, missing, and disorganized microvilli of type II alveolar epithelial cells, and increased apoptotic cells in the alveolar septum. The propylene glycol control group, however, was the same as the normal group. These data demonstrate that the mechanism of a high concentration of SM (2 mg/kg) induced acute lung injury include histologic changes, inflammatory reactions, apoptosis, oxidative stress, and nuclear DNA damage; the degree of injury is time dependent.
Collapse
Affiliation(s)
- Zhu Xiaoji
- Department of Respiration, The 89th Hospital of PLA, Weifang, China
| | - Meng Xiao
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Xu Rui
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Chu Haibo
- Department of Respiration, The 89th Hospital of PLA, Weifang, China
| | - Zhao Chao
- Department of Respiration, The 89th Hospital of PLA, Weifang, China
| | - Lian Chengjin
- Department of Respiration, The 89th Hospital of PLA, Weifang, China
| | - Wang Tao
- Department of Respiration, The 89th Hospital of PLA, Weifang, China
| | - Guo Wenjun
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Zhang Shengming
- Department of Electron Microscope, Weifang Medical University, Weifang, China
| |
Collapse
|
8
|
Zhu XJ, Xu R, Meng X, Chu HB, Zhao C, Lian CJ, Wang T, Guo WJ, Zhang SM. Mechanistic Insights of Sulfur Mustard-Induced Acute Tracheal Injury in Rats. Int J Toxicol 2014; 33:382-92. [PMID: 25163474 DOI: 10.1177/1091581814548730] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sulfur mustard (SM) is believed to be a major threat to civilian populations because of the persistent asymmetric threat by nonstate actors, such as terrorist groups, the ease of synthesis and handling, and the risk of theft from stockpiles. The purpose of this study was to establish mechanisms of acute tracheal injury in rats induced by SM using histopathologic, immunohistochemical, and biochemical parameters. Male rats (Sprague-Dawley) were anesthetized, intratracheally intubated, and exposed to 2 mg/kg of SM. Animals were euthanized 6-, 24-, 48-, and 72-hour postexposure, and intracavitary blood samples from the heart and tracheal tissues were collected. Exposure of rats to SM resulted in rapid tracheal injury, including tracheal epithelial cell shedding, focal ulceration, and abundant lymphocyte invasion of the submucosa. There was also evidence of a large number of apoptotic cells in the epithelium and submucosa, the serum levels of tumor necrosis factor α, interleukin 1β (IL) 1β, IL-6, and γ-glutamyl transferase peaked at 24 hours, and the serum levels of lactate dehydrogenase, glutathione peroxidase, and thiobarbituric acid reactive substance peaked at 6 hours. The SM exposure also resulted in a loss of the cellular membrane, leakage of cytoplasm, fuzzy mitochondrial cristae, medullary changes in ciliated and goblet cells, and the nuclear chromatin appeared marginated in basal cells and fibroblasts. The results in the propylene glycol group were the same as the control group. These data demonstrated the histologic changes, inflammatory reactions, apoptosis, oxidative stress, and DNA damage following SM (2 mg/kg)-induced acute tracheal injury; the severity of changes was time dependent.
Collapse
Affiliation(s)
- Xiao-Ji Zhu
- Department of Respiration, the 89th Hospital of PLA, Weifang, China
| | - Rui Xu
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Xiao Meng
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Hai-Bo Chu
- Department of Respiration, the 89th Hospital of PLA, Weifang, China
| | - Chao Zhao
- Department of Respiration, the 89th Hospital of PLA, Weifang, China
| | - Cheng-Jin Lian
- Department of Respiration, the 89th Hospital of PLA, Weifang, China
| | - Tao Wang
- Department of Respiration, the 89th Hospital of PLA, Weifang, China
| | - Wen-Jun Guo
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Sheng-Ming Zhang
- Department of Electron Microscope, Weifang Medical University, Weifang, China
| |
Collapse
|
9
|
Gustafsson Å, Svensson-Elfsmark L, Lorentzen JC, Bucht A. Strain differences influence timing and magnitude of both acute and late inflammatory reactions after intratracheal instillation of an alkylating agent in rats. J Appl Toxicol 2013; 34:272-80. [DOI: 10.1002/jat.2878] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 02/22/2013] [Accepted: 02/22/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Åsa Gustafsson
- Division of CBRN Defence and Security; Swedish Defence Research Agency; Umeå Sweden
- Department of Public Health and Clinical Medicine; Unit of Respiratory Medicine, Umeå University; Umeå Sweden
| | | | - Johnny C. Lorentzen
- The Institute of Environmental Health; Unit of Work Environment Toxicology, Karolinska Institute; Stockholm Sweden
| | - Anders Bucht
- Division of CBRN Defence and Security; Swedish Defence Research Agency; Umeå Sweden
- Department of Public Health and Clinical Medicine; Unit of Respiratory Medicine, Umeå University; Umeå Sweden
| |
Collapse
|
10
|
|
11
|
Gadsden-Gray J, Mukherjee S, Ogunkua O, Das SK. Induction of neuronal damage in guinea pig brain by intratracheal infusion of 2-chloroethyl ethyl sulfide, a mustard gas analog. J Biochem Mol Toxicol 2011; 26:23-30. [DOI: 10.1002/jbt.20409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/07/2011] [Accepted: 07/22/2011] [Indexed: 01/13/2023]
|
12
|
Ghabili K, Agutter PS, Ghanei M, Ansarin K, Panahi Y, Shoja MM. Sulfur mustard toxicity: history, chemistry, pharmacokinetics, and pharmacodynamics. Crit Rev Toxicol 2011; 41:384-403. [PMID: 21329486 DOI: 10.3109/10408444.2010.541224] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sulfur mustard (SM) and similar bifunctional agents have been used as chemical weapons for almost 100 years. Victims of high-dose exposure, both combatants and civilians, may die within hours or weeks, but low-dose exposure causes both acute injury to the eyes, skin, respiratory tract and other parts of the body, and chronic sequelae in these organs are often debilitating and have a serious impact on quality of life. Ever since they were first used in warfare in 1917, SM and other mustard agents have been the subjects of intensive research, and their chemistry, pharmacokinetics and mechanisms of toxic action are now fairly well understood. In the present article we review this knowledge and relate the molecular-biological basis of SM toxicity, as far as it has been elucidated, to the pathological effects on exposure victims.
