1
|
Nesbitt C, Van Der Walt A, Butzkueven H, Devitt B, Jokubaitis VG. Multiple sclerosis and cancer: Navigating a dual diagnosis. Mult Scler 2024:13524585241274523. [PMID: 39347791 DOI: 10.1177/13524585241274523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Healthcare breakthroughs are extending the lives of multiple sclerosis (MS) patients and cancer survivors, creating a growing cohort of individuals navigating a dual diagnosis. Determining the relationship between MS and cancer risk remains challenging, with inconclusive findings confounded by age, risk exposures, comorbidities, genetics and the ongoing introduction of new MS disease-modifying therapies (DMTs) across study periods.This research places significant emphasis on cancer survival, with less attention given to the impact on MS outcomes. Our review explores the existing literature on MS, cancer risk and the intersection of DMTs and cancer treatments. We aim to navigate the complexities of managing MS in cancer survivors to optimise outcomes for both conditions. Continuous research and the formulation of treatment guidelines are essential for guiding future care. Collaboration between neuro-immunology and oncology is crucial, with a need to establish databases for retrospective and ultimately prospective analysis of outcomes in these rapidly evolving fields.
Collapse
Affiliation(s)
- Cassie Nesbitt
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Neurology, MSNI Multiple Sclerosis and Neuro-Immunology, Alfred Health, Melbourne, VIC, Australia
- Department of Neuroscience, Monash University, The Alfred Centre, Melbourne, VIC, Australia
| | - Anneke Van Der Walt
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Neurology, MSNI Multiple Sclerosis and Neuro-Immunology, Alfred Health, Melbourne, VIC, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Neurology, MSNI Multiple Sclerosis and Neuro-Immunology, Alfred Health, Melbourne, VIC, Australia
| | - Bianca Devitt
- Department of Oncology, Eastern Health Clinical School, Monash University, Melbourne, VIC, Australia
- Oncology Clinical Trials Unit, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Vilija G Jokubaitis
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Neurology, MSNI Multiple Sclerosis and Neuro-Immunology, Alfred Health, Melbourne, VIC, Australia
- Department of Neuroscience, Monash University, The Alfred Centre, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Dzhalilova D, Silina M, Tsvetkov I, Kosyreva A, Zolotova N, Gantsova E, Kirillov V, Fokichev N, Makarova O. Changes in the Expression of Genes Regulating the Response to Hypoxia, Inflammation, Cell Cycle, Apoptosis, and Epithelial Barrier Functioning during Colitis-Associated Colorectal Cancer Depend on Individual Hypoxia Tolerance. Int J Mol Sci 2024; 25:7801. [PMID: 39063041 PMCID: PMC11276979 DOI: 10.3390/ijms25147801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
One of the factors contributing to colorectal cancer (CRC) development is inflammation, which is mostly hypoxia-associated. This study aimed to characterize the morphological and molecular biological features of colon tumors in mice that were tolerant and susceptible to hypoxia based on colitis-associated CRC (CAC). Hypoxia tolerance was assessed through a gasping time evaluation in a decompression chamber. One month later, the animals were experimentally modeled for colitis-associated CRC by intraperitoneal azoxymethane administration and three dextran sulfate sodium consumption cycles. The incidence of tumor development in the distal colon in the susceptible to hypoxia mice was two times higher and all tumors (100%) were represented by adenocarcinomas, while in the tolerant mice, only 14% were adenocarcinomas and 86% were glandular intraepithelial neoplasia. The tumor area assessed on serially stepped sections was statistically significantly higher in the susceptible animals. The number of macrophages, CD3-CD19+, CD3+CD4+, and NK cells in tumors did not differ between animals; however, the number of CD3+CD8+ and vimentin+ cells was higher in the susceptible mice. Changes in the expression of genes regulating the response to hypoxia, inflammation, cell cycle, apoptosis, and epithelial barrier functioning in tumors and the peritumoral area depended on the initial mouse's hypoxia tolerance, which should be taken into account for new CAC diagnostics and treatment approaches development.
Collapse
Affiliation(s)
- Dzhuliia Dzhalilova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| | - Maria Silina
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| | - Ivan Tsvetkov
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| | - Anna Kosyreva
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
- Research Institute of Molecular and Cellular Medicine, People’s Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Natalia Zolotova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| | - Elena Gantsova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
- Research Institute of Molecular and Cellular Medicine, People’s Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Vladimir Kirillov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Health of Russian Federation, 117513 Moscow, Russia;
| | - Nikolay Fokichev
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| | - Olga Makarova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia; (M.S.); (I.T.); (A.K.); (N.Z.); (E.G.); (N.F.); (O.M.)
| |
Collapse
|
3
|
Yao H, Zhang M, Wang D. The next decade of SET: from an oncoprotein to beyond. J Mol Cell Biol 2024; 16:mjad082. [PMID: 38157418 PMCID: PMC11267991 DOI: 10.1093/jmcb/mjad082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/22/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024] Open
Abstract
This year marks the fourth decade of research into the protein SET, which was discovered in 1992. SET was initially identified as an oncoprotein but later shown to be a multifaceted protein involved in regulating numerous biological processes under both physiological and pathophysiological conditions. SET dysfunction is closely associated with diseases, such as cancer and Alzheimer's disease. With the increasing understanding of how SET works and how it is regulated in cells, targeting aberrant SET has emerged as a potential strategy for disease intervention. In this review, we present a comprehensive overview of the advancements in SET studies, encompassing its biological functions, regulatory networks, clinical implications, and pharmacological inhibitors. Furthermore, we provide insights into the future prospects of SET research, with a particular emphasis on its promising potential in the realm of immune modulation.
Collapse
Affiliation(s)
- Han Yao
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Meng Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Donglai Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
4
|
Johnson H, Narayan S, Sharma AK. Altering phosphorylation in cancer through PP2A modifiers. Cancer Cell Int 2024; 24:11. [PMID: 38184584 PMCID: PMC10770906 DOI: 10.1186/s12935-023-03193-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/25/2023] [Indexed: 01/08/2024] Open
Abstract
Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase integral to the regulation of many cellular processes. Due to the deregulation of PP2A in cancer, many of these processes are turned toward promoting tumor progression. Considerable research has been undertaken to discover molecules capable of modulating PP2A activity in cancer. Because PP2A is capable of immense substrate specificity across many cellular processes, the therapeutic targeting of PP2A in cancer can be completed through either enzyme inhibitors or activators. PP2A modulators likewise tend to be effective in drug-resistant cancers and work synergistically with other known cancer therapeutics. In this review, we will discuss the patterns of PP2A deregulation in cancer, and its known downstream signaling pathways important for cancer regulation, along with many activators and inhibitors of PP2A known to inhibit cancer progression.
Collapse
Affiliation(s)
- Hannah Johnson
- Department of Pharmacology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Satya Narayan
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
5
|
Cai Z, Zhang W, Zhou R, Wang Y, Feng Y. Protein Phosphatase 2a Inhibits Gastric Cancer Cell Glycolysis by Reducing MYC Signaling. Cell Biochem Biophys 2023; 81:59-68. [PMID: 36324030 DOI: 10.1007/s12013-022-01112-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
Abstract
Aerobic glycolysis, also known as the Warburg effect, has emerged as a hallmark of cancer and is associated with tumor progression and unfavorable clinical outcomes in cancer patients. PP2A is a highly conserved eukaryotic serine/threonine protein phosphatase that functions as a tumor suppressor in a variety of human cancers. However, the relationship between PP2A and the Warburg effect in gastric cancer has yet to be fully understood. In this study, the expression profile of two endogenous inhibitors of PP2A, SET and CIP2A, in gastric cancer, were analyzed by real-time quantitative polymerase chain reaction. Loss-of-function and gain-of-function studies were performed to investigate the roles of PP2A in gastric cancer cell proliferation and glycolysis. Cell biological, molecular, and biochemical approaches were employed to uncover the underlying mechanisms. The results showed that SET and CIP2A were overexpressed in gastric cancer and associated with a decreased PP2A activity. Pharmacological activation of PP2A with FTY-720 and DT-061 in two gastric cancer cell lines significantly reduced gastric cancer cell proliferation and glycolytic ability. Importantly, inhibition of PP2A activity by genetic silencing of PPP2R5A resulted in a growth advantage, which can be largely compromised by the addition of the glycolysis inhibitor 2-Deoxy-D-glucose, suggesting a glycolysis-dependent effect of PP2A in gastric cancer. Mechanistically, the well-known transcription factor and glycolysis regulator c-Myc was discovered as the functional mediator of PP2A in regulating cell glycolysis. Ectopic expression of a phosphorylation-mutant c-Myc resistant to PP2A (MycT58A) restored the inhibitory effect of FTY-720 and DT-061 on lactate production and glucose uptake. Furthermore, there was a close association between SET and CIP2A expression and c-Myc gene signatures in gastric cancer samples. Collectively, this study provides strong evidence of the involvement of PP2A in the Warburg effect and indicates that it could be a novel antitumor strategy to target tumor metabolism in gastric cancer.
Collapse
Affiliation(s)
- Zhenhua Cai
- Department of Operating Room, Handan Central Hospital, Handan, 056001, Hebei Province, China
| | - Wei Zhang
- Department of General Surgery Clinic 7, Handan Central Hospital, Handan, 056001, Hebei Province, China.
| | - Ruiqing Zhou
- Handan Hanshan District Center for Disease Control and Prevention, Handan, 056001, Hebei Province, China
| | - Yuhong Wang
- Department of General Surgery Clinic 7, Handan Central Hospital, Handan, 056001, Hebei Province, China
| | - Yunzhang Feng
- Department of General Surgery Clinic 7, Handan Central Hospital, Handan, 056001, Hebei Province, China
| |
Collapse
|
6
|
Fingolimod exerts in vitro anticancer activity against hepatocellular carcinoma cell lines via YAP/TAZ suppression. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:427-436. [PMID: 36651547 DOI: 10.2478/acph-2022-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 01/26/2023]
Abstract
Hepatocellular carcinoma (HCC) remains a notably global health challenge with high mortality rates and poor prognosis. The deregulation of the Hippo signalling pathway, especially the overexpression and activation of downstream effector Yes-associated protein (YAP), has been demonstrated to result in the rapid malignant evolution of HCC. In this context, multiple efforts have been dedicated to targeting YAP for HCC therapy, but effective YAP inhibitors are still lacking. In this study, through a YAP-TEAD (8×GTIIC) luciferase reporter assay, we identified fingolimod, an immunomodulatory drug approved for the treatment of multiple sclerosis, as a novel YAP inhibitor. Fingolimod suppressed the proliferation of HCC cell lines by downregulating the protein levels as well as the trans-activating function of YAP. Overall, our current study not only identifies fingolimod as a novel YAP-targeting in hibitor, but also indicates that this clinically-approved drug could be utilized as a potential and feasible therapeutic drug for HCC.
