1
|
Arora D, Taneja Y, Sharma A, Dhingra A, Guarve K. Role of Apoptosis in the Pathogenesis of Osteoarthritis: An Explicative Review. Curr Rheumatol Rev 2024; 20:2-13. [PMID: 37670694 DOI: 10.2174/1573397119666230904150741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/29/2023] [Accepted: 07/20/2023] [Indexed: 09/07/2023]
Abstract
Apoptosis is a complex regulatory, active cell death process that plays a role in cell development, homeostasis, and ageing. Cancer, developmental defects, and degenerative diseases are all pathogenic disorders caused by apoptosis dysregulation. Osteoarthritis (OA) is by far the most frequently diagnosed joint disease in the aged, and it is characterized by the ongoing breakdown of articular cartilage, which causes severe disability. Multiple variables regulate the anabolic and catabolic pathways of the cartilage matrix, which either directly or indirectly contribute to cartilage degeneration in osteoarthritis. Articular cartilage is a highly specialized tissue made up of an extracellular matrix of cells that are tightly packed together. As a result, chondrocyte survival is crucial for the preservation of an optimal cartilage matrix, and chondrocyte characteristics and survival compromise may result in articular cartilage failure. Inflammatory cytokines can either promote or inhibit apoptosis, the process of programmed cell death. Pro-apoptotic cytokines like TNF-α can induce cell death, while anti-apoptotic cytokines like IL-4 and IL-10 protect against apoptosis. The balance between these cytokines plays a critical role in determining cell fate and has implications for tissue damage and disease progression. Similarly, they contribute to the progression of OA by disrupting the metabolic balance in joint tissues by promoting catabolic and anabolic pathways. Their impact on cell joints, as well as the impacts of cell signalling pathways on cytokines and inflammatory substances, determines their function in osteoarthritis development. Apoptosis is evident in osteoarthritic cartilage; however, determining the relative role of chondrocyte apoptosis in the aetiology of OA is difficult, and the rate of apoptotic chondrocytes in osteoarthritic cartilage is inconsistent. The current study summarises the role of apoptosis in the development of osteoarthritis, the mediators, and signalling pathways that trigger the cascade of events, and the other inflammatory features involved.
Collapse
Affiliation(s)
- Deepshi Arora
- Department of Pharmacy, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, 135001, India
| | - Yugam Taneja
- Zeon Lifesciences, Paonta Sahib, Himachal Pradesh, 173025, India
| | - Anjali Sharma
- Department of Pharmacy, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, 135001, India
| | - Ashwani Dhingra
- Department of Pharmacy, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, 135001, India
| | - Kumar Guarve
- Department of Pharmacy, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana, 135001, India
| |
Collapse
|
2
|
Xiao SQ, Cheng M, Wang L, Cao J, Fang L, Zhou XP, He XJ, Hu YF. The role of apoptosis in the pathogenesis of osteoarthritis. INTERNATIONAL ORTHOPAEDICS 2023:10.1007/s00264-023-05847-1. [PMID: 37294429 DOI: 10.1007/s00264-023-05847-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/17/2023] [Indexed: 06/10/2023]
Abstract
PURPOSE Apoptosis is an important physiological process, making a great difference to development and tissue homeostasis. Osteoarthritis (OA) is a chronic joint disease characterized by degeneration and destruction of articular cartilage and bone hyperplasia. This purpose of this study is to provide an updated review of the role of apoptosis in the pathogenesis of osteoarthritis. METHODS A comprehensive review of the literature on osteoarthritis and apoptosis was performed, which mainly focused on the regulatory factors and signaling pathways associated with chondrocyte apoptosis in osteoarthritis and other pathogenic mechanisms involved in chondrocyte apoptosis. RESULTS Inflammatory mediators such as reactive oxygen species (ROS), nitric oxide (NO), IL-1β, tumor necrosis factor-α (TNF-α), and Fas are closely related to chondrocyte apoptosis. NF-κB signaling pathway, Wnt signaling pathway, and Notch signaling pathway activate proteins and gene targets that promote or inhibit the progression of osteoarthritis disease, including chondrocyte apoptosis and ECM degradation. Long non-coding RNAs (LncRNAs) and microRNAs (microRNAs) have gradually replaced single and localized research methods and become the main research approaches. In addition, the relationship between cellular senescence, autophagy, and apoptosis was also briefly explained. CONCLUSION This review offers a better molecular delineation of apoptotic processes that may help in designing new therapeutic options for OA treatment.
Collapse
Affiliation(s)
- Si-Qi Xiao
- Department of Rheumatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China
| | - Miao Cheng
- Department of Rheumatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China
| | - Lei Wang
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China
| | - Jing Cao
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China
| | - Liang Fang
- Department of Rheumatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China
| | - Xue-Ping Zhou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Jin He
- Department of Rheumatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China.
| | - Yu-Feng Hu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
da Silva LA, Thirupathi A, Colares MC, Haupenthal DPDS, Venturini LM, Corrêa MEAB, Silveira GDB, Haupenthal A, do Bomfim FRC, de Andrade TAM, Gu Y, Silveira PCL. The effectiveness of treadmill and swimming exercise in an animal model of osteoarthritis. Front Physiol 2023; 14:1101159. [PMID: 36895628 PMCID: PMC9990173 DOI: 10.3389/fphys.2023.1101159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Introduction: Osteoarthritis (OA) is considered an inflammatory and degenerative joint disease, characterized by loss of hyaline joint cartilage and adjacent bone remodeling with the formation of osteophytes, accompanied by various degrees of functional limitation and reduction in the quality of life of individuals. The objective of this work was to investigate the effects of treatment with physical exercise on the treadmill and swimming in an animal model of osteoarthritis. Methods: Forty-eight male Wistar rats were divided (n=12 per group): Sham (S); Osteoarthritis (OA); Osteoarthritis + Treadmill (OA + T); Osteoarthritis + Swimming (OA + S). The mechanical model of OA was induced by median meniscectomy. Thirty days later, the animals started the physical exercise protocols. Both protocols were performed at moderate intensity. Forty-eight hours after the end of the exercise protocols, all animals were anesthetized and euthanized for histological, molecular, and biochemical parameters analysis. Results: Physical exercise performed on a treadmill was more effective in attenuating the action of pro-inflammatory cytokines (IFN-γ, TNF-α, IL1-β, and IL6) and positively regulating anti-inflammatories such as IL4, IL10, and TGF-β in relation to other groups. Discussion: In addition to maintaining a more balanced oxi-reductive environment within the joint, treadmill exercise provided a more satisfactory morphological outcome regarding the number of chondrocytes in the histological evaluation. As an outcome, better results were found in groups submitted to exercise, mostly treadmill exercise.
Collapse
Affiliation(s)
- Leandro Almeida da Silva
- Faculty of Sports Science, Ningbo University, Ningbo, China.,Laboratory of Experimental Phisiopatology, Program of Postgraduate in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | | | - Mateus Cardoso Colares
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Daniela Pacheco Dos Santos Haupenthal
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Ligia Milanez Venturini
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil.,Programa de Pós Graduação em Ciências da Reabilitação, Universidade Federal de Santa Catarina, Araranguá, SC, Brazil
| | - Maria Eduarda Anastácio Borges Corrêa
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Gustavo de Bem Silveira
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Alessandro Haupenthal
- Programa de Pós Graduação em Ciências da Reabilitação, Universidade Federal de Santa Catarina, Araranguá, SC, Brazil
| | | | | | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Phisiopatology, Program of Postgraduate in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| |
Collapse
|
4
|
Yang H, Yang Z, Yu Z, Xiong C, Zhang Y, Zhang J, Huang Y, Zhou X, Li J, Xu N. SEMA6D, Negatively Regulated by miR-7, Contributes to C28/I2 chondrocyte's Catabolic and Anabolic Activities via p38 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9674221. [PMID: 35757507 PMCID: PMC9225841 DOI: 10.1155/2022/9674221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
MiR-7 has been recognized as an osteoarthritis (OA-)-promoting factor, but the specific downstream pathway of miR-7 still remains unknown. Further investigation of the molecular regulatory mechanism of miR-7 might help develop a novel therapeutic method for OA. In this study, we revealed that Semaphorin 6D (SEMA6D) was a direct target gene of miR-7 and presented a negative regulatory relation with SEMA6D in vitro and in vivo. SEMA6D could improve OA in rat OA models, as indicated by H&E and Safranin O-Fast green staining, and also μCT analysis. Further evaluation of SEMA6D suggested that SEMA6D promotes the anabolism and reduces the catabolism of C28/I2 chondrocytes via inhibiting the activation of the p38 pathway. The present research illustrated that SEMA6D is a negatively regulatory factor of miR-7 and a pivotal mediator of catabolism and anabolism in C28/I2 chondrocytes. SEMA6D exerts its function via inhibiting the activation of the p38 pathway.
Collapse
Affiliation(s)
- Haoyu Yang
- Department of Orthopedics, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Zhicheng Yang
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Zhentang Yu
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Chenwei Xiong
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Yi Zhang
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Junjie Zhang
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Yong Huang
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Xindie Zhou
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Jin Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Nanwei Xu
- Department of Orthopedics, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| |
Collapse
|
5
|
Chen YY, Yan XJ, Jiang XH, Lu FL, Yang XR, Li DP. Vicenin 3 ameliorates ECM degradation by regulating the MAPK pathway in SW1353 chondrocytes. Exp Ther Med 2021; 22:1461. [PMID: 34737801 PMCID: PMC8561762 DOI: 10.3892/etm.2021.10896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/23/2021] [Indexed: 11/06/2022] Open
Abstract
Aberrant destruction of the articular extracellular matrix (ECM) has been considered to be one of the pathological features of osteoarthritis (OA) which results in chondrocyte changes and articular cartilage degeneration. The MAPK signaling pathway serves a key role by releasing cartilage-degrading enzymes from OA chondrocytes. However, the use of MAPK inhibitors for OA is hindered by their potential long-term toxicity. Vicenin 3 is one of the major components of the Jian-Gu injection which is effective in the clinical treatment of OA. However, its potential impact on OA remain poorly understood. Therefore, the present study aimed to assess the effects of vicenin 3 on interleukin (IL)-1β-treated SW1353 chondrocytes, which mimic the microenvironment of OA. These chondrocytes were pretreated with vicenin 3 (0, 5 and 20 µM) for 1 h and subsequently stimulated with IL-1β (10 ng/ml) for 24 h. Nitric oxide (NO) production was measured using the Griess reaction, whereas the production of prostaglandin E2 (PGE2), matrix metalloproteinases (MMPs), A disintegrin-like and metalloproteinase with thrombospondin motifs (ADAMTSs), collagen type II and aggrecan were measured using ELISA. The mRNA expression of MMPs and ADAMTSs were measured using reverse transcription-quantitative PCR. The protein expression levels of MAPK were measured using western blotting. Vicenin 3 was found to significantly inhibit IL-1β-induced production of NO and PGE. Increments in the expression levels of MMP-1, MMP-3, MMP-13, ADAMTS-4 and ADAMTS-5 induced by IL-1β, in addition to the IL-1β-induced degradation of collagen type II and aggrecan, were all reversed by vicenin 3 treatment. Furthermore, vicenin 3 suppressed IL-1β-stimulated MAPK activation, an effect that was similar to that exerted by SB203580, a well-known p38 MAPK inhibitor. In conclusion, vicenin 3 may confer therapeutic potential similar to that of the p38 MAPK inhibitor for the treatment of OA.