Collapse
Affiliation(s)
- Kamyar Ghabili
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | | |
Collapse
|
13
|
Sunil VR, Patel-Vayas K, Shen J, Gow AJ, Laskin JD, Laskin DL. Role of TNFR1 in lung injury and altered lung function induced by the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide. Toxicol Appl Pharmacol 2011; 250:245-55. [PMID: 21070800 PMCID: PMC3520488 DOI: 10.1016/j.taap.2010.10.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/15/2010] [Accepted: 10/27/2010] [Indexed: 01/08/2023]
Abstract
Lung toxicity induced by sulfur mustard is associated with inflammation and oxidative stress. To elucidate mechanisms mediating pulmonary damage, we used 2-chloroethyl ethyl sulfide (CEES), a model sulfur mustard vesicant. Male mice (B6129) were treated intratracheally with CEES (3 or 6 mg/kg) or control. Animals were sacrificed 3, 7 or 14 days later and bronchoalveolar lavage (BAL) fluid and lung tissue collected. Treatment of mice with CEES resulted in an increase in BAL protein, an indication of alveolar epithelial damage, within 3 days. Expression of Ym1, an oxidative stress marker also increased in the lung, along with inducible nitric oxide synthase, and at 14 days, cyclooxygenase-2 and monocyte chemotactic protein-1, inflammatory proteins implicated in tissue injury. These responses were attenuated in mice lacking the p55 receptor for TNFα (TNFR1-/-), demonstrating that signaling via TNFR1 is key to CEES-induced injury, oxidative stress, and inflammation. CEES-induced upregulation of CuZn-superoxide dismutase (SOD) and MnSOD was delayed or absent in TNFR1-/- mice, relative to WT mice, suggesting that TNFα mediates early antioxidant responses to lung toxicants. Treatment of WT mice with CEES also resulted in functional alterations in the lung including decreases in compliance and increases in elastance. Additionally, methacholine-induced alterations in total lung resistance and central airway resistance were dampened by CEES. Loss of TNFR1 resulted in blunted functional responses to CEES. These effects were most notable in the airways. These data suggest that targeting TNFα signaling may be useful in mitigating lung injury, inflammation and functional alterations induced by vesicants.
Collapse
Affiliation(s)
- Vasanthi R. Sunil
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | - Kinal Patel-Vayas
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | - Jianliang Shen
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | - Andrew J. Gow
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | - Jeffrey D. Laskin
- Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Debra L. Laskin
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
14
|
Jan YH, Heck DE, Gray JP, Zheng H, Casillas RP, Laskin DL, Laskin JD. Selective targeting of selenocysteine in thioredoxin reductase by the half mustard 2-chloroethyl ethyl sulfide in lung epithelial cells. Chem Res Toxicol 2010; 23:1045-53. [PMID: 20345183 DOI: 10.1021/tx100040k] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thioredoxin reductase (TrxR) is a selenocysteine-containing flavoprotein that catalyzes the NADPH-dependent reduction of oxidized thioredoxin and plays a key role in regulating cellular redox homeostasis. In the present studies, we examined the effects of 2-chloroethyl ethyl sulfide (CEES), a model sulfur mustard vesicant, on TrxR in lung epithelial cells. We speculated that vesicant-induced alterations in TrxR contribute to oxidative stress and toxicity. The treatment of human lung A549 epithelial cells with CEES resulted in a time- and concentration-dependent inhibition of TrxR. Using purified rat liver TrxR, we demonstrated that only the reduced enzyme was inhibited and that this inhibition was irreversible. The reaction of TrxR with iodoacetamide, which selectively modifies free thiol or selenol on proteins, was also markedly reduced by CEES, suggesting that CEES induces covalent modification of the reduced selenocysteine-containing active site in the enzyme. This was supported by our findings that recombinant mutant TrxR, in which selenocysteine was replaced by cysteine, was markedly less sensitive to inhibition by CEES and that the vesicant preferentially alkylated selenocysteine in the C-terminal redox motif of TrxR. TrxR also catalyzes quinone redox cycling, a process that generates reactive oxygen species. In contrast to its inhibitory effects on TrxR activity, CEES was found to stimulate redox cycling. Taken together, these data suggest that sulfur mustard vesicants target TrxR and that this may be an important mechanism mediating oxidative stress and tissue injury.
Collapse
Affiliation(s)
- Yi-Hua Jan
- Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Sulfur mustard-induced pulmonary injury: therapeutic approaches to mitigating toxicity. Pulm Pharmacol Ther 2010; 24:92-9. [PMID: 20851203 DOI: 10.1016/j.pupt.2010.09.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/03/2010] [Accepted: 09/09/2010] [Indexed: 11/23/2022]
Abstract
Sulfur mustard (SM) is highly toxic to the lung inducing both acute and chronic effects including upper and lower obstructive disease, airway inflammation, and acute respiratory distress syndrome, and with time, tracheobronchial stenosis, bronchitis, and bronchiolitis obliterans. Thus it is essential to identify effective strategies to mitigate the toxicity of SM and related vesicants. Studies in animals and in cell culture models have identified key mechanistic pathways mediating their toxicity, which may be relevant targets for the development of countermeasures. For example, following SM poisoning, DNA damage, apoptosis, and autophagy are observed in the lung, along with increased expression of activated caspases and DNA repair enzymes, biochemical markers of these activities. This is associated with inflammatory cell accumulation in the respiratory tract and increased expression of tumor necrosis factor-α and other proinflammatory cytokines, as well as reactive oxygen and nitrogen species. Matrix metalloproteinases are also upregulated in the lung after SM exposure, which are thought to contribute to the detachment of epithelial cells from basement membranes and disruption of the pulmonary epithelial barrier. Findings that production of inflammatory mediators correlates directly with altered lung function suggests that they play a key role in toxicity. In this regard, specific therapeutic interventions currently under investigation include anti-inflammatory agents (e.g., steroids), antioxidants (e.g., tocopherols, melatonin, N-acetylcysteine, nitric oxide synthase inhibitors), protease inhibitors (e.g., doxycycline, aprotinin, ilomastat), surfactant replacement, and bronchodilators. Effective treatments may depend on the extent of lung injury and require a multi-faceted pharmacological approach.
