1
|
Xiao T, Zheng H, Zu K, Yue Y, Wang Y. Tumor-treating fields in cancer therapy: advances of cellular and molecular mechanisms. Clin Transl Oncol 2024:10.1007/s12094-024-03551-z. [PMID: 38884919 DOI: 10.1007/s12094-024-03551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Tumor-Treating Fields (TTFields) use intermediate-frequency and low-intensity electric fields to inhibit tumor cells. However, their mechanisms are still not well understood. This article reviews their key antitumor mechanisms at the cellular and molecular levels, including inhibition of proliferation, induction of death, disturbance of migration, and activation of the immune system. The multifaceted biological effects in combination with other cancer treatments are also summarized. The deep insight into their mechanism will help develop more potential antitumor treatments.
Collapse
Affiliation(s)
- Tong Xiao
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Hao Zheng
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Kaiyang Zu
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Youjia Yue
- School of Biomedical Engineeringg, Capital Medical University, Beijing, 100069, China
| | - Ying Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Šofranková L, Baňas M, Pipová N, Majláth I, Kurimský J, Cimbala R, Pavlík M, Mateos-Hernández L, Šimo L, Majláthová V. Effects of Electromagnetic Radiation on Neuropeptide Transcript Levels in the Synganglion of Ixodes ricinus. Pathogens 2023; 12:1398. [PMID: 38133283 PMCID: PMC10747470 DOI: 10.3390/pathogens12121398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Anthropogenic electromagnetic radiation is an important environmental factor affecting the functionality of biological systems. Sensitivity to various frequencies of electromagnetic radiation has been detected in ixodid ticks in the past. However, the physiological aspects of radiation effects have not yet been studied in ticks. In the presented experiment, 360 Ixodes ricinus ticks, 180 males and 180 females, were divided into 16 irradiated and 8 control groups. The irradiated groups were exposed to two different intensities of electromagnetic radiation with a frequency of 900 MHz at different lengths of exposure time. RT-PCR was utilized to determine the changes in mRNA levels in tick synganglia after irradiation. Four randomly selected neuropeptide genes were tested-allatotropin (at), FGLa-related allatostatins (fgla/ast), kinin, and arginine-vasopressin-like peptide (avpl). A significant decrease in transcript levels in all female groups exposed to higher intensity radiofrequency radiation for 1 to 3 h was found. After one hour of radiofrequency exposure, a significant downregulation in allatotropin expression in males was detected. A consistent downregulation of the at gene was detected in males irradiated with at a higher intensity. Unfortunately, the specific functions of the studied neuropeptides in ticks are not known yet, so a more comprehensive study is necessary to describe the effects of EMF on observed neuropeptides. This study represents the first report on the effects of the abiotic environment on tick neurophysiology.
Collapse
Affiliation(s)
- Lívia Šofranková
- Department of Animal Physiology, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04180 Košice, Slovakia; (L.Š.); (M.B.); (N.P.); (I.M.)
| | - Miroslav Baňas
- Department of Animal Physiology, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04180 Košice, Slovakia; (L.Š.); (M.B.); (N.P.); (I.M.)
| | - Natália Pipová
- Department of Animal Physiology, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04180 Košice, Slovakia; (L.Š.); (M.B.); (N.P.); (I.M.)
| | - Igor Majláth
- Department of Animal Physiology, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04180 Košice, Slovakia; (L.Š.); (M.B.); (N.P.); (I.M.)
| | - Juraj Kurimský
- Department of Electrical Power Engineering, Faculty of Electrical Engeneering and Informatics, Technical University of Košice, Mäsiarska 74, 04120 Košice, Slovakia; (J.K.); (R.C.); (M.P.)
| | - Roman Cimbala
- Department of Electrical Power Engineering, Faculty of Electrical Engeneering and Informatics, Technical University of Košice, Mäsiarska 74, 04120 Košice, Slovakia; (J.K.); (R.C.); (M.P.)
| | - Marek Pavlík
- Department of Electrical Power Engineering, Faculty of Electrical Engeneering and Informatics, Technical University of Košice, Mäsiarska 74, 04120 Košice, Slovakia; (J.K.); (R.C.); (M.P.)
| | - Lourdes Mateos-Hernández
- Laboratoire de Santé Animale, Unitè Mixte de Recherche de Biologie Molèculaire et d’Immunologie Parasitaires (UMR BIPAR), Ecole Nationale Vétérinaire d’Alfort, INRAE, ANSES, F-94700 Maisons-Alfort, France; (L.M.-H.); (L.Š.)