Collapse
|
7
|
Lee P, Yim R, Miu KK, Fung SH, Liao JJ, Wang Z, Li J, Yung Y, Chu HT, Yip PK, Lee E, Tse E, Kwong YL, Gill H. Epigenetic Silencing of PTEN and Epi-Transcriptional Silencing of MDM2 Underlied Progression to Secondary Acute Myeloid Leukemia in Myelodysplastic Syndrome Treated with Hypomethylating Agents. Int J Mol Sci 2022; 23:5670. [PMID: 35628480 PMCID: PMC9144309 DOI: 10.3390/ijms23105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/07/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
In myelodysplastic syndrome (MDS), resistance to hypomethylating agents (HMA) portends a poor prognosis, underscoring the importance of understanding the molecular mechanisms leading to HMA-resistance. In this study, P39 and Kasumi-1 cells and their azacitidine-resistant and decitabine-resistant sublines were evaluated comparatively with transcriptomic and methylomic analyses. Expression profiling and genome-wide methylation microarray showed downregulation of PTEN associated with DNA hypermethylation in P39 cell lines resistant to azacitidine and decitabine. This pattern of PTEN dysregulation was also confirmed in a cohort of patients failing treatment with HMA. DNA hypomethylation of MDM2 was detected with downregulation of MDM2 in HMA resistant cell lines. Long-read sequencing revealed significant RNA hypomethylation of MDM2 resulting in alternative splicing and production of a truncated MDM2 transcript in azacitidine-resistant P39 cells. The expression of this MDM2 truncated transcript was also significantly increased in HMA-resistant patients compared with HMA-responsive patients. In conclusion, epigenetic and epi-transcriptomic dysregulation of PTEN and MDM2 were associated with resistance to hypomethylating agents.
Collapse
Affiliation(s)
- Paul Lee
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Rita Yim
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Kai-Kei Miu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (K.-K.M.); (S.-H.F.); (Z.W.)
| | - Sin-Hang Fung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (K.-K.M.); (S.-H.F.); (Z.W.)
| | - Jason Jinyue Liao
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China;
| | - Zhangting Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; (K.-K.M.); (S.-H.F.); (Z.W.)
| | - Jun Li
- Department of Infectious Diseases and Public Health, The City University of Hong Kong, Hong Kong, China;
| | - Yammy Yung
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Hiu-Tung Chu
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Pui-Kwan Yip
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Emily Lee
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Eric Tse
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Yok-Lam Kwong
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| | - Harinder Gill
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.); (E.L.); (E.T.); (Y.-L.K.)
| |
Collapse
|
8
|
CORRIGENDUM. J Cell Biochem 2022; 123:987. [DOI: 10.1002/jcb.30268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Pournajaf S, Dargahi L, Javan M, Pourgholami MH. Molecular Pharmacology and Novel Potential Therapeutic Applications of Fingolimod. Front Pharmacol 2022; 13:807639. [PMID: 35250559 PMCID: PMC8889014 DOI: 10.3389/fphar.2022.807639] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Fingolimod is a well-tolerated, highly effective disease-modifying therapy successfully utilized in the management of multiple sclerosis. The active metabolite, fingolimod-phosphate, acts on sphingosine-1-phosphate receptors (S1PRs) to bring about an array of pharmacological effects. While being initially recognized as a novel agent that can profoundly reduce T-cell numbers in circulation and the CNS, thereby suppressing inflammation and MS, there is now rapidly increasing knowledge on its previously unrecognized molecular and potential therapeutic effects in diverse pathological conditions. In addition to exerting inhibitory effects on sphingolipid pathway enzymes, fingolimod also inhibits histone deacetylases, transient receptor potential cation channel subfamily M member 7 (TRMP7), cytosolic phospholipase A2α (cPLA2α), reduces lysophosphatidic acid (LPA) plasma levels, and activates protein phosphatase 2A (PP2A). Furthermore, fingolimod induces apoptosis, autophagy, cell cycle arrest, epigenetic regulations, macrophages M1/M2 shift and enhances BDNF expression. According to recent evidence, fingolimod modulates a range of other molecular pathways deeply rooted in disease initiation or progression. Experimental reports have firmly associated the drug with potentially beneficial therapeutic effects in immunomodulatory diseases, CNS injuries, and diseases including Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, and even cancer. Attractive pharmacological effects, relative safety, favorable pharmacokinetics, and positive experimental data have collectively led to its testing in clinical trials. Based on the recent reports, fingolimod may soon find its way as an adjunct therapy in various disparate pathological conditions. This review summarizes the up-to-date knowledge about molecular pharmacology and potential therapeutic uses of fingolimod.
Collapse
Affiliation(s)
- Safura Pournajaf
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
10
|
Ji D, Fleig A, Horgen FD, Feng ZP, Sun HS. Modulators of TRPM7 and its potential as a drug target for brain tumours. Cell Calcium 2021; 101:102521. [PMID: 34953296 DOI: 10.1016/j.ceca.2021.102521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022]
Abstract
TRPM7 is a non-selective divalent cation channel with an alpha-kinase domain. Corresponding with its broad expression, TRPM7 has a role in a wide range of cell functions, including proliferation, migration, and survival. Growing evidence shows that TRPM7 is also aberrantly expressed in various cancers, including brain cancers. Because ion channels have widespread tissue distribution and result in extensive physiological consequences when dysfunctional, these proteins can be compelling drug targets. In fact, ion channels comprise the third-largest drug target type, following enzymes and receptors. Literature has shown that suppression of TRPM7 results in inhibition of migration, invasion, and proliferation in several human brain tumours. Therefore, TRPM7 presents a potential target for therapeutic brain tumour interventions. This article reviews current literature on TRPM7 as a potential drug target in the context of brain tumours and provides an overview of various selective and non-selective modulators of the channel relevant to pharmacology, oncology, and ion channel function.
Collapse
Affiliation(s)
- Delphine Ji
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Andrea Fleig
- Center for Biomedical Research at The Queen's Medical Center and John A. Burns School of Medicine and Cancer Center at the University of Hawaii, Honolulu, Hawaii 96813, USA
| | - F David Horgen
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, Hawaii 96744, USA
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8.
| | - Hong-Shuo Sun
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Department of Pharmacology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 3M2.
| |
Collapse
|
11
|
Companioni O, Mir C, Garcia-Mayea Y, LLeonart ME. Targeting Sphingolipids for Cancer Therapy. Front Oncol 2021; 11:745092. [PMID: 34737957 PMCID: PMC8560795 DOI: 10.3389/fonc.2021.745092] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids are an extensive class of lipids with different functions in the cell, ranging from proliferation to cell death. Sphingolipids are modified in multiple cancers and are responsible for tumor proliferation, progression, and metastasis. Several inhibitors or activators of sphingolipid signaling, such as fenretinide, safingol, ABC294640, ceramide nanoliposomes (CNLs), SKI-II, α-galactosylceramide, fingolimod, and sonepcizumab, have been described. The objective of this review was to analyze the results from preclinical and clinical trials of these drugs for the treatment of cancer. Sphingolipid-targeting drugs have been tested alone or in combination with chemotherapy, exhibiting antitumor activity alone and in synergism with chemotherapy in vitro and in vivo. As a consequence of treatments, the most frequent mechanism of cell death is apoptosis, followed by autophagy. Aslthough all these drugs have produced good results in preclinical studies of multiple cancers, the outcomes of clinical trials have not been similar. The most effective drugs are fenretinide and α-galactosylceramide (α-GalCer). In contrast, minor adverse effects restricted to a few subjects and hepatic toxicity have been observed in clinical trials of ABC294640 and safingol, respectively. In the case of CNLs, SKI-II, fingolimod and sonepcizumab there are some limitations and absence of enough clinical studies to demonstrate a benefit. The effectiveness or lack of a major therapeutic effect of sphingolipid modulation by some drugs as a cancer therapy and other aspects related to their mechanism of action are discussed in this review.
Collapse
Affiliation(s)
- Osmel Companioni
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Mir
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Matilde E LLeonart
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Spanish Biomedical Research Network Center in Oncology, CIBERONC, Madrid, Spain
| |
Collapse
|
12
|
McGinley MP, Cohen JA. Sphingosine 1-phosphate receptor modulators in multiple sclerosis and other conditions. Lancet 2021; 398:1184-1194. [PMID: 34175020 DOI: 10.1016/s0140-6736(21)00244-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/19/2020] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
The sphingosine 1-phosphate (S1P) signalling pathways have important and diverse functions. S1P receptors (S1PRs) have been proposed as a therapeutic target for various diseases due to their involvement in regulation of lymphocyte trafficking, brain and cardiac function, vascular permeability, and vascular and bronchial tone. S1PR modulators were first developed to prevent rejection by the immune system following renal transplantation, but the only currently approved indication is multiple sclerosis. The primary mechanism of action of S1PR modulators in multiple sclerosis is through binding S1PR subtype 1 on lymphocytes resulting in internalisation of the receptor and loss of responsiveness to the S1P gradient that drives lymphocyte egress from lymph nodes. The reduction in circulating lymphocytes presumably limits inflammatory cell migration into the CNS. Four S1PR modulators (fingolimod, siponimod, ozanimod, and ponesimod) have regulatory approval for multiple sclerosis. Preclinical evidence and ongoing and completed clinical trials support development of S1PR modulators for other therapeutic indications.
Collapse
|
13
|
Ceramide Metabolism Enzymes-Therapeutic Targets against Cancer. ACTA ACUST UNITED AC 2021; 57:medicina57070729. [PMID: 34357010 PMCID: PMC8303233 DOI: 10.3390/medicina57070729] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
Sphingolipids are both structural molecules that are essential for cell architecture and second messengers that are involved in numerous cell functions. Ceramide is the central hub of sphingolipid metabolism. In addition to being the precursor of complex sphingolipids, ceramides induce cell cycle arrest and promote cell death and inflammation. At least some of the enzymes involved in the regulation of sphingolipid metabolism are altered in carcinogenesis, and some are targets for anticancer drugs. A number of scientific reports have shown how alterations in sphingolipid pools can affect cell proliferation, survival and migration. Determination of sphingolipid levels and the regulation of the enzymes that are implicated in their metabolism is a key factor for developing novel therapeutic strategies or improving conventional therapies. The present review highlights the importance of bioactive sphingolipids and their regulatory enzymes as targets for therapeutic interventions with especial emphasis in carcinogenesis and cancer dissemination.
Collapse
|
14
|
Hirata N, Yamada S, Yanagida S, Ono A, Kanda Y. FTY720 Inhibits Expansion of Breast Cancer Stem Cells via PP2A Activation. Int J Mol Sci 2021; 22:ijms22147259. [PMID: 34298877 PMCID: PMC8329924 DOI: 10.3390/ijms22147259] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 01/06/2023] Open
Abstract
Growing evidence suggests that breast cancer originates from a minor population of cancer cells termed cancer stem cells (CSCs), which can be identified by aldehyde dehydrogenase (ALDH) activity-based flow cytometry analysis. However, novel therapeutic drugs for the eradication of CSCs have not been discovered yet. Recently, drug repositioning, which finds new medical uses from existing drugs, has been expected to facilitate drug discovery. We have previously reported that sphingosine kinase 1 (SphK1) induced proliferation of breast CSCs. In the present study, we focused on the immunosuppressive agent FTY720 (also known as fingolimod or Gilenya), since FTY720 is known to be an inhibitor of SphK1. We found that FTY720 blocked both proliferation of ALDH-positive cells and formation of mammospheres. In addition, we showed that FTY720 reduced the expression of stem cell markers such as Oct3/4, Sox2 and Nanog via upregulation of protein phosphatase 2A (PP2A). These results suggest that FTY720 is an effective drug for breast CSCs in vitro.
Collapse
Affiliation(s)
- Naoya Hirata
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan; (N.H.); (S.Y.); (S.Y.)
- Pharmacological Evaluation Institute of Japan (PEIJ), Kanagawa 210-0821, Japan
| | - Shigeru Yamada
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan; (N.H.); (S.Y.); (S.Y.)
- Pharmacological Evaluation Institute of Japan (PEIJ), Kanagawa 210-0821, Japan
| | - Shota Yanagida
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan; (N.H.); (S.Y.); (S.Y.)
- Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan;
| | - Atsushi Ono
- Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan;
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan; (N.H.); (S.Y.); (S.Y.)
