1
|
Gagnani R, Srivastava M, Suri M, Singh H, Shanker Navik U, Bali A. A focus on c-Jun-N-terminal kinase signaling in sepsis-associated multiple organ dysfunction: Mechanisms and therapeutic strategies. Int Immunopharmacol 2024; 143:113552. [PMID: 39536486 DOI: 10.1016/j.intimp.2024.113552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Sepsis is a life-threatening condition characterized by a widespread inflammatory response to infection, inevitably leading to multiple organ dysfunctions. Extensive research, both in vivo and in vitro, has revealed key factors contributing to sepsis, such as apoptosis, inflammation, cytokine release, oxidative stress, and systemic stress. The changes observed during sepsis-induced conditions are mainly attributed to altered signal transduction pathways, which play a critical role in cell proliferation, migration, and apoptosis. C-Jun N-terminal kinases, JNKs, and serine/threonine protein kinases in the mitogen-activated super family have gained considerable interest for their contribution to cellular events under sepsis conditions. JNK1 and JNK2 are present in various tissues like the lungs, liver, and intestine, while JNK3 is found in neurons. The JNK pathway plays a crucial role in the signal transduction of cytokines related to sepsis development, notably TNF-α and IL-1β. Activated JNK leads to apoptosis, causing tissue damage and organ dysfunction. Further, JNK activation is significant in several inflammatory conditions. Pharmacologically inhibiting JNK has been shown to prevent sepsis-associated damage across multiple organs, including the lungs, liver, intestines, heart, and kidneys. Multiple signaling pathways have been implicated in sepsis, including JNK/c-Myc, Mst1-JNK, MKK4-JNK, JNK-dependent autophagy, and Sirt1/FoxO3a. The review examines the role of JNK signaling in the development of sepsis-induced multiple-organ dysfunction through specific mechanisms. It also discusses different therapeutic approaches to target JNK. This review emphasizes the potential of JNKs as targets for the development of therapeutic agents for sepsis and the associated specific organ damage.
Collapse
Affiliation(s)
- Riya Gagnani
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| | - Mukul Srivastava
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Manisha Suri
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Harshita Singh
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Uma Shanker Navik
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Anjana Bali
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| |
Collapse
|
2
|
Yang H, Wang F, Zhao P, Ullah S, Ma Y, Zhao G, Cheng Y, Li Q, Li T, Qiao M, Song L, Zhang L, Galaverna G, Huang X, Li N. Black soybean peptide mediates the AMPK/SIRT1/NF-κB signaling pathway to alleviate Alzheimer's-related neuroinflammation in lead-exposed HT22 cells. Int J Biol Macromol 2024; 286:138404. [PMID: 39643189 DOI: 10.1016/j.ijbiomac.2024.138404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by hyperphosphorylation of tau, neuroinflammation, and amyloid-beta (Aβ) plaques. Lead (Pb) exposure has been linked to an increased risk of AD and neuroinflammation. The purpose of this study is to determine if black soybean peptide (BSP1) may reduce neuroinflammation caused by Pb and associated AD-like pathology. Pb exposure was given to mouse hippocampus HT22 cells in the presence or absence of BSP1, positive control resveratrol (Rsv), or the SIRT1 inhibitor EX-527. Our findings suggest that BSP1 downregulates the expression of beta-secretase (BACE1) and amyloid precursor protein (APP), inhibits tau phosphorylation, and reduces Aβ1-42 deposition. In addition, BSP1 effectively alleviated Pb-induced neuroinflammation by reducing the phosphorylation of NF-κB and the expression of pro-inflammatory cytokines (IL-1β, TNF-α, NLRP3, and IL-18). BSP1 provides neuroprotective effect via phosphorylating LKB1 and AMPK, inhibiting mTOR signaling, and activating the AMPK/SIRT1 pathway. These results suggest that BSP1 may be therapeutically beneficial for preventing or treating AD by reducing Pb-induced neuroinflammation.
Collapse
Affiliation(s)
- Huijie Yang
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, 450000 Zhengzhou, China
| | - Fangyu Wang
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, 116#Huayuan Road, 450002 Zhengzhou, China
| | - Peijun Zhao
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, 450000 Zhengzhou, China
| | - Saif Ullah
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, 450000 Zhengzhou, China
| | - Yan Ma
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, 450000 Zhengzhou, China
| | - Guangshan Zhao
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, 450000 Zhengzhou, China
| | - Yongxia Cheng
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, 450000 Zhengzhou, China
| | - Qian Li
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, 450000 Zhengzhou, China
| | - Tiange Li
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, 450000 Zhengzhou, China
| | - Mingwu Qiao
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, 450000 Zhengzhou, China
| | - Lianjun Song
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, 450000 Zhengzhou, China
| | - Lei Zhang
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, 450000 Zhengzhou, China
| | - Gianni Galaverna
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 17/a, 43124 Parma, Italy
| | - Xianqing Huang
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, 450000 Zhengzhou, China.
| | - Ning Li
- College of Food Science and Technology, Henan Agricultural University, 63#Agricultural Road, 450000 Zhengzhou, China.
| |
Collapse
|
3
|
Xia F, Hu Y, Wang Y, Xue M, Zhu L, Li Y, Zhang Y, Wang S, Wang R, Yuan Q, He Y, Yuan D, Zhang J, Yuan C. Total saponins from Panax japonicus mediate the paracrine interaction between adipocytes and macrophages to promote lipolysis in the adipose tissue during aging via the NLRP3 inflammasome/GDF3/ATGL axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 136:156304. [PMID: 39662098 DOI: 10.1016/j.phymed.2024.156304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/01/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Adipocytic lipolysis is strongly related to the increase of visceral fat, decrease of exercise capacity, and various other metabolic syndromes during aging. It is significantly influenced by the paracrine relationship between adipocytes and the adipose tissue macrophages (ATMs), and the cytokines secreted by ATMs have endocrine effects on adjacent tissues. We previously reported that the total saponins from Panax japonicus (TSPJs) can enhance lipid metabolism. In this work, we for the first time proved that TSPJs promoted adipocytic lipolysis by preventing NLRP3 activation in ATMs to inhibit the expression of GDF3. The decrease of GDF3 by TSPJs restored the expression of the adipose triglyceride lipase (ATGL) and phosphorylated hormone-sensitive lipase (p-HSL), both of which are known to decrease with aging. Thus, the NLRP3 inflammasome/GDF3/ATGL axis may be a worthy target in developing future clinical solutions for aging-related obesity.
Collapse
Affiliation(s)
- Fangqi Xia
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yaqi Hu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yaqi Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Mengzhen Xue
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Leiqi Zhu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yuanyang Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yifan Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Shuwen Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Rui Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Qi Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yumin He
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Ding Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Jihong Zhang
- Hubei Clinical Research Center for Functional Digestive Diseases of Traditional Chinese Medicine& Traditional Chinese Medicine Hospital of China Three Gorges University, Yichang, 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
4
|
Miao S, Liu H, Yang Q, Zhang Y, Chen T, Chen S, Mao X, Zhang Q. Cathelicidin peptide LL-37: A multifunctional peptide involved in heart disease. Pharmacol Res 2024; 210:107529. [PMID: 39615616 DOI: 10.1016/j.phrs.2024.107529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/30/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Heart disease is a common human disease with high morbidity and mortality. Timely and effective prevention and treatment is an urgent clinical problem. The pathogenesis of heart disease is complex and diverse, involving hypertension, diabetes, atherosclerosis, drug toxicity, thrombosis, infection and other aspects. LL-37, an endogenous peptide, is well known for its antimicrobial properties. In recent years, LL-37 has been found to have a variety of biological functions, including its role in the regulation of atherosclerosis, thrombosis, inflammatory responses, and cardiac hypertrophy. Engineered LL-37-related peptides were developed and proved to regulate the development of disease, which revealed its potential clinical application. A comprehensive review and summary of LL-37 is presented to clarify its role in heart disease and to provide a reference and direction for future research.
Collapse
Affiliation(s)
- Shuo Miao
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China; School of Basic Medicine, Qingdao University, Qingdao, China
| | - Houde Liu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qingyu Yang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaping Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Chen
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Ruipule Medical Technology Co., Ltd, China
| | - Shuai Chen
- School of Basic Medicine, Guizhou University of Traditional Chinese, China
| | - Xin Mao
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Qingsong Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Han D, Zhao Z, Mao T, Gao M, Yang X, Gao Y. Ginsenoside Rg1: A Neuroprotective Natural Dammarane-Type Triterpenoid Saponin With Anti-Depressive Properties. CNS Neurosci Ther 2024; 30:e70150. [PMID: 39639753 PMCID: PMC11621566 DOI: 10.1111/cns.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Depression, a widespread mental disorder, presents significant risks to both physical and mental health due to its high rates of recurrence and suicide. Currently, single-target antidepressants typically alleviate depressive symptoms or delay the progression of depression rather than cure it. Ginsenoside Rg1 is one of the main ginsenosides found in Panax ginseng roots. It improves depressive symptoms through various mechanisms, suggesting its potential as a treatment for depression. MATERIALS AND METHODS We evaluated preclinical studies to comprehensively discuss the antidepressant mechanism of ginsenoside Rg1 and review its toxicity and medicinal value. Additionally, pharmacological network and molecular docking analyses were performed to further validate the antidepressant effects of ginsenoside Rg1. RESULTS The antidepressant mechanism of ginsenoside Rg1 may involve various pharmacological mechanisms and pathways, such as inhibiting neuroinflammation and over-activation of microglia, preserving nerve synapse structure, promoting neurogenesis, regulating monoamine neurotransmitter levels, inhibiting hyperfunction of the hypothalamic-pituitary-adrenal axis, and combatting antioxidative stress. Moreover, ginsenoside Rg1 preserves astrocyte gap junction function by regulating connexin43 protein biosynthesis and degradation, contributing to its antidepressant effect. Pharmacological network and molecular docking studies identified five targets (AKT1, STAT3, EGFR, PPARG, and HSP90AA1) as potential molecular regulatory sites of ginsenoside Rg1. CONCLUSIONS Ginsenoside Rg1 may exert its antidepressant effects via various pharmacological mechanisms. In addition, multicenter clinical case-control and molecular targeted studies are required to confirm both the clinical efficacy of ginsenoside Rg1 and its potential direct targets.
Collapse
Affiliation(s)
- Dong Han
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Zheng Zhao
- Department of Emergency MedicineShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Tinghui Mao
- Department of Organ Transplantation and Hepatobiliary SurgeryThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningChina
| | - Man Gao
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xue Yang
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Yan Gao
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
6
|
Liu X, Wang Y, Han L, Li X, Zhong Y, Zhou J, Fei X, Peng M, Duan J, Zhong Z. Ginsenoside Rb1 ameliorates hippocampal neuroinflammation in rats after intracerebral hemorrhage by inactivating the TLR4/NF-kB pathway. J Pharm Pharmacol 2024:rgae145. [PMID: 39591495 DOI: 10.1093/jpp/rgae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
PURPOSE This work elucidated the therapeutic effect and mechanism of ginsenoside Rb1 on intracerebral hemorrhage (ICH). METHODS ICH rat models were treated by ginsenoside Rb1. Modified neurological deficit score, and Y-maze and Morris water-maze tests were performed on rats. Hippocampal neuronal damage was observed by Nissl staining. Rat primary astrocytes were exposed to ginsenoside Rb1, Hemin, and lipopolysaccharide (LPS). TNF-α, IL-1β, and IL-6 levels were assessed via enzyme-linked immunosorbent assay. TLR4/NF-kB pathway activity was appraised by Western blot. Immunofluorescence staining was for hippocampal glial fibrillary acidic protein (GFAP) expression and P65 protein location in hippocampus and astrocytes. RESULTS In rats after ICH, ginsenoside Rb1 ameliorated neurological impairment and hippocampal neuronal damage; improved learning and memory ability; reduced brain water content; decreasedhippocampal TNF-α, IL-1β, and IL-6; inactivated TLR4/NF-kB pathway; and declined hippocampal GFAP expression. In rat primary astrocytes exposed to Hemin, ginsenoside Rb1 declined TNF-α, IL-1β, and IL-6; inactivated TLR4/NF-kB pathway; and hindered P65 protein entry into nucleus. However, these functions of ginsenoside Rb1 on the Hemin-induced astrocytes were abolished by LPS. CONCLUSION Ginsenoside Rb1 has promising future for clinical ICH treatment, which exerts therapeutic effect on ICH by ameliorating hippocampal neuroinflammation via inactivating the TLR4/NF-kB pathway.
Collapse
Affiliation(s)
- Xi Liu
- Department of Neurosurgery, Changsha Hospital of Traditional Chinese Medicine, Changsha City, Hunan Province, China
| | - Yuying Wang
- Department of Neurosurgery, Changsha Hospital of Traditional Chinese Medicine, Changsha City, Hunan Province, China
| | - Ling Han
- Department of Neurosurgery, Changsha Hospital of Traditional Chinese Medicine, Changsha City, Hunan Province, China
| | - Xing Li
- Department of Neurosurgery, Changsha Hospital of Traditional Chinese Medicine, Changsha City, Hunan Province, China
| | - Yan Zhong
- School of Stomatology, Hunan University of Chinese Medicine, Changsha City, Hunan Province, China
| | - Jilin Zhou
- Department of Neurosurgery, Changsha Hospital of Traditional Chinese Medicine, Changsha City, Hunan Province, China
| | - Xiyun Fei
- Department of Neurosurgery, Changsha Hospital of Traditional Chinese Medicine, Changsha City, Hunan Province, China
| | - Min Peng
- Department of Neurosurgery, Changsha Hospital of Traditional Chinese Medicine, Changsha City, Hunan Province, China
| | - Jixin Duan
- Department of Neurosurgery, Hunan Aerospace Hospital, Changsha City, Hunan Province, China
| | - Zhijun Zhong
- Department of Neurosurgery, Changsha Hospital of Traditional Chinese Medicine, Changsha City, Hunan Province, China
| |
Collapse
|
7
|
Zhou Z, Li M, Zhang Z, Song Z, Xu J, Zhang M, Gong M. Overview of Panax ginseng and its active ingredients protective mechanism on cardiovascular diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118506. [PMID: 38964625 DOI: 10.1016/j.jep.2024.118506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE Panax ginseng is a traditional Chinese herbal medicine used to treat cardiovascular diseases (CVDs), and it is still widely used to improve the clinical symptoms of various CVDs. However, there is currently a lack of summary and analysis on the mechanism of Panax ginseng exerts its cardiovascular protective effects. This article provides a review of in vivo and in vitro pharmacological studies on Panax ginseng and its active ingredients in reducing CVDs damage. AIM OF THIS REVIEW This review summarized the latest literature on Panax ginseng and its active ingredients in CVDs research, aiming to have a comprehensive and in-depth understanding of the cardiovascular protection mechanism of Panax ginseng, and to provide new ideas for the treatment of CVDs, as well as to optimize the clinical application of Panax ginseng. METHODS Enrichment of pathways and biological terms using the traditional Chinese medicine molecular mechanism bioinformatics analysis tool (BATMAN-TCM). The literature search is based on electronic databases such as PubMed, ScienceDirect, Scopus, CNKI, with a search period of 2002-2023. The search terms include Panax ginseng, Panax ginseng ingredients, ginsenosides, ginseng polysaccharides, ginseng glycoproteins, ginseng volatile oil, CVDs, heart, and cardiac. RESULTS 132 articles were ultimately included in the review. The ingredients in Panax ginseng that manifested cardiovascular protective effects are mainly ginsenosides (especially ginsenoside Rb1). Ginsenosides protected against CVDs such as ischemic reperfusion injury, atherosclerosis and heart failure mainly through improving energy metabolism, inhibiting hyper-autophagy, antioxidant, anti-inflammatory and promoting secretion of exosomes. CONCLUSION Panax ginseng and its active ingredients have a particularly prominent effect on improving myocardial energy metabolism remodeling in protecting against CVDs. The AMPK and PPAR signaling pathways are the key targets through which Panax ginseng produces multiple mechanisms of cardiovascular protection. Extracellular vesicles and nanoparticles as carriers are potential delivery ways for optimizing the bioavailability of Panax ginseng and its active ingredients.