Collapse
|
16
|
Malaviya R, Sunil VR, Cervelli J, Anderson DR, Holmes WW, Conti ML, Gordon RE, Laskin JD, Laskin DL. Inflammatory effects of inhaled sulfur mustard in rat lung. Toxicol Appl Pharmacol 2010; 248:89-99. [PMID: 20659490 DOI: 10.1016/j.taap.2010.07.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/16/2010] [Accepted: 07/19/2010] [Indexed: 12/19/2022]
Abstract
Inhalation of sulfur mustard (SM), a bifunctional alkylating agent that causes severe lung damage, is a significant threat to both military and civilian populations. The mechanisms mediating its cytotoxic effects are unknown and were investigated in the present studies. Male rats Crl:CD(SD) were anesthetized, and then intratracheally intubated and exposed to 0.7-1.4mg/kg SM by vapor inhalation. Animals were euthanized 6, 24, 48h or 7days post-exposure and bronchoalveolar lavage fluid (BAL) and lung tissue collected. Exposure of rats to SM resulted in rapid pulmonary toxicity, including focal ulceration and detachment of the trachea and bronchial epithelia from underlying mucosa, thickening of alveolar septal walls and increased numbers of inflammatory cells in the tissue. There was also evidence of autophagy and apoptosis in the tissue. This was correlated with increased BAL protein content, a marker of injury to the alveolar epithelial lining. SM exposure also resulted in increased expression of markers of inflammation including cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNFα), inducible nitric oxide synthase (iNOS), and matrix metalloproteinase-9 (MMP-9), each of which has been implicated in pulmonary toxicity. Whereas COX-2, TNFα and iNOS were mainly localized in alveolar regions, MMP-9 was prominent in bronchial epithelium. In contrast, expression of the anti-oxidant hemeoxygenase, and the anti-inflammatory collectin, surfactant protein-D, decreased in the lung after SM exposure. These data demonstrate that SM-induced oxidative stress and injury are associated with the generation of cytotoxic inflammatory proteins which may contribute to the pathogenic response to this vesicant.
Collapse
Affiliation(s)
- Rama Malaviya
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mukhopadhyay S, Mukherjee S, Ray BK, Ray A, Stone WL, Das SK. Antioxidant liposomes protect against CEES-induced lung injury by decreasing SAF-1/MAZ-mediated inflammation in the guinea pig lung. J Biochem Mol Toxicol 2010; 24:187-94. [DOI: 10.1002/jbt.20329] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Gray JP, Mishin V, Heck DE, Laskin DL, Laskin JD. Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species. Toxicol Appl Pharmacol 2010; 247:76-82. [PMID: 20561902 DOI: 10.1016/j.taap.2010.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/20/2010] [Accepted: 05/23/2010] [Indexed: 11/16/2022]
Abstract
Inhalation of vesicants including sulfur mustard can cause significant damage to the upper airways. This is the result of vesicant-induced modifications of proteins important in maintaining the integrity of the lung. Cytochrome P450s are the major enzymes in the lung mediating detoxification of sulfur mustard and its metabolites. NADPH cytochrome P450 reductase is a flavin-containing electron donor for cytochrome P450. The present studies demonstrate that the sulfur mustard analog, 2-chloroethyl ethyl sulfide (CEES), is a potent inhibitor of human recombinant cytochrome P450 reductase, as well as native cytochrome P450 reductase from liver microsomes of saline and beta-naphthoflavone-treated rats, and cytochrome P450 reductase from type II lung epithelial cells. Using rat liver microsomes from beta-naphthoflavone-treated rats, CEES was found to inhibit CYP 1A1 activity. This inhibition was overcome by microsomal cytochrome P450 reductase from saline-treated rats, which lack CYP 1A1 activity, demonstrating that the CEES inhibitory activity was selective for cytochrome P450 reductase. Cytochrome P450 reductase also generates reactive oxygen species (ROS) via oxidation of NADPH. In contrast to its inhibitory effects on the reduction of cytochrome c and CYP1A1 activity, CEES was found to stimulate ROS formation. Taken together, these data demonstrate that sulfur mustard vesicants target cytochrome P450 reductase and that this effect may be an important mechanism mediating oxidative stress and lung injury.