- Correspondence:
| |
Collapse
|
15
|
Lu H, Han X, Ren J, Ren K, Li Z, Zhang Q. Metformin attenuates synergic effect of diabetes mellitus and Helicobacter pylori infection on gastric cancer cells proliferation by suppressing PTEN expression. J Cell Mol Med 2021; 25:4534-4542. [PMID: 33760349 PMCID: PMC8107109 DOI: 10.1111/jcmm.15967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
It has been reported that CagA of Helicobacter pylori reduced PTEN expression by enhancing its promoter methylation. Furthermore, diabetes mellitus (DM) may also promote the methylation status of PTEN, a tumour suppressor gene in gastric cancer (GC). It is intriguing to explore whether DM may strengthen the tumorigenic effect of H pylori (HP) by promoting the methylation of PTEN promoter and whether the administration of metformin may reduce the risk of GC by suppressing the methylation of PTEN promoter. In this study, we enrolled 107 GC patients and grouped them as HP(-)DM(-) group, HP(+)DM(-) group and HP(+)DM(+) group. Bisulphite sequencing PCR evaluated methylation of PTEN promoter. Quantitative real-time PCR, immunohistochemistry and Western blot, immunofluorescence, flow cytometry and MTT assay were performed accordingly. DNA methylation of PTEN promoter was synergistically enhanced in HP(+)DM(+) patients, and the expression of PTEN was suppressed in HP(+)DM(+) patients. Cell apoptosis was decreased in HP(+)DM(+) group. Metformin showed an apparent effect on restoring CagA-induced elevation of PTEN promoter methylation, thus attenuating the PTEN expression. The reduced PTEN level led to increased proliferation and inhibited apoptosis of HGC-27 cells. In this study, we collected GC tumour tissues from GC patients with or without DM/HP to compare their PTEN methylation and expression while testing the effect of metformin on the methylation of PTEN promoter. In summary, our study suggested that DM could strengthen the tumorigenic effect of HP by promoting the PTEN promoter methylation, while metformin reduces GC risk by suppressing PTEN promoter methylation.
Collapse
Affiliation(s)
- Huibin Lu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianzhuang Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kewei Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongming Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Quanhui Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Zhang L, Wang H. FTY720 in CNS injuries: Molecular mechanisms and therapeutic potential. Brain Res Bull 2020; 164:75-82. [DOI: 10.1016/j.brainresbull.2020.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/23/2020] [Accepted: 08/15/2020] [Indexed: 12/25/2022]
|
17
|
Resop RS, Fromentin R, Newman D, Rigsby H, Dubrovsky L, Bukrinsky M, Chomont N, Bosque A. Fingolimod inhibits multiple stages of the HIV-1 life cycle. PLoS Pathog 2020; 16:e1008679. [PMID: 32790802 PMCID: PMC7425850 DOI: 10.1371/journal.ppat.1008679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Antiretroviral drugs that target various stages of the Human Immunodeficiency Virus (HIV) life cycle have been effective in curbing the AIDS epidemic. However, drug resistance, off-target effects of antiretroviral therapy (ART), and varying efficacy in prevention underscore the need to develop novel and alternative therapeutics. In this study, we investigated whether targeting the signaling molecule Sphingosine-1-phosphate (S1P) would inhibit HIV-1 infection and generation of the latent reservoir in primary CD4 T cells. We show that FTY720 (Fingolimod), an FDA-approved functional antagonist of S1P receptors, blocks cell-free and cell-to-cell transmission of HIV and consequently reduces detectable latent virus. Mechanistically, FTY720 impacts the HIV-1 life cycle at two levels. Firstly, FTY720 reduces the surface density of CD4, thereby inhibiting viral binding and fusion. Secondly, FTY720 decreases the phosphorylation of the innate HIV restriction factor SAMHD1 which is associated with reduced levels of total and integrated HIV, while reducing the expression of Cyclin D3. In conclusion, targeting the S1P pathway with FTY720 could be a novel strategy to inhibit HIV replication and reduce the seeding of the latent reservoir.
Collapse
Affiliation(s)
- Rachel S. Resop
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
| | - Rémi Fromentin
- Centre de recherche du CHUM and Department of microbiology, infectiology and immunology, Université de Montréal, Montreal, Canada
| | - Daniel Newman
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
| | - Hawley Rigsby
- Centre de recherche du CHUM and Department of microbiology, infectiology and immunology, Université de Montréal, Montreal, Canada
| | - Larisa Dubrovsky
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
| | - Michael Bukrinsky
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
| | - Nicolas Chomont
- Centre de recherche du CHUM and Department of microbiology, infectiology and immunology, Université de Montréal, Montreal, Canada
| | - Alberto Bosque
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
18
|
Sukocheva OA, Furuya H, Ng ML, Friedemann M, Menschikowski M, Tarasov VV, Chubarev VN, Klochkov SG, Neganova ME, Mangoni AA, Aliev G, Bishayee A. Sphingosine kinase and sphingosine-1-phosphate receptor signaling pathway in inflammatory gastrointestinal disease and cancers: A novel therapeutic target. Pharmacol Ther 2020; 207:107464. [PMID: 31863815 DOI: 10.1016/j.pharmthera.2019.107464] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory gastrointestinal (GI) diseases and malignancies are associated with growing morbidity and cancer-related mortality worldwide. GI tumor and inflammatory cells contain activated sphingolipid-metabolizing enzymes, including sphingosine kinase 1 (SphK1) and SphK2, that generate sphingosine-1-phosphate (S1P), a highly bioactive compound. Many inflammatory responses, including lymphocyte trafficking, are directed by circulatory S1P, present in high concentrations in both the plasma and the lymph of cancer patients. High fat and sugar diet, disbalanced intestinal flora, and obesity have recently been linked to activation of inflammation and SphK/S1P/S1P receptor (S1PR) signaling in various GI pathologies, including cancer. SphK1 overexpression and activation facilitate and enhance the development and progression of esophageal, gastric, and colon cancers. SphK/S1P axis, a mediator of inflammation in the tumor microenvironment, has recently been defined as a target for the treatment of GI disease states, including inflammatory bowel disease and colitis. Several SphK1 inhibitors and S1PR antagonists have been developed as novel anti-inflammatory and anticancer agents. In this review, we analyze the mechanisms of SphK/S1P signaling in GI tissues and critically appraise recent studies on the role of SphK/S1P/S1PR in inflammatory GI disorders and cancers. The potential role of SphK/S1PR inhibitors in the prevention and treatment of inflammation-mediated GI diseases, including GI cancer, is also evaluated.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Hideki Furuya
- Department of Surgery, Samuel Oschin Cancer Center Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mei Li Ng
- Advanced Medical and Dental Institute, University Sains 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Vadim V Tarasov
- Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Vladimir N Chubarev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Bedford Park, South Australia 5042, Australia
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia; GALLY International Research Institute, San Antonio, TX 78229, USA; Research Institute of Human Morphology, Moscow 117418, Russia
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
19
|
Mao W, Li T. LncRNA MACC1-AS1 Promotes Lung Adenocarcinoma Cell Proliferation by Downregulating PTEN. Cancer Biother Radiopharm 2020; 35:313-318. [PMID: 32109147 DOI: 10.1089/cbr.2019.3020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: MACC1-AS1 is an oncogenic lncRNA in gastric cancer, which interacts with AMP-activated protein kinase (AMPK) to promote cancer development. AMPK is known to interact with phosphatase and tensin homolog (PTEN). Therefore, MACC1-AS1 may also have associations with PTEN. This study aimed to investigate the interactions between MACC1-AS1 and PTEN in lung adenocarcinoma (LUAD). Materials and Methods: This study recruited 64 LUAD patients admitted to The First People's Hospital of Wenling City. Gene and protein expression levels were determined by qPCR and western blot, respectively. Cell transfections were performed to assess gene interactions. Cell proliferation was evaluated by CCK-8 assay. Results: MACC1-AS1 was upregulated in LUAD and inversely correlated with the expression of PTEN. High expression levels of MACC1-AS1 in LUAD tissues were closely correlated with poor survival rate of LUAD patients. In LUAD cells, overexpression of MACC1-AS1 led to decreased expression of PTEN and increased proliferation rate of LUAD cells, while MACC1-AS1 silencing led to increased expression of PTEN and decreased proliferation rate of LUAD cells. Furthermore, overexpression of PTEN attenuated the effects of overexpressing MACC1-AS1. Conclusions: The authors' results demonstrated that MACC1-AS1 promoted cell proliferation by downregulating PTEN in LUAD cells.
Collapse
Affiliation(s)
- Wenwei Mao
- Department of Respiratory Medicine, The First People's Hospital of Wenling City, Wenling City, China
| | - Tingjian Li
- Department of Respiratory Medicine, The First People's Hospital of Wenling City, Wenling City, China
| |
Collapse
|
20
|
Fingolimod inhibits proliferation and epithelial-mesenchymal transition in sacral chordoma by inactivating IL-6/STAT3 signalling. Biosci Rep 2020; 40:222049. [PMID: 32027356 PMCID: PMC7029154 DOI: 10.1042/bsr20200221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose: To explore the sensitivity of the immunosuppressive agent fingolimod (FTY720) in chordoma and determine whether it can serve as an appropriate alternate treatment for unresectable tumours in patients after incomplete surgery. Methods: Cell viability assays, colony formation assays and EdU assays were performed to evaluate the sensitivity of chordoma cell lines to FTY720. Transwell invasion assays, wound healing assays, flow cytometry, cell cycle analysis, immunofluorescence analysis, Western blotting analysis and enzyme-linked immunosorbent assays (ELISAs) were performed to evaluate cell invasion, epithelial–mesenchymal transition (EMT) and activation of related pathways after treatment with FTY720. The effect of FTY720 was also evaluated in vivo in a xenograft model. Results: We found that FTY720 inhibited the proliferation, invasion and metastasis of sacral chordoma cells (P < 0.01). FTY720 also inhibited the proliferation of tumour cells in a xenograft model using sacral chordoma cell lines (P < 0.01). The mechanism was related to the EMT and apoptosis of chordoma cells and inactivation of IL-6/STAT3 signalling in vitro and in vivo. Conclusions: Our findings indicate that FTY720 may be an effective therapeutic agent against chordoma. These findings suggest that FTY720 is a novel agent that can treat locally advanced and metastatic chordoma.
Collapse
|
21
|
Li C, Xu Y, Xin P, Zheng Y, Zhu X. Role and mechanism of PTEN in Burkitt's lymphoma. Oncol Rep 2020; 43:481-490. [PMID: 31922234 PMCID: PMC6967105 DOI: 10.3892/or.2020.7457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/22/2019] [Indexed: 11/29/2022] Open
Abstract
The aim of the present study was to explore the possible mechanisms of phosphatase and tensin homolog (PTEN) in the pathogenesis of Burkitt's lymphoma, and provide novel information that can be used in the targeted treatment of this disease. PTEN lentiviral overexpression vector and short-hairpin PTEN silencing vectors were constructed. The effect of PTEN on the growth and proliferation of CA46 and RAJI cells was analyzed using a Cell Counting Kit-8 assay. Apoptosis was detected by Hoechst 33342 and propidium iodide double staining. Flow cytometry was used to analyze the cell cycle. A Transwell chamber was used to detect cell migration and invasion abilities. Western blot analysis was used to detect related protein changes. The mechanism of the effect of PTEN on the biological characteristics of Burkitt's lymphoma cells was subsequently analyzed. The results revealed that PTEN inhibited the proliferation of CA46 and RAJI cells by downregulating the expression of p-AKT, It was indicated that the upregulation of proapoptotic proteins (including Bad and Bax) induced apoptosis, regulated cyclin (including P53, P21, CDK4, CDK6, cyclin D3 and cyclin H) to inhibit cell cycle progression, and mediated epithelial-mesenchymal transition-like cell markers (including E-cadherin, N-cadherin, β-catenin, TCF-8, vimentin, Slug and Snail) to inhibit cell migration and invasion. In conclusion, the tumor-suppressor gene PTEN inhibited the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) signaling pathway and inhibited the proliferation and migration of Burkitt's lymphoma cells, induced apoptosis and cell cycle arrest, thus playing a crucial role in the pathogenesis of Burkitt's lymphoma.
