1
|
Zhang S, Liu Y, Javeed A, Jian C, Sun J, Wu S, Han B. Treatment of allergy: Overview of synthetic anti-allergy small molecules in medicinal chemistry. Eur J Med Chem 2023; 249:115151. [PMID: 36731273 DOI: 10.1016/j.ejmech.2023.115151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/30/2023]
Abstract
The prevalence of allergic diseases has been continuously increasing over the past few decades, affecting approximately 20-30% of the global population. Allergic reactions to infection of respiratory tract, digestive tract, and skin system involve multiple different targets. The main difficulty of anti-allergy research is how to develop drugs with good curative effect and less side effects by adopting new multi-targets and mechanisms according to the clinical characteristics of different allergic populations and different allergens. This review focuses on information concerning potential therapeutic targets as well as the synthetic anti-allergy small molecules with respect to their medicinal chemistry. The structure-activity relationship and the mechanism of compound-target interaction were highlighted with perspective to histamine-1/4 receptor antagonists, leukotriene biosynthesis, Th2 cytokines inhibitors, and calcium channel blockers. We hope that the study of chemical scaffold modification and optimization for different lead compounds summarized in this review not only lays the foundation for improvement of success rate and efficiency of virtual screening of antiallergic drugs, but also can provide valuable reference for the drug design of related promising research such as allergy, inflammation, and cancer.
Collapse
Affiliation(s)
- Shanshan Zhang
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergy Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yi Liu
- Hangzhou Zheda Dixun Biological Gene Engineering Co., LTD., Hangzhou, China
| | - Ansar Javeed
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergy Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Cuiqin Jian
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergy Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jinlyu Sun
- Department of Allergy, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment of Allergic Diseases, National Clinical Research Center for Dermatologic and Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Shandong Wu
- Hangzhou Zheda Dixun Biological Gene Engineering Co., LTD., Hangzhou, China
| | - Bingnan Han
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, Laboratory of Antiallergy Functional Molecules, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Li B, Liu Y, Sun S. Pump proton inhibitors display anti-tumour potential in glioma. Cell Prolif 2022:e13321. [PMID: 35961680 DOI: 10.1111/cpr.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES Glioma is one of the most aggressive brain tumours with poor overall survival despite advanced technology in surgical resection, chemotherapy and radiation. Progression and recurrence are the hinge causes of low survival. Our aim is to explain the concrete mechanism in the proliferation and progression of tumours based on tumour microenvironment (TME). The main purpose is to illustrate the mechanism of proton pump inhibitors (PPIs) in affecting acidity, hypoxia, oxidative stress, inflammatory response and autophagy based on the TME to induce apoptosis and enhance the sensitivity of chemoradiotherapy. FINDINGS TME is the main medium for tumour growth and progression. Acidity, hypoxia, inflammatory response, autophagy, angiogenesis and so on are the main causes of tumour progress. PPIs, as a common clinical drug to inhibit gastric acid secretion, have the advantages of fast onset, long action time and small adverse reactions. Nowadays, several kinds of literature highlight the potential of PPIs in inhibiting tumour progression. However, long-term use of PPIs alone also has obvious side effects. Therefore, till now, how to apply PPIs to promote the effect of radio-chemotherapy and find the concrete dose and concentration of combined use are novel challenges. CONCLUSIONS PPIs display the potential in enhancing the sensitivity of chemoradiotherapy to defend against glioma based on TME. In the clinic, it is also necessary to explore specific concentrations and dosages in synthetic applications.
Collapse
Affiliation(s)
- Bihan Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Ying Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shilong Sun
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
3
|
Redox Homeostasis and Regulation in Pluripotent Stem Cells: Uniqueness or Versatility? Int J Mol Sci 2021; 22:ijms222010946. [PMID: 34681606 PMCID: PMC8535588 DOI: 10.3390/ijms222010946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022] Open
Abstract
Pluripotent stem cells (PSCs) hold great potential both in studies on developmental biology and clinical practice. Mitochondrial metabolism that encompasses pathways that generate ATP and produce ROS significantly differs between PSCs and somatic cells. Correspondingly, for quite a long time it was believed that the redox homeostasis in PSCs is also highly specific due to the hypoxic niche of their origin-within the pre-implantation blastocyst. However, recent research showed that redox parameters of cultivated PSCs have much in common with that of their differentiated progeny cells. Moreover, it has been proven that, similar to somatic cells, maintaining the physiological ROS level is critical for the regulation of PSC identity, proliferation, differentiation, and de-differentiation. In this review, we aimed to summarize the studies of redox metabolism and signaling in PSCs to compare the redox profiles of pluripotent and differentiated somatic cells. We collected evidence that PSCs possess metabolic plasticity and are able to adapt to both hypoxia and normoxia, that pluripotency is not strictly associated with anaerobic conditions, and that cellular redox homeostasis is similar in PSCs and many other somatic cells under in vitro conditions that may be explained by the high conservatism of the redox regulation system.
Collapse
|
4
|
Ivanova JS, Pugovkina NA, Neganova IE, Kozhukharova IV, Nikolsky NN, Lyublinskaya OG. Cell cycle-coupled changes in the level of reactive oxygen species support the proliferation of human pluripotent stem cells. Stem Cells 2021; 39:1671-1687. [PMID: 34460135 DOI: 10.1002/stem.3450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022]
Abstract
The study of proliferation regulation in human pluripotent stem cells is crucial to gain insights into understanding the physiology of these cells. However, redox regulation of the pluripotent cell cycle remains largely unexplored. Here, using human embryonic stem cells (hESCs) as well as human induced pluripotent stem cells (hiPSCs), we demonstrate that the level of reactive oxygen species (ROS) in pluripotent cells oscillates in accordance with the cell cycle progression with the peak occurring at transition from S to G2 /M phase of the cycle. A decrease of this level by antioxidants leads to hindered S-phase initiation and progression but does not affect the early-G1 -phase or mitosis. Cells exposed to antioxidants in the early-G1 -phase accumulate the phosphorylated retinoblastoma protein and overcome the restriction point but are unable to accumulate the main regulators of the S phase-CYCLIN A and GEMININ. Based on the previous findings that CYCLIN A stability is affected by redox homeostasis disturbances in somatic cells, we compared the responses to antioxidant treatments in hESCs and in their differentiated fibroblast-like progeny cells (difESCs). In difESCs, similar to hESCs, a decrease in ROS level results in the disruption of S-phase initiation accompanied by a deficiency of the CYCLIN A level. Moreover, in antioxidant-treated cells, we revealed the accumulation of DNA breaks, which was accompanied by activation of the apoptosis program in pluripotent cells. Thus, we conclude that maintaining the physiological ROS level is essential for promotion of proliferation and accurate DNA synthesis in pluripotent cells and their differentiated descendants.
Collapse
Affiliation(s)
- Julia S Ivanova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Natalia A Pugovkina
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Irina E Neganova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Irina V Kozhukharova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Nikolay N Nikolsky
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Olga G Lyublinskaya
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
5
|
Xue Y, Deng Q, Zhang Q, Ma Z, Chen B, Yu X, Peng H, Yao S, Liu J, Ye Y, Pan G. Gigantol ameliorates CCl 4-induced liver injury via preventing activation of JNK/cPLA2/12-LOX inflammatory pathway. Sci Rep 2020; 10:22265. [PMID: 33335297 PMCID: PMC7746690 DOI: 10.1038/s41598-020-79400-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Arachidonic acid (AA) signaling pathway is an important constituent of inflammatory processes. In our previous study, it was found that dihydro-stilbene gigantol relieved hepatic inflammation in mice with CCl4-induced acute liver injury. This study aimed to investigate the involvement of arachidonate metabolic cascade in this process. Our results showed CCl4 activated AA metabolism with the evidence of cPLA2 phosphorylation, which was dependent on the MAPK/JNK activation. Pretreatment with JNK inhibitor SU3327 or gigantol abolished the cPLA2 activation, along with the attenuation of liver damage. Besides, gigantol markedly decreased immune cells activation. Metabolomic analysis revealed that gigantol universally reversed the upregulation of major AA metabolites in injured mouse livers induced by CCl4, especially 12-hydroxyeicosatetraenoic acid (12-HETE). Gigantol also decreased the mRNA and protein expression of platelet-, and leukocyte-type 12-lipoxxygenase (LOX) in the liver. Furthermore, pan-LOX inhibitor nordihydroguaiaretic acid (NDGA) and specific 12-LOX inhibitors baicalein and ML351 attenuated the liver injury to the same extent as gigantol. Overall, our study elucidated a comprehensive profile of AA metabolites during hepatic inflammation caused by CCl4, highlighting the role of 12-LOX-12-HETE pathway in this process. And gigantol alleviated liver inflammation partly through inhibiting the JNK/cPLA2/12-LOX pathway.