Collapse
Affiliation(s)
- Joshua P Gray
- Department of Science, United States Coast Guard Academy, New London, CT, USA
| | | | | | | | | |
Collapse
|
19
|
Ruff AL, Dillman JF. Sulfur mustard induced cytokine production and cell death: Investigating the potential roles of the p38, p53, and NF-κB signaling pathways with RNA interference. J Biochem Mol Toxicol 2010; 24:155-64. [DOI: 10.1002/jbt.20321] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Kabir SM, Mukherjee S, Rajaratnam V, Smith MG, Das SK. Desensitization of beta-adrenergic receptors in lung injury induced by 2-chloroethyl ethyl sulfide, a mustard analog. J Biochem Mol Toxicol 2009; 23:59-70. [PMID: 19202564 DOI: 10.1002/jbt.20265] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
2-Choloroethyl Ethyl Sulfide (CEES) exposure causes inflammatory lung diseases, including acute respiratory distress syndrome (ARDS) and pulmonary fibrosis. This may be associated with oxidative stress, which has been implicated in the desensitization of beta-adrenergic receptors (beta-ARs). The objective of this study was to investigate whether lung injury induced by intratracheal CEES exposure (2 mg/kg body weight) causes desensitization of beta-ARs. The animals were sacrificed after 7 days and lungs were removed. Lung injury was established by measuring the leakage of iodinated-bovine serum albumin ([(125)I]-BSA) into lung tissue. Receptor-binding characteristics were determined by measuring the binding of [(3)H] dihydroalprenolol ([(3)H] DHA) (0.5-24 nM) to membrane fraction in the presence and absence of DLDL-propranolol (10 micro M). Both high- and low-affinity beta-ARs were identified in the lung. Binding capacity was significantly higher in low-affinity site in both control and experimental groups. Although CEES exposure did not change K(D) and B(max) at the high-affinity site, it significantly decreased both K(D) and B(max) at low affinity sites. A 20% decrease in beta(2)-AR mRNA level and a 60% decrease in membrane protein levels were observed in the experimental group. Furthermore, there was significantly less stimulation of adenylate cyclase activity by both cholera toxin and isoproterenol in the experimental group in comparison to the control group. Treatment of lungs with 3-isobutyl-1-methylxanthine (IBMX), an inhibitor of phosphodiesterase (PDE) could not abolish the difference between the control group and the experimental group on the stimulation of the adenylate cyclase activity. Thus, our study indicates that CEES-induced lung injury is associated with desensitization of beta(2)-AR.
Collapse
Affiliation(s)
- Syeda M Kabir
- Department of Cancer Biology, Meharry Medical College, 1005 David Todd Blvd., Nashville, TN 37208, USA
| | | | | | | | | |
Collapse
|
21
|
Role of MAPK/AP-1 signaling pathway in the protection of CEES-induced lung injury by antioxidant liposome. Toxicology 2009; 261:143-51. [DOI: 10.1016/j.tox.2009.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 04/28/2009] [Accepted: 05/12/2009] [Indexed: 11/15/2022]
|
22
|
Mukherjee S, Stone WL, Yang H, Smith MG, Das SK. Protection of half sulfur mustard gas-induced lung injury in guinea pigs by antioxidant liposomes. J Biochem Mol Toxicol 2009; 23:143-53. [DOI: 10.1002/jbt.20279] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Gould NS, White CW, Day BJ. A role for mitochondrial oxidative stress in sulfur mustard analog 2-chloroethyl ethyl sulfide-induced lung cell injury and antioxidant protection. J Pharmacol Exp Ther 2008; 328:732-9. [PMID: 19064720 DOI: 10.1124/jpet.108.145037] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sulfur mustards (SMs) have been used as warfare agents since World War I and still pose a significant threat against civilian and military personnel. SM exposure can cause significant blistering of the skin, respiratory injury, and fibrosis. No antidote currently exists for SM exposure, but recent studies, using the SM analog 2-chloroethyl ethyl sulfide (CEES), have focused on the ability of antioxidants to prevent toxicity. Although antioxidants can prevent CEES-induced toxicity, the mechanisms by which these compounds are effective against SM agents are largely unknown. Using human bronchial epithelial (16HBE) cells and primary small airway epithelial cells, we show that CEES causes a significant increase in mitochondrial dysfunction as early as 4 h, which is followed by increases in mitochondrial reactive oxygen species (ROS), peaking 12 h after exposure. We also have identified a catalytic antioxidant metalloporphyrin that can rescue airway cells from CEES-induced toxicity when added 1 h after CEES exposure. In addition, the cytoprotective effects of the catalytic antioxidant are associated with correcting mitochondrial dysfunction ROS, DNA oxidation, and decreases in intracellular GSH. These findings suggest a role for oxidative stress in CEES toxicity and provide a rationale to investigate antioxidants as rescue agents in SM exposures.
Collapse
Affiliation(s)
- Neal S Gould
- Department of Pharmaceutical Sciences, University ofColorado Health Sciences Center, Denver, Colorado, USA
| | | | | |
Collapse
|
24
|
Karacsonyi C, Shanmugam N, Kagan E. A clinically relevant in vitro model for evaluating the effects of aerosolized vesicants. Toxicol Lett 2008; 185:38-44. [PMID: 19110046 DOI: 10.1016/j.toxlet.2008.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 11/20/2008] [Accepted: 11/21/2008] [Indexed: 01/18/2023]
Abstract
The chemical warfare vesicant sulfur mustard (HD) is a known toxic agent to the human respiratory tract and the major airways are considered to be a primary target of HD-induced injury. However, there is no consensus regarding which model systems are most appropriate for studying the effects of aerosolized vesicants on human airway epithelium. In this study, we evaluated the consequences of exposure of differentiated human respiratory epithelial cells in air-liquid interface to mechlorethamine (HN2), an HD functional analog. HN2 challenge was administered via the apical (air) interface over a wide dose range (20-400 microM) to differentiated HBE1 cells. Cultures were observed over 1-48 h for evidence of HN2-induced morphologic abnormalities as well as for possible cellular cytotoxicity, apoptotic changes, and induction of cytokine secretion. HN2 at concentrations of > or =200 microM caused disruption and denudation of the airway epithelial architecture within 24h of exposure. Moreover, HN2-induced cytotoxic and apoptotic changes in HBE1 cells in a dose- and time-dependent fashion. HN2 challenge also induced secretion of chemokines and proinflammatory cytokines including TNF-alpha, IL-1 alpha, IL-1 beta, IL-6, IL-8, RANTES, MCP-1, IP-10, G-CSF, GM-CSF and IL-15. These observations parallel those described in the lungs of HD-exposed victims and underscore the utility and potential applicability of this model to future mechanistic studies of vesicant-induced pulmonary injury.
