1
|
Leek C, Cantu A, Sonti S, Gutierrez MC, Eldredge L, Sajti E, Xu HN, Lingappan K. Role of sex as a biological variable in neonatal alveolar macrophages. Redox Biol 2024; 75:103296. [PMID: 39098263 PMCID: PMC11345582 DOI: 10.1016/j.redox.2024.103296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024] Open
Abstract
The lung macrophages play a crucial role in health and disease. Sexual dimorphism significantly impacts the phenotype and function of tissue-resident macrophages. The primary mechanisms responsible for sexually dimorphic outcomes in bronchopulmonary dysplasia (BPD) remain unidentified. We tested the hypothesis that biological sex plays a crucial role in the transcriptional state of alveolar macrophages, using neonatal murine hyperoxia-induced lung injury as a relevant model for human BPD. The effects of neonatal hyperoxia exposure (95 % FiO2, PND1-5: saccular stage) on the lung myeloid cells acutely after injury and during normoxic recovery were measured. Alveolar macrophages (AM) from room air- and hyperoxia exposed from male and female neonatal murine lungs were subjected to bulk-RNA Sequencing. AMs are significantly depleted in the hyperoxia-exposed lung acutely after injury, with subsequent recovery in both sexes. The transcriptome of the alveolar macrophages is impacted by neonatal hyperoxia exposure and by sex as a biological variable. Pathways related to DNA damage and interferon-signaling were positively enriched in female AMs. Metabolic pathways related to glucose and carbohydrate metabolism were positively enriched in the male AMs, while oxidative phosphorylation was negatively enriched. These pathways were shared with monocytes and airway macrophages from intubated male and female human premature neonates.
Collapse
Affiliation(s)
- Connor Leek
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA
| | - Abiud Cantu
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA
| | - Shilpa Sonti
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA
| | - Manuel Cantu Gutierrez
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA
| | - Laurie Eldredge
- Department of Pediatrics, Division of Pediatric Pulmonology, University of Washington School of Medicine, Seattle Children's Hospital, WA, USA
| | - Eniko Sajti
- Department of Pediatrics, Division of Neonatology, University of California San Diego, San Diego, CA, USA
| | - He N Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Krithika Lingappan
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA.
| |
Collapse
|
2
|
Rana M, Choubey P, Nandi G, Jain S, Bajaj D, Sharma S, Basu-Modak S. Expression of angiogenic factors in the placenta of heme oxygenase-1 deficient mouse embryo. Reprod Biol 2023; 23:100822. [PMID: 37979494 DOI: 10.1016/j.repbio.2023.100822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023]
Abstract
Heme oxygenase 1 (Hmox1), the inducible form of heme degrading enzymes Hmoxs, is important for establishment and maintenance of pregnancy. A growing body of evidence suggests an association between Hmox1 and angiogenesis, including placental angiogenesis. In this study, we examined the expression of two angiogenic factors in the placentas of Hmox1 deficient mouse embryos, whose expression was found to be related to that of Hmox1. Relative protein levels and localization of Hmoxs and two angiogenic factors [Vegf and Prolactin along with their receptors, and Cd31/Pecam1] were compared in the placentas of Hmox1 wildtype and knockout mouse embryos using western blotting and immunohistochemistry along with histological analysis. The results revealed tissue disorganisation, reduced area of labyrinth and smaller nuclear size of trophoblast giant cell in the placentas of knockout embryos. The levels of Hmox2, prolactin, and Cd31/Pecam1 were found to be altered in knockout placentas, whereas Vegf and its receptors seem to be unaltered in our samples. Overall, our findings imply that Hmox2 is unlikely to compensate for Hmox1 deficiency in knockout placentas, and altered levels of prolactin and Cd31/Pecam1 hint towards impaired angiogenesis in these placentas. Further investigation would be needed to understand the molecular mechanism of defective angiogenesis in the placentas of Hmox1 knockout mouse embryos.
Collapse
Affiliation(s)
- Meenakshi Rana
- Department of Zoology, University of Delhi, India; Department of Zoology, Dyal Singh College, University of Delhi, India.
| | | | - Gouri Nandi
- Department of Zoology, University of Delhi, India; Department of Zoology, Deshbandhu College, University of Delhi, India
| | - Sidhant Jain
- Department of Zoology, University of Delhi, India; Institute for Globally Distributed Open Research and Education, India
| | - Divya Bajaj
- Department of Zoology, University of Delhi, India; Department of Zoology, Hindu College, University of Delhi, India
| | - Sonika Sharma
- Department of Zoology, University of Delhi, India; Department of Zoology, Daulat Ram College, University of Delhi, India
| | | |
Collapse
|
3
|
Luh HT, Chen KW, Yang LY, Chen YT, Lin SH, Wang KC, Lai DM, Hsieh ST. Does a negative correlation of heme oxygenase-1 with hematoma thickness in chronic subdural hematomas affect neovascularization and microvascular leakage? A retrospective study with preliminary validation. J Neurosurg 2023; 139:536-543. [PMID: 36609367 DOI: 10.3171/2022.11.jns221790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/29/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Chronic subdural hematoma (CSDH) is a common neurological disease among elderly adults. The progression of CSDH is an angiogenic process, involving inflammatory mediators that affect vascular permeability, microvascular leakage, and hematoma thickness. The authors aimed to identify biomarkers associated with angiogenesis and vascular permeability that might influence midline shift and hematoma thickness. METHODS Medical records and laboratory data of consecutive patients who underwent surgery for CSDH were analyzed. Collected data were basic demographic data, CSDH classification, CSDH thickness, midline shift, heme oxygenase-1 (HO-1) levels in hematomas, and common laboratory markers. Linear regression analysis was used to evaluate the relationship of CSDH thickness with characteristic variables. The chick chorioallantoic membrane (CAM) assay was used to test the angiogenic potency of identified variables in ex ovo culture of chick embryos. RESULTS In total, 93 patients with CSDH (71.0% male) with a mean age of 71.0 years were included. The mean CSDH thickness and midline shift were 19.7 and 9.8 mm, respectively. The mean levels of HO-1, ferritin, total bilirubin, white blood cells, segmented neutrophils, lymphocytes, platelets, international normalized ratio, and partial thromboplastin time were 36 ng/mL, 14.8 μg/mL, 10.5 mg/dL, 10.3 × 103 cells/μL, 69%, 21.7%, 221.1 × 109 cells/μL, 1.0, and 27.8 seconds, respectively. Pearson correlation analysis revealed that CSDH thickness was positively correlated with midline shift distance (r = 0.218, p < 0.05) but negatively correlated with HO-1 concentration (r = -0.364, p < 0.01) and ferritin level (r = -0.222, p < 0.05). Multivariate linear regression analysis revealed that HO-1 was an independent predictor of CSDH thickness (β = -0.084, p = 0.006). The angiogenic potency of HO-1 in hematoma fluid was tested with the chick CAM assay; topical addition of CSDH fluid with low HO-1 levels promoted neovascularization and microvascular leakage. Addition of HO-1 in a rescue experiment inhibited CSDH fluid-mediated angiogenesis and microvascular leakage. CONCLUSIONS HO-1 is an independent risk factor in CSDH hematomas and is negatively correlated with CSDH thickness. HO-1 may play a role in the pathophysiology and development of CSDH, possibly by preventing neovascularization and reducing capillary fragility and hyperpermeability.
