1
|
Rossi F, Liu M, Tieniber A, Etherington MS, Hanna A, Vitiello GA, Param NJ, Do K, Wang L, Antonescu CR, Zeng S, Zhang JQ, DeMatteo RP. Myosin Light-Chain Kinase Inhibition Potentiates the Antitumor Effects of Avapritinib in PDGFRA D842V-Mutant Gastrointestinal Stromal Tumor. Clin Cancer Res 2023; 29:2144-2157. [PMID: 36971786 PMCID: PMC10239357 DOI: 10.1158/1078-0432.ccr-22-0533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 01/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE To create an in vivo model of PDGFRA D842V-mutant gastrointestinal stromal tumor (GIST) and identify the mechanism of tumor persistence following avapritinib therapy. EXPERIMENTAL DESIGN We created a patient-derived xenograft (PDX) of PDGFRA D842V-mutant GIST and tested the effects of imatinib, avapritinib, and ML-7, an inhibitor of myosin light-chain kinase (MYLK). Bulk tumor RNA sequencing and oncogenic signaling were evaluated. Apoptosis, survival, and actin cytoskeleton were evaluated in GIST T1 cells and isolated PDX cells in vitro. Human GIST specimens were analyzed for MYLK expression. RESULTS The PDX was minimally responsive to imatinib but sensitive to avapritinib. Avapritinib therapy increased tumor expression of genes related to the actin cytoskeleton, including MYLK. ML-7 induced apoptosis and disrupted actin filaments in short-term cultures of PDX cells and decreased survival in GIST T1 cells in combination with imatinib or avapritinib. Combined therapy with ML-7 improved the antitumor effects of low-dose avapritinib in vivo. Furthermore, MYLK was expressed in human GIST specimens. CONCLUSIONS MYLK upregulation is a novel mechanism of tumor persistence after tyrosine kinase inhibition. Concomitant MYLK inhibition may enable the use of a lower dose of avapritinib, which is associated with dose-dependent cognitive side effects.
Collapse
Affiliation(s)
- Ferdinand Rossi
- Perelman School of Medicine, Department of Surgery, University of Pennsylvania, Philadelphia PA
| | - Mengyuan Liu
- Perelman School of Medicine, Department of Surgery, University of Pennsylvania, Philadelphia PA
| | - Andrew Tieniber
- Perelman School of Medicine, Department of Surgery, University of Pennsylvania, Philadelphia PA
| | - Mark S. Etherington
- Perelman School of Medicine, Department of Surgery, University of Pennsylvania, Philadelphia PA
| | - Andrew Hanna
- Perelman School of Medicine, Department of Surgery, University of Pennsylvania, Philadelphia PA
| | - Gerardo A. Vitiello
- Perelman School of Medicine, Department of Surgery, University of Pennsylvania, Philadelphia PA
| | - Nesteene J. Param
- Perelman School of Medicine, Department of Surgery, University of Pennsylvania, Philadelphia PA
| | - Kevin Do
- Perelman School of Medicine, Department of Surgery, University of Pennsylvania, Philadelphia PA
| | - Laura Wang
- Perelman School of Medicine, Department of Surgery, University of Pennsylvania, Philadelphia PA
| | | | - Shan Zeng
- Perelman School of Medicine, Department of Surgery, University of Pennsylvania, Philadelphia PA
| | - Jennifer Q. Zhang
- Perelman School of Medicine, Department of Surgery, University of Pennsylvania, Philadelphia PA
| | - Ronald P. DeMatteo
- Perelman School of Medicine, Department of Surgery, University of Pennsylvania, Philadelphia PA
| |
Collapse
|
2
|
Jeon JH, Kaiser EE, Waters ES, Yang X, Lourenco JM, Fagan MM, Scheulin KM, Sneed SE, Shin SK, Kinder HA, Kumar A, Platt SR, Ahn J, Duberstein KJ, Rothrock MJ, Callaway TR, Xie J, West FD, Park HJ. Tanshinone IIA-loaded nanoparticles and neural stem cell combination therapy improves gut homeostasis and recovery in a pig ischemic stroke model. Sci Rep 2023; 13:2520. [PMID: 36781906 PMCID: PMC9925438 DOI: 10.1038/s41598-023-29282-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/01/2023] [Indexed: 02/15/2023] Open
Abstract
Impaired gut homeostasis is associated with stroke often presenting with leaky gut syndrome and increased gut, brain, and systemic inflammation that further exacerbates brain damage. We previously reported that intracisternal administration of Tanshinone IIA-loaded nanoparticles (Tan IIA-NPs) and transplantation of induced pluripotent stem cell-derived neural stem cells (iNSCs) led to enhanced neuroprotective and regenerative activity and improved recovery in a pig stroke model. We hypothesized that Tan IIA-NP + iNSC combination therapy-mediated stroke recovery may also have an impact on gut inflammation and integrity in the stroke pigs. Ischemic stroke was induced, and male Yucatan pigs received PBS + PBS (Control, n = 6) or Tan IIA-NP + iNSC (Treatment, n = 6) treatment. The Tan IIA-NP + iNSC treatment reduced expression of jejunal TNF-α, TNF-α receptor1, and phosphorylated IkBα while increasing the expression of jejunal occludin, claudin1, and ZO-1 at 12 weeks post-treatment (PT). Treated pigs had higher fecal short-chain fatty acid (SCFAs) levels than their counterparts throughout the study period, and fecal SCFAs levels were negatively correlated with jejunal inflammation. Interestingly, fecal SCFAs levels were also negatively correlated with brain lesion volume and midline shift at 12 weeks PT. Collectively, the anti-inflammatory and neuroregenerative treatment resulted in increased SCFAs levels, tight junction protein expression, and decreased inflammation in the gut.
Collapse
Affiliation(s)
- Julie H Jeon
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Erin E Kaiser
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA
| | - Elizabeth S Waters
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA
- Environmental Health Science Department, University of Georgia, Athens, GA, USA
| | - Xueyuan Yang
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Jeferson M Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Madison M Fagan
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA
| | - Kelly M Scheulin
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA
| | - Sydney E Sneed
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Soo K Shin
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA
| | - Holly A Kinder
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA
| | - Anil Kumar
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Simon R Platt
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens, GA, USA
| | - Jeongyoun Ahn
- Department of Statistics, University of Georgia, Athens, GA, USA
- Department of Industrial and Systems Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kylee J Duberstein
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | | | - Todd R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Jin Xie
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Franklin D West
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Biomedical and Health Sciences Institute, University of Georgia, Athens, GA, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA
| | - Hea Jin Park
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA.
| |
Collapse
|
3
|
Kempf CL, Sammani S, Bermudez T, Song JH, Hernon VR, Hufford MK, Burt J, Camp SM, Dudek SM, Garcia JG. Critical Role for the Lung Endothelial Non‐Muscle Myosin Light Chain Kinase Isoform in the Severity of Inflammatory Murine Lung Injury. Pulm Circ 2022; 12:e12061. [PMID: 35514774 PMCID: PMC9063969 DOI: 10.1002/pul2.12061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Carrie L. Kempf
- Department of Medicine University of Arizona Health Sciences Tucson AZ USA
| | - Saad Sammani
- Department of Medicine University of Arizona Health Sciences Tucson AZ USA
| | - Tadeo Bermudez
- Department of Medicine University of Arizona Health Sciences Tucson AZ USA
| | - Jin H. Song
- Department of Medicine University of Arizona Health Sciences Tucson AZ USA
| | | | - Matthew K. Hufford
- Department of Medicine University of Arizona Health Sciences Tucson AZ USA
| | - Jessica Burt
- Department of Medicine University of Arizona Health Sciences Tucson AZ USA
| | - Sara M. Camp
- Department of Medicine University of Arizona Health Sciences Tucson AZ USA
| | - Steven M. Dudek
- Department of Medicine University of Illinois at Chicago Chicago IL USA
| | - Joe G.N. Garcia
- Department of Medicine University of Arizona Health Sciences Tucson AZ USA
| |
Collapse
|
4
|
Yu WY, Li L, Wu F, Zhang HH, Fang J, Zhong YS, Yu CH. Moslea Herba flavonoids alleviated influenza A virus-induced pulmonary endothelial barrier disruption via suppressing NOX4/NF-κB/MLCK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112641. [PMID: 32017949 DOI: 10.1016/j.jep.2020.112641] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/20/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moslae Herba, a common traditional Chinese herb with special flavor, has potential for treating respiratory and gastrointestinal diseases. AIM OF THIS STUDY Lung endothelial barrier dysfunction (LEBD) accelerates the pathogenesis of influenza A virus (IAV)-induced secondary acute lung injury. New strategies against LEBD provide benefits in prevention and treatment of IAV. Previous studies showed that flavonoids (MHF), main bioactivity fraction derived from M. Herba, exerted anti-inflammatory and antiviral activities, but the underlying protection of MHF against IAV-induced acute lung injury remained obscure. The present study was to investigate the protection of MHF against IAV-induced LEBD in vivo and in vitro. MATERIALS AND METHODS Mice were intranasally challenged with IAV and orally administered with MHF for 5 days. The pulmonary hyperpermeability of infected mice was evaluated by Evans Blue staining and in vivo imaging. Serum levels of inflammatory cytokines and mediators were detected by ELISA assay. The transepithelial electrical resistance (TER) of human pulmonary microvascular endothelial cells (HPMVECs) was measured by using TER meter. The expressions of key proteins in NOX4-mediated NF-κB/MLCK pathways were determined by western blotting. RESULTS MHF treatment reduced lung index, W/D ratios, and serum levels of inflammatory factors (IL-6, TNF-α, IL-1β, PLA2, LBT4 and ICAM-1) in IAV-infected mice. Evans blue staining and in vivo imaging results revealed that MHF alleviated IAV-induced barrier dysfunction and pulmonary hyperpermeability. Moreover, luteolin and kaempferol, the main activity compounds in MHF, significantly inhibited TNF-α-induced HPMVEC apoptosis, and downregulated NF-κB/MLCK pathway by targeting NOX4. CONCLUSION MHF attenuated IAV-induced barrier dysfunction by suppressing NOX4/NF-κB/MLCK pathway and may serve as a potential agent for the prevention of LEBD and IAV.