Collapse
Affiliation(s)
- Claudia Karacsonyi
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, United States
| | | | | |
Collapse
|
25
|
Paromov V, Qui M, Yang H, Smith M, Stone WL. The influence of N-acetyl-L-cysteine on oxidative stress and nitric oxide synthesis in stimulated macrophages treated with a mustard gas analogue. BMC Cell Biol 2008; 9:33. [PMID: 18570648 PMCID: PMC2446388 DOI: 10.1186/1471-2121-9-33] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 06/20/2008] [Indexed: 01/08/2023] Open
Abstract
Background Sulphur mustard gas, 2, 2'-dichlorodiethyl sulphide (HD), is a chemical warfare agent. Both mustard gas and its monofunctional analogue, 2-chloroethyl ethyl sulphide (CEES), are alkylating agents that react with and diminish cellular thiols and are highly toxic. Previously, we reported that lipopolysaccharide (LPS) significantly enhances the cytotoxicity of CEES in murine RAW 264.7 macrophages and that CEES transiently inhibits nitric oxide (NO) production via suppression of inducible NO synthase (iNOS) protein expression. NO generation is an important factor in wound healing. In this paper, we explored the hypotheses that LPS increases CEES toxicity by increasing oxidative stress and that treatment with N-acetyl-L-cysteine (NAC) would block LPS induced oxidative stress and protect against loss of NO production. NAC stimulates glutathione (GSH) synthesis and also acts directly as a free radical scavenger. The potential therapeutic use of the antibiotic, polymyxin B, was also evaluated since it binds to LPS and could thereby block the enhancement of CEES toxicity by LPS and also inhibit the secondary infections characteristic of HD/CEES wounds. Results We found that 10 mM NAC, when administered simultaneously or prior to treatment with 500 μM CEES, increased the viability of LPS stimulated macrophages. Surprisingly, NAC failed to protect LPS stimulated macrophages from CEES induced loss of NO production. Macrophages treated with both LPS and CEES show increased oxidative stress parameters (cellular thiol depletion and increased protein carbonyl levels). NAC effectively protected RAW 264.7 cells simultaneously treated with CEES and LPS from GSH loss and oxidative stress. Polymyxin B was found to partially block nitric oxide production and diminish CEES toxicity in LPS-treated macrophages. Conclusion The present study shows that oxidative stress is an important mechanism contributing to CEES toxicity in LPS stimulated macrophages and supports the notion that antioxidants could play a therapeutic role in preventing mustard gas toxicity. Although NAC reduced oxidative stress in LPS stimulated macrophages treated with CEES, it did not reverse CEES-induced loss of NO production. NAC and polymyxin B were found to help prevent CEES toxicity in LPS-treated macrophages.
Collapse
Affiliation(s)
- Victor Paromov
- Department of Pediatrics, College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.
| | | | | | | | | |
Collapse
|
26
|
Hoesel LM, Flierl MA, Niederbichler AD, Rittirsch D, McClintock SD, Reuben JS, Pianko MJ, Stone W, Yang H, Smith M, Sarma JV, Ward PA. Ability of antioxidant liposomes to prevent acute and progressive pulmonary injury. Antioxid Redox Signal 2008; 10:973-81. [PMID: 18257742 DOI: 10.1089/ars.2007.1878] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We recently showed that acute oxidant-related lung injury (ALI) in rats after application of 2-chloroethyl ethyl sulfide (CEES) is attenuated by the airway instillation of antioxidants. We investigated whether intratracheal administration of antioxidant-containing liposomes immediately after instillation of CEES would attenuate short-term as well as long-term (fibrotic) effects of CEES-induced lung injury. In the acute injury model (4 h after injury), N-acetylcysteine (NAC)-containing liposomes were protective and reduced to baseline levels both the lung permeability index and the appearance of proinflammatory mediators in bronchoalveolar lavage fluids from CEES-exposed lungs. Similar results were obtained when rat alveolar macrophages were incubated in vitro with either CEES or lipopolysaccharide in the presence of NAC-liposomes. When lung fibrosis 3 weeks after CEES was quantitated by using hydroxyproline content, liposomes containing NAC or NAC + glutathione had no effects, but liposomes containing alpha/gamma-tocopherol alone or with NAC significantly suppressed the increase in lung hydroxyproline. The data demonstrate that delivery of antioxidants via liposomes to CEES-injured lungs is, depending on liposomal content, protective against ALI, prevents the appearance of proinflammatory mediators in bronchoalveolar fluids, and suppresses progressive fibrosis. Accordingly, the liposomal strategy may be therapeutically useful in CEES-induced lung injury in humans.
Collapse
Affiliation(s)
- Laszlo M Hoesel
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI 48109-0602, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Emmler J, Hermanns MI, Steinritz D, Kreppel H, Kirkpatrick CJ, Bloch W, Szinicz L, Kehe K. Assessment of alterations in barrier functionality and induction of proinflammatory and cytotoxic effects after sulfur mustard exposure of an in vitro coculture model of the human alveolo-capillary barrier. Inhal Toxicol 2007; 19:657-65. [PMID: 17510838 DOI: 10.1080/08958370701353726] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acute lung injury after sulfur mustard (SM) inhalation is characterized by massive, localized hemorrhage and alveolar edema, which implies severe disruption of the vascular and distal airway barrier. In this study, we tested a recently established in vitro coculture model of the alveolo-capillary barrier for its applicability to investigate acute toxic effects of SM at the human respiratory unit. The epithelial compartment of cocultures was exposed to varying concentrations of SM (0-1000 microM; t = 30 min). Following exposure, functional and structural barrier integrity of cocultures was monitored over a period of 24 h. A 50% reduction of transbilayer electrical resistance (TER) within 12-24 h after exposure to 300 microM SM and within 8 h after 1000 microM SM revealed a time- and concentration-dependent impairment of barrier functionality, which was associated with structural loss of both cell layers. Subsequent quantification of interleukin (IL)-6 and IL-8 in cell culture supernatants of exposed cocultures showed enhanced liberation of proinflammatory markers. Highest mediator levels were detected after 300 microM SM, with pronounced stimulation in the endothelial compartment. SM-related cytotoxicity was determined by assessing adenylate kinase (AK) release and by quantifying the fraction of DNA-fragmented nuclei using terminal deoxynucleotidyl transferase-mediated DNA nick-end labeling (TUNEL) and nuclear Hoechst staining. Both methods exposed a concentration-dependent increase of SM-mediated cytotoxic effects with high effects on endothelial cells. We conclude that the described in vitro model reflects important characteristics of SM-mediated acute lung injury in vivo and thus can be used to explore involved pathophysiological pathways.
