1
|
Zou H, Yang Y, Chen HW. Natural compounds ursolic acid and digoxin exhibit inhibitory activities to cancer cells in RORγ-dependent and -independent manner. Front Pharmacol 2023; 14:1146741. [PMID: 37180705 PMCID: PMC10169565 DOI: 10.3389/fphar.2023.1146741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Natural compounds ursolic acid (UA) and digoxin isolated from fruits and other plants display potent anti-cancer effects in preclinical studies. UA and digoxin have been at clinical trials for treatment of different cancers including prostate cancer, pancreatic cancer and breast cancer. However, they displayed limited benefit to patients. Currently, a poor understanding of their direct targets and mechanisms of action (MOA) severely hinders their further development. We previously identified nuclear receptor RORγ as a novel therapeutic target for castration-resistant prostate cancer (CRPC) and triple-negative breast cancer (TNBC) and demonstrated that tumor cell RORγ directly activates gene programs such as androgen receptor (AR) signaling and cholesterol metabolism. Previous studies also demonstrated that UA and digoxin are potential RORγt antagonists in modulating the functions of immune cells such as Th17 cells. Here we showed that UA displays a strong activity in inhibition of RORγ-dependent transactivation function in cancer cells, while digoxin exhibits no effect at clinically relevant concentrations. In prostate cancer cells, UA downregulates RORγ-stimulated AR expression and AR signaling, whereas digoxin upregulates AR signaling pathway. In TNBC cells, UA but not digoxin alters RORγ-controlled gene programs of cell proliferation, apoptosis and cholesterol biosynthesis. Together, our study reveals for the first-time that UA, but not digoxin, acts as a natural antagonist of RORγ in the cancer cells. Our finding that RORγ is a direct target of UA in cancer cells will help select patients with tumors that likely respond to UA treatment.
Collapse
Affiliation(s)
- Hongye Zou
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Yatian Yang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
- UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, United States
- VA Northern California Health Care System, Mather, CA, United States
| |
Collapse
|
2
|
Hao Q, Wu Y, Vadgama JV, Wang P. Phytochemicals in Inhibition of Prostate Cancer: Evidence from Molecular Mechanisms Studies. Biomolecules 2022; 12:1306. [PMID: 36139145 PMCID: PMC9496067 DOI: 10.3390/biom12091306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Prostate cancer is one of the leading causes of death for men worldwide. The development of resistance, toxicity, and side effects of conventional therapies have made prostate cancer treatment become more intensive and aggressive. Many phytochemicals isolated from plants have shown to be tumor cytotoxic. In vitro laboratory studies have revealed that natural compounds can affect cancer cell proliferation by modulating many crucial cellular signaling pathways frequently dysregulated in prostate cancer. A multitude of natural compounds have been found to induce cell cycle arrest, promote apoptosis, inhibit cancer cell growth, and suppress angiogenesis. In addition, combinatorial use of natural compounds with hormone and/or chemotherapeutic drugs seems to be a promising strategy to enhance the therapeutic effect in a less toxic manner, as suggested by pre-clinical studies. In this context, we systematically reviewed the currently available literature of naturally occurring compounds isolated from vegetables, fruits, teas, and herbs, with their relevant mechanisms of action in prostate cancer. As there is increasing data on how phytochemicals interfere with diverse molecular pathways in prostate cancer, this review discusses and emphasizes the implicated molecular pathways of cell proliferation, cell cycle control, apoptosis, and autophagy as important processes that control tumor angiogenesis, invasion, and metastasis. In conclusion, the elucidation of the natural compounds' chemical structure-based anti-cancer mechanisms will facilitate drug development and the optimization of drug combinations. Phytochemicals, as anti-cancer agents in the treatment of prostate cancer, can have significant health benefits for humans.
Collapse
Affiliation(s)
- Qiongyu Hao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Yanyuan Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Piwen Wang
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| |
Collapse
|
3
|
Quinolinic Acid Induces Alterations in Neuronal Subcellular Compartments, Blocks Autophagy Flux and Activates Necroptosis and Apoptosis in Rat Striatum. Mol Neurobiol 2022; 59:6632-6651. [PMID: 35980566 DOI: 10.1007/s12035-022-02986-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Quinolinic acid (QUIN) is an agonist of N-methyl-D-aspartate receptor (NMDAr) used to study the underlying mechanism of excitotoxicity in animal models. There is evidence indicating that impairment in autophagy at early times contributes to cellular damage in excitotoxicity; however, the status of autophagy in QUIN model on day 7 remains unexplored. In this study, the ultrastructural analysis of subcellular compartments and the status of autophagy, necroptosis, and apoptosis in the striatum of rats administered with QUIN (120 nmol and 240 nmol) was performed on day 7. QUIN induced circling behavior, neurodegeneration, and cellular damage; also, it promoted swollen mitochondrial crests, spherical-like morphology, and mitochondrial fragmentation; decreased ribosomal density in the rough endoplasmic reticulum; and altered the continuity of myelin sheaths in axons with separation of the compact lamellae. Furthermore, QUIN induced an increase and a decrease in ULK1 and p-70-S6K phosphorylation, respectively, suggesting autophagy activation; however, the increased microtubule-associated protein 1A/1B-light chain 3-II (LC3-II) and sequestosome-1/p62 (SQSTM1/p62), the coexistence of p62 and LC3 in the same structures, and the decrease in Beclin 1 and mature cathepsin D also indicates a blockage in autophagy flux. Additionally, QUIN administration increased tumor necrosis factor alpha (TNFα) and receptor-interacting protein kinase 3 (RIPK3) levels and its phosphorylation (p-RIPK3), as well as decreased B-cell lymphoma 2 (Bcl-2) and increased Bcl-2-associated X protein (Bax) levels and c-Jun N-terminal kinase (JNK) phosphorylation, suggesting an activation of necroptosis and apoptosis, respectively. These results suggest that QUIN activates the autophagy, but on day 7, it is blocked and organelle and cellular damage, neurodegeneration, and behavior alterations could be caused by necroptosis and apoptosis activation.
Collapse
|
4
|
Witayateeraporn W, Nguyen HM, Ho DV, Nguyen HT, Chanvorachote P, Vinayanuwattikun C, Pongrakhananon V. Aspiletrein A Induces Apoptosis Cell Death via Increasing Reactive Oxygen Species Generation and AMPK Activation in Non-Small-Cell Lung Cancer Cells. Int J Mol Sci 2022; 23:ijms23169258. [PMID: 36012522 PMCID: PMC9409406 DOI: 10.3390/ijms23169258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Lung cancer remains a leading cause of death in cancer patients, and deregulation of apoptosis is a serious concern in clinical practice, even though therapeutic intervention has been greatly improved. Plants are a versatile source of biologically active compounds for anticancer drug discovery, and aspiletrein A (AA) is a steroidal saponin isolated from Aspidistra letreae that has a potent cytotoxic effect on various cancer cell lines. In this study, we investigated and determined the underlying molecular mechanism by which AA induces apoptosis. AA strongly induced apoptosis in NSCLC cells by mediating ROS generation and thereby activating AMP-activated protein kinase (AMPK) signaling. Consequently, downstream signaling and levels of phosphorylated mTOR and Bcl-2 were significantly decreased. Pretreatment with either an antioxidant, N-acetylcysteine, or an AMPK inhibitor, compound C, could reverse the apoptosis-inducing effect and counteract the effect of AA on the AMPK signaling pathway. Decreased levels of Bcl-2 were due to AA-mediating Bcl-2 degradation via a ROS/AMPK/mTOR axis-dependent proteasomal mechanism. Consistently, the apoptotic-inducing effect of AA was also observed in patient-derived malignant lung cancer cells, and it suppressed an in vitro 3D-tumorigenesis. This study identified the underlying mechanism of AA on lung cancer apoptosis, thereby facilitating potential research and development of this compound for further clinical implications.