Collapse
Affiliation(s)
- Wen-Ying Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China
| | - Lan Li
- Zhejiang Provincial Hospital of TCM, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fang Wu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China
| | - Huan-Huan Zhang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China; Zhejiang Provincial Hospital of TCM, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jie Fang
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China
| | - Yu-Sen Zhong
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China
| | - Chen-Huan Yu
- Key Laboratory of Experimental Animal and Safety Evaluation, Zhejiang Academy of Medical Sciences, Hangzhou, 310013, China.
| |
Collapse
|
5
|
Lee BS, Lee C, Yang S, Park EK, Ku SK, Bae JS. Suppressive effects of pelargonidin on lipopolysaccharide-induced inflammatory responses. Chem Biol Interact 2019; 302:67-73. [DOI: 10.1016/j.cbi.2019.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/20/2022]
|
6
|
Mascarenhas JB, Tchourbanov AY, Fan H, Danilov SM, Wang T, Garcia JGN. Mechanical Stress and Single Nucleotide Variants Regulate Alternative Splicing of the MYLK Gene. Am J Respir Cell Mol Biol 2017; 56:29-37. [PMID: 27529643 DOI: 10.1165/rcmb.2016-0053oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nonmuscle (nm) myosin light-chain kinase isoform (MLCK), encoded by the MYLK gene, is a vital participant in regulating vascular barrier responses to mechanical and inflammatory stimuli. We determined that MYLK is alternatively spliced, yielding functionally distinct nmMLCK splice variants including nmMLCK2, a splice variant highly expressed in vascular endothelial cells (EC) and associated with reduced EC barrier integrity. We demonstrated previously that the nmMLCK2 variant lacks exon 11, which encodes a key regulatory region containing two differentially phosphorylated tyrosine residues (Y464 and Y471) that influence vascular barrier function during inflammation. In this study, we used minigene constructs and RT-PCR to interrogate biophysical factors (mechanical stress) and genetic variants (MYLK single-nucleotide polymorphisms [SNPs]) that are potentially involved in regulating MYLK alternative splicing and nmMLCK2 generation. Human lung EC exposed to pathologic mechanical stress (18% cyclic stretch) produced increased nmMLCK2 expression relative to levels of nmMLCK1 with alternative splicing significantly influenced by MYLK SNPs rs77323602 and rs147245669. In silico analyses predicted that these variants would alter exon 11 donor and acceptor sites for alternative splicing, computational predictions that were confirmed by minigene studies. The introduction of rs77323602 favored wild-type nmMLCK expression, whereas rs147245669 favored alternative splicing and deletion of exon 11, yielding increased nmMLCK2 expression. Finally, lymphoblastoid cell lines selectively harboring these MYLK SNPs (rs77323602 and rs147245669) directly validated SNP-specific effects on MYLK alternative splicing and nmMLCK2 generation. Together, these studies demonstrate that mechanical stress and MYLK SNPs regulate MYLK alternative splicing and generation of a splice variant, nmMLCK2, that contributes to the severity of inflammatory injury.
Collapse
Affiliation(s)
| | - Alex Y Tchourbanov
- 2 Arizona Research Laboratory, University of Arizona, Tucson, Arizona; and
| | - Hanli Fan
- 3 Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois
| | - Sergei M Danilov
- 1 Department of Medicine, and.,3 Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois
| | | | | |
Collapse
|
7
|
Lee IC, Kim J, Bae JS. Anti-inflammatory effects of dabrafenib in vitro and in vivo. Can J Physiol Pharmacol 2017; 95:697-707. [DOI: 10.1139/cjpp-2016-0519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The screening of bioactive compound libraries can be an effective approach for repositioning FDA-approved drugs or discovering new treatments for human diseases (drug repositioning). Drug repositioning refers to the development of existing drugs for new indications. Dabrafenib (DAB) is a B-Raf inhibitor and initially used for the treatment of metastatic melanoma therapy. Here, we tested the possible use of DAB in the treatment of lipopolysaccharide (LPS)-mediated vascular inflammatory responses. The anti-inflammatory activities of DAB were determined by measuring permeability, neutrophils adhesion and migration, and activation of pro-inflammatory proteins in LPS-activated human umbilical vein endothelial cells (HUVECs) and mice. We found that DAB inhibited LPS-induced barrier disruption, expression of cell adhesion molecules (CAMs), and adhesion and transendothelial migration of neutrophils to human endothelial cells. DAB also suppressed LPS-induced hyperpermeability and leukocytes migration in vivo. Furthermore, DAB suppressed the production of tumor necrosis factor-α (TNF-α) or interleukin (IL)-6 and the activation of nuclear factor-κB (NF-κB) or extracellular regulated kinases (ERK) 1/2 by LPS. Moreover, treatment with DAB resulted in reduced LPS-induced lethal endotoxemia. These results suggest that DAB possesses anti-inflammatory functions by inhibiting hyperpermeability, expression of CAMs, and adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases.
Collapse
Affiliation(s)
- In-Chul Lee
- Department of Cosmetic Science and Technology, Seowon University, Cheongju 28674, Republic of Korea
| | - Jongdoo Kim
- Cancer Control Team, Gachon University Gil Medical Center, Incheon 21565, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
8
|
Lu Y, Lin H, Zhang J, Wei J, Sun J, Han L. Sijunzi Decoction attenuates 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats and ameliorates TNBS-induced claudin-2 damage via NF-κB pathway in Caco2 cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:35. [PMID: 28073341 PMCID: PMC5223340 DOI: 10.1186/s12906-016-1549-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 12/19/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND SijunziDecoction (SJZD) is a traditional Chinese medicine prescription used to treat the diseases of gastrointestinal tract since ancient times. The objective of this study was to investigate the protective effects of SJZD on TNBS-induced colitis in rats and TNBS-damaged Caco2 cells. METHODS The rat colitis model was induced by 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). SJZD (2.8 5.6, 11.2 g/kg) or salazosulfapyridine (SASP) (0.4 g/kg) was administrated orally in rats for 7 days. DAI, pathological scores and the expression of claudin-2 were evaluated. Then we explored the effect and mechanism of SijunziDecoction Serum (SJZDS) onTNBS-damaged Caco2 cells to figure out intestinal barrier protective effect and mechanism of SJZD. RESULTS SJZD significantly ameliorated the severity of TNBS-induced colitis and downregulated the level of claudin-2 in colonic tissues. SJZDS promoted proliferation and inhibited apoptosis ofTNBS-damaged Caco2 cells. In Caco2 cell monolayers, we provided mechanistic evidence that SJZDS-induced increased TEER and decreased permeability after TNBS damage, which were mediated through claudin-2 and NF-κB pathway, including the upregulation of claudin-2, decreased activity of NF-κB p65, reduced level of NF-κB p65 and MLCK. CONCLUSIONS Our results indicated that SJZD possesses protective effect of intestinal barrier towards TNBS-induced colitis in rats and TNBS-damaged Caco2 cells in vitro. SJZDis a potential protective agent of intestinal barrier that deserves further investigation.
Collapse
Affiliation(s)
- Yue Lu
- The Second Clinical College, GuangzhouUniversity of Chinese Medicine, Guangzhou, 510000, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510000, China
| | - HanJie Lin
- The Second Clinical College, GuangzhouUniversity of Chinese Medicine, Guangzhou, 510000, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510000, China
| | - JinWei Zhang
- The Second Clinical College, GuangzhouUniversity of Chinese Medicine, Guangzhou, 510000, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510000, China
| | - JianAn Wei
- The Second Clinical College, GuangzhouUniversity of Chinese Medicine, Guangzhou, 510000, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510000, China
| | - Jing Sun
- The Second Clinical College, GuangzhouUniversity of Chinese Medicine, Guangzhou, 510000, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510000, China
| | - Ling Han
- The Second Clinical College, GuangzhouUniversity of Chinese Medicine, Guangzhou, 510000, China.
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
9
|
Shimizu Y, Camp SM, Sun X, Zhou T, Wang T, Garcia JGN. Sp1-mediated nonmuscle myosin light chain kinase expression and enhanced activity in vascular endothelial growth factor-induced vascular permeability. Pulm Circ 2015; 5:707-15. [PMID: 26697178 DOI: 10.1086/684124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Despite the important role played by the nonmuscle isoform of myosin light chain kinase (nmMLCK) in vascular barrier regulation and the implication of both nmMLCK and vascular endothelial growth factor (VEGF) in the pathogenesis of acute respiratory distress syndrome (ARDS), the role played by nmMLCK in VEGF-induced vascular permeability is poorly understood. In this study, the role played by nmMLCK in VEGF-induced vascular hyperpermeability was investigated. Human lung endothelial cell barrier integrity in response to VEGF is examined in both the absence and the presence of nmMLCK small interfering RNAs. Levels of nmMLCK messenger RNA (mRNA), protein, and promoter activity expression were monitored after VEGF stimulation in lung endothelial cells. nmMYLK promoter activity was assessed using nmMYLK promoter luciferase reporter constructs with a series of nested deletions. nmMYLK transcriptional regulation was further characterized by examination of a key transcriptional factor. nmMLCK plays an important role in VEGF-induced permeability. We found that activation of the VEGF signaling pathway in lung endothelial cells increases MYLK gene product at both mRNA and protein levels. Increased nmMLCK mRNA and protein expression is a result of increased nmMYLK promoter activity, regulated in part by binding of the Sp1 transcription factor on triggering by the VEGF signaling pathway. Taken together, these findings suggest that MYLK is an important ARDS candidate gene and a therapeutic target that is highly influenced by excessive VEGF concentrations in the inflamed lung.