Collapse
Affiliation(s)
- Judith Emmler
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Inhibition of inducible Nitric Oxide Synthase by a mustard gas analog in murine macrophages. BMC Cell Biol 2006; 7:39. [PMID: 17137498 PMCID: PMC1698482 DOI: 10.1186/1471-2121-7-39] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 11/30/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 2-Chloroethyl ethyl sulphide (CEES) is a sulphur vesicating agent and an analogue of the chemical warfare agent 2,2'-dichlorodiethyl sulphide, or sulphur mustard gas (HD). Both CEES and HD are alkylating agents that influence cellular thiols and are highly toxic. In a previous publication, we reported that lipopolysaccharide (LPS) enhances the cytotoxicity of CEES in murine RAW264.7 macrophages. In the present investigation, we studied the influence of CEES on nitric oxide (NO) production in LPS stimulated RAW264.7 cells since NO signalling affects inflammation, cell death, and wound healing. Murine macrophages stimulated with LPS produce NO almost exclusively via inducible nitric oxide synthase (iNOS) activity. We suggest that the influence of CEES or HD on the cellular production of NO could play an important role in the pathophysiological responses of tissues to these toxicants. In particular, it is known that macrophage generated NO synthesised by iNOS plays a critical role in wound healing. RESULTS We initially confirmed that in LPS stimulated RAW264.7 macrophages NO is exclusively generated by the iNOS form of nitric oxide synthase. CEES treatment inhibited the synthesis of NO (after 24 hours) in viable LPS-stimulated RAW264.7 macrophages as measured by either nitrite secretion into the culture medium or the intracellular conversion of 4,5-diaminofluorescein diacetate (DAF-2DA) or dichlorofluorescin diacetate (DCFH-DA). Western blots showed that CEES transiently decreased the expression of iNOS protein; however, treatment of active iNOS with CEES in vitro did not inhibit its enzymatic activity CONCLUSION CEES inhibits NO production in LPS stimulated macrophages by decreasing iNOS protein expression. Decreased iNOS expression is likely the result of CEES induced alteration in the nuclear factor kappa B (NF-kappaB) signalling pathway. Since NO can act as an antioxidant, the CEES induced down-regulation of iNOS in LPS-stimulated macrophages could elevate oxidative stress. Since macrophage generated NO is known to play a key role in cutaneous wound healing, it is possible that this work has physiological relevance with respect to the healing of HD induced skin blisters.
Collapse
|
29
|
Sinha Roy S, Mukherjee S, Kabir S, Rajaratnam V, Smith M, Das SK. Inhibition of cholinephosphotransferase activity in lung injury induced by 2-chloroethyl ethyl sulfide, a mustard analog. J Biochem Mol Toxicol 2006; 19:289-97. [PMID: 16292752 DOI: 10.1002/jbt.20092] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Exposure to mustard gas causes inflammatory lung diseases including acute respiratory distress syndrome (ARDS). A defect in the lung surfactant system has been implicated as a cause of ARDS. A major component of lung surfactant is dipalmitoyl phosphatidylcholine (DPPC) and the major pathway for its synthesis is the cytidine diphosphocholine (CDP-choline) pathway. It is not known whether the ARDS induced by mustard gas is mediated by its direct effects on some of the enzymes in the CDP-choline pathway. In the present study we investigated whether mustard gas exposure modulates the activity of cholinephosphotransferase (CPT) the terminal enzyme by CDP-choline pathway. Adult guinea pigs were intratracheally infused with single doses of 2-chloroethyl ethyl sulfide (CEES) (0.5 mg/kg b.wt. in ethanol). Control animals were injected with vehicles only. The animals were sacrificed at different time and the lungs were removed after perfusion with physiological saline. CPT activity increased steadily up to 4 h and then decreased at 6 h and stabilized at 7 days in both mitochondria and microsomes. To determine the dose-dependent effect of CEES on CPT activity we varied the doses of CEES (0.5-6.0 mg/kg b.wt.) and sacrificed the animals at 1 h and 4 h. CPT activity showed a dose-dependent increase of up to 2.0 mg/kg b.wt. of CEES in both mitochondria and microsomes then decreased at 4.0 mg/kg b.wt. For further studies we used a fixed single dose of CEES (2.0 mg/kg b.wt.) and fixed exposure time (7 days). Lung injury was determined by measuring the leakage of iodinated-bovine serum albumin into lung tissue and expressed as the permeability index. CEES exposure (2.0 mg/kg b.wt. for 7 days) caused a significant decrease of both CPT gene expression (approximately 1.7-fold) and activity (approximately 1.5-fold) in the lung. This decrease in CPT activity was not associated with any mutation of the CPT gene. Previously we reported that CEES infusion increased the production of ceramides which are known to modulate PC synthesis. To determine whether ceramides affect microsomal CPT activity the lung microsomal fraction was incubated with different concentrations of C(2)-ceramide prior to CPT assay. CPT activity decreased significantly with increasing dose and time. The present study indicates that CEES causes lung injury and significantly decreases CPT gene expression and activity. This decrease in CPT activity was not associated with any mutation of the CPT gene is probably mediated by accumulation of ceramides. CEES induced ceramide accumulation may thus play an important role in the development of ARDS by modulating CPT enzyme.