Collapse
Affiliation(s)
- Ziwei Zhou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Meijing Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Zekuan Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Zhimin Song
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Jingjing Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, 100069, China
| | - Minyu Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, 100069, China.
| | - Muxin Gong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, 100069, China.
| |
Collapse
|
8
|
Wang Y, Huang X, Huo H, Cai Z, Ji Q, Jiang Y, Zhuang F, Li Y, Shen L, Wang X, He B. Deletion of MAPL ameliorates septic cardiomyopathy by mitigating mitochondrial dysfunction. J Transl Med 2024; 22:1012. [PMID: 39529130 PMCID: PMC11552119 DOI: 10.1186/s12967-024-05836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
AIM Mitochondrial dysfunction is a critical factor in the pathogenesis of septic cardiomyopathy (SCM). Mitochondrial anchored protein ligase (MAPL), a small ubiquitin-like modifier (SUMO) E3 ligase, plays a significant role in mitochondrial function. However, the role of MAPL in SCM remains unclear. METHODS To investigate the role of MAPL in SCM, cardiomyocyte-specific MAPL knockout mice were generated. A cecal ligation and puncture (CLP) procedure was employed to induce a sepsis-like condition. RESULTS The expression of MAPL in heart tissues and H9C2 cardiomyocytes was elevated following CLP challenge or lipopolysaccharide (LPS) stimulation. MAPL deficiency ameliorated CLP-induced cardiac injury, dysfunction, and inflammation, and also improved the survival rate of mice following CLP operation. Additionally, MAPL deficiency or knockdown inhibited LPS-induced cardiomyocyte apoptosis, improved mitochondrial structural abnormalities, and increased ATP production. Furthermore, MAPL knockdown mitigated LPS-induced reductions in mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) production. Mechanistically, the expression of dynamin-related protein 1 (drp1) in the mitochondria of heart tissues or H9C2 cardiomyocytes was elevated under septic conditions. Accordingly, the SUMOylation of drp1 in heart tissues or H9C2 cardiomyocytes was increased under sepsis conditions, which was reduced by MAPL knockout or knockdown. CONCLUSION Our results reveal that MAPL promotes cardiac injury/dysfunction and inflammation in SCM. Deficiency or knockdown of MAPL alleviates SCM by reducing drp1 SUMOylation as well as drp1-mediated mitochondrial dysfunction. These findings suggest that targeting MAPL may represent a therapeutic strategy for patients with SCM.
Collapse
Affiliation(s)
- Yinghua Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiying Huang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huanhuan Huo
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaohua Cai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingqi Ji
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Jiang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Zhuang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
El-Dessouki AM, Alzokaky AA, Raslan NA, Ibrahim S, Selim HMRM, Al-Karmalawy AA. Dabigatran attenuates methotrexate-induced hepatotoxicity by regulating coagulation, endothelial dysfunction, and the NF-kB/IL-1β/MCP-1 and TLR4/NLRP3 signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03567-w. [PMID: 39527308 DOI: 10.1007/s00210-024-03567-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
This study examines Dabigatran's (Dab) capacity to mitigate methotrexate (MTX)-induced coagulation disorders and endothelial dysfunction, while exploring its effects on oxidative stress and inflammatory pathways (NF-kB/IL-1β/MCP-1, TLR4/NLRP3) in reducing hepatotoxicity. Rats were assigned to four groups: a control group receiving saline intraperitoneally (i.p.); an MTX group with a single MTX dose (20 mg/kg, i.p.) to induce hepatotoxicity; and two pretreatment groups receiving Dab orally at 15 mg/kg and 25 mg/kg for seven days before and 4 days after MTX administration. MTX-treated rats showed significant increases in liver enzymes (ALT, AST, ALP) and reductions in antioxidant enzymes (SOD, GSH), along with elevated coagulation parameters (tissue factor (TF), thrombin, fibrin, plasminogen activator inhibitor-1 (PAI-1)), leading to coagulation disorders. Endothelial dysfunction was evident with reduced eNOS expression, while inflammation increased through elevated iNOS, ICAM-1, and pro-inflammatory cytokines (MPO, NF-kB, TNF-α, IL-1β, MCP-1), alongside activation of the TLR4/NLRP3 inflammasome pathway and decreased IL-10 (p < 0.05). Immunohistochemistry revealed increased cytochrome c and caspase-3 expression, with histopathological damage. Dabigatran mitigated these effects, downregulating liver enzymes, modulating coagulation factors, restoring eNOS levels, and reducing histopathological and inflammatory markers. Dabigatran demonstrates significant therapeutic potential in alleviating methotrexate-induced hepatotoxicity through its antioxidant, anti-inflammatory, anticoagulant, and anti-apoptotic effects. Its regulation of coagulation parameters and endothelial function suggests a protective role against tissue damage, warranting further investigation.
Collapse
Affiliation(s)
- Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University (ACU), 6th of October City, 12566, Giza, Egypt.
| | - Amany A Alzokaky
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11651, Egypt
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt
| | - Nahed A Raslan
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11651, Egypt
- Clinical Pharmacy Department, College of Health Sciences and Nursing, Al-Rayan Colleges, AL-Madinah AL-Munawarah, Saudi Arabia
| | - Samar Ibrahim
- Pharmacy Practice and Clinical Pharmacy Department, Faculty of Pharmacy, Galala University-Ataka, Suez, Egypt
| | - Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, 11597, Riyadh, Saudi Arabia
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq, Baghdad, 10023, Iraq.
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt.
| |
Collapse
|
10
|
Tang J, Liu Y, Wu Y, Li S, Zhang D, Wang H, Wang W, Song X, Li Y. Saponins as potential novel NLRP3 inflammasome inhibitors for inflammatory disorders. Arch Pharm Res 2024; 47:757-792. [PMID: 39549164 DOI: 10.1007/s12272-024-01517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024]
Abstract
Nucleotide-binding domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) is a downstream protein from the pattern recognition receptor family that forms the NLRP3 inflammasome. The NLRP3 inflammasome releases caspase-1, IL-1β, and IL-18, contributing to inflammatory responses associated with diabetes mellitus, arthritis, and ischemia-reperfusion injury. Recent studies suggest that specific saponin monomers and extracts from traditional Chinese medicines can inhibit inflammatory responses and related pathways, including the production of inflammatory factors. MCC950 is one of the most influential and specific NLRP3 inhibitors. Comparative molecular docking studies have identified 22 of the 37 saponin components as more robust binders to NLRP3 than MCC950. Dioscin, polyphyllin H, and saikosaponin-a have the highest binding affinities and potential NLRP3 inhibitors, offering a theoretical basis for developing novel anti-inflammatory therapies.
Collapse
Affiliation(s)
- Jiamei Tang
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yaxiao Liu
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ying Wu
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Shixing Li
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Dongdong Zhang
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Haifang Wang
- Shaanxi Province Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Cardiovascular Diseases, Xianyang, 712046, China
| | - Wei Wang
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Xiaomei Song
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Yuze Li
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| |
Collapse
|
11
|
Xu X, Wu Q, Pei K, Zhang M, Mao C, Zhong X, Huang Y, Dai Y, Yin R, Chen Z, Wang X. Ginsenoside Rg1 reduces cardiac inflammation against myocardial ischemia/reperfusion injury by inhibiting macrophage polarization. J Ginseng Res 2024; 48:570-580. [PMID: 39583164 PMCID: PMC11583468 DOI: 10.1016/j.jgr.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 11/26/2024] Open
Abstract
Background Myocardial ischemia/reperfusion (MI/R) injury is the main cause of death worldwide and poses a significant threat to cardiac health. Ginsenoside Rg1 has been shown to have inhibitory effects on inflammatory activation, oxidative stress, and cardiac injury, suggesting that Rg1 may have therapeutic effects on MI/R injury. However, the mechanism remains to be further studied. Materials and methods Left anterior descending coronary artery ligation was performed in Sprague-Dawley rats to construct an MI/R model in vivo. Organ index, electrocardiogram, infarct size, histopathological changes, and detection of cardiac injury and inflammatory factors in the rats were used to evaluate myocarditis, macrophage polarization, and fibrosis. We also used rat bone marrow-derived macrophages (BMDMs) to further investigate the effects of Rg1 on absent in melanoma 2 (AIM2) activation and macrophage polarization in vitro. Results Administration of Rg1 exhibited dose-dependent cardioprotective effects and effectively reduced MI/R injury. Rg1 significantly attenuated myocardial inflammation and inhibited M1 macrophage polarization during MI/R injury. Furthermore, Rg1 significantly reduced cardiac fibrosis in response to MI/R injury. This anti-fibrotic effect may contribute to the preservation of cardiac structure and function following an ischemic insult. Meanwhile, Rg1 effectively inhibited the activation of the AIM2 inflammasome in vitro, highlighting its potential as a key regulator of inflammatory pathways. Conclusion Our findings elucidate the multifaceted mechanisms underlying Rg1's cardioprotective effects, including its ability to mitigate inflammation, modulate macrophage polarization, and inhibit fibrosis.
Collapse
Affiliation(s)
- Xiaojin Xu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Qing Wu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ke Pei
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Shen Chun-ti Nation-Famous Experts Studio for Traditional Chinese Medicine Inheritance,Changzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu, China
| | - Meng Zhang
- Shuguang Hospital Affiliated to Shanghai University of Chinese Medicine, Shanghai, China
| | - Chenhan Mao
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Xinxin Zhong
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunfan Huang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Dai
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Yin
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhaoyang Chen
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xindong Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Sana SS, Chandel AKS, Raorane CJ, Aly Aly Saad M, Kim SC, Raj V, Sangkil Lee. Recent advances in nano and micro formulations of Ginsenoside to enhance their therapeutic efficacy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156007. [PMID: 39276537 DOI: 10.1016/j.phymed.2024.156007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND AND AIMS Ginsenosides, the main component of Panax ginseng, have long been recognized for their therapeutic benefits and are thought to have neuroprotective, antidiabetic, anti-depressant, antioxidant, anti-cancer, and anti-stress properties. However, due to their low water solubility, low biomembrane permeability, gastrointestinal dysfunction, and total metabolism in the body, ginsenosides have a poor absorption profile that has hindered the therapeutic potential of these organic molecules. METHODS Initially, we broadly illuminated the several techniques of extraction of Ginsenosides using Panax quinquefolius and Panax ginseng. Subsequently, we focused on different delivery methods to improve the stability, permeability, and solubility of natural chemicals, which raises the bioavailability of ginsenoside. Lastly, we explained significance of a variety of nano and microscale delivery systems, including liposomes, ethosomes, transfersomes, metal/metal oxide systems, micro/nanoemulsions, polymeric micro/nanoparticles (NPs), liposomes, transfersomes, and micelles to increase the bioavailability of ginsenosides. RESULTS The utilization of micro/nanoscale delivery methods, such as liposome-based delivery, polymer micro/nanoparticle distribution, and micro/nanoemulsion, to increase the bioavailability of ginsenosides has recently advanced, and we have emphasized these advances in this study. Furthermore, the disadvantages of ginsenosides were also discussed, including the challenges associated with putting these delivery systems into practice in clinical settings and suggestions for further research. CONCLUSION In summary, ginsenosides-based administration has several benefits that make it a potentially useful substance for a range of therapeutic purposes.
Collapse
Affiliation(s)
- Siva Sankar Sana
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | | | - Mohamed Aly Aly Saad
- Department of Electrical and Computer Engineering, Georgia Tech Shenzhen Institute (GTSI), Shenzhen, Guangdong 518052, China
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Vinit Raj
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Peng L, Li S, Cai H, Chen X, Tang Y. Ginsenoside Rg1 treats chronic heart failure by downregulating ERK1/2 protein phosphorylation. In Vitro Cell Dev Biol Anim 2024; 60:1085-1098. [PMID: 39251466 DOI: 10.1007/s11626-024-00960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/22/2024] [Indexed: 09/11/2024]
Abstract
In this study, we investigated the potential therapeutic mechanism of ginsenoside Rg1 (GRg1) in chronic heart failure (CHF), focusing on its regulation of ERK1/2 protein phosphorylation. H9c2 cardiomyocytes and SD rats were divided into the control group, CHF (ADR) group, and CHF+ginsenoside Rg1 group using an isolated cardiomyocyte model and an in vivo CHF rat model induced by adriamycin (ADR). Cell viability, proliferation, apoptosis, and the expression of relevant proteins were measured to assess the effects of GRg1. The results showed that treatment with GRg1 increased cell activity and proliferation, while significantly reducing levels of inflammatory and apoptotic factors compared to the CHF (ADR) group. Moreover, the CHF+ginsenoside Rg1 group exhibited higher levels of Bcl-2 mRNA and protein expression, as well as lower levels of Caspase3 and Bax mRNA and protein expression, compared to the CHF (ADR) group. Notably, the CHF+ginsenoside Rg1 group displayed decreased serum NT-proBNP levels and heart weight/body weight (HW/BW) index. Furthermore, the electrocardiogram of rats in the CHF+ginsenoside Rg1 group resembled that of rats in the control group. Overall, our findings suggested that GRg1 alleviated CHF by inhibiting ERK1/2 protein phosphorylation, thereby inhibiting apoptosis, enhancing cell activity and proliferation, and reducing cardiac inflammatory responses.