Collapse
Affiliation(s)
- Hui-Tzung Luh
- 1Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- 2Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Kuo-Wei Chen
- 1Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- 2Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Ling-Yu Yang
- 3Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Tzu Chen
- 3Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Sheng-Hsuan Lin
- 4Institute of Statistics, National Yang Ming Chiao Tung University, Hsin-Chu, Taiwan
| | - Kuo-Chuan Wang
- 3Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Dar-Ming Lai
- 3Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- 5Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; and
- 6Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
4
|
Flores-Espinosa P, Méndez I, Irles C, Olmos-Ortiz A, Helguera-Repetto C, Mancilla-Herrera I, Ortuño-Sahagún D, Goffin V, Zaga-Clavellina V. Immunomodulatory role of decidual prolactin on the human fetal membranes and placenta. Front Immunol 2023; 14:1212736. [PMID: 37359537 PMCID: PMC10288977 DOI: 10.3389/fimmu.2023.1212736] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
The close interaction between fetal and maternal cells during pregnancy requires multiple immune-endocrine mechanisms to provide the fetus with a tolerogenic environment and protection against any infectious challenge. The fetal membranes and placenta create a hyperprolactinemic milieu in which prolactin (PRL) synthesized by the maternal decidua is transported through the amnion-chorion and accumulated into the amniotic cavity, where the fetus is bedded in high concentrations during pregnancy. PRL is a pleiotropic immune-neuroendocrine hormone with multiple immunomodulatory functions mainly related to reproduction. However, the biological role of PRL at the maternal-fetal interface has yet to be fully elucidated. In this review, we have summarized the current information on the multiple effects of PRL, focusing on its immunological effects and biological significance for the immune privilege of the maternal-fetal interface.
Collapse
Affiliation(s)
- Pilar Flores-Espinosa
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Isabel Méndez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Claudine Irles
- Institut National de la Santé et de la Recherche Médicale (INSERM) U978, Université Sorbonne Paris Nord, Unité de Formation et de Recherche (UFR) Santé Médecine et Biologie Humaine (SMBH), Bobigny, France
| | - Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Cecilia Helguera-Repetto
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Ismael Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara, Mexico
| | - Vincent Goffin
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR)-S1151, CNRS Unité Mixte de Recherche (UMR)-S8253, Institut Necker Enfants Malades, Paris, France
| | - Verónica Zaga-Clavellina
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, Mexico
| |
Collapse
|
5
|
Sapochnik D, Raimondi AR, Medina V, Naipauer J, Mesri EA, Coso O. A major role for Nrf2 transcription factors in cell transformation by KSHV encoded oncogenes. Front Oncol 2022; 12:890825. [PMID: 36212441 PMCID: PMC9534600 DOI: 10.3389/fonc.2022.890825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Kaposi’s sarcoma (KS) is the most common tumor in AIDS patients. The highly vascularized patient’s skin lesions are composed of cells derived from the endothelial tissue transformed by the KSHV virus. Heme oxygenase-1 (HO-1) is an enzyme upregulated by the Kaposi´s sarcoma-associated herpesvirus (KSHV) and highly expressed in human Kaposi Sarcoma (KS) lesions. The oncogenic G protein-coupled receptor (KSHV-GPCR or vGPCR) is expressed by the viral genome in infected cells. It is involved in KS development, HO-1 expression, and vascular endothelial growth factor (VEGF) expression. vGPCR induces HO-1 expression and HO-1 dependent transformation through the Ga13 subunit of heterotrimeric G proteins and the small GTPase RhoA. We have found several lines of evidence supporting a role for Nrf2 transcription factors and family members in the vGPCR-Ga13-RhoA signaling pathway that converges on the HO-1 gene promoter. Our current information assigns a major role to ERK1/2MAPK pathways as intermediates in signaling from vGPCR to Nrf2, influencing Nrf2 translocation to the cell nucleus, Nrf2 transactivation activity, and consequently HO-1 expression. Experiments in nude mice show that the tumorigenic effect of vGPCR is dependent on Nrf2. In the context of a complete KSHV genome, we show that the lack of vGPCR increased cytoplasmic localization of Nrf2 correlated with a downregulation of HO-1 expression. Moreover, we also found an increase in phospho-Nrf2 nuclear localization in mouse KS-like KSHV (positive) tumors compared to KSHV (negative) mouse KS-like tumors. Our data highlights the fundamental role of Nrf2 linking vGPCR signaling to the HO-1 promoter, acting upon not only HO-1 gene expression regulation but also in the tumorigenesis induced by vGPCR. Overall, these data pinpoint this transcription factor or its associated proteins as putative pharmacological or therapeutic targets in KS.
Collapse
Affiliation(s)
- Daiana Sapochnik
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Ana R. Raimondi
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
- University of Miami- Center for AIDS Research (UM-CFAR)/Sylvester Comprehensive Cancer Center (CCC) Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Victoria Medina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
- University of Miami- Center for AIDS Research (UM-CFAR)/Sylvester Comprehensive Cancer Center (CCC) Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Julian Naipauer
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
- University of Miami- Center for AIDS Research (UM-CFAR)/Sylvester Comprehensive Cancer Center (CCC) Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, FL, United States
- Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miami Center for AIDS Research, Department of Microbiology & Immunology, University of Miami, Miami, FL, United States
| | - Enrique A. Mesri
- University of Miami- Center for AIDS Research (UM-CFAR)/Sylvester Comprehensive Cancer Center (CCC) Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, FL, United States
- Viral Oncology Program, Sylvester Comprehensive Cancer Center, Miami Center for AIDS Research, Department of Microbiology & Immunology, University of Miami, Miami, FL, United States
| | - Omar Coso
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- University of Miami- Center for AIDS Research (UM-CFAR)/Sylvester Comprehensive Cancer Center (CCC) Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Omar Coso,
| |
Collapse
|
6
|
Zhao H, Gong S, Shi Y, Luo C, Qiu H, He J, Sun Y, Huang Y, Wang S, Miao Y, Wu W. The role of prolactin/vasoinhibins in cardiovascular diseases. Animal Model Exp Med 2022; 6:81-91. [PMID: 35923071 PMCID: PMC10158951 DOI: 10.1002/ame2.12264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/07/2022] [Indexed: 11/12/2022] Open
Abstract
Prolactin (PRL) is a polypeptide hormone that is mainly synthesized and secreted by the lactotroph cells of the pituitary. There are two main isoforms of PRL: 23-kDa PRL (named full-length PRL) and vasoinhibins (including 5.6-18 kDa fragments). Both act as circulating hormones and cytokines to stimulate or inhibit vascular formation at different stages and neovascularization, including endothelial cell proliferation and migration, protease production, and apoptosis. However, their effects on vascular function and cardiovascular diseases are different or even contrary. In addition to the structure, secretion regulation, and signal transduction of PRL/vasoinhibins, this review focuses on the pathological mechanism and clinical significance of PRL/vasoinhibins in cardiovascular diseases.
Collapse
Affiliation(s)
- Hui Zhao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, China.,Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Sugang Gong
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yongcong Shi
- Respiratory Medicine, Dongchuan District People's Hospital, Kunming, China
| | - Cijun Luo
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Hongling Qiu
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Jing He
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yuanyuan Sun
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yuxia Huang
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Shang Wang
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenhui Wu
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Rashdan NA, Shrestha B, Pattillo CB. S-glutathionylation, friend or foe in cardiovascular health and disease. Redox Biol 2020; 37:101693. [PMID: 32912836 PMCID: PMC7767732 DOI: 10.1016/j.redox.2020.101693] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 12/27/2022] Open
Abstract
Glutathione is a low molecular weight thiol that is present at high levels in the cell. The high levels of glutathione in the cell make it one of the most abundant antioxidants contributing to cellular redox homeostasis. As a general rule, throughout cardiovascular disease and progression there is an imbalance in redox homeostasis characterized by reactive oxygen species overproduction and glutathione underproduction. As research into these imbalances continues, glutathione concentrations are increasingly being observed to drive various physiological and pathological signaling responses. Interestingly in addition to acting directly as an antioxidant, glutathione is capable of post translational modifications (S-glutathionylation) of proteins through both chemical interactions and enzyme mediated events. This review will discuss both the chemical and enzyme-based S-glutathionylation of proteins involved in cardiovascular pathologies and angiogenesis.