Collapse
Affiliation(s)
- Wasita Witayateeraporn
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hien Minh Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Duc Viet Ho
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue City 49000, Vietnam
| | - Hoai Thi Nguyen
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue City 49000, Vietnam
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chanida Vinayanuwattikun
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-2-218-8325; Fax: +66-2-218-8340
| |
Collapse
|
5
|
Eltamany EE, Goda MS, Nafie MS, Abu-Elsaoud AM, Hareeri RH, Aldurdunji MM, Elhady SS, Badr JM, Eltahawy NA. Comparative Assessment of the Antioxidant and Anticancer Activities of Plicosepalus acacia and Plicosepalus curviflorus: Metabolomic Profiling and In Silico Studies. Antioxidants (Basel) 2022; 11:antiox11071249. [PMID: 35883740 PMCID: PMC9311546 DOI: 10.3390/antiox11071249] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
This study presents a comparison between two mistletoe plants—P. acacia and P. curviflorus—regarding their total phenolic contents and antioxidant and anticancer activities. P. curviflorus exhibited a higher total phenolics content (340.62 ± 19.46 mg GAE/g extract), and demonstrated higher DPPH free radical scavenging activity (IC50 = 48.28 ± 3.41µg/mL), stronger reducing power (1.43 ± 0.54 mMol Fe+2/g) for ferric ions, and a greater total antioxidant capacity (41.89 ± 3.15 mg GAE/g) compared to P. acacia. The cytotoxic effects of P. acacia and P. curviflorus methanol extracts were examined on lung (A549), prostate (PC-3), ovarian (A2780) and breast (MDA-MB-231) cancer cells. The highest anticancer potential for the two extracts was observed on PC-3 prostate cancer cells, where P. curviflorus exhibited more pronounced antiproliferative activity (IC50 = 25.83 μg/mL) than P. acacia (IC50 = 34.12 μg/mL). In addition, both of the tested extracts arrested the cell cycle at the Pre-G1 and G1 phases, and induced apoptosis. However, P. curviflorus extract possessed the highest apoptotic effect, mediated by the upregulation of p53, Bax, and caspase-3, 8 and 9, and the downregulation of Bcl-2 expression. In the pursuit to link the chemical diversity of P. curviflorus with the exhibited bioactivities, its metabolomic profiling was achieved by the LC-ESI-TOF-MS/MS technique. This permitted the tentative identification of several phenolics—chiefly flavonoid derivatives, beside some triterpenes and sterols—in the P. curviflorus extract. Furthermore, all of the metabolites in P. curviflorus and P. acacia were inspected for their binding modes towards both CDK-2 and EGFR proteins using molecular docking studies in an attempt to understand the superiority of P. curviflorus over P. acacia regarding their antiproliferative effect on PC-3 cancer cells. Docking studies supported our experimental results; with all of this taken together, P. curviflorus could be regarded as a potential prospect for the development of chemotherapeutics for prostate cancer.
Collapse
Affiliation(s)
- Enas E. Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (M.S.G.); (N.A.E.)
| | - Marwa S. Goda
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (M.S.G.); (N.A.E.)
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Abdelghafar M. Abu-Elsaoud
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Rawan H. Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammed M. Aldurdunji
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia;
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (S.S.E.); (J.M.B.); Tel.: +966-544512552 (S.S.E.); +20-1091332451 (J.M.B.)
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (M.S.G.); (N.A.E.)
- Correspondence: (S.S.E.); (J.M.B.); Tel.: +966-544512552 (S.S.E.); +20-1091332451 (J.M.B.)
| | - Nermeen A. Eltahawy
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (M.S.G.); (N.A.E.)
| |
Collapse
|
6
|
Papasotiriou I, Beis G, Iliopoulos AC, Apostolou P. Supportive Oligonucleotide Therapy (SOT) as an Alternative Treatment Option in Cancer: A Preliminary Study. In Vivo 2022; 36:898-906. [PMID: 35241548 DOI: 10.21873/invivo.12779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM An early evaluation concerning the effectiveness of supportive oligonucleotide therapy (SOT) in cancer as a monotherapy and in combination with other types of treatment. PATIENTS AND METHODS This study evaluated the clinical condition and performance status (Karnofsky-Index) of 95 patients, post-SOT administration. Furthermore, circulating tumor cells (CTCs) from 47 patients' pre- and post-SOT administration were measured and analyzed by repeated-measures ANOVA. RESULTS Improvement of the clinical condition was observed in all patients who used SOT (77.89%), SOT in combination with other therapy (69.77%) and SOT as a monotherapy or no information was given concerning another therapy (84.31%). Positive results for Karnofsky-Index were also observed in 71.58%, 61.36%, and 80.39%, respectively. Finally, statistically significant reductions in CTCs were observed for both SOT as a monotherapy and SOT as an adjunctive therapy. CONCLUSION The preliminary results indicate that SOT therapy can be used both as monotherapy as well as in combination with other therapies for cancer.
Collapse
Affiliation(s)
| | - Georgios Beis
- Research Genetic Cancer Centre S.A., Industrial Area of Florina, Florina, Greece
| | - Aggelos C Iliopoulos
- Research Genetic Cancer Centre S.A., Industrial Area of Florina, Florina, Greece
| | - Panagiotis Apostolou
- Research Genetic Cancer Centre S.A., Industrial Area of Florina, Florina, Greece
| |
Collapse
|
7
|
Choi SJ, Ahn CH, Hong KO, Kim JH, Hong SD, Shin JA, Cho SD. Molecular mechanism underlying the apoptotic modulation by ethanol extract of Pseudolarix kaempferi in mucoepidermoid carcinoma of the salivary glands. Cancer Cell Int 2021; 21:427. [PMID: 34391437 PMCID: PMC8364062 DOI: 10.1186/s12935-021-02134-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/03/2021] [Indexed: 11/11/2022] Open
Abstract
Background Pseudolarix kaempferi is a traditional Chinese natural product that possesses the potential cytotoxic effects against cancer. However, the precise molecular mechanism underlying its cytotoxic effects has not yet been completely elucidated. Here, we clarify the mechanism via which the ethanol extract of P. kaempferi (EEPK) leads to cytotoxicity mediated by apoptosis in mucoepidermoid carcinoma (MEC) originating from the salivary glands. Methods We investigated the mechanism underlying the anticancer efficacy of EEPK in human MEC in vitro by assessing mitochondrial dysfunction, mRNA levels, and morphological changes in apoptotic cell nuclei as well as by using a cytotoxicity assay, flow cytometric analysis, and western blotting. Results EEPK inhibited the growth of two human MEC cells and stimulated the induction of caspase-mediated apoptosis that was accompanied by mitochondrial membrane depolarization. Compared with the vehicle control groups, EEPK decreased myeloid cell leukemia-1 (Mcl-1) expression in both cells whereas it significantly decreased B cell lymphoma-2 (Bcl-2) expression in MC3 cells only. The EEPK-induced altered Mcl-1 expression was caused by translational inhibition and proteasomal degradation. Additionally, EEPK significantly increased p-Bcl-2 (Ser70) expression regardless of its total forms by facilitating the activation of the c-Jun N-terminal kinase (JNK) signaling pathway, which exhibited cell context dependency. Nevertheless, JNK activation following EEPK treatment was, at least in part, required for the proapoptotic efficacy of EEPK in both cells. Conclusions This study revealed that EEPK-induced alterations of Mcl-1 inhibition and JNK/Bcl-2 phosphorylation cause apoptosis and provided basic preclinical data for future clinical trials regarding therapy for patients with MEC. Graphic abstract ![]()
Collapse
Affiliation(s)
- Su-Jung Choi
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 03080, Seoul, Republic of Korea
| | - Chi-Hyun Ahn
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 03080, Seoul, Republic of Korea.,51-9, HLB Life Science Co., Ltd., Dongtancheomdansaneop 1-ro, 8f, Gyeonggi-do, 18469, Hwaseong-si, Republic of Korea
| | - Kyoung-Ok Hong
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 03080, Seoul, Republic of Korea.,, 412Ho, Healthcare Innovation Park, 172 Dolma-ro, Bundang-gu, Gyeonggi-do, 13605, Seongnam-si, Republic of Korea
| | - Ji-Hoon Kim
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 03080, Seoul, Republic of Korea
| | - Seong-Doo Hong
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 03080, Seoul, Republic of Korea
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 03080, Seoul, Republic of Korea.