Collapse
Affiliation(s)
- Liqi Peng
- First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Shaodong Li
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Huzhi Cai
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Xueliang Chen
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yanping Tang
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
14
|
He QK, Wang XY, Hu W, Cai J, Chen P, Liu MW, Wu YH. Therapeutic potential of Canna edulis RS3-resistant starch in alleviating neuroinflammation and apoptosis in a Parkinson's disease rat model. Heliyon 2024; 10:e38072. [PMID: 39347419 PMCID: PMC11438014 DOI: 10.1016/j.heliyon.2024.e38072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
This study aimed to investigate the effects of Miao medicinal Canna edulis RS3-resistant starch on behavioral performance and substantia nigra neuron apoptosis-related indicators in a rat model of Parkinson's disease (PD). Among the experimental groups, except for the control group, we induced PD rat models by subcutaneous injection of rotenone in the neck and back. After model induction, a 28-day drug intervention was conducted. Various techniques have been employed, including behavioral analysis, Real-time Polymerase Chain Reaction (RT-PCR), western blotting, enzyme-linked immunosorbent assay (ELISA), immunofluorescence, and terminal deoxynucleotidyltransferase-mediated UTP nick-ends. labeling (TUNEL) and Nissl staining to investigate the effect of Canna edulis RS3-resistant starch on the substantia nigra and neuronal apoptosis-related markers in the brains of PD model rats. Our study revealed that Canna edulis RS3, a resistant starch, significantly reduced the climbing time of PD model rats, prolonged their hanging time, lowered the expression levels of the inflammatory factors IL-1β, IL-6, and TNF-α, increased the number of TH-positive neurons in the substantia nigra, and decreased the levels of IL-1β, IL-6, and TNF-α. Furthermore, Canna edulis RS3 elevated the protein expression levels of tyrosine hydroxylase (TH) and Bcl-2 while reducing those of Bax, TLR4, NLRP3,and p-P65, and mitigated apoptosis and morphological changes in dopaminergic neurons in the substantia nigra region. Our results suggest that Canna edulis RS3-resistant starch may offer therapeutic benefits for PD patients with PD by potentially influencing inflammation and apoptosis in the dopaminergic system.
Collapse
Affiliation(s)
- Qian-Kun He
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550001, China
- Department of Neurology, Traditional Chinese Medicine Hospital of Yuxi City, Yuxi, Yunnan, 6527000, China
| | - Xue-Yong Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wei Hu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Jing Cai
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550001, China
| | - Peng Chen
- Department of Basic Clinical Teaching and Research of Traditional Chinese Medicine, School of Basic Medicine, Guizhou University of Chinese Medicine, Guiyang, Guizhou, 550001, China
| | - Ming-Wei Liu
- Department of Emergency Medicine, Dali Bai Autonomous Prefecture People's Hospital, Dali, 671000, China
| | - Yuan-Hua Wu
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550001, China
| |
Collapse
|
15
|
Wang HN, Wang PH, Jiang MR, Zhang JQ, Ma SY, Hu YF, Wang YZ. The processed Euphorbia lathyris L. alleviates the inflammatory injury via regulating LXRα/ABCA1 expression and TLR4 positioning to lipid rafts. Fitoterapia 2024; 177:106111. [PMID: 38971330 DOI: 10.1016/j.fitote.2024.106111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Euphorbia lathyris L. (EL) is a traditional poisonous herbal medicine used to treat dropsy, ascites, amenorrhea, anuria and constipation. Processing to reduce toxicity of EL is essential for its safe and effective application. However, there is little known regarding the molecular mechanism of reducing toxicity after EL processing. This research aimed to screen the differential markers for EL and PEL, explore the differential mechanisms of inflammatory injury induced by EL and processed EL (PEL) to expound the mechanism of alleviating toxicity after EL processing. The results showed that 15 potential biomarkers, mainly belonging to diterpenoids, were screened to distinguish EL from PEL. EL promoted the expressions of TLR4, NLRP3, NF-κB p65, IL-1β and TNF-α, increased lipid rafts abundance and promoted TLR4 positioning to lipid rafts. Meanwhile, EL decreased LXRα and ABCA1 expression, and reduced cholesterol efflux. In contrast to EL, the effects of PEL on these indicators were markedly weakened. In addition, Euphorbia factors L1, L2, and L3 affected LXRα, ABCA1, TLR4, NLRP3, NF-κB p65, TNF-α and IL-1β expression, influenced cholesterol efflux and lipid rafts abundance, and interfered with the colocalization of TLR4 and lipid rafts. The inflammatory injury caused by processed EL was significantly weaker than that caused by crude EL, and reduction of Euphorbia factors L1, L2, and L3 as well as attenuation of inflammatory injury participated in processing-based detoxification of EL. Our results provide valuable insights into the attenuated mechanism of EL processing and will guide future research on the processing mechanism of toxic traditional Chinese medicine.
Collapse
Affiliation(s)
- Hui-Nan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Pei-Hua Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Ming-Rui Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Jing-Qiu Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Si-Yuan Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Yu-Feng Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China
| | - Ying-Zi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| |
Collapse
|
16
|
Li Z, Peng X, Zhu X, Spanos M, Wu L. Traditional Chinese Medicine Monomers Are Potential Candidate Drugs for Cancer-Induced Cardiac Cachexia. Pharmacology 2024:1-13. [PMID: 39250889 DOI: 10.1159/000540915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Cardiovascular diseases are now the second leading cause of death among cancer patients. Heart injury in patients with terminal cancer can lead to significant deterioration of left ventricular morphology and function. This specific heart condition is known as cancer-induced cardiac cachexia (CICC) and is characterized by cardiac dysfunction and wasting. However, an effective pharmacological treatment for CICC remains elusive. SUMMARY The development and progression of CICC are closely related to pathophysiological processes, such as protein degradation, oxidative responses, and inflammation. Traditional Chinese medicine (TCM) monomers offer unique advantages in reversing heart injury, which is the end-stage manifestation of CICC except the regular treatment. This review outlines significant findings related to the impact of eleven TCM monomers, namely Astragaloside IV, Ginsenosides Rb1, Notoginsenoside R1, Salidroside, Tanshinone II A, Astragalus polysaccharides, Salvianolate, Salvianolic acids A and B, and Ginkgolide A and B, on improving heart injury. These TCM monomers are potential therapeutic agents for CICC, each with specific mechanisms that could potentially reverse the pathological processes associated with CICC. Advanced drug delivery strategies, such as nano-delivery systems and exosome-delivery systems, are discussed as targeted administration options for the therapy of CICC. KEY MESSAGE This review summarizes the pathological mechanisms of CICC and explores the pharmacological treatment of TCM monomers that promote anti-inflammation, antioxidation, and pro-survival. It also considers pharmaceutical strategies for administering TCM monomers, highlighting their potential as therapies for CICC.
Collapse
Affiliation(s)
- Zhizheng Li
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xinyi Peng
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xinyi Zhu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Clinic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lan Wu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Basic Medical Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
17
|
Zhang Y, Li S, Fan X, Wu Y. Pretreatment with Indole-3-Propionic Acid Attenuates Lipopolysaccharide-Induced Cardiac Dysfunction and Inflammation Through the AhR/NF-κB/NLRP3 Pathway. J Inflamm Res 2024; 17:5293-5309. [PMID: 39157586 PMCID: PMC11330251 DOI: 10.2147/jir.s466777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024] Open
Abstract
Background Patients with sepsis frequently develop septic cardiomyopathy, which is known to be closely related to excessive inflammatory responses. Indole-3-propionic acid (IPA) is a tryptophan metabolite with anti-inflammatory properties that have been demonstrated in various studies. In this study, we investigated the underlying mechanisms and therapeutic role of IPA in septic cardiomyopathy. Methods To investigate the role of IPA in septic cardiomyopathy, we constructed a lipopolysaccharide (LPS)-induced rat model of septic cardiomyopathy, and treated rats with IPA. Inflammatory factors and the NF-κB/NLRP3 pathway were evaluated in myocardial tissues and cells after IPA treatment using RT-qPCR, ELISA, Western blotting, and immunohistochemistry. To further elucidate the role of the aryl hydrocarbon receptor (AhR), we detected changes in inflammatory mediators and the NF-κB/NLRP3 pathway in in vivo and in vitro models of septic cardiomyopathy, which were treated with the AhR antagonist CH-223191 and/or AhR agonist FICZ. Results IPA supplementation improved cardiac dysfunction in rats with septic cardiomyopathy. IPA reduced inflammatory cytokine release and inhibited NF-κB/NLRP3 signaling pathway in myocardial tissue and in H9c2 cells. CH-223191 impaired the anti-inflammatory effect of IPA in LPS-treated cells, whereas FICZ exerted the same effect as IPA. IPA also exhibited anti-inflammatory activity by binding to the AhR. Our results indicated that IPA attenuated septic cardiomyopathy in rats via AhR/NF-κB/NLRP3 signaling. Conclusion Our study revealed that IPA improved left heart dysfunction and myocardial inflammation caused by sepsis via AhR/NF-κB/NLRP3 signaling, suggesting that IPA is a potential therapy for septic cardiomyopathy.
Collapse
Affiliation(s)
- Yiqiong Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Shanshan Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Xiaojuan Fan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yue Wu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
18
|
Hao Y, Liu R, Wang H, Rui T, Guo J. Research Progress on Mechanisms and Treatment of Sepsis-Induced Myocardial Dysfunction. Int J Gen Med 2024; 17:3387-3393. [PMID: 39130486 PMCID: PMC11313578 DOI: 10.2147/ijgm.s472846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
Sepsis is a syndrome of organ dysfunction caused by a dysregulated immune response to infection, with high morbidity and mortality. At present, there have been many advances in the study of its pathogenesis, especially the cardiac dysfunction caused by sepsis, namely sepsis-induced myocardial dysfunction, SIMD, which has received widespread attention. The mechanisms of SIMD mainly include excessive release of inflammatory mediators, impaired mitochondrial function, autophagy, apoptosis and myocardial dysfunction. This article reviews the pathogenesis of SIMD and elaborates on the progress in its treatment, aiming to improve the prognosis of patients with SIMD and sepsis.
Collapse
Affiliation(s)
- Yujie Hao
- Division of Cardiology, Department of Medicine, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Runmin Liu
- Division of Cardiology, Department of Medicine, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Hao Wang
- Division of Cardiology, Department of Medicine, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Tao Rui
- Division of Cardiology, Department of Medicine, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Junfang Guo
- Division of Cardiology, Department of Medicine, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| |
Collapse
|
19
|
El-Shoura EAM, Hassanein EHM, Taha HH, Shalkami AGS, Hassanein MMH, Ali FEM, Bakr AG. Edaravone and obeticholic acid protect against cisplatin-induced heart toxicity by suppressing oxidative stress and inflammation and modulating Nrf2, TLR4/p38MAPK, and JAK1/STAT3/NF-κB signals. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5649-5662. [PMID: 38285279 PMCID: PMC11329704 DOI: 10.1007/s00210-024-02956-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
Cardiotoxicity is a significant adverse effect of cisplatin (CIS) that necessitates extensive medical care. The current study examines the cardioprotective effects of edaravone (EDV), obeticholic acid (OCA), and their combinations on CIS-induced cardiac damage. Rats were allocated into five groups: the normal control group, the remaining four groups received CIS (7.5 mg/kg, i.p.) as a single dose on the fifth day and were assigned to CIS, OCA (10 mg/kg/day) + CIS, EDV (20 mg/kg/day) + CIS, and the (EDV + OCA) + CIS group. Compared to the CIS-treated group, co-treating rats with EDV, OCA, or their combinations significantly decreased ALP, AST, LDH, CK-MB, and troponin-I serum levels and alleviated histopathological heart abnormalities. Biochemically, EDV, OCA, and EDV plus OCA administration mitigated cardiac oxidative stress as indicated by a marked decrease in heart MDA content with a rise in cardiac antioxidants SOD and GSH associated with upregulating Nrf2, PPARγ, and SIRT1 expression. Besides, it dampened inflammation by decreasing cardiac levels of TNF-α, IL-1β, and IL-6, mediated by suppressing NF-κB, JAK1/STAT3, and TLR4/p38MAPK signal activation. Notably, rats co-administered with EDV plus OCA showed noticeable protection that exceeded that of EDV and OCA alone. In conclusion, our study provided that EDV, OCA, and their combinations effectively attenuated CIS-induced cardiac intoxication by activating Nrf2, PPARγ, and SIRT1 signals and downregulating NF-κB, JAK1/STAT3, and TLR4/p38MAPK signals.
Collapse
Affiliation(s)
- Ehab A M El-Shoura
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hesham H Taha
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Abdel-Gawad S Shalkami
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
- Clinical Pharmacy Program, Faculty of Health Science and Nursing, Al-Rayan Colleges, Medina, Kingdom of Saudi Arabia
| | | | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Adel G Bakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
20
|
Kuang Z, Ge Y, Cao L, Wang X, Liu K, Wang J, Zhu X, Wu M, Li J. Precision Treatment of Anthracycline-Induced Cardiotoxicity: An Updated Review. Curr Treat Options Oncol 2024; 25:1038-1054. [PMID: 39066853 PMCID: PMC11329674 DOI: 10.1007/s11864-024-01238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/30/2024]
Abstract
OPINION STATEMENT Anthracycline (ANT)-induced cardiotoxicity (AIC) is a particularly prominent form of cancer therapy-related cardiovascular toxicity leading to the limitations of ANTs in clinical practice. Even though AIC has drawn particular attention, the best way to treat it is remaining unclear. Updates to AIC therapy have been made possible by recent developments in research on the underlying processes of AIC. We review the current molecular pathways leading to AIC: 1) oxidative stress (OS) including enzymatic-induced and other mechanisms; 2) topoisomerase; 3) inflammatory response; 4) cardiac progenitor cell damage; 5) epigenetic changes; 6) renin-angiotensin-aldosterone system (RAAS) dysregulation. And we systematically discuss current prevention and treatment strategies and novel pathogenesis-based therapies for AIC: 1) dose reduction and change; 2) altering drug delivery methods; 3) antioxidants, dexrezosen, statina, RAAS inhibitors, and hypoglycemic drugs; 4) miRNA, natural phytochemicals, mesenchymal stem cells, and cardiac progenitor cells. We also offer a fresh perspective on the management of AIC by outlining the current dilemmas and challenges associated with its prevention and treatment.