Collapse
Affiliation(s)
- Somdutta Sinha Roy
- Department of Biochemistry, Meharry Medical College, 1005 David Todd Blvd, Nashville, TN 37208, USA
| | | | | | | | | | | |
Collapse
|
30
|
Das SK, Chatterjee D, Mukherjee S, Grimes A, Shen Y, Smith M, Ghosh S. Decrease in brain POMC mRNA expression and onset of obesity in guinea pigs exposed to 2-chloroethyl ethyl sulfide, a mustard analogue. Biochem Biophys Res Commun 2006; 339:55-8. [PMID: 16289378 DOI: 10.1016/j.bbrc.2005.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 11/01/2005] [Indexed: 10/25/2022]
Abstract
The full spectrum of physiological effects resulting from exposure to sulfur mustard and its analogs is currently unknown. In a guinea pig model, initially selected to study the role of an inflammatory cytokine cascade in mustard gas induced lung injury, we observed significant body weight gain in guinea pigs exposed to an intratracheally injected single dose of 2-chloroethyl ethyl sulfide, a mustard analog. The body weight gain was not associated with any apparent change in appetite. To further elucidate a molecular basis for the observed weight gain, we evaluated candidate genes for the obese phenotype by quantitative RT-PCR. We observed a time- and dose-dependent decrease in guinea pig pro-opiomelanocortin (POMC) message following treatment with mustard gas. This reduction in POMC message is consistent with the onset of obesity in the animals. We hypothesize that the POMC melanocortin pathway provides a mechanistic basis for the observed effects of sulfur mustard on body weight.
Collapse
Affiliation(s)
- Salil K Das
- Department of Biochemistry, Meharry Medical College, Nashville, TN 37208, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Dillman JF, Hege AI, Phillips CS, Orzolek LD, Sylvester AJ, Bossone C, Henemyre-Harris C, Kiser RC, Choi YW, Schlager JJ, Sabourin CL. Microarray Analysis of Mouse Ear Tissue Exposed to Bis-(2-chloroethyl) Sulfide: Gene Expression Profiles Correlate with Treatment Efficacy and An Established Clinical Endpoint. J Pharmacol Exp Ther 2005; 317:76-87. [PMID: 16377760 DOI: 10.1124/jpet.105.097014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Bis-(2-chloroethyl) sulfide (sulfur mustard; SM) is a potent alkylating agent. Three treatment compounds have been shown to limit SM damage in the mouse ear vesicant model: dimercaprol, octyl homovanillamide, and indomethacin. Microarrays were used to determine gene expression profiles of biopsies taken from mouse ears after exposure to SM in the presence or absence of treatment compounds. Mouse ears were topically exposed to SM alone or were pretreated for 15 min with a treatment compound and then exposed to SM. Ear tissue was harvested 24 h after exposure for ear weight determination, the endpoint used to evaluate treatment compound efficacy. RNA extracted from the tissues was used to generate microarray probes for gene expression profiling of therapeutic responses. Principal component analysis of the gene expression data revealed partitioning of the samples based on treatment compound and SM exposure. Patterns of gene responses to the treatment compounds were indicative of exposure condition and were phenotypically anchored to ear weight. Pretreatment with indomethacin, the least effective treatment compound, produced ear weights close to those treated with SM alone. Ear weights from animals pretreated with dimercaprol or octyl homovanillamide were more closely associated with exposure to vehicle alone. Correlation coefficients between gene expression level and ear weight revealed genes involved in mediating responses to both SM exposure and treatment compounds. These data provide a basis for elucidating the mechanisms of response to SM and drug treatment and also provide a basis for developing strategies to accelerate development of effective SM medical countermeasures.
Collapse
Affiliation(s)
- James F Dillman
- Cell and Molecular Biology Branch, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5400, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wormser U, Brodsky B, Proscura E, Foley JF, Jones T, Nyska A. Involvement of tumor necrosis factor-alpha in sulfur mustard-induced skin lesion; effect of topical iodine. Arch Toxicol 2005; 79:660-70. [PMID: 16001271 DOI: 10.1007/s00204-005-0681-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Accepted: 04/19/2005] [Indexed: 12/01/2022]
Abstract
Sulfur mustard (SM), also termed mustard gas, is a potent vesicant that elicits an inflammatory response upon exposure of the skin. Evaluation of mouse ear 3 h after SM exposure revealed acute inflammatory-cell aggregates in the vascular beds accompanied by strongly TNF-alpha-positive neutrophils. Eight hours after SM exposure, this phenomenon became intensified and associated with infiltration into the adjacent dermis. In ear skin topically treated with iodine, however, no inflammatory cells were observed 3 h after SM exposure; 8 h postexposure, blood vessels contained very few TNF-alpha-positive inflammatory cells. Since TNF-alpha induction was shown to be associated with reactive oxygen species production, we studied the effect of iodine on activated peritoneal mouse neutrophils. Iodine elicited a concentration-dependent reduction in the oxidative burst of activated neutrophils. Iodine also scavenged hydroxyl radicals generated by glucose oxidase in a concentration-dependent manner. The involvement of TNF-alpha in SM-induced skin toxicity was confirmed by reduction of 49 and 30% in ear edema following administration of 1 and 2 mug anti-TNF-alpha antibodies, respectively. These findings were corroborated by quantitative analysis of the histological findings showing 46% reduction in acute inflammation and no signs of subacute inflammation in the treated group, in contrast to the control group treated with SM only. Other epidermal (microblister formation, ulceration, and necrosis) and dermal (neutrophilia, hemorrhage, and necrosis) parameters also showed marked reductions in the antibodies-treated group in comparison to controls. The combination of iodine and antiTNF-alpha antibodies might constitute a new approach for treatment of SM-exposed individuals.