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 03080, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Ursolic Acid and Related Analogues: Triterpenoids with Broad Health Benefits. Antioxidants (Basel) 2021; 10:antiox10081161. [PMID: 34439409 PMCID: PMC8388988 DOI: 10.3390/antiox10081161] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/04/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Ursolic acid (UA) is a well-studied natural pentacyclic triterpenoid found in herbs, fruit and a number of traditional Chinese medicinal plants. UA has a broad range of biological activities and numerous potential health benefits. In this review, we summarize the current data on the bioavailability and pharmacokinetics of UA and review the literature on the biological activities of UA and its closest analogues in the context of inflammation, metabolic diseases, including liver and kidney diseases, obesity and diabetes, cardiovascular diseases, cancer, and neurological disorders. We end with a brief overview of UA’s main analogues with a special focus on a newly discovered naturally occurring analogue with intriguing biological properties and potential health benefits, 23-hydroxy ursolic acid.
Collapse
|
9
|
Li Z, Wang J, Deng X, Huang D, Shao Z, Ma K. Compression stress induces nucleus pulposus cell autophagy by inhibition of the PI3K/AKT/mTOR pathway and activation of the JNK pathway. Connect Tissue Res 2021; 62:337-349. [PMID: 32180463 DOI: 10.1080/03008207.2020.1736578] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Reactive oxygen species (ROS) are related to compression stress-induced nucleus pulposus (NP) cell autophagy, but the specific mechanism is unknown in compression stress-induced intervertebral disc degeneration (IVDD). Here, we discuss the specific molecular mechanism and explore whether ROS scavengers could be employed as specific drugs to inhibit compression stress-induced IVDD.Methods: Rat NP cells were exposed to 1.0 MPa compression and pretreatment with the ROS scavenger N-acetylcysteine (NAC) or the JNK-selective inhibitor SP600125 not. Intracellular ROS production was monitored by confocal microscopy. Autophagy was detected by observing the NP cell ultrastructural features using TEM and examining autophagic vacuoles by flow cytometry. The levels of autophagy-associated molecules, the JNK pathway and the PI3K/AKT/mTOR pathway were analyzed by western blotting.Results: Compression-mediated autophagy in rat NP cells was implicated in ROS generation. The ROS scavenger NAC could protect compression-induced NP cell injures by inhibiting ROS production. And SP600125, a JNK inhibitor, attenuated compression-induced NP cell autophagy. Additionally, this is the first report showing that compression induces autophagy in rat NP cells by impeding the compression-induced ROS dependent PI3K/AKT/mTOR pathway and the ROS independent activation of JNK pathway. And the involvement of JNK pathway was in different mechanism of action that when inhibited leaded to increased cell death, increased generation of ROS but decreased autophagy.Conclusions: These results show a new regulatory mechanism involving ROS-mediated autophagy in rat NP cells, which may provide ideas for drug development to improve compression stress-induced IVDD and help avoid eventual surgical treatment of IVD herniation.
Collapse
Affiliation(s)
- Zhiliang Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Wang
- Department of Gastroenterology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Deng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donghua Huang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaige Ma
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Ahmad B, Gamallat Y, Khan MF, Din SR, Israr M, Ahmad M, Tahir N, Azam N, Rahman KU, Xin W, Zexu W, Linjie P, Su P, Liang W. Natural Polyphyllins (I, II, D, VI, VII) Reverses Cancer Through Apoptosis, Autophagy, Mitophagy, Inflammation, and Necroptosis. Onco Targets Ther 2021; 14:1821-1841. [PMID: 33732000 PMCID: PMC7956893 DOI: 10.2147/ott.s287354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer is the second leading cause of mortality worldwide. Conventional therapies, including surgery, radiation, and chemotherapy, have limited success because of secondary resistance. Therefore, safe, non-resistant, less toxic, and convenient drugs are urgently required. Natural products (NPs), primarily sourced from medicinal plants, are ideal for cancer treatment because of their low toxicity and high success. NPs cure cancer by regulating different pathways, such as PI3K/AKT/mTOR, ER stress, JNK, Wnt, STAT3, MAPKs, NF-kB, MEK-ERK, inflammation, oxidative stress, apoptosis, autophagy, mitophagy, and necroptosis. Among the NPs, steroid saponins, including polyphyllins (I, II, D, VI, and VII), have potent pharmacological, analgesic, and anticancer activities for the induction of cytotoxicity. Recent research has demonstrated that polyphyllins (PPs) possess potent effects against different cancers through apoptosis, autophagy, inflammation, and necroptosis. This review summarizes the available studies on PPs against cancer to provide a basis for future research.
Collapse
Affiliation(s)
- Bashir Ahmad
- Department of Biology, University of Haripur, KPK, I. R. Pakistan.,College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Yaser Gamallat
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, People's Republic of China
| | | | - Syed Riaz Din
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Muhammad Israr
- Department of Biology, University of Haripur, KPK, I. R. Pakistan.,Biochemistry and Molecular Biology, College of Life Science, Hebei Normal University, Hebei, People's Republic of China
| | - Manzoor Ahmad
- Department of Chemistry, Malakand University, Chakdara, KPK, I. R. Pakistan
| | - Naeem Tahir
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Nasir Azam
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Khalil Ur Rahman
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Wang Xin
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Wang Zexu
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Peng Linjie
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Pengyu Su
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Wang Liang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical, Dalian City, Liaoning Province, 116011, People's Republic of China
| |
Collapse
|
11
|
Guan WY, Zhao S, Luo YN. Analysis of the expression and association of retinoblastoma binding protein 6 with the JNK signaling pathway in prostate cancers. Cell Biol Int 2020; 44:2107-2119. [PMID: 32662898 DOI: 10.1002/cbin.11419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/30/2020] [Accepted: 07/12/2020] [Indexed: 12/21/2022]
Abstract
This study aims to investigate the expression of retinoblastoma binding protein 6 (RBBP6) in prostate cancer (PCa) and its association with the c-Jun N-terminal kinase (JNK) pathway. Immunohistochemistry was used to detect RBBP6 and JNK1/2 expression in PCa and benign prostatic hyperplasia tissues. RBBP6 expression in PCa cells (LNCap, PC3, and DU145) and noncancerous prostate epithelial cells (RWPE-1) was determined by quantitative real-time polymerase chain reaction and western blot analysis. PC3 and DU145 cells were transfected with RBBP6 small interfering RNAs (siRNAs) to examine the biological characteristics. Anisomycin (a JNK activator) with/without RBBP6 siRNA was used to treat PC3 cells for further investigating the ramification of the RBBP6-mediated JNK pathway in PCa. PCa tissues and cells showed higher RBBP6 and JNK1/2 expression. RBBP6 was positively correlated with JNK1/2 in PCa tissues. Besides, RBBP6 expression was correlated to clinical tumor stage, lymph node metastasis, Gleason grade, preoperative prostate-specific antigen level, as well as prognosis of PCa. RBBP6 siRNA reduced cell proliferation, arrested cells at G2/M, and promoted cell apoptosis, and suppressed JNK pathway. In addition, migration and invasion decreased after the RBBP6 siRNA transfection with downregulated matrix metallopeptidase-2 (MMP-2) and MMP-9. Anisomycin promoted the proliferation, invasion, and migration of PC3 cells and inhibited PC3 cell apoptosis, which could be reversed by RBBP6 siRNA. RBBP6 expression was upregulated in PCa tissues and positively correlated with expression level of JNK1/2. With inhibition of RBBP6 expression, the proliferation, invasion, and migration of PCa cells decreased dramatically, while PC3 cell apoptosis increased appreciably, accompanied by the suppression of the JNK pathway.