Collapse
Affiliation(s)
- Ziyu Kuang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, 10029, China
| | - Yuansha Ge
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, 10029, China
| | - Luchang Cao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
| | - Xinmiao Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
| | - Kexin Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, 10029, China
| | - Jiaxi Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
| | - Xiaojuan Zhu
- The 3rd affiliated hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| | - Min Wu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China.
| | - Jie Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China.
| |
Collapse
|
21
|
Li T, Zhang Y, Dong R, Bi W, Wang S, Zeng K, Han L. Identification and mechanistic exploration of key anti-inflammatory molecules in American ginseng: Impacts on signal transducer and activator of transcription 3 STAT3 phosphorylation and macrophage polarization. Phytother Res 2024; 38:4307-4320. [PMID: 38973353 DOI: 10.1002/ptr.8277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024]
Abstract
American ginseng (AG) has been reported to have anti-inflammatory effects in many diseases, but the key molecules and mechanisms are unclear. This study aims to evaluate the anti-inflammatory mechanism of AG and identify the key molecules by in vivo and in vitro models. Zebrafish was employed to assess the anti-inflammatory properties of AG and the compounds. Metabolomics was utilized to identify potential anti-inflammatory molecules in AG, while molecular dynamics simulations were conducted to forecast the interaction capabilities of these compounds with inflammatory targets. Additionally, macrophage cell was employed to investigate the anti-inflammatory mechanisms of the key molecules in AG by enzyme-linked immunosorbent assay and western blotting. Seven potential anti-inflammatory molecules were discovered in AG, with ginsenoside Rg1, ginsenoside Rs3 (G-Rs3), and oleanolic acid exhibiting the strongest affinity for signal transducer and activator of transcription 3. These compounds demonstrated inhibitory effects on macrophage migration in zebrafish models and the ability to regulate ROS levels in both zebrafish and macrophages. The cell experiments found that ginsenoside Rg1, ginsenoside Rs3, and oleanolic acid could promote macrophage M2/M1 polarization ratio and inhibit phosphorylation overexpression of signal transducer and activator of transcription 3. This study revealed the key anti-inflammatory molecules and mechanisms of AG, and provided new evidence of anti-inflammatory for the scientific use of AG.
Collapse
Affiliation(s)
- Taiping Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yougang Zhang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Rong Dong
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wenjie Bi
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Songsong Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Liwen Han
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Li T, Wang H, Bi W, Su Y, Xiong Y, Wang S, Han L. Nano-Characterization, Composition Analysis, and Anti-Inflammatory Activity of American-Ginseng-Derived Vesicle-like Nanoparticles. Molecules 2024; 29:3443. [PMID: 39124849 PMCID: PMC11313632 DOI: 10.3390/molecules29153443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Medicinal plant-derived vesicle-like nanoparticles can carry chemical components and exert intercellular activity due to the encapsulation of nanostructures. American ginseng is well known as a traditional herb and is commonly used in clinical decoctions. However, the nano-characteristics and chemical composition of American-ginseng-derived vesicle-like nanoparticles (AGVNs) in decoctions are unclear. In this study, the gradient centrifugation method was used to extract and isolate AGVNs. A metabolomic method based on high-resolution mass spectrometry was established to analyze small molecules loaded in AGVNs. Zebrafish and RAW264.7 cells were employed to investigate the anti-inflammatory effects of AGVNs. The results showed that the particle size of AGVNs was generally 243.6 nm, and the zeta potential was -14.5 mV. AGVNs were found to contain 26 ginsenosides (14 protopanaxadiols, 11 protopanaxatriols, and 1 oleanolic acid). Ginsenoside Rb1 and malonyl-ginsenoside Rb1 tended to be enriched in AGVNs. Moreover, AGVNs were found to exert anti-inflammatory effects by reducing macrophage migration in zebrafish and regulating inflammatory factor (NO, TNF-α, IL-6, IL-10) secretion in RAW 264.7 cells. The characterization and analysis of AGVNs provide references and data that support the development of nanoscale anti-inflammatory substances from medicinal plants.
Collapse
Affiliation(s)
- Taiping Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250017, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Huan Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250017, China
| | - Wenjie Bi
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250017, China
| | - Yonghui Su
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250017, China
| | - Yongai Xiong
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Songsong Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250017, China
| | - Liwen Han
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250017, China
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40292, USA
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijng 100700, China
| |
Collapse
|
23
|
Zhong K, Huang Y, Chen R, Pan Q, Li J, Xi X. The protective effect of ginsenoside Rg1 against sepsis-induced lung injury through PI3K-Akt pathway: insights from molecular dynamics simulation and experimental validation. Sci Rep 2024; 14:16071. [PMID: 38992150 PMCID: PMC11239675 DOI: 10.1038/s41598-024-66908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024] Open
Abstract
Sepsis-induced acute lung injury (SALI) poses a significant threat with high incidence and mortality rates. Ginsenoside Rg1 (GRg1), derived from Ginseng in traditional Chinese medicine, has been found to reduce inflammation and protect lung epithelial cells against tissue damage. However, the specific roles and mechanisms by which GRg1 mitigates SALI have yet to be fully elucidated. In this context, we employed a relevant SALI mouse model, alongside network pharmacology, molecular docking, and molecular dynamics simulation to pinpoint GRg1's action targets, complemented by in vitro assays to explore the underlying mechanisms. Our research shows that GRg1 alleviates CLP-induced SALI, decreasing lung tissue damage and levels of serum proinflammatory factor IL-6, TNF-α, and IL-1β, also enhancing the survival rate of CLP mice. A total of 116 common targets between GRg1 and ALI, with specific core targets including AKT1, VEGFA, SRC, IGF1, ESR1, STAT3, and ALB. Further in vitro experiments assessed GRg1's intervention effects on MLE-12 cells exposed to LPS, with qRT-PCR analysis and molecular dynamics simulations confirming AKT1 as the key target with the favorable binding activity for GRg1. Western blot results indicated that GRg1 increased the Bcl-2/Bax protein expression ratio to reduce apoptosis and decreased the high expression of cleaved caspase-3 in LPS-induced MLE-12 cells. More results showed significant increases in the phosphorylation of PI3K and AKT1. Flow cytometric analysis using PI and Annexin-V assays further verified that GRg1 decreased the apoptosis rate in LPS-stimulated MLE-12 cells (from 14.85 to 6.54%, p < 0.05). The employment of the AKT1 inhibitor LY294002 confirmed these trends, indicating that AKT1's inhibition negates GRg1's protective effects on LPS-stimulated MLE-12 cells. In conclusion, our research highlights GRg1's potential as an effective adjunct therapy for SALI, primarily by inhibiting apoptosis in alveolar epithelial cells and reducing pro-inflammatory cytokine secretion, thus significantly enhancing the survival rates of CLP mice. These beneficial effects are mediated through targeting AKT1 and activating the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Kaiqiang Zhong
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yingui Huang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Rui Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Research On Emergency in TCM, Guangzhou, Guangdong, China
| | - Qiusha Pan
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jun Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, China.
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Xiaotu Xi
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Research On Emergency in TCM, Guangzhou, Guangdong, China.
| |
Collapse
|
24
|
Pula W, Ganugula R, Esposito E, Ravi Kumar MNV, Arora M. Engineered urolithin A-laden functional polymer-lipid hybrid nanoparticles prevent cisplatin-induced proximal tubular injury in vitro. Eur J Pharm Biopharm 2024; 200:114334. [PMID: 38768764 PMCID: PMC11262884 DOI: 10.1016/j.ejpb.2024.114334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Functional polymer-lipid hybrid nanoparticles (H-NPs) are a promising class of nanocarriers that combine the benefits of polymer and lipid nanoparticles, offering biocompatibility, structural stability, high loading capacity, and, most importantly, superior surface functionalization. Here, we report the synthesis and design of highly functional H-NPs with specificity toward the transferrin receptor (TfR), using a small molecule ligand, gambogic acid (GA). A fluorescence study revealed the molecular orientation of H-NPs, where the lipid-dense core is surrounded by a polymer exterior, functionalized with GA. Urolithin A, an immunomodulator and anti-inflammatory agent, served as a model drug-like compound to prepare H-NPs via traditional emulsion-based techniques, where H-NPs led to smaller particles (132 nm) and superior entrapment efficiencies (70 % at 10 % drug loading) compared to GA-conjugated polymeric nanoparticles (P-NPs) (157 nm and 52 % entrapment efficiency) and solid lipid nanoparticles (L-NPs) (186 nm and 29 % entrapment efficiency). H-NPs showed superior intracellular accumulation compared to individual NPs using human small intestinal epithelial (FHs 74) cells. The in vitro efficacy was demonstrated by flow cytometry analysis, in which UA-laden H-NPs showed excellent anti-inflammatory properties in cisplatin-induced injury in healthy human proximal tubular cell (HK2) model by decreasing the TLR4, NF-κβ, and IL-β expression. This preliminary work highlights the potential of H-NPs as a novel functional polymer-lipid drug delivery system, establishing the foundation for future research on its therapeutic potential in addressing chemotherapy-induced acute kidney injury in cancer patients.
Collapse
Affiliation(s)
- W Pula
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara, 19-44121 Ferrara, Italy; The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL 35401, United States
| | - R Ganugula
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL 35401, United States; Division of Translational Science and Medicine, College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL 35401, United States; Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35401, United States; Department of Biological Sciences, The University of Alabama, SEC 1325, Tuscaloosa, AL 35487, United States
| | - E Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara, 19-44121 Ferrara, Italy
| | - M N V Ravi Kumar
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL 35401, United States; Division of Translational Science and Medicine, College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL 35401, United States; Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35401, United States; Department of Biological Sciences, The University of Alabama, SEC 1325, Tuscaloosa, AL 35487, United States; Chemical and Biological Engineering, University of Alabama, SEC 3448, Tuscaloosa, AL 35487, United States; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - M Arora
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL 35401, United States; Division of Translational Science and Medicine, College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL 35401, United States; Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35401, United States; Department of Biological Sciences, The University of Alabama, SEC 1325, Tuscaloosa, AL 35487, United States.
| |
Collapse
|
25
|
Zhou Z, Hu C, Cui B, You L, An R, Liang K, Wang X. Ginsenoside Rg1 Suppresses Pyroptosis via the NF-κB/NLRP3/GSDMD Pathway to Alleviate Chronic Atrophic Gastritis In Vitro and In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38855973 DOI: 10.1021/acs.jafc.4c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Chronic atrophic gastritis (CAG) is characterized by the loss of gastric glandular cells, which are replaced by the intestinal-type epithelium and fibrous tissue. Ginsenoside Rg1 (Rg1) is the prevalent ginsenoside in ginseng, with a variety of biological activities, and is usually added to functional foods. As a novel form of programmed cell death (PCD), pyroptosis has received substantial attention in recent years. Despite the numerous beneficial effects, the curative impact of Rg1 on CAG and whether its putative mechanism is partially via inhibiting pyroptosis still remain unknown. To address this gap, we conducted a study to explore the mechanisms underlying the potential anti-CAG effect of Rg1. We constructed a CAG rat model using a multifactor comprehensive method. A cellular model was developed by using 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) combined with Nigericin as a stimulus applied to GES-1 cells. After Rg1 intervention, the levels of inflammatory indicators in the gastric tissue/cell supernatant were reduced. Rg1 relieved oxidative stress via reducing the myeloperoxidase (MPO) and malonaldehyde (MDA) levels in the gastric tissue and increasing the level of superoxide dismutase (SOD). Additionally, Rg1 improved MNNG+Nigericin-induced pyroptosis in the morphology and plasma membrane of the cells. Further research supported novel evidence for Rg1 in the regulation of the NF-κB/NLRP3/GSDMD pathway and the resulting pyroptosis underlying its therapeutic effect. Moreover, by overexpression and knockout of GSDMD in GES-1 cells, our findings suggested that GSDMD might serve as the key target in the effect of Rg1 on suppressing pyroptosis. All of these offer a potential theoretical foundation for applying Rg1 in ameliorating CAG.
Collapse
Affiliation(s)
- Zehua Zhou
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cheng Hu
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bo Cui
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lisha You
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui An
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kun Liang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinhong Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
26
|
Sun M, Zhan H, Long X, Alsayed AM, Wang Z, Meng F, Wang G, Mao J, Liao Z, Chen M. Dehydrocostus lactone alleviates irinotecan-induced intestinal mucositis by blocking TLR4/MD2 complex formation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155371. [PMID: 38518649 DOI: 10.1016/j.phymed.2024.155371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Irinotecan (CPT-11) is used as chemotherapeutic drug for treatment of colorectal cancer. However, without satisfactory treatments, its gastrointestinal toxicities such as diarrhea and intestinal inflammation severely restrained its clinical application. Roots of Aucklandia lappa Decne. are used as traditional Chinese medicine to relieve gastrointestinal dysfunction and dehydrocostus lactone (DHL) is one of its main active components. Nevertheless, the efficacy and mechanism of DHL against intestinal mucositis remains unclear. PURPOSE The present study aimed to investigate the protective effects of DHL on CPT-11-induced intestinal mucositis and its underlying mechanisms. METHODS The protective effect of DHL was investigated in CPT-11-induced mice and lipopolysaccharide (LPS)+CPT-11 induced THP-1 macrophages. Body weight, diarrhea score, survival rate, colon length, and histopathological changes in mice colon and jejunum were analyzed to evaluate the protective effect of DHL in vivo. And DHL on reducing inflammatory response and regulating TLR4/NF-κB/NLRP3 pathway in vivo and in vitro were explored. Moreover, DHL on the interaction between TLR4 and MD2 was investigated. And silencing TLR4 targeted by siRNA was performed to validate the mechanisms of DHL on regulating the inflammation. RESULTS DHL prevented CPT-11-induced intestinal damage, represented by reducing weight loss, diarrhea score, mortality rate and the shortening of the colon. Histological analysis confirmed that DHL prevented intestinal epithelial injury and improved the intestinal barrier function in CPT-11 induced mice. Besides, DHL significantly downregulated the level of inflammatory cytokines by inhibiting TLR4/NF-κB/NLRP3 signaling pathway in CPT-11-induced mice and LPS+CPT-11-induced THP-1 macrophages. In addition, DHL blocked TLR4/MD2 complex formation. Molecular docking combined with SIP and DARTS assay showed that DHL could bind to TLR4/MD2 and occludes the hydrophobic pocket of MD2. Furthermore, Silencing TLR4 abrogated the effect of DHL on LPS+CPT-11 induced inflammatory response in THP-1 macrophages. Additionally, DHL ameliorate the CPT-11-induced intestinal mucositis without affecting the anti-tumor efficacy of CPT-11 in the tumor xenograft mice. CONCLUSION This study found that DHL exhibited the anti-inflammatory effects in CPT-11-induced intestinal mucositis by inhibiting the formation of TLR4/MD2 complex and then regulation of NF-κB/NLRP3 signaling pathway. DHL is potentially served as a novel strategy of combined medication with CPT-11.