Collapse
Affiliation(s)
- Yuka Shimizu
- Department of Medicine and University of Arizona Respiratory Center, University of Arizona, Tucson, Arizona, USA
| | - Sara M Camp
- Department of Medicine and University of Arizona Respiratory Center, University of Arizona, Tucson, Arizona, USA
| | - Xiaoguang Sun
- Department of Medicine and University of Arizona Respiratory Center, University of Arizona, Tucson, Arizona, USA
| | - Tong Zhou
- Department of Medicine and University of Arizona Respiratory Center, University of Arizona, Tucson, Arizona, USA
| | - Ting Wang
- Department of Medicine and University of Arizona Respiratory Center, University of Arizona, Tucson, Arizona, USA
| | - Joe G N Garcia
- Department of Medicine and University of Arizona Respiratory Center, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
10
|
Xu C, Wu X, Hack BK, Bao L, Cunningham PN. TNF causes changes in glomerular endothelial permeability and morphology through a Rho and myosin light chain kinase-dependent mechanism. Physiol Rep 2015; 3:3/12/e12636. [PMID: 26634902 PMCID: PMC4760430 DOI: 10.14814/phy2.12636] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A key function of the endothelium is to serve as a regulated barrier between tissue compartments. We have previously shown that tumor necrosis factor (TNF) plays a crucial role in lipopolysaccharide (LPS)‐induced acute kidney injury, in part by causing injury to the renal endothelium through its receptor TNFR1. Here, we report that TNF increased permeability to albumin in primary culture mouse renal endothelial cells, as well as human glomerular endothelial cells. This process occurred in association with changes in the actin cytoskeleton and was associated with gaps between previously confluent cells in culture and decreases in the tight junction protein occludin. This process was dependent on myosin light chain activation, as seen by its prevention with Rho‐associated kinase and myosin light chain kinase (MLCK) inhibitors. Surprisingly, permeability was not blocked by inhibition of apoptosis with caspase inhibitors. Additionally, we found that the renal glycocalyx, which plays an important role in barrier function, was also degraded by TNF in a Rho and MLCK dependent fashion. TNF treatment caused a decrease in the size of endothelial fenestrae, dependent on Rho and MLCK, although the relevance of this to changes in permeability is uncertain. In summary, TNF‐induced barrier dysfunction in renal endothelial cells is crucially dependent upon the Rho/MLCK signaling pathway.
Collapse
Affiliation(s)
- Chang Xu
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Xiaoyan Wu
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Bradley K Hack
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Lihua Bao
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Patrick N Cunningham
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
11
|
Lee W, Ku SK, Bae JS. Anti-inflammatory effects of Baicalin, Baicalein, and Wogonin in vitro and in vivo. Inflammation 2015; 38:110-25. [PMID: 25249339 DOI: 10.1007/s10753-014-0013-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here, three structurally related polyphenols found in the Chinese herb Huang Qui, namely baicalin, baicalein, and wogonin, were examined for its effects on inflammatory responses by monitoring the effects of baicalin, baicalein, and wogonin on lipopolysaccharide (LPS)-mediated vascular inflammatory responses. We found that each compound inhibited LPS-induced barrier disruption, expression of cell adhesion molecules (CAMs), and adhesion/transendothelial migration of monocytes to human endothelial cells. Each compound induced potent inhibition of phorbol-12-myristate 13-acetate and LPS-induced endothelial cell protein C receptor shedding. It also suppressed LPS-induced hyperpermeability and leukocytes migration in vivo. Furthermore, each compound suppressed the production of tumor necrosis factor-α or interleukin-6 and the activation of nuclear factor-κB or extracellular regulated kinases 1/2 by LPS. Moreover, treatment with each compound resulted in reduced LPS-induced lethal endotoxemia. These results suggest that baicalin, baicalein, and wogonin posses anti-inflammatory functions by inhibiting hyperpermeability, expression of CAMs, and adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu, 702-701, Republic of Korea
| | | | | |
Collapse
|
12
|
Anti-inflammatory effects of methylthiouracil in vitro and in vivo. Toxicol Appl Pharmacol 2015; 288:374-86. [DOI: 10.1016/j.taap.2015.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/25/2015] [Accepted: 08/14/2015] [Indexed: 01/11/2023]
|
13
|
Anti-inflammatory effects of vicenin-2 and scolymoside in vitro and in vivo. Inflamm Res 2015; 64:1005-21. [DOI: 10.1007/s00011-015-0886-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/28/2015] [Accepted: 10/06/2015] [Indexed: 12/21/2022] Open
|
14
|
Rizzo AN, Sammani S, Esquinca AE, Jacobson JR, Garcia JGN, Letsiou E, Dudek SM. Imatinib attenuates inflammation and vascular leak in a clinically relevant two-hit model of acute lung injury. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1294-304. [PMID: 26432864 DOI: 10.1152/ajplung.00031.2015] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 09/27/2015] [Indexed: 12/29/2022] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), an illness characterized by life-threatening vascular leak, is a significant cause of morbidity and mortality in critically ill patients. Recent preclinical studies and clinical observations have suggested a potential role for the chemotherapeutic agent imatinib in restoring vascular integrity. Our prior work demonstrates differential effects of imatinib in mouse models of ALI, namely attenuation of LPS-induced lung injury but exacerbation of ventilator-induced lung injury (VILI). Because of the critical role of mechanical ventilation in the care of patients with ARDS, in the present study we pursued an assessment of the effectiveness of imatinib in a "two-hit" model of ALI caused by combined LPS and VILI. Imatinib significantly decreased bronchoalveolar lavage protein, total cells, neutrophils, and TNF-α levels in mice exposed to LPS plus VILI, indicating that it attenuates ALI in this clinically relevant model. In subsequent experiments focusing on its protective role in LPS-induced lung injury, imatinib attenuated ALI when given 4 h after LPS, suggesting potential therapeutic effectiveness when given after the onset of injury. Mechanistic studies in mouse lung tissue and human lung endothelial cells revealed that imatinib inhibits LPS-induced NF-κB expression and activation. Overall, these results further characterize the therapeutic potential of imatinib against inflammatory vascular leak.
Collapse
Affiliation(s)
- Alicia N Rizzo
- University of Illinois Hospital and Health Sciences System, Division of Pulmonary, Critical Care, Sleep and Allergy, Chicago, Illinois; University of Illinois at Chicago, Department of Pharmacology, Chicago, Illinois
| | - Saad Sammani
- University of Illinois Hospital and Health Sciences System, Division of Pulmonary, Critical Care, Sleep and Allergy, Chicago, Illinois
| | - Adilene E Esquinca
- University of Illinois Hospital and Health Sciences System, Division of Pulmonary, Critical Care, Sleep and Allergy, Chicago, Illinois
| | - Jeffrey R Jacobson
- University of Illinois Hospital and Health Sciences System, Division of Pulmonary, Critical Care, Sleep and Allergy, Chicago, Illinois
| | - Joe G N Garcia
- Arizona Health Sciences Center, University of Arizona, Tucson, Arizona
| | - Eleftheria Letsiou
- University of Illinois Hospital and Health Sciences System, Division of Pulmonary, Critical Care, Sleep and Allergy, Chicago, Illinois
| | - Steven M Dudek
- University of Illinois Hospital and Health Sciences System, Division of Pulmonary, Critical Care, Sleep and Allergy, Chicago, Illinois; University of Illinois at Chicago, Department of Pharmacology, Chicago, Illinois;
| |
Collapse
|
15
|
Martinsen A, Dessy C, Morel N. Regulation of calcium channels in smooth muscle: new insights into the role of myosin light chain kinase. Channels (Austin) 2015; 8:402-13. [PMID: 25483583 DOI: 10.4161/19336950.2014.950537] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Smooth muscle myosin light chain kinase (MLCK) plays a crucial role in artery contraction, which regulates blood pressure and blood flow distribution. In addition to this role, MLCK contributes to Ca(2+) flux regulation in vascular smooth muscle (VSM) and in non-muscle cells, where cytoskeleton has been suggested to help Ca(2+) channels trafficking. This conclusion is based on the use of pharmacological inhibitors of MLCK and molecular and cellular techniques developed to down-regulate the enzyme. Dissimilarities have been observed between cells and whole tissues, as well as between large conductance and small resistance arteries. A differential expression in MLCK and ion channels (either voltage-dependent Ca(2+) channels or non-selective cationic channels) could account for these observations, and is in line with the functional properties of the arteries. A potential involvement of MLCK in the pathways modulating Ca(2+) entry in VSM is described in the present review.
Collapse
Key Words
- CaM, calmodulin
- ER, endoplasmic reticulum
- MLCK, myosin light chain kinase
- Myosin light chain kinase
- ROC, receptor-operated Ca2+ (channel)
- SMC, smooth muscle cell
- SOC, store-operated Ca2+ (channel)
- SR, sarcoplasmic reticulum
- TRP
- TRP, transient receptor potential (channel)
- VOC, voltage-operated Ca2+ (channel)
- VSM, vascular smooth muscle
- VSMC, vascular smooth muscle cell
- [Ca2+]cyt, cytosolic Ca2+ concentration
- siRNA, small interfering RNA
- vascular smooth muscle
- voltage-dependent calcium channels
Collapse
Affiliation(s)
- A Martinsen
- a Cell physiology; IoNS; UCLouvain ; Brussels , Belgium
| | | | | |
Collapse
|
16
|
Interaction in endothelium of non-muscular myosin light-chain kinase and the NF-κB pathway is critical to lipopolysaccharide-induced vascular hyporeactivity. Clin Sci (Lond) 2015. [PMID: 26201020 DOI: 10.1042/cs20140625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During sepsis, endothelial barrier dysfunction contributes to cardiovascular failure, mainly through the release of oxidative metabolites by penetrant leukocytes. We reported the non-muscular isoform of myosin light chain kinase (nmMLCK) playing a pivotal role in endotoxin shock injury associated with oxidative and nitrative stresses, and vascular hyporeactivity. The present study was aimed at understanding the molecular mechanism of lipopolysaccharide (LPS)-induced vascular alterations as well as studying a probable functional association of nmMLCK with nuclear factor κ-light-chain enhancer of activated B cells (NF-κB). Aortic rings from mice were exposed in vitro to LPS and, then, vascular reactivity was measured. Human aortic endothelial cells (HAoECs) were incubated with LPS, and interaction of nmMLCK with NF-κB was analysed. We provide evidence that nmMLCK deletion prevents vascular hyporeactivity induced by in vitro LPS treatment but not endothelial dysfunction in the aorta. Deletion of nmMLCK inhibits LPS-induced NF-κB activation and increases nitric oxide (NO) release via induction of inducible NO synthase (iNOS) within the vascular wall. Also, removal of endothelium prevented both NF-κB and iNOS expression in aortic rings. Among the proinflammatory factors released by LPS-treated endothelial cells, interleukin-6 accounts for the induction of iNOS on smooth muscle cells in response to LPS. Of particular interest is the demonstration that, in HAoECs, LPS-induced NF-κB activation occurs via increased MLCK activity sensitive to the MLCK inhibitor, ML-7, and physical interactions between nmMLCK and NF-κB. We report for the first time on NF-κB as a novel partner of nmMLCK within endothelial cells. The present study demonstrates a pivotal role of nmMLCK in vascular inflammatory pathologies.