Collapse
Affiliation(s)
- Chuntuan Li
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Yahong Xu
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Pengliang Xin
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Yan Zheng
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Xiongpeng Zhu
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
22
|
Melamed E, Lee MW. Multiple Sclerosis and Cancer: The Ying-Yang Effect of Disease Modifying Therapies. Front Immunol 2020; 10:2954. [PMID: 31998289 PMCID: PMC6965059 DOI: 10.3389/fimmu.2019.02954] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
Over the past two decades, the field of multiple sclerosis (MS) has been transformed by the rapidly expanding arsenal of new disease modifying therapies (DMTs). Current DMTs for MS aim to modulate innate and adaptive immune responses toward a less inflammatory phenotype. Since the immune system is also critical for identifying and eliminating malignant cells, immunosuppression from DMTs may predictably increase the risk of cancer development in MS patients. Compared with healthy controls, patients with autoimmune conditions, such as MS, may already have a higher risk of developing certain malignancies and this risk may further be magnified by DMT treatments. For those patients who develop both MS and cancer, these comorbid presentations create a challenge for clinicians on how to therapeutically address management of cancer in the context of MS autoimmunity. As there are currently no accepted guidelines for managing MS patients with prior history of or newly developed malignancy, we undertook this review to evaluate the molecular mechanisms of current DMTs and their potential for instigating and treating cancer in patients living with MS.
Collapse
Affiliation(s)
- Esther Melamed
- Department of Neurology, Dell Medical School, Austin, TX, United States
| | - Michael William Lee
- Department of Oncology, Department of Medical Education, Dell Medical School, Austin, TX, United States
| |
Collapse
|
23
|
Macuer-Guzmán J, Bernal G, Jamett-Díaz F, Ramírez-Rivera S, Ibáñez C. Selective and Apoptotic Action of Ethanol Extract of Annona cherimola Seeds against Human Stomach Gastric Adenocarcinoma Cell Line AGS. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2019; 74:322-327. [PMID: 31154569 DOI: 10.1007/s11130-019-00742-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Annona cherimola is a tree belonging to the family Annonacea, whose fruit (cherimoya) is very desirable, but its seeds are considered waste. Present in these seeds are compounds that have been described as selective antiproliferative agents for cancer cells. The aim of this study was to evaluate the antiproliferative activity of ethanol macerate extract (EMCHS) obtained from A. cherimola seeds against the human stomach gastric adenocarcinoma (AGS) cell line and the normal human gastric epithelial cell line (GES-1). The EMCHS extract presented an IC50 of 80.43 μg/mL in AGS cells, and a selectivity index (SI) of 3.5-fold higher than that of cisplatin. In addition, the EMCHS extract showed apoptotic activity in AGS cells since 50 μg/mL. Overxpression of PUMA gene in both cells demonstrate that EMCHS activate the apoptotic route. Future studies should be carried out to elucidate anticancer activity of EMCHS in vivo. This work represents the first showing antiproliferative effects of crude extracts obtained from seeds of A. cherimola in AGS cells.
Collapse
Affiliation(s)
- Johan Macuer-Guzmán
- Laboratorio de Silvogenómica y Biotecnología, Departamento de Biología, Facultad de Ciencias Universidad de La Serena, Avenida Raúl Bitrán 1305, Casilla 599, 1700000, La Serena, Chile
| | - Giuliano Bernal
- Laboratorio de Biología Molecular y Celular del Cáncer, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Larrondo 1281, 1781421, Coquimbo, Chile
| | - Fabiola Jamett-Díaz
- Laboratorio de Fitoquímica y Productos Naturales, Departamento de Química, Facultad de Ciencias, Universidad de La Serena, Avenida Raúl Bitrán 1305, Casilla 599, 1700000, La Serena, Chile
| | - Sebastian Ramírez-Rivera
- Laboratorio de Biología Molecular y Celular del Cáncer, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Larrondo 1281, 1781421, Coquimbo, Chile
| | - Cristian Ibáñez
- Laboratorio de Silvogenómica y Biotecnología, Departamento de Biología, Facultad de Ciencias Universidad de La Serena, Avenida Raúl Bitrán 1305, Casilla 599, 1700000, La Serena, Chile.
| |
Collapse
|
24
|
Escudero-Casao M, Cardona A, Beltrán-Debón R, Díaz Y, Matheu MI, Castillón S. Fluorinated triazole-containing sphingosine analogues. Syntheses and in vitro evaluation as SPHK inhibitors. Org Biomol Chem 2019; 16:7230-7235. [PMID: 30255187 DOI: 10.1039/c8ob01867g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sphingosine analogues with a rigid triazole moiety in the aliphatic chain and systematic modifications in the polar head and different degrees of fluorination at the terminus of the alkylic chain were synthesized from a common alkynyl aziridine key synthon. This key synthon was obtained by enantioselective organocatalyzed aziridination and it was subsequently ring opened in a regioselective manner in acidic medium. Up to 16 sphingosine analogues were prepared in a straightforward manner. The in vitro activity of the obtained products as SPHK1 and SPHK2 inhibitors was evaluated, displaying comparable activity to that of DMS.
Collapse
Affiliation(s)
- Margarita Escudero-Casao
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel lí Domingo n° 1, 43007, Tarragona, Spain.
| | - Adrià Cardona
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel lí Domingo n° 1, 43007, Tarragona, Spain.
| | - Raúl Beltrán-Debón
- Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel lí Domingo n° 1, 43007 Tarragona, Spain
| | - Yolanda Díaz
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel lí Domingo n° 1, 43007, Tarragona, Spain.
| | - M Isabel Matheu
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel lí Domingo n° 1, 43007, Tarragona, Spain.
| | - Sergio Castillón
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel lí Domingo n° 1, 43007, Tarragona, Spain.
| |
Collapse
|
25
|
FTY720 enhances the anti-tumor activity of carboplatin and tamoxifen in a patient-derived xenograft model of ovarian cancer. Cancer Lett 2018; 436:75-86. [PMID: 30120964 DOI: 10.1016/j.canlet.2018.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/25/2022]
Abstract
Ovarian cancer is the fifth leading cause of cancer-related deaths among women in the United States. Although most patients respond to frontline therapy, virtually all patients relapse with chemoresistant disease. This study addresses the hypothesis that carboplatin or tamoxifen + FTY720, a sphingosine analogue, will minimize or circumvent drug-resistance in ovarian cancer cells and tumor models. In vitro data demonstrate that FTY720 sensitized two drug-resistant (A2780. cp20, HeyA8. MDR) and two high-grade serous ovarian cancer cell lines (COV362, CAOV3) to carboplatin, a standard of care for patients with ovarian cancer, and to the selective estrogen receptor modulator tamoxifen. FTY720 + tamoxifen was synergistic in vitro, and combinations of FTY720 + carboplatin or + tamoxifen were more effective than each single agent in a patient-derived xenograft model of ovarian carcinoma. FTY720 + tamoxifen arrested tumor growth. FTY720 + carboplatin induced tumor regressions, with tumor volumes reduced by ∼86% compared to initial tumor volumes. Anti-tumor efficacy was concomitant with increases in intracellular proapoptotic lipid ceramide. The data suggest that FTY720 + tamoxifen or carboplatin may be effective in treating ovarian tumors.
Collapse
|
26
|
FTY720 Decreases Tumorigenesis in Group 3 Medulloblastoma Patient-Derived Xenografts. Sci Rep 2018; 8:6913. [PMID: 29720672 PMCID: PMC5932040 DOI: 10.1038/s41598-018-25263-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/14/2018] [Indexed: 12/20/2022] Open
Abstract
Group 3 tumors account for 28% of medulloblastomas and have the worst prognosis. FTY720, an immunosuppressant currently approved for treatment of multiple sclerosis, has shown antitumor effects in several human cancer cell lines. We hypothesized that treatment with FTY720 (fingolimod) would decrease tumorigenicity in medulloblastoma patient-derived xenografts (PDXs). Three Group 3 medulloblastoma PDXs (D341, D384 and D425) were utilized. Expression of PP2A and its endogenous inhibitors I2PP2A and CIP2A was detected by immunohistochemistry and immunoblotting. PP2A activation was measured via phosphatase activation kit. Cell viability, proliferation, migration and invasion assays were performed after treatment with FTY720. Cell cycle analysis was completed using flow cytometry. A flank model using D425 human medulloblastoma PDX cells was used to assess the in vivo effects of FTY720. FTY720 activated PP2A and led to decreased medulloblastoma PDX cell viability, proliferation, migration and invasion and G1 cell cycle arrest in all three PDXs. FTY720 treatment of mice bearing D425 medulloblastoma PDX tumors resulted in a significant decrease in tumor growth compared to vehicle treated animals. FTY720 decreased viability, proliferation, and motility in Group 3 medulloblastoma PDX cells and significantly decreased tumor growth in vivo. These results suggest that FTY720 should be investigated further as a potential therapeutic agent for medulloblastoma.
Collapse
|
27
|
Shi D, Tian T, Yao S, Cao K, Zhu X, Zhang M, Wen S, Li L, Shi M, Zhou H. FTY720 attenuates behavioral deficits in a murine model of systemic lupus erythematosus. Brain Behav Immun 2018; 70:293-304. [PMID: 29548997 DOI: 10.1016/j.bbi.2018.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/10/2018] [Accepted: 03/11/2018] [Indexed: 12/31/2022] Open
Abstract
Neuropsychiatric (NP) involvement in systemic lupus erythematosus (SLE) severely impacts patients' quality of life and leads to a poor prognosis. The current therapeutic protocol, corticosteroid administration, can also induce neuropsychiatric disorders. FTY720 is an immunomodulator that selectively confines lymphocytes in lymph nodes and reduces autoreactive T cell recruitment to the central nervous system (CNS). This study aimed to identify a novel therapeutic strategy for NPSLE. B6.MRL-lpr mice were treated with oral administration of FTY720 (2 mg/kg) three times per week for 12 weeks, to evaluate its efficacy in a model of NPSLE. FTY720 significantly attenuated the impulsive and depression-like behavior of B6.MRL-lpr mice. Neuronal damage was reduced in the cortex, hippocampus, and amygdala of the FTY720-treated B6.MRL-lpr mice, as well as in TNF-α-treated HT22 cells. Additionally, FTY720 downregulated levels of inflammatory cytokines, and reduced the infiltration of T cells and neutrophils in the brain parenchyma. FTY720 also acted directly on cerebral endothelial cells and reduced the permeability of the blood-brain barrier (BBB) in B6.MRL-lpr mice, as evidenced by reduced central IgG and albumin levels. Finally, FTY720 significantly inhibited activation of PI3K/Akt/GSK3β/p65 signaling, which further reduced the expression levels of adhesion molecules in bEND.3 cells treated with B6.MRL-lpr mouse serum. Collectively, our data indicate that oral administration of FTY720 at an early stage has beneficial effects in NPSLE-model B6.MRL-lpr mice, suggesting that it may represent an effective new therapeutic strategy for NPSLE.