Collapse
Affiliation(s)
- Uri Wormser
- Department of Pharmacology, School of Pharmacy; Faculty of Medicine, Berman Building, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, 91904 Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Pain therapies from natural sources date back thousands of years to the use of plant and animal extracts for a variety of painful conditions and injuries. We certainly are all familiar with modern uses of plant-derived analgesic compounds such as opium derivatives from papaverum somniferum and salicylates from willow bark (Salix species). Local anesthetics were isolated from coca leaves in the late 1800s. Sarapin, derived from carnivorous pitcher plants, has been injected for regional analgesia in human and veterinary medicine, but efficacy is controversial. Biologic organisms can play important roles in developing an understanding of pain mechanisms, either from isolation of compounds that are analgesic or of compounds that produce pain, hyperalgesia, and allodynia.
Collapse
Affiliation(s)
- Lori Reisner
- University of California, San Francisco, Department of Clinical Pharmacy, 521 Parnassus, C-152, San Francisco, CA 94143-0622, USA.
| |
Collapse
|
34
|
Elsayed NM, Omaye ST. Biochemical changes in mouse lung after subcutaneous injection of the sulfur mustard 2-chloroethyl 4-chlorobutyl sulfide. Toxicology 2004; 199:195-206. [PMID: 15147793 DOI: 10.1016/j.tox.2004.02.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 02/09/2004] [Accepted: 02/19/2004] [Indexed: 11/15/2022]
Abstract
Sulfur mustard (HD) is a vesicant-type chemical warfare agent (CWA) introduced in World War I which continues to be produced, stockpiled, and occasionally deployed by some countries, and could be used potentially by terrorists. Exposure to HD can cause erythema, blisters, corneal opacity, and airway damage. We have reported previously that subcutaneous (SC) injection of immunodeficient athymic nude mice with the half mustard butyl 2-chloroethyl sulfide (BCS) causes systemic biochemical changes in several organs distal to the exposure site. In the present study, we examined the response of non-immunodeficient Swiss Webster mice to the mustard, 2-chloroethyl 4-chlorobutyl sulfide (CECBS). In a pilot study, we found that a single SC injection of 20-25 microl/mouse causes death within 24h. Consequently, we used 5 microl/mouse (approx. 0.017 mg/kg body weight) of neat CECBS or an equal volume of saline as control. We examined the lungs after 1, 24, and 48 h for biochemical changes including total and oxidized glutathione, protein, DNA, and lipid peroxidation contents in tissue homogenate, and superoxide dismutase, catalase, glucose-6-phosphate dehydrogenase, and glutathione S-transferases activities in the cytosol. After 1h and/or 24h, we found statistically significant changes that were resolved by 48 h. These changes mimicked those of HD and BCS and were generally consistent with free radical-mediated oxidative stress. The implications of these observations are two-fold. First, dermal exposure to low-dose mustard gas could elicit systemic changes impacting distal organs such as the lungs. It also suggests that antioxidants could potentially modulate the response and reduce the damage. Second, although the use of known CWAs such as HD is prohibited, analogs that are not recognized as agents are as toxic and could be dangerous if acquired and used by potential terrorists.
Collapse
Affiliation(s)
- Nabil M Elsayed
- Department of Nutrition and Environmental Sciences and Health, Graduate Program, University of Nevada at Reno, Reno, NV, USA.
| | | |
Collapse
|
35
|
Das SK, Mukherjee S, Smith MG, Chatterjee D. Prophylactic protection by N-acetylcysteine against the pulmonary injury induced by 2-chloroethyl ethyl sulfide, a mustard analogue. J Biochem Mol Toxicol 2004; 17:177-84. [PMID: 12815614 DOI: 10.1002/jbt.10076] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mustard gas exposure causes adult respiratory distress syndrome associated with lung injury. The purpose of this study was to investigate whether an antioxidant, such as N-acetylcysteine (NAC), has any protective effect. Guinea pigs were given single exposure (0.5-6 mg/kg body weight) of 2-chloroethyl ethyl sulfide (CEES) as a mustard analogue intratracheally and maintained for various lengths of time (1 h to 21 days). Within 1 h of CEES infusion at 4 mg/kg, high levels of tumor necrosis factor alpha (TNF-alpha), ceramides, and nuclear factor kappaB accumulated in lung and alveolar macrophages. Both acid and neutral sphingomyelinases were activated within 4 h. These signal transduction events were associated with alteration in the oxygen defense system. Within 1 h of exposure to CEES (6 mg/kg body weight), there was 10-fold increase in the (125)I-BSA leakage into lung tissue, indicating severe lung injury. Although low level of CEES exposure (0.5 mg/kg body weight) produced symptoms of chemical burn in lung as early as 1 h after exposure, the severity of edema, congestion, hemorrhage, and inflammation increased progressively with time (1 h to 21 days). Feeding of single dose of NAC (0.5 g) by gavage just before the CEES infusion was ineffective to counteract these effects. However, consumption of the antioxidant in drinking water for 3 or 30 days prior to CEES exposure significantly inhibited the induction of TNF-alpha, activation of neutral and acid sphingomyelinases, production of ceramides, activation of caspases, leakage of (125)I-bovine serum albumin ((125)I-BSA) into lung tissue, and histological alterations in lung. Pretreatment with NAC for 3 and 30 days protected against 69-76% of the acute lung injury. Therefore, NAC may be an antidote for CEES-induced lung injury.
Collapse
Affiliation(s)
- Salil K Das
- Department of Biochemistry, Meharry Medical College, Nashville, TN 37208, USA.
| | | | | | | |
Collapse
|