Collapse
Affiliation(s)
- Yue-Yuan Chen
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, Guangxi 541006, P.R. China
| | - Xiao-Jie Yan
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, Guangxi 541006, P.R. China
| | - Xiao-Hua Jiang
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, Guangxi 541006, P.R. China
| | - Feng-Lai Lu
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, Guangxi 541006, P.R. China
| | - Xue-Rong Yang
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, Guangxi 541006, P.R. China
| | - Dian-Peng Li
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, Guangxi 541006, P.R. China
| |
Collapse
|
6
|
Tudorachi NB, Totu EE, Fifere A, Ardeleanu V, Mocanu V, Mircea C, Isildak I, Smilkov K, Cărăuşu EM. The Implication of Reactive Oxygen Species and Antioxidants in Knee Osteoarthritis. Antioxidants (Basel) 2021; 10:985. [PMID: 34205576 PMCID: PMC8233827 DOI: 10.3390/antiox10060985] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
Knee osteoarthritis (KOA) is a chronic multifactorial pathology and a current and essential challenge for public health, with a negative impact on the geriatric patient's quality of life. The pathophysiology is not fully known; therefore, no specific treatment has been found to date. The increase in the number of newly diagnosed cases of KOA is worrying, and it is essential to reduce the risk factors and detect those with a protective role in this context. The destructive effects of free radicals consist of the acceleration of chondrosenescence and apoptosis. Among other risk factors, the influence of redox imbalance on the homeostasis of the osteoarticular system is highlighted. The evolution of KOA can be correlated with oxidative stress markers or antioxidant status. These factors reveal the importance of maintaining a redox balance for the joints and the whole body's health, emphasizing the importance of an individualized therapeutic approach based on antioxidant effects. This paper aims to present an updated picture of the implications of reactive oxygen species (ROS) in KOA from pathophysiological and biochemical perspectives, focusing on antioxidant systems that could establish the premises for appropriate treatment to restore the redox balance and improve the condition of patients with KOA.
Collapse
Affiliation(s)
- Nicoleta Bianca Tudorachi
- Faculty of Medicine, “Ovidius” University of Constanța, Mamaia Boulevard 124, 900527 Constanța, Romania; (N.B.T.); (V.A.)
| | - Eugenia Eftimie Totu
- Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 1–5 Polizu Street, 011061 Bucharest, Romania
| | - Adrian Fifere
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Valeriu Ardeleanu
- Faculty of Medicine, “Ovidius” University of Constanța, Mamaia Boulevard 124, 900527 Constanța, Romania; (N.B.T.); (V.A.)
| | - Veronica Mocanu
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (V.M.); (C.M.)
| | - Cornelia Mircea
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (V.M.); (C.M.)
| | - Ibrahim Isildak
- Faculty of Chemistry-Metallurgy, Department of Bioengineering, Yildiz Technical University, Istanbul 34220, Turkey;
| | - Katarina Smilkov
- Faculty of Medical Sciences, Division of Pharmacy, Department of Applied Pharmacy, Goce Delcev University, Krste Misirkov Street, No. 10-A, 2000 Stip, North Macedonia;
| | - Elena Mihaela Cărăuşu
- Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, “Nicolae Leon” Building, 13 Grigore Ghica Street, 700259 Iasi, Romania;
| |
Collapse
|
7
|
Zahan OM, Serban O, Gherman C, Fodor D. The evaluation of oxidative stress in osteoarthritis. Med Pharm Rep 2020; 93:12-22. [PMID: 32133442 PMCID: PMC7051818 DOI: 10.15386/mpr-1422] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is a whole joint disease driven by abnormal biomechanics and attendant cell-derived and tissue-derived factors. The disease is multifactorial and polygenic, and its progression is significantly related to oxidative stress and reactive oxygen species (ROS). Augmented ROS generation can cause the damage of structural biomolecules of the joint and, by acting as intracellular signaling component, ROS are associated with various inflammatory responses. By activating several signaling pathways, ROS have a vital importance in the patho-physiology of OA. This review is focused on the mechanism of ROS which regulate intracellular signaling processes, chondrocyte senescence and apoptosis, extracellular matrix synthesis and degradation, along with synovial inflammation and dysfunction of the subcondral bone, targeting the complex oxidative stress signaling pathways.
Collapse
Affiliation(s)
- Oana-Maria Zahan
- 2 Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Oana Serban
- 2 Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Claudia Gherman
- 2 Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniela Fodor
- 2 Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Jenei-Lanzl Z, Meurer A, Zaucke F. Interleukin-1β signaling in osteoarthritis - chondrocytes in focus. Cell Signal 2018; 53:212-223. [PMID: 30312659 DOI: 10.1016/j.cellsig.2018.10.005] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022]
Abstract
Osteoarthritis (OA) can be regarded as a chronic, painful and degenerative disease that affects all tissues of a joint and one of the major endpoints being loss of articular cartilage. In most cases, OA is associated with a variable degree of synovial inflammation. A variety of different cell types including chondrocytes, synovial fibroblasts, adipocytes, osteoblasts and osteoclasts as well as stem and immune cells are involved in catabolic and inflammatory processes but also in attempts to counteract the cartilage loss. At the molecular level, these changes are regulated by a complex network of proteolytic enzymes, chemokines and cytokines (for review: [1]). Here, interleukin-1 signaling (IL-1) plays a central role and its effects on the different cell types involved in OA are discussed in this review with a special focus on the chondrocyte.
Collapse
Affiliation(s)
- Zsuzsa Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim, Frankfurt/Main, Germany
| | - Andrea Meurer
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim, Frankfurt/Main, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopaedic University Hospital Friedrichsheim, Frankfurt/Main, Germany.
| |
Collapse
|
9
|
Serrano RL, Chen LY, Lotz MK, Liu-Bryan R, Terkeltaub R. Impaired Proteasomal Function in Human Osteoarthritic Chondrocytes Can Contribute to Decreased Levels of SOX9 and Aggrecan. Arthritis Rheumatol 2018; 70:1030-1041. [PMID: 29457374 DOI: 10.1002/art.40456] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/13/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Osteoarthritis (OA) chondrocytes exhibit impairment of autophagy, one arm of the proteostasis network that coordinates proteome and organelle quality control and degradation. Deficient proteostasis impacts differentiation and viability, and inflammatory processes in aging and disease. The present study was undertaken to assess ubiquitin proteasome system proteasomal function in OA chondrocytes. METHODS We evaluated human knee cartilage by immunohistochemistry, and assessed proteasomal function, levels of proteasomal core subunits and chaperones, and autophagy in cultured chondrocytes. Assays included Western blotting, quantitative reverse transcription-polymerase chain reaction, proteasomal protease activity assessment, and cell immunofluorescence analysis. RESULTS Human knee OA cartilage exhibited polyubiquitin accumulation, with increased ubiquitin K48-linked polyubiquitinated proteins in situ, suggesting proteasomal impairment. Cultured OA chondrocytes demonstrated accumulation of K48 polyubiquitinated proteins, significantly reduced 20S proteasome core protease activity, and decreased levels of phosphorylated FOXO4 and proteasome 26S subunit, non-ATPase 11 (PSMD11), a FOXO4-inducible promoter of proteasomal activation. Levels of proteasome subunit β type 3 (PSMB3), PSMB5, PSMB6, and proteasome assembly chaperone 1 were not decreased in OA chondrocytes. In normal chondrocytes, PSMD11 small interfering RNA knockdown stimulated certain autophagy machinery elements, increased extracellular nitric oxide (NO) levels, and reduced chondrocytic master transcription factor SOX9 protein and messenger RNA (mRNA) and aggrecan (AGC1) mRNA. PSMD11 gain-of- function by transfection increased proteasomal function, increased levels of SOX9-induced AGC1 mRNA, stimulated elements of the autophagic machinery, and inhibited extracellular levels of interleukin-1-induced NO and matrix metalloproteinase 13 in OA chondrocytes. CONCLUSION Deficient PSMD11, associated with reduced phosphorylated FOXO4, promotes impaired proteasomal function in OA chondrocytes, dysregulation of chondrocytic homeostasis, and decreased levels of SOX9 mRNA, SOX9 protein, and AGC1 mRNA. Chondrocyte proteasomal impairment may be a therapeutic target for OA.
Collapse
Affiliation(s)
- Ramon L Serrano
- VA San Diego Healthcare System, University of California San Diego, La Jolla, California
| | - Liang-Yu Chen
- VA San Diego Healthcare System, University of California San Diego, La Jolla, California
| | - Martin K Lotz
- The Scripps Research Institute, La Jolla, California
| | - Ru Liu-Bryan
- VA San Diego Healthcare System, University of California San Diego, La Jolla, California
| | - Robert Terkeltaub
- VA San Diego Healthcare System, University of California San Diego, La Jolla, California
| |
Collapse
|
10
|
Anti-Inflammatory Effect of Geniposide on Osteoarthritis by Suppressing the Activation of p38 MAPK Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8384576. [PMID: 29682561 PMCID: PMC5846349 DOI: 10.1155/2018/8384576] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/02/2018] [Accepted: 01/15/2018] [Indexed: 01/15/2023]
Abstract
It has been suggested that the activation of the p38 mitogen activated protein kinases (MAPKs) signaling pathway plays a significant role in the progression of OA by leading to the overexpression of proinflammatory cytokines, chemokines, and signaling enzymes in human osteoarthritis chondrocytes. However, most p38 MAPK inhibitors applied for OA have been thought to be limited due to their potential long-term toxicities. Geniposide (GE), an iridoid glycoside purified from the fruit of the herb, has been widely used in traditional medicine for the treatment of a variety of chronic inflammatory diseases. In this study, we evaluated the inhibition effect of geniposide on the inflammatory progression of the surgically induced osteoarthritis and whether the protective effect of geniposide on OA is related to the inhibition of the p38 MAPK signaling pathway. In vitro, geniposide attenuated the expression of inflammatory cytokines including interleukin-1 (IL-1), tumor necrosis factor (TNF-α), and nitric oxide (NO) production as well as matrix metalloproteinase- (MMP-) 13 in chondrocytes isolated from surgically induced rabbit osteoarthritis model. Additionally, geniposide markedly suppressed the expression of IL-1, TNF-α, NO, and MMP-13 in the synovial fluid from the rabbits with osteoarthritis. More importantly, our results clearly demonstrated that the inhibitory effect of geniposide on surgery-induced expression of inflammatory mediators in osteoarthritis was closely associated with the suppression of the p38 MAPK signaling pathways. Our study demonstrates that geniposide may have therapeutic potential to serve as an alternative agent for the p38 MAPK inhibition for the treatment of OA due to its inherent features of biological activities and low toxicity as a traditional Chinese medicine.
Collapse
|
11
|
Insights on Molecular Mechanisms of Chondrocytes Death in Osteoarthritis. Int J Mol Sci 2016; 17:ijms17122146. [PMID: 27999417 PMCID: PMC5187946 DOI: 10.3390/ijms17122146] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a joint pathology characterized by progressive cartilage degradation. Medical care is mainly based on alleviating pain symptoms. Compelling studies report the presence of empty lacunae and hypocellularity in cartilage with aging and OA progression, suggesting that chondrocyte cell death occurs and participates to OA development. However, the relative contribution of apoptosis per se in OA pathogenesis appears complex to evaluate. Indeed, depending on technical approaches, OA stages, cartilage layers, animal models, as well as in vivo or in vitro experiments, the percentage of apoptosis and cell death types can vary. Apoptosis, chondroptosis, necrosis, and autophagic cell death are described in this review. The question of cell death causality in OA progression is also addressed, as well as the molecular pathways leading to cell death in response to the following inducers: Fas, Interleukin-1β (IL-1β), Tumor Necrosis factor-α (TNF-α), leptin, nitric oxide (NO) donors, and mechanical stresses. Furthermore, the protective role of autophagy in chondrocytes is highlighted, as well as its decline during OA progression, enhancing chondrocyte cell death; the transition being mainly controlled by HIF-1α/HIF-2α imbalance. Finally, we have considered whether interfering in chondrocyte apoptosis or promoting autophagy could constitute therapeutic strategies to impede OA progression.