Collapse
Affiliation(s)
- Miaomiao Sun
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Honghong Zhan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoliang Long
- School of Life Sciences, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, TAAHC-SWU Medicinal Plant Joint R&D Centre, Southwest University, Chongqing 400715, China
| | - Ali M Alsayed
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhe Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Fancheng Meng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Guowei Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jingxin Mao
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Zhihua Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Min Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China.
| |
Collapse
|
27
|
Wang J, Zou J, Shi Y, Zeng N, Guo D, Wang H, Zhao C, Luan F, Zhang X, Sun J. Traditional Chinese medicine and mitophagy: A novel approach for cardiovascular disease management. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155472. [PMID: 38461630 DOI: 10.1016/j.phymed.2024.155472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide, imposing an enormous economic burden on individuals and human society. Laboratory studies have identified several drugs that target mitophagy for the prevention and treatment of CVD. Only a few of these drugs have been successful in clinical trials, and most studies have been limited to animal and cellular models. Furthermore, conventional drugs used to treat CVD, such as antiplatelet agents, statins, and diuretics, often result in adverse effects on patients' cardiovascular, metabolic, and respiratory systems. In contrast, traditional Chinese medicine (TCM) has gained significant attention for its unique theoretical basis and clinical efficacy in treating CVD. PURPOSE This paper systematically summarizes all the herbal compounds, extracts, and active monomers used to target mitophagy for the treatment of CVD in the last five years. It provides valuable information for researchers in the field of basic cardiovascular research, pharmacologists, and clinicians developing herbal medicines with fewer side effects, as well as a useful reference for future mitophagy research. METHODS The search terms "cardiovascular disease," "mitophagy," "herbal preparations," "active monomers," and "cardiac disease pathogenesis" in combination with "natural products" and "diseases" were used to search for studies published in the past five years until January 2024. RESULTS Studies have shown that mitophagy plays a significant role in the progression and development of CVD, such as atherosclerosis (AS), heart failure (HF), myocardial infarction (MI), myocardial ischemia/reperfusion injury (MI/RI), cardiac hypertrophy, cardiomyopathy, and arrhythmia. Herbal compound preparations, crude extracts, and active monomers have shown potential as effective treatments for these conditions. These substances protect cardiomyocytes by inducing mitophagy, scavenging damaged mitochondria, and maintaining mitochondrial homeostasis. They display notable efficacy in combating CVD. CONCLUSION TCM (including herbal compound preparations, extracts, and active monomers) can treat CVD through various pharmacological mechanisms and signaling pathways by inducing mitophagy. They represent a hotspot for future cardiovascular basic research and a promising candidate for the development of future cardiovascular drugs with fewer side effects and better therapeutic efficacy.
Collapse
Affiliation(s)
- Jinhui Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - He Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Chongbo Zhao
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
28
|
Zou Y, Wang Y, Zhou W, Pei J. Banxia Xiexin decoction combined with 5-ASA protects against CPT-11-induced intestinal dysfunction in rats via inhibiting TLR4/NF-κB signaling pathway. Immun Inflamm Dis 2024; 12:e1208. [PMID: 38860759 PMCID: PMC11165681 DOI: 10.1002/iid3.1208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/24/2023] [Accepted: 02/17/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Banxia Xiexin decoction (BXD) can control irinotecan (CPT-11)-caused delayed diarrhea, but the corresponding mechanism remains undefined. AIMS This paper aimed to uncover the mechanism of BXD in regulating CPT-11-caused delayed diarrhea. MATERIALS & METHODS Sprague-Dawley (SD) rats were assigned into the control, model, BXD low-dose (BXD-L, 5 g/kg), BXD medium-dose (BXD-M, 10 g/kg), BXD high-dose (BXD-H, 15 g/kg), 5-aminosalicylic acid (5-ASA, 10 mL/kg), and BXD-M + 5-ASA groups. Rats were injected intraperitoneally with 150 mg/kg CPT-11 at Day 4 and Day 5 to induce delayed diarrhea, and later treated with various doses (low, medium, and high) of BXD and 5-ASA for 9 days, except for rats in control group. The body weight of rats was measured. The rat colon tissue injury, inflammatory cytokine levels, and the activation of toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) signaling pathway were detected. RESULTS BXD (5, 10, or 15 g/kg) or 5-ASA (10 mL/kg) alleviated body weight loss and colon tissue injury, decreased levels of inflammatory cytokines, and inactivated TLR4/NF-κB signaling pathway in CPT-11-induced model rats. BXD at 10 g/kg (the optimal concentration) could better treat CPT-11-induced intestinal dysfunction, as evidenced by the resulting approximately 50% reduction on injury score of model rats. Moreover, BXD-M (10 g/kg) synergistic with 5-ASA (10 mL/kg) further strengthened the inhibition on rat body weight loss, colon tissue injury, inflammatory cytokine levels, and TLR4/NF-κB signaling pathway. CONCLUSION To sum up, BXD has a protective effect against CPT-11-induced intestinal dysfunction by inhibiting inflammation through inactivation TLR4/NF-κB signaling pathway. In particular, the combined use of BXD and 5-ASA holds great promise for treating CPT-11-induced delayed diarrhea.
Collapse
Affiliation(s)
- Yuanyuan Zou
- Department of GastroenterologyXiaoshan Hospital of Traditional Chinese MedicineHangzhouChina
| | - Yakun Wang
- Department of Critical Care MedicineHangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical UniversityHangzhouChina
| | - Wenying Zhou
- Department of GastroenterologyXiaoshan Hospital of Traditional Chinese MedicineHangzhouChina
| | - Jingbo Pei
- Department of GastroenterologyXiaoshan Hospital of Traditional Chinese MedicineHangzhouChina
| |
Collapse
|
29
|
Qin J, Yang Q, Wang Y, Shi M, Zhao X, Zhou Y. The role of pyroptosis in heart failure and related traditional chinese medicine treatments. Front Pharmacol 2024; 15:1377359. [PMID: 38868667 PMCID: PMC11168204 DOI: 10.3389/fphar.2024.1377359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/09/2024] [Indexed: 06/14/2024] Open
Abstract
Pyroptosis is a type of programmed cell death that is mediated by both typical and atypical pathways and ultimately leads to the lysis and rupture of cell membranes and the release of proinflammatory factors, triggering an intense inflammatory response. Heart failure (HF) is a serious and terminal stage of various heart diseases. Myocardial hypertrophy, myocardial fibrosis, ventricular remodeling, oxidative stress, the inflammatory response and cardiomyocyte ionic disorders caused by various cardiac diseases are all risk factors for and aggravate HF. Numerous studies have shown that pyroptosis can induce and exacerbate these reactions, causing progression to HF. Therefore, targeting pyroptosis is a promising strategy to treat HF. This paper summarizes the role of pyroptosis in the development of HF and the underlying mechanism involved. Recent research progress on the ability of traditional Chinese medicine (TCM) extracts and formulas to inhibit pyroptosis and treat HF was summarized, and some traditional Chinese medicine extracts and formulas can alleviate different types of HF, including heart failure with preserved ejection fraction (HFpEF), heart failure with reduced ejection fraction (HFrEF), and heart failure with midrange ejection fraction (HFmrEF), by targeting pyroptosis. These findings may provide new ideas and evidence for the treatment or adjuvant treatment of HF by targeting pyroptosis.
Collapse
Affiliation(s)
- Jie Qin
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Qianhe Yang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yan Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Mengdi Shi
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xin Zhao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yabin Zhou
- Department of Cardiovascular Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
30
|
Wang JB, Du MW, Zheng Y. Effect of ginsenoside Rg1 on hematopoietic stem cells in treating aplastic anemia in mice via MAPK pathway. World J Stem Cells 2024; 16:591-603. [PMID: 38817329 PMCID: PMC11135254 DOI: 10.4252/wjsc.v16.i5.591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/20/2024] [Accepted: 04/02/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Aplastic anemia (AA) presents a significant clinical challenge as a life-threatening condition due to failure to produce essential blood cells, with the current therapeutic options being notably limited. AIM To assess the therapeutic potential of ginsenoside Rg1 on AA, specifically its protective effects, while elucidating the mechanism at play. METHODS We employed a model of myelosuppression induced by cyclophosphamide (CTX) in C57 mice, followed by administration of ginsenoside Rg1 over 13 d. The investigation included examining the bone marrow, thymus and spleen for pathological changes via hematoxylin-eosin staining. Moreover, orbital blood of mice was collected for blood routine examinations. Flow cytometry was employed to identify the impact of ginsenoside Rg1 on cell apoptosis and cycle in the bone marrow of AA mice. Additionally, the study further evaluated cytokine levels with enzyme-linked immunosorbent assay and analyzed the expression of key proteins in the MAPK signaling pathway via western blot. RESULTS Administration of CTX led to significant damage to the bone marrow's structural integrity and a reduction in hematopoietic cells, establishing a model of AA. Ginsenoside Rg1 successfully reversed hematopoietic dysfunction in AA mice. In comparison to the AA group, ginsenoside Rg1 provided relief by reducing the induction of cell apoptosis and inflammation factors caused by CTX. Furthermore, it helped alleviate the blockade in the cell cycle. Treatment with ginsenoside Rg1 significantly alleviated myelosuppression in mice by inhibiting the MAPK signaling pathway. CONCLUSION This study suggested that ginsenoside Rg1 addresses AA by alleviating myelosuppression, primarily through modulating the MAPK signaling pathway, which paves the way for a novel therapeutic strategy in treating AA, highlighting the potential of ginsenoside Rg1 as a beneficial intervention.
Collapse
Affiliation(s)
- Jin-Bo Wang
- Internal Medicine of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| | - Ming-Wei Du
- Institute of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, China
| | - Yan Zheng
- Department of Hepatic, The Xixi Hospital of Hangzhou Affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou 310023, Zhejiang Province, China.
| |
Collapse
|
31
|
Kang J, Zhou Y, Xiong Q, Dong X. Trigeminal nerve electrical stimulation attenuates early traumatic brain injury through the TLR4/NF-κB/NLRP3 signaling pathway mediated by orexin-A/OX1R system. Aging (Albany NY) 2024; 16:7946-7960. [PMID: 38713160 PMCID: PMC11131994 DOI: 10.18632/aging.205795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/09/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a significant contributor to global mortality and disability, and emerging evidence indicates that trigeminal nerve electrical stimulation (TNS) is a promising therapeutic intervention for neurological impairment following TBI. However, the precise mechanisms underlying the neuroprotective effects of TNS in TBI are poorly understood. Thus, the objective of this study was to investigate the potential involvement of the orexin-A (OX-A)/orexin receptor 1 (OX1R) mediated TLR4/NF-κB/NLRP3 signaling pathway in the neuroprotective effects of TNS in rats with TBI. METHODS Sprague-Dawley rats were randomly assigned to four groups: sham, TBI, TBI+TNS+SB334867, and TBI+TNS. TBI was induced using a modified Feeney's method, and subsequent behavioral assessments were conducted to evaluate neurological function. The trigeminal nerve trunk was isolated, and TNS was administered following the establishment of the TBI model. The levels of neuroinflammation, brain tissue damage, and proteins associated with the OX1R/TLR4/NF-κB/NLRP3 signaling pathway were assessed using hematoxylin-eosin staining, Nissl staining, western blot analysis, quantitative real-time polymerase chain reaction, and immunofluorescence techniques. RESULTS The findings of our study indicate that TNS effectively mitigated tissue damage, reduced brain edema, and alleviated neurological deficits in rats with TBI. Furthermore, TNS demonstrated the ability to attenuate neuroinflammation levels and inhibit the expression of proteins associated with the TLR4/NF-κB/NLRP3 signaling pathway. However, it is important to note that the aforementioned effects of TNS were reversible upon intracerebroventricular injection of an OX1R antagonist. CONCLUSION TNS may prevent brain damage and relieve neurological deficits after a TBI by inhibiting inflammation, possibly via the TLR4/NF-κB/NLRP3 signaling pathway mediated by OX-A/OX1R.
Collapse
Affiliation(s)
- Junwei Kang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Yifan Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Qi Xiong
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Xiaoyang Dong
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| |
Collapse
|
32
|
You J, Li Y, Chong W. The role and therapeutic potential of SIRTs in sepsis. Front Immunol 2024; 15:1394925. [PMID: 38690282 PMCID: PMC11058839 DOI: 10.3389/fimmu.2024.1394925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by the host's dysfunctional response to infection. Abnormal activation of the immune system and disturbance of energy metabolism play a key role in the development of sepsis. In recent years, the Sirtuins (SIRTs) family has been found to play an important role in the pathogenesis of sepsis. SIRTs, as a class of histone deacetylases (HDACs), are widely involved in cellular inflammation regulation, energy metabolism and oxidative stress. The effects of SIRTs on immune cells are mainly reflected in the regulation of inflammatory pathways. This regulation helps balance the inflammatory response and may lessen cell damage and organ dysfunction in sepsis. In terms of energy metabolism, SIRTs can play a role in immunophenotypic transformation by regulating cell metabolism, improve mitochondrial function, increase energy production, and maintain cell energy balance. SIRTs also regulate the production of reactive oxygen species (ROS), protecting cells from oxidative stress damage by activating antioxidant defense pathways and maintaining a balance between oxidants and reducing agents. Current studies have shown that several potential drugs, such as Resveratrol and melatonin, can enhance the activity of SIRT. It can help to reduce inflammatory response, improve energy metabolism and reduce oxidative stress, showing potential clinical application prospects for the treatment of sepsis. This review focuses on the regulation of SIRT on inflammatory response, energy metabolism and oxidative stress of immune cells, as well as its important influence on multiple organ dysfunction in sepsis, and discusses and summarizes the effects of related drugs and compounds on reducing multiple organ damage in sepsis through the pathway involving SIRTs. SIRTs may become a new target for the treatment of sepsis and its resulting organ dysfunction, providing new ideas and possibilities for the treatment of this life-threatening disease.