Collapse
|
17
|
Huang Y, Luo X, Li X, Song X, Wei L, Li Z, You Q, Guo Q, Lu N. Wogonin inhibits LPS-induced vascular permeability via suppressing MLCK/MLC pathway. Vascul Pharmacol 2015; 72:43-52. [PMID: 25956732 DOI: 10.1016/j.vph.2015.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 04/09/2015] [Accepted: 04/20/2015] [Indexed: 10/24/2022]
Abstract
Wogonin, a naturally occurring monoflavonoid extracted from the root of Scutellaria baicalensis Georgi, has been shown to have anti-inflammatory and anti-tumor activities and inhibits oxidant stress-induced vascular permeability. However, the influence of wogonin on vascular hyperpermeability induced by overabounded inflammatory factors often appears in inflammatory diseases and tumor is not well known. In this study, we evaluate the effects of wogonin on LPS induced vascular permeability in human umbilical vein endothelial cells (HUVECs) and investigate the underlying mechanisms. We find that wogonin suppresses the LPS-stimulated hyperactivity and cytoskeleton remodeling of HUVECs, promotes the expression of junctional proteins including VE-Cadherin, Claudin-5 and ZO-1, as well as inhibits the invasion of MDA-MB-231 across EC monolayer. Miles vascular permeability assay proves that wogonin can restrain the extravasated Evans in vivo. The mechanism studies reveal that the expressions of TLR4, p-PLC, p-MLCK and p-MLC are decreased by wogonin without changing the total steady state protein levels of PLC, MLCK and MLC. Moreover, wogonin can also inhibit KCl-activated MLCK/MLC pathway, and further affect vascular permeability. Significantly, compared with wortmannin, the inhibitor of MLCK/MLC pathway, wogonin exhibits similar inhibition effects on the expression of p-MLCK, p-MLC and LPS-induced vascular hyperpermeability. Taken together, wogonin can inhibit LPS-induced vascular permeability by suppressing the MLCK/MLC pathway, suggesting a therapeutic potential for the diseases associated with the development of both inflammatory and tumor.
Collapse
Affiliation(s)
- Yujie Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Xuwei Luo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Xiaorui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Xiuming Song
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd., PR China
| | - Libin Wei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Zhiyu Li
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Qidong You
- JiangSu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| |
Collapse
|
18
|
Lee W, Bae JS. Anti-inflammatory Effects of Aspalathin and Nothofagin from Rooibos (Aspalathus linearis) In Vitro and In Vivo. Inflammation 2015; 38:1502-16. [DOI: 10.1007/s10753-015-0125-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Lee W, Ku SK, Bae JS. Vascular barrier protective effects of orientin and isoorientin in LPS-induced inflammation in vitro and in vivo. Vascul Pharmacol 2014; 62:3-14. [DOI: 10.1016/j.vph.2014.04.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/12/2014] [Accepted: 04/18/2014] [Indexed: 01/11/2023]
|
20
|
Lee W, Ku SK, Min BW, Lee S, Jee JG, Kim JA, Bae JS. Vascular barrier protective effects of pellitorine in LPS-induced inflammation in vitro and in vivo. Fitoterapia 2013; 92:177-87. [PMID: 24262867 DOI: 10.1016/j.fitote.2013.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/06/2013] [Accepted: 11/09/2013] [Indexed: 12/22/2022]
Abstract
Pellitorine (PT), an active amide compound, is well known to possess insecticidal, antibacterial and anticancer properties. In this study, we first investigated the possible barrier protective effects of pellitorine against pro-inflammatory responses induced by lipopolysaccharide (LPS) and the associated signaling pathways in vitro and in vivo. The barrier protective activities of PT were determined by measuring permeability, monocyte adhesion and migration, and activation of pro-inflammatory proteins in LPS-activated human umbilical vein endothelial cells (HUVECs) and in mice. We found that PT inhibited LPS-induced barrier disruption, expression of cell adhesion molecules (CAMs) and adhesion/transendothelial migration of monocytes to human endothelial cells. PT also suppressed LPS-induced hyperpermeability and leukocyte migration in vivo. Further studies revealed that PT suppressed the production of tumor necrosis factor-α (TNF-α) or Interleukin (IL)-6 and activation of nuclear factor-κB (NF-κB) or extracellular regulated kinases (ERK) 1/2 by LPS. Moreover, treatment with PT resulted in reduced LPS-induced lethal endotoxemia. These results suggest that PT protects vascular barrier integrity by inhibiting hyperpermeability, expression of CAMs, and adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea; Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715, Republic of Korea
| | - Byung-Woon Min
- Department of BioMedical Clinical Pathology, Hanlyo University, Gwangyang 545-704, Republic of Korea
| | - Sangkyu Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Jun-Goo Jee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Jeong Ah Kim
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea.
| |
Collapse
|
21
|
Lee W, Yoo H, Kim JA, Lee S, Jee JG, Lee MY, Lee YM, Bae JS. Barrier protective effects of piperlonguminine in LPS-induced inflammation in vitro and in vivo. Food Chem Toxicol 2013; 58:149-57. [PMID: 23619565 DOI: 10.1016/j.fct.2013.04.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 03/27/2013] [Accepted: 04/12/2013] [Indexed: 01/04/2023]
Abstract
Piperlonguminine (PL), an important component of Piper longum fruits, is well known to possess potent anti-hyperlipidemic, anti-platelet and anti-melanogenesis activities. In this study, we first investigated the possible barrier protective effects of piperlonguminine against proinflammatory responses induced by lipopolysaccharide (LPS) and the associated signaling pathways in vitro and in vivo. The barrier protective activities of PL were determined by measuring permeability, monocytes adhesion and migration, and activation of proinflammatory proteins in LPS-activated human umbilical vein endothelial cells (HUVECs) and in mice. We found that PL inhibited LPS-induced barrier disruption, expression of cell adhesion molecules (CAMs) and adhesion/transendothelial migration of monocytes to human endothelial cells. PL also suppressed LPS-induced hyperpermeability and leukocytes migration in vivo. Further studies revealed that PL suppressed the production of tumor necrosis factor-α (TNF-α) or Interleukin (IL)-6 and activation of nuclear factor-κB (NF-κB) or extracellular regulated kinases (ERK) 1/2 by LPS. Moreover, treatment with PL resulted in reduced LPS-induced septic mortality. Collectively, these results suggest that PL protects vascular barrier integrity by inhibiting hyperpermeability, expression of CAMs, adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Claudin-2 regulates colorectal inflammation via myosin light chain kinase-dependent signaling. Dig Dis Sci 2013; 58:1546-59. [PMID: 23306855 DOI: 10.1007/s10620-012-2535-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 12/20/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND Claudins have been demonstrated to be associated with inflammatory bowel disease (IBD), but the specific role of claudin-2 in colorectal inflammation remains undefined. AIMS We aimed to determine the role of claudin-2 in TNFα-induced colorectal inflammation. METHODS We used claudin-2 (-/-) mice to assess the role of claudin-2 in colon. The mice were intraperitoneally injected with 3 μg of recombinant murine TNFα, and the NF-κB signaling and mRNA expression levels of proinflammatory cytokines and myosin light chain kinase (MLCK) were evaluated. Moreover, in claudin-2 (-/-) mice, colitis was induced by the administration of dextran sodium sulfate (DSS). The involvement of claudin-2 in colorectal inflammation was also investigated using the Caco-2 human colon adenocarcinoma cell line, and the expression of claudin-2 was downregulated using claudin-2 siRNA. RESULTS TNFα-induced colorectal inflammation via NF-κB signaling activation was enhanced in claudin-2 (-/-) mice compared with that in claudin-2 (+/+) mice. MLCK expression level in the colon tissue of claudin-2 (-/-) mice treated with TNFα was enhanced in comparison to that of the claudin-2 (+/+) mice. DSS-induced colitis was more severe in the claudin-2 (-/-) mice than in the claudin-2 (+/-) mice. In in vitro experiments, the decreased expression of claudin-2 enhanced the expressions of IL-6, IL-1β and MLCK. CONCLUSIONS Our findings concerning the role of claudin-2 in epithelial inflammatory responses enrich our collective understanding of mucosal homeostasis and intestinal diseases such as IBD. Furthermore, the results of this study indicate that claudin-2 and MLCK are potential therapeutic targets for treatments against intestinal disease.