Collapse
|
12
|
Interleukin-1β induces fibroblast growth factor 2 expression and subsequently promotes endothelial progenitor cell angiogenesis in chondrocytes. Clin Sci (Lond) 2016; 130:667-81. [PMID: 26811540 PMCID: PMC4797417 DOI: 10.1042/cs20150622] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/25/2016] [Indexed: 12/22/2022]
Abstract
Angiogenesis is an important event in the process of arthritis. Stimulating chondrocytes with IL-1β increased the expression of FGF-2, via the IL-1RI/ROS/AMPK/p38/NF-κB signalling pathway. FGF-2-neutralizing antibody abolished ATDC5-conditional medium-mediated angiogenesis both in vitro and in vivo. Arthritis is a process of chronic inflammation that results in joint damage. IL (interleukin)-1β is an inflammatory cytokine that acts as a key mediator of cartilage degradation, and is abundantly expressed in arthritis. Neovascularization is one of the pathological characteristics of arthritis. However, the role of IL-1β in the angiogenesis of chondrocytes remains unknown. In the present study, we demonstrate that stimulating chondrocytes (ATDC5) with IL-1β increased the expression of FGF (fibroblast growth factor)-2, a potent angiogenic inducer, and then promoted EPC (endothelial progenitor cell) tube formation and migration. In addition, FGF-2-neutralizing antibody abolished ATDC5-conditional medium-mediated angiogenesis in vitro, as well as its angiogenic effects in the CAM (chick chorioallantoic membrane) assay and Matrigel plug nude mice model in vivo. IHC (immunohistochemistry) staining from a CIA (collagen-induced arthritis) mouse model also demonstrates that arthritis increased the expression of IL-1β and FGF-2, as well as EPC homing in articular cartilage. Moreover, IL-1β-induced FGF-2 expression via IL-1RI (type-1 IL-1 receptor), ROS (reactive oxygen species) generation, AMPK (AMP-activated protein kinase), p38 and NF-κB (nuclear factor κB) pathway has been demonstrated. On the basis of these findings, we conclude that IL-1β promotes FGF-2 expression in chondrocytes through the ROS/AMPK/p38/NF-κB signalling pathway and subsequently increases EPC angiogenesis. Therefore IL-1β serves as a link between inflammation and angiogenesis during arthritis.
Collapse
|
13
|
Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta Mol Basis Dis 2016; 1862:576-591. [PMID: 26769361 DOI: 10.1016/j.bbadis.2016.01.003] [Citation(s) in RCA: 494] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/07/2015] [Accepted: 01/04/2016] [Indexed: 12/11/2022]
Abstract
Osteoarthritis is the most common joint disorder with increasing prevalence due to aging of the population. Its multi-factorial etiology includes oxidative stress and the overproduction of reactive oxygen species, which regulate intracellular signaling processes, chondrocyte senescence and apoptosis, extracellular matrix synthesis and degradation along with synovial inflammation and dysfunction of the subchondral bone. As disease-modifying drugs for osteoarthritis are rare, targeting the complex oxidative stress signaling pathways would offer a valuable perspective for exploration of potential therapeutic strategies in the treatment of this devastating disease.
Collapse
Affiliation(s)
- Panagiotis Lepetsos
- Fourth Department of Trauma and Orthopaedics, Medical School, National and Kapodistrian University of Athens, 'KAT' Hospital, 14561, Kifissia, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
14
|
Lessons from Microglia Aging for the Link between Inflammatory Bone Disorders and Alzheimer's Disease. J Immunol Res 2015; 2015:471342. [PMID: 26078980 PMCID: PMC4452354 DOI: 10.1155/2015/471342] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 12/29/2022] Open
Abstract
Bone is sensitive to overactive immune responses, which initiate the onset of inflammatory bone disorders, such as rheumatoid arthritis and periodontitis, resulting in a significant systemic inflammatory response. On the other hand, neuroinflammation is strongly implicated in Alzheimer's disease (AD), which can be enhanced by systemic inflammation, such as that due to cardiovascular disease and diabetes. There is growing clinical evidence supporting the concept that rheumatoid arthritis and periodontitis are positively linked to AD, suggesting that inflammatory bone disorders are risk factors for this condition. Recent studies have suggested that leptomeningeal cells play an important role in transducing systemic inflammatory signals to brain-resident microglia. More importantly, senescent-type, but not juvenile-type, microglia provoke neuroinflammation in response to systemic inflammation. Because the prevalence of rheumatoid arthritis and periodontitis increases with age, inflammatory bone disorders may be significant sources of covert systemic inflammation among elderly people. The present review article highlights our current understanding of the link between inflammatory bone disorders and AD with a special focus on microglia aging.
Collapse
|
15
|
Nitric oxide-associated chondrocyte apoptosis in trauma patients after high-energy lower extremity intra-articular fractures. J Orthop Traumatol 2015; 16:335-41. [PMID: 25957508 PMCID: PMC4633420 DOI: 10.1007/s10195-015-0350-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 04/09/2015] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND The primary goal of this study was to identify nitric oxide (NO)-induced apoptosis in traumatized chondrocytes in intra-articular lower extremity fractures and the secondary goal was to identify the timeline of NO-induced apoptosis after injury. MATERIALS AND METHODS This is a prospective collection of samples of human cartilage harvested at the time of surgery to measure apoptotic cell death and the presence of NO by immunohistochemistry. Three patients met the criteria for control subjects and eight patients sustained high-energy intra-articular fractures and were included in the study. Subjects who sustained intra-articular acetabular, tibial, calcaneal and talus fracture had articular cartilage harvested at the time of surgical intervention. All 8 patients underwent open reduction and internal fixation of the displaced intra-articular fractures. The main outcome measures were rate of apoptosis, degree of NO-induced apoptosis in chondrocytes, and the timeline of NO-induced apoptosis after high-energy trauma. RESULTS The percentage of apoptotic chondrocytes was higher in impacted samples than in normal cartilage (56 vs 4 %), confirming the presence of apoptosis after intra-articular fracture. The percentage of cells with NO was greater in apoptotic cells than in normal cells (59 vs 20 %), implicating NO-induction of apoptosis. The correlation between chondrocyte apoptosis and increasing time from injury was found to be -0.615, indicating a decreasing rate of apoptosis post injury. CONCLUSIONS The data showed the involvement of NO-induced apoptosis of chondrocytes after high-energy trauma, which decreased with time from injury.
Collapse
|
16
|
The Neuroprotective Effects of Ratanasampil on Oxidative Stress-Mediated Neuronal Damage in Human Neuronal SH-SY5Y Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:792342. [PMID: 26064424 PMCID: PMC4433697 DOI: 10.1155/2015/792342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 11/17/2022]
Abstract
We previously found that Ratanasampil (RNSP), a traditional Tibetan medicine, improves the cognitive function of mild-to-moderate AD patients living at high altitude, as well as learning and memory in an AD mouse model (Tg2576); however, mechanism underlying the effects of RNSP is unknown. In the present study, we investigated the effects and molecular mechanisms of RNSP on oxidative stress-induced neuronal toxicity using human neuroblastoma SH-SY5Y cells. Pretreatment with RNSP significantly ameliorated the hydrogen peroxide- (H2O2-) induced cytotoxicity of SH-SY5Y cells in a dose-dependent manner (up to 60 μg/mL). Furthermore, RNSP significantly reduced the H2O2-induced upregulation of 8-oxo-2'-deoxyguanosine (8-oxo-dG, the oxidative DNA damage marker) but significantly reversed the expression of repressor element-1 silencing transcription factor (REST) from H2O2 associated (100 μM) downregulation. Moreover, RNSP significantly attenuated the H2O2-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase 1/2 (ERK 1/2) in SH-SY5Y cells. These observations strongly suggest that RNSP may protect the oxidative stress-induced neuronal damage that occurs through the properties of various antioxidants and inhibit the activation of MAPKs. We thus provide the principle molecular mechanisms of the effects of RNSP and indicate its role in the prevention and clinical management of AD.
Collapse
|
17
|
Celecoxib Combined with Diacerein Effectively Alleviates Osteoarthritis in Rats via Regulating JNK and p38MAPK Signaling Pathways. Inflammation 2015; 38:1563-72. [DOI: 10.1007/s10753-015-0131-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:284873. [PMID: 24069595 PMCID: PMC3771246 DOI: 10.1155/2013/284873] [Citation(s) in RCA: 319] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/27/2013] [Accepted: 07/29/2013] [Indexed: 01/13/2023]
Abstract
Osteoarthritis (OA) is a degenerative disease that affects various tissues surrounding joints such as articular cartilage, subchondral bone, synovial membrane, and ligaments. No therapy is currently available to completely prevent the initiation or progression of the disease partly due to poor understanding of the mechanisms of the disease pathology. Cartilage is the main tissue afflicted by OA, and chondrocytes, the sole cellular component in the tissue, actively participate in the degeneration process. Multiple factors affect the development and progression of OA including inflammation that is sustained during the progression of the disease and alteration in biomechanical conditions due to wear and tear or trauma in cartilage. During the progression of OA, extracellular matrix (ECM) of cartilage is actively remodeled by chondrocytes under inflammatory conditions. This alteration of ECM, in turn, changes the biomechanical environment of chondrocytes, which further drives the progression of the disease in the presence of inflammation. The changes in ECM composition and structure also prevent participation of mesenchymal stem cells in the repair process by inhibiting their chondrogenic differentiation. This review focuses on how inflammation-induced ECM remodeling disturbs cellular activities to prevent self-regeneration of cartilage in the pathology of OA.
Collapse
|
19
|
Urocortin protects chondrocytes from NO-induced apoptosis: a future therapy for osteoarthritis? Cell Death Dis 2013; 4:e717. [PMID: 23846219 PMCID: PMC3730405 DOI: 10.1038/cddis.2013.231] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 12/14/2022]
Abstract
Osteoarthritis (OA) is characterized by a loss of joint mobility and pain resulting from progressive destruction and loss of articular cartilage secondary to chondrocyte death and/ or senescence. Certain stimuli including nitric oxide (NO) and the pro-inflammatory cytokine tumor necrosis factor α (TNF-α have been implicated in this chondrocyte death and the subsequent accelerated damage to cartilage. In this study, we demonstrate that a corticotrophin releasing factor (CRF) family peptide, urocortin (Ucn), is produced by a human chondrocyte cell line, C-20/A4, and acts both as an endogenous survival signal and as a cytoprotective agent reducing the induction of apoptosis by NO but not TNF-α when added exogenously. Furthermore, treatment with the NO donor S-nitroso-N-acetyl-D-L-penicillamine upregulates chondrocyte Ucn expression, whereas treatment with TNF-α does not. The chondroprotective effects of Ucn are abolished by both specific ligand depletion (with an anti-Ucn antibody) and by CRF receptor blockade with the pan-CRFR antagonist α-helical CRH(9-41). CRFR expression was confirmed by reverse transcription-PCR with subsequent amplicon sequence analysis and demonstrates that C-20/A4 cells express both CRFR1 and CRFR2, specifically CRFR1α and CRFR2β. Protein expression of these receptors was confirmed by western blotting. The presence of both Ucn and its receptors in these cells, coupled with the induction of Ucn by NO, suggests the existence of an endogenous autocrine/paracrine chondroprotective mechanism against stimuli inducing chondrocyte apoptosis via the intrinsic/mitochondrial pathway.