| | - Ladislav Šimo
- Laboratoire de Santé Animale, Unitè Mixte de Recherche de Biologie Molèculaire et d’Immunologie Parasitaires (UMR BIPAR), Ecole Nationale Vétérinaire d’Alfort, INRAE, ANSES, F-94700 Maisons-Alfort, France; (L.M.-H.); (L.Š.)
| | - Viktória Majláthová
- Department of Animal Physiology, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 04180 Košice, Slovakia; (L.Š.); (M.B.); (N.P.); (I.M.)
| |
Collapse
|
3
|
Dong L, Xia P, Tian L, Tian C, Zhao W, Zhao L, Duan J, Zhao Y, Zheng Y. A Review of Aspects of Synaptic Plasticity in Hippocampus via mT Extremely Low-Frequency Magnetic Fields. Bioelectromagnetics 2023; 44:63-70. [PMID: 36786476 DOI: 10.1002/bem.22437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/20/2022] [Accepted: 01/28/2023] [Indexed: 02/15/2023]
Abstract
The subthreshold magnetic modulation technique stimulates cells with mT extremely low-frequency magnetic fields (ELF-MFs), which are insufficient to induce neuronal action potentials. Although they cannot directly induce resting neurons to discharge, mT magnetic stimulation can regulate the excitability of the nervous system, which regulates learning and memory by some unknown mechanisms. Herein, we describe the regulation of mT ELF-MFs with different parameters on synaptic plasticity in hippocampal neurons. Additionally, we summarize the latest research on the possible mechanism of the effect of ELF-MFs on synaptic plasticity. Some studies have shown that ELF-MFs are able to inhibit long-term potentiation (LTP) by increasing concentration of intracellular Ca2+ concentration ([Ca2+ ]i ), as well as concentration of reactive oxygen species. The research in this paper has significance for the comprehensive understanding of relevant neurological mechanisms of learning and memory by mT ELF-MFs stimulation. However, more high-quality research is necessary to determine the regulatory mechanism of mT ELF-MFs on synaptic plasticity in order to optimize this technique as a treatment for neurological diseases. © 2023 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Lei Dong
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Pei Xia
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Lei Tian
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Chunxiao Tian
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Wenjun Zhao
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Ling Zhao
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Jiakang Duan
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Yuhan Zhao
- School of Life Sciences, Tiangong University, Tianjin, China
| | - Yu Zheng
- School of Life Sciences, Tiangong University, Tianjin, China
| |
Collapse
|
4
|
Zadeh-Haghighi H, Simon C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J R Soc Interface 2022; 19:20220325. [PMID: 35919980 PMCID: PMC9346374 DOI: 10.1098/rsif.2022.0325] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 04/07/2023] Open
Abstract
Hundreds of studies have found that weak magnetic fields can significantly influence various biological systems. However, the underlying mechanisms behind these phenomena remain elusive. Remarkably, the magnetic energies implicated in these effects are much smaller than thermal energies. Here, we review these observations, and we suggest an explanation based on the radical pair mechanism, which involves the quantum dynamics of the electron and nuclear spins of transient radical molecules. While the radical pair mechanism has been studied in detail in the context of avian magnetoreception, the studies reviewed here show that magnetosensitivity is widespread throughout biology. We review magnetic field effects on various physiological functions, discussing static, hypomagnetic and oscillating magnetic fields, as well as isotope effects. We then review the radical pair mechanism as a potential unifying model for the described magnetic field effects, and we discuss plausible candidate molecules for the radical pairs. We review recent studies proposing that the radical pair mechanism provides explanations for isotope effects in xenon anaesthesia and lithium treatment of hyperactivity, magnetic field effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule assembly. We conclude by discussing future lines of investigation in this exciting new area of quantum biology.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
5
|
Xia P, Zheng Y, Dong L, Tian C. Short-Term Extremely Low-Frequency Electromagnetic Field Inhibits Synaptic Plasticity of Schaffer Collateral-CA1 Synapses in Rat Hippocampus via the Ca 2+/Calcineurin Pathway. ACS Chem Neurosci 2021; 12:3550-3557. [PMID: 34498467 DOI: 10.1021/acschemneuro.1c00500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this study, we investigate the intrinsic mechanism by which an extremely low-frequency electromagnetic field (ELF-EMF) influences neurons in the Schaffer collateral-CA1 (SC-CA1) region of rat hippocampus using electrophysiological techniques. ELF-EMF has an interesting effect on synaptic plasticity: it weakens long-term potentiation and enhances long-term depression. Here, the magnetic field effect disappeared after a blockade of voltage-gated calcium channels and calcineurin, which are key components in the Ca2+/calcineurin pathway, with two blockers, cadmium chloride and cyclosporin A. This fully establishes that the effect of ELF-EMF on synaptic plasticity is mediated by the Ca2+/calcineurin pathway and represents a novel technique for studying the specific mechanisms of action of ELF-EMF on learning and memory.