Collapse
Affiliation(s)
- Wen-Ying Guan
- Myopia Laser Treatment Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Sheng Zhao
- Department of Image Diagnostics, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yun-Na Luo
- Department of Physical Examination Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
12
|
Fontana F, Raimondi M, Marzagalli M, Di Domizio A, Limonta P. Natural Compounds in Prostate Cancer Prevention and Treatment: Mechanisms of Action and Molecular Targets. Cells 2020; 9:cells9020460. [PMID: 32085497 PMCID: PMC7072821 DOI: 10.3390/cells9020460] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) represents a major cause of cancer mortality among men in developed countries. Patients with recurrent disease initially respond to androgen-deprivation therapy, but the tumor eventually progresses into castration-resistant PCa; in this condition, tumor cells acquire the ability to escape cell death and develop resistance to current therapies. Thus, new therapeutic approaches for PCa management are urgently needed. In this setting, natural products have been extensively studied for their anti-PCa activities, such as tumor growth suppression, cell death induction, and inhibition of metastasis and angiogenesis. Additionally, numerous studies have shown that phytochemicals can specifically target the androgen receptor (AR) signaling, as well as the PCa stem cells (PCSCs). Interestingly, many clinical trials have been conducted to test the efficacy of nutraceuticals in human subjects, and they have partially confirmed the promising results obtained in vitro and in preclinical models. This article summarizes the anti-cancer mechanisms and therapeutic potentials of different natural compounds in the context of PCa prevention and treatment.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
| | - Alessandro Di Domizio
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
- SPILLOproject, 20037 Paderno Dugnano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (F.F.); (M.R.); (M.M.); (A.D.D.)
- Correspondence: ; Tel.: +39-0250318213
| |
Collapse
|
13
|
Eya2 Is Overexpressed in Human Prostate Cancer and Regulates Docetaxel Sensitivity and Mitochondrial Membrane Potential through AKT/Bcl-2 Signaling. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3808432. [PMID: 31317026 PMCID: PMC6601494 DOI: 10.1155/2019/3808432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/20/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
The aberrant expression of Eya2 has been observed in a wide range of cancer types. However, the clinical significance and biological effects of EYA2 in human prostate cancer remain unknown. In this study, we showed that increased levels of Eya2 protein correlated with advanced TNM stage, T stage, and a higher Gleason score. Data from the Cancer Genome Atlas (TCGA) prostate cohort consistently revealed that Eya2 mRNA was positively correlated with a higher Gleason score, higher T stage, and positive nodal metastasis in prostate cancer. Furthermore, data from the Oncomine database showed increased levels of EYA2 mRNA expression in prostate cancer tissues compared with normal tissues. Eya2 protein expression was also higher in prostate cancer cell lines compared with a normal RWPE-1 cell line. We selected LNCaP and PC-3 cell lines for plasmid overexpression and shRNA knockdown. CCK-8, colony formation, and Matrigel invasion assays demonstrated that the overexpression of Eya2 promoted proliferation, colony number, and invasion while Eya2 shRNA inhibited proliferation rate, colony formation, and invasion ability. CCK-8 and Annexin V assays showed that Eya2 reduced sensitivity to docetaxel and docetaxel-induced apoptosis while Eya2 shRNA showed the opposite effects. The overexpression of Eya2 also downregulated the cleavage of caspase3 and PARP while Eya2 depletion upregulated caspase3 and PARP cleavage. Notably, JC-1 staining demonstrated that Eya2 upregulated mitochondrial membrane potential. We further revealed that the overexpression of Eya2 upregulated Bcl-2, matrix metalloproteinase 7 (MMP7), and AKT phosphorylation. Accordingly, data from the TCGA prostate cohort indicated that EYA2 mRNA was positively correlated with the expression of Bcl-2 and MMP7. The inhibition of AKT attenuated EYA2-induced Bcl-2 upregulation. In conclusion, our data demonstrated that Eya2 was upregulated in prostate cancers. EYA2 promotes cell proliferation and invasion as well as cancer progression by regulating docetaxel sensitivity and mitochondrial membrane potential, possibly via the AKT/Bcl-2 axis.
Collapse
|
14
|
Antonaci G, Cossa LG, Muscella A, Vetrugno C, De Pascali SA, Fanizzi FP, Marsigliante S. [Pt( O,O'-acac)(γ-acac)(DMS)] Induces Autophagy in Caki-1 Renal Cancer Cells. Biomolecules 2019; 9:biom9030092. [PMID: 30845773 PMCID: PMC6468382 DOI: 10.3390/biom9030092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 01/12/2023] Open
Abstract
We have demonstrated the cytotoxic effects of [Pt(O,O′-acac)(γ-acac)(dimethyl sulfide (DMS))] on various immortalized cell lines, in primary cultures, and in murine xenograft models in vivo. Recently, we also showed that [Pt(O,O′-acac)(γ-acac)(DMS)] is able to kill Caki-1 renal cells both in vivo and in vitro. In the present paper, apoptotic and autophagic effects of [Pt(O,O′-acac)(γ-acac)(DMS)] and cisplatin were studied and compared using Caki-1 cancerous renal cells. The effects of cisplatin include activation of caspases, proteolysis of enzyme poly ADP ribose polymerase (PARP), control of apoptosis modulators B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), and BH3-interacting domain death agonist (Bid), and cell cycle arrest in G2/M phase. Conversely, [Pt(O,O′-acac)(γ-acac)(DMS)] did not induce caspase activation, nor chromatin condensation or DNA fragmentation. The effects of [Pt(O,O′-acac)(γ-acac)(DMS)] include microtubule-associated proteins 1A/1B light chain 3B (LC3)-I to LC3-II conversion, Beclin-1 and Atg-3, -4, and -5 increase, Bcl-2 decrease, and monodansylcadaverine accumulation in autophagic vacuoles. [Pt(O,O′-acac)(γ-acac)(DMS)] also modulated various kinases involved in intracellular transduction regulating cell fate. [Pt(O,O′-acac)(γ-acac)(DMS)] inhibited the phosphorylation of mammalian target of rapmycin (mTOR), p70S6K, and AKT, and increased the phosphorylation of c-Jun N-terminal kinase (JNK1/2), a kinase activity pattern consistent with autophagy induction. In conclusion, while in past reports the high cytotoxicity of [Pt(O,O′-acac)(γ-acac)(DMS)] was always attributed to its ability to trigger an apoptotic process, in this paper we show that Caki-1 cells die as a result of the induction of a strong autophagic process.