Collapse
|
20
|
Aini H, Ochi H, Iwata M, Okawa A, Koga D, Okazaki M, Sano A, Asou Y. Procyanidin B3 prevents articular cartilage degeneration and heterotopic cartilage formation in a mouse surgical osteoarthritis model. PLoS One 2012; 7:e37728. [PMID: 22629448 PMCID: PMC3358274 DOI: 10.1371/journal.pone.0037728] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 04/23/2012] [Indexed: 01/22/2023] Open
Abstract
Osteoarthritis (OA) is a common disease in the elderly due to an imbalance in cartilage degradation and synthesis. Heterotopic ossification (HO) occurs when ectopic masses of endochondral bone form within the soft tissues around the joints and is triggered by inflammation of the soft tissues. Procyanidin B3 (B3) is a procyanidin dimer that is widely studied due to its high abundance in the human diet and antioxidant activity. Here, we evaluated the role of B3 isolated from grape seeds in the maintenance of chondrocytes in vitro and in vivo. We observed that B3 inhibited H(2)O(2)-induced apoptosis in primary chondrocytes, suppressed H(2)O(2)- or IL-1ß-induced nitric oxide synthase (iNOS) production, and prevented IL-1ß-induced suppression of chondrocyte differentiation marker gene expression in primary chondrocytes. Moreover, B3 treatment enhanced the early differentiation of ATDC5 cells. To examine whether B3 prevents cartilage destruction in vivo, OA was surgically induced in C57BL/6J mice followed by oral administration of B3 or vehicle control. Daily oral B3 administration protected articular cartilage from OA and prevented chondrocyte apoptosis in surgically-induced OA joints. Furthermore, B3 administration prevented heterotopic cartilage formation near the surgical region. iNOS protein expression was enhanced in the synovial tissues and the pseudocapsule around the surgical region in OA mice fed a control diet, but was reduced in mice that received B3. Together, these data indicated that in the OA model, B3 prevented OA progression and heterotopic cartilage formation, at least in a part through the suppression of iNOS. These results support the potential therapeutic benefits of B3 for treatment of human OA and heterotopic ossification.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Biflavonoids/pharmacology
- Biflavonoids/therapeutic use
- Cartilage, Articular/drug effects
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Catechin/pharmacology
- Catechin/therapeutic use
- Cell Differentiation
- Chondrocytes/drug effects
- Chondrocytes/metabolism
- Chondrocytes/pathology
- Disease Models, Animal
- Knee Joint/drug effects
- Knee Joint/metabolism
- Knee Joint/pathology
- Male
- Mice
- Nitric Oxide Synthase Type I/metabolism
- Ossification, Heterotopic/drug therapy
- Ossification, Heterotopic/pathology
- Ossification, Heterotopic/prevention & control
- Osteoarthritis, Knee/drug therapy
- Osteoarthritis, Knee/etiology
- Osteoarthritis, Knee/metabolism
- Osteoarthritis, Knee/pathology
- Proanthocyanidins/pharmacology
- Proanthocyanidins/therapeutic use
Collapse
Affiliation(s)
- Hailati Aini
- Department of Plastic and Reconstructive Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroki Ochi
- Department of Internal Medicine, Keio University, Tokyo, Japan
| | - Munetaka Iwata
- Division of Veterinary Surgery, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Atsushi Okawa
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Koga
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mutsumi Okazaki
- Department of Plastic and Reconstructive Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Sano
- Research and Development Division, Kikkoman Corporation, Chiba, Japan
| | - Yoshinori Asou
- Department of Orthopedic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
21
|
Forterre S, Zurbriggen A, Spreng D. Nitric oxide induces cell death in canine cruciate ligament cells by activation of tyrosine kinase and reactive oxygen species. BMC Vet Res 2012; 8:40. [PMID: 22458692 PMCID: PMC3506925 DOI: 10.1186/1746-6148-8-40] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/22/2012] [Indexed: 01/22/2023] Open
Abstract
Background There is increasing evidence suggesting that development of progressive canine cranial cruciate ligament (CCL) rupture involves a gradual degeneration of the CCL itself, initiated by a combination of factors, ranging from mechanical to biochemical. To date, knowledge is lacking to what extent cruciate disease results from abnormal biomechanics on a normal ligament or contrary how far preliminary alterations of the ligament due to biochemical factors provoke abnormal biomechanics. This study is focused on nitric oxide (NO), one of the potential biochemical factors. The NO-donor sodium nitroprusside (SNP) has been used to study NO-dependent cell death in canine cranial and caudal cruciate ligament cells and to characterize signaling mechanisms during NO-stimulation. Results Sodium nitroprusside increased apoptotic cell death dose- and time-dependently in cruciate ligamentocytes. Cells from the CCL were more susceptible to apoptosis than CaCL cells. Caspase-3 processing in response to SNP was not detected. Testing major upstream and signal transducing pathways, NO-induced cruciate ligament cell death seemed to be mediated on different levels. Specific inhibition of tyrosine kinase significantly decreased SNP-induced cell death. Mitogen activated protein kinase ERK1 and 2 are activated upon NO and provide anti-apoptotic signals whereas p38 kinase and protein kinase C are not involved. Moreover, data showed that the inhibition reactive oxygen species (ROS) significantly reduced the level of cruciate ligament cell death. Conclusions Our data support the hypothesis that canine cruciate ligamentocytes, independently from their origin (CCL or CaCL) follow crucial signaling pathways involved in NO-induced cell death. However, the difference on susceptibility upon NO-mediated apoptosis seems to be dependent on other pathways than on these tested in the present study. In both, CCL and CaCL, the activation of the tyrosine kinase and the generation of ROS reveal important signaling pathways. In perspective, new efforts to prevent the development and progression of cruciate disease may include strategies aimed at reducing ROS.
Collapse
Affiliation(s)
- Simone Forterre
- Division of Small Animal Surgery and Orthopedics, Vetsuisse Faculty Bern, Department of Clinical Veterinary Medicine, University of Bern, Länggassstrasse 128, 3012, Bern, Switzerland.
| | | | | |
Collapse
|
22
|
Yumoto K, Nifuji A, Rittling S, Tsuchiya Y, Kon S, Uede T, Denhardt D, Hemmi H, Notomi T, Hayata T, Ezura Y, Nakamoto T, Noda M. Osteopontin Deficiency Suppresses Tumor Necrosis Factor-α-Induced Apoptosis in Chondrocytes. Cartilage 2012; 3:79-85. [PMID: 26069621 PMCID: PMC4297182 DOI: 10.1177/1947603511421502] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Apoptosis of chondrocytes in articular cartilage has been observed in rheumatoid arthritis patients. However, molecules involved in such chondrocyte apoptosis in arthritic joints have not been fully understood. We previously observed that apoptosis of chondrocytes is enhanced in a murine arthritis model induced by injection with anti-type II collagen antibodies and lipopolysaccharide (mAbs/LPS), and osteopontin (OPN) deficiency suppresses chondrocyte apoptosis in this arthritis model in vivo. To understand how OPN deficiency renders resistance against chondrocyte apoptosis, we examined the cellular basis for this protection. DESIGN Chondrocytes were prepared from wild-type and OPN-deficient mouse ribs, and tumor necrosis factor (TNF)-α-induced cell death was examined based on lactate dehydrogenase (LDH) release assay and TUNEL assay. RESULTS TNF-α treatment induced LDH release in wild-type chondrocytes, while OPN deficiency suppressed such LDH release in the cultures of these cells. TNF-α-induced increase in the number of TUNEL-positive cells was observed in wild-type chondrocytes, while OPN deficiency in chondrocytes suppressed the TNF-α induction of TUNEL-positive cells. OPN deficiency suppressed TNF-α-induced increase in caspase-3 activity in chondrocytes in culture. Furthermore, OPN overexpression in chondrocytes enhanced TNF-α-induced apoptosis. CONCLUSION These results indicated that the presence of OPN in chondrocytes is involved in the susceptibility of these cells to TNF-α-induced apoptosis.
Collapse
Affiliation(s)
- K. Yumoto
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan
| | - A. Nifuji
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Y. Tsuchiya
- Immuno Biological Laboratory (IBL), Maebashi Gumma, Japan
| | - S. Kon
- Hokkaido University, Sapporo, Japan
| | - T. Uede
- Hokkaido University, Sapporo, Japan
| | | | - H. Hemmi
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan,Medical Top Track (MTT) Program, Tokyo Medical and Dental University, Tokyo, Japan
| | - T. Notomi
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan
| | - T. Hayata
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan,Global Center of Excellence Program, Tokyo Medical and Dental University, Tokyo, Japan,Core to Core Program, Tokyo Medical and Dental University, Tokyo, Japan,Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Y. Ezura
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan,Global Center of Excellence Program, Tokyo Medical and Dental University, Tokyo, Japan,Core to Core Program, Tokyo Medical and Dental University, Tokyo, Japan,Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - T. Nakamoto
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan,Global Center of Excellence Program, Tokyo Medical and Dental University, Tokyo, Japan,Core to Core Program, Tokyo Medical and Dental University, Tokyo, Japan,Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - M. Noda
- Department of Molecular Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan,Medical Top Track (MTT) Program, Tokyo Medical and Dental University, Tokyo, Japan,Global Center of Excellence Program, Tokyo Medical and Dental University, Tokyo, Japan,Core to Core Program, Tokyo Medical and Dental University, Tokyo, Japan,Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
23
|
Fernández-Moreno M, Tamayo M, Soto-Hermida A, Mosquera A, Oreiro N, Fernández-López C, Fernández JL, Rego-Pérez I, Blanco FJ. mtDNA haplogroup J modulates telomere length and nitric oxide production. BMC Musculoskelet Disord 2011; 12:283. [PMID: 22171676 PMCID: PMC3266658 DOI: 10.1186/1471-2474-12-283] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 12/15/2011] [Indexed: 01/03/2023] Open
Abstract
Background Oxidative stress due to the overproduction of nitric oxide (NO) and other oxygen reactive species (ROS), play a main role in the initiation and progression of the OA disease and leads to the degeneration of mitochondria. Therefore, the goal of this work is to describe the difference in telomere length of peripheral blood leukocytes (PBLs) and Nitric Oxide (NO) production between mitochondrial DNA (mtDNA) haplogroup J and non-J carriers, as indirect approaches of oxidative stress. Methods The telomere length of PBL was analyzed in DNA samples from 166 healthy controls (114 J and 52 non-J) and 79 OA patients (41 J and 38 non-J) by means of a validated qPCR method. The NO production was assessed in 7 carriers of the haplogroup J and 27 non-J carriers, by means of the colorimetric reaction of the Griess reagent in supernatants of cultured chondrocytes. Inducible nitric oxide synthase (iNOS) mRNA from these samples was analyzed by qPCR. Appropiated statistical analyses were performed Results Carriers of the haplogroup J showed a significantly longer telomere length of PBLs than non-J carriers, regardless of age, gender and diagnosis (p = 0.025). Cultured chondrocytes carrying the mtDNA haplogroup J also showed a lower NO production than non-J carriers (p = 0.043). No significant correlations between age and telomore length of PBLs were detected neither for carriers of the haplogroup J nor for non-J carriers. A strong positive correlation between NO production and iNOS expression was also observed (correlation coefficient = 0.791, p < 0.001). Conclusion The protective effect of the mtDNA haplogroup J in the OA disease arise from a lower oxidative stress in carriers of this haplogroup, since this haplogroup is related to lower NO production and hence longer telomere length of PBLs too.