Collapse
Affiliation(s)
- Pei Xia
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Yu Zheng
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Lei Dong
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300387, China
| | - Chunxiao Tian
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| |
Collapse
|
6
|
Lu H, Wang X, Hu S, Han T, He S, Zhang G, He M, Lin X. Bioeffect of static magnetic field on photosynthetic bacteria: Evaluation of bioresources production and wastewater treatment efficiency. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1131-1141. [PMID: 32056340 DOI: 10.1002/wer.1308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/31/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
Photosynthetic bacteria (PSB) technology is a promising method for biomass, protein, pigments, and other value-added substances generation from wastewater. However, the above bioresources production efficiency is relatively low. In this work, a static magnetic field (SMF) was used to promote bioresources production. Results showed that SMF had positive effects on value-added substances production. With 0.35 Tesla (T) SMF, the PSB biomass, protein, carotenoids, and bacteriochlorophyll concentration were promoted by 31.1%, 22.6%, 56.7%, and 73.1% compared with the control group, respectively. Biomass yield finally reached 0.58 g biomass/g COD removal, which was promoted by 37.1%. The doubling time was shortened by 37.9% in 0.35 T group, showing that SMF can promote cell growth. With 0.35 T SMF, the intracellular NADH dehydrogenase and ATP synthase activities concentration increased by 23.4% and 29.1%, respectively, thus increased the ATP content by 38.0%. Succinic dehydrogenase activity concentration greatly increased by 609.0% at 48 hr, which potentially accelerated the tricarboxylic acid cycle and COD degradation as well as enhanced biomass production. PRACTITIONER POINTS: SMF promoted PSB bioresource production during wastewater treatment processing. Biomass, protein, carotenoids, and Bchl concentration were promoted by 31.1%, 22.6%, 56.7%, and 73.1%, respectively. PSB yield of 0.35 T group was promoted by 37.1% compared with the control group. SDH concentration of 0.35 T was promoted by 609.0% compared with the control group. Increased NADH and ATP synthase activity concentration by SMF enhanced energy metabolism.
Collapse
Affiliation(s)
- Haifeng Lu
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, China
- State Key Laboratory of Coal Resources and Safe Mining, Beijing, China
| | - Xiaodan Wang
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, China
- State Key Laboratory of Coal Resources and Safe Mining, Beijing, China
| | - Shunfan Hu
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, China
- State Key Laboratory of Coal Resources and Safe Mining, Beijing, China
| | - Ting Han
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, China
- State Key Laboratory of Coal Resources and Safe Mining, Beijing, China
| | - Shichao He
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, China
- State Key Laboratory of Coal Resources and Safe Mining, Beijing, China
| | - Guangming Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, China
| | - Mou He
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, China
- State Key Laboratory of Coal Resources and Safe Mining, Beijing, China
| | - Xinyu Lin
- College of Water Resource and Civil Engineering, China Agriculture University, Beijing, China
- State Key Laboratory of Coal Resources and Safe Mining, Beijing, China
| |
Collapse
|
7
|
Galli C, Pedrazzi G, Guizzardi S. The cellular effects of Pulsed Electromagnetic Fields on osteoblasts: A review. Bioelectromagnetics 2019; 40:211-233. [PMID: 30908726 DOI: 10.1002/bem.22187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/08/2019] [Indexed: 12/12/2022]
Abstract
Electromagnetic fields (EMFs) have long been known to interact with living organisms and their cells and to bear the potential for therapeutic use. Among the most extensively investigated applications, the use of Pulsed EMFs (PEMFs) has proven effective to ameliorate bone healing in several studies, although the evidence is still inconclusive. This is due in part to our still-poor understanding of the mechanisms by which PEMFs act on cells and affect their functions and to an ongoing lack of consensus on the most effective parameters for specific clinical applications. The present review has compared in vitro studies on PEMFs on different osteoblast models, which elucidate potential mechanisms of action for PEMFs, up to the most recent insights into the role of primary cilia, and highlight the critical issues underlying at least some of the inconsistent results in the available literature. Bioelectromagnetics. 2019;9999:XX-XX. © 2019 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Carlo Galli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Pedrazzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefano Guizzardi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
8
|