Collapse
Affiliation(s)
- Giovanna Antonaci
- Laboratory of Cell Physiology, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy.
| | - Luca Giulio Cossa
- Laboratory of Cell Physiology, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy.
| | - Antonella Muscella
- Laboratory of Cell Pathology, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy.
| | - Carla Vetrugno
- Laboratory of Cell Pathology, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy.
| | - Sandra Angelica De Pascali
- Laboratory of General Inorganic Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy.
| | - Francesco Paolo Fanizzi
- Laboratory of General Inorganic Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy.
| | - Santo Marsigliante
- Laboratory of Cell Physiology, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy.
| |
Collapse
|
15
|
Choi WH, Lee IA. Evaluation of Anti- Toxoplasma gondii Effect of Ursolic Acid as a Novel Toxoplasmosis Inhibitor. Pharmaceuticals (Basel) 2018; 11:E43. [PMID: 29747388 PMCID: PMC6026977 DOI: 10.3390/ph11020043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022] Open
Abstract
This study was carried out to evaluate the anti-parasitic effect of ursolic acid against Toxoplasma gondii (T. gondii) that induces toxoplasmosis, particularly in humans. The anti-parasitic effects of ursolic acid against T. gondii-infected cells and T. gondii were evaluated through different specific assays, including immunofluorescence staining and animal testing. Ursolic acid effectively inhibited the proliferation of T. gondii when compared with sulfadiazine, and consistently induced anti-T. gondii activity/effect. In particular, the formation of parasitophorous vacuole membrane (PVM) in host cells was markedly decreased after treating ursolic acid, which was effectively suppressed. Moreover, the survival rate of T. gondii was strongly inhibited in T. gondii group treated with ursolic acid, and then 50% inhibitory concentration (IC50) against T. gondii was measured as 94.62 μg/mL. The T. gondii-infected mice treated with ursolic acid indicated the same survival rates and activity as the normal group. These results demonstrate that ursolic acid causes anti-T. gondii action and effect by strongly blocking the proliferation of T. gondii through the direct and the selective T. gondii-inhibitory ability as well as increases the survival of T. gondii-infected mice. This study shows that ursolic acid has the potential to be used as a promising anti-T. gondii candidate substance for developing effective anti-parasitic drugs.
Collapse
Affiliation(s)
- Won Hyung Choi
- Marine Bio Research & Education Center, Kunsan National University, 558 Daehak-ro, Gunsan-si, Jeollabuk-do 54150, Korea.
| | - In Ah Lee
- Department of Chemistry, College of Natural Science, Kunsan National University, 558 Daehak-ro, Gunsan-si, Jeollabuk-do 54150, Korea.
| |
Collapse
|
16
|
Zhang Y, Liang Y, He C. Anticancer activities and mechanisms of heat-clearing and detoxicating traditional Chinese herbal medicine. Chin Med 2017; 12:20. [PMID: 28702078 PMCID: PMC5506596 DOI: 10.1186/s13020-017-0140-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023] Open
Abstract
In traditional Chinese medicine (TCM) theory, pathogenic heat and toxins, which are akin to the inflammatory factors, are the causes of cancer and could promote its virulent development. Therefore, heat-clearing and detoxicating (HCD) herbs are essential components of TCM formulas for cancer treatment. An increasing interest has been focused on the study of HCD herbs and accumulated evidences have shown that HCD herbs or HCD herbs-based formulas exhibited remarkable anticancer effects when used alone or combined with other therapeutic approaches. Some of the HCD herb-derived products have been tested in clinical trials. Studies revealed that extracts or pure compounds of the HCD herbs showed a broad anticancer spectrum against both solid and hematologic malignancies without significant toxic effects. Notably, some HCD herbs or formulas could strongly enhance the anticancer activities of chemo- or radio-therapy and alleviate their side effects. The anticancer activities of HCD herb exacts or the pure compounds were reported to be through multiple cellular or molecular mechanisms, such as induction of cancer cell apoptosis, differentiation and cell cycle arrest, inhibition of cancer cell growth, invasion and metastasis, and inhibition of tumor angiogenesis. In this review, we provide comprehensive analysis and summary of research progress and future prospects in this field to facilitate the further study and application of HCD herbs.
Collapse
Affiliation(s)
- Yulin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, N22-7038, Avenida da Universidade, Taipa, Macao, 999078 China
| | - Yeer Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, N22-7038, Avenida da Universidade, Taipa, Macao, 999078 China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, N22-7038, Avenida da Universidade, Taipa, Macao, 999078 China
| |
Collapse
|
17
|
Bae SY, Byun S, Bae SH, Min DS, Woo HA, Lee K. TPT1 (tumor protein, translationally-controlled 1) negatively regulates autophagy through the BECN1 interactome and an MTORC1-mediated pathway. Autophagy 2017; 13:820-833. [PMID: 28409693 DOI: 10.1080/15548627.2017.1287650] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
TPT1/TCTP (tumor protein, translationally-controlled 1) is highly expressed in tumor cells, known to participate in various cellular activities including protein synthesis, growth and cell survival. In addition, TPT1 was identified as a direct target of the tumor suppressor TP53/p53 although little is known about the mechanism underlying the anti-survival function of TPT1. Here, we describe a role of TPT1 in the regulation of the MTORC1 pathway through modulating the molecular machinery of macroautophagy/autophagy. TPT1 inhibition induced cellular autophagy via the MTORC1 and AMPK pathways, which are inhibited and activated, respectively, during treatment with the MTOR inhibitor rapamycin. We also found that the depletion of TPT1 potentiated rapamycin-induced autophagy by synergizing with MTORC1 inhibition. We further demonstrated that TPT1 knockdown altered the BECN1 interactome, a representative MTOR-independent pathway, to stimulate autophagosome formation, via downregulating BCL2 expression through activating MAPK8/JNK1, and thereby enhancing BECN1-phosphatidylinositol 3-kinase (PtdIns3K)-UVRAG complex formation. Furthermore, reduced TPT1 promoted autophagic flux by modulating not only early steps of autophagy but also autophagosome maturation. Consistent with in vitro findings, in vivo organ analysis using Tpt1 heterozygote knockout mice showed that autophagy is enhanced because of haploinsufficient TPT1 expression. Overall, our study demonstrated the novel role of TPT1 as a negative regulator of autophagy that may have potential use in manipulating various diseases associated with autophagic dysfunction.
Collapse
Affiliation(s)
- Seong-Yeon Bae
- a Graduate School of Pharmaceutical Sciences , College of Pharmacy, Ewha Womans University , Seoul , Korea
| | - Sanguine Byun
- b Division of Bioengineering , College of Life and Sciences and Bioengineering, Incheon National University , Incheon , Korea
| | - Soo Han Bae
- c Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine , Seoul , Korea
| | - Do Sik Min
- d Department of Molecular Biology , College of Natural Sciences, Pusan National University , Busan , Korea
| | - Hyun Ae Woo
- a Graduate School of Pharmaceutical Sciences , College of Pharmacy, Ewha Womans University , Seoul , Korea
| | - Kyunglim Lee
- a Graduate School of Pharmaceutical Sciences , College of Pharmacy, Ewha Womans University , Seoul , Korea
| |
Collapse
|
18
|
Jin H, Pi J, Yang F, Jiang J, Wang X, Bai H, Shao M, Huang L, Zhu H, Yang P, Li L, Li T, Cai J, Chen ZW. Folate-Chitosan Nanoparticles Loaded with Ursolic Acid Confer Anti-Breast Cancer Activities in vitro and in vivo. Sci Rep 2016; 6:30782. [PMID: 27469490 PMCID: PMC4965748 DOI: 10.1038/srep30782] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/08/2016] [Indexed: 01/26/2023] Open
Abstract
Ursolic acid (UA) has proved to have broad-spectrum anti-tumor effects, but its poor water solubility and incompetent targeting property largely limit its clinical application and efficiency. Here, we synthesized a nanoparticle-based drug carrier composed of chitosan, UA and folate (FA-CS-UA-NPs) and demonstrated that FA-CS-UA-NPs could effectively diminish off-target effects and increase local drug concentrations of UA. Using MCF-7 cells as in vitro model for anti-cancer mechanistic studies, we found that FA-CS-UA-NPs could be easily internalized by cancer cells through a folate receptor-mediated endocytic pathway. FA-CS-UA-NPs entered into lysosome, destructed the permeability of lysosomal membrane, and then got released from lysosomes. Subsequently, FA-CS-UA-NPs localized into mitochondria but not nuclei. The prolonged retention of FA-CS-UA-NPs in mitochondria induced overproduction of ROS and destruction of mitochondrial membrane potential, and resulted in the irreversible apoptosis in cancer cells. In vivo experiments showed that FA-CS-UA-NPs could significantly reduce breast cancer burden in MCF-7 xenograft mouse model. These results suggested that FA-CS-UA-NPs could further be explored as an anti-cancer drug candidate and that our approach might provide a platform to develop novel anti-cancer drug delivery system.