Collapse
Affiliation(s)
- Mercedes Fernández-Moreno
- INIBIC-Complejo Hospitalario Universitario A Coruña (CHUAC), Rheumatology Division, As Xubias 84, 15006-A Coruña, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Backus JD, Furman BD, Swimmer T, Kent CL, McNulty AL, Defrate LE, Guilak F, Olson SA. Cartilage viability and catabolism in the intact porcine knee following transarticular impact loading with and without articular fracture. J Orthop Res 2011; 29:501-10. [PMID: 21337389 PMCID: PMC3282382 DOI: 10.1002/jor.21270] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 08/30/2010] [Indexed: 02/04/2023]
Abstract
Posttraumatic arthritis commonly develops following articular fracture. The objective of this study was to develop a closed joint model of transarticular impact with and without creation of an articular fracture that maintains the physiologic environment during loading. Fresh intact porcine knees were preloaded and impacted at 294 J via a drop track. Osteochondral cores were obtained from the medial and lateral aspects of the femoral condyles and tibial plateau. Chondrocyte viability was assessed at days 0, 3, and 5 postimpact in sham, impacted nonfractured, and impacted fractured joints. Total matrix metalloproteinase (MMP) activity, aggrecanase (ADAMTS-4) activity, and sulfated glycosaminoglycan (S-GAG) release were measured in culture media from days 3 and 5 posttrauma. No differences were observed in chondrocyte viability of impacted nonfractured joints (95.9 ± 6.9%) when compared to sham joints (93.8 ± 7.7%). In impacted fractured joints, viability of the fractured edge was 40.5 ± 27.6% and significantly lower than all other sites, including cartilage adjacent to the fractured edge (p < 0.001). MMP and aggrecanase activity and S-GAG release were significantly increased in specimens from the fractured edge. This study showed that joint impact resulting in articular fracture significantly decreased chondrocyte viability, increased production of MMPs and aggrecanases, and enhanced S-GAG release, whereas the same level of impact without fracture did not cause such changes.
Collapse
Affiliation(s)
- Jonathon D Backus
- Division of Orthopaedic Surgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Mitochondrial DNA damage is involved in apoptosis caused by pro-inflammatory cytokines in human OA chondrocytes. Osteoarthritis Cartilage 2010; 18:424-32. [PMID: 19822235 DOI: 10.1016/j.joca.2009.09.008] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 09/23/2009] [Accepted: 09/27/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Pro-inflammatory cytokines play a pivotal role in cartilage destruction during the progression of osteoarthritis (OA). Additionally, these cytokines are capable to generate reactive oxygen and nitrogen species within chondrocytes. Mitochondrion is a prime target of oxidative damage and an important player in aging and degenerative processes. The purpose of the present study was to investigate whether these cytokines will alter the mitochondrial DNA (mtDNA) integrity and mitochondrial function in both normal and osteoarthritic human chondrocytes. DESIGN Primary normal and osteoarthritic human chondrocyte cultures were exposed to various concentrations of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) for different time. Following exposure, chondrocytes were evaluated for mitochondrial DNA damage, ATP production, changes in mitochondrial transcription, and apoptosis. Adenoviral vectors were used to deliver DNA repair enzyme hOGG1 to mitochondria. RESULTS Pro-inflammatory cytokines IL-1beta and TNF-alpha disturb mitochondrial function in human chondrocytes by inducing mitochondrial DNA damage, decreasing energy production and mitochondrial transcription, which correlated with the induction of apoptosis. Increased NO production was the key factor responsible for accumulation of mtDNA damage after cytokine exposure. Mitochondrial superoxide production was also enhanced following pro-inflammatory cytokine exposure. OA chondrocyte mitochondria were more susceptible to damage induced by pro-inflammatory cytokines then mitochondria from normal chondrocytes. Protection of human chondrocytes from mtDNA damage by the mitochondria-targeted DNA repair enzyme hOGG1 rescued mtDNA integrity, preserved ATP levels, reestablished mitochondrial transcription, and significantly diminished apoptosis following IL-1beta and TNF-alpha exposure. CONCLUSION Mitochondrion is an important target in pro-inflammatory cytokine toxicity, maintaining of mitochondrial DNA integrity is necessary to prevent chondrocytes from apoptosis induced by IL-1beta and TNF-alpha.
Collapse
|
26
|
Seol JW, Lee HB, Lee YJ, Lee YH, Kang HS, Kim IS, Kim NS, Park SY. Hypoxic resistance to articular chondrocyte apoptosis - a possible mechanism of maintaining homeostasis of normal articular cartilage. FEBS J 2009; 276:7375-85. [DOI: 10.1111/j.1742-4658.2009.07451.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Grishko V, Xu M, Ho R, Mates A, Watson S, Kim JT, Wilson GL, Pearsall AW. Effects of hyaluronic acid on mitochondrial function and mitochondria-driven apoptosis following oxidative stress in human chondrocytes. J Biol Chem 2009; 284:9132-9. [PMID: 19193642 PMCID: PMC2666563 DOI: 10.1074/jbc.m804178200] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 01/22/2009] [Indexed: 11/06/2022] Open
Abstract
Hyaluronic acid is widely used in the treatment of osteoarthritis and exerts significant chondroprotective effects. The exact mechanisms of its chondroprotective action are not yet fully elucidated. Human articular chondrocytes actively produce reactive oxygen and nitrogen species capable of causing cellular dysfunction and death. A growing body of evidence indicates that mitochondrial dysfunction and mitochondrial DNA damage play a causal role in disorders linked to excessive generation of oxygen free radicals. We hypothesized that the chondroprotective effects of hyaluronic acid on oxidatively stressed chondrocytes are due to preservation of mitochondrial function and amelioration of mitochondria-driven apoptosis. When primary human chondrocyte cultures were exposed to reactive oxygen or nitrogen species generators, mitochondrial DNA damage along with mitochondrial dysfunction and mitochondria-driven apoptosis accumulated as a consequence. In addition, cytokine-treated primary human chondrocytes showed increased levels of mitochondrial DNA damage. Pretreatment of chondrocytes with hyaluronic acid caused a decrease of mitochondrial DNA damage, enhanced mitochondrial DNA repair capacity and cell viability, preservation of ATP levels, and amelioration of apoptosis. The results of these studies demonstrate that enhanced chondrocyte survival and improved mitochondrial function under conditions of oxidative injury are probably important therapeutic mechanisms for the actions of hyaluronic acid in osteoarthritis.
Collapse
Affiliation(s)
- Valentina Grishko
- Department of Cell Biology, University of South Alabama, Mobile, Alabama 36688, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wu GJ, Chen TG, Chang HC, Chiu WT, Chang CC, Chen RM. Nitric oxide from both exogenous and endogenous sources activates mitochondria-dependent events and induces insults to human chondrocytes. J Cell Biochem 2008; 101:1520-31. [PMID: 17492650 DOI: 10.1002/jcb.21268] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
During inflammation, overproduction of nitric oxide (NO) can damage chondrocytes. In this study, we separately evaluated the toxic effects of exogenous and endogenous NO on human chondrocytes and their possible mechanisms. Human chondrocytes were exposed to sodium nitroprusside (SNP), an NO donor, or a combination of lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) as the exogenous and endogenous sources of NO, respectively. Administration of SNP or a combination of LPS and IFN-gamma in human chondrocytes increased cellular NO levels but decreased cell viability. Exposure to exogenous or endogenous NO significantly induced apoptosis of human chondrocytes. When treated with exogenous or endogenous NO, the mitochondrial membrane potential time-dependently decreased. Exposure to exogenous or endogenous NO significantly enhanced cellular reactive oxygen species (ROS) and cytochrome c (Cyt c) levels. Administration of exogenous or endogenous NO increased caspase-3 activity and consequently induced DNA fragmentation. Suppression of caspase-3 activation by Z-DEVD-FMK decreased NO-induced DNA fragmentation and cell apoptosis. Similar to SNP, exposure of human chondrocytes to S-nitrosoglutathione (GSNO), another NO donor, caused significant increases in Cyt c levels, caspase-3 activity, and DNA fragmentation, and induced cell apoptosis. Pretreatment with N-monomethyl arginine (NMMA), an inhibitor of NO synthase, significantly decreased cellular NO levels, and lowered endogenous NO-induced alterations in cellular Cyt c amounts, caspase-3 activity, DNA fragmentation, and cell apoptosis. Results of this study show that NO from exogenous and endogenous sources can induce apoptotic insults to human chondrocytes via a mitochondria-dependent mechanism.
Collapse
Affiliation(s)
- Gong-Jhe Wu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
29
|
Wang SH, Van Antwerp M, Kuick R, Gauger PG, Doherty GM, Fan YY, Baker JR. Microarray analysis of cytokine activation of apoptosis pathways in the thyroid. Endocrinology 2007; 148:4844-52. [PMID: 17640998 DOI: 10.1210/en.2007-0126] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It has been suggested that Fas-mediated apoptosis plays an important role in the pathogenesis of autoimmune thyroid diseases. Our previous studies have demonstrated that normal primary thyroid epithelial cells are resistant to Fas-mediated apoptosis, but the resistance can be overcome by pretreatment with a combination of interferon-gamma (IFN-gamma) and IL-1beta. To understand the molecular mechanism responsible for the IFN-gamma/IL-1beta effects, we profiled changes in the transcription induced by these two cytokines in normal human thyroid cells, using cDNA microarrays. We found that IFN-gamma/IL-1beta showed a significant increase in apoptosis-related genes such as inducible nitric oxide synthase (iNOS), receptor-interacting protein 2 (RIP2), and caspases 10. These increases were confirmed by other methods, including real-time PCR and Western blot. Furthermore, the sensitization of primary thyroid epithelial cells to Fas-mediated apoptosis by IFN-gamma/IL-1beta was significantly blocked by a general caspase inhibitor, z-VAD, or by the combination of two specific individual caspase inhibitors. In addition, our results showed that IFN-gamma/IL-1beta enhance p38 MAPK phosphorylation and that SB 203580, a p38 MAPK inhibitor, can inhibit IFN-gamma/IL-1beta-induced p38 MAPK phosphorylation. SB 203580 also significantly prevented cytokine-induced iNOS expression and caspase activation and thus blocked Fas-mediated apoptosis of thyroid cells sensitized by IFN-gamma/IL-1beta. In conclusion, our data suggest that both p38 MAPK and iNOS are involved in IFN-gamma/IL-1beta-induced sensitization of the thyroid cells to Fas-mediated apoptosis via the activation of caspases 3, 7, and 10 and that this pathway may be further activated by BID. This hints that inflammatory cytokines regulate death-receptor-mediated apoptosis at multiple points in the process.
Collapse
Affiliation(s)
- Su He Wang
- Department of Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-0648, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Gyger O, Botteron C, Doherr M, Zurbriggen A, Schawalder P, Spreng D. Detection and distribution of apoptotic cell death in normal and diseased canine cranial cruciate ligaments. Vet J 2007; 174:371-7. [PMID: 16956780 DOI: 10.1016/j.tvjl.2006.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 06/15/2006] [Accepted: 07/03/2006] [Indexed: 11/24/2022]
Abstract
One of the possible initiating factors in canine cranial cruciate ligament (CCL) rupture could be an abnormal pattern of ligament cell death. This study compared apoptotic cell death in sections of ruptured CCLs and normal controls, and examined nitric oxide (NO) production in joint tissues and correlated this to apoptosis. CCLs and cartilage from the lateral femoral condyle were harvested from 10 healthy dogs and 15 dogs with CCL rupture and ligaments were further processed to detect cleaved caspase-3 and to determine supernatant NO production in explant cultures. Apoptotic activity was greater in ruptured ligaments compared to controls. NO in ligaments showed a moderate but significant positive correlation with caspase-positive cells. The results suggest that increased apoptosis has a role in CCL rupture and that apoptosis may be influenced by local NO production.