Collapse
Affiliation(s)
- Yaru Xue
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiangqiang Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qingli Zhang
- Institutional Technology Service Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhenghua Ma
- State Key Laboratory of Drug Research and Natural Products Chemistry Department Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,SIMM-CUHK Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines, Shanghai, 201203, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, 201203, China
| | - Binfan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaolu Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huige Peng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Sheng Yao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,State Key Laboratory of Drug Research and Natural Products Chemistry Department Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,SIMM-CUHK Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines, Shanghai, 201203, China
| | - Jia Liu
- Institutional Technology Service Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yang Ye
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,State Key Laboratory of Drug Research and Natural Products Chemistry Department Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,SIMM-CUHK Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines, Shanghai, 201203, China. .,School of Life Science and Technology, Shanghai Tech University, Shanghai, 201203, China.
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Mitra S, Kaushik N, Moon IS, Choi EH, Kaushik NK. Utility of Reactive Species Generation in Plasma Medicine for Neuronal Development. Biomedicines 2020; 8:E348. [PMID: 32932745 PMCID: PMC7555638 DOI: 10.3390/biomedicines8090348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) are critical signaling molecules for neuronal physiology that stimulate growth and development and play vital roles in several pathways when in a balanced state, but they cause neurodegeneration when unbalanced. As ROS levels above a certain threshold cause the activation of the autophagy system, moderate levels of ROS can be used as treatment strategies. Currently, such treatments are used together with low-level laser or photodynamic therapies, photo-bio modulation, or infrared treatments, in different chronic diseases but not in the treatment of neurodegeneration. Recently, non-thermal plasma has been successfully used in biomedical applications and treatments, and beneficial effects such as differentiation, cell growth, and proliferation, stimulation of ROS based pathways have been observed. Besides the activation of a wide range of biological signaling pathways by generating ROS, plasma application can be an effective treatment in neuronal regeneration, as well as in neuronal diseases. In this review, we summarize the generation and role of ROS in neurons and provide critical insights into their potential benefits on neurons. We also discuss the underlying mechanisms of ROS on neuronal development. Regarding clinical applications, we focus on ROS-based neuronal growth and regeneration strategies and in the usage of non-thermal plasma in neuronal and CNS injury treatments.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea;
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea;
| | - Neha Kaushik
- Department of Biotechnology, University of Suwon, Hwaseong 18323, Korea;
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea;
| | - Eun Ha Choi
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea;
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea;
| |
Collapse
|
7
|
Nanospheres Loaded with Curcumin Improve the Bioactivity of Umbilical Cord Blood-Mesenchymal Stem Cells via c-Src Activation During the Skin Wound Healing Process. Cells 2020; 9:cells9061467. [PMID: 32549381 PMCID: PMC7348987 DOI: 10.3390/cells9061467] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022] Open
Abstract
Curcumin, a hydrophobic polyphenol derived from turmeric, has been used a food additive and as a herbal medicine for the treatment of various diseases, but the clinical application of curcumin is restricted by its poor aqueous solubility and its low permeability and bioavailability levels. In the present study, we investigate the functional role of a nanosphere loaded with curcumin (CN) in the promotion of the motility of human mesenchymal stem cells (MSCs) during the skin wound healing process. CN significantly increased the motility of umbilical cord blood (UCB)-MSCs and showed 10,000-fold greater migration efficacy than curcumin. CN stimulated the phosphorylation of c-Src and protein kinase C which are responsible for the distinctive activation of the MAPKs. Interestingly, CN significantly induced the expression levels of α-actinin-1, profilin-1 and filamentous-actin, as regulated by the phosphorylation of nuclear factor-kappa B during its promotion of cell migration. In a mouse skin excisional wound model, we found that transplantation of UCB-MSCs pre-treated with CN enhanced wound closure, granulation, and re-epithelialization at mouse skin wound sites. These results indicate that CN is a functional agent that promotes the mobilization of UCB-MSCs for cutaneous wound repair.
Collapse
|
8
|
Nugud A, Sandeep D, El-Serafi AT. Two faces of the coin: Minireview for dissecting the role of reactive oxygen species in stem cell potency and lineage commitment. J Adv Res 2018; 14:73-79. [PMID: 30023134 PMCID: PMC6047483 DOI: 10.1016/j.jare.2018.05.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/29/2022] Open
Abstract
Reactive oxygen species (ROS) are produced as by-products of several intracellular metabolic pathways and are reduced to more stable molecules by several protective pathways. The presence of high levels of ROS can be associated with disturbance of cell function and could lead to apoptosis. The presence of ROS within the physiological range has many effects on several signalling pathways. In stem cells, this role can range between keeping the potency of the naive stem cells to differentiation towards a certain lineage. In addition, the level of certain ROS would change according to the differentiation stage. For example, the presence of ROS can be associated with increasing the proliferation of mesenchymal stem cells, decreasing the potency of embryonic stem cells and adding to the genomic stability of induced pluripotent stem cells. ROS can enhance the differentiation of stem cells into cardiomyocytes, adipocytes, endothelial cells, keratinocytes and neurons. In the meantime, ROS inhibits osteogenesis and enhances the differentiation of cartilage to the hypertrophic stage, which is associated with chondrocyte death. Thus, ROS may form a link between naïve stem cells in the body and the environment. In addition, monitoring of ROS levels in vitro may help in tissue regeneration studies.
Collapse
Affiliation(s)
- Ahmed Nugud
- Sharjah Institute for Medical and Health Research, University of Sharjah, United Arab Emirates
| | - Divyasree Sandeep
- Sharjah Institute for Medical and Health Research, University of Sharjah, United Arab Emirates
| | - Ahmed T. El-Serafi
- Sharjah Institute for Medical and Health Research, University of Sharjah, United Arab Emirates
- Faculty of Medicine, Suez Canal University, Egypt
- Department of Clinical and Experimental Medicine, Linköping University, Sweden
| |
Collapse
|
9
|
Yu D, Chen G, Pan M, Zhang J, He W, Liu Y, Nian X, Sheng L, Xu B. High fat diet-induced oxidative stress blocks hepatocyte nuclear factor 4α and leads to hepatic steatosis in mice. J Cell Physiol 2018; 233:4770-4782. [PMID: 29150932 DOI: 10.1002/jcp.26270] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Dongsheng Yu
- Department of Pharmacology; School of Basic Medical Science; Nanjing Medical University; Nanjing Jiangsu China
| | - Gang Chen
- Department of Hepatobiliary Surgery; The First Affiliated Hospital of Wenzhou Medical University; Wenzhou Zhejiang China
| | - Minglin Pan
- Department of Endocrinology; The Second Affiliated Hospital of Nanjing Medical University; Nanjing Jiangsu China
| | - Jia Zhang
- Department of Pharmacology; School of Basic Medical Science; Nanjing Medical University; Nanjing Jiangsu China
| | - Wenping He
- Department of Pharmacology; School of Basic Medical Science; Nanjing Medical University; Nanjing Jiangsu China
| | - Yang Liu
- Department of Gastroenterology and Hepatology; Zhongda Hospital; Nanjing Jiangsu China
- Institute of Gastroenterology and Hepatology; School of Medicine; Southeast University; Nanjing Jiangsu China
| | - Xue Nian
- Department of Pharmacology; School of Basic Medical Science; Nanjing Medical University; Nanjing Jiangsu China
| | - Liang Sheng
- Department of Pharmacology; School of Basic Medical Science; Nanjing Medical University; Nanjing Jiangsu China
| | - Bin Xu
- Department of Internal Medicine; Division of Metabolism, Endocrinology and Diabetes; University of Michigan Medical Center; Ann Arbor Michigan
| |
Collapse
|
10
|
Lee SJ, Jung YH, Kim JS, Lee HJ, Lee SH, Lee KH, Jang KK, Choi SH, Han HJ. A Vibrio vulnificus VvpM Induces IL-1β Production Coupled with Necrotic Macrophage Death via Distinct Spatial Targeting by ANXA2. Front Cell Infect Microbiol 2017; 7:352. [PMID: 28848713 PMCID: PMC5554522 DOI: 10.3389/fcimb.2017.00352] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/21/2017] [Indexed: 12/23/2022] Open
Abstract
An inflammatory form of phagocyte death evoked by the Gram-negative bacterium Vibrio (V.) vulnificus (WT) is one of hallmarks to promote their colonization, but the virulence factor and infectious mechanism involved in this process remain largely unknown. Here, we identified extracellular metalloprotease VvpM as a new virulence factor and investigated the molecular mechanism of VvpM which acts during the regulation of the inflammatory form of macrophage death and bacterial colonization. Mutation of the vvpM gene appeared to play major role in the prevention of IL-1β production due to V. vulnificus infection in macrophage. However, the recombinant protein (r) VvpM caused IL-1β production coupled with necrotic cell death, which is highly susceptible to the knockdown of annexin A2 (ANXA2) located in both membrane lipid and non-lipid rafts. In lipid rafts, rVvpM recruited NOX enzymes coupled with ANXA2 to facilitate the production of ROS responsible for the epigenetic and transcriptional regulation of NF-κB in the IL-1β promoter. rVvpM acting on non-lipid rafts increased LC3 puncta formation and autophagic flux, which are required for the mRNA expression of Atg5 involved in the autophagosome formation process. The autophagy activation caused by rVvpM induced NLRP3 inflammasome-dependent caspase-1 activation in the promoting of IL-1β production. In mouse models of V. vulnificus infection, the VvpM mutant failed to elevate the level of pro-inflammatory responses closely related to IL-1β production and prevented bacterial colonization. These findings delineate VvpM efficiently regulates two pathogenic pathways that stimulate NF-κB-dependent IL-1β production and autophagy-mediated NLRP3 inflammasome via distinct spatial targeting by ANXA2.