Collapse
Affiliation(s)
- Dongyan Shi
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, JS 211166, China
| | - Tongguan Tian
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, JS 211166, China
| | - Shu Yao
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, JS 211166, China
| | - Kelei Cao
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, JS 211166, China
| | - Xingxing Zhu
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, JS 211166, China
| | - Mingshun Zhang
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, JS 211166, China
| | - Shuang Wen
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, JS 211166, China
| | - Longjun Li
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, JS 211166, China
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, JS 211166, China.
| |
Collapse
|
28
|
Li Z, Rouse R. Co-sequencing and novel delayed anti-correlation identify function for pancreatic enriched microRNA biomarkers in a rat model of acute pancreatic injury. BMC Genomics 2018; 19:297. [PMID: 29699496 PMCID: PMC5922017 DOI: 10.1186/s12864-018-4657-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
Background Co-sequencing of messenger ribonucleic acid (mRNA) and micro ribonucleic acid (miRNA) across a time series (1, 3, 6, 24, and 48 h post injury) was used to identify potential miRNA-gene interactions during pancreatic injury, associate serum and tissue levels of candidate miRNA biomarkers of pancreatic injury, and functionally link these candidate miRNA biomarkers to observed histopathology. RNAs were derived from pancreatic tissues obtained in experiments characterizing the serum levels of candidate miRNA biomarkers in response to acute pancreatic injury in rats. Results No correlation was discovered between tissue and serum levels of the miRNAs. A combination of differential gene expression, novel delayed anti-correlation analysis and experimental database interrogation was used to identify messenger RNAs and miRNAs that experienced significant expression change across the time series, that were negatively correlated, that were complementary in sequence, and that had experimentally supported relationships. This approach yielded a complex signaling network for future investigation and a link for the specific candidate miRNA biomarkers, miR-216a-5p and miR-217-5p, to cellular processes that were in fact the prominent histopathology observations in the same experimental samples. RNA quality bias by treatment was observed in the study samples and a statistical correction was applied. The relevance and impact of that correction on significant results is discussed. Conclusion The described approach allowed extraction of miRNA function from genomic data and defined a mechanistic anchor for these miRNAs as biomarkers. Functional and mechanistic conclusions are supported by histopathology findings. Electronic supplementary material The online version of this article (10.1186/s12864-018-4657-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhihua Li
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, HFD-910, White Oak Federal Research Center, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Rodney Rouse
- U. S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Translational Science, Office of Clinical Pharmacology, Division of Applied Regulatory Science, HFD-910, White Oak Federal Research Center, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA.
| |
Collapse
|
29
|
Fingolimod interrupts the cross talk between estrogen metabolism and sphingolipid metabolism within prostate cancer cells. Toxicol Lett 2018; 291:77-85. [PMID: 29654831 DOI: 10.1016/j.toxlet.2018.04.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 03/17/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022]
Abstract
Sphingolipids are critical regulators of tumor microenvironments and play an important role in estrogen-dependent cancers. Estrogen and estrogen metabolites were found to be involved in prostate cancer. Fingolimod (FTY720) is a sphingokinase-1 (SphK1) inhibitor with anticancer properties against various tumor cell types. Herein, we investigated the interference of FTY720 with the cross talk between sphingolipid metabolism and estrogen metabolism within prostate cancer cells. FTY720 showed cytotoxic antiproliferative effects against androgen-dependent and -independent prostate cancer cells with IC50 ranging from 3.0 ± 0.3 to 6.8 ± 1.7 μM. Exposure of prostate cancer cells to FTY720 resulted in a dramatic decrease in the concentration of estradiol, estrone, 4-hydroxyestradiol and 16α-hydroxyestrone compared to control cells. However, FTY720 significantly increased the concentration of 2-methoxyestrone and 2-methoxyestradiol within prostate cancer cells. This was mirrored by significant downregulating of the expression of estrogen and catechol estrogen-synthesizing enzymes (CYP19, CYP1A1 and CYP1B1) within prostate cancer cells. On the other hand, FTY720 significantly upregulated the expression of catechol estrogen-detoxifying enzyme (COMT). Additionally, FTY720 abolished estrogen-stimulated expression of ERα and basal expression of ERβ within prostate cancer cells. Furthermore, FTY720 suppressed the expression of the ER-downstream regulated genes, CXCR4 and cyclin D1. Reciprocally, it was found that estradiol and catechol estrogens significantly induced the expression of SphK1 while methoxylated catechol estrogen suppressed its expression within prostate cancer cells in a dose-dependent manner. Current research has highlighted the hazardous influence of the estrogenic component to prostate cancer. We found that fingolimod (FTY720) could modulate the estrogenic micromilieu and interrupt its cross talk with sphingolipid metabolism.
Collapse
|
30
|
Leu WJ, Swain SP, Chan SH, Hsu JL, Liu SP, Chan ML, Yu CC, Hsu LC, Chou YL, Chang WL, Hou DR, Guh JH. Non-immunosuppressive triazole-based small molecule induces anticancer activity against human hormone-refractory prostate cancers: the role in inhibition of PI3K/AKT/mTOR and c-Myc signaling pathways. Oncotarget 2018; 7:76995-77009. [PMID: 27769069 PMCID: PMC5363565 DOI: 10.18632/oncotarget.12765] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 10/14/2016] [Indexed: 12/14/2022] Open
Abstract
A series of triazole-based small molecules that mimic FTY720-mediated anticancer activity but minimize its immunosuppressive effect have been produced. SPS-7 is the most effective derivative displaying higher activity than FTY720 in anti-proliferation against human hormone-refractory prostate cancer (HRPC). It induced G1 arrest of cell cycle and subsequent apoptosis in thymidine block-mediated synchronization model. The data were supported by a decrease of cyclin D1 expression, a dramatic increase of p21 expression and an associated decrease in RB phosphorylation. c-Myc overexpression replenished protein levels of cyclin D1 indicating that c-Myc was responsible for cell cycle regulation. PI3K/Akt/mTOR signaling pathways through p70S6K- and 4EBP1-mediated translational regulation are critical to cell proliferation and survival. SPS-7 significantly inhibited this translational pathway. Overexpression of Myr-Akt (constitutively active Akt) completely abolished SPS-7-induced inhibitory effect on mTOR/p70S6K/4EBP1 signaling and c-Myc protein expression, suggesting that PI3K/Akt serves as a key upstream regulator. SPS-7 also demonstrated substantial anti-tumor efficacy in an in vivo xenograft study using PC-3 mouse model. Notably, FTY720 but not SPS-7 induced a significant immunosuppressive effect as evidenced by depletion of marginal zone B cells, down-regulation of sphingosine-1-phosphate receptors and a decrease in peripheral blood lymphocytes. In conclusion, the data suggest that SPS-7 is not an immunosuppressant while induces anticancer effect against HRPC through inhibition of Akt/mTOR/p70S6K pathwaysthat down-regulate protein levels of both c-Myc and cyclin D1, leading to G1 arrest of cell cycle and subsequent apoptosis. The data also indicate the potential of SPS-7 since PI3K/Akt signalingis responsive for the genomic alterations in prostate cancer.
Collapse
Affiliation(s)
- Wohn-Jenn Leu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | | | - She-Hung Chan
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Jui-Ling Hsu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Shih-Ping Liu
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Ling Chan
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Chia-Chun Yu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Lih-Ching Hsu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Yen-Lin Chou
- Department of Chemistry, National Central University, Jhong-li, Taoyuan, Taiwan
| | - Wei-Ling Chang
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Duen-Ren Hou
- Department of Chemistry, National Central University, Jhong-li, Taoyuan, Taiwan
| | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
31
|
White C, Alshaker H, Cooper C, Winkler M, Pchejetski D. The emerging role of FTY720 (Fingolimod) in cancer treatment. Oncotarget 2018; 7:23106-27. [PMID: 27036015 PMCID: PMC5029614 DOI: 10.18632/oncotarget.7145] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023] Open
Abstract
FTY720 (Fingolimod) is a clinically approved immunomodulating therapy for multiple sclerosis that sequesters T-cells to lymph nodes through functional antagonism of sphingosine-1-phosphate 1 receptor. FTY720 also demonstrates a proven efficacy in multiple in vitro and in vivo cancer models, suggesting a potential therapeutic role in cancer patients. A potential anticancer mechanism of FTY720 is through the inhibition of sphingosine kinase 1, a proto-oncogene with in vitro and clinical cancer association. In addition, FTY720's anticancer properties may be attributable to actions on several other molecular targets. This study focuses on reviewing the emerging evidence regarding the anticancer properties and molecular targets of FTY720. While the clinical transition of FTY720 is currently limited by its immune suppression effects, studies aiming at FTY720 delivery and release together with identifying its key synergetic combinations and relevant patient subsets may lead to its rapid introduction into the clinic.
Collapse
Affiliation(s)
| | - Heba Alshaker
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.,School of Medicine, University of East Anglia, Norwich, UK
| | - Colin Cooper
- School of Medicine, University of East Anglia, Norwich, UK
| | - Matthias Winkler
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | |
Collapse
|
32
|
Chen X, Huang Z, Chen R. Microrna-136 promotes proliferation and invasion ingastric cancer cells through Pten/Akt/P-Akt signaling pathway. Oncol Lett 2018. [PMID: 29541241 DOI: 10.3892/ol.2018.7848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer is the fourth most common cancer and the second most frequent cause of cancer-associated mortality in the world. Previous studies have revealed that expression levels of microRNAs (miRNAs) are associated with the initiation and progression of several types of cancer, including gastric cancer. Previous studies have demonstrated that the abnormal expression of miRNA-136 may serve a function in the progression of several types of human cancer. However, the expression pattern of miR-136, its functions and underlying molecular mechanisms in gastric cancer remain unresolved. In the present study, it was revealed that the expression of miR-136 was aberrantly up regulated in gastric cancer tissues and cell lines. The suppression of miR-136 was able to inhibit proliferation and invasion in gastric cancer cell lines. Furthermore, phosphatase and tensin homolog (PTEN) was identified as a direct target gene of miR-136 in gastric cancer. PTEN was under expressed in gastric cancer tissues compared with non-tumor gastric tissues, and PTEN expression was negatively correlated with miR-136 expression. Furthermore, PTEN overexpression mimics the effects of miR-136 knockdown on gastric cancer cells. Additionally, miR-136 under expression decreased phospho-(p) AKT expression, but did not affect AKT expression in gastric cancer cells. In conclusion, the data of the present study suggest that miR-136 acts as an oncogene in gastric cancer via regulation of the PTEN/AKT/p-AKT signaling pathway and may potentially serve as a novel therapeutic target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Xuyan Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhiming Huang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Renpin Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
33
|
MicroRNA-28 promotes cell proliferation and invasion in gastric cancer via the PTEN/PI3K/AKT signalling pathway. Mol Med Rep 2017; 17:4003-4010. [PMID: 29257342 DOI: 10.3892/mmr.2017.8299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/09/2017] [Indexed: 11/05/2022] Open
Abstract
Gastric cancer is the fourth most common malignant disease and second leading cause of cancer‑associated mortalities worldwide. Previous studies revealed aberrantly expressed microRNAs (miRNAs) in various types of human cancer; these miRNAs play important roles in tumourigenesis and tumour development. miRNAs present a considerable potential for novel therapeutic approaches for treating human cancer. Therefore, the investigation of novel miRNAs involved in gastric cancer progression provides an opportunity to improve the prognosis of patients with gastric cancer. miRNA‑28 (miR‑28) has been investigated with regards to its expression and biological functions in many types of human cancer. However, previous studies have not discussed the expression patterns, roles and associated molecular mechanisms of miR‑28 in gastric cancer. In the present study, miR‑28 expression was identified to be upregulated in gastric cancer tissues and cell lines. miR‑28 inhibition functionally inhibited cell proliferation and invasion in gastric cancer in vitro. Using bioinformatics analysis, luciferase reporter assay, reverse transcription‑quantitative polymerase chain reaction and western blot analysis, phosphatase and tensin homolog (PTEN) was mechanically identified as a direct target of miR‑28 in gastric cancer. PTEN was downregulated in gastric cancer and negatively correlated with miR‑28 levels. Inhibition of PTEN restored the biological effects of miR‑28 downregulation on the proliferation and invasion of gastric cancer cells. Notably, the downregulation of miR‑28 results in the regulation of the phosphatidylinositol 3‑kinase/protein kinase B signaling pathway in gastric cancer. These results suggested that miR‑28 may be targeted for the development of novel treatments for gastric cancer in the future.