Collapse
Affiliation(s)
- Odile Gyger
- Division of Small Animal Surgery and Orthopaedics, Vetsuisse Faculty, University of Bern, Länggassstrasse 128, PO Box 3001, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
31
|
Wu XJ, Zheng YJ, Cui YY, Zhu L, Lu Y, Chen HZ. Propofol attenuates oxidative stress-induced PC12 cell injury via p38 MAP kinase dependent pathway. Acta Pharmacol Sin 2007; 28:1123-8. [PMID: 17640472 DOI: 10.1111/j.1745-7254.2007.00610.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIM To investigate the neuroprotective effect of propofol and its intracellular mechanism on neurons in vitro. METHODS Cell viability was determined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide reduction. Apoptotic cell death was determined by Hoechst 33258 staining and a fluorescence-activated cell sorter. The caspase-3 activity was measured by fluorometric assay. Mitogen-activated protein (MAP) kinase phosphorylation was detected with Western blotting. RESULTS The pretreatment of rat pheochromocytoma cell line PC12 with propofol (1-10 micromol/L) resulted in a significant recovery from hydrogen peroxide (H2O2)-induced cell death and the inhibition of H2O2 induced caspase-3 activation and PC12 cell apoptosis. Propofol inhibited the H2O2-induced p38 MAP kinase, but not c-Jun N-terminal kinase or extracellular signal-regulated kinase 1 and 2 activations. CONCLUSION Propofol might attenuate H2O2-induced PC12 cell death through the inhibition of signaling pathways mediated by the p38 MAP kinase.
Collapse
Affiliation(s)
- Xing-jun Wu
- Department of Pharmacy, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
The production of nitric oxide (NO) by chondrocytes is increased in human osteoarthritis. The excessive production of NO inhibits matrix synthesis and promotes its degradation. Furthermore, by reacting with oxidants such as superoxide anion, NO promotes cellular injury and renders the chondrocyte susceptible to cytokine-induced apoptosis. Thus, NO produced by activated chondrocytes in diseased cartilage may modulate disease progression in osteoarthritis and should therefore be considered a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Jose U Scher
- The Division of Rheumatology, New York University School of Medicine/New York University Hospital for Joint Diseases, 301 East 17th Street, New York, NY 10003, USA
| | | | | |
Collapse
|
33
|
Hitchcock AM, Yates KE, Shortkroff S, Costello CE, Zaia J. Optimized extraction of glycosaminoglycans from normal and osteoarthritic cartilage for glycomics profiling. Glycobiology 2006; 17:25-35. [PMID: 16980326 PMCID: PMC2630472 DOI: 10.1093/glycob/cwl046] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Articular cartilage is a highly specialized smooth connective tissue whose proper functioning depends on the maintenance of an extracellular matrix consisting of an integrated assembly of collagens, glycoproteins, proteoglycans (PG), and glycosaminoglycans. Isomeric chondroitin sulfate glycoforms differing in position and degree of sulfation and uronic acid epimerization play specific and distinct functional roles during development and disease onset. This work introduces a novel glycosaminoglycan extraction method for the quantification of mixtures of chondroitin sulfate oligosaccharides from intact cartilage tissue for mass spectral analysis. Glycosaminoglycans were extracted from intact cartilage samples using a combination of ethanol precipitation and enzymatic release followed by reversed-phase and strong anion exchange solid-phase extraction steps. Extracted chondroitin sulfate glycosaminoglycans were partially depolymerized using chondroitinases, labeled with 2-anthranilic acid-d(4) (2-AA) and subjected to size exclusion chromatography with online electrospray ionization mass spectrometric detection in the negative ion mode. The method presented herein enabled simultaneous determination of sulfate position and uronic acid epimerization in juvenile bovine and adult human cartilage samples. The method was applied to a series of 13 adult human cartilage explants. Standard deviation of the mean for the measurements was 1.6 on average. Coefficients of variation were approximately 4% for all compositions of 40% or greater. These results show that the new method has sufficient accuracy to allow determination of topographical distribution of glycoforms in connective tissue.
Collapse
Affiliation(s)
- Alicia M. Hitchcock
- Department of Biochemistry, Boston University School of Medicine, 670 Albany St., Boston, Massachusetts 02118
| | - Karen E. Yates
- Department of Orthopedic Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston Massachusetts 02115
| | - Sonya Shortkroff
- Department of Orthopedic Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston Massachusetts 02115
| | - Catherine E. Costello
- Department of Biochemistry, Boston University School of Medicine, 670 Albany St., Boston, Massachusetts 02118
| | - Joseph Zaia
- Department of Biochemistry, Boston University School of Medicine, 670 Albany St., Boston, Massachusetts 02118
- To whom correspondence should be addressed: Department of Biochemistry, Boston University School of Medicine, MS Resource, 670 Albany St., Boston, MA 02118. Telephone: (617)-638-6762. Fax: (617)-638-6760.
| |
Collapse
|
34
|
Green DM, Noble PC, Ahuero JS, Birdsall HH. Cellular events leading to chondrocyte death after cartilage impact injury. ACTA ACUST UNITED AC 2006; 54:1509-17. [PMID: 16649187 DOI: 10.1002/art.21812] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE We undertook this study to test our postulate that leukocytes extend the zone of injury in cartilage after acute mechanical trauma. METHODS Fresh cadaveric canine femoral condyles were subjected to 20-25-MPa impact injury. Condyle explants or dispersed chondrocytes were cultured with autologous blood mononuclear leukocytes (MNLs). Viability of chondrocytes at varying distances from the impact site was assessed by trypan blue exclusion. RESULTS Mechanical injury caused a significant loss of viable chondrocytes over 7 days, even in cartilage >10 mm from the impact site. After biomechanical stress, death of cells within 10 mm of the impact could be largely prevented by addition of N(G)-monomethyl-L-arginine to inhibit nitric oxide (NO) generation. Chondrocytes within 10 mm of the impact were also susceptible to killing by living MNLs, but not by incubation with the supernatants of endotoxin-activated MNLs. Chondrocytes in this vulnerable zone expressed intercellular adhesion molecule 1 (ICAM-1) (CD54), facilitating attachment of MNLs that localized adjacent to the chondrocytes. Leukocytes killed dispersed chondrocytes harvested from the impact zone by generation of reactive oxygen species. Leukocyte-mediated killing could be blocked by desferoxamine or by antibodies to CD18, which prevent attachment of leukocytes to ICAM-1-expressing chondrocytes. CONCLUSION Our data suggest that after mechanical injury, chondrocytes distant from the site may be killed through the generation of NO. Inflammatory leukocytes further extend the zone of chondrocyte death by adhering to chondrocytes expressing ICAM-1 and by inducing the accumulation of free oxygen radicals in the chondrocyte cytoplasm. Patients may benefit from therapies that reduce infiltration of inflammatory leukocytes into acutely injured cartilage.
Collapse
Affiliation(s)
- D M Green
- Baylor College of Medicine, Houston, Texas, USA
| | | | | | | |
Collapse
|
35
|
D'Lima D, Hermida J, Hashimoto S, Colwell C, Lotz M. Caspase inhibitors reduce severity of cartilage lesions in experimental osteoarthritis. ACTA ACUST UNITED AC 2006; 54:1814-21. [PMID: 16736522 DOI: 10.1002/art.21874] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To examine the therapeutic efficacy of caspase inhibitors in experimental osteoarthritis (OA). METHODS Experimental OA was induced in rabbits by anterior cruciate ligament transection (ACLT). Rabbits were treated with intraarticular (i.a.) injections of caspase inhibitors 3 times per week starting 1 week postoperatively. Animals were killed 9 weeks after ACLT, for macroscopic, histologic, and immunohistochemical assessment of the knee joints. RESULTS I.a. administration of the pan-caspase inhibitor Z-VAD-FMK significantly reduced cartilage degradation, as assessed by macroscopic and microscopic criteria. Untreated knees showed large numbers of chondrocytes with active caspase 3 and the p85 fragment of poly(ADP-ribose) polymerase (PARP p85) that is generated during apoptosis. The frequency of cells positive for PARP p85 and active caspase 3 was reduced in Z-VAD-FMK-treated knees. Inhibitors specific for caspase 3 or caspase 8 showed no significant efficacy. Caspase 1 inhibitor and the combination of caspase 3 and caspase 8 inhibitors reduced OA pathology. CONCLUSION These results provide direct support for a role of cell death in OA pathogenesis. Caspase inhibitors reduced the severity of cartilage lesions in experimental OA, suggesting that they may have disease-modifying activity in human OA.
Collapse
Affiliation(s)
- Darryl D'Lima
- The Scripps Research Institute and the Scripps Clinic, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
36
|
Shakibaei M, Schulze-Tanzil G, John T, Mobasheri A. Curcumin protects human chondrocytes from IL-l1beta-induced inhibition of collagen type II and beta1-integrin expression and activation of caspase-3: an immunomorphological study. Ann Anat 2006; 187:487-97. [PMID: 16320828 DOI: 10.1016/j.aanat.2005.06.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interleukin 1beta (IL-1beta) is a pleiotropic pro-inflammatory cytokine that plays a key role in mediating cartilage degradation in osteoarticular disorders such as osteoarthritis (OA) and rheumatoid arthritis (RA). At the cellular level, IL-1beta activates matrix degrading enzymes, down-regulates expression of matrix components and induces chondrocyte apoptosis. Curcumin (diferuloylmethane) is an anti-inflammatory phytochemical agent that has recently been shown to antagonize the pro-inflammatory effects of cytokines in chondrocytes and other cells. To test the hypothesis that curcumin also protects chondrocytes from morphological alterations induced by IL-1beta, we investigated its in vitro effects on apoptotic signalling proteins and key cartilage-specific matrix components in IL-1beta-stimulated chondrocytes. Human articular chondrocytes were pre-treated with 10 ng/mI IL-1beta alone for 30 min before being co-treated with IL-1beta and 50 microM curcumin for 5, 15 or 30 min, respectively. The ultrastructural morphology of chondrocytes was investigated by transmission electron microscopy. The production of collagen type II, the adhesion and signal transduction receptor beta1-integrin, the apoptosis marker activated caspase-3 was analysed by immunohistochemistry, immunoelectron microscopy and Western blotting. Transmission electron microscopy of chondrocytes stimulated with IL-1beta revealed early degenerative changes which were relieved by curcumin co-treatment. The suppression of collagen type II and beta1-integrin synthesis by IL-1beta was inhibited by curcumin. Additionally, curcumin antagonized IL-1beta-induced caspase-3 activation in a time-dependent manner. This study clearly demonstrates that curcumin exerts anti-apoptotic and anti-catabolic effects on IL-1beta-stimulated articular chondrocytes. Therefore curcumin may have novel therapeutic potential as an adjunct nutraceutical chondroprotective agent for treating OA and related osteoarticular disorders.
Collapse
Affiliation(s)
- Mehdi Shakibaei
- Musculoskeletal Research Group, Institute of Anatomy, Ludwig-Maximilians-University Munich, Pettenkoferstrasse 11, 80336 Munich, Germany.
| | | | | | | |
Collapse
|
37
|
Daniel T, Alexander M, Hubbard WJ, Chaudry IH, Choudhry MA, Schwacha MG. Nitric oxide contributes to the development of a post-injury Th2 T-cell phenotype and immune dysfunction. J Cell Physiol 2006; 208:418-27. [PMID: 16642464 DOI: 10.1002/jcp.20677] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Severe injury induces immune dysfunction resulting in increased susceptibility to opportunistic infections. Previous studies from our laboratory have demonstrated that post-burn immunosuppression is mediated by nitric oxide (NO) due to the increased expression of macrophage inducible nitric oxide synthase (iNOS). In contrast, others suggest that injury causes a phenotypic imbalance in the regulation of Th1- and Th2 immune responses. It is unclear whether or not these apparently divergent mediators of immunosuppression are interrelated. To study this, C57BL/6 mice were subjected to major burn injury and splenocytes were isolated 7 days later and stimulated with antiCD3. Burn injury induced NO-mediated suppression of proliferative responses that was reversed in the presence of the NOS inhibitor L-monomethyl-L-arginine and subsequently mimicked by the addition of the NO donor, S-nitroso-N-acetyl-penicillamine (SNAP). SNAP also dose-dependently suppressed IFN-gamma and IL-2 (Th1), but not IL-4 and IL-10 (Th2) production. Delaying the addition of SNAP to the cultures by 24 h prevented the suppression of IFN-gamma production. The Th2 shift in immune phenotype was independent of cGMP and apoptosis. The addition of SNAP to cell cultures also induced apoptosis, attenuated mitochondrial oxidative metabolism and induced mitochondrial membrane depolarization. However, these detrimental cellular effects of NO were observed only at supra-physiologic concentrations (>250 microM). In conclusion, these findings support the concept that NO induces suppression of cell-mediated immune responses by selective action on Th1 T cells, thereby promoting a Th2 response.