Collapse
Affiliation(s)
- N A Rashdan
- Department of Cellular and Molecular Physiology, Louisiana State Health Science Center, Shreveport, LA, USA
| | - B Shrestha
- Department of Cellular and Molecular Physiology, Louisiana State Health Science Center, Shreveport, LA, USA
| | - C B Pattillo
- Department of Cellular and Molecular Physiology, Louisiana State Health Science Center, Shreveport, LA, USA.
| |
Collapse
|
8
|
Yarmolinskaya M, Suslova E, Tkachenko N, Molotkov A, Kogan I. Dopamine agonists as genital endometriosis target therapy. Gynecol Endocrinol 2020; 36:7-11. [PMID: 33305662 DOI: 10.1080/09513590.2020.1816720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE The present study was to find a pathogenic evidence for dopamine agonist application in patients with endometriosis associated pain syndrome. PATIENTS AND TECHNIQUE The study involved 227 patients of reproductive age with histologically confirmed genital endometriosis (GE) of I-III degree according to ASRM classification. The control group included 12 women with no laparoscope detected gynecologic pathology. The levels of prolactin (PRL), peripheral blood (PB), and peritoneal fluid (PF) were evaluated by chemiluminescence immune assay. The pain syndrome was measured by McGill visual analogue scale. Statistica10 program (StatSoft, Inc., Tulsa, OK) was applied for obtained data processing. RESULTS A correlation was established between GE rate and levels of PRL and PB (Rs = 0.28, p < .05) as well as a correlation of PRL in PB and PF (Rs = 0.29, p < .05). Patients receiving cabergoline combined with hormone therapy standard schemes manifested considerable pain syndrome relief. CONCLUSIONS PRL involvement in GE pathogenesis and more intense therapeutic impact on pain syndrome in case of combined administration of dopamine and standard hormone therapy prove cabergoline application in clinical practice.
Collapse
Affiliation(s)
- Maria Yarmolinskaya
- FSBSI "The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O.Ott", St. Petersburg, Russia
| | - Elena Suslova
- FSBSI "The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O.Ott", St. Petersburg, Russia
| | - Natalia Tkachenko
- FSBSI "The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O.Ott", St. Petersburg, Russia
| | - Arseniy Molotkov
- FSBSI "The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O.Ott", St. Petersburg, Russia
| | - Igor Kogan
- FSBSI "The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O.Ott", St. Petersburg, Russia
| |
Collapse
|
9
|
Suslova EV, Yarmolinskaya MI, Tkachenko NN, Kleymenova TS, Netreba EA. Features of proteome in the blood and peritoneal fluid in patients with endometriosis of different localization. ACTA ACUST UNITED AC 2019. [DOI: 10.17116/repro20192506186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
Shim SH, Kim JO, Jeon YJ, An HJ, Lee HA, Kim JH, Ahn EH, Lee WS, Kim NK. Association between vascular endothelial growth factor promoter polymorphisms and the risk of recurrent implantation failure. Exp Ther Med 2017; 15:2109-2119. [PMID: 29434813 DOI: 10.3892/etm.2017.5641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/11/2017] [Indexed: 11/05/2022] Open
Abstract
The objective of the present study was to investigate the association between recurrent implantation failure (RIF) and vascular endothelial growth factor (VEGF) gene polymorphisms that are associated with various female infertility disorders. A total of 116 women diagnosed with RIF and 218 control subjects were genotyped for the VEGF -2578C>A, -1154G>A, -634C>G and 936C>T polymorphisms using a polymerase chain reaction-restriction fragment length polymorphism assay. The VEGF -2578AA genotype was associated with an increased prevalence (≥4) of RIF [adjusted odds ratio (AOR)=2.77; 95% confidence interval (CI)=1.10-7.02; P=0.031], whereas the VEGF -634CG+GG genotype was associated with an increased incidence of total RIF (AOR=2.03; 95% CI=1.02-4.05; P=0.044) and ≥4 RIF (AOR=3.16; 95% CI=1.19-8.37; P=0.021). The results of the haplotype analysis indicated that -2578A/-1154A/-634G/936C (AOR=1.76; 95% CI=1.03-3.00; P=0.040 for total RIF and AOR=2.11; 95% CI=1.12-3.97; P=0.021 for ≥4 RIF) was associated with the occurrence of RIF. In addition, it was revealed that there was a significant difference in serum prolactin level associated with the VEGF -634C>G polymorphism (P=0.013). Therefore the findings of the present study indicate that the VEGF -2578AA genotype, -634G allele and -2578A/-1154A/-634G/936C haplotype may be genetic markers for susceptibility to RIF. However, further studies on VEGF promoter polymorphisms that include an independent randomized-controlled population are required to confirm these results.
Collapse
Affiliation(s)
- Sung Han Shim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Jung Oh Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea.,Institute for Clinical Research, CHA Bundang Medical Center College of Medicine, CHA University, Seongnam 13496, Republic of Korea
| | - Young Joo Jeon
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea.,Institute for Clinical Research, CHA Bundang Medical Center College of Medicine, CHA University, Seongnam 13496, Republic of Korea
| | - Hui Jeong An
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Hyun Ah Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam 13497, Republic of Korea
| | - Eun Hee Ahn
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University, Seongnam 13497, Republic of Korea
| | - Woo Sik Lee
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 135081, Republic of Korea
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam 13488, Republic of Korea.,Institute for Clinical Research, CHA Bundang Medical Center College of Medicine, CHA University, Seongnam 13496, Republic of Korea
| |
Collapse
|
11
|
Ben Salem A, Megdich F, Kacem O, Souayeh M, Hachani Ben Ali F, Hizem S, Janhai F, Ajina M, Abu-Elmagd M, Assidi M, Al Qahtani MH, Mahjoub T. Vascular endothelial growth factor (VEGFA) gene variation in polycystic ovary syndrome in a Tunisian women population. BMC Genomics 2016; 17:748. [PMID: 27766947 PMCID: PMC5073903 DOI: 10.1186/s12864-016-3092-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is characterized by the growth of a number of small cysts on the ovaries which leads to sex hormonal imbalance. Women who are affected by this syndrome suffer from irregular menstrual cycles, decline in their fertility, excessive hair growth, obesity, acne and most importantly cardiac function problems. The vascular endothelial growth factor (VEGF) plays a pivotal role in tissue vascularization in general and in the pathogenesis of many diseases. The PCOS was found to be associated with high expression levels of VEGF. In women who undergo assisted reproductive procedures (ART), VEGF was found to be a key mediator of other factors to control ovary angiogenesis. Here, we set out to examine the association of VEGFA gene polymorphism with PCOS and its components in a population of Tunisia women to enhance our understanding of the genetic background leading angiogenesis and vascularization abnormalities in PCOS. METHODS The association of VEGFA gene with PCOS and its components was examined in a cohort of 268 women from Tunisia involving 118 PCOS patients and 150 controls. VEGFA gene variations were assessed through the analysis of the following SNPs rs699947 (A/C), rs833061 (C/T), rs1570360 (G/A), rs833068 (G/A), rs3025020 (C/T), and rs3025039 (C/T). The linkage disequilibrium between SNPs was assessed using HAPLOVIEW software while combination of SNPs into haplotypes in the population and the reconstruction of the cladogram were carried-out by PHASE and ARLEQUIN programs, respectively. Genetic association and genotype-phenotype correlations were calculated by logistic regression and non-parametric tests (Kruskall-Wallis and Mann-Whitney tests), respectively, using StatView program. RESULTS We observed 10 haplotypes in our studied cohort whereH1 (ACGG), H2 (ACAG), H7 (CTGG) and H8 (CTGA) were the most frequent. We observed the association of the genotype CT of the SNP rs30225039 with PCOS phenotype (P = 0.03; OR 95 % CI = 2.05 [1.07-3.90]) and a trend for correlation of the pair of haplotypes H2/H2 with prolactin levels in plasma (P = 0.077; 193.5 ± 94.3 vs 45.7 ± 7.2). These data are consistent with literature and highlight one more time the role of vascularization in the pathogeny of PCOS. CONCLUSIONS LD pattern in VEGF locus showed a similar LD pattern between the Tunisian population and the CEU. More haplotypes in the Tunisian population than in CEU was observed (22 haplotypes vs 16 haplotypes) suggesting higher recombination rate in Tunisians. The study showed that there was any advantage of using haplotypes compared with SNPs taken alone.