Collapse
Affiliation(s)
- Sei-Jung Lee
- Department of Pharmaceutical Engineering, Daegu Haany UniversityGyeongsan, South Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National UniversitySeoul, South Korea
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National UniversitySeoul, South Korea
| | - Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National UniversitySeoul, South Korea
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul HospitalSeoul, South Korea
- Departments of Biochemistry, Soonchunhyang University College of MedicineCheonan, South Korea
| | - Kyu-Ho Lee
- Department of Life Science, Sogang UniversitySeoul, South Korea
| | - Kyung Ku Jang
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National UniversitySeoul, South Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National UniversitySeoul, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National UniversitySeoul, South Korea
| |
Collapse
|
11
|
Lee SS, Lee SJ, Lee SH, Ryu JM, Lim HS, Kim JS, Song EJ, Jung YH, Lee HJ, Kim CH, Han HJ. Netrin-1-Induced Stem Cell Bioactivity Contributes to the Regeneration of Injured Tissues via the Lipid Raft-Dependent Integrin α6β4 Signaling Pathway. Sci Rep 2016; 6:37526. [PMID: 27881869 PMCID: PMC5121594 DOI: 10.1038/srep37526] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/31/2016] [Indexed: 11/17/2022] Open
Abstract
Netrin-1 (Ntn-1) is a multifunctional neuronal signaling molecule; however, its physiological significance, which improves the tissue-regeneration capacity of stem cells, has not been characterized. In the present study, we investigate the mechanism by which Ntn-1 promotes the proliferation of hUCB-MSCs with regard to the regeneration of injured tissues. We found that Ntn-1 induces the proliferation of hUCB-MSCs mainly via Inα6β4 coupled with c-Src. Ntn-1 induced the recruitment of NADPH oxidases and Rac1 into membrane lipid rafts to facilitate ROS production. The Inα6β4 signaling of Ntn-1 through ROS production is uniquely mediated by the activation of SP1 for cell cycle progression and the transcriptional occupancy of SP1 on the VEGF promoter. Moreover, Ntn-1 has the ability to induce the F-actin reorganization of hUCB-MSCs via the Inα6β4 signaling pathway. In an in vivo model, transplantation of hUCB-MSCs pre-treated with Ntn-1 enhanced the skin wound healing process, where relatively more angiogenesis was detected. The potential effect of Ntn-1 on angiogenesis is further verified by the mouse hindlimb ischemia model, where the pre-activation of hUCB-MSCs with Ntn-1 significantly improved vascular regeneration. These results demonstrate that Ntn-1 plays an important role in the tissue regeneration process of hUCB-MSC via the lipid raft-mediated Inα6β4 signaling pathway.
Collapse
Affiliation(s)
- Soo Sang Lee
- Department of plastic and reconstructive surgery, Bundang CHA Medical Center, Yatap-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea.,SKY plastic surgery clinic, 4F, 826-23, Yeoksam-dong, Gangnam-gu, Seoul, Korea
| | - Sei-Jung Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Jung Min Ryu
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Hyeon Su Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| | - Eun Ju Song
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| | - Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| | - Chung Hun Kim
- Department of plastic and reconstructive surgery, Bundang CHA Medical Center, Yatap-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
12
|
The protective mechanism of quercetin-3-O-β-D-glucuronopyranoside (QGC) in H2O2-induced injury of feline esophageal epithelial cells. Arch Pharm Res 2016; 39:1324-34. [PMID: 27522656 DOI: 10.1007/s12272-016-0808-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/01/2016] [Indexed: 12/27/2022]
Abstract
Quercetin-3-O-β-D-glucuronopyranoside (QGC) is a flavonoid glucoside extracted from Rumex Aquaticus. Recent studies have shown that QGC exhibits anti-inflammatory, anti-oxidateve effect in vivo and cytoprotective effect in vitro. Reactive oxygen species (ROS), at low concentration, play role as a primary signal or second messenger, however, at high concentration, ROS are cytotoxic. In this study, we investigated the protective mechanism of QGC in H2O2-induced injury of Feline Esophageal Epithelial Cells. Primary-cultured feline esophagus cells were identified by an indirect immunofluorescent staining method using a cytokeratin monoclonal antibody. Cell viability was determined by the conventional MTT reduction assay. Western blot analysis was performed with specific antibodies to investigate the activation of MAPKs, NF-κB, and IκB-α, and the expression of COX-2. When the cells were exposed to 600 μM H2O2 medium for 24 h, cell viability decreased to 54 %. However, when cells were pretreated with 50-150 μM QGC for 12 h, the viability of cells exposed to H2O2 significantly increased in the dose dependent manner. QGC (50 μM, 12 h) also inhibited the expression of COX-2 induced by 10 μM H2O2 for 24 h. We found that treatment of H2O2 activated p38 MAPK and JNK, but not ERK. However QGC inhibited the H2O2-induced p38 MAPK and JNK phosphorylation. In addition, NF-κB was activated by H2O2 and translocated into the nucleus, but QGC inhibited the activation of NF-κB by blocking degradation of IκB. These data suggest that QGC reduces H2O2-induced COX-2 production by modulating the p38 MAPK, JNK, NF-κB signal pathway in feline esophageal epithelial cells.
Collapse
|
13
|
Chen HM, Yang CM, Chang JF, Wu CS, Sia KC, Lin WN. AdipoR-increased intracellular ROS promotes cPLA2 and COX-2 expressions via activation of PKC and p300 in adiponectin-stimulated human alveolar type II cells. Am J Physiol Lung Cell Mol Physiol 2016; 311:L255-69. [PMID: 27288489 DOI: 10.1152/ajplung.00218.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 03/28/2016] [Indexed: 01/21/2023] Open
Abstract
Adiponectin, an adipokine, accumulated in lung system via T-cadherin after allergens/ozone challenge. However, the roles of adiponectin on lung pathologies were controversial. Here we reported that adiponectin stimulated expression of inflammatory proteins, cytosolic phospholipase A2 (cPLA2), cyclooxygenase-2 (COX-2), and production of reactive oxygen species (ROS) in human alveolar type II A549 cells. AdipoR1/2 involved in adiponectin-activated NADPH oxidase and mitochondria, which further promoted intracellular ROS accumulation. Protein kinase C (PKC) may involve an adiponectin-activated NADPH oxidase. Similarly, p300 phosphorylation and histone H4 acetylation occurred in adiponectin-challenged A549 cells. Moreover, adiponectin-upregulated cPLA2 and COX-2 expression was significantly abrogated by ROS scavenger (N-acetylcysteine) or the inhibitors of NADPH oxidase (apocynin), mitochondrial complex I (rotenone), PKC (Ro31-8220, Gö-6976, and rottlerin), and p300 (garcinol). Briefly, we reported that adiponectin stimulated cPLA2 and COX-2 expression via AdipoR1/2-dependent activation of PKC/NADPH oxidase/mitochondria resulting in ROS accumulation, p300 phosphorylation, and histone H4 acetylation. These results suggested that adiponectin promoted lung inflammation, resulting in exacerbation of pulmonary diseases via upregulating cPLA2 and COX-2 expression together with intracellular ROS production. Understanding the adiponectin signaling pathways on regulating cPLA2 and COX-2 may help develop therapeutic strategies on pulmonary diseases.
Collapse
Affiliation(s)
- Hsiao-Mei Chen
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, Xinzhuang, New Taipei City, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Aging Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan; Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo, Kwei-San, Tao-Yuan, Taiwan; Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| | - Jia-Feng Chang
- PhD Program in Nutrition and Food Science, Fu Jen Catholic University, Xinzhuang, New Taipei City, Taiwan; Department of Internal Medicine, En-Chu-Kong Hospital, Sanxia, New Taipei City, Taiwan
| | - Chi-Sheng Wu
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, Xinzhuang, New Taipei City, Taiwan
| | - Kee-Chin Sia
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, Xinzhuang, New Taipei City, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, Xinzhuang, New Taipei City, Taiwan
| |
Collapse
|
14
|
Kasai T, Nakanishi T, Ohno Y, Shimada H, Nakamura Y, Arakawa H, Tamai I. Role of OATP2A1 in PGE(2) secretion from human colorectal cancer cells via exocytosis in response to oxidative stress. Exp Cell Res 2016; 341:123-31. [PMID: 26850138 DOI: 10.1016/j.yexcr.2016.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 12/30/2022]
Abstract
Chronic inflammation induced by reactive oxygen species is associated with increased risk of developing colorectal cancer (CRC), and prostaglandin E2 (PGE2), which serves as a key mediator of inflammatory responses, plays an important role in CRC initiation and progression. Therefore, in the present study, we aimed to investigate the role of prostaglandin transporter OATP2A1/SLCO2A1 in the changes of PGE2 disposition in CRC cells in response to oxidative stress. H2O2 induced translocation of cytoplasmic OATP2A1 to plasma membranes in LoVo and COLO 320DM cells, but not in Caco-2 cells. The shift of subcellular OATP2A1 was abolished in the presence of anti-oxidant N-acetyl-L-cysteine or an inhibitor of protein kinase C, which evokes exocytosis. Exposure of LoVo cells to H2O2 caused an increase in the amount of extracellular PGE2 without changing the sum of intra- and extracellular PGE2. OATP2A1 knockdown decreased extracellular PGE2 in LoVo cells. In addition, extracellular PGE2 was significantly reduced by exocytosis inhibitor cytochalasin D, suggesting that H2O2-induced PGE2 release occurs in an exocytotic manner. Furthermore, mRNA expression of vascular endothelial growth factor (VEGF) was significantly reduced in LoVo cells by knockdown of OATP2A1. These results suggest that cytoplasmic OATP2A1 likely facilitates PGE2 loading into suitable intracellular compartment(s) for efficient exocytotic PGE2 release from CRC cells exposed to oxidative stress.