Collapse
|
34
|
Zhao Y, Shi D, Cao K, Wu F, Zhu X, Wen S, You Q, Zhang K, Liu L, Zhou H. Fingolimod targets cerebral endothelial activation to block leukocyte recruitment in the central nervous system. J Leukoc Biol 2017; 103:107-118. [PMID: 29345065 DOI: 10.1002/jlb.3a0717-287r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/05/2017] [Indexed: 12/16/2022] Open
Abstract
Fingolimod (FTY720), an immunomodulator, is approved as an oral treatment for patients with relapsing forms of multiple sclerosis. Its effects are largely attributed to its mechanism of selectively retaining lymphocytes in the lymph nodes to reduce autoreactive T-cell recruitment in the CNS. In this study, we investigated the therapeutic effect of FTY720 on an animal model of CNS inflammation induced by intracerebral ventricle LPS injection. We found that FTY720 treatment significantly prevented LPS-induced neutrophil recruitment in the CNS by inhibiting leukocyte recruitment in cerebral microvessels. Furthermore, FTY720 also inhibited the expressions of adhesion molecules on the cerebral endothelium, but did not affect the expression levels of pro-inflammatory cytokines (TNF-α and IL-6) and chemokines (CXCL1 and CXCL2) in the CNS parenchyma. The inhibition of endothelial activation was accompanied by reduced phosphorylation of signaling molecules, including serine/threonine-specific protein kinase (Akt), STAT6, and nuclear factor-κB. This FTY720-attenuated inhibition of leukocyte recruitment and endothelial activation was reversed by blocking the functions of sphingosine kinase 2 or sphingosine-1-phosphate receptor 1. Our study demonstrated, for the first time, that FTY720 directly inhibits the phosphorylation of multiple signaling molecules in endothelial cells, thereby effectively blocking leukocyte recruitment in the CNS.
Collapse
Affiliation(s)
- Yawei Zhao
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Dongyan Shi
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Kelei Cao
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Fengjiao Wu
- Department of Immunology, Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China
| | - Xingxing Zhu
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Shuang Wen
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Qiang You
- Department of Biotherapy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Keqi Zhang
- Ningbo Yongxin Optics Co., Ltd, Ningbo, China
| | - Lixin Liu
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Hong Zhou
- Department of Immunology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
Shen J, Niu W, Zhang H, Jun M, Zhang H. Downregulation of MicroRNA-147 Inhibits Cell Proliferation and Increases the Chemosensitivity of Gastric Cancer Cells to 5-Fluorouracil by Directly Targeting PTEN. Oncol Res 2017; 26:901-911. [PMID: 28950928 PMCID: PMC7844761 DOI: 10.3727/096504017x15061902533715] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer is the fourth most common malignancy and the third leading cause of cancer-related deaths worldwide. This study aimed to investigate the expression patterns, biological roles, and underlying mechanisms of microRNA-147 (miR-147) in gastric cancer. The present study demonstrated that miR-147 was significantly upregulated in gastric cancer tissues and cell lines. Downregulation of miR-147 decreased cell proliferation and enhanced the chemosensitivity of gastric cancer cells to 5-fluorouracil (5-FU) through the cell apoptosis pathway. In addition, phosphatase and tensin homolog (PTEN) was mechanically identified as the direct target of miR-147 in gastric cancer. PTEN knockdown reversed the effects of miR-147 downregulation on the proliferation, chemosensitivity, and 5-FU-induced apoptosis of gastric cancer cells. Moreover, miR-147 regulated the PI3K/AKT signaling pathway in gastric cancer by targeting PTEN. In conclusion, miR-147 suppressed the proliferation and enhanced the chemosensitivity of gastric cancer cells to 5-FU by promoting cell apoptosis through directly targeting PTEN and regulating the PI3K/AKT signaling pathway. This study provides important insight into the molecular mechanism that underlies the chemoresistance of gastric cancer cells. The results of this study could aid the development of a novel therapeutic strategy for gastric cancer.
Collapse
Affiliation(s)
- Jianjun Shen
- Department of Radiation Oncology, Anhui Provincial Hospital, Hefei, Anhui, P.R. China
| | - Weina Niu
- Department of Oncology, Anhui Cancer Hospital, Hefei, Anhui, P.R. China
| | - Hongbo Zhang
- Department of Radiation Oncology, Anhui Provincial Hospital, Hefei, Anhui, P.R. China
| | - Ma Jun
- Department of Radiation Oncology, Anhui Provincial Hospital, Hefei, Anhui, P.R. China
| | - Hongyan Zhang
- Department of Radiation Oncology, Anhui Provincial Hospital, Hefei, Anhui, P.R. China
| |
Collapse
|
36
|
Velmurugan BK, Lee CH, Chiang SL, Hua CH, Chen MC, Lin SH, Yeh KT, Ko YC. PP2A deactivation is a common event in oral cancer and reactivation by FTY720 shows promising therapeutic potential. J Cell Physiol 2017; 233:1300-1311. [PMID: 28516459 DOI: 10.1002/jcp.26001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/09/2017] [Indexed: 12/17/2022]
Abstract
Protein phosphatase 2A (PP2A) is a tumor suppressor gene, that has been frequently deactivated in many types of cancer. However, its molecular and clinical relevance in oral squamous cell carcinoma (OSCC) remain unclear. Here we show that, PP2A deactivation is a common event in oral cancer cells and hyperphosphorylation in its tyrosine-307 (Y307) residue contributes to PP2A deactivation. PP2A restoration by FTY720 treatment reduced cell growth and decreased GSK-3β phosphorylation without significantly altering other PP2A targets. We further detected PP2A phosphorylation in 262 OSCC tissues. Increased expression of p-PP2A in the tumor tissues was significantly correlated with higher N2/N3-stage (aOR = 2.1, 95%CI: 1.2-3.8). Patients with high p-PP2A expression had lower overall survival rates than those with low expression. Hazard ratio analysis showed that, high p-PP2A expression was significantly associated with mortality density (aOR = 2.2, 95%CI: 1.2-4.0) and lower 10-year overall survival (p = 0.027) in lymph node metastasis. However, no interaction was observed between p-PP2A expression and lymph node metastasis. All our results suggest that PP2A is frequently deactivated in oral cancer and determines poor outcome, restoring its expression by FTY720 can be an alternative therapeutic approach in OSCC.
Collapse
Affiliation(s)
- Bharath K Velmurugan
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Chien-Hung Lee
- Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsuing, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shang-Lun Chiang
- Environment-Omics-Diseases Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan
| | - Chun-Hung Hua
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Mei-Chung Chen
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Shu-Hui Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ying-Chin Ko
- Environment-Omics-Diseases Research Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
37
|
Dashtiyan AA, Sepehrimanesh M, Tanideh N, Afzalpour ME. The effect of endurance training with and without vitamin E on expression of p53 and PTEN tumor suppressing genes in prostate glands of male rats. BIOCHIMIE OPEN 2017; 4:112-118. [PMID: 29450148 PMCID: PMC5801830 DOI: 10.1016/j.biopen.2017.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/24/2017] [Indexed: 12/05/2022]
Abstract
The aim of this study was to investigate the effect of endurance training with and without vitamin E on the expression of p53 and Phosphatase and tension homolog (PTEN) tumor suppressor genes of prostate glands in male rats. For this purpose, 50 Sprague-Dawley male rats were randomly assigned into 5 groups: (1) control group (CON, n = 10), (2) sham (S, n = 10), (3) endurance training (ET, n = 10), (4) endurance training + vitamin E (ET + VE, n = 10), (5) vitamin E (VE, n = 10). Endurance training protocol was implemented for 6 weeks, 6 days per week, in accordance with the overload principle. To measure expression changes of p53 and PTEN genes in rats' prostate, real-time PCR method was used and HPLC method was used to measure vitamin E in this tissue. After 6 weeks of taking vitamin E, its level in all groups, except for group VE (p < 0.000) did not significantly increase. After implementing training protocol, p53 expression reduced significantly in ET group (p < 0.026). Vitamin E supplementation along with endurance training did not cause any significant change either p53 or PTEN (respectively; p < 0.2, p < 0.11). Instead, vitamin E supplementation without endurance training caused significant increase in PTEN, but did not cause any significant changes in p53 (respectively; p < 0.016, p < 0.15). These results indicate that endurance training reduces p53 and PTEN tumor suppressing genes expression, and taking vitamin E supplement could increase expression of these genes in some extent.
Collapse
Affiliation(s)
- Amin Allah Dashtiyan
- Department of Physical Education & Sport Sciences, University of Birjand, Avini Blvd, Birjand, South Khorasan Province, Iran
| | - Masood Sepehrimanesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Khalili St, Shiraz, Fars Province, Iran
| | - Nader Tanideh
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Khalili St, Shiraz, Fars Province, Iran
| | - Mohammad Esmaeil Afzalpour
- Department of Physical Education & Sport Sciences, University of Birjand, Avini Blvd, Birjand, South Khorasan Province, Iran
| |
Collapse
|
38
|
Nasser MI, Masood M, Wei W, Li X, Zhou Y, Liu B, Li J, Li X. Cordycepin induces apoptosis in SGC‑7901 cells through mitochondrial extrinsic phosphorylation of PI3K/Akt by generating ROS. Int J Oncol 2017; 50:911-919. [PMID: 28197639 DOI: 10.3892/ijo.2017.3862] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/23/2016] [Indexed: 01/10/2023] Open
Abstract
Medicinal plants are affluent sources of several effectual natural drugs. Among them cordycepin which is extracted from Cordyceps militaris is a hopeful chemotherapy agent due to its extensive anti-inflammatory, anti-proliferative, antioxidant, and antitumor characteristics. This study investigated the efficacy of cordycepin in the context of human gastric cancer SGC‑7901 and searched for the cell death procedure. Cordycepin incorporates mitochondrial-mediated apoptosis in SGC‑7901 cells with the help of regulating mitochondrial extrinsic pathways by inhibition of A3AR and drive activation of DR3, which promote the activation of PI3K/Akt protein expression as well as collapse of mitochondrial membrane potential (MMP). In addition, phosphorylation of PI3K/Akt and DNA damage by cordycepin induced the production of reactive oxygen species (ROS), and mediates SGC‑7901 cell cycle cessation at S phase. Collectively, this study suggests that cordycepin might be effective as a modern chemotherapy drug for gastric cancer.