Collapse
Affiliation(s)
- Assila Ben Salem
- Laboratory of Human Genome and multifactorial diseases, LR12ES07, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia.
| | - Fatma Megdich
- Laboratory of Human Genome and multifactorial diseases, LR12ES07, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Olfa Kacem
- University Hospital F. Hached, Unit of Reproductive Medicine, Sousse, Tunisia
| | - Malek Souayeh
- Laboratory of Human Genome and multifactorial diseases, LR12ES07, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | | | - Sondes Hizem
- Laboratory of Human Genome and multifactorial diseases, LR12ES07, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Faouzi Janhai
- Laboratory of Human Genome and multifactorial diseases, LR12ES07, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Mounir Ajina
- University Hospital F. Hached, Unit of Reproductive Medicine, Sousse, Tunisia
| | - Muhammad Abu-Elmagd
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mourad Assidi
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed H Al Qahtani
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Touhami Mahjoub
- Laboratory of Human Genome and multifactorial diseases, LR12ES07, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
12
|
Clapp C, Adán N, Ledesma-Colunga MG, Solís-Gutiérrez M, Triebel J, Martínez de la Escalera G. The role of the prolactin/vasoinhibin axis in rheumatoid arthritis: an integrative overview. Cell Mol Life Sci 2016; 73:2929-48. [PMID: 27026299 PMCID: PMC11108309 DOI: 10.1007/s00018-016-2187-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/08/2016] [Accepted: 03/18/2016] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune, inflammatory disease destroying articular cartilage and bone. The female preponderance and the influence of reproductive states in RA have long linked this disease to sexually dimorphic, reproductive hormones such as prolactin (PRL). PRL has immune-enhancing properties and increases in the circulation of some patients with RA. However, PRL also suppresses the immune system, stimulates the formation and survival of joint tissues, acquires antiangiogenic properties upon its cleavage to vasoinhibins, and protects against joint destruction and inflammation in the adjuvant-induced model of RA. This review addresses risk factors for RA linked to PRL, the effects of PRL and vasoinhibins on joint tissues, blood vessels, and immune cells, and the clinical and experimental data associating PRL with RA. This information provides important insights into the pathophysiology of RA and highlights protective actions of the PRL/vasoinhibin axis that could lead to therapeutic benefits.
Collapse
MESH Headings
- Angiogenesis Inhibitors/immunology
- Animals
- Arthritis, Rheumatoid/epidemiology
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/physiopathology
- Cartilage, Articular/blood supply
- Cartilage, Articular/immunology
- Cartilage, Articular/pathology
- Cartilage, Articular/physiopathology
- Female
- Humans
- Immune Tolerance
- Immunity, Cellular
- Inflammation/epidemiology
- Inflammation/immunology
- Inflammation/pathology
- Inflammation/physiopathology
- Joints/blood supply
- Joints/immunology
- Joints/pathology
- Joints/physiopathology
- Male
- Prolactin/immunology
- Reproduction
- Sex Factors
- Stress, Physiological
- Stress, Psychological
Collapse
Affiliation(s)
- Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM, Juriquilla, 76230, Querétaro, Mexico.
| | - Norma Adán
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM, Juriquilla, 76230, Querétaro, Mexico
| | - María G Ledesma-Colunga
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM, Juriquilla, 76230, Querétaro, Mexico
| | - Mariana Solís-Gutiérrez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM, Juriquilla, 76230, Querétaro, Mexico
| | - Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Paracelsus Medical University, Nuremberg, Germany
| | - Gonzalo Martínez de la Escalera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM, Juriquilla, 76230, Querétaro, Mexico
| |
Collapse
|
13
|
Yonezawa T, Chen KHE, Ghosh MK, Rivera L, Dill R, Ma L, Villa PA, Kawaminami M, Walker AM. Anti-metastatic outcome of isoform-specific prolactin receptor targeting in breast cancer. Cancer Lett 2015; 366:84-92. [PMID: 26095602 DOI: 10.1016/j.canlet.2015.06.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 06/15/2015] [Accepted: 06/15/2015] [Indexed: 12/27/2022]
Abstract
Controversy exists concerning the role of the long prolactin receptor (PRLR) in the progression of breast cancer. By targeting pre-mRNA splicing, we succeeded in knocking down only the long PRLR in vivo, leaving the short forms unaffected. Using two orthotopic and highly-metastatic models of breast cancer, one of which was syngeneic (mouse 4T1) to allow assessment of tumor-immune interactions and one of which was endocrinologically humanized (human BT-474) to activate human PRLRs, we examined the effect of long PRLR knockdown on disease progression. In both models, knockdown dramatically inhibited metastatic spread to the lungs and liver and resulted in increased central death in the primary tumor. In the syngeneic model, immune infiltrates in metastatic sites were changed from innate inflammatory cells to lymphocytes, with an increase in the incidence of tumor-specific cytotoxic T cells. Long PRLR knockdown in three-dimensional culture induced apoptosis of tumor-initiating/cancer stem cells (death of 95% of cells displaying stem cell markers in 15 days). We conclude that the long PRLR plays an important role in breast cancer metastasis.
Collapse
Affiliation(s)
- Tomohiro Yonezawa
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; Laboratory for Veterinary Physiology, Kitasato University, Towada, Aomori, 03486-28, Japan
| | - Kuan-Hui Ethan Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Mrinal K Ghosh
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Lorena Rivera
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Riva Dill
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Lisa Ma
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Pedro A Villa
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Mitsumori Kawaminami
- Laboratory for Veterinary Physiology, Kitasato University, Towada, Aomori, 03486-28, Japan
| | - Ameae M Walker
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
14
|
Musumeci G, Castrogiovanni P, Szychlinska MA, Aiello FC, Vecchio GM, Salvatorelli L, Magro G, Imbesi R. Mammary gland: From embryogenesis to adult life. Acta Histochem 2015; 117:379-85. [PMID: 25800977 DOI: 10.1016/j.acthis.2015.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/03/2015] [Accepted: 02/19/2015] [Indexed: 12/13/2022]
Abstract
The aim of this review is to focus on the molecular factors that ensure the optimal development and maintenance of the mammary gland thanks to their integration and coordination. The development of the mammary gland is supported, not only by endocrine signals, but also by regulatory molecules, which are able to integrate signals from the surrounding microenvironment. A major role is certainly played by homeotic genes, but their incorrect expression during the spatiotemporal regulation of proliferative, functional and differentiation cycles of the mammary gland, may result in the onset of neoplastic processes. Attention is directed also to the endocrine aspects and sexual dimorphism of mammary gland development, as well as the role played by ovarian steroids and their receptors in adult life.