Collapse
Affiliation(s)
- Tanjanika Daniel
- Department of Surgery, Center for Surgical Research, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
38
|
Jacques C, Gosset M, Berenbaum F, Gabay C. The role of IL-1 and IL-1Ra in joint inflammation and cartilage degradation. VITAMINS AND HORMONES 2006; 74:371-403. [PMID: 17027524 DOI: 10.1016/s0083-6729(06)74016-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interleukin (IL)-1 is a cytokine that plays a major role in inflammatory responses in the context of infections and immune-mediated diseases. IL-1 refers to two different cytokines, termed IL-1alpha and IL-1beta, produced from two genes. IL-1alpha and IL-1beta are produced by different cell types following stimulation by bacterial products, cytokines, and immune complexes. Monocytes/macrophages are the primary source of IL-1beta. Both cytokines do not possess leader peptide sequences and do not follow a classical secretory pathway. IL-1alpha is mainly cell associated, whereas IL-1beta can be released from activated cells after cleavage of its amino-terminal region by caspase-1. IL-1 is present in the synovial tissue and fluids of patients with rheumatoid arthritis. Several in vitro studies have shown that IL-1 stimulates the production of mediators such as prostaglandin E(2), nitric oxide, cytokines, chemokines, and adhesion molecules that are involved in articular inflammation. Furthermore, IL-1 stimulates the synthesis and activity of matrix metalloproteinases and other enzymes involved in cartilage destruction in rheumatoid arthritis and osteoarthritis. The effects of IL-1 are inhibited in vitro and in vivo by natural inhibitors such as IL-1 receptor antagonist and soluble receptors. IL-1 receptor antagonist belongs to the IL-1 family of cytokines and binds to IL-1 receptors but does not induce any intracellular response. IL-1 receptor antagonist inhibits the effect of IL-1 by blocking its interaction with cell surface receptors. The use of IL-1 inhibitors in experimental models of inflammatory arthritis and osteoarthritis has provided a strong support for the role of IL-1 in the pathogeny of these diseases. Most importantly, these findings have been confirmed in clinical trials in patients with rheumatic diseases. Additional strategies aimed to block the effect of IL-1 are tested in clinical trials.
Collapse
Affiliation(s)
- Claire Jacques
- UMR 7079 CNRS, Physiology and Physiopathology Laboratory, University Paris 6, Paris, 75252 Cedex 5, France
| | | | | | | |
Collapse
|
39
|
Yasuhara R, Miyamoto Y, Akaike T, Akuta T, Nakamura M, Takami M, Morimura N, Yasu K, Kamijo R. Interleukin-1beta induces death in chondrocyte-like ATDC5 cells through mitochondrial dysfunction and energy depletion in a reactive nitrogen and oxygen species-dependent manner. Biochem J 2005; 389:315-23. [PMID: 15784009 PMCID: PMC1175108 DOI: 10.1042/bj20041996] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 03/17/2005] [Accepted: 03/23/2005] [Indexed: 12/16/2022]
Abstract
IL-1 (interleukin-1) acts as a key mediator of the degeneration of articular cartilage in RA (rheumatoid arthritis) and OA (osteoarthritis),where chondrocyte death is observed. It is still controversial, however, whether IL-1 induces chondrocyte death. In the present study, the viability of mouse chondrocyte-like ATDC5 cells was reduced by the treatment with IL-1beta for 48 h or longer. IL-1beta augmented the expression of the catalytic gp91 subunit of NADPH oxidase, gp91phox, as well as inducible NO synthase in ATDC5 cells. Generation of nitrated guanosine and tyrosine suggested the formation of reactive nitrogen species including ONOO- (peroxynitrite), a reaction product of NO and O2-, in ATDC5 cells and rat primary chondrocytes treated with IL-1beta. Death of ATDC5 cells after IL-1beta treatment was prevented by an NADPH-oxidase inhibitor, AEBSF[4-(2-aminoethyl)benzene-sulphonyl fluoride], an NO synthase inhibitor, L-NAME (NG-nitro-L-arginine methyl ester), and a ONOO- scavenger, uric acid. The viability of ATDC5 cells was reduced by the ONOO(-)-generator 3-(4-morpholinyl)sydnonimine hydrochloride, but not by either the NO-donor 1-hydroxy-2-oxo-3-(N-methyl-2-aminopropyl)-3-methyl-1-triazene or S-nitrosoglutathione. Disruption of mitochondrial membrane potential and ATP deprivation were observed in IL-1beta-treated ATDC5 cells, both of which were restored by L-NAME, AEBSF or uric acid. On the other hand, no morphological or biochemical signs indicating apoptosis were observed in these cells. These results suggest that the death of chondrocyte-like ATDC5 cells was mediated at least in part by mitochondrial dysfunction and energy depletion through ONOO- formation after IL-1beta treatment.
Collapse
Affiliation(s)
- Rika Yasuhara
- *Department of Biochemistry, Showa University School of Dentistry, Tokyo 142-8555, Japan
| | - Yoichi Miyamoto
- *Department of Biochemistry, Showa University School of Dentistry, Tokyo 142-8555, Japan
- To whom correspondence should be addressed (email )
| | - Takaaki Akaike
- †Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Teruo Akuta
- †Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masanori Nakamura
- ‡Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, Tokyo 142-8555, Japan
| | - Masamichi Takami
- *Department of Biochemistry, Showa University School of Dentistry, Tokyo 142-8555, Japan
| | - Naoko Morimura
- *Department of Biochemistry, Showa University School of Dentistry, Tokyo 142-8555, Japan
| | - Kayoko Yasu
- *Department of Biochemistry, Showa University School of Dentistry, Tokyo 142-8555, Japan
| | - Ryutaro Kamijo
- *Department of Biochemistry, Showa University School of Dentistry, Tokyo 142-8555, Japan
| |
Collapse
|
40
|
Hermanns P, Bertuch AA, Bertin TK, Dawson B, Schmitt ME, Shaw C, Zabel B, Lee B. Consequences of mutations in the non-coding RMRP RNA in cartilage-hair hypoplasia. Hum Mol Genet 2005; 14:3723-40. [PMID: 16254002 DOI: 10.1093/hmg/ddi403] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cartilage-hair hypoplasia (CHH), also known as metaphyseal chondrodysplasia McKusick type (OMIM no. 250250), is an autosomal recessive, multi-systemic disease characterized by disproportionate short stature, fine and sparse hair, deficient cellular immunity and a predisposition to malignancy. It is caused by mutations in RMRP, the RNA component of the ribonucleoprotein complex RNase MRP, and, thus, CHH represents one of few Mendelian disorders caused by mutations in a nuclear encoded, non-coding RNA. While studies in yeast indicate that RMRP contributes to diverse cellular functions, the pathogenesis of the human condition is unknown. Studies of our CHH patient cohort revealed mutations in both the promoter and the transcribed region of RMRP. While mutations in the promoter abolished transcription in vitro, RMRP RNA levels in patients with transcribed mutations were also decreased suggesting an unstable RNA. RMRP mutations introduced into the yeast ortholog, NME1, exhibited normal mitochondrial function, chromosomal segregation and cell cycle progression, while a CHH fibroblast cell line exhibited normal mitochondrial content. However, the most commonly found mutation in CHH patients, 70A>G, caused an alteration in ribosomal processing by altering the ratio of the short versus the long form of the 5.8S rRNA in yeast. Transcriptional profiling of CHH patient RNAs showed upregulation of several cytokines and cell cycle regulatory genes, one of which has been implicated in chondrocyte hypertrophy. These data suggest that alteration of ribosomal processing in CHH is associated with altered cytokine signalling and cell cycle progression in terminally differentiating cells in the lymphocytic and chondrocytic cell lineages.
Collapse
Affiliation(s)
- Pia Hermanns
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Iacob S, Knudson CB. Hyaluronan fragments activate nitric oxide synthase and the production of nitric oxide by articular chondrocytes. Int J Biochem Cell Biol 2005; 38:123-33. [PMID: 16181799 PMCID: PMC3139231 DOI: 10.1016/j.biocel.2005.08.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 07/08/2005] [Accepted: 08/18/2005] [Indexed: 01/28/2023]
Abstract
Chondrocyte CD44 receptors anchor hyaluronan to the cell surface, enabling the assembly and retention of proteoglycan aggregates in the pericellular matrix. Hyaluronan-CD44 interactions also provide signaling important for maintaining cartilage homeostasis. Disruption of chondrocyte-hyaluronan contact alters CD44 occupancy, initiating alternative signaling cascades. Treatment with hyaluronan oligosaccharides is one approach to uncouple CD44 receptors from its native ligand, hyaluronan. In bovine articular chondrocytes, treatment with hyaluronan oligosaccharides or purified hyaluronan hexasaccharides induced the production of nitric oxide that mirrored nitric oxide production following interleukin-1 treatment. In contrast, 120 and 1,260 kDa hyaluronan did not induce production of nitric oxide. Human chondrocytes responded similarly to treatment with hyaluronan or hyaluronan oligosaccharides. Nitric oxide production from chondrocytes was mediated by activation of the inducible nitric oxide synthase, as confirmed by mRNA expression and inhibition of nitric oxide production by diphenyleneiodonium. Co-treatment of chondrocytes with hyaluronan oligosaccharides and interleukin-1 did not demonstrate additive effects. Blocking interleukin-1 receptors with an antagonist did not abolish the production of nitric oxide induced by treatment with hyaluronan oligosaccharides. Moreover, only COS-7 following transfection with a pCD44, not the CD44-null parental cells, responded to treatment with hyaluronan oligosaccharides by releasing nitric oxide. This study demonstrates a novel signaling potential by hyaluronan fragments, in lieu of endogenous hyaluronan-chondrocyte interactions, resulting in the activation of inducible nitric oxide synthase.
Collapse
Affiliation(s)
| | - Cheryl B. Knudson
- Corresponding author. Tel.: +1 312 942 8249; fax: +1 312 942 3053., (C.B. Knudson)
| |
Collapse
|
42
|
Yates KE, Shortkroff S, Reish RG. Wnt Influence on Chondrocyte Differentiation and Cartilage Function. DNA Cell Biol 2005; 24:446-57. [PMID: 16008513 DOI: 10.1089/dna.2005.24.446] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Wnt signaling network regulates chondrocyte differentiation, proliferation, and maturation during embryonic limb development. In this review, we summarize studies of Wnt signaling during the chondrocyte life cycle in avian and mammalian systems, both before and after birth. Recent reports that implicate abnormal Wnt signaling as a contributing factor to pathogenic joint conditions are also discussed. In addition, we show new data that suggests Wnt signaling is active in adult cartilage. Overall, it appears that the Wnt network has dual roles in cartilage, as has been described in other tissues: it is an important regulator of chondrocyte development, but deregulated signaling is detrimental to mature tissues and may lead to disease.