Collapse
Affiliation(s)
- Jiaqi You
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| | - Yilin Li
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wei Chong
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
33
|
Liu R, Wang Q, Li Y, Wan R, Yang P, Yang D, Tang J, Lu J. Ginsenoside Rg1 Alleviates Sepsis-Induced Acute Lung Injury by Reducing FBXO3 Stability in an m 6A-Dependent Manner to Activate PGC-1α/Nrf2 Signaling Pathway. AAPS J 2024; 26:47. [PMID: 38622374 DOI: 10.1208/s12248-024-00919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Sepsis-induced acute lung injury (ALI) is one of the serious life-threatening complications of sepsis and is pathologically associated with mitochondrial dysfunction. Ginsenoside Rg1 has good therapeutic effects on ALI. Herein, the pharmacological effects of Rg1 in sepsis-induced ALI were investigated. METHODS Sepsis-induced ALI models were established by CLP operation and LPS treatment. HE staining was adopted to analyze lung pathological changes. The expression and secretion of cytokines were measured by RT-qPCR and ELISA. Cell viability and apoptosis were assessed by MTT assay, flow cytometry and TUNEL staining. ROS level and mitochondrial membrane potential (MMP) were analyzed using DHE probe and JC-1 staining, respectively. FBXO3 m6A level was assessed using MeRIP assay. The interactions between FBXO3, YTHDF1, and PGC-1α were analyzed by Co-IP or RIP. RESULTS Rg1 administration ameliorated LPS-induced epithelial cell inflammation, apoptosis, and mitochondrial dysfunction in a dose-dependent manner. Mechanically, Rg1 reduced PGC-1α ubiquitination modification level by inhibiting FBXO3 expression m6A-YTHDF1 dependently. As expected, Rg1's mitigative effect on LPS-induced inflammation, apoptosis and mitochondrial dysfunction in lung epithelial cells was abolished by FBXO3 overexpression. Moreover, FBXO3 upregulation eliminated the restoring effect of Rg1 on CLP-induced lung injury in rats. CONCLUSION Rg1 activated PGC-1α/Nrf2 signaling pathway by reducing FBXO3 stability in an m6A-YTHDF1-dependent manner to improve mitochondrial function in lung epithelial cells during sepsis-induced ALI progression.
Collapse
Affiliation(s)
- Rong Liu
- Department of Geriatric Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Yunnan Geriatric Medical Center, No.295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan Province, People's Republic of China.
| | - Qiang Wang
- Department of Geriatric Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Yunnan Geriatric Medical Center, No.295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan Province, People's Republic of China
| | - Yao Li
- Department of Stomatology, The First People's Hospital of Yunnan Province, Kunming, 650034, Yunnan Province, People's Republic of China
| | - Ruixue Wan
- Department of Reproductive Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, People's Republic of China
| | - Ping Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, Yunnan Province, People's Republic of China
| | - Dexing Yang
- Department of Emergency Room of Internal, The First People's Hospital of Yunnan Province, Kunming, 650034, Yunnan Province, People's Republic of China
| | - Jiefu Tang
- Department of Geriatric Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Yunnan Geriatric Medical Center, No.295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan Province, People's Republic of China
| | - Jiafei Lu
- Department of Geriatric Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Yunnan Geriatric Medical Center, No.295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan Province, People's Republic of China
| |
Collapse
|
34
|
Li ZY, Dai YX, Wu ZM, Li G, Pu PM, Hu CW, Zhou LY, Zhu K, Shu B, Wang YJ, Cui XJ, Yao M. Network pharmacology analysis and animal experiment validation of neuroinflammation inhibition by total ginsenoside in treating CSM. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155073. [PMID: 38417244 DOI: 10.1016/j.phymed.2023.155073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND Cervical spondylotic myelopathy (CSM) is a degenerative pathology that affects both upper and lower extremity mobility and sensory function, causing significant pressure on patients and society. Prior research has suggested that ginsenosides may have neuroprotective properties in central nervous system diseases. However, the efficacy and mechanism of ginsenosides for CSM have yet to be investigated. PURPOSE This study aims to analyze the composition of ginsenosides using UPLC-MS, identify the underlying mechanism of ginsenosides in treating CSM using network pharmacology, and subsequently confirm the efficacy and mechanism of ginsenosides in rats with chronic spinal cord compression. METHODS UPLC-Q-TOF-MS was utilized to obtain mass spectrum data of ginsenoside samples. The chemical constituents of the samples were analyzed by consulting literature reports and relevant databases. Ginsenoside and CSM targets were obtained from the TCMSP, OMIM, and GeneCards databases. GO and KEGG analyses were conducted, and a visualization network of ginsenosides-compounds-key targets-pathways-CSM was constructed, along with molecular docking of key bioactive compounds and targets, to identify the signaling pathways and proteins associated with the therapeutic effects of ginsenosides on CSM. Chronic spinal cord compression rats were intraperitoneally injected with ginsenosides (50 mg/kg and 150 mg/kg) and methylprednisolone for 28 days, and motor function was assessed to investigate the therapeutic efficacy of ginsenosides for CSM. The expression of proteins associated with TNF, IL-17, TLR4/MyD88/NF-κB, and NLRP3 signaling pathways was assessed by immunofluorescence staining and western blotting. RESULTS Using UPLC-Q-TOF-MS, 37 compounds were identified from ginsenoside samples. Furthermore, ginsenosides-compounds-key targets-pathways-CSM visualization network indicated that ginsenosides may modulate the PI3K-Akt signaling pathway, TNF signaling pathway, MAPK signaling pathway, IL-17 signaling pathway, Toll-like receptor signaling pathway and Apoptosis by targeting AKT1, TNF, MAPK1, CASP3, IL6, and IL1B, exerting a therapeutic effect on CSM. By attenuating neuroinflammation through the TNF, IL-17, TLR4/MyD88/NF-κB, and MAPK signaling pathways, ginsenosides restored the motor function of rats with CSM, and ginsenosides 150 mg/kg showed better effect. This was achieved by reducing the phosphorylation of NF-κB and the activation of the NLRP3 inflammasome. CONCLUSIONS The results of network pharmacology indicate that ginsenosides can inhibit neuroinflammation resulting from spinal cord compression through multiple pathways and targets. This finding was validated through in vivo tests, which demonstrated that ginsenosides can reduce neuroinflammation by inhibiting NLRP3 inflammasomes via multiple signaling pathways, additionally, it should be noted that 150 mg/kg was a relatively superior dose. This study is the first to verify the intrinsic molecular mechanism of ginsenosides in treating CSM by combining pharmacokinetics, network pharmacology, and animal experiments. The findings can provide evidence for subsequent clinical research and drug development.
Collapse
Affiliation(s)
- Zhuo-Yao Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Xiang Dai
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zi-Ming Wu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gan Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei-Min Pu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cai-Wei Hu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Long-Yun Zhou
- Department of Rehabilitation Medicine, The First Aliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ke Zhu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing Shu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jun Wang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
35
|
Liu Y, Cheng X, Qi B, Wang Y, Zheng Y, Liang X, Chang Y, Ning M, Gao W, Li T. Aucubin protects against myocardial ischemia-reperfusion injury by regulating STAT3/NF-κB/HMGB-1 pathway. Int J Cardiol 2024; 400:131800. [PMID: 38244891 DOI: 10.1016/j.ijcard.2024.131800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/24/2023] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
The main characteristics of the myocardial ischemia/reperfusion injury (MI/RI) are oxidative stress, apoptosis, and an inflammatory response. Aucubin (AU) is an iridoid glycoside that possesses various biological properties and has been discovered to demonstrate antioxidant and anti-inflammatory impacts in pathological processes, such as ischemia-reperfusion. The objective of this research was to investigate if AU treatment could mitigate myocardial inflammation and apoptosis caused by ischemia/reperfusion (I/R) in both laboratory and animal models, and to elucidate its underlying mechanism. By ligating the coronary artery on the left anterior descending side, a successful MI/RI rat model was created. Additionally, H9C2 cells were subjected to hypoxia/reoxygenation (H/R) in order to imitate the injury caused by ischemia/reperfusion (I/R). Furthermore, various concentrations of AU were administered to H9C2 cells or rats before H/R stimulation or myocardial I/R surgery, respectively. In vitro, the assessment was conducted on cardiac function, inflammatory markers, and myocardial pathology. In vivo, we examined the viability of cells, as well as factors related to apoptosis and oxidative stress. Furthermore, the presence of proteins belonging to the STAT3/NF-κB/HMGB1 signaling pathway was observed both in vivo and in vitro. AU effectively improved cardiomyocyte injury caused by H/R and myocardial injury caused by I/R. Furthermore, AU suppressed the production of reactive oxygen species and inflammatory molecules (TNF-alpha, IL-1β, and IL-6) and proteins associated with cell death (caspase-3 and Bax), while enhancing the levels of anti-inflammatory agents (IL-10) and the anti-apoptotic protein Bcl-2.AU mechanistically affected the phosphorylation of STAT3 at the Ser727 site and Tyr705 following H/R by modulating the signaling pathway involving signal transducer and activator of transcription 3 (STAT3)/nuclear factor-κB (NF-κB)/high mobility group box 1 (HMGB1), while also suppressing the nuclear translocation of NF-κB p65 and HMGB1 exonucleation. In conclusion, the use of AU treatment might offer protection against myocardial infarction and injury by reducing oxidative stress, suppressing apoptosis, and mitigating inflammation. The regulation of the STAT3/NF-κB/HMGB-1 pathway may contribute to this phenomenon by affecting STAT3 phosphorylation and controlling NF-κB and HMGB-1 translocation. Contributes to identifying possible objectives for myocardial ischemia/reperfusion damage.
Collapse
Affiliation(s)
- Yanwu Liu
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; School of Medicine, Nankai University, Tianjin 300071, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China..
| | - Xian Cheng
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; School of Medicine, Nankai University, Tianjin 300071, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Bingcai Qi
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; School of Medicine, Nankai University, Tianjin 300071, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Yuchao Wang
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; School of Medicine, Nankai University, Tianjin 300071, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Yue Zheng
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; School of Medicine, Nankai University, Tianjin 300071, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Xiaoyu Liang
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Yun Chang
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Meng Ning
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Wenqing Gao
- Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China..
| | - Tong Li
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China; Department of Heart Center, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China; School of Medicine, Nankai University, Tianjin 300071, China; Nankai University Affiliated Third Center Hospital, No. 83, Jintang Road, Hedong District, Tianjin 300170, China; Tianjin ECMO Treatment and Training Base, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin, China..
| |
Collapse
|
36
|
Chen B, Li YF, Fang Z, Cai WY, Tian ZQ, Li D, Wang ZM. Epigallocatechin-3-gallate protects sepsis-induced myocardial dysfunction by inhibiting the nuclear factor-κB signaling pathway. Heliyon 2024; 10:e27163. [PMID: 38449632 PMCID: PMC10915574 DOI: 10.1016/j.heliyon.2024.e27163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Sepsis-induced myocardial dysfunction (SIMD) has become one of the most lethal complications of sepsis, while the treatment was limited by a shortage of pertinent drugs. Epigallocatechin-3-gallate (EGCG) is the highest content of active substances in green tea, and its application in cardiovascular diseases has broad prospects. This study was conducted to test the hypothesis that EGCG was able to inhibit lipopolysaccharide (LPS) induced myocardial dysfunction and investigate the underlying molecular mechanisms. The cardiac systolic function was assessed by echocardiography. The cardiomyocyte apoptosis was determined by TUNEL staining. The expression of inflammatory factors and apoptosis-related protein, cardiac markers were examined by Western Blot and qRT-PCR. EGCG effectively improve LPS-induced cardiac function damage, enhance left ventricular systolic function, and restore myocardial cell vitality. It can effectively inhibit the upregulation of TLR4 expression induced by LPS and inhibit IκB α/NF- κB/p65 signaling pathway, thereby inhibiting cardiomyocyte apoptosis and improving myocarditis. In conclusion, EGCG protects against SIMD through anti-inflammatory and anti-apoptosis effects; it was mediated by the inhibition of the TLR4/NF-κB signal pathway. Our results demonstrated that EGCG might be a possible medicine for SIMD prevention and treatment.