Collapse
Affiliation(s)
- Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy.
| | - Marta Anna Szychlinska
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Flavia Concetta Aiello
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Giada Maria Vecchio
- Department of Medical and Surgical Sciences and Advanced Technologies, G.F. Ingrassia, Azienda Ospedaliero - Universitaria "Policlinico-Vittorio Emanuele", Anatomic Pathology Section, University of Catania, Catania, Italy
| | - Lucia Salvatorelli
- Department of Medical and Surgical Sciences and Advanced Technologies, G.F. Ingrassia, Azienda Ospedaliero - Universitaria "Policlinico-Vittorio Emanuele", Anatomic Pathology Section, University of Catania, Catania, Italy
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies, G.F. Ingrassia, Azienda Ospedaliero - Universitaria "Policlinico-Vittorio Emanuele", Anatomic Pathology Section, University of Catania, Catania, Italy
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| |
Collapse
|
15
|
Mahboob S, Ahn SB, Cheruku HR, Cantor D, Rennel E, Fredriksson S, Edfeldt G, Breen EJ, Khan A, Mohamedali A, Muktadir MG, Ranganathan S, Tan SH, Nice E, Baker MS. A novel multiplexed immunoassay identifies CEA, IL-8 and prolactin as prospective markers for Dukes' stages A-D colorectal cancers. Clin Proteomics 2015; 12:10. [PMID: 25987887 PMCID: PMC4435647 DOI: 10.1186/s12014-015-9081-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/04/2015] [Indexed: 12/14/2022] Open
Abstract
Background Current methods widely deployed for colorectal cancers (CRC) screening lack the necessary sensitivity and specificity required for population-based early disease detection. Cancer-specific protein biomarkers are thought to be produced either by the tumor itself or other tissues in response to the presence of cancers or associated conditions. Equally, known examples of cancer protein biomarkers (e.g., PSA, CA125, CA19-9, CEA, AFP) are frequently found in plasma at very low concentration (pg/mL-ng/mL). New sensitive and specific assays are therefore urgently required to detect the disease at an early stage when prognosis is good following surgical resection. This study was designed to meet the longstanding unmet clinical need for earlier CRC detection by measuring plasma candidate biomarkers of cancer onset and progression in a clinical stage-specific manner. EDTA plasma samples (1 μL) obtained from 75 patients with Dukes’ staged CRC or unaffected controls (age and sex matched with stringent inclusion/exclusion criteria) were assayed for expression of 92 human proteins employing the Proseek® Multiplex Oncology I proximity extension assay. An identical set of plasma samples were analyzed utilizing the Bio-Plex Pro™ human cytokine 27-plex immunoassay. Results Similar quantitative expression patterns for 13 plasma antigens common to both platforms endorsed the potential efficacy of Proseek as an immune-based multiplex assay for proteomic biomarker research. Proseek found that expression of Carcinoembryonic Antigen (CEA), IL-8 and prolactin are significantly correlated with CRC stage. Conclusions CEA, IL-8 and prolactin expression were found to identify between control (unaffected), non-malignant (Dukes’ A + B) and malignant (Dukes’ C + D) stages. Electronic supplementary material The online version of this article (doi:10.1186/s12014-015-9081-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sadia Mahboob
- Australian School of Advanced Medicine, Faculty of Medicine and Human Sciences, Macquarie University, Rm1, Level 1, 75 Talavera Road, Sydney, NSW 2109 Australia
| | - Seong Beom Ahn
- Australian School of Advanced Medicine, Faculty of Medicine and Human Sciences, Macquarie University, Rm1, Level 1, 75 Talavera Road, Sydney, NSW 2109 Australia
| | - Harish R Cheruku
- Australian School of Advanced Medicine, Faculty of Medicine and Human Sciences, Macquarie University, Rm1, Level 1, 75 Talavera Road, Sydney, NSW 2109 Australia
| | - David Cantor
- Australian School of Advanced Medicine, Faculty of Medicine and Human Sciences, Macquarie University, Rm1, Level 1, 75 Talavera Road, Sydney, NSW 2109 Australia
| | - Emma Rennel
- Olink Bioscience, Dag Hammarskjölds Väg, 54A, 75183 Uppsala, Sweden
| | | | | | - Edmond J Breen
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109 Australia
| | - Alamgir Khan
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109 Australia
| | - Abidali Mohamedali
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, NSW 2109 Australia
| | - Md Golam Muktadir
- School of Science and Health, University of Western Sydney, NSW, Australia
| | - Shoba Ranganathan
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, NSW 2109 Australia
| | - Sock-Hwee Tan
- Australian School of Advanced Medicine, Faculty of Medicine and Human Sciences, Macquarie University, Rm1, Level 1, 75 Talavera Road, Sydney, NSW 2109 Australia
| | - Edouard Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne, VIC 3800 Australia
| | - Mark S Baker
- Australian School of Advanced Medicine, Faculty of Medicine and Human Sciences, Macquarie University, Rm1, Level 1, 75 Talavera Road, Sydney, NSW 2109 Australia
| |
Collapse
|
16
|
Duncan WC, Nio-Kobayashi J. Targeting angiogenesis in the pathological ovary. Reprod Fertil Dev 2013; 25:362-71. [PMID: 22951108 DOI: 10.1071/rd12112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/13/2012] [Indexed: 12/17/2022] Open
Abstract
The ovary is a key tissue in the study of physiological neo-vascularisation in the adult and its study has highlighted important molecules involved in the regulation of angiogenesis in vivo. These include vascular endothelial growth factor, delta-like ligand 4, thrombospondin-1, prokineticin-1 and prostaglandin E2. Targeting these molecular pathways has therapeutic potential and their manipulation has an increasing preclinical and clinical role in the management of the pathological ovary. Targeting angiogenic pathways has utility in the promotion of ovarian angiogenesis to improve tissue and follicle survival and function as well as the prevention and management of ovarian hyperstimulation syndrome. There is a theoretical possibility that targeting angiogenesis may improve the function of the polycystic ovary and a real role for targeting angiogenesis in ovarian cancer.
Collapse
Affiliation(s)
- W Colin Duncan
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | | |
Collapse
|
17
|
Yang X, Meyer K, Friedl A. STAT5 and prolactin participate in a positive autocrine feedback loop that promotes angiogenesis. J Biol Chem 2013; 288:21184-21196. [PMID: 23729680 DOI: 10.1074/jbc.m113.481119] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown previously that the murine prolactin/growth hormone family member proliferin plays a pivotal role in angiogenesis induced by the FGF2/STAT5 signaling cascade. To delineate the signaling pathway downstream of STAT5 in the human system, where proliferin does not exist, we expressed constitutively active (CA) or dominant-negative (DN) mutant STAT5A in hCMEC/D3 human brain endothelial cells. We found that conditioned medium from CA-STAT5A- but not from DN-STAT5A-overexpressing endothelial cells (EC) is sufficient to induce EC migration and tube formation but not proliferation, indicating that STAT5A regulates the secretion of autocrine proangiogenic factors. We identified prolactin (PRL) as a candidate autocrine factor. CA-STAT5A expression stimulates PRL production at the RNA and protein level, and STAT5A binds to the PRL promoter region, suggesting direct transcriptional regulation. Medium conditioned by CA-STAT5A-overexpressing EC induces phosphorylation of the PRL receptor and activates MAPK. Knockdown of PRL expression by shRNA or blocking of PRL activity with neutralizing antibodies removed the CA-STAT5A-dependent proangiogenic activity from the conditioned medium of EC. The addition of recombinant PRL restores this activity. STAT5A-induced PRL in the conditioned medium can activate STAT5, STAT1, and to a lesser extent STAT3 in hCMEC/D3 cells, suggesting the existence of a positive feedback loop between STAT5 and PRL that promotes angiogenesis. Furthermore, we find that VEGF, a potent proangiogenic factor, is induced by activation of STAT5A, and VEGF induction depends on PRL expression. These observations demonstrate a STAT5/PRL/VEGF signaling cascade in human brain EC and implicate PRL and VEGF as autocrine regulators of EC migration, invasion, and tube formation.