Wu X, Du J, Song W, Cao M, Chen S, Xia R. Weak power frequency magnetic fields induce microtubule cytoskeleton reorganization depending on the epidermal growth factor receptor and the calcium related signaling. PLoS One 2018; 13:e0205569. [PMID: 30312357 PMCID: PMC6185734 DOI: 10.1371/journal.pone.0205569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/27/2018] [Indexed: 01/14/2023] Open
Abstract
We have shown previously that a weak 50 Hz magnetic field (MF) invoked the actin-cytoskeleton, and provoked cell migration at the cell level, probably through activating the epidermal growth factor receptor (EGFR) related motility pathways. However, whether the MF also affects the microtubule (MT)-cytoskeleton is still unknown. In this article, we continuously investigate the effects of 0.4 mT, 50 Hz MF on the MT, and try to understand if the MT effects are also associated with the EGFR pathway as the actin-cytoskeleton effects were. Our results strongly suggest that the MF effects are similar to that of EGF stimulation on the MT cytoskeleton, showing that 1) the MF suppressed MT in multiple cell types including PC12 and FL; 2) the MF promoted the clustering of the EGFR at the protein and the cell levels, in a similar way of that EGF did but with higher sensitivity to PD153035 inhibition, and triggered EGFR phosphorylation on sites of Y1173 and S1046/1047; 3) these effects were strongly depending on the Ca2+ signaling through the L-type calcium channel (LTCC) phosphorylation and elevation of the intracellular Ca2+ level. Strong associations were observed between EGFR and the Ca2+ signaling to regulate the MF-induced-reorganization of the cytoskeleton network, via phosphorylating the signaling proteins in the two pathways, including a significant MT protein, tau. These results strongly suggest that the MF activates the overall cytoskeleton in the absence of EGF, through a mechanism related to both the EGFR and the LTCC/Ca2+ signaling pathways.
Collapse
Affiliation(s)
- Xia Wu
- Physics Department, East China Normal University, Shanghai, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Juan Du
- Physics Department, East China Normal University, Shanghai, China
| | - Weitao Song
- Physics Department, East China Normal University, Shanghai, China
| | - Meiping Cao
- Physics Department, East China Normal University, Shanghai, China
| | - Shude Chen
- Physics Department, East China Normal University, Shanghai, China
| | - Ruohong Xia
- Physics Department, East China Normal University, Shanghai, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
- * E-mail:
| |
Collapse
|
9
|
Zhang H, Dai Y, Cheng Y, He Y, Manyakara Z, Duan Y, Sun G, Sun X. Influence of extremely low frequency magnetic fields on Ca2+signaling and double messenger system in mice hippocampus and reversal function of procyanidins extracted from lotus seedpod. Bioelectromagnetics 2017; 38:436-446. [DOI: 10.1002/bem.22058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 04/22/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Haihui Zhang
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang China
| | - Yuanyuan Dai
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang China
| | - Yanxiang Cheng
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang China
| | - Yuanqing He
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang China
| | - Zandile Manyakara
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang China
| | - Yuqing Duan
- School of Food and Biological Engineering; Jiangsu University; Zhenjiang China
| | - Guibo Sun
- Institute of Medicinal Plants; Chinese Academy of Medical Sciences; Beijing China
| | - Xiaobo Sun
- Institute of Medicinal Plants; Chinese Academy of Medical Sciences; Beijing China
| |
Collapse
|
10
|
Xu H, Zhang J, Lei Y, Han Z, Rong D, Yu Q, Zhao M, Tian J. Low frequency pulsed electromagnetic field promotes C2C12 myoblasts proliferation via activation of MAPK/ERK pathway. Biochem Biophys Res Commun 2016; 479:97-102. [PMID: 27629357 DOI: 10.1016/j.bbrc.2016.09.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/09/2016] [Indexed: 01/16/2023]
Abstract
Low frequency pulsed electromagnetic field (PEMF) has been shown to affect the activity of various cell types and promote them proliferation. However, its effect on skeletal muscle cells remains to be determined. In our study, we confirmed that PEMF (100 Hz, 1 mT) could promote C2C12 myoblasts proliferation by using Cell Counting Kit-8 (CCK-8) and 5-Ethynyl-2'-deoxyuridine (EdU) assays, yet hardly any distinction was found in the rate of cell apoptosis between PEMF and control groups by flow cytometry (Annexin V-FITC/PI double staining method). To further study the mechanism of action of PEMF, Western blot was utilized to detect the mitogen-activated protein kinase (MAPK) signaling pathways. After exposing C2C12 myoblasts to PEMF, we found the phosphorylation level of extracellular signal-regulated kinase (ERK) was significantly increased, while p38 MAPK and c-Jun N-terminal kinase (JNK) pathways were not affected. Pretreating the cells with the ERK kinase1/2 (MEK1/2) inhibitor U0126 obviously inhibited the proliferation of C2C12 cells. Taken together, our research for the first time demonstrated that PEMF promoted C2C12 myoblasts proliferation via activating MAPK/ERK pathway.