Collapse
|
23
|
Kuo CY, Chou TY, Chen CM, Tsai YF, Hwang GY, Hwang TL. Hepatitis B virus X protein disrupts stress fiber formation and triggers apoptosis. Virus Res 2013; 175:20-9. [PMID: 23591626 DOI: 10.1016/j.virusres.2013.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/22/2013] [Accepted: 03/26/2013] [Indexed: 12/28/2022]
Abstract
Cytoskeletal proteins are key participants in the cellular progression to apoptosis. In a previous study we injected nude mice with CCL13-HBx cells and identified in contrast to non-HBx transfected cells a differentially phosphorylated myosin light chain (p-MLC) by two-dimensional PAGE and mass spectrometry of the tumor material. To investigate the role of HBx in myosin light chain kinase (MLCK) signaling pathways, we analyzed the key molecules, p-MLC and MLCK, by western blotting. Immunofluorescence staining analysis showed that HBx disrupted stress fiber formation and that focal adhesion kinase (FAK) and integrin-linked kinase (ILK) were regulated by HBx-mediated phosphatase and tensin homolog (PTEN). We also used pharmacological inhibitors to explore the correlation between cytoskeletal rearrangements and HBx-mediated cell apoptosis via an MLCK and a PTEN-dependent pathway. The results showed that both ML9 and bvp restored the effects caused by HBx induction. Our findings suggest that HBx disrupts stress fiber formation and triggers apoptosis via an MLCK and a PTEN-dependent pathway.
Collapse
Affiliation(s)
- Chan-Yen Kuo
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | | | | | | | | | | |
Collapse
|
24
|
Endothelial and epithelial barriers in graft-versus-host disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 763:105-31. [PMID: 23397621 DOI: 10.1007/978-1-4614-4711-5_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Endothelial and epithelial cells form selectively permeable barriers that separate tissue compartments. These cells coordinate movement between the lumen and tissue via the transcellular and paracellular pathways. The primary determinant of paracellular permeability is the tight junction, which forms an apical belt-like structure around endothelial and epithelial cells. This chapter discusses endothelial and epithelial barriers in graft-versus-host disease after allogeneic bone marrow transplantation, with a focus on the tight junction and its role in regulating paracellular permeability. Recent studies suggest that in graft-versus-host disease, pathological increases in paracellular permeability, or barrier dysfunction, are initiated by pretransplant conditioning and sustained by alloreactive cells and the proinflammatory milieu. The intestinal epithelium is a significant focus, as it is a target organ of graft-versus-host disease, and the mechanisms of barrier regulation in intestinal epithelium have been well characterized. Finally, we propose a model that incorporates endothelial and epithelial barrier dysfunction in graft-versus-host disease and discuss modulating barrier properties as a therapeutic approach.
Collapse
|
25
|
Tauseef M, Knezevic N, Chava KR, Smith M, Sukriti S, Gianaris N, Obukhov AG, Vogel SM, Schraufnagel DE, Dietrich A, Birnbaumer L, Malik AB, Mehta D. TLR4 activation of TRPC6-dependent calcium signaling mediates endotoxin-induced lung vascular permeability and inflammation. ACTA ACUST UNITED AC 2012; 209:1953-68. [PMID: 23045603 PMCID: PMC3478927 DOI: 10.1084/jem.20111355] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lung vascular endothelial barrier disruption and the accompanying inflammation are primary pathogenic features of acute lung injury (ALI); however, the basis for the development of both remains unclear. Studies have shown that activation of transient receptor potential canonical (TRPC) channels induces Ca(2+) entry, which is essential for increased endothelial permeability. Here, we addressed the role of Toll-like receptor 4 (TLR4) intersection with TRPC6-dependent Ca(2+) signaling in endothelial cells (ECs) in mediating lung vascular leakage and inflammation. We find that the endotoxin (lipopolysaccharide; LPS) induces Ca(2+) entry in ECs in a TLR4-dependent manner. Moreover, deletion of TRPC6 renders mice resistant to endotoxin-induced barrier dysfunction and inflammation, and protects against sepsis-induced lethality. TRPC6 induces Ca(2+) entry in ECs, which is secondary to the generation of diacylglycerol (DAG) induced by LPS. Ca(2+) entry mediated by TRPC6, in turn, activates the nonmuscle myosin light chain kinase (MYLK), which not only increases lung vascular permeability but also serves as a scaffold to promote the interaction of myeloid differentiation factor 88 and IL-1R-associated kinase 4, which are required for NF-κB activation and lung inflammation. Our findings suggest that TRPC6-dependent Ca(2+) entry into ECs, secondary to TLR4-induced DAG generation, participates in mediating both lung vascular barrier disruption and inflammation induced by endotoxin.
Collapse
Affiliation(s)
- Mohammad Tauseef
- Department of Pharmacology, 2 Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 61605, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sun C, Wu MH, Yuan SY. Nonmuscle myosin light-chain kinase deficiency attenuates atherosclerosis in apolipoprotein E-deficient mice via reduced endothelial barrier dysfunction and monocyte migration. Circulation 2011; 124:48-57. [PMID: 21670231 DOI: 10.1161/circulationaha.110.988915] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Endothelial dysfunction and monocyte migration are key events in the pathogenesis of atherosclerosis. Nonmuscle myosin light-chain kinase (nmMLCK), the predominant MLCK isoform in endothelial cells, has been shown to contribute to vascular inflammation by altering endothelial barrier function. However, its impact on atherogenesis remains unknown. METHODS AND RESULTS We investigated the role of nmMLCK in the development of atherosclerotic lesions in apolipoprotein E-deficient (apoE(-/-)) mice fed an atherogenic diet for 12 weeks. Histopathological examination demonstrated that nmMLCK deficiency (apoE(-/-)nmmlck(-/-)) reduced the size of aortic lesions by 53%, lipid contents by 44%, and macrophage deposition by 40%. Western blotting and reverse-transcription polymerase chain reaction revealed the expression of nmMLCK in aortic endothelial cells and peripheral blood monocytes. Measurements of transendothelial electric resistance indicated that nmMLCK deficiency attenuated endothelial barrier dysfunction caused by thrombin, oxidized low-density lipoprotein, and tumor necrosis factor α. In monocytes, nmMLCK deficiency reduced their migration in response to the chemokine monocyte chemoattractant protein-1. Further mechanistic studies showed that nmMLCK acted through both myosin light chain phosphorylation-coupled and -uncoupled pathways; the latter involved Rous sacracoma virus homolog genes-encoded tyrosine kinases (Src) signaling. Moreover, depletion of Src via gene silencing, site-specific mutagenesis, or pharmacological inhibition of Src greatly attenuated nmMLCK-dependent endothelial barrier dysfunction and monocyte migration. CONCLUSIONS Nonmuscle myosin light-chain kinase contributes to atherosclerosis by regulating endothelial barrier function and monocyte migration via mechanisms involving not only kinase-mediated MLC phosphorylation but also Src activation.
Collapse
Affiliation(s)
- Chongxiu Sun
- Department of Surgery, University of California Davis School of Medicine, 4625 2nd Ave, Room 3005, Sacramento, CA 95817, USA
| | | | | |
Collapse
|
27
|
Mirzapoiazova T, Moitra J, Moreno-Vinasco L, Sammani S, Turner JR, Chiang ET, Evenoski C, Wang T, Singleton PA, Huang Y, Lussier YA, Watterson DM, Dudek SM, Garcia JGN. Non-muscle myosin light chain kinase isoform is a viable molecular target in acute inflammatory lung injury. Am J Respir Cell Mol Biol 2011; 44:40-52. [PMID: 20139351 PMCID: PMC3028257 DOI: 10.1165/rcmb.2009-0197oc] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Accepted: 11/24/2009] [Indexed: 01/03/2023] Open
Abstract
Acute lung injury (ALI) and mechanical ventilator-induced lung injury (VILI), major causes of acute respiratory failure with elevated morbidity and mortality, are characterized by significant pulmonary inflammation and alveolar/vascular barrier dysfunction. Previous studies highlighted the role of the non-muscle myosin light chain kinase isoform (nmMLCK) as an essential element of the inflammatory response, with variants in the MYLK gene that contribute to ALI susceptibility. To define nmMLCK involvement further in acute inflammatory syndromes, we used two murine models of inflammatory lung injury, induced by either an intratracheal administration of lipopolysaccharide (LPS model) or mechanical ventilation with increased tidal volumes (the VILI model). Intravenous delivery of the membrane-permeant MLC kinase peptide inhibitor, PIK, produced a dose-dependent attenuation of both LPS-induced lung inflammation and VILI (~50% reductions in alveolar/vascular permeability and leukocyte influx). Intravenous injections of nmMLCK silencing RNA, either directly or as cargo within angiotensin-converting enzyme (ACE) antibody-conjugated liposomes (to target the pulmonary vasculature selectively), decreased nmMLCK lung expression (∼70% reduction) and significantly attenuated LPS-induced and VILI-induced lung inflammation (∼40% reduction in bronchoalveolar lavage protein). Compared with wild-type mice, nmMLCK knockout mice were significantly protected from VILI, with significant reductions in VILI-induced gene expression in biological pathways such as nrf2-mediated oxidative stress, coagulation, p53-signaling, leukocyte extravasation, and IL-6-signaling. These studies validate nmMLCK as an attractive target for ameliorating the adverse effects of dysregulated lung inflammation.