Collapse
Affiliation(s)
- Moussa Ide Nasser
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Muqaddas Masood
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Wei Wei
- Dental Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaochun Li
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Yifa Zhou
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Bao Liu
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Jiang Li
- Dental Hospital, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaomeng Li
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| |
Collapse
|
39
|
Das U, Biswas S, Sengupta A, Manna K, Chakraborty A, Dey S. Ferulic acid (FA) abrogates ionizing radiation-induced oxidative damage in murine spleen. Int J Radiat Biol 2016; 92:806-818. [DOI: 10.1080/09553002.2016.1230241] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ujjal Das
- Department of Physiology, Centre for Nanoscience and Nanotechnology and Centre with Potential for Excellence in Particular Area (CPEPA), University of Calcutta, Kolkata, India
| | - Sushobhan Biswas
- Department of Physiology, Centre for Nanoscience and Nanotechnology and Centre with Potential for Excellence in Particular Area (CPEPA), University of Calcutta, Kolkata, India
| | - Aaveri Sengupta
- Department of Physiology, Centre for Nanoscience and Nanotechnology and Centre with Potential for Excellence in Particular Area (CPEPA), University of Calcutta, Kolkata, India
| | - Krishnendu Manna
- Department of Physiology, Centre for Nanoscience and Nanotechnology and Centre with Potential for Excellence in Particular Area (CPEPA), University of Calcutta, Kolkata, India
| | - Anindita Chakraborty
- Division of Radiation Biology, UGC-DAE CSR Center Kolkata, Bidhan Nagar, Kolkata, India
| | - Sanjit Dey
- Department of Physiology, Centre for Nanoscience and Nanotechnology and Centre with Potential for Excellence in Particular Area (CPEPA), University of Calcutta, Kolkata, India
| |
Collapse
|
40
|
Grech G, Baldacchino S, Saliba C, Grixti MP, Gauci R, Petroni V, Fenech AG, Scerri C. Deregulation of the protein phosphatase 2A, PP2A in cancer: complexity and therapeutic options. Tumour Biol 2016; 37:11691-11700. [PMID: 27444275 DOI: 10.1007/s13277-016-5145-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/11/2016] [Indexed: 01/26/2023] Open
Abstract
The complexity of the phosphatase, PP2A, is being unravelled and current research is increasingly providing information on the association of deregulated PP2A function with cancer initiation and progression. It has been reported that decreased activity of PP2A is a recurrent observation in many types of cancer, including colorectal and breast cancer (Baldacchino et al. EPMA J. 5:3, 2014; Cristobal et al. Mol Cancer Ther. 13:938-947, 2014). Since deregulation of PP2A and its regulatory subunits is a common event in cancer, PP2A is a potential target for therapy (Baldacchino et al. EPMA J. 5:3, 2014). In this review, the structural components of the PP2A complex are described, giving an in depth overview of the diversity of regulatory subunits. Regulation of the active PP2A trimeric complex, through phosphorylation and methylation, can be targeted using known compounds, to reactivate the complex. The endogenous inhibitors of the PP2A complex are highly deregulated in cancer, representing cases that are eligible to PP2A-activating drugs. Pharmacological opportunities to target low PP2A activity are available and preclinical data support the efficacy of these drugs, but clinical trials are lacking. We highlight the importance of PP2A deregulation in cancer and the current trends in targeting the phosphatase.
Collapse
Affiliation(s)
- Godfrey Grech
- Department of Pathology, Faculty of Medicine & Surgery, Medical School, University of Malta, Msida, MSD2090, Malta.
| | - Shawn Baldacchino
- Department of Pathology, Faculty of Medicine & Surgery, Medical School, University of Malta, Msida, MSD2090, Malta
| | - Christian Saliba
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Maria Pia Grixti
- Department of Pathology, Faculty of Medicine & Surgery, Medical School, University of Malta, Msida, MSD2090, Malta
| | - Robert Gauci
- Department of Pathology, Faculty of Medicine & Surgery, Medical School, University of Malta, Msida, MSD2090, Malta
| | - Vanessa Petroni
- Department of Anatomy, Faculty of Medicine & Surgery, University of Malta, Msida, Malta
| | - Anthony G Fenech
- Department of Clinical Pharmacology & Therapeutics, Faculty of Medicine & Surgery, University of Malta, Msida, Malta
| | - Christian Scerri
- Department of Physiology and Biochemistry, Faculty of Medicine & Surgery, University of Malta, Msida, Malta.,Molecular Genetics Clinic, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
41
|
Qian J, Li J, Jia J, Jin X, Yu D, Guo C, Xie B, Qian L. DIFFERENT CONCENTRATIONS OF SIJUNZI DECOCTION INHIBIT PROLIFERATION AND INDUCE APOPTOSIS OF HUMAN GASTRIC CANCER SGC-7901 SIDE POPULATION. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2016; 13:145-156. [PMID: 28852730 PMCID: PMC5566137 DOI: 10.21010/ajtcam.v13i4.19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Sijunzi Decoction (SD) is a traditional Chinese medicine which is composed of Ginseng, Atractylodes, Poria and Licorice. It is one of the commonly used Chinese traditional medicines that showed anti-gastric cancer activity in clinical studies. Previous evidence demonstrated SD parties (Ginseng, Atractylodes, Poria, Licorice) can inhibit proliferation and induced apoptosis for gastric cancer cell. In order to further investigate the anticancer effect of SD in gastric cancer, we observed the effects of different concentrations of SD on proliferation and apoptosis of Side Population Cells (SP) of human gastric cancer SGC-7901. MATERIALS AND METHODS SGC-7901 SP and Non- Side Population Cells (NSP) were sorted through flow cytometry; to detect the changes of proliferation of SP and NSP before and after the intervention of serum containing different concentrations of SD using cck-8 method; to detect the changes of cell cycle and apoptosis of SP and NSP before and after the intervention of serum containing different concentrations of SD through flow cytometry; to detect the effects of serum containing different concentrations of SD on apoptosis-related proteins Bax and Bcl-2 of SP and NSP before and after the intervention by western-blot. RESULTS It was found that different concentrations of SD serum treatments inhibited cell proliferation in a time-dependent and concentration-dependent manner. Compared with the control group (normal saline serum treatment), there were increase in G1/G0 phase population of SP and NSP, and decrease in G2/M and S phase population (P<0.05). Meanwhile, we found G1/G0 arrest induced by different concentrations of SD serum which was followed by apoptosis in a time-dependent and concentration-dependent manner. The apoptosis rate of SD serum treatment group was higher than the control group (P<0.05), the apoptosis rate of 48 h treatment was higher than 24 h treatment (P<0.05), and as the SD serum concentration increases, apoptosis rate is higher and higher (P<0.05). The expression of Bax protein of SP and NSP was higher than the control group in a time-dependent and concentration dependent manner. The expression of Bcl-2 protein of SP and NSP was lower than the control group in a time-dependent and concentration- dependent manner. CONCLUSION With the increase of SD serum concentrations, SD can gradually inhibits the proliferation of SP of SGC-7901 cell lines through G1/G0 phase arrest and followed by apoptosis which involves the up-regulation of Bax and the down-regulation of Bcl-2. List of Abbreviations: (SD) Sijunzi Decoction, (SP) side population, (NSP) non-side population, (Control) normal saline serum group, (L) low concentration SD serum group, (N) normal concentration SD serum group, (H) high concentration SD serum group, (ABCG-2) Adenosine triphosphate Binding Cassette super family G member-2 of transport protein, (Bcl-2) B-cell lymphoma 2, (BAX) Bcl-2 Associated X Protein, (FBS) Fetal bovine serum, (PBS) Phosphate buffer solution, (CCK-8) Cell Counting Kit-8 reagent, (AV) Annexin V-FITC, (PI) Propidium iodide, (EDTA) Ethylene Diamine Tetraacetic Acid, (PMSF) Phenylmethanesulfonyl fluoride, (RIPA) Radio Immunoprecipitation Assay, (PVDF) Poly (vinylidene fluoride), (TBST) Tris-buffered saline containing Tween-20.
Collapse
Affiliation(s)
- Jun Qian
- Third Department of Tumor Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, PR China
| | - Jing Li
- Third Department of Tumor Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, PR China
| | - Jianguang Jia
- Third Department of Tumor Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, PR China
| | - Xin Jin
- Third Department of Tumor Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, PR China
| | - Dajun Yu
- Third Department of Tumor Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, PR China
| | - Chenxu Guo
- Third Department of Tumor Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, PR China
| | - Bo Xie
- Third Department of Tumor Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, PR China
| | - Liyu Qian
- Third Department of Tumor Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, PR China
| |
Collapse
|
42
|
Qian J, Li J, Jia JG, Jin X, Yu DJ, Guo CX, Xie B, Qian LY. Ginsenoside-Rh2 Inhibits Proliferation and Induces Apoptosis of Human Gastric Cancer SGC-7901 Side Population Cells. Asian Pac J Cancer Prev 2016; 17:1817-21. [DOI: 10.7314/apjcp.2016.17.4.1817] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
43
|
McLoughlin J, Nodit L, Heidel RE, Van Meter S, Macy S, Kestler D. The clinical correlation of phosphatase and tensin homolog on chromosome 10, phosphorylation of AKT to an activated state, and odontogenic ameloblast-associated protein in gastrointestinal stromal tumors. J Surg Res 2016; 202:403-12. [PMID: 27229116 DOI: 10.1016/j.jss.2016.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 11/23/2015] [Accepted: 01/11/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Approximately 15% of gastrointestinal stromal tumors (GISTs) will not respond to tyrosine kinase inhibitors and drug resistance can develop over time. For refractory tumors, additional therapies are needed. Odontogenic ameloblast-associated protein (ODAM) is expressed in some epithelial malignancies and can correlate with clinical outcomes. This study evaluated ODAM and its relationship to phosphatase and tensin homolog on chromosome 10 (PTEN) and phosphorylation of AKT to an activated state (pAKT) in GISTs. MATERIALS AND METHODS Ninety-five distinct tumor specimens from 79 patients were identified. Morphologic features and clinical data were recorded for all tumors. Risk of recurrence was calculated using the Memorial Sloan-Kettering nomogram. Immunohistochemistry was performed using antibodies to ODAM, PTEN, and pAKT. Immunoreactivity was assessed for both cytoplasmic and nuclear expression. Staining patterns were correlated with clinical outcomes. RESULTS Increasing cytoplasmic ODAM staining correlated with a lower recurrence score (P = 0.002), a lower mitotic rate (P = 0.0001), and smaller tumor size (P = 0.038). Increasing pAKT cytoplasmic staining correlated with a higher recurrence score (P = 0.037) and a higher mitotic rate (P = 0.036). ODAM and pAKT expression in the nucleus was associated with tumor origin. PTEN nuclear expression increased with increasing mitotic rate. pAKT expression increased in the cytoplasm and nucleus in high-risk tumors. CONCLUSIONS Risk of recurrence correlated with cytoplasmic expression of ODAM and pAKT, whereas nuclear expression did not predict recurrence. The staining pattern for ODAM and pAKT in the cytoplasm may further clarify the risk of recurrence beyond the available nomograms. The increased expression of pAKT in the cytoplasm and nucleus of high-risk tumors suggests a potential target for systemic therapy.
Collapse
Affiliation(s)
- James McLoughlin
- Department of Surgery, University of Tennessee Medical Center, Knoxville, Tennessee.
| | - Laurentia Nodit
- Department of Pathology, University of Tennessee Medical Center, Knoxville, Tennessee
| | - R Eric Heidel
- Department of Biostatistics, University of Tennessee Medical Center, Knoxville, Tennessee
| | - Stuart Van Meter
- Department of Pathology, University of Tennessee Medical Center, Knoxville, Tennessee
| | - Sallie Macy
- University of Tennessee Medical Center, Graduate School of Medicine, Knoxville, Tennessee
| | - Daniel Kestler
- University of Tennessee Medical Center, Graduate School of Medicine, Knoxville, Tennessee
| |
Collapse
|
44
|
Kornienko A, Evidente A, Vurro M, Mathieu V, Cimmino A, Evidente M, van Otterlo WAL, Dasari R, Lefranc F, Kiss R. Toward a Cancer Drug of Fungal Origin. Med Res Rev 2015; 35:937-67. [PMID: 25850821 PMCID: PMC4529806 DOI: 10.1002/med.21348] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although fungi produce highly structurally diverse metabolites, many of which have served as excellent sources of pharmaceuticals, no fungi-derived agent has been approved as a cancer drug so far. This is despite a tremendous amount of research being aimed at the identification of fungal metabolites with promising anticancer activities. This review discusses the results of clinical testing of fungal metabolites and their synthetic derivatives, with the goal to evaluate how far we are from an approved cancer drug of fungal origin. Also, because in vivo studies in animal models are predictive of the efficacy and toxicity of a given compound in a clinical situation, literature describing animal cancer testing of compounds of fungal origin is reviewed as well. Agents showing the potential to advance to clinical trials are also identified. Finally, the technological challenges involved in the exploitation of fungal biodiversity and procurement of sufficient quantities of clinical candidates are discussed, and potential solutions that could be pursued by researchers are highlighted.