Collapse
Affiliation(s)
- Taku Kasai
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takeo Nakanishi
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yasuhiro Ohno
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hiroaki Shimada
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshinobu Nakamura
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
15
|
Wang Y, Yu H, Zhang J, Gao J, Ge X, Lou G. Hesperidin inhibits HeLa cell proliferation through apoptosis mediated by endoplasmic reticulum stress pathways and cell cycle arrest. BMC Cancer 2015; 15:682. [PMID: 26459308 PMCID: PMC4603924 DOI: 10.1186/s12885-015-1706-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 10/07/2015] [Indexed: 12/15/2022] Open
Abstract
Background Hesperidin (30, 5, 9-dihydroxy-40-methoxy-7-orutinosyl flavanone) is a flavanone that is found mainly in citrus fruits and has been shown to have some anti-neoplastic effects. The aim of the present study was to investigate the effect of hesperidin on apoptosis in human cervical cancer HeLa cells and to identify the mechanism involved. Methods Cells were treated with hesperidin (0, 20, 40, 60, 80, and 100 μM) for 24, 48, or 72 h and relative cell viability was assessed using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Results Hesperidin inhibited the proliferation of HeLa cells in a concentration- and time-dependent manner. Hesperidin-induced apoptosis in HeLa cells was characterized by increased nuclear condensation and DNA fragmentation. Furthermore, increased levels of GADD153/CHOP and GRP78 indicated hesperidin-induced apoptosis in HeLa cells involved a caspase-dependent pathway, presumably downstream of the endoplasmic reticulum stress pathway. Both of these proteins are hallmarks of endoplasmic reticulum stress. Hesperidin also promoted the formation of reactive oxygen species, mobilization of intracellular Ca2+, loss of mitochondrial membrane potential (ΔΨm), increased release of cytochrome c and apoptosis-inducing factor from mitochondria, and promoted capase-3 activation. It also arrested HeLa cells in the G0/G1 phase in the cell cycle by downregulating the expression of cyclinD1, cyclinE1, and cyclin-dependent kinase 2 at the protein level. The effect of hesperidin was also verified on the human colon cancer cell HT-29 cells. Conclusion We concluded that hesperidin inhibited HeLa cell proliferation through apoptosis involving endoplasmic reticulum stress pathways and cell cycle arrest.
Collapse
Affiliation(s)
- Yaoxian Wang
- Department of Gynecology, Third Affiliated Hospital of Harbin Medical University, 150 Hapin Road, Harbin, Heilongjiang Province, 150086, China.
| | - Hui Yu
- Cardiopulmonary Function Room, Third Affiliated Hospital of Harbin Medical University, 150 Hapin Road, Harbin, Heilongjiang Province, 150086, China.
| | - Jin Zhang
- Department of Gynaecology, Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Harbin, Heilongjiang Province, 150001, China.
| | - Jing Gao
- Department of Gynecology, Third Affiliated Hospital of Harbin Medical University, 150 Hapin Road, Harbin, Heilongjiang Province, 150086, China.
| | - Xin Ge
- Department of General Surgery, Heilongjiang Provincial Hospital, 82 Zhongshan Road, Harbin, Heilongjiang Province, 150036, China.
| | - Ge Lou
- Department of Gynecology, Third Affiliated Hospital of Harbin Medical University, 150 Hapin Road, Harbin, Heilongjiang Province, 150086, China.
| |
Collapse
|
16
|
Vibrio vulnificus VvpE inhibits mucin 2 expression by hypermethylation via lipid raft-mediated ROS signaling in intestinal epithelial cells. Cell Death Dis 2015; 6:e1787. [PMID: 26086960 PMCID: PMC4669833 DOI: 10.1038/cddis.2015.152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/08/2015] [Accepted: 05/08/2015] [Indexed: 02/07/2023]
Abstract
Mucin is an important physical barrier against enteric pathogens. VvpE is an elastase encoded by Gram-negative bacterium Vibrio vulnificus; however, the functional role of VvpE in intestinal mucin (Muc) production is yet to be elucidated. The recombinant protein (r) VvpE significantly reduced the level of Muc2 in human mucus-secreting HT29-MTX cells. The repression of Muc2 induced by rVvpE was highly susceptible to the knockdown of intelectin-1b (ITLN) and sequestration of cholesterol by methyl-β-cyclodextrin. We found that rVvpE induces the recruitment of NADPH oxidase 2 and neutrophil cytosolic factor 1 into the membrane lipid rafts coupled with ITLN to facilitate the production of reactive oxygen species (ROS). The bacterial signaling of rVvpE through ROS production is uniquely mediated by the phosphorylation of ERK, which was downregulated by the silencing of the PKCδ. Moreover, rVvpE induced region-specific methylation in the Muc2 promoter to promote the transcriptional repression of Muc2. In two mouse models of V. vulnificus infection, the mutation of the vvpE gene from V. vulnificus exhibited an increased survival rate and maintained the level of Muc2 expression in intestine. These results demonstrate that VvpE inhibits Muc2 expression by hypermethylation via lipid raft-mediated ROS signaling in the intestinal epithelial cells.
Collapse
|
17
|
Vibrio vulnificus VvhA induces NF-κB-dependent mitochondrial cell death via lipid raft-mediated ROS production in intestinal epithelial cells. Cell Death Dis 2015; 6:1655. [PMID: 25695598 PMCID: PMC4669806 DOI: 10.1038/cddis.2015.19] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/07/2015] [Accepted: 01/07/2015] [Indexed: 01/29/2023]
Abstract
The Gram-negative bacterium Vibrio vulnificus produces hemolysin (VvhA), which induces cytotoxicity in mammalian cells. However, our understanding of the cytotoxic mechanism and the modes of action of VvhA are still fragmentary and incomplete. The recombinant protein (r) VvhA (50 pg/ml) significantly induces necrotic cell death and apoptosis in human intestinal epithelial (INT-407) cells. The apoptotic cell death induced by rVvhA is highly susceptible to the sequestration of cholesterol by methyl-β-cyclodextrin, whereas for necrotic cell death, this shows a marginal effect. We found that rVvhA induces the aggregation of lipid raft components coupled with NADPH oxidase enzymes, in which rVvhA increased the interaction of NADPH oxidase 2 (NOX2, gp91phox) with a cytosolic protein NCF1 (p47phox) to facilitate the production of reactive oxygen species (ROS). rVvhA uniquely stimulated a conventional PKC isoform PKCα and induced the phosphorylation of both ERK and JNK, which are responsible for the activation of transcription factor NF-κB. rVvhA induced an NF-κB-dependent imbalance of the Bcl-2/Bax ratio, the release of mitochondrial cytochrome c, and caspase-3/-9 activation during its promotion of apoptotic cell death. In addition, rVvhA has the ability to inhibit the expression of cell cycle-related proteins, such as CDK2, CDK4, cyclin D1, and cyclin E. These results demonstrate that rVvhA induces NF-κB-dependent mitochondrial cell death via lipid raft-mediated ROS production by the distinct activation of PKCα and ERK/JNK in intestinal epithelial cells.
Collapse
|
18
|
Yun SP, Lee SJ, Oh SY, Jung YH, Ryu JM, Suh HN, Kim MO, Oh KB, Han HJ. Reactive oxygen species induce MMP12-dependent degradation of collagen 5 and fibronectin to promote the motility of human umbilical cord-derived mesenchymal stem cells. Br J Pharmacol 2015; 171:3283-97. [PMID: 24627968 DOI: 10.1111/bph.12681] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/26/2014] [Accepted: 03/05/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND PURPOSE Reactive oxygen species (ROS) are potent regulators of stem cell behaviour; however, their physiological significance as regards MMP-mediated regulation of the motility of human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) has not been characterized. In the present study, we investigated the role of hydrogen peroxide (H2O2 ) and associated signalling pathways in promoting UCB-MSCs motility. EXPERIMENTAL APPROACH The regulatory effects of H2O2 on the activation of PKC, MAPKs, NF-κB and β-catenin were determined. The expressions of MMP and extracellular matrix proteins were examined. Pharmacological inhibitors and gene-specific siRNA were used to identify the signalling pathways of H2O2 that affect UCB-MSCs motility. An experimental skin wound-healing model was used to confirm the functional role of UCB-MSCs treated with H2O2 in ICR mice. KEY RESULTS H2O2 increased the motility of UCB-MSCs by activating PKCα via a calcium influx mechanism. H2O2 activated ERK and p38 MAPK, which are responsible for the distinct activation of transcription factors NF-κB and β-catenin. UCB-MSCs expressed eight MMP genes, but only MMP12 expression was uniquely regulated by NF-κB and β-catenin activation. H2O2 increased the MMP12-dependent degradation of collagen 5 (COL-5) and fibronectin (FN) associated with UCB-MSCs motility. Finally, topical transplantation of UCB-MSCs treated with H2O2 enhanced skin wound healing in mice. CONCLUSIONS AND IMPLICATIONS H2O2 stimulated UCB-MSCs motility by increasing MMP12-dependent degradation of COL-5 and FN through the activation of NF-κB and glycogen synthase kinase-3β/β-catenin, which is critical for providing a suitable microenvironment for MSCs transplantation and re-epithelialization of skin wounds in mice.