Collapse
Affiliation(s)
- Xinhai Yang
- From the Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin 53705
| | - Kristy Meyer
- From the Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin 53705
| | - Andreas Friedl
- From the Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin 53705,; Pathology and Laboratory Medicine Service, William S. Middleton Memorial Veterans Hospital, Department of Veterans Affairs Medical Center, Madison, Wisconsin 53705, and; UW Carbone Cancer Center, Madison, Wisconsin 53792.
| |
Collapse
|
18
|
Bilibio JP, Matte U, de Conto E, Genro VK, Souza CA, Cunha-Filho JS. Dopamine receptor D2 genotype (3438) is associated with moderate/severe endometriosis in infertile women in Brazil. Fertil Steril 2013; 99:1340-5. [DOI: 10.1016/j.fertnstert.2012.11.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 11/05/2012] [Accepted: 11/17/2012] [Indexed: 01/11/2023]
|
19
|
Clapp C, Thebault S, Jeziorski MC, Martínez De La Escalera G. Peptide hormone regulation of angiogenesis. Physiol Rev 2009; 89:1177-215. [PMID: 19789380 DOI: 10.1152/physrev.00024.2009] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is now apparent that regulation of blood vessel growth contributes to the classical actions of hormones on development, growth, and reproduction. Endothelial cells are ideally positioned to respond to hormones, which act in concert with locally produced chemical mediators to regulate their growth, motility, function, and survival. Hormones affect angiogenesis either directly through actions on endothelial cells or indirectly by regulating proangiogenic factors like vascular endothelial growth factor. Importantly, the local microenvironment of endothelial cells can determine the outcome of hormone action on angiogenesis. Members of the growth hormone/prolactin/placental lactogen, the renin-angiotensin, and the kallikrein-kinin systems that exert stimulatory effects on angiogenesis can acquire antiangiogenic properties after undergoing proteolytic cleavage. In view of the opposing effects of hormonal fragments and precursor molecules, the regulation of the proteases responsible for specific protein cleavage represents an efficient mechanism for balancing angiogenesis. This review presents an overview of the actions on angiogenesis of the above-mentioned peptide hormonal families and addresses how specific proteolysis alters the final outcome of these actions in the context of health and disease.
Collapse
Affiliation(s)
- Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
| | | | | | | |
Collapse
|
20
|
Clapp C, Thebault S, Martínez de la Escalera G. Role of prolactin and vasoinhibins in the regulation of vascular function in mammary gland. J Mammary Gland Biol Neoplasia 2008; 13:55-67. [PMID: 18204888 DOI: 10.1007/s10911-008-9067-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 01/02/2008] [Indexed: 12/19/2022] Open
Abstract
The formation of new blood vessels has become a major focus of mammary gland research stimulated by the therapeutic opportunities of controlling angiogenesis in breast cancer. Normal growth and involution of the mammary gland are profoundly affected by the expansion and regression of blood vessels, whereas dysregulation of angiogenesis is characteristic of breast cancer growth and metastasis. Prolactin stimulates the growth and differentiation of the mammary gland under normal conditions, but its role in breast cancer is controversial. Its action is complicated by the fact that prolactin itself is angiogenic, but proteases cleave prolactin to generate vasoinhibins, a family of peptides that act on endothelial cells to suppress angiogenesis and vasodilation and to promote apoptosis-mediated vascular regression. This review summarizes our current knowledge about the vascular effects of prolactin and the generation and action of vasoinhibins, and discusses their possible contribution to the regulation of blood vessels in the normal and malignant mammary gland.
Collapse
Affiliation(s)
- Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Qro, México 76230.
| | | | | |
Collapse
|
21
|
Dulak J, Deshane J, Jozkowicz A, Agarwal A. Heme oxygenase-1 and carbon monoxide in vascular pathobiology: focus on angiogenesis. Circulation 2008; 117:231-41. [PMID: 18195184 DOI: 10.1161/circulationaha.107.698316] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Angiogenesis involves the formation of new blood vessels and is critical for fundamental events such as development and repair after injury. Perturbances in angiogenesis contribute to the pathogenesis of diverse clinical conditions including cancer, complications of diabetes mellitus, ischemia/reperfusion injury of the heart and other organs, and preeclampsia, as well as a number of inflammatory disorders. Recent work has identified heme oxygenase-1 and its gaseous product, carbon monoxide, to possess potent proangiogenic properties in addition to well-recognized antiinflammatory, antioxidant, and antiapoptotic effects. Angiogenic factors, such as vascular endothelial growth factor and stromal cell-derived factor-1, mediate their proangiogenic effects through induction of heme oxygenase-1, making it an attractive target for therapeutic intervention. This review will provide an overview of the role of heme oxygenase-1 and carbon monoxide in angiogenesis.
Collapse
Affiliation(s)
- Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | |
Collapse
|
22
|
Hill-Kapturczak N, Jarmi T, Agarwal A. Growth factors and heme oxygenase-1: perspectives in physiology and pathophysiology. Antioxid Redox Signal 2007; 9:2197-207. [PMID: 17979525 DOI: 10.1089/ars.2007.1798] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Growth factors are mediators of both normal homeostasis and pathophysiology through their effects on various cellular processes. Similarly, heme oxygenase-1 (HO-1) has a role in maintaining physiologic equilibrium, by which it can either alleviate or exacerbate disease, depending on several considerations, including amount, timing, and location of expression, as well as the disease setting. Thus, the synthesis and activities of growth factors and HO-1 are intricately regulated. Interestingly, several growth factors induce HO-1, and, conversely, HO-1 can regulate the expression of some growth factors. This review focuses on the influence of growth factors and HO-1 and potential physiologic effects of the growth factor(s)-HO-1 interaction.
Collapse
Affiliation(s)
- Nathalie Hill-Kapturczak
- Department of Medicine, Nephrology Research and Training Center and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | |
Collapse
|
23
|
Martín MJ, Tanos T, García AB, Martin D, Gutkind JS, Coso OA, Marinissen MJ. The Galpha12/13 family of heterotrimeric G proteins and the small GTPase RhoA link the Kaposi sarcoma-associated herpes virus G protein-coupled receptor to heme oxygenase-1 expression and tumorigenesis. J Biol Chem 2007; 282:34510-24. [PMID: 17881360 DOI: 10.1074/jbc.m703043200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heme oxygenase-1 (HO-1), an inducible enzyme that metabolizes the heme group, is highly expressed in human Kaposi sarcoma lesions. Its expression is up-regulated by the G protein-coupled receptor from the Kaposi sarcoma-associated herpes virus (vGPCR). Although recent evidence shows that HO-1 contributes to vGPCR-induced tumorigenesis and vascular endothelial growth factor (VEGF) expression, the molecular steps that link vGPCR to HO-1 remain unknown. Here we show that vGPCR induces HO-1 expression and transformation through the Galpha(12/13) family of heterotrimeric G proteins and the small GTPase RhoA. Targeted small hairpin RNA knockdown expression of Galpha(12), Galpha(13), or RhoA and inhibition of RhoA activity impair vGPCR-induced transformation and ho-1 promoter activity. Knockdown expression of RhoA also reduces vGPCR-induced VEFG-A secretion and blocks tumor growth in a murine allograft tumor model. NIH-3T3 cells expressing constitutively activated Galpha(13) or RhoA implanted in nude mice develop tumors displaying spindle-shaped cells that express HO-1 and VEGF-A, similarly to vGPCR-derived tumors. RhoAQL-induced tumor growth is reduced 80% by small hairpin RNA-mediated knockdown expression of HO-1 in the implanted cells. Likewise, inhibition of HO-1 activity by chronic administration of the HO-1 inhibitor tin protoporphyrin IX to mice reduces RhoAQL-induced tumor growth by 70%. Our study shows that vGPCR induces HO-1 expression through the Galpha(12/13)/RhoA axes and shows for the first time a potential role for HO-1 as a therapeutic target in tumors where RhoA has oncogenic activity.