Collapse
Affiliation(s)
- Tamara Mirzapoiazova
- Department of Medicine, University of Chicago; Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago; Department of Pathology; Section of Genetic Medicine, University of Chicago; Northwestern Medical School; and Institute for Personalized and Respiratory Medicine, University of Illinois at Chicago, Chicago Illinois
| | - Jaideep Moitra
- Department of Medicine, University of Chicago; Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago; Department of Pathology; Section of Genetic Medicine, University of Chicago; Northwestern Medical School; and Institute for Personalized and Respiratory Medicine, University of Illinois at Chicago, Chicago Illinois
| | - Liliana Moreno-Vinasco
- Department of Medicine, University of Chicago; Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago; Department of Pathology; Section of Genetic Medicine, University of Chicago; Northwestern Medical School; and Institute for Personalized and Respiratory Medicine, University of Illinois at Chicago, Chicago Illinois
| | - Saad Sammani
- Department of Medicine, University of Chicago; Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago; Department of Pathology; Section of Genetic Medicine, University of Chicago; Northwestern Medical School; and Institute for Personalized and Respiratory Medicine, University of Illinois at Chicago, Chicago Illinois
| | - Jerry R. Turner
- Department of Medicine, University of Chicago; Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago; Department of Pathology; Section of Genetic Medicine, University of Chicago; Northwestern Medical School; and Institute for Personalized and Respiratory Medicine, University of Illinois at Chicago, Chicago Illinois
| | - Eddie T. Chiang
- Department of Medicine, University of Chicago; Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago; Department of Pathology; Section of Genetic Medicine, University of Chicago; Northwestern Medical School; and Institute for Personalized and Respiratory Medicine, University of Illinois at Chicago, Chicago Illinois
| | - Carrie Evenoski
- Department of Medicine, University of Chicago; Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago; Department of Pathology; Section of Genetic Medicine, University of Chicago; Northwestern Medical School; and Institute for Personalized and Respiratory Medicine, University of Illinois at Chicago, Chicago Illinois
| | - Ting Wang
- Department of Medicine, University of Chicago; Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago; Department of Pathology; Section of Genetic Medicine, University of Chicago; Northwestern Medical School; and Institute for Personalized and Respiratory Medicine, University of Illinois at Chicago, Chicago Illinois
| | - Patrick A. Singleton
- Department of Medicine, University of Chicago; Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago; Department of Pathology; Section of Genetic Medicine, University of Chicago; Northwestern Medical School; and Institute for Personalized and Respiratory Medicine, University of Illinois at Chicago, Chicago Illinois
| | - Yong Huang
- Department of Medicine, University of Chicago; Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago; Department of Pathology; Section of Genetic Medicine, University of Chicago; Northwestern Medical School; and Institute for Personalized and Respiratory Medicine, University of Illinois at Chicago, Chicago Illinois
| | - Yves A. Lussier
- Department of Medicine, University of Chicago; Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago; Department of Pathology; Section of Genetic Medicine, University of Chicago; Northwestern Medical School; and Institute for Personalized and Respiratory Medicine, University of Illinois at Chicago, Chicago Illinois
| | - D. Martin Watterson
- Department of Medicine, University of Chicago; Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago; Department of Pathology; Section of Genetic Medicine, University of Chicago; Northwestern Medical School; and Institute for Personalized and Respiratory Medicine, University of Illinois at Chicago, Chicago Illinois
| | - Steven M. Dudek
- Department of Medicine, University of Chicago; Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago; Department of Pathology; Section of Genetic Medicine, University of Chicago; Northwestern Medical School; and Institute for Personalized and Respiratory Medicine, University of Illinois at Chicago, Chicago Illinois
| | - Joe G. N. Garcia
- Department of Medicine, University of Chicago; Section of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois at Chicago; Department of Pathology; Section of Genetic Medicine, University of Chicago; Northwestern Medical School; and Institute for Personalized and Respiratory Medicine, University of Illinois at Chicago, Chicago Illinois
| |
Collapse
|
28
|
Flynn PG, Helfman DM. Non-muscle myosin IIB helps mediate TNF cell death signaling independent of actomyosin contractility (AMC). J Cell Biochem 2010; 110:1365-75. [PMID: 20564232 DOI: 10.1002/jcb.22653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Non-muscle myosin II (NM II) helps mediate survival and apoptosis in response to TNF-alpha (TNF), however, NM II's mechanism of action in these processes is not fully understood. NM II isoforms are involved in a variety of cellular processes and differences in their enzyme kinetics, localization, and activation allow NM II isoforms to have distinct functions within the same cell. The present study focused on isoform specific functions of NM IIA and IIB in mediating TNF induced apoptosis. Results show that siRNA knockdown of NM IIB, but not NM IIA, impaired caspase cleavage and nuclear condensation in response to TNF. NM II's function in promoting cell death signaling appears to be independent of actomyosin contractility (AMC) since treatment of cells with blebbistatin or cytochalasin D failed to inhibit TNF induced caspase cleavage. Immunoprecipitation studies revealed associations of NM IIB with clathrin, FADD, and caspase 8 in response to TNF suggesting a role for NM IIB in TNFR1 endocytosis and the formation of the death inducing signaling complex (DISC). These findings suggest that NM IIB promotes TNF cell death signaling in a manner independent of its force generating property.
Collapse
Affiliation(s)
- Patrick G Flynn
- Department of Cell Biology and Anatomy Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | | |
Collapse
|
29
|
Cui WJ, Liu Y, Zhou XL, Wang FZ, Zhang XD, Ye LH. Myosin light chain kinase is responsible for high proliferative ability of breast cancer cells via anti-apoptosis involving p38 pathway. Acta Pharmacol Sin 2010; 31:725-32. [PMID: 20453870 DOI: 10.1038/aps.2010.56] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate whether myosin light chain kinase (MLCK) contributed to the high proliferative ability of breast cancer cells. METHODS Soft agar colony formation on the MCF-7 and LM-MCF-7 cell lines was determined. The cell cycles of MCF-7 and LM-MCF-7 were detected using flow cytometry analysis. Western blot analysis was performed to detect the expression levels of p-ERK1/2, total-ERK1/2, p-p38, total p38, p-JNK, total-JNK, survivin, Bcl-2, p-MLC, caspase-9, cleaved caspase-9, and MLCK. After treatment with adriamycin (ADR), ML-7 and SB203580, apoptosis was examined using flow cytometry analysis and Annexin V-FITC fluorescence microscopy. RESULTS The breast cancer LM-MCF-7 cell line with high metastasis potential (a metastitic sub-clone of MCF-7) had higher anti-apoptosis ability relative to MCF-7 cells in response to adriamycin treatment (apoptosis rate: 6.76% vs 28.58%, P<0.05). Moreover, the expression level of MLCK was upregulated and the level of phosphorylated p38 (p-p38) was decreased in LM-MCF-7 cells. Flow cytometry analysis showed that ML-7, selective inhibitor of MLCK, could induce apoptosis of the LM-MCF-7 cells, in which the level of p-p38 was increased. Meanwhile, the expression levels of Bcl-2 and survivin were downregulated, while the caspase-9 was upregulated suggesting that the cells were undergone apoptosis. Flow cytometry analysis showed that SB203580, an inhibitor of p38, abolished ML-7-induced apoptosis, which resulted in the upregulation of Bcl-2 and survivin, and downregulation of caspase-9, suggesting that Bcl-2, survivin and caspase-9 are downstream effectors of p38. CONCLUSION MLCK is responsible for high proliferative ability of breast cancer cells through anti-apoptosis, in which p38 pathway was involved.
Collapse
|
30
|
Yamamoto N, Okano T, Ma X, Adelstein RS, Kelley MW. Myosin II regulates extension, growth and patterning in the mammalian cochlear duct. Development 2009; 136:1977-86. [PMID: 19439495 DOI: 10.1242/dev.030718] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sensory epithelium of the mammalian cochlea comprises mechanosensory hair cells that are arranged into four ordered rows extending along the length of the cochlear spiral. The factors that regulate the alignment of these rows are unknown. Results presented here demonstrate that cellular patterning within the cochlea, including the formation of ordered rows of hair cells, arises through morphological remodeling that is consistent with the mediolateral component of convergent extension. Non-muscle myosin II is shown to be expressed in a pattern that is consistent with an active role in cellular remodeling within the cochlea, and genetic or pharmacological inhibition of myosin II results in defects in cellular patterning that are consistent with a disruption in convergence and extension. These results identify the first molecule, myosin II, which directly regulates cellular patterning and alignment within the cochlear sensory epithelium. Our results also provide insights into the cellular mechanisms that are required for the formation of highly ordered cellular patterns.