Collapse
Affiliation(s)
- Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, USA
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Maurizio Vurro
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/0, 70126 Bari, Italy
| | - Véronique Mathieu
- Laboratorie de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alessio Cimmino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Marco Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Willem A. L. van Otterlo
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Ramesh Dasari
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, USA
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme; Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Robert Kiss
- Laboratorie de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
45
|
Ahmed D, de Verdier PJ, Ryk C, Lunqe O, Stål P, Flygare J. FTY720 (Fingolimod) sensitizes hepatocellular carcinoma cells to sorafenib-mediated cytotoxicity. Pharmacol Res Perspect 2015; 3:e00171. [PMID: 26516583 PMCID: PMC4618642 DOI: 10.1002/prp2.171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/26/2015] [Accepted: 06/27/2015] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. The multityrosine kinase inhibitor sorafenib is used in the therapy of advanced disease. However, the effects of sorafenib are limited, and combination treatments aiming at improved survival are encouraged. The sphingosine analog FTY720 (Fingolimod), which is approved for treatment of multiple sclerosis, has shown tumor suppressive effects in cell lines and animal models of HCC. In the present study, we combined sorafenib with FTY720 in order to sensitize the HCC cell lines Huh7 and HepG2 to sorafenib treatment. Using the XTT assay we show that noncytotoxic doses of FTY720 synergistically enhanced the decrease in viability caused by treatment of both cell lines with increasing doses of sorafenib. Further studies in Huh7 revealed that combined treatment with FTY720 and sorafenib resulted in G1 arrest and enhanced cell death measured using flow cytometry analysis of cells labeled with propidium iodide (PI)/Annexin-V and PI and 4′,6-diamidino-2-phenylindole-staining of nuclei. In addition, signs of both caspase-dependent and – independent apoptosis were observed, as cotreatment with FTY720 and sorafenib caused cytochrome c release and poly-ADP ribose polymerase-cleavage as well as translocation of Apoptosis-inducing factor into the cytosol. We also detected features of autophagy blockage, as the protein levels of LC3-II and p62 were affected by combined treatment with FTY720 and sorafenib. Together, our results suggest that FTY720 sensitizes HCC cells to cytotoxic effects induced by treatment with sorafenib alone. These findings warrant further investigations of combined treatment with sorafenib and FTY720 in vivo in order to develop more effective treatment of HCC.
Collapse
Affiliation(s)
- Dilruba Ahmed
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet Huddinge, Stockholm, Sweden
| | - Petra J de Verdier
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet Huddinge, Stockholm, Sweden
| | - Charlotta Ryk
- Urology Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet 171 76, Stockholm, Sweden
| | - Oscar Lunqe
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet Huddinge, Stockholm, Sweden
| | - Per Stål
- Division of Gastroenterology and Hepatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge Stockholm, Sweden
| | - Jenny Flygare
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet Huddinge, Stockholm, Sweden
| |
Collapse
|
46
|
Patmanathan SN, Yap LF, Murray PG, Paterson IC. The antineoplastic properties of FTY720: evidence for the repurposing of fingolimod. J Cell Mol Med 2015; 19:2329-40. [PMID: 26171944 PMCID: PMC4594675 DOI: 10.1111/jcmm.12635] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/20/2015] [Indexed: 12/20/2022] Open
Abstract
Almost all drugs approved for use in humans possess potentially beneficial 'off-target' effects in addition to their principal activity. In some cases this has allowed for the relatively rapid repurposing of drugs for other indications. In this review we focus on the potential for re-purposing FTY720 (also known as fingolimod, Gilenya(™)), an immunomodulatory drug recently approved for the treatment of multiple sclerosis (MS). The therapeutic benefit of FTY720 in MS is largely attributed to the immunosuppressive effects that result from its modulation of sphingosine 1-phosphate receptor signalling. However, this drug has also been shown to inhibit other cancer-associated signal transduction pathways in part because of its structural similarity to sphingosine, and consequently shows efficacy as an anti-cancer agent both in vitro and in vivo. Here, we review the effects of FTY720 on signal transduction pathways and cancer-related cellular processes, and discuss its potential use as an anti-cancer drug.
Collapse
Affiliation(s)
- Sathya Narayanan Patmanathan
- Department of Oral Biology and Biomedical Sciences and Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Lee Fah Yap
- Department of Oral Biology and Biomedical Sciences and Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Paul G Murray
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - Ian C Paterson
- Department of Oral Biology and Biomedical Sciences and Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
47
|
Zhang L, Wang H, Ding K, Xu J. FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells. Toxicol Lett 2015; 236:43-59. [PMID: 25939952 DOI: 10.1016/j.toxlet.2015.04.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 04/25/2015] [Accepted: 04/29/2015] [Indexed: 01/03/2023]
Abstract
FTY720 is a potent immunosuppressant which has preclinical antitumor efficacy in various cancer models. However, its role in glioblastoma remains unclear. In the present study, we found that FTY720 induced extrinsic apoptosis, necroptosis and autophagy in human glioblastoma cells. Inhibition of autophagy by either RNA interference or chemical inhibitors attenuated FTY720-induced apoptosis and necrosis. Furthermore, autophagy, apoptosis and necrosis induction were dependent on reactive oxygen species-c-Jun N-terminal kinase-protein 53 (ROS-JNK-p53) loop mediated phosphatidylinositide 3-kinases/protein kinase B/mammalian target of rapamycin/p70S6 kinase (PI3K/AKT/mTOR/p70S6K) pathway. In addition, receptor-interacting protein 1 and 3 (RIP1 and RIP3) served as an upstream of ROS-JNK-p53 loop. However, the phosphorylation form of FTY720 induced autophagy but not apoptosis and necroptosis. Finally, the in vitro results were validated in vivo in xenograft mouse of glioblastoma cells. In conclusion, the current study provided novel insights into understanding the mechanisms and functions of FTY720-induced apoptosis, necroptosis and autophagy in human glioblastoma cells.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Ke Ding
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Jianguo Xu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
48
|
Yin CY, Lin XL, Tian L, Ye M, Yang XY, Xiao XY. Lobaplatin inhibits growth of gastric cancer cells by inducing apoptosis. World J Gastroenterol 2014; 20:17426-17433. [PMID: 25516654 PMCID: PMC4265601 DOI: 10.3748/wjg.v20.i46.17426] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/09/2014] [Accepted: 07/22/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess the anti-cancer effect of lobaplatin on human gastric cancer cells, and to explore the underlying molecular mechanisms.
METHODS: The human gastric cancer cell lines MKN-28, AGS and MKN-45 were used. The cytotoxicity of lobaplatin was detected using an MTS cell proliferation assay. Flow cytometry was used to detect cell apoptosis using Annexin V-FITC Apoptosis Detection Kit. The expression of apoptosis-regulated genes was examined at the protein level using Western blot.
RESULTS: Lobaplatin inhibited the proliferation of human gastric cancer cells and induced apoptosis, which may be associated with the up-regulation of Bax expression, poly(ADP-ribose) polymerase (PARP) cleavage, p53 expression and the reduction of Bcl-2 expression.
CONCLUSION: The cytotoxicity of lobaplatin may be due to its ability of inducing apoptosis of gastric cancer cells, which would support the potential use of lobaplatin for the therapy of gastric cancer.
Collapse
|
49
|
Bajwa A, Rosin DL, Chroscicki P, Lee S, Dondeti K, Ye H, Kinsey GR, Stevens BK, Jobin K, Kenwood BM, Hoehn KL, Lynch KR, Okusa MD. Sphingosine 1-phosphate receptor-1 enhances mitochondrial function and reduces cisplatin-induced tubule injury. J Am Soc Nephrol 2014; 26:908-25. [PMID: 25145931 DOI: 10.1681/asn.2013121351] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Sphingosine 1-phosphate (S1P), the natural sphingolipid ligand for a family of five G protein- coupled receptors (S1P1-S1P5Rs), regulates cell survival and lymphocyte circulation. We have shown that the pan-S1PR agonist, FTY720, attenuates kidney ischemia-reperfusion injury by directly activating S1P1 on proximal tubule (PT) cells, independent of the canonical lymphopenic effects of S1P1 activation on B and T cells. FTY720 also reduces cisplatin-induced AKI. Therefore, in this study, we used conditional PT-S1P1-null (PepckCreS1pr1(fl/fl)) and control (PepckCreS1pr1(w/wt)) mice to determine whether the protective effect of FTY720 in AKI is mediated by PT-S1P1. Cisplatin induced more renal injury in PT-S1P1-null mice than in controls. Although FTY720 produced lymphopenia in both control and PT-S1P1-null mice, it reduced injury only in control mice. Furthermore, the increase in proinflammatory cytokine (CXCL1, MCP-1, TNF-α, and IL-6) expression and infiltration of neutrophils and macrophages induced by cisplatin treatment was attenuated by FTY720 in control mice but not in PT-S1P1-null mice. Similarly, S1P1 deletion rendered cultured PT cells more susceptible to cisplatin-induced injury, whereas S1P1 overexpression protected PT cells from injury and preserved mitochondrial function. We conclude that S1P1 may have an important role in stabilizing mitochondrial function and that FTY720 administration represents a novel strategy in the prevention of cisplatin-induced AKI.
Collapse
Affiliation(s)
- Amandeep Bajwa
- Departments of Medicine and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Diane L Rosin
- Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, Virginia Pharmacology, and
| | - Piotr Chroscicki
- Departments of Medicine and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Sangju Lee
- Departments of Medicine and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Krishna Dondeti
- Departments of Medicine and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Hong Ye
- Departments of Medicine and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Gilbert R Kinsey
- Departments of Medicine and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Brian K Stevens
- Departments of Medicine and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Katarzyna Jobin
- Departments of Medicine and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | | | | | | | - Mark D Okusa
- Departments of Medicine and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
50
|
Matsuoka T, Yashiro M. The Role of PI3K/Akt/mTOR Signaling in Gastric Carcinoma. Cancers (Basel) 2014; 6:1441-63. [PMID: 25003395 PMCID: PMC4190549 DOI: 10.3390/cancers6031441] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 02/06/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is one of the key signaling pathways induced by various receptor-tyrosine kinases. Accumulating evidence shows that this pathway is an important promoter of cell growth, metabolism, survival, metastasis, and resistance to chemotherapy. Genetic alterations in the PI3K/Akt/mTOR pathway in gastric carcinoma have often been demonstrated. Many kinds of molecular targeting therapies are currently undergoing clinical testing in patients with solid tumors. However, with the exception of the ErbB2-targeting antibody, targeting agents, including PI3K/Akt/mTOR inhibitors, have not been approved for treatment of patients with gastric carcinoma. This review summarizes the current knowledge on PI3K/Akt/mTOR signaling in the pathogenesis of gastric carcinoma and the possible therapeutic targets for gastric carcinoma. Improved knowledge of the PI3K/Akt/mTOR pathway in gastric carcinoma will be useful in understanding the mechanisms of tumor development and for identifying ideal targets of anticancer therapy for gastric carcinoma.
Collapse
Affiliation(s)
- Tasuku Matsuoka
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan.
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan.
| |
Collapse
|