Collapse
Affiliation(s)
- Bei Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Ya-Fei Li
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215000, Jiangsu Province, China
| | - Zhang Fang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Wen-Yi Cai
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zhi-Qiang Tian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Dianfu Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Ze-Mu Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| |
Collapse
|
37
|
Yu L, Hao YJ, Ren ZN, Zhu GD, Zhou WW, Lian X, Wu XJ. Ginsenoside Rg1 relieves rat intervertebral disc degeneration and inhibits IL-1β-induced nucleus pulposus cell apoptosis and inflammation via NF-κB signaling pathway. In Vitro Cell Dev Biol Anim 2024; 60:287-299. [PMID: 38485818 PMCID: PMC11014818 DOI: 10.1007/s11626-024-00883-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/09/2024] [Indexed: 04/13/2024]
Abstract
The study aimed to investigate the effect of ginsenoside Rg1 on intervertebral disc degeneration (IVDD) in rats and IL-1β-induced nucleus pulposus (NP) cells, and explore its underlying mechanism. Forty IVDD rat models were divided into the IVDD group, low-dose (L-Rg1) group (intraperitoneal injection of 20 mg/kg/d ginsenoside Rg1), medium-dose (M-Rg1) group (intraperitoneal injection of 40 mg/kg/d ginsenoside Rg1), and high-dose (H-Rg1) group (intraperitoneal injection of 80 mg/kg/d ginsenoside Rg1). The pathological change was observed by HE and safranin O-fast green staining. The expression of IL-1β, IL-6, TNF-α, MMP3, aggrecan, and collagen II was detected. The expression of NF-κB p65 in IVD tissues was detected. Rat NP cells were induced by IL-1β to simulate IVDD environment and divided into the control group, IL-1β group, and 20, 50, and 100 µmol/L Rg1 groups. The cell proliferation activity, the apoptosis, and the expression of IL-6, TNF-α, MMP3, aggrecan, collagen II, and NF-κB pathway-related protein were detected. In IVDD rats, ginsenoside Rg1 improved the pathology of IVD tissues; suppressed the expression of IL-1β, IL-6, TNF-α, aggrecan, and collagen II; and inhibited the expression of p-p65/p65 and nuclear translocation of p65, to alleviate the IVDD progression. In the IL-1β-induced NP cells, ginsenoside Rg1 also improved the cell proliferation and inhibited the apoptosis and the expression of IL-6, TNF-α, aggrecan, collagen II, p-p65/p65, and IκK in a dose-dependent manner. Ginsenoside Rg1 alleviated IVDD in rats and inhibited apoptosis, inflammatory response, and ECM degradation in IL-1β-induced NP cells. And Rg1 may exert its effect via inhibiting the activation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 50 Jianshe East Road, Erqi District, Zhengzhou, 450001, Henan Province, China
| | - Ying-Jie Hao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 50 Jianshe East Road, Erqi District, Zhengzhou, 450001, Henan Province, China
| | - Zhi-Nan Ren
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 50 Jianshe East Road, Erqi District, Zhengzhou, 450001, Henan Province, China
| | - Guang-Duo Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 50 Jianshe East Road, Erqi District, Zhengzhou, 450001, Henan Province, China
| | - Wei-Wei Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 50 Jianshe East Road, Erqi District, Zhengzhou, 450001, Henan Province, China
| | - Xu Lian
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 50 Jianshe East Road, Erqi District, Zhengzhou, 450001, Henan Province, China
| | - Xue-Jian Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 50 Jianshe East Road, Erqi District, Zhengzhou, 450001, Henan Province, China.
| |
Collapse
|
38
|
Liu D, Guo R, Shi B, Chen M, Weng S, Weng J. Fortunellin ameliorates LPS-induced acute lung injury, inflammation, and collagen deposition by restraining the TLR4/NF-κB/NLRP3 pathway. Immun Inflamm Dis 2024; 12:e1164. [PMID: 38501503 PMCID: PMC10949398 DOI: 10.1002/iid3.1164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 03/20/2024] Open
Abstract
OBJECTIVE Acute lung injury (ALI) is the prevalent respiratory disease of acute inflammation with high morbidity and mortality. Fortunellin has anti-inflammation property, but its role in ALI remains elusive. Thus, this study clarified the function of fortunellin on ALI pathogenesis. METHODS The ALI mouse model was established by lipopolysaccharide (LPS) induction, and lung tissue damage was evaluated utilizing hematoxylin-eosin (HE) staining. The edema of lung tissue was measured by the lung wet/dry (W/D) ratio. The lung capillary permeability was reflected by the protein content in bronchoalveolar lavage fluid (BALF). Inflammatory cell infiltration was measured by the evaluation of the content of myeloperoxidase (MPO), neutrophils, and leukocytes in BALF. Cell apoptosis was measured by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The secretions of inflammatory cytokines were quantified using enzyme-linked immunosorbent assay (ELISA) assays. Lung tissue collagen deposition was evaluated by Masson staining. RESULTS Fortunellin attenuated LPS-induced lung tissue damage and reduced the W/D ratio, the content of MPO in lung tissue, the total protein contents in BALF, and the neutrophils and leukocytes number. Besides, fortunellin alleviated LPS-stimulated lung tissue apoptosis, inflammatory response, and collagen deposition. Furthermore, Fortunellin repressed the activity of the Toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB)/NLR Family Pyrin Domain Containing 3 (NLRP3) pathway in the LPS-stimulated ALI model and LPS-induced RAW264.7 cells. Moreover, fortunellin attenuated LPS-stimulated tissue injury, apoptosis, inflammation, and collagen deposition of the lung via restraining the TLR4/NF-κB/NLRP3 pathway. CONCLUSION Fortunellin attenuated LPS-stimulated ALI through repressing the TLR4/NF-κB/NLRP3 pathway. Fortunellin may be a valuable drug for ALI therapy.
Collapse
Affiliation(s)
- Danjuan Liu
- Department of Critical Care Medicinethe Affiliated Hospital of Putian UniversityPutianChina
| | - Rongjie Guo
- Department of Critical Care Medicinethe Affiliated Hospital of Putian UniversityPutianChina
| | - Bingbing Shi
- Department of Critical Care Medicinethe Affiliated Hospital of Putian UniversityPutianChina
| | - Min Chen
- Department of Critical Care Medicinethe Affiliated Hospital of Putian UniversityPutianChina
| | - Shuoyun Weng
- School of Ophthalmology & OptometryWenzhou Medical UniversityWenzhouChina
| | - Junting Weng
- Department of Critical Care Medicinethe Affiliated Hospital of Putian UniversityPutianChina
| |
Collapse
|
39
|
Guo B, Yu Y, Wang M, Li R, He X, Tang S, Liu Q, Mao Y. Targeting the JAK2/STAT3 signaling pathway with natural plants and phytochemical ingredients: A novel therapeutic method for combatting cardiovascular diseases. Biomed Pharmacother 2024; 172:116313. [PMID: 38377736 DOI: 10.1016/j.biopha.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
The aim of this article is to introduce the roles and mechanisms of the JAK2/STAT3 pathway in various cardiovascular diseases, such as myocardial fibrosis, cardiac hypertrophy, atherosclerosis, myocardial infarction, and myocardial ischemiareperfusion. In addition, the effects of phytochemical ingredients and different natural plants, mainly traditional Chinese medicines, on the regulation of different cardiovascular diseases via the JAK2/STAT3 pathway are discussed. Surprisingly, the JAK2 pathway has dual roles in different cardiovascular diseases. Future research should focus on the dual regulatory effects of different phytochemical ingredients and natural plants on JAK2 to pave the way for their use in clinical trials.
Collapse
Affiliation(s)
- Bing Guo
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Yunfeng Yu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Min Wang
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Ronghui Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuan He
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Siqin Tang
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Qili Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Yilin Mao
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China.
| |
Collapse
|
40
|
Fang Z, Wang G, Huang R, Liu C, Yushanjiang F, Mao T, Li J. Astilbin protects from sepsis-induced cardiac injury through the NRF2/HO-1 and TLR4/NF-κB pathway. Phytother Res 2024; 38:1044-1058. [PMID: 38153125 DOI: 10.1002/ptr.8093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
Cardiac dysfunction and arrhythmia are severe complications of sepsis-induced cardiomyopathy and are associated with an increased risk of morbidity and mortality. Currently, the precise mechanism for sepsis-induced myocardial damage remains unclear. Astilbin, a flavonoid, is reported to have anti-inflammatory, antioxidative, and antiapoptotic properties. However, the effects of astilbin on sepsis-induced cardiomyopathy have not been studied so far. This study aims to investigate the effect of astilbin in sepsis-induced myocardial injury and elucidate the underlying mechanism. In vivo and in vitro sepsis models were created using lipopolysaccharide (LPS) as an inducer in H9C2 cardiomyocytes and C57BL/6 mice, respectively. Our results demonstrated that astilbin reduced myocardial injury and improved cardiac function. Moreover, astilbin prolonged the QT and corrected QT intervals, attenuated myocardial electrical remodeling, and promoted gap junction protein (Cx43) and ion channels expression, thereby reducing the susceptibility of ventricular fibrillation. In addition, astilbin alleviated LPS-induced inflammation, oxidative stress, and apoptosis. Astilbin suppressed the toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) pathway in vivo and in vitro models. Astilbin remarkedly upregulated the nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase 1 (HO-1) expression. The in vitro treatment with an NRF2 inhibitor reversed the inhibition of the TLR4/NF-κB pathway and antioxidant properties of astilbin. Astilbin attenuated LPS-induced myocardial injury, cardiac dysfunction, susceptibility to VF, inflammation, oxidative stress, and apoptosis by activating the NRF2/HO-1 pathway and inhibiting TLR4/ NF-κB pathway. These results suggest that astilbin could be an effective and promising therapeutics target for the treatment of sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
- Zhao Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Guangji Wang
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Huang
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Provincial Key Lab of Selenium Resources and Bioapplications, Enshi, China
| | - Chengyin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Feierkaiti Yushanjiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tuohua Mao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
41
|
Xie WJ, Liu M, Zhang X, Zhang YG, Jian ZH, Xiong XX. Astaxanthin suppresses LPS-induced myocardial apoptosis by regulating PTP1B/JNK pathway in vitro. Int Immunopharmacol 2024; 127:111395. [PMID: 38141411 DOI: 10.1016/j.intimp.2023.111395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
PURPOSE Myocardial injury induced by sepsis can increase the patient's mortality, which is an important complication of sepsis. Myocardial apoptosis plays a key role in septic myocardial injury. Here we explored the potential mechanism of astaxanthin (ATX) inhibiting myocardial apoptosis induced by lipopolysaccharide (LPS) in vitro. METHODS The H9C2 cell experiment was conducted in three parts. In the first part, we set up three groups: control group, LPS group (10 µg/ml), a model of septic myocardial injury, and LPS + ATX (5, 10, 30 µM); In the second part, we set up four groups: control group, LPS group, LPS + PTP1B-IN-1, a protein tyrosine phosphatase 1B (PTP1B) inhibitor, and LPS + PTP1B-IN-1 + ATX; In the third part, we set up four groups: control group, LPS group, LPS + Anisomycin, a c-Jun N-terminal kinase (JNK) activator, and LPS + Anisomycin + ATX. We assessed H9C2 cell viability using the Cell Counting Kit-8 (CCK-8) assay. We observed cell apoptosis using flow cytometry analysis. We tested the mitochondrial membrane potential (ΔΨm) using JC-1 staining. To identify the molecular targets of ATX, Astaxanthin targets were predicted through the SwissTargetPrediction database. We verified the binding affinity of ATX and its targets using microscale thermophoresis (MST). We investigated the p-JNK expression using immunofluorescence staining. Finally, Western blot was used to evaluate PTP1B, JNK, p-JNK and the mitochondrial apoptosis-associated protein expression. RESULTS LPS inhibited H9C2 cell viability in a time-dependent manner and ATX treatment enhances H9C2 cell viability in a concentration dependent manner after LPS administration. ATX inhibited the LPS-induced apoptosis and loss of mitochondrial membrane potential in H9C2 cells. As predicted by the SwissTargetPrediction database, PTP1B was a potential target of ATX, and the interaction between ATX and PTP1B was further verified by MST. ATX attenuated the LPS-induced protein expression of PTP1B and p-JNK, regardless of PTP1B inhibition. Both immunofluorescence staining and Western blotting showed that ATX suppressed the LPS-induced p-JNK expression in H9C2 cells, regardless of Anisomycin administration. In addition, by adding Anisomycin to overexpress JNK, ATX inhibited the LPS-induced apoptosis, loss of mitochondrial membrane potential and upregulation of mitochondrial apoptosis-associated proteins in H9C2 cells via JNK signaling. CONCLUSION ATX inhibited LPS-induced mitochondrial apoptosis of H9C2 cells by PTP1B/JNK pathway and PTP1B was the target of ATX.
Collapse
Affiliation(s)
- Wen-Jie Xie
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Miao Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xu Zhang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yong-Gang Zhang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhi-Hong Jian
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Xiao-Xing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
42
|
Li Y, Yang K, Zhao L, Xu C, Zhou W, Wang Z, Hu H, You Y. Effects of schisandra lignans on the absorption of protopanaxadiol-type ginsenosides mediated by P-glycoprotein and protopanaxatriol-type ginsenosides mediated by CYP3A4. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117057. [PMID: 37597677 DOI: 10.1016/j.jep.2023.117057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng Radix et Rhizoma (GRR) and Schisandrae Chinensis Fructus (SCF) are frequently used as herb pairs in traditional herbal formulas especially for the synergetic beneficial effects on lung and heart. Shengmai-yin (SMY), a noted formula, was first published in the traditional Chinese medicine classic named Yixue Qiyuan written by Zhang Yuansu in the Jin Dynasty, and has been used for deficiency of both qi and yin, palpitation, shortness of breath and spontaneous sweating. In SMY, GRR, a sovereign herb, plays an essential role in tonifying lung and supplementing qi, and SCF as an adjuvant herb contributes to the effects of nourishing yin and promoting fluid production, both of which are traditionally used as invigorants in China, Korea, Japan, and Russia. However, the underlying compatibility mechanism of GRR-SCF has remained unknown. AIM OF THE STUDY In order to explore the impact and underlying mechanism of schisandra chinensis extract (SCE) on the absorption of ginsenosides Rb1, Rc, Rb2 and Rd belonging to protopanaxdiol (PPD)-type and ginsenosides Rg1 and Re belonging to protopanaxtriol (PPT)-type, pharmacokinetic studies, molecular docking technique and single-pass intestinal perfusion (SPIP) experiment were conducted. MATERIAL AND METHODS Preliminarily, pharmacokinetic characteristics of ginseng extract (GE) in the presence and absence of SCE were studied. Thereafter, molecular docking was used to predict whether ginsenosides were P-glycoprotein (P-gp) or cytochrome P450 isoenzyme 3A4 (CYP3A4) substrates. Finally, the effects and underlying mechanism of SCE on the absorption of GE were further investigated by in situ SPIP experiment. RESULTS Our findings indicated that SCE could increase exposure in vivo and the intestinal absorption of distinct ginsenosides. Additionally, we found that the PPD-type ginsenosides Rb1, Rc, Rb2, and Rd were substrates for P-gp, and the PPT-type ginsenosides Rg1 and Re were substrates for CYP3A4 rather than P-gp. SCE, which has been found with extensive inhibitory effects on P-gp and CYP3A4, could remarkably promote the intestinal absorption of ginsenosides Rg1, Re, Rb1, Rc, Rb2, and Rd, obtaining similar effects comparable with ketoconazole known as a classic dual inhibitor of P-gp and CYP3A4. CONCLUSIONS The study demonstrated that SCE could improve the absorption of GE, and revealed the underlying compatibility mechanism of GRR and SCF from the perspective of P-gp and CYP3A4-mediated interactions to some extent, which provided a certain scientific reference for the compatibility and clinical practice of GRR-SCF as common herb pairs in traditional prescriptions such as SMY. Moreover, this study also furnished a strategy for improving the oral bioavailability of different types of ginsenosides by drug combinations.