Collapse
Affiliation(s)
- Norio Yamamoto
- Section on Developmental Neuroscience, National Institute on Deafness and other Communication Disorders, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
31
|
Wu X, Guo R, Chen P, Wang Q, Cunningham PN. TNF induces caspase-dependent inflammation in renal endothelial cells through a Rho- and myosin light chain kinase-dependent mechanism. Am J Physiol Renal Physiol 2009; 297:F316-26. [PMID: 19420112 DOI: 10.1152/ajprenal.00089.2009] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The pathogenesis of LPS-induced acute kidney injury (AKI) requires signaling through tumor necrosis factor-alpha (TNF) receptor 1 (TNFR1), which within the kidney is primarily located in the endothelium. We showed previously that caspase inhibition protected mice against LPS-induced AKI and in parallel significantly inhibited LPS-induced renal inflammation. Therefore we hypothesized that caspase activation amplifies TNF-induced inflammation in renal endothelial cells (ECs). In cultured renal ECs, TNF induced apoptosis through a caspase-8-dependent pathway. TNF caused translocation of the p65 subunit of NF-kappaB to the nucleus, resulting in upregulation of inflammatory markers such as adhesion molecules ICAM-1 and VCAM-1. However, the broad-spectrum caspase inhibitor Boc-d-fmk reduced NF-kB activation as assessed by gel shift assay, reduced phosphorylation of subunit IkappaBalpha, and significantly inhibited TNF-induced expression of ICAM-1 and VCAM-1 as assessed by both real-time PCR and flow cytometry. Broad-spectrum caspase inhibition markedly inhibited neutrophil adherence to the TNF-activated endothelial monolayer, supporting the functional significance of this effect. Specific inhibitors of caspases-8 and -3, but not of caspase-1, reduced TNF-induced NF-kappaB activation. Caspase inhibition also reduced TNF-induced myosin light chain (MLC)-2 phosphorylation, and activation of upstream regulator RhoA. Consistent with this, MLC kinase (MLCK) inhibitor ML-7 reduced TNF-induced NF-kappaB activation. Thus caspase activation influences NF-kappaB signaling via its affect on cytoskeletal changes occurring through RhoA and MLCK pathways. These cell culture experiments support a role for caspase activation in TNF-induced inflammation in the renal endothelium, a key event in LPS-induced AKI.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Section of Nephrology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
32
|
Wadgaonkar R, Somnay K, Garcia JG. Thrombin induced secretion of macrophage migration inhibitory factor (MIF) and its effect on nuclear signaling in endothelium. J Cell Biochem 2008; 105:1279-88. [DOI: 10.1002/jcb.21928] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
33
|
Variation in the myosin light chain kinase gene is associated with development of acute lung injury after major trauma. Crit Care Med 2008; 36:2794-800. [PMID: 18828194 DOI: 10.1097/ccm.0b013e318186b843] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Single nucleotide polymorphisms in the myosin light chain kinase (MYLK) gene have been implicated in the risk of sepsis-related acute lung injury and asthma. MYLK encodes protein isoforms involved in multiple components of the inflammatory response, including apoptosis, vascular permeability, and leukocyte diapedesis. We tested the association of MYLK gene variation in the development of acute lung injury in major trauma patients. METHODS We conducted a prospective cohort study of 273 subjects with major trauma (injury severity score > or = 16). All x-rays and clinical data were reviewed by three clinicians for acute lung injury classification. A total of 17 tagging single nucleotide polymorphisms in MYLK were genotyped. Single nucleotide polymorphisms were individually assessed at the genotype level, and multiple logistic regression models were used to adjust for baseline variables. Haplotype analyses of sliding windows including 2-5 single nucleotide polymorphisms were conducted. RESULTS Ninety-one of the 273 subjects (33%) met criteria for acute lung injury within 5 days of traumatic insult. Three informative MYLK coding single nucleotide polymorphisms were individually associated with acute lung injury, with two informative risk-conferring genotypes His21Pro (CC genotype, odds ratio = 1.87, 95% confidence interval 1.06-3.33; p = 0.022) and Pro147Ser (TT, odds ratio = 2.13, 95% confidence interval 1.14-4.10; p = 0.011) more frequent than the noninformative Thr335Thr CC genotype (odds ratio = 0.42, 95% confidence interval 0.20-0.85; p = 0.010). Each of these genotypic associations was more pronounced in African Americans with trauma. Multivariate analyses demonstrated the association of each MYLK single nucleotide polymorphism with acute lung injury to be independent of age, injury severity score, Acute Physiology and Chronic Health Evaluation III, and the mechanism of trauma. Finally, haplotype analyses revealed strong acute lung injury associations with 2-4 single nucleotide polymorphism haplotypes, all involving His21Pro (p < 0.008). CONCLUSIONS Three MYLK coding single nucleotide polymorphisms previously associated with sepsis-induced acute lung injury and severe asthma in African Americans were associated with acute lung injury development after trauma in African Americans, although effect directions differed. These results confirm our prior studies implicating MYLK as a susceptibility gene in a distinct acute lung injury subset other than sepsis.
Collapse
|
34
|
Afonso PV, Ozden S, Prevost MC, Schmitt C, Seilhean D, Weksler B, Couraud PO, Gessain A, Romero IA, Ceccaldi PE. Human Blood-Brain Barrier Disruption by Retroviral-Infected Lymphocytes: Role of Myosin Light Chain Kinase in Endothelial Tight-Junction Disorganization. THE JOURNAL OF IMMUNOLOGY 2007; 179:2576-83. [PMID: 17675520 DOI: 10.4049/jimmunol.179.4.2576] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The blood-brain barrier (BBB), which constitutes the interface between blood and cerebral parenchyma, has been shown to be disrupted during retroviral associated neuromyelopathies. Human T cell leukemia virus (HTLV-1)-associated myelopathy/tropical spastic paraparesis is a slowly progressive neurodegenerative disease, in which evidence of BBB breakdown has been demonstrated by the presence of lymphocytic infiltrates in the CNS and plasma protein leakage through cerebral endothelium. Using an in vitro human BBB model, we investigated the cellular and molecular mechanisms involved in endothelial changes induced by HTLV-1-infected lymphocytes. We demonstrate that coculture with infected lymphocytes induces an increase in paracellular endothelial permeability and transcellular migration, via IL-1alpha and TNF-alpha secretion. This disruption is associated with tight junction disorganization between endothelial cells, and alterations in the expression pattern of tight junction proteins such as zonula occludens 1. These changes could be prevented by inhibition of the NF-kappaB pathway or of myosin light chain kinase activity. Such disorganization was confirmed in histological sections of spinal cord from an HTLV-1-associated myelopathy/tropical spastic paraparesis patient. Based on this BBB model, the present data indicate that HTLV-1-infected lymphocytes can induce BBB breakdown and may be responsible for the CNS infiltration that occurs in the early steps of retroviral-associated neuromyelopathies.
Collapse
MESH Headings
- Blood-Brain Barrier/enzymology
- Blood-Brain Barrier/immunology
- Blood-Brain Barrier/pathology
- Blood-Brain Barrier/ultrastructure
- Blood-Brain Barrier/virology
- Cell Line, Transformed
- Cerebellum/blood supply
- Cerebellum/enzymology
- Cerebellum/immunology
- Cerebellum/ultrastructure
- Endothelial Cells/enzymology
- Endothelial Cells/immunology
- Endothelial Cells/pathology
- Endothelial Cells/virology
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/immunology
- Endothelium, Vascular/pathology
- Endothelium, Vascular/virology
- Human T-lymphotropic virus 1/immunology
- Humans
- Interleukin-1alpha/immunology
- Interleukin-1alpha/metabolism
- Lymphocytes/immunology
- Lymphocytes/metabolism
- Lymphocytes/ultrastructure
- Lymphocytes/virology
- Membrane Proteins/biosynthesis
- Membrane Proteins/immunology
- Models, Immunological
- Myosin-Light-Chain Kinase/immunology
- Myosin-Light-Chain Kinase/metabolism
- Neurodegenerative Diseases/enzymology
- Neurodegenerative Diseases/immunology
- Neurodegenerative Diseases/pathology
- Neurodegenerative Diseases/virology
- Paraparesis, Tropical Spastic/enzymology
- Paraparesis, Tropical Spastic/immunology
- Paraparesis, Tropical Spastic/pathology
- Paraparesis, Tropical Spastic/virology
- Phosphoproteins/biosynthesis
- Phosphoproteins/immunology
- Spinal Cord/enzymology
- Spinal Cord/immunology
- Spinal Cord/ultrastructure
- Spinal Cord/virology
- Tight Junctions/immunology
- Tight Junctions/metabolism
- Tight Junctions/ultrastructure
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
- Zonula Occludens-1 Protein
Collapse
Affiliation(s)
- Philippe Vicente Afonso
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Département de Virologie and Centre National de la Recherche Scientifique Unité de Recherche Associée 3015, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tang Y, Zhang YQ, Huang Z. Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2007; 4:365-81. [PMID: 17666757 DOI: 10.1109/tcbb.2007.70224] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Extracting a subset of informative genes from microarray expression data is a critical data preparation step in cancer classification and other biological function analyses. Though many algorithms have been developed, the Support Vector Machine - Recursive Feature Elimination (SVM-RFE) algorithm is one of the best gene feature selection algorithms. It assumes that a smaller "filter-out" factor in the SVM-RFE, which results in a smaller number of gene features eliminated in each recursion, should lead to extraction of a better gene subset. Because the SVM-RFE is highly sensitive to the "filter-out" factor, our simulations have shown that this assumption is not always correct and that the SVM-RFE is an unstable algorithm. To select a set of key gene features for reliable prediction of cancer types or subtypes and other applications, a new two-stage SVM-RFE algorithm has been developed. It is designed to effectively eliminate most of the irrelevant, redundant and noisy genes while keeping information loss small at the first stage. A fine selection for the final gene subset is then performed at the second stage. The two-stage SVM-RFE overcomes the instability problem of the SVM-RFE to achieve better algorithm utility. We have demonstrated that the two-stage SVM-RFE is significantly more accurate and more reliable than the SVM-RFE and three correlation-based methods based on our analysis of three publicly available microarray expression datasets. Furthermore, the two-stage SVM-RFE is computationally efficient because its time complexity is O(d*log(2)d}, where d is the size of the original gene set.
Collapse
Affiliation(s)
- Yuchun Tang
- Secure Computing Corporation, GA 30022, USA.
| | | | | |
Collapse
|
36
|
Ralay Ranaivo H, Carusio N, Wangensteen R, Ohlmann P, Loichot C, Tesse A, Chalupsky K, Lobysheva I, Haiech J, Watterson DM, Andriantsitohaina R. Protection against endotoxic shock as a consequence of reduced nitrosative stress in MLCK210-null mice. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:439-46. [PMID: 17255312 PMCID: PMC1851870 DOI: 10.2353/ajpath.2007.060219] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study investigated the consequences of deletion of the long isoform of myosin light chain kinase (MLCK210) on the cardiovascular changes induced by the bacterial endotoxin lipopolysaccharide (LPS) and cecal ligation puncture using MLCK210-/- mice. Here, we provide evidence that deletion of MLCK210 enhanced survival after intraperitoneal injection of LPS or cecal ligation puncture. LPS-induced vascular hyporeactivity to vasoconstrictor agents was completely prevented in aorta from MLCK210-/- mice. This was associated with a decreased up-regulation of nuclear facor-kappaB expression and activity, inducible nitric-oxide synthase, and level of oxidative stress in the vascular media. Furthermore, LPS-induced increase of nitric oxide production in the circulation and tissues (including heart, liver, and lung) that was correlated with an increased expression of inducible nitric-oxide synthase was also reduced in MLCK210-/- mice. These data demonstrate a role for MLCK210 in endotoxin shock injury associated with oxidative and nitrosative stresses and vascular hyporeactivity.