Collapse
Affiliation(s)
- Hua Jin
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, 999078, China
- Department of Microbiology and Immunology, University of Illinois, Chicago 60612, USA
| | - Jiang Pi
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, 999078, China
| | - Fen Yang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, 999078, China
| | - Jinhuan Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, 999078, China
| | - Xiaoping Wang
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Haihua Bai
- Department of Chemistry, materials science and engineering, Jinan University, Guangzhou 510632, China
| | - Mingtao Shao
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Lei Huang
- Treatment and Research Center of Infectious Diseases, the 302 Hospital of PLA, Beijing, 100039, China
| | - Haiyan Zhu
- Department of Chemistry, materials science and engineering, Jinan University, Guangzhou 510632, China
| | - Peihui Yang
- Department of Chemistry, materials science and engineering, Jinan University, Guangzhou 510632, China
| | - Lihua Li
- Department of Chemistry, materials science and engineering, Jinan University, Guangzhou 510632, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, 999078, China
| | - Jiye Cai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, 999078, China
- Department of Chemistry, materials science and engineering, Jinan University, Guangzhou 510632, China
| | - Zheng W. Chen
- Department of Microbiology and Immunology, University of Illinois, Chicago 60612, USA
| |
Collapse
|
19
|
Wu Z, Yu Y, Niu L, Fei A, Pan S. IGF-1 protects tubular epithelial cells during injury via activation of ERK/MAPK signaling pathway. Sci Rep 2016; 6:28066. [PMID: 27301852 PMCID: PMC4908659 DOI: 10.1038/srep28066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/31/2016] [Indexed: 02/08/2023] Open
Abstract
Injury of renal tubular epithelial cells can induce acute renal failure and obstructive nephropathy. Previous studies have shown that administration of insulin-like growth factor-1 (IGF-1) ameliorates the renal injury in a mouse unilateral ureteral obstruction (UUO) model, whereas the underlying mechanisms are not completely understood. Here, we addressed this question. We found that the administration of IGF-1 significantly reduced the severity of the renal fibrosis in UUO. By analyzing purified renal epithelial cells, we found that IGF-1 significantly reduced the apoptotic cell death of renal epithelial cells, seemingly through upregulation of anti-apoptotic protein Bcl-2, at protein but not mRNA level. Bioinformatics analyses and luciferase-reporter assay showed that miR-429 targeted the 3'-UTR of Bcl-2 mRNA to inhibit its protein translation in renal epithelial cells. Moreover, IGF-1 suppressed miR-429 to increase Bcl-2 in renal epithelial cells to improve survival after UUO. Furthermore, inhibition of ERK/MAPK signaling pathway in renal epithelial cells abolished the suppressive effects of IGF-1 on miR-429 activation, and then the enhanced effects on Bcl-2 in UUO. Thus, our data suggest that IGF-1 may protect renal tubular epithelial cells via activation of ERK/MAPK signaling pathway during renal injury.
Collapse
Affiliation(s)
- Zengbin Wu
- Department of Emergency, Xinhua Hospital, Shanghai Jiaotong University Medical College, Shanghai 200092, China
| | - Yang Yu
- Department of Emergency, Xinhua Hospital, Shanghai Jiaotong University Medical College, Shanghai 200092, China
| | - Lei Niu
- Department of Emergency, Xinhua Hospital, Shanghai Jiaotong University Medical College, Shanghai 200092, China
| | - Aihua Fei
- Department of Emergency, Xinhua Hospital, Shanghai Jiaotong University Medical College, Shanghai 200092, China
| | - Shuming Pan
- Department of Emergency, Xinhua Hospital, Shanghai Jiaotong University Medical College, Shanghai 200092, China
| |
Collapse
|
20
|
Polyphyllin VII Induces an Autophagic Cell Death by Activation of the JNK Pathway and Inhibition of PI3K/AKT/mTOR Pathway in HepG2 Cells. PLoS One 2016; 11:e0147405. [PMID: 26808193 PMCID: PMC4726701 DOI: 10.1371/journal.pone.0147405] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/04/2016] [Indexed: 12/19/2022] Open
Abstract
Polyphyllin VII (PP7), a pennogenyl saponin isolated from Rhizoma Paridis, exhibited strong anticancer activities in various cancer types. Previous studies found that PP7 induced apoptotic cell death in human hepatoblastoma cancer (HepG2) cells. In the present study, we investigated whether PP7 could induce autophagy and its role in PP7-induced cell death, and elucidated its mechanisms. PP7 induced a robust autophagy in HepG2 cells as demonstrated by the conversion of LC3B-I to LC3B-II, degradation of P62, formation of punctate LC3-positive structures, and autophagic vacuoles tested by western blot analysis or InCell 2000 confocal microscope. Inhibition of autophagy by treating cells with autophagy inhibitor (chloroquine) abolished the cell death caused by PP7, indicating that PP7 induced an autophagic cell death in HepG2 cells. C-Jun N-terminal kinase (JNK) was activated after treatment with PP7 and pretreatment with SP600125, a JNK inhibitor, reversed PP7-induced autophagy and cell death, suggesting that JNK plays a critical role in autophagy caused by PP7. Furthermore, our study demonstrated that PP7 increased the phosphorylation of AMPK and Bcl-2, and inhibited the phosphorylation of PI3K, AKT and mTOR, suggesting their roles in the PP7-induced autophagy. This is the first report that PP7 induces an autophagic cell death in HepG2 cells via inhibition of PI3K/AKT/mTOR, and activation of JNK pathway, which induces phosphorylation of Bcl-2 and dissociation of Beclin-1 from Beclin-1/Bcl-2 complex, leading to induction of autophagy.
Collapse
|
21
|
Woźniak Ł, Skąpska S, Marszałek K. Ursolic Acid--A Pentacyclic Triterpenoid with a Wide Spectrum of Pharmacological Activities. Molecules 2015; 20:20614-41. [PMID: 26610440 PMCID: PMC6332387 DOI: 10.3390/molecules201119721] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/21/2015] [Accepted: 09/23/2015] [Indexed: 12/12/2022] Open
Abstract
Ursolic acid (UA) is a natural terpene compound exhibiting many pharmaceutical properties. In this review the current state of knowledge about the health-promoting properties of this widespread, biologically active compound, as well as information about its occurrence and biosynthesis are presented. Particular attention has been paid to the application of ursolic acid as an anti-cancer agent; it is worth noticing that clinical tests suggesting the possibility of practical use of UA have already been conducted. Amongst other pharmacological properties of UA one can mention protective effect on lungs, kidneys, liver and brain, anti-inflammatory properties, anabolic effects on skeletal muscles and the ability to suppress bone density loss leading to osteoporosis. Ursolic acid also exhibits anti-microbial features against numerous strains of bacteria, HIV and HCV viruses and Plasmodium protozoa causing malaria.