Collapse
Affiliation(s)
- María José Martín
- Instituto de Investigaciones Biomédicas A. Sols, Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
24
|
Pearson RD. Placental malaria: hypertension, VEGF, and prolactin. PLoS Med 2007; 4:e141. [PMID: 17388679 PMCID: PMC1831751 DOI: 10.1371/journal.pmed.0040141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
25
|
Manoonkitiwongsa PS, Schultz RL, Whitter EF, Lyden PD. Contraindications of VEGF-based therapeutic angiogenesis: Effects on macrophage density and histology of normal and ischemic brains. Vascul Pharmacol 2006; 44:316-25. [PMID: 16530019 DOI: 10.1016/j.vph.2006.01.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 01/11/2006] [Indexed: 01/17/2023]
Abstract
Therapeutic angiogenesis by vascular endothelial growth factor (VEGF) is advocated as a promising treatment strategy for brain ischemic stroke. However, data in the literature demonstrating the benefit of therapeutic angiogenesis are contradictory. In this paper, we describe the effects of non-angiogenic and angiogenic doses of VEGF165 on macrophage density and histology of normal and ischemic brains of adult rats. VEGF165 was administered intra-arterially for 7 days following temporary occlusion of the middle cerebral artery. In contrast to ischemic brains treated with non-angiogenic doses of VEGF165 which showed preserved neuropil and reduced numbers of macrophages, ischemic brains treated by an angiogenic dose showed phagocytized neuropil and high macrophage density. Though neither non-angiogenic nor angiogenic doses caused macrophage infiltration in normal brains, damage of the brain matrix occurred with the angiogenic dose. These results suggest an angiogenic dose of VEGF165 injures the nervous tissue rather than promote recovery. Angiogenesis by VEGF monotherapy for ischemic stroke should be viewed with caution, or avoided. Since our data show intravascular administration of VEGF165 does not cause macrophage inflammation, in contrast to reports in the literature whereby VEGF165 was applied directly to the brain, our findings also indicate the relationships between VEGF, angiogenesis, and macrophage inflammation are governed by the route VEGF is administered to the brain.
Collapse
Affiliation(s)
- Panya S Manoonkitiwongsa
- Neural Engineering Program, Huntington Medical Research, Institutes, 734 Fairmount Avenue, Pasadena, California 91105, USA.
| | | | | | | |
Collapse
|
26
|
Abstract
Many biological functions of heme oxygenase (HO), such as cytoprotection against oxidative stress, vasodilation, neurotransmission in the central or peripheral nervous systems, and anti-inflammatory, anti-apoptotic, or anti-proliferative potential, have been attributed to its enzymatic byproduct carbon monoxide (CO), although roles for biliverdin/bilirubin and iron have also been proposed. In addition to these well-characterized effects, recent findings reveal that HO-derived CO may act as an oxygen sensor and circadian modulator of heme biosynthesis. In lymphocytes, CO may participate in regulatory T cell function. A number of the known signaling effects of CO depend on stimulation of soluble guanylate cyclase and/or activation of mitogen-activated protein kinases (MAPK). Furthermore, modulation of caveolin-1 status may serve as an essential component of certain aspects of CO action, such as growth control. In this review, we summarize recent findings of the beneficial or detrimental effects of endogenous CO with an emphasis on the signaling pathways and downstream targets that trigger the action of this gas.
Collapse
Affiliation(s)
- Hong Pyo Kim
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
27
|
Marinissen MJ, Tanos T, Bolós M, de Sagarra MR, Coso OA, Cuadrado A. Inhibition of heme oxygenase-1 interferes with the transforming activity of the Kaposi sarcoma herpesvirus-encoded G protein-coupled receptor. J Biol Chem 2006; 281:11332-46. [PMID: 16476737 DOI: 10.1074/jbc.m512199200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heme oxygenase-1 (HO-1), the inducible enzyme responsible for the rate-limiting step in the heme catabolism, is expressed in AIDS-Kaposi sarcoma (KS) lesions. Its expression is up-regulated by the Kaposi sarcoma-associated herpesvirus (KSHV) in endothelial cells, but the mechanisms underlying KSHV-induced HO-1 expression are still unknown. In this study we investigated whether the oncogenic G protein-coupled receptor (KSHV-GPCR or vGPCR), one of the key KSHV genes involved in KS development, activated HO-1 expression. Here we show that vGPCR induces HO-1 mRNA and protein levels in fibroblasts and endothelial cells. Moreover, targeted knock-down gene expression of HO-1 by small hairpin RNA and chemical inhibition of HO-1 enzymatic activity by tin protoporphyrin IX (SnPP), impaired vGPCR-induced survival, proliferation, transformation, and vascular endothelial growth factor (VEGF)-A expression. vGPCR-expressing cells implanted in the dorsal flank of nude mice developed tumors with elevated HO-1 expression and activity. Chronic administration of SnPP to the implanted mice, under conditions that effectively blocked HO-1 activity and VEGF-A expression in the transplanted cells, strikingly reduced tumor growth, without apparent side effects. On the contrary, administration of the HO-1 inducer cobalt protoporphyrin (CoPP) further enhanced vGPCR-induced tumor growth. These data postulate HO-1 as an important mediator of vGPCR-induced tumor growth and suggest that inhibition of intratumoral HO-1 activity by SnPP may be a potential therapeutic strategy.
Collapse
MESH Headings
- Animals
- Annexin A5/pharmacology
- Apoptosis
- Blotting, Western
- Cell Proliferation
- Cell Survival
- Culture Media, Serum-Free/metabolism
- DNA/metabolism
- Dose-Response Relationship, Drug
- Endothelial Cells/metabolism
- Enzyme Inhibitors/pharmacology
- Fibroblasts/metabolism
- Fluorescent Antibody Technique, Indirect
- Genes, Reporter
- Heme/chemistry
- Heme Oxygenase (Decyclizing)/metabolism
- Heme Oxygenase-1/antagonists & inhibitors
- Heme Oxygenase-1/metabolism
- Herpesvirus 8, Human/metabolism
- Immunohistochemistry
- Luciferases/metabolism
- Metalloporphyrins/metabolism
- Mice
- Mice, Nude
- Models, Biological
- NIH 3T3 Cells
- Neoplasm Transplantation
- Neoplasms/metabolism
- Promoter Regions, Genetic
- Protoporphyrins/chemistry
- Protoporphyrins/metabolism
- RNA/metabolism
- RNA, Messenger/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Transfection
- Up-Regulation
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Maria Julia Marinissen
- Instituto de Investigaciones Biomédicas A. Sols Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid 28029, Spain.