Collapse
|
37
|
Fan L, Sebe A, Péterfi Z, Masszi A, Thirone AC, Rotstein OD, Nakano H, McCulloch CA, Szászi K, Mucsi I, Kapus A. Cell contact-dependent regulation of epithelial-myofibroblast transition via the rho-rho kinase-phospho-myosin pathway. Mol Biol Cell 2007; 18:1083-97. [PMID: 17215519 PMCID: PMC1805104 DOI: 10.1091/mbc.e06-07-0602] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epithelial-mesenchymal-myofibroblast transition (EMT), a key feature in organ fibrosis, is regulated by the state of intercellular contacts. Our recent studies have shown that an initial injury of cell-cell junctions is a prerequisite for transforming growth factor-beta1 (TGF-beta1)-induced transdifferentiation of kidney tubular cells into alpha-smooth muscle actin (SMA)-expressing myofibroblasts. Here we analyzed the underlying contact-dependent mechanisms. Ca(2+) removal-induced disruption of intercellular junctions provoked Rho/Rho kinase (ROK)-mediated myosin light chain (MLC) phosphorylation and Rho/ROK-dependent SMA promoter activation. Importantly, myosin-based contractility itself played a causal role, because the myosin ATPase inhibitor blebbistatin or a nonphosphorylatable, dominant negative MLC (DN-MLC) abolished the contact disruption-triggered SMA promoter activation, eliminated the synergy between contact injury and TGF-beta1, and suppressed SMA expression. To explore the responsible mechanisms, we investigated the localization of the main SMA-inducing transcription factors, serum response factor (SRF), and its coactivator myocardin-related transcription factor (MRTF). Contact injury enhanced nuclear accumulation of SRF and MRTF. These processes were inhibited by DN-Rho or DN-MLC. TGF-beta1 strongly facilitated nuclear accumulation of MRTF in cells with reduced contacts but not in intact epithelia. DN-myocardin abrogated the Ca(2+)-removal- +/- TGF-beta1-induced promoter activation. These studies define a new mechanism whereby cell contacts regulate epithelial-myofibroblast transition via Rho-ROK-phospho-MLC-dependent nuclear accumulation of MRTF.
Collapse
Affiliation(s)
- Lingzhi Fan
- *St. Michael's Hospital Research Institute, Toronto, ON, Canada M5B 1W8
- Department of Surgery, University of Toronto, ON, Canada M5G 1L5
| | - Attila Sebe
- *St. Michael's Hospital Research Institute, Toronto, ON, Canada M5B 1W8
- Department of Surgery, University of Toronto, ON, Canada M5G 1L5
- Nephrology Research Center, Semmelweis University, Budapest, Hungary H-1089
| | - Zalán Péterfi
- *St. Michael's Hospital Research Institute, Toronto, ON, Canada M5B 1W8
- Department of Surgery, University of Toronto, ON, Canada M5G 1L5
| | - András Masszi
- *St. Michael's Hospital Research Institute, Toronto, ON, Canada M5B 1W8
- Department of Surgery, University of Toronto, ON, Canada M5G 1L5
| | - Ana C.P. Thirone
- *St. Michael's Hospital Research Institute, Toronto, ON, Canada M5B 1W8
- Department of Surgery, University of Toronto, ON, Canada M5G 1L5
| | - Ori D. Rotstein
- *St. Michael's Hospital Research Institute, Toronto, ON, Canada M5B 1W8
- Department of Surgery, University of Toronto, ON, Canada M5G 1L5
| | - Hiroyasu Nakano
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan 113-8421
| | | | - Katalin Szászi
- *St. Michael's Hospital Research Institute, Toronto, ON, Canada M5B 1W8
- Department of Surgery, University of Toronto, ON, Canada M5G 1L5
| | - István Mucsi
- First Department of Internal Medicine, Semmelweis University, Budapest, Hungary H-1083
| | - András Kapus
- *St. Michael's Hospital Research Institute, Toronto, ON, Canada M5B 1W8
- Department of Surgery, University of Toronto, ON, Canada M5G 1L5
| |
Collapse
|
38
|
Gao L, Grant A, Halder I, Brower R, Sevransky J, Maloney JP, Moss M, Shanholtz C, Yates CR, Meduri GU, Shriver MD, Ingersoll R, Scott AF, Beaty TH, Moitra J, Ma SF, Ye SQ, Barnes KC, Garcia JGN. Novel polymorphisms in the myosin light chain kinase gene confer risk for acute lung injury. Am J Respir Cell Mol Biol 2006; 34:487-95. [PMID: 16399953 PMCID: PMC2644210 DOI: 10.1165/rcmb.2005-0404oc] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Accepted: 12/05/2005] [Indexed: 11/24/2022] Open
Abstract
The genetic basis of acute lung injury (ALI) is poorly understood. The myosin light chain kinase (MYLK) gene encodes the nonmuscle myosin light chain kinase isoform, a multifunctional protein involved in the inflammatory response (apoptosis, vascular permeability, leukocyte diapedesis). To examine MYLK as a novel candidate gene in sepsis-associated ALI, we sequenced exons, exon-intron boundaries, and 2 kb of 5' UTR of the MYLK, which revealed 51 single-nucleotide polymorphisms (SNPs). Potential association of 28 MYLK SNPs with sepsis-associated ALI were evaluated in a case-control sample of 288 European American subjects (EAs) with sepsis alone, subjects with sepsis-associated ALI, or healthy control subjects, and a sample population of 158 African American subjects (AAs) with sepsis and ALI. Significant single locus associations in EAs were observed between four MYLK SNPs and the sepsis phenotype (P<0.001), with an additional SNP associated with the ALI phenotype (P=0.03). A significant association of a single SNP (identical to the SNP identified in EAs) was observed in AAs with sepsis (P=0.002) and with ALI (P=0.01). Three sepsis risk-conferring haplotypes in EAs were defined downstream of start codon of smooth muscle MYLK isoform, a region containing putative regulatory elements (P<0.001). In contrast, multiple haplotypic analyses revealed an ALI-specific, risk-conferring haplotype at 5' of the MYLK gene in both European and African Americans and an additional 3' region haplotype only in African Americans. These data strongly implicate MYLK genetic variants to confer increased risk of sepsis and sepsis-associated ALI.
Collapse
Affiliation(s)
- Li Gao
- Department of Medicine, University of Chicago Pritzker School of Medicine, 5841 S. Maryland Avenue, W604, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Su PF, Hu YJ, Ho IC, Cheng YM, Lee TC. Distinct gene expression profiles in immortalized human urothelial cells exposed to inorganic arsenite and its methylated trivalent metabolites. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:394-403. [PMID: 16507463 PMCID: PMC1392234 DOI: 10.1289/ehp.8174] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Inorganic arsenic is an environmental carcinogen. The generation of toxic trivalent methylated metabolites complicates the study of arsenic-mediated carcinogenesis. This study systematically evaluated the effect of chronic treatment with sodium arsenite (iAs(III)), monomethylarsonous acid (MMA(III)), and dimethylarsinous acid (DMA(III)) on immortalized human uroepithelial cells (SV-HUC-1 cells) using cDNA microarray. After exposure for 25 passages to iAs(III) (0.5 microM), MMA(III) (0.05, 0.1, or 0.2 microM), or DMA(III) (0.2 or 0.5 microM), significant compound-specific morphologic changes were observed. A set of 114 genes (5.7% of the examined genes) was differentially expressed in one or more sets of arsenical-treated cells compared with untreated controls. Expression analysis showed that exposure of cells to DMA(III) resulted in a gene profile different from that in cells exposed to iAs(III) or MMA(III), and that the iAs(III)-induced gene profile was closest to that in the tumorigenic HUC-1-derived 3-methylcholanthrene-induced tumorigenic cell line MC-SV-HUC T2, which was derived from SV-HUC-1 cells by methylcholanthrene treatment. Of the genes affected by all three arsenicals, only one, that coding for interleukin-1 receptor, type II, showed enhanced expression, a finding confirmed by the reduced increase in NF-kappaB (nuclear factor kappa B) activity seen in response to interleukin-1beta in iAs(III)-exposed cells. The expression of 11 genes was suppressed by all three arsenicals. 5-Aza-deoxycytidine partially restored the transcription of several suppressed genes, showing that epigenetic DNA methylation was probably involved in arsenical-induced gene repression. Our data demonstrate that chronic exposure to iAs(III), MMA(III), or DMA(III) has different epigenetic effects on urothelial cells and represses NF-kappaB activity.
Collapse
Affiliation(s)
- Pei-Fen Su
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
40
|
Prasad S, Mingrino R, Kaukinen K, Hayes KL, Powell RM, MacDonald TT, Collins JE. Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. J Transl Med 2005; 85:1139-62. [PMID: 16007110 DOI: 10.1038/labinvest.3700316] [Citation(s) in RCA: 347] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Claudin proteins comprise a recently described family of tight junction proteins that differentially regulate paracellular permeability. Since other tight junction proteins show alterations in distribution or expression in inflammatory bowel disease (IBD) we assessed expression of claudins (CL) 2, 3 and 4 in IBD. CL 2 was strongly expressed along the inflamed crypt epithelium, whilst absent or barely detectable in normal colon. In contrast, CL 3 and 4 were present throughout normal colonic epithelium and were reduced or redistributed in the diseased surface epithelium. In a T84-cell culture model of the gut barrier, paracellular permeability decreased with time after plating and correlated with a marked decrease in the expression of CL 2. Addition of IFNgamma/TNFalpha led to further decreases in CL 2 and 3, the redistrbution of CL 4 and a marked increase in paracellular permeability. Conversely, IL-13 dramatically increased CL 2, with little effect on CL 3 or 4, but also resulted in increased paracellular permeability. Expression of CL 2 did not correlate with proliferation or junctional reorganisation after calcium ion depletion. Re-expression of CL 2 in response to IL-13 was inhibited by phophatidylinositol 3 kinase inhibitor, LY294002, which also restored the ion permeability to previous levels. CL 2 expression could be stimulated in the absence of IL-13 by activation of phospho-Akt in the phophatidylinositol 3 kinase pathway. These results suggest that INFgamma/TNFalpha and IL-13 have differential effects on CL 2, 3 and 4 in tight junctions, which may lead to increased permeability via different mechanisms.
Collapse
Affiliation(s)
- Shyam Prasad
- Division of Infection, Inflammation and Repair, Southampton General Hospital, University of Southampton School of Medicine, Southampton, UK
| | | | | | | | | | | | | |
Collapse
|