Collapse
Affiliation(s)
- Łukasz Woźniak
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland.
| | - Sylwia Skąpska
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland.
| | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology, 36 Rakowiecka Street, 02-532 Warsaw, Poland.
| |
Collapse
|
22
|
Zang LL, Wu BN, Lin Y, Wang J, Fu L, Tang ZY. Research progress of ursolic acid's anti-tumor actions. Chin J Integr Med 2014; 20:72-9. [PMID: 24374755 DOI: 10.1007/s11655-013-1541-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Indexed: 01/01/2023]
Abstract
Ursolic acid (UA) is a sort of pentacyclic triterpenoid carboxylic acid purified from natural plant. UA has a series of biological effects such as sedative, anti-inflammatory, anti-bacterial, anti-diabetic, antiulcer, etc. It is discovered that UA has a broad-spectrum anti-tumor effect in recent years, which has attracted more and more scholars' attention. This review explained anti-tumor actions of UA, including (1) the protection of cells' DNA from different damages; (2) the anti-tumor cell proliferation by the inhibition of epidermal growth factor receptor/mitogen-activated protein kinase signal or of FoxM1 transcription factors, respectively; (3) antiangiogenesis, (4) the immunological surveillance to tumors; (5) the inhibition of tumor cell migration and invasion; (6) the effect of UA on caspase, cytochromes C, nuclear factor kappa B, cyclooxygenase, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or mammalian target of rapamycin signal to induce tumor cell apoptosis respectively, and etc. Moreover, UA has selective toxicity to tumor cells, basically no effect on normal cells. With further studies, UA would be one of the potential anti-tumor agents.
Collapse
Affiliation(s)
- Li-li Zang
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | | | | | | | | | | |
Collapse
|
23
|
Leal AS, Wang R, Salvador JAR, Jing Y. Semisynthetic ursolic acid fluorolactone derivatives inhibit growth with induction of p21(waf1) and induce apoptosis with upregulation of NOXA and downregulation of c-FLIP in cancer cells. ChemMedChem 2012; 7:1635-46. [PMID: 22807348 DOI: 10.1002/cmdc.201200282] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Indexed: 12/16/2023]
Abstract
A series of ursolic acid ((1S,2R,4aS,6aR,6aS,6bR,8aR,10S,12aR,14bS)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a-carboxylic acid) derivatives with a 12-fluoro-13,28β-lactone moiety were synthesized using the electrophilic fluorination reagent Selectfluor. The antiproliferative effects of these novel compounds were evaluated in AsPC-1 pancreatic cancer cells, and the structure-activity relationships (SARs) were evaluated. Of the compounds synthesized, ursolic acid derivatives carrying a heterocyclic ring, such as imidazole or methylimidazole, and cyanoenones were among the more potent inhibitors of AsPC-1 pancreatic cancer cell growth. 2-Cyano-3-oxo-12α-fluoro-urs-1-en-13,28β-olide, compound 20, was the most effective inhibitor with IC(50) values of 0.7, 0.9 and 1.8 μM in pancreatic cancer cell lines AsPC-1, MIA PaCa-2 and PANC-1, respectively. This compound also exhibited better antiproliferative activities against breast (MCF7), prostate (PC-3), hepatocellular (Hep G2) and lung (A549) cancer cell lines, with IC(50) values lower than 1 μM. The mechanism of action by which these compounds exert their biological effect was evaluated in AsPC-1 cells using the most potent inhibitor synthesized, compound 20. At 1 μM, the cell cycle arrested at the G1 phase with upregulation of p21(waf1). Apoptosis was induced at an inhibitor concentration of 8 μM with upregulation of NOXA and downregulation of c-FLIP. These data indicate that fluorolactone derivatives of ursolic acid have improved antiproliferative activity, acting through arrest of the cell cycle and induction of apoptosis.
Collapse
Affiliation(s)
- Ana S Leal
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Poló das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | | | | | | |
Collapse
|
24
|
Prasad S, Sung B, Aggarwal BB. Age-associated chronic diseases require age-old medicine: role of chronic inflammation. Prev Med 2012; 54 Suppl:S29-37. [PMID: 22178471 PMCID: PMC3340492 DOI: 10.1016/j.ypmed.2011.11.011] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 11/30/2011] [Indexed: 01/07/2023]
Abstract
Most chronic diseases--such as cancer, cardiovascular disease (CVD), Alzheimer disease, Parkinson disease, arthritis, diabetes and obesity--are becoming leading causes of disability and death all over the world. Some of the most common causes of these age-associated chronic diseases are lack of physical activity, poor nutrition, tobacco use, and excessive alcohol consumption. All the risk factors linked to these chronic diseases have been shown to up-regulate inflammation. Therefore, downregulation of inflammation-associated risk factors could prevent or delay these age-associated diseases. Although modern science has developed several drugs for treating chronic diseases, most of these drugs are enormously expensive and are associated with serious side effects and morbidity. In this review, we present evidence on how chronic inflammation leads to age-associated chronic disease. Furthermore, we discuss diet and lifestyle as solutions for age-associated chronic disease.
Collapse
Affiliation(s)
- Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Bokyung Sung
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Bharat B. Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
25
|
Gao N, Cheng S, Budhraja A, Gao Z, Chen J, Liu EH, Huang C, Chen D, Yang Z, Liu Q, Li P, Shi X, Zhang Z. Ursolic acid induces apoptosis in human leukaemia cells and exhibits anti-leukaemic activity in nude mice through the PKB pathway. Br J Pharmacol 2012; 165:1813-1826. [PMID: 21950524 PMCID: PMC3372832 DOI: 10.1111/j.1476-5381.2011.01684.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/11/2011] [Accepted: 08/16/2011] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSE Ursolic acid (UA) has been extensively used as an anti-leukaemic agent in traditional Chinese medicine. In the present study, we investigated the ability of UA to induce apoptosis in human leukaemia cells in relation to its effects on caspase activation, Mcl-1 down-regulation and perturbations in stress-induced signalling pathways such as PKB and JNK. EXPERIMENTAL APPROACH Leukaemia cells were treated with UA after which apoptosis, caspase activation, PKB and JNK signalling pathways were evaluated. The anti-tumour activity of UA was evaluated using xenograft mouse model. KEY RESULTS UA induced apoptosis in human leukaemia cells in a dose- and time-dependent manner; this was associated with caspase activation, down-regulation of Mcl-1 and inactivation of PKB accompanied by activation of JNK. Enforced activation of PKB by a constitutively active PKB construct prevented UA-mediated JNK activation, Mcl-1 down-regulation, caspase activation and apoptosis. Conversely, UA lethality was potentiated by the PI3-kinase inhibitor LY294002. Interruption of the JNK pathway by pharmacological or genetic (e.g. siRNA) attenuated UA-induced apoptosis. Furthermore, UA-mediated inhibition of tumour growth in vivo was associated with induction of apoptosis, inactivation of PKB as well as activation of JNK. CONCLUSIONS AND IMPLICATIONS Collectively, these findings suggest a hierarchical model of UA-induced apoptosis in human leukaemia cells in which UA induces PKB inactivation, leading to JNK activation and culminating in Mcl-1 down-regulation, caspase activation and apoptosis. These findings indicate that interruption of PKB/JNK pathways may represent a novel therapeutic strategy in haematological malignancies.