| | | | | | | | | | | |
Collapse
|
28
|
Malaguarnera L, Imbesi R, Di Rosa M, Scuto A, Castrogiovanni P, Messina A, Sanfilippo S. Action of prolactin, IFN-γ, TNF-α and LPS on heme oxygenase-1 expression and VEGF release in human monocytes/macrophages. Int Immunopharmacol 2005; 5:1458-69. [PMID: 15953572 DOI: 10.1016/j.intimp.2005.04.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 04/04/2005] [Accepted: 04/06/2005] [Indexed: 12/14/2022]
Abstract
The pituitary hormone prolactin (PRL) has recently been regarded as a local regulator of macrophage responses. Our goal in this study was to investigate the regulatory interaction between PRL, interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha) and lipopolysaccharide (LPS) in the heme oxygenase-1 (HO-1) expression and the vascular endothelial growth factor (VEGF) production in human monocytes/macrophages (HMMs). In vitro treatment of HMMs with PRL, IFN-gamma, TNF-alpha and LPS was found to increase both HO-1 expression and protein synthesis in a time-dependent manner. HMMs treated with PRL, IFN-gamma, TNF-alpha and LPS also showed an enhanced release of VEGF. Moreover, co-stimulation of PRL with LPS caused activation of HMMs functions, enhancement of HO-1 expression and induction of VEGF release, whereas addition of PRL inhibited up-regulation of HO-1 or VEGF induced by IFN-gamma or TNF-alpha. Our results demonstrate that PRL, IFN-gamma, TNF-alpha and LPS modulate the expression of angiogenic factors providing additional information about the regulatory mechanism, which controls the angiogenic function of macrophages.
Collapse
Affiliation(s)
- L Malaguarnera
- Department of Biomedical Sciences, University of Catania, Via E. De Amicis, 24, 95039 Trecastagni-Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Pae HO, Oh GS, Choi BM, Kim YM, Chung HT. A molecular cascade showing nitric oxide-heme oxygenase-1-vascular endothelial growth factor-interleukin-8 sequence in human endothelial cells. Endocrinology 2005; 146:2229-38. [PMID: 15661856 DOI: 10.1210/en.2004-1431] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Heme oxygenase (HO)-1 has been shown to be an important biological target of nitric oxide (NO). NO can induce HO-1 expression and IL-8 production, particularly, in endothelial cells. Interestingly, HO-1 tends to induce the production of vascular endothelial growth factor (VEGF) that is involved in endothelial IL-8 syntheses. Whether HO-1 expression by NO may provide a link with IL-8 or VEGF synthesis was investigated in human umbilical vein endothelial cells (HUVECs). The NO donor S-nitroso-N-acetyl-penicillamine (SNAP) dose-dependently increased IL-8 and VEGF productions and HO-1 expression in HUVECs. Transfection with either HO-1 small interfering RNA or HO-1 antisense oligodeoxynucleotide abrogated the ability of SNAP to induce HO-1 expression and IL-8 and VEGF productions. Both pharmacological induction and gene transfer of HO-1 directly induced IL-8 and VEGF productions. Anti-VEGF neutralizing antibody blocked SNAP-mediated IL-8 production and VEGF itself induced IL-8 production, whereas anti-IL-8 neutralizing antibody had no effect on VEGF production in SNAP-treated HUVECs. Neither anti-VEGF nor anti-IL-8 antibodies influenced SNAP-induced HO-1 expression. Moreover, neither VEGF nor IL-8 showed an additive effect on SNAP-induced HO-1 expression. HO-1 transfection had no significant effect on productions of other CXC chemokines, such as growth-related oncogen-alpha and epithelial neutrophil activation peptide-78. Taken together, these results provide a molecular cascade showing NO-HO-1-VEGF-IL-8 sequence in human endothelial cells.
Collapse
Affiliation(s)
- Hyun-Ock Pae
- Department of Microbiology and Immunology, Wonkwang University School of Medicine, Shinyoung-Dong, Iksan-Shi, Chonbug 570-749, Republic of Korea
| | | | | | | | | |
Collapse
|
30
|
Malaguarnera L, Madeddu R, Palio E, Arena N, Malaguarnera M. Heme oxygenase-1 levels and oxidative stress-related parameters in non-alcoholic fatty liver disease patients. J Hepatol 2005; 42:585-91. [PMID: 15763346 DOI: 10.1016/j.jhep.2004.11.040] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 11/23/2004] [Accepted: 11/25/2004] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS Non-alcoholic steatohepatitis (NASH) is a disorder that is histologically characterized by macrovesicular steatosis and lobular hepatitis with necrosis or ballooning degeneration and fibrosis. NASH can range from a benign condition to end-stage liver disease. The mechanisms promoting transition from steatosis to NASH appear to involve multiple cellular adaptations to the oxidative stress occurring when fatty acid metabolism is altered. We evaluated the relationship between lipid peroxidation and other oxidative stress biomarkers with changes in expression of heme oxygenase-1 (HO-1) in human hepatic steatosis ranging from simple steatosis to NASH. METHODS HO-1 expression, lipid peroxidation, ferritin and GSH levels were assayed from liver biopsies obtained from 60 subjects: 35 with NASH, 15 with simple steatosis and 10 controls. RESULTS The HO-1 expression was significantly increased in NASH patients and the increase reflected the severity of the disease. A significant correlation was observed between the increased levels of HO-1 and ferritin, and between the increased levels of HO-1 and lipid peroxidation. Moreover, NASH patients with lower levels of GSH exhibited higher expression of HO-1. CONCLUSIONS The induction of HO-1 is an adaptive response against oxidative damage elicited by lipid peroxidation and it may be critical in the progression of the disease.
Collapse
Affiliation(s)
- Lucia Malaguarnera
- Department of Biomedical Sciences, University of Catania, Via E. De Amicis, 24, 95039 Trecastagni-Catania, Italy.
| | | | | | | | | |
Collapse
|
31
|
Biologic substances present in human colostrums demonstrate the evolution of this essential nutrient for growth and development: Insulin-like growth factor-I and prolactin. Nutr Res 2005. [DOI: 10.1016/j.nutres.2004.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Cisowski J, Loboda A, Józkowicz A, Chen S, Agarwal A, Dulak J. Role of heme oxygenase-1 in hydrogen peroxide-induced VEGF synthesis: effect of HO-1 knockout. Biochem Biophys Res Commun 2005; 326:670-6. [PMID: 15596152 DOI: 10.1016/j.bbrc.2004.11.083] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Indexed: 11/18/2022]
Abstract
Hydrogen peroxide is an important mediator of intracellular signaling, which potently enhances the expression of heme oxygenase-1 (HO-1) and upregulates synthesis of vascular endothelial growth factor (VEGF). The purpose of the present study was to explore the involvement of HO-1 in regulation of H(2)O(2)-mediated induction of VEGF synthesis. We provide genetic evidence that basal and H(2)O(2)-induced VEGF synthesis is partially dependent on HO-1. Inhibition of HO-1 activity by tin protoporphyrin (SnPPIX) resulted in downregulation of VEGF synthesis in murine fibroblasts and human keratinocytes. The relationship between HO-1 and VEGF was corroborated by using cells derived from HO-1 knockout mice, which demonstrated lower basal and H(2)O(2)-induced production of VEGF. Additionally, knock out of HO-1 gene impaired induction of VEGF by hemin, lysophosphatidylcholine, and prostaglandin-J(2). Our results provide confirmation for the involvement of HO-1 in regulation of angiogenesis.
Collapse
|