Collapse
Affiliation(s)
- Yanyan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ke Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Linxian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunyi Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Weiling Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhanguo Wang
- Holistic Integrative Medicine Industry Collaborative Innovation Research Center, Qiang Medicine Standard Research Promotion Base and Collaborative Innovation Research Center, School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China
| | - Huiling Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yu You
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
43
|
Xie D, Wu C, Wang D, Nisma Lena BA, Liu N, Ye G, Sun M. Wei-fu-chun tablet halted gastric intestinal metaplasia and dysplasia associated with inflammation by regulating the NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117020. [PMID: 37567428 DOI: 10.1016/j.jep.2023.117020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chi006Eese herbal medicine Weifuchun Tablets (WFC) approved by the State Food and Drug Administration in 1982 has been widely used in treating a variety of chronic stomach disorders including Chronic atrophic gastritis (CAG) and Gastric precancerous lesions in China clinically. This study aimed to investigate the efficacy and potential mechanism of WFC in treating Gastric intestinal metaplasia (GIM) and Gastric dysplasia (GDys). MATERIALS AND METHODS Rat GIM and GDys established by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) combined with hot paste, ethanol injury, and intermittent fasting were intervened by WFC. Body weight, histopathology, pH of gastric acid, pepsin activity, intestinal metaplasia index and inflammation were detected. Rat bone marrow derived macrophages (BMDMs) pretreated with WFC were stimulated by LPS. Inflammatory factors and the nuclear factor-kappa B (NF-κB) pathway were assessed. GES-1 cells pretreated by WFC were stimulated by MNNG and TNF-α, intestinal metaplasia index, the NF-κB pathway and interaction between P65 and CDX2 were detected. RESULTS WFC improved rat body weight, histopathology, pH value of gastric acid, activity of gastric pepsin, intestinal metaplasia (CDX2), inflammation (IL-1β, IL-6 and TNF-α), macrophage aggregation (CD68) in gastric mucosa in rat GIM and GDys. WFC inhibited inflammation (IL-1β and TNF-α) by inactivating the NF-κB pathway. WFC reduced the expression of CDX2 by inhibiting the binding of CDX2 promoter TSS upstream region with p65. CONCLUSION WFC blocked GIM and GDys associated with inflammation by regulating the NF-κB pathway.
Collapse
Affiliation(s)
- Dong Xie
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chao Wu
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dan Wang
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bahaji Azami Nisma Lena
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ningning Liu
- Department of Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guan Ye
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China.
| | - Mingyu Sun
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
44
|
Zhang Y, Li J, Deng H, Wan H, Xu P, Wang J, Liu R, Tang T. High mobility group box 1 knockdown inhibits EV71 replication and attenuates cell pyroptosis through TLR4/NF-κB/NLRP3 axis. J Biochem Mol Toxicol 2024; 38:e23620. [PMID: 38229319 DOI: 10.1002/jbt.23620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 08/07/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
Enterovirus 71 (EV71) is a major causative agent of hand, foot, and mouth disease (HFMD) in children. Nowadays, there are still no effective antiviral drugs for EV71 infection. High mobility group box 1 (HMGB1) is reported to be highly expressed in HFMD patients. However, the role and underlying mechanism of HMGB1 in EV71-associated HFMD are still unclear. HMGB1 expression was detected using RT-qPCR and western blot assays. Loss- and gain-function experiments were performed to evaluate the effects of HMGB1 on EV71-infected cells. The virus titer was examined by TCID50. CCK-8 and flow cytometry assays were applied to detect the cell viability and cell cycle. Oxidative stress was determined by relative commercial kits. HMGB1 level was elevated in the serum of EV71-infected patients with HFMD and EV71-induced RD cells. EV71 infection induced the transfer of HMGB1 from the nucleus into the cytoplasm. HMGB1 knockdown inhibited virus replication, viral protein (VP1) expression and promoted antiviral factor expression. In addition, the inhibition of HMGB1 improved cell viability, protected against S phase arrest, and inhibited EV71-induced cell injury and oxidative stress, whereas HMGB1 overexpression showed the opposite effects. In terms of mechanism, HMGB1 overexpression activated the TLR4/NF-κB/NLRP3 signaling pathway and promoted cell pyroptosis. The inhibition of TLR4 and NF-κB reversed the effects of HMGB1 overexpression on virus replication, oxidative stress, and pyroptosis. In conclusion, HMGB1 knockdown inhibits EV71 replication and attenuates pyroptosis through TLR4/NF-κB/NLRP3 axis.
Collapse
Affiliation(s)
- Yufeng Zhang
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Jing Li
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Huiling Deng
- Department of Pediatrics, Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Han Wan
- Department of General Surgery, Xi'an No. 3 Hospital, Xi'an, Shaanxi, China
| | - Pengfei Xu
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Jun Wang
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Ruiqing Liu
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Tiantian Tang
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
45
|
Refaie MMM, Shehata S, El-Hussieny M, Fawzy MA, Ahmed NZM, Marey H, Hishmat AM, Alkully T, Rahman ESMAE. Molecular mechanism of empagliflozin cardioprotection in 5-fluorouracil (5-FU)-induced cardiotoxicity via modulation of SGLT2 and TNFα/TLR/NF-κB signaling pathway in rats. Toxicol Res 2024; 40:139-151. [PMID: 38223670 PMCID: PMC10786789 DOI: 10.1007/s43188-023-00204-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 01/16/2024] Open
Abstract
One of the commoly used chemotherapeutic agents is 5-Fluorouracil (5-FU). Unfortunately, the clinical administration of 5-FU is complicated with serious cardiotoxic effects and the safe use becomes an urgent task in cardio-oncology. Till now, there are no studies discussed the role of empagliflozin (EMP) against 5-FU cardiotoxicity. Thus, we investigated this effect and the involved mechanisms in 5-FU induced heart injury. Forty male rats of Wistar albino species were used and divided randomly into four groups. Group I is the control group, group II is EMP given group, group III is 5-FU cardiotoxic group and group IV is 5-FU plus EMP group. 5-FU (150 mg/kg) was administered as a single intraperitoneal (i.p.) dose on 1st day to induce cardiotoxicity with or without EMP (30 mg/kg/d) orally for 5 days. The dose of 5-FU is relevant to the human toxic dose. Our data showed that 5-FU given group caused cardiotoxicity with significant increase of serum cardiac enzymes, toll like receptors, enhancement of nuclear factor kappa B (NF-κB), interleukin1β (IL1β), IL6, myeloid-differentiation-factor 88 (MYD88), heart weight, malondialdehyde (MDA), tumor-necrosis-factor-alpha (TNFα), sodium glucose co-transporter 2 (SGLT2), P53 and caspase3 expression with clear histopathological features of cardiotoxicity. Moreover, there is a significant decrease in reduced glutathione (GSH) and total antioxidant capacity (TAC). Interestingly, co-administration of EMP could ameliorate 5-FU induced biochemical and histopathological changes. This effect may be due to modulation of SGLT2, decreasing inflammation, oxidative stress and apoptosis with downregulation of an essential inflammatory cascade that mediates 5-FU cardiotoxicity; TNFα/TLR/NF-κB. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00204-1.
Collapse
Affiliation(s)
| | - Sayed Shehata
- Department of Cardiology, Faculty of Medicine, Minia University, El-Minia, 61511 Egypt
| | - Maram El-Hussieny
- Department of Pathology, Faculty of Medicine, Minia University, El-Minia, 61511 Egypt
| | - Michael Atef Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, 61511 Egypt
| | - Nagwa Zenhom Mustafa Ahmed
- Department of Biochemistry, Faculty of Medicine, Minia University, El-Minia, 61511 Egypt
- Department of Biochemistry, Faculty of Medicine, Al-Baha University, 65525 Albaha, Saudi Arabia
| | - Heba Marey
- Department of Biochemistry, Faculty of Medicine, Minia University, El-Minia, 61511 Egypt
| | - Asmaa Mohammed Hishmat
- Department of Forensic Medicine & Clinical Toxicology, Faculty of Medicine, Minia University, El-Minia, 61511 Egypt
| | - Turki Alkully
- Department of Internal Medicine, Faculty of Medicine, Al-Baha University, 65525 Albaha, Saudi Arabia
| | | |
Collapse
|
46
|
Shi YR, Hao WW, Zhang EX, Wang ZH, Li L. Role of autophagy in pathogenesis of ulcerative colitis. Shijie Huaren Xiaohua Zazhi 2023; 31:1022-1028. [DOI: 10.11569/wcjd.v31.i24.1022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Ulcerative colitis is a chronic idiopathic inflammatory disease involving the colorectal mucosa. It is characterized by recurrent attacks, such as abdominal pain, diarrhea, mucus, and purulent stool. At present, the pathogenesis of ulcerative colitis is not fully understood. Most scholars generally believe that the pathogenesis of ulcerative colitis is affected by genetic susceptibility, environmental factors, immune system disorders, microflora and intestinal microflora disorders, and other factors. In recent years, the concept of autophagy has gradually attracted the attention of the scientific community, and more and more scholars have begun to study the pathogenesis of ulcerative colitis on the basis of autophagy theory. This review will give an overview of cellular autophagy and discuss its role in the pathogenesis of ulcerative colitis.
Collapse
Affiliation(s)
- Yi-Rong Shi
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Wei-Wei Hao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Er-Xin Zhang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Zhu-Huan Wang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Le Li
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| |
Collapse
|
47
|
Wang L, Wang J, Yang Z, Wang Y, Zhao T, Luo W, Liang T, Yang Z. Traditional herbs: mechanisms to combat cellular senescence. Aging (Albany NY) 2023; 15:14473-14505. [PMID: 38054830 PMCID: PMC10756111 DOI: 10.18632/aging.205269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/15/2023] [Indexed: 12/07/2023]
Abstract
Cellular senescence plays a very important role in the ageing of organisms and age-related diseases that increase with age, a process that involves physiological, structural, biochemical and molecular changes in cells. In recent years, it has been found that the active ingredients of herbs and their natural products can prevent and control cellular senescence by affecting telomerase activity, oxidative stress response, autophagy, mitochondrial disorders, DNA damage, inflammatory response, metabolism, intestinal flora, and other factors. In this paper, we review the research information on the prevention and control of cellular senescence in Chinese herbal medicine through computer searches of PubMed, Web of Science, Science Direct and CNKI databases.
Collapse
Affiliation(s)
- Lei Wang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Jiahui Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Zhihui Yang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Yue Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Tiejian Zhao
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Weisheng Luo
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, China
| | - Tianjian Liang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Zheng Yang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| |
Collapse
|
48
|
Wu Z, Zhang T, Ma X, Guo S, Zhou Q, Zahoor A, Deng G. Recent advances in anti-inflammatory active components and action mechanisms of natural medicines. Inflammopharmacology 2023; 31:2901-2937. [PMID: 37947913 DOI: 10.1007/s10787-023-01369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Inflammation is a series of reactions caused by the body's resistance to external biological stimuli. Inflammation affects the occurrence and development of many diseases. Anti-inflammatory drugs have been used widely to treat inflammatory diseases, but long-term use can cause toxic side-effects and affect human functions. As immunomodulators with long-term conditioning effects and no drug residues, natural products are being investigated increasingly for the treatment of inflammatory diseases. In this review, we focus on the inflammatory process and cellular mechanisms in the development of diseases such as inflammatory bowel disease, atherosclerosis, and coronavirus disease-2019. Also, we focus on three signaling pathways (Nuclear factor-kappa B, p38 mitogen-activated protein kinase, Janus kinase/signal transducer and activator of transcription-3) to explain the anti-inflammatory effect of natural products. In addition, we also classified common natural products based on secondary metabolites and explained the association between current bidirectional prediction progress of natural product targets and inflammatory diseases.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tao Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qingqing Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Arshad Zahoor
- College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
49
|
Zhang N, Liu YJ, Yang C, Zeng P, Gong T, Tao L, Zheng Y, Chen TT. Review of research progress on the role of the effective components of traditional Chinese medicine in sepsis with multiple organ dysfunction. Heliyon 2023; 9:e21713. [PMID: 38027612 PMCID: PMC10665755 DOI: 10.1016/j.heliyon.2023.e21713] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/04/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The concept of sepsis has recently evolved from one of a 'systemic inflammatory response syndrome caused by infection' to a 'severe, potentially fatal organic dysfunction caused by an inadequate or imbalanced host response to infection'. Organ dysfunction is closely related to sepsis. Multiple organ dysfunction syndrome (MODS) is the most serious outcome of sepsis, often leading to a poor prognosis. However, specific drugs for sepsis and MODS caused by sepsis remain undetermined, and the fatality rate is relatively high. Under the guidance of modern medicine, traditional Chinese medicine (TCM) has gained a wealth of experience in the prevention and treatment of sepsis and plays a key role via the effects of its numerous components, pathways and targets. This study used 'Sepsis', 'Organ dysfunction' and 'Traditional Chinese medicine' as strategies for searching the databases of Chinese National Knowledge Infrastructure, Wanfang, PubMed and The Web of Science. This paper presents an overview of the current status of TCM component formulations for preventing and treating sepsis with MODS to provide a theoretical basis for clinical treatment and drug development.
Collapse
Affiliation(s)
- Nai Zhang
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| | - Yu-Juan Liu
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| | - Chuang Yang
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| | - Peng Zeng
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| | - Tao Gong
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| | - Lu Tao
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| | - Ying Zheng
- Department of Emergency, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| | - Ting-Ting Chen
- Department of Nursing, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| |
Collapse
|
50
|
Zhang H, Liao J, Jin L, Lin Y. NLRP3 inflammasome involves in the pathophysiology of sepsis-induced myocardial dysfunction by multiple mechanisms. Biomed Pharmacother 2023; 167:115497. [PMID: 37741253 DOI: 10.1016/j.biopha.2023.115497] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
Sepsis-induced myocardial dysfunction (SIMD) is one of the serious health-affecting problems worldwide. At present, the mechanisms of SIMD are still not clearly elucidated. The NOD-like receptor protein 3 (NLRP3) inflammasome has been assumed to be involved in the pathophysiology of SIMD by regulating multiple biological processes. NLRP3 inflammasome and its related signaling pathways might affect the regulation of inflammation, autophagy, apoptosis, and pyroptosis in SIMD. A few molecular specific inhibitors of NLRP3 inflammasome (e.g., Melatonin, Ulinastatin, Irisin, Nifuroxazide, and Ginsenoside Rg1, etc.) have been developed, which showed a promising anti-inflammatory effect in a cellular or animal model of SIMD. These experimental findings indicated that NLRP3 inflammasome could be a promising therapeutic target for SIMD treatment. However, the clinical translation of NLRP3 inhibitors for treating SIMD still requires robust in vivo and preclinical trials.
Collapse
Affiliation(s)
- Hongwei Zhang
- Department of Emergency Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Litong Jin
- Department of Emergency Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China
| | - Yan Lin
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, China.
| |
Collapse
|