Collapse
Affiliation(s)
- Ning Gao
- Department of Pharmacognosy, College of Pharmacy, 3rd Military Medical UniversityChongqing, China
- Graduate Center for Toxicology, College of Medicine, University of KentuckyLexington, Kentucky
| | - Senping Cheng
- Graduate Center for Toxicology, College of Medicine, University of KentuckyLexington, Kentucky
| | - Amit Budhraja
- Graduate Center for Toxicology, College of Medicine, University of KentuckyLexington, Kentucky
| | - Ziyi Gao
- Graduate Center for Toxicology, College of Medicine, University of KentuckyLexington, Kentucky
| | - Jieping Chen
- Department of Hematology, Southwest Hospital, 3rd Military Medical UniversityChongqing, China
| | - E-Hu Liu
- Department of Pharmacognosy, College of Pharmacy, 3rd Military Medical UniversityChongqing, China
| | - Cheng Huang
- Graduate Center for Toxicology, College of Medicine, University of KentuckyLexington, Kentucky
| | - Deying Chen
- Department of Pharmacognosy, College of Pharmacy, 3rd Military Medical UniversityChongqing, China
| | - Zailin Yang
- Department of Hematology, Southwest Hospital, 3rd Military Medical UniversityChongqing, China
| | - Qun Liu
- Key Laboratory of Modern Chinese Medicines (China Pharmaceutical University), Ministry of EducationNanjing, China
| | - Ping Li
- Key Laboratory of Modern Chinese Medicines (China Pharmaceutical University), Ministry of EducationNanjing, China
| | - Xianglin Shi
- Graduate Center for Toxicology, College of Medicine, University of KentuckyLexington, Kentucky
| | - Zhuo Zhang
- Graduate Center for Toxicology, College of Medicine, University of KentuckyLexington, Kentucky
| |
Collapse
|
26
|
Wang O, Liu S, Zou J, Lu L, Chen L, Qiu S, Li H, Lu X. Anticancer activity of 2α, 3α, 19β, 23β-Tetrahydroxyurs-12-en-28-oic acid (THA), a novel triterpenoid isolated from Sinojackia sarcocarpa. PLoS One 2011; 6:e21130. [PMID: 21695177 PMCID: PMC3112233 DOI: 10.1371/journal.pone.0021130] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 05/20/2011] [Indexed: 01/28/2023] Open
Abstract
Background Natural products represent an important source for agents of cancer prevention and cancer treatment. More than 60% of conventional anticancer drugs are derived from natural sources, particularly from plant-derived materials. In this study, 2α, 3α, 19β, 23β-tetrahydroxyurs-12-en-28-oic acid (THA), a novel triterpenoid from the leaves of Sinojackia sarcocarpa, was isolated, and its anticancer activity was investigated both in vitro and in vivo. Principal Findings THA possessed potent tumor selected toxicity in vitro. It exhibited significantly higher cytotoxicity to the cancer cell lines A2780 and HepG2 than to IOSE144 and QSG7701, two noncancerous cell lines derived from ovary epithelium and liver, respectively. Moreover, THA showed a dose-dependent inhibitory effect on A2780 ovary tumor growth in vivo in nude mice. THA induced a dose-dependent apoptosis and G2/M cell cycle arrest in A2780 and HepG2 cells. The THA-induced cell cycle arrest was accompanied by a downregulation of Cdc2. The apoptosis induced by THA was evident by induction of DNA fragmentation, release of cytoplasmic Cytochrome c from mitochondria, activation of caspases, downregulation of Bcl-2 and upregulation of Bax. Conclusion The primary data indicated that THA exhibit a high toxicity toward two cancer cells than their respective non-cancerous counterparts and has a significant anticancer activity both in vitro and in vivo. Thus, THA and/or its derivatives may have great potential in the prevention and treatment of human ovary tumors and other malignancies.
Collapse
Affiliation(s)
- Ouchen Wang
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou, China
- First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Sujun Liu
- Leshan Normal University, Leshan, China
| | - Jiawei Zou
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou, China
| | - Liting Lu
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou, China
| | - Lin Chen
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou, China
| | - Sunquan Qiu
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou, China
| | - He Li
- First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Xincheng Lu
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou, China
- * E-mail:
| |
Collapse
|
27
|
Chiu SC, Wang MJ, Yang HH, Chen SP, Huang SY, Chen YL, Lin SZ, Harn HJ, Pang CY. Activation of NAG-1 via JNK signaling revealed an isochaihulactone-triggered cell death in human LNCaP prostate cancer cells. BMC Cancer 2011; 11:146. [PMID: 21504622 PMCID: PMC3095567 DOI: 10.1186/1471-2407-11-146] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 04/20/2011] [Indexed: 01/05/2023] Open
Abstract
Background We explored the mechanisms of cell death induced by isochaihulactone treatment in LNCaP cells. Methods LNCaP cells were treated with isochaihulactone and growth inhibition was assessed. Cell cycle profiles after isochaihulactone treatment were determined by flow cytometry. Expression levels of cell cycle regulatory proteins, caspase 9, caspase 3, and PARP were determined after isochaihulactone treatment. Signaling pathway was verified by inhibitors pre-treatment. Expression levels of early growth response gene 1 (EGR-1) and nonsteroidal anti-inflammatory drug-activated gene 1 (NAG-1) were determined to investigate their role in LNCaP cell death. NAG-1 expression was knocked down by si-NAG-1 siRNA transfection. Rate of cell death and proliferation were obtained by MTT assay. Results Isochaihulactone caused cell cycle arrest at G2/M phase in LNCaP cells, which was correlated with an increase of p53 and p21 levels and downregulation of the checkpoint proteins cdc25c, cyclin B1, and cdc2. Bcl-2 phosphorylation and caspase activation were also observed. Isochaihulactone induced phosphorylation of c-Jun-N-terminal kinase (JNK), and JNK inhibitor partially reduced isochaihulactone-induced cell death. Isochaihulactone also induced the expressions of EGR-1 and NAG-1. Expression of NAG-1 was reduced by JNK inhibitor, and knocking down of NAG-1 inhibited isochaihulactone-induced cell death. Conclusions Isochaihulactone apparently induces G2/M cell cycle arrest via downregulation of cyclin B1 and cdc2, and induces cellular death by upregulation of NAG-1 via JNK activation in LNCaP cells.
Collapse
Affiliation(s)
- Sheng-Chun Chiu
- Institute of Medical Sciences, Tzu-Chi University, and Department of Medical Research, Buddhist Tzu-Chi General Hospital, Hualien, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Targeting inflammatory pathways by triterpenoids for prevention and treatment of cancer. Toxins (Basel) 2010; 2:2428-66. [PMID: 22069560 PMCID: PMC3153165 DOI: 10.3390/toxins2102428] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 09/23/2010] [Accepted: 10/15/2010] [Indexed: 02/07/2023] Open
Abstract
Traditional medicine and diet has served mankind through the ages for prevention and treatment of most chronic diseases. Mounting evidence suggests that chronic inflammation mediates most chronic diseases, including cancer. More than other transcription factors, nuclear factor-kappaB (NF-κB) and STAT3 have emerged as major regulators of inflammation, cellular transformation, and tumor cell survival, proliferation, invasion, angiogenesis, and metastasis. Thus, agents that can inhibit NF-κB and STAT3 activation pathways have the potential to both prevent and treat cancer. In this review, we examine the potential of one group of compounds called triterpenes, derived from traditional medicine and diet for their ability to suppress inflammatory pathways linked to tumorigenesis. These triterpenes include avicins, betulinic acid, boswellic acid, celastrol, diosgenin, madecassic acid, maslinic acid, momordin, saikosaponins, platycodon, pristimerin, ursolic acid, and withanolide. This review thus supports the famous adage of Hippocrates, “Let food be thy medicine and medicine be thy food”.
Collapse
|