Collapse
Affiliation(s)
- Seung Pil Yun
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Acid-sensing pathways, which trigger mucosal defense mechanisms in response to luminal acid, involve the rapid afferent-mediated "capsaicin pathway" and the sustained "prostaglandin (PG) pathway." Luminal acid quickly increases protective PG synthesis and release from epithelia, although the mechanism by which luminal acid induces PG synthesis is still mostly unknown. Acid exposure augments purinergic ATP-P2Y signaling by inhibition of intestinal alkaline phosphatase activity. Since P2Y activation increases intracellular Ca2+, we further hypothesized that ATP-P2Y signals increase the generation of H2O2 derived from dual oxidase, a member of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family activated by Ca2+. Our recent studies suggest that acid exposure increases H2O2 output, followed by phospholipase A2 and cyclooxygenase activation, increasing PG synthesis. Released prostaglandin E2 augments protective HCO3- and mucus secretion via EP4 receptor activation. Thus, the PG pathway as a component of duodenal acid sensing consists of acid-related intestinal alkaline phosphatase inhibition, ATP-P2Y signals, dual oxidase 2-derived H2O2 production, phospholipase A2 activation, prostaglandin E2 synthesis, and EP4 receptor activation. The PG pathway is also involved in luminal bacterial sensing in the duodenum via activation of pattern recognition receptors, including Toll-like receptors and nucleotide-binding oligomerization domain 2. The presence of acute mucosal responses to luminal bacteria suggests that the duodenum is important for host defenses and may reduce bacterial loading to the hindgut using H2O2, complementing gastric acidity and anti-bacterial bile acids.
Collapse
Affiliation(s)
- Yasutada Akiba
- Veterans Affairs Greater Los Angeles Healthcare System, University of California Los Angeles, Los Angeles, California, USA; Department of Medicine, School of Medicine, University of California Los Angeles, Los Angeles, California, USA; Brentwood Biomedical Research Institute, Los Angeles, California, USA
| | | |
Collapse
|
20
|
Cattaneo F, Guerra G, Parisi M, De Marinis M, Tafuri D, Cinelli M, Ammendola R. Cell-surface receptors transactivation mediated by g protein-coupled receptors. Int J Mol Sci 2014; 15:19700-28. [PMID: 25356505 PMCID: PMC4264134 DOI: 10.3390/ijms151119700] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/30/2014] [Accepted: 10/13/2014] [Indexed: 12/17/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are seven transmembrane-spanning proteins belonging to a large family of cell-surface receptors involved in many intracellular signaling cascades. Despite GPCRs lack intrinsic tyrosine kinase activity, tyrosine phosphorylation of a tyrosine kinase receptor (RTK) occurs in response to binding of specific agonists of several such receptors, triggering intracellular mitogenic cascades. This suggests that the notion that GPCRs are associated with the regulation of post-mitotic cell functions is no longer believable. Crosstalk between GPCR and RTK may occur by different molecular mechanism such as the activation of metalloproteases, which can induce the metalloprotease-dependent release of RTK ligands, or in a ligand-independent manner involving membrane associated non-receptor tyrosine kinases, such as c-Src. Reactive oxygen species (ROS) are also implicated as signaling intermediates in RTKs transactivation. Intracellular concentration of ROS increases transiently in cells stimulated with GPCR agonists and their deliberated and regulated generation is mainly catalyzed by enzymes that belong to nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family. Oxidation and/or reduction of cysteine sulfhydryl groups of phosphatases tightly controls the activity of RTKs and ROS-mediated inhibition of cellular phosphatases results in an equilibrium shift from the non-phosphorylated to the phosphorylated state of RTKs. Many GPCR agonists activate phospholipase C, which catalyze the hydrolysis of phosphatidylinositol 4,5-bis-phosphate to produce inositol 1,4,5-triphosphate and diacylglicerol. The consequent mobilization of Ca2+ from endoplasmic reticulum leads to the activation of protein kinase C (PKC) isoforms. PKCα mediates feedback inhibition of RTK transactivation during GPCR stimulation. Recent data have expanded the coverage of transactivation to include Serine/Threonine kinase receptors and Toll-like receptors. Herein, we discuss the main mechanisms of GPCR-mediated cell-surface receptors transactivation and the pathways involved in intracellular responses induced by GPCR agonists. These studies may suggest the design of novel strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Germano Guerra
- Department of Medicine and Health Sciences, University of Molise, Campobasso 86100, Italy.
| | - Melania Parisi
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Marta De Marinis
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Domenico Tafuri
- Department of Sport Science and Wellness, University of Naples Parthenope, Naples 80133, Italy.
| | - Mariapia Cinelli
- Department of Public Health, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples 80131, Italy.
| |
Collapse
|
21
|
Ishimoto T, Nakamichi N, Hosotani H, Masuo Y, Sugiura T, Kato Y. Organic cation transporter-mediated ergothioneine uptake in mouse neural progenitor cells suppresses proliferation and promotes differentiation into neurons. PLoS One 2014; 9:e89434. [PMID: 24586778 PMCID: PMC3934899 DOI: 10.1371/journal.pone.0089434] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 01/11/2014] [Indexed: 01/11/2023] Open
Abstract
The aim of the present study is to clarify the functional expression and physiological role in neural progenitor cells (NPCs) of carnitine/organic cation transporter OCTN1/SLC22A4, which accepts the naturally occurring food-derived antioxidant ergothioneine (ERGO) as a substrate in vivo. Real-time PCR analysis revealed that mRNA expression of OCTN1 was much higher than that of other organic cation transporters in mouse cultured cortical NPCs. Immunocytochemical analysis showed colocalization of OCTN1 with the NPC marker nestin in cultured NPCs and mouse embryonic carcinoma P19 cells differentiated into neural progenitor-like cells (P19-NPCs). These cells exhibited time-dependent [3H]ERGO uptake. These results demonstrate that OCTN1 is functionally expressed in murine NPCs. Cultured NPCs and P19-NPCs formed neurospheres from clusters of proliferating cells in a culture time-dependent manner. Exposure of cultured NPCs to ERGO or other antioxidants (edaravone and ascorbic acid) led to a significant decrease in the area of neurospheres with concomitant elimination of intracellular reactive oxygen species. Transfection of P19-NPCs with small interfering RNA for OCTN1 markedly promoted formation of neurospheres with a concomitant decrease of [3H]ERGO uptake. On the other hand, exposure of cultured NPCs to ERGO markedly increased the number of cells immunoreactive for the neuronal marker βIII-tubulin, but decreased the number immunoreactive for the astroglial marker glial fibrillary acidic protein (GFAP), with concomitant up-regulation of neuronal differentiation activator gene Math1. Interestingly, edaravone and ascorbic acid did not affect such differentiation of NPCs, in contrast to the case of proliferation. Knockdown of OCTN1 increased the number of cells immunoreactive for GFAP, but decreased the number immunoreactive for βIII-tubulin, with concomitant down-regulation of Math1 in P19-NPCs. Thus, OCTN1-mediated uptake of ERGO in NPCs inhibits cellular proliferation via regulation of oxidative stress, and also promotes cellular differentiation by modulating the expression of basic helix-loop-helix transcription factors via an unidentified mechanism different from antioxidant action.