Collapse
Affiliation(s)
- Karen E Yates
- Department of Orthopedic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
43
|
Nabbe KCAM, van Lent PLEM, Holthuysen AEM, Sloëtjes AW, Koch AE, Radstake TRDJ, van den Berg WB. Local IL-13 gene transfer prior to immune-complex arthritis inhibits chondrocyte death and matrix-metalloproteinase-mediated cartilage matrix degradation despite enhanced joint inflammation. Arthritis Res Ther 2005; 7:R392-401. [PMID: 15743487 PMCID: PMC1065337 DOI: 10.1186/ar1502] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 12/09/2004] [Accepted: 12/22/2004] [Indexed: 11/30/2022] Open
Abstract
During immune-complex-mediated arthritis (ICA), severe cartilage destruction is mediated by Fcgamma receptors (FcgammaRs) (mainly FcgammaRI), cytokines (e.g. IL-1), and enzymes (matrix metalloproteinases (MMPs)). IL-13, a T helper 2 (Th2) cytokine abundantly found in synovial fluid of patients with rheumatoid arthritis, has been shown to reduce joint inflammation and bone destruction during experimental arthritis. However, the effect on severe cartilage destruction has not been studied in detail. We have now investigated the role of IL-13 in chondrocyte death and MMP-mediated cartilage damage during ICA. IL-13 was locally overexpressed in knee joints after injection of an adenovirus encoding IL-13 (AxCAhIL-13), 1 day before the onset of arthritis; injection of AxCANI (an empty adenoviral construct) was used as a control. IL-13 significantly increased the amount of inflammatory cells in the synovial lining and the joint cavity, by 30% to 60% at day 3 after the onset of ICA. Despite the enhanced inflammatory response, chondrocyte death was diminished by two-thirds at days 3 and 7. The mRNA level of FcgammaRI, a receptor shown to be crucial in the induction of chondrocyte death, was significantly down-regulated in synovium. Furthermore, MMP-mediated cartilage damage, measured as neoepitope (VDIPEN) expression using immunolocalization, was halved. In contrast, mRNA levels of MMP-3, -9, -12, and -13 were significantly higher and IL-1 protein, which induces production of latent MMPs, was increased fivefold by IL-13. This study demonstrates that IL-13 overexpression during ICA diminished both chondrocyte death and MMP-mediated VDIPEN expression, even though joint inflammation was enhanced.
Collapse
Affiliation(s)
- Karin CAM Nabbe
- Department of Experimental Rheumatology and Advanced Therapeutics, University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Peter LEM van Lent
- Department of Experimental Rheumatology and Advanced Therapeutics, University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Astrid EM Holthuysen
- Department of Experimental Rheumatology and Advanced Therapeutics, University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Annet W Sloëtjes
- Department of Experimental Rheumatology and Advanced Therapeutics, University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Alisa E Koch
- University of Michigan Medical School, Ann Arbor, Michigan, USA; and Veterans Administration Ann Arbor, Ann Arbor, Michigan, USA
| | - Timothy RDJ Radstake
- Department of Experimental Rheumatology and Advanced Therapeutics, University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Wim B van den Berg
- Department of Experimental Rheumatology and Advanced Therapeutics, University Medical Center Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
44
|
Shen CL, Hong KJ, Kim SW. Comparative effects of ginger root (Zingiber officinale Rosc.) on the production of inflammatory mediators in normal and osteoarthrotic sow chondrocytes. J Med Food 2005; 8:149-53. [PMID: 16117605 DOI: 10.1089/jmf.2005.8.149] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ginger root was previously demonstrated to exert anti-arthritic effects in sow cartilage explants. This study further investigated the comparative effects of ginger root extract (GRE) on the production of inflammatory mediators, including nitric oxide (NO) and prostaglandin E2 (PGE2), in normal chondrocytes (NC) and osteoarthrotic chondrocytes (OC) isolated from sow cartilage explants. The sow chondrocyte cells were isolated and grown in Ham's F-12/Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum and 1% antibiotics. GRE was then added at different concentrations (0-2,000 microg/mL), and the cells were allowed to grow for 24 hours in the presence of cytokine inducer. The culture media were collected and assayed for NO by the Griess reaction and for PGE2 by radioimmunoassay. When GRE was not used, the NC had lower PGE2 and NO than the OC. With GRE treatment, both PGE2 and NO decreased linearly in both the NC and the OC. As GRE concentrations increased, the rate of PGE(2) decrease was the same in the NC and the OC, whereas the rate of NO decrease was greater for the OC than for the NC. Collectively, OC produce more inflammatory mediators than do NC, and the production of inflammatory mediators was reduced when GRE was added to both the OC and the NC. The inhibitory effects of GRE on NO and PGE2 production by sow OC observed in this study suggest an important role for GRE as an anti-arthritic agent.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University, Lubbock, Texas 79409-2141, USA
| | | | | |
Collapse
|
45
|
Oliver BL, Cronin CG, Zhang-Benoit Y, Goldring MB, Tanzer ML. Divergent stress responses to IL-1β, nitric oxide, and tunicamycin by chondrocytes. J Cell Physiol 2005; 204:45-50. [PMID: 15605392 DOI: 10.1002/jcp.20261] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As the only cell in cartilage responsible for matrix synthesis, the chondrocyte's viability is crucial to healthy tissue. It must tolerate stresses from both mechanical and cellular sources. This study examines the endoplasmic reticulum (ER) stress response in chondrocytes after exposure to IL-1beta, nitric oxide, or tunicamycin in order to determine whether this form of stress causes cell death. Cultures of the immortalized human juvenile costal chondrocyte cell line, C-28/I2, were treated with IL-1beta, S-nitroso-N-acetylpenicillamine (SNAP), and tunicamycin. Increasing intracellular nitric oxide levels by SNAP treatment or inhibiting protein folding in the ER lumen by tunicamycin induced the ER stress response as evidenced by increased protein and gene expression of GADD153 as well as PERK and eIF2-alpha phosphorylation, and resulted in apoptosis. IL-1beta treatment induced PERK and eIF2-alpha phosphorylation, but not GADD153 expression or apoptosis. The ER stress signaling pathway of IL-1beta involved iNOS because blocking its expression, inhibited ER stress gene expression. Therefore, inducing the ER stress response in chondrocytes results in divergent responses depending on the agent used. Even though IL-1beta, a common proinflammatory cytokine, induces the ER stress response, it is not proapoptotic to chondrocytes. On the other hand, exposure to high levels of intracellular nitric oxide induce chondrocyte apoptosis as part of the ER stress response.
Collapse
Affiliation(s)
- Bonnie L Oliver
- Department of BioStructure and Function, School of Dental Medicine, University of Connecticut Heath Center, Farmington, Connecticut, USA.
| | | | | | | | | |
Collapse
|
46
|
Litvinov D, Turpaev K. Extracellular catalase induces cyclooxygenase 2, interleukin 8, and stromelysin genes in primary human chondrocytes. Biochimie 2004; 86:945-50. [PMID: 15667946 DOI: 10.1016/j.biochi.2004.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Accepted: 07/20/2004] [Indexed: 11/29/2022]
Abstract
We investigated the expression of genes in response to exposure of primary human chondrocytes to extracellular catalase. The addition of catalase to culture medium caused a significant up-regulation of cyclooxygenase 2, interleukin 8, and stromelysin mRNA levels. Similar pattern of gene activation occurred in chondrocytes incubated with horseradish peroxidase. On the contrary, ebselen, a glutathione peroxidase mimetic agent, did not affect expression of catalase-inducible genes. Taken together, these observations imply that catalase action is mediated by its side peroxidase-like activity, rather than elimination of H2O2. Genistein suppressed catalase-mediated effects on gene expression. This finding implies that tyrosine kinases are implicated in underlying signaling pathway.
Collapse
Affiliation(s)
- Dmitry Litvinov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, Vavilov street 32, Moscow 119991, Russia
| | | |
Collapse
|
47
|
Goldring MB, Berenbaum F. The regulation of chondrocyte function by proinflammatory mediators: prostaglandins and nitric oxide. Clin Orthop Relat Res 2004:S37-46. [PMID: 15480072 DOI: 10.1097/01.blo.0000144484.69656.e4] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Within the mature articular cartilage matrix, which has no blood or nerve supply, chondrocytes show little metabolic activity with low turnover of matrix components. Under conditions of stress because of biomechanical factors, however, chondrocytes are capable of producing mediators that are associated with inflammation, including cytokines such as interleukin-1 and tumor necrosis factor-alpha, which in turn stimulate the production of prostaglandins and nitric oxide. Chondrocytes also express receptors for these mediators, which accumulate at high local concentrations and can act in an autocrine-paracrine fashion to feedback-regulate chondrocyte responses. Prostaglandin E2 can exert catabolic or anabolic effects depending on the microenvironment. Nitric oxide can promote cellular injury and increase chondrocyte susceptibility to cytokine-induced apoptosis. Because cross-talk between these mediators produces complex modulation of catabolic and anabolic pathways, further studies in vitro and in vivo are required to elucidate their precise roles in osteoarthritis.
Collapse
Affiliation(s)
- Mary B Goldring
- Rheumatology Division, Beth Israel Deaconess Medical Center, Harvard Institute of Medicine, Boston, MA 02115, USA.
| | | |
Collapse
|
48
|
Abstract
Many studies have shown that apoptotic cell death occurs at an increased rate in osteoarthritic cartilage. Whichever type of cell death takes places in articular cartilage, it is important to prevent, because it is detrimental to articular cartilage maintenance. Thus, it is important to characterize events going on during cellular degeneration in more detail. Overall, physicians have reached a reasonable level of understanding of the extent of cell death occurring in the disease process, but they are still at an early stage in the understanding of the mechanisms underlying this process and the means of intervening in this facet of cartilage destruction.
Collapse
Affiliation(s)
- Thomas Aigner
- Osteoarticular and Arthritis Research, Department of Pathology, University of Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054 Erlangen, Germany.
| | | | | |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW The pathophysiology of osteoarthritis is the result of an imbalance between anabolic and catabolic pathways. This imbalance is the result of the activation of joint cells by inflammatory mediators, matrix components, and mechanical stress. All these mediators act through specific receptors that transmit the signals to the nucleus to activate the transcription of matrix metalloproteinases and inflammatory genes. Targeting these signaling pathways in osteoarthritis is considered a novel approach to modulate this imbalance. RECENT FINDINGS Although many signaling pathways are necessary for physiologic cell life, it is now well established that a few are more specifically induced in an inflammatory environment. In osteoarthritis, the nuclear factor-kappaB and mitogen-activated protein kinase pathways have been shown to play a predominant role in the expression of metalloproteinases and inflammatory genes and proteins. Also involved in the activation of osteoarthritic cells are other molecules interacting with one or several signaling pathways, such as nitric oxide, peroxisome proliferator-activated receptor-gamma ligands, or C/EBP transcriptional factors. Based on this knowledge, specific inhibitors for some of these signaling pathways have been designed and include p38 mitogen-activated protein kinase or nuclear factor-kappaB inhibitors. Experimental studies evaluating cartilage degradation in arthritis models are promising, although fewer have been done specifically in osteoarthritis models. SUMMARY Targeting signaling pathways in osteoarthritis did not seem feasible a few years ago because of the complexity of the multiple intracellular pathways, mainly physiologic, defined by a high degree of redundancy and cross-talk. However, important advances in the knowledge of chondrocyte and synoviocyte signaling in osteoarthritis have been achieved in recent years and suggest that inhibitors of specific signaling pathways could shortly provide effective treatments for this disease.
Collapse
Affiliation(s)
- Francis Berenbaum
- University Pierre & Marie Curie and Department of Rheumatology, UFR Saint-Antoine, AP-HP, Paris, France.
| |
Collapse
|
50
|
Affiliation(s)
- K Kühn
- Division of Arthritis Research, Department of Molecular and Experimental Medicine, The Scripps Research Institute, CA, La Jolla 92037, USA
| | | | | | | |
Collapse
|