Collapse
Affiliation(s)
- Takahiro Ishimoto
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Noritaka Nakamichi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroshi Hosotani
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yusuke Masuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tomoko Sugiura
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
- * E-mail:
| |
Collapse
|
22
|
Garavello NM, Pena DA, Bonatto JMC, Duarte ML, Costa-Junior HM, Schumacher RI, Forti FL, Schechtman D. Activation of protein kinase C delta by ψδRACK peptide promotes embryonic stem cell proliferation through ERK 1/2. J Proteomics 2013; 94:497-512. [DOI: 10.1016/j.jprot.2013.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 09/30/2013] [Accepted: 10/15/2013] [Indexed: 01/07/2023]
|
23
|
Lee IT, Lin CC, Lin WN, Wu WL, Hsiao LD, Yang CM. Lung inflammation caused by adenosine-5'-triphosphate is mediated via Ca2+/PKCs-dependent COX-2/PGE2 induction. Int J Biochem Cell Biol 2013; 45:1657-68. [PMID: 23680674 DOI: 10.1016/j.biocel.2013.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/30/2013] [Accepted: 05/06/2013] [Indexed: 12/13/2022]
Abstract
Up-regulation of cyclooxygenase (COX)-2 and prostaglandin E2 (PGE2) are implicated in lung inflammation. Adenosine 5'-triphosphate (ATP) has been shown to act via activation of P2 purinoceptors, leading to COX-2 expression in various inflammatory diseases. The mechanisms of ATP-induced COX-2 expression and PGE2 release remain unclear. We showed that pretreatment with the inhibitors of P2 receptors (PPADS and Suramin), Gq protein (GPA2A), phosphatidylcholine-phospholipase C (PC-PLC; D609), phosphoinositide-phospholipase C (PI-PLC; ET-18-OCH3), Ca(2+)/calmodulin-dependent protein kinase II (CaMKII; KN62), protein kinase C (PKC; Gö6976, Ro-318220, GF109203X, and rottlerin), MEK1/2 (PD98059), p38 MAPK (SB202190), and nuclear factor-kappaB (NF-κB; Bay11-7082) and the intracellular calcium chelator (BAPTA/AM) or transfection with siRNAs of these molecules and cPLA2 reduced ATPγS-induced COX-2 expression or PGE2 production in A549 cells. In addition, ATPγS-induced elevation of intracellular Ca(2+) concentration was attenuated by PPADS, Suramin, D609, or ET-18-OCH3. ATPγS-induced p38 MAPK, p42/p44 MAPK, and NF-κB p65 activation were inhibited by Gö6976, Ro-318220, GF109203X, or rottlerin. ATPγS also induced cPLA2 phosphorylation and activity, which were reduced via inhibition of P2 receptors, PKCs, p38 MAPK, and p42/p44 MAPK. ATPγS-induced cPLA2 expression was inhibited by SB202190, PD98059, or Bay11-7082. In the in vitro study, we established that ATPγS induced PGE2 generation via a cPLA2/COX-2-dependent pathway. In the in vivo study, we found that ATPγS induced COX-2 mRNA expression in the lungs and leukocyte (mainly eosinophils and neutrophils) count in bronchoalveolar lavage (BAL) fluid in mice via a P2 receptors-dependent signaling pathway. We concluded that ATPγS may induce lung inflammation via a cPLA2/COX-2/PGE2-dependent pathway.
Collapse
Affiliation(s)
- I-Ta Lee
- Department of Anesthetics, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | | | | | |
Collapse
|
24
|
Lim JC, Park SY, Nam Y, Nguyen TT, Sohn UD. The Protective Effect of Eupatilin against Hydrogen Peroxide-Induced Injury Involving 5-Lipoxygenase in Feline Esophageal Epithelial Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:313-20. [PMID: 23118554 PMCID: PMC3484515 DOI: 10.4196/kjpp.2012.16.5.313] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/14/2012] [Accepted: 09/02/2012] [Indexed: 01/27/2023]
Abstract
In this study, we focused to identify whether eupatilin (5,7-dihydroxy-3',4',6-trimethoxyflavone), an extract from Artemisia argyi folium, prevents H2O2-induced injury of cultured feline esophageal epithelial cells. Cell viability was measured by the conventional MTT reduction assay. Western blot analysis was performed to investigate the expression of 5-lipoxygenase by H2O2 treatment in the absence and presence of inhibitors. When cells were exposed to 600 µM H2O2 for 24 hours, cell viability was decreased to 40%. However, when cells were pretreated with 25~150 µM eupatilin for 12 hours, viability was significantly restored in a concentration-dependent manner. H2O2-treated cells were shown to express 5-lipoxygenase, whereas the cells pretreated with eupatilin exhibited reduction in the expression of 5-lipoxygenase. The H2O2-induced increase of 5-lipoxygenase expression was prevented by SB202190, SP600125, or NAC. We further demonstrated that the level of leukotriene B4 (LTB4) was also reduced by eupatilin, SB202190, SP600125, NAC, or nordihydroguaiaretic acid (a lipoxygenase inhibitor) pretreatment. H2O2 induced the activation of p38MAPK and JNK, this activation was inhibited by eupatilin. These results indicate that eupatilin may reduce H2O2-induced cytotoxicity, and 5-lipoxygenase expression and LTB4 production by controlling the p38 MAPK and JNK signaling pathways through antioxidative action in feline esophageal epithelial cells.
Collapse
Affiliation(s)
- Jae Chun Lim
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | | | | | | | | |
Collapse
|
25
|
Chi PL, Chen YW, Hsiao LD, Chen YL, Yang CM. Heme oxygenase 1 attenuates interleukin-1β-induced cytosolic phospholipase A2 expression via a decrease in NADPH oxidase/reactive oxygen species/activator protein 1 activation in rheumatoid arthritis synovial fibroblasts. ACTA ACUST UNITED AC 2012; 64:2114-25. [PMID: 22231145 DOI: 10.1002/art.34371] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Reactive oxygen species (ROS) produced by cytokines induce the expression of inflammatory mediators in rheumatoid arthritis (RA). Heme oxygenase 1 (HO-1) exerts an antiinflammatory effect. The aim of this study was to examine the mechanisms underlying interleukin-1β (IL-1β)-induced cytosolic phospholipase A2 (cPLA2) expression through ROS generation as modulated by HO-1 in RA synovial fibroblasts (RASFs). METHODS IL-1β-induced ROS generation was determined by flow cytometry. The involvement of MAPKs and NADPH oxidase (NOX)/ROS in IL-1β-induced cPLA2 expression was investigated using pharmacologic inhibitors and transfection with small interfering RNAs (siRNAs) and was analyzed by Western blotting and promoter assay. Overexpression of HO-1 was performed by transfection of RASFs with a recombinant adenovirus containing human HO-1 plasmid. SCID mice with inflammation caused by IL-1β were infected with adenovirus containing HO-1. Histologic characterization of joint inflammation and local expression of cPLA2 were evaluated after treatment. RESULTS IL-1β-induced cPLA2 expression was mediated through NOX activation/ROS production, which was attenuated by N-acetylcysteine (NAC; a scavenger of ROS), the inhibitors of NOX (diphenyleneiodonium chloride and apocynin), MEK-1/2 (U0126), and JNK-1/2 (SP600125), transfection with the respective siRNAs, and the overexpression of HO-1 in RASFs. IL-1β-induced cPLA2 expression was mediated through recruitment of activator protein 1 (AP-1) to the cPLA2 promoter region, which was attenuated by NAC and overexpression of HO-1. Furthermore, HO-1 overexpression inhibited IL-1β-mediated cPLA2 expression in SCID mice. CONCLUSION In RASFs, IL-1β induced cPLA2 expression via activation of p42/p44 MAPK and JNK-1/2, leading to p47phox phosphorylation, ROS production, and AP-1 activation. The induction of HO-1 exerted protective effects on the pathogenesis of RA.
Collapse
Affiliation(s)
- Pei-Ling Chi
- Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | | | |
Collapse
|
26
|
Enterococcus faecalis enhances cell proliferation through hydrogen peroxide-mediated epidermal growth factor receptor activation. Infect Immun 2012; 80:3545-58. [PMID: 22851748 DOI: 10.1128/iai.00479-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Enterococcus faecalis is a member of the intestinal and oral microbiota that may affect the etiology of colorectal and oral cancers. The mechanisms by which E. faecalis may contribute to the initiation and progression of these cancers remain uncertain. Epidermal growth factor receptor (EGFR) signaling is postulated to play a crucial role in oral carcinogenesis. A link between E. faecalis and EGFR signaling in oral cancer has not been elucidated. The present study aimed to evaluate the association between E. faecalis and oral cancer and to determine the underlying mechanisms that link E. faecalis to EGFR signaling. We report the high frequency of E. faecalis infection in oral tumors and the clinical association with EGFR activation. Using human oral cancer cells, we support the clinical findings and demonstrate that E. faecalis can induce EGFR activation and cell proliferation. E. faecalis activates EGFR through production of H(2)O(2), a signaling molecule that activates several signaling pathways. Inhibitors of H(2)O(2) (catalase) and EGFR (gefitinib) significantly blocked E. faecalis-induced EGFR activation and cell proliferation. Therefore, E. faecalis infection of oral tumor tissues suggests a possible association between E. faecalis infection and oral carcinogenesis. Interaction of E. faecalis with host cells and production of H(2)O(2) increase EGFR activation, thereby contributing to cell proliferation.
Collapse
|
27
|
Das UN. Essential fatty acids and their metabolites as modulators of stem cell biology with reference to inflammation, cancer, and metastasis. Cancer Metastasis Rev 2012; 30:311-24. [PMID: 22005953 DOI: 10.1007/s10555-011-9316-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Stem cells are pluripotent and expected to be of benefit in the management of coronary heart disease, stroke, diabetes mellitus, cancer, and Alzheimer's disease in which pro-inflammatory cytokines are increased. Identifying endogenous bioactive molecules that have a regulatory role in stem cell survival, proliferation, and differentiation may aid in the use of stem cells in various diseases including cancer. Essential fatty acids form precursors to both pro- and anti-inflammatory molecules have been shown to regulate gene expression, enzyme activity, modulate inflammation and immune response, gluconeogenesis via direct and indirect pathways, function directly as agonists of a number of G protein-coupled receptors, activate phosphatidylinositol 3-kinase/Akt and p44/42 mitogen-activated protein kinases, and stimulate cell proliferation via Ca(2+), phospholipase C/protein kinase, events that are also necessary for stem cell survival, proliferation, and differentiation. Hence, it is likely that bioactive lipids play a significant role in various diseases by modulating the proliferation and differentiation of embryonic stem cells in addition to their capacity to suppress inflammation. Ephrin Bs and reelin, adhesion molecules, and microRNAs regulate neuronal migration and cancer cell metastasis. Polyunsaturated fatty acids and their products seem to modulate the expression of ephrin Bs and reelin and several adhesion molecules and microRNAs suggesting that bioactive lipids participate in neuronal regeneration and stem cell proliferation, migration, and cancer cell metastasis. Thus, there appears to be a close interaction among essential fatty acids, their bioactive products, and inflammation and cancer growth and its metastasis.
Collapse
Affiliation(s)
- Undurti N Das
- School of Biotechnology, Jawaharlal Nehru Technological University, Kakinada 533 003, India.
| |
Collapse
|
28
|
Ho BY, Wu YM, Chang KJ, Pan TM. Dimerumic acid inhibits SW620 cell invasion by attenuating H₂O₂-mediated MMP-7 expression via JNK/C-Jun and ERK/C-Fos activation in an AP-1-dependent manner. Int J Biol Sci 2011; 7:869-80. [PMID: 21814482 PMCID: PMC3149281 DOI: 10.7150/ijbs.7.869] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 07/12/2011] [Indexed: 01/08/2023] Open
Abstract
Reactive oxygen species (ROS) such as hydrogen peroxide (H₂O₂) in the tumor microenvironment play important roles in tumor invasion and metastasis. Recently, ROS have been reported to cause a significant increase in the production and expression of matrix metalloproteinase (MMP)-7, which is closely correlated with metastatic colorectal cancer. The present study was undertaken to evaluate the scavenging activity of dimerumic acid (DMA) for H₂O₂ isolated from Monascus-fermented rice to investigate the inhibitory effects of DMA on the invasive potential of SW620 human colon cancer cells, and to explore the mechanisms underlying both these phenomena. Our results showed that increased MMP-7 expression due to H₂O₂ exposure was mediated by activation of mitogen-activated protein kinases (MAPKs) such as Jun N-terminal kinase (JNK), extracellular-regulated kinase (ERK), and p38 kinase. DMA pretreatment suppressed activation of H₂O₂-mediated MAPK pathways and cell invasion. Moreover, H₂O₂-triggered MMP-7 production was demonstrated via JNK/c-Jun and ERK/c-Fos activation in an activating protein 1 (AP-1)-dependent manner. Taken together, these results suggest that DMA suppresses H₂O₂-induced cell invasion by inhibiting AP-1-mediated MMP-7 gene transcription via the JNK/c-Jun and ERK/c-Fos signaling pathways in SW620 human colon cancer cells. Our data suggest that DMA may be useful in minimizing the development of colorectal metastasis. In the future, DMA supplementation may be a beneficial antioxidant to enhance surgical outcomes.
Collapse
Affiliation(s)
- Bing-Ying Ho
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | |
Collapse
|
29
|
Christophersen OA, Haug A. Animal products, diseases and drugs: a plea for better integration between agricultural sciences, human nutrition and human pharmacology. Lipids Health Dis 2011; 10:16. [PMID: 21247506 PMCID: PMC3031257 DOI: 10.1186/1476-511x-10-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 01/20/2011] [Indexed: 12/17/2022] Open
Abstract
Eicosanoids are major players in the pathogenesis of several common diseases, with either overproduction or imbalance (e.g. between thromboxanes and prostacyclins) often leading to worsening of disease symptoms. Both the total rate of eicosanoid production and the balance between eicosanoids with opposite effects are strongly dependent on dietary factors, such as the daily intakes of various eicosanoid precursor fatty acids, and also on the intakes of several antioxidant nutrients including selenium and sulphur amino acids. Even though the underlying biochemical mechanisms have been thoroughly studied for more than 30 years, neither the agricultural sector nor medical practitioners have shown much interest in making practical use of the abundant high-quality research data now available. In this article, we discuss some specific examples of the interactions between diet and drugs in the pathogenesis and therapy of various common diseases. We also discuss, using common pain conditions and cancer as specific examples, how a better integration between agricultural science, nutrition and pharmacology could lead to improved treatment for important diseases (with improved overall therapeutic effect at the same time as negative side effects and therapy costs can be strongly reduced). It is shown how an unnaturally high omega-6/omega-3 fatty acid concentration ratio in meat, offal and eggs (because the omega-6/omega-3 ratio of the animal diet is unnaturally high) directly leads to exacerbation of pain conditions, cardiovascular disease and probably most cancers. It should be technologically easy and fairly inexpensive to produce poultry and pork meat with much more long-chain omega-3 fatty acids and less arachidonic acid than now, at the same time as they could also have a similar selenium concentration as is common in marine fish. The health economic benefits of such products for society as a whole must be expected vastly to outweigh the direct costs for the farming sector.
Collapse
|
30
|
Das UN. Influence of polyunsaturated fatty acids and their metabolites on stem cell biology. Nutrition 2011; 27:21-25. [DOI: 10.1016/j.nut.2010.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/15/2010] [Accepted: 04/15/2010] [Indexed: 02/06/2023]
|
31
|
Jones MB, Chu CH, Pendleton JC, Betenbaugh MJ, Shiloach J, Baljinnyam B, Rubin JS, Shamblott MJ. Proliferation and pluripotency of human embryonic stem cells maintained on type I collagen. Stem Cells Dev 2010; 19:1923-35. [PMID: 20367282 DOI: 10.1089/scd.2009.0326] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human embryonic stem cells (hESC) require a balance of growth factors and signaling molecules to proliferate and retain pluripotency. Conditioned medium (CM) from a human embryonic germ-cell-derived cell culture, SDEC, was observed to support the growth of hESC on type I collagen (COL I) and on Matrigel (MAT) biomatricies. After 1 month, the population doubling of hESC grown in SDEC CM on COL I was equivalent to that of hESC grown in mouse embryonic fibroblast (MEF) CM on MAT. hESC grown in SDEC CM on COL I expressed OCT4, NANOG, SSEA-4, alkaline phosphatase (AP), and TRA-1-60; retained a normal karyotype; and were capable of forming teratomas. DNA microarray analysis was used to compare the transcriptional profiles of SDEC and the less supportive WI38 and Detroit 551 human cell lines. The mRNA level of secreted frizzled-related protein (sFRP-1), a known antagonist of the WNT/β-catenin signaling pathway, was significantly reduced in SDEC as compared with the other 2 cell lines, whereas the mRNA levels of prostaglandin-endoperoxide synthase 2 (PTGS2 or COX-2) and prostaglandin I₂ synthase (PGIS), two prostaglandin biosynthesis genes, were significantly increased in SDEC. The level of sFRP-1 protein was significantly reduced, and levels of 2 prostaglandins that are downstream products of PTGS2 and PGIS, prostaglandin E₂ and 6-keto-prostaglandin F(1α), were significantly elevated in SDEC CM compared with WI38, Detroit 551, and MEF CM. Further, addition of purified sFRP-1 to SDEC CM reduced the proliferation of hESC grown on COL I as well as MAT in a dose-dependent manner.
Collapse
Affiliation(s)
- Meredith B Jones
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kishimoto K, Li RC, Zhang J, Klaus JA, Kibler KK, Doré S, Koehler RC, Sapirstein A. Cytosolic phospholipase A2 alpha amplifies early cyclooxygenase-2 expression, oxidative stress and MAP kinase phosphorylation after cerebral ischemia in mice. J Neuroinflammation 2010; 7:42. [PMID: 20673332 PMCID: PMC2923122 DOI: 10.1186/1742-2094-7-42] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 07/30/2010] [Indexed: 02/06/2023] Open
Abstract
Background The enzyme cytosolic phospholipase A2 alpha (cPLA2α) has been implicated in the progression of cerebral injury following ischemia and reperfusion. Previous studies in rodents suggest that cPLA2α enhances delayed injury extension and disruption of the blood brain barrier many hours after reperfusion. In this study we investigated the role of cPLA2α in early ischemic cerebral injury. Methods Middle cerebral artery occlusion (MCAO) was performed on cPLA2α+/+ and cPLA2α-/- mice for 2 hours followed by 0, 2, or 6 hours of reperfusion. The levels of cPLA2α, cyclooxygenase-2, neuronal morphology and reactive oxygen species in the ischemic and contralateral hemispheres were evaluated by light and fluorescent microscopy. PGE2 content was compared between genotypes and hemispheres after MCAO and MCAO and 6 hours reperfusion. Regional cerebral blood flow was measured during MCAO and phosphorylation of relevant MAPKs in brain protein homogenates was measured by Western analysis after 6 hours of reperfusion. Results Neuronal cPLA2α protein increased by 2-fold immediately after MCAO and returned to pre-MCAO levels after 2 hours reperfusion. Neuronal cyclooxygenase-2 induction and PGE2 concentration were greater in cPLA2α+/+ compared to cPLA2α-/- ischemic cortex. Neuronal swelling in ischemic regions was significantly greater in the cPLA2α+/+ than in cPLA2α-/- brains (+/+: 2.2 ± 0.3 fold vs. -/-: 1.7 ± 0.4 fold increase; P < 0.01). The increase in reactive oxygen species following 2 hours of ischemia was also significantly greater in the cPLA2α+/+ ischemic core than in cPLA2α-/- (+/+: 7.12 ± 1.2 fold vs. -/-: 3.1 ± 1.4 fold; P < 0.01). After 6 hours of reperfusion ischemic cortex of cPLA2α+/+, but not cPLA2α-/-, had disruption of neuron morphology and decreased PGE2 content. Phosphorylation of the MAPKs-p38, ERK 1/2, and MEK 1/2-was significantly greater in cPLA2a+/+ than in cPLA2α-/- ischemic cortex 6 hours after reperfusion. Conclusions These results indicate that cPLA2α modulates the earliest molecular and injury responses after cerebral ischemia and have implications for the potential clinical use of cPLA2α inhibitors.
Collapse
Affiliation(s)
- Koji Kishimoto
- The Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Current World Literature. Curr Opin Support Palliat Care 2010; 4:111-20. [DOI: 10.1097/spc.0b013e32833a1dfc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Sun L, Liu J, Cui D, Li J, Yu Y, Ma L, Hu L. Anti-inflammatory function of Withangulatin A by targeted inhibiting COX-2 expression via MAPK and NF-kappaB pathways. J Cell Biochem 2010; 109:532-41. [PMID: 19950196 DOI: 10.1002/jcb.22430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Withangulatin A (WA), an active component isolated from Physalis angulata L., has been reported to possess anti-tumor and trypanocidal activities in model systems via multiple biochemical mechanisms. The aim of this study is to investigate its anti-inflammatory potential and the possible underlying mechanisms. In the current study, WA significantly suppressed mice T lymphocytes proliferation stimulated with LPS in a dose- and time-dependent manner and inhibited pro-inflammation cytokines (IL-2, IFN-gamma, and IL-6) dramatically. Moreover, WA targeted inhibited COX-2 expression mediated by MAPKs and NF-kappaB nuclear translocation pathways in mice T lymphocytes, and this result was further confirmed by the COX-1/2 luciferase reporter assay. Intriguingly, administration of WA inhibited the extent of mice ear swelling and decreased pro-inflammatory cytokines production in mice blood serum. Based on these evidences, WA influences the mice T lymphocytes function through targeted inhibiting COX-2 expression via MAPKs and NF-kappaB nuclear translocation signaling pathways, and this would make WA a strong candidate for further study as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Lijuan Sun
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | | | | | | | | | | | | |
Collapse
|
35
|
González-Aragón D, Alcaín FJ, Ariza J, Jódar L, Barbarroja N, López-Pedrera C, Villalba JM. ES936 stimulates DNA synthesis in HeLa cells independently on NAD(P)H:quinone oxidoreductase 1 inhibition, through a mechanism involving p38 MAPK. Chem Biol Interact 2010; 186:174-83. [PMID: 20433816 DOI: 10.1016/j.cbi.2010.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/17/2010] [Accepted: 04/19/2010] [Indexed: 01/29/2023]
Abstract
The indolequinone ES936 (5-methoxy-1,2-dimethyl-3-[(4-nitrophenol)methyl]-indole-4,7-dione) is a potent mechanism-based inhibitor of NAD(P)H:quinone oxidoreductase 1 (NQO1). Here, we report that ES936 significantly stimulated thymidine incorporation in sparse cultures of human adenocarcinoma HeLa cells, but was without effect in dense cultures. Stimulation of DNA synthesis was not related with a DNA repair response because an increase in thymidine incorporation was not observed in cells treated with 2,5 bis-[1-aziridyl]-1,4 benzoquinone, a well-established antitumor quinone that causes DNA damage. Conversely, it was related with an increase of cell growth. NQO1 inhibition was not involved in ES936 stimulation of DNA synthesis, because the same response was observed in cells where NQO1 expression had been knocked down by small interfering RNA. Stimulation of DNA synthesis was reverted by treatment with ambroxol, a SOD mimetic, and by pyruvate, an efficient peroxide scavenger, supporting the involvement of alterations in cellular redox state. Pharmacological inhibition of p38 with either SB203580 or PD169316 completely abolished ES936-stimulated DNA synthesis, indicating the requirement of p38 activity. This is the first report that demonstrates the existence of an ES936-sensitive system which is separate from NQO1, modulating the redox state and cell growth in HeLa cells through a p38-dependent mechanism. Our results show that the effect ES936 exerts on DNA synthesis may be either positive or negative depending on the cellular context and growth conditions.
Collapse
Affiliation(s)
- David González-Aragón
- Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Ciencias, Universidad de Córdoba, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Shi C, Wu F, Xu J. H2O2 and PAF mediate Abeta1-42-induced Ca2+ dyshomeostasis that is blocked by EGb761. Neurochem Int 2010; 56:893-905. [PMID: 20362023 DOI: 10.1016/j.neuint.2010.03.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 03/05/2010] [Accepted: 03/23/2010] [Indexed: 11/27/2022]
Abstract
Calcium (Ca2+) dyshomeostasis may be of pivotal importance in mediating the neurotoxic action of amyloid beta peptide (Abeta), but the mechanism whereby Abeta disrupts Ca2+ homeostasis remains unclear. Using hippocampal neuronal cultures, the present study investigated possible mechanisms underlying Ca2+ dyshomeostasis induced by the oligomeric form of Abeta1-42 and two possible mediators of its toxicity, hydrogen peroxide (H2O2) and platelet-activating factor (PAF). It was found that, both H2O2 and PAF were able to reproduce each of the events induced by oligomeric Abeta1-42, including (a) Ca2+ influx via N-methyl-D-aspartic acid (NMDA) receptors, (b) enhancement of Ca2+ response to NMDA via activation of protein kinase C (PKC), (c) the increase of extracellular concentrations of glutamate and (d) the increase in cytosolic free Ca2+ ([Ca2+]i). Moreover, each of these events could be blocked by Ginkgo biloba extract EGb761, a free radical scavenger with PAF antagonism, and by quercetin, a constituent with well-established free radical scavenging property. In contrast, ginkgolide B, another constituent of EGb761 with well-established PAF-antagonizing activity protected the neurons against Ca2+ dyshomeostasis induced by Abeta1-42 and PAF, but not by H2O2. These results suggested the possibility that Abeta1-42-induced Ca2+ dyshomeostasis might be mediated by formation of toxic mediators such as H2O2 and PAF. Therefore, increased production of toxic mediators such as H2O2 and PAF in the brain may be critical in the pathological mechanism of neurodegenerative diseases, particularly Alzheimer's disease (AD), and may serve as major therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Chun Shi
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University Guangzhou, Guangdong 510080, China.
| | | | | |
Collapse
|
37
|
Contribution of reactive oxygen species to migration/invasion of human glioblastoma cells U87 via ERK-dependent COX-2/PGE2 activation. Neurobiol Dis 2010; 37:118-29. [DOI: 10.1016/j.nbd.2009.09.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/26/2009] [Accepted: 09/27/2009] [Indexed: 11/23/2022] Open
|
38
|
Yoneyama M, Kawada K, Gotoh Y, Shiba T, Ogita K. Endogenous reactive oxygen species are essential for proliferation of neural stem/progenitor cells. Neurochem Int 2009; 56:740-6. [PMID: 19958807 DOI: 10.1016/j.neuint.2009.11.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 11/24/2009] [Accepted: 11/25/2009] [Indexed: 11/30/2022]
Abstract
It is widely thought that accumulation of reactive oxygen species (ROS) causes injury to cells. In this study, we investigated the effect of endogenous ROS on the proliferation of neural stem/progenitor cells derived from the hippocampus of embryonic mice. The cells were treated with free radical-scavenging agents [3-methyl-1-phenyl-2-pyrazolin-5-one (edaravone) or 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (tempol)], an NADPH oxidase inhibitor (apocynin), catalase, a nitric oxide synthase inhibitor [N(omega)-nitro-L-arginine methyl ester hydrochloride (L-NAME)] or a peroxynitrite generator (SIN-1) during the culture period. Edaravone and tempol had the ability to decrease endogenous ROS in the cells exposed for periods from 1 to 24h, with attenuation of the proliferation activity of the cells during culture. Apocynin and L-NAME were also effective in attenuating cell proliferation but not cellular damage. Conversely, SIN-1 was capable of promoting the proliferation activity. However, catalase had no effect on the proliferation activity of the cells during culture. Furthermore, tempol significantly decreased the level of NFkappaB p65, phospho-cyclic AMP response element-binding protein, and beta-catenin within the nucleus of the cells. These data suggest that endogenous ROS and nitric oxide are essential for the proliferation of embryonic neural stem/progenitor cells.
Collapse
Affiliation(s)
- Masanori Yoneyama
- Department of Pharmacology, Setsunan University, Faculty of Pharmaceutical Sciences, Hirakata, Osaka, Japan
| | | | | | | | | |
Collapse
|