Collapse
Affiliation(s)
- Haixia Xu
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Haizhu, Guangzhou 510280, China
| | - Jie Zhang
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Haizhu, Guangzhou 510280, China
| | - Yutian Lei
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Haizhu, Guangzhou 510280, China
| | - Zhongyu Han
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Haizhu, Guangzhou 510280, China
| | - Dongming Rong
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Haizhu, Guangzhou 510280, China
| | - Qiang Yu
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Haizhu, Guangzhou 510280, China
| | - Ming Zhao
- Department of Pathophysiology, Basic Medical College, Southern Medical University, Baiyun, Guangzhou 510515, China
| | - Jing Tian
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Haizhu, Guangzhou 510280, China.
| |
Collapse
|
11
|
Suarez Castellanos IM, Balteanu B, Singh T, Zderic V. Therapeutic Modulation of Calcium Dynamics Using Ultrasound and Other Energy-Based Techniques. IEEE Rev Biomed Eng 2016; 9:177-191. [DOI: 10.1109/rbme.2016.2555760] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Jankowska M, Pawlowska-Mainville A, Stankiewicz M, Rogalska J, Wyszkowska J. Exposure to 50 Hz electromagnetic field changes the efficiency of the scorpion alpha toxin. J Venom Anim Toxins Incl Trop Dis 2015; 21:38. [PMID: 26430395 PMCID: PMC4589959 DOI: 10.1186/s40409-015-0040-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 09/24/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Extremely low-frequency (50 Hz) electromagnetic field (ELF-EMF) is produced by electric power transmission lines and electronic devices of everyday use. Some phenomena are proposed as "first effects" of ELF-EMF: the discrete changes in the membrane potential and the increase of the calcium channel activity as well as the intracellular concentration of Ca(2+). Interaction of the scorpion alpha toxin with the sodium channel depends on the orientation of the charges and may be perturbed by changes in the membrane polarization. The toxin induces overexcitability in the nervous system and an increase in the neurotransmitters released with different consequences, mainly the paralysis of muscles. We assumed that the exposure to ELF-EMF 0.7 mT will change the effects of the insect selective scorpion alpha toxin (recombinant LqhαIT from Leiurus quinquestriatus hebraeus) at the level of the cercal nerve function, the synaptic transmission and on the level of entire insect organism. Taking into account the compensatory mechanisms in organisms, we tested in addition ten times higher ELF-EMF on whole insects. METHODS Experiments were performed in vivo on cockroaches (Periplaneta americana) and in vitro - on isolated cockroach abdominal nerve cord with cerci. In biotests, the effects of LqhαIT (10(-8) M) were estimated on the basis of the insect ability to turn back from dorsal to ventral side. Three groups were compared: the control one and the two exposed to ELF-EMF - 0.7 and 7 mT. Bioelectrical activity of the cercal nerve and of the connective nerve that leaves the terminal abdominal ganglion was recorded using extracellular electrodes. LqhαIT (5 × 10(-8) M) induced modifications of neuronal activity that were observed in the control cockroach preparations and in the ones exposed to ELF-EMF (0.7 mT). The exposure to ELF-EMF was carried out using coils with a size appropriate to the examined objects. RESULTS The exposure to ELF-EMF (0.7 mT) modified the effects of LqhαIT (5 × 10(-8) M) on activity of the cercal nerve and of the connective nerve. We observed a decrease of the toxin effect on the cercal nerve activity, but the toxic effect of LqhαIT on the connective nerve was increased. Biotests showed that toxicity of LqhαIT (10(-8) M) on cockroaches was reduced by the exposure to ELF-EMF (0.7 and 7 mT). CONCLUSIONS The exposure to 50 Hz ELF-EMF modified the mode of action of the anti-insect scorpion alpha toxin LqhαIT at cellular level of the cockroach nervous system and in biotests. Toxin appeared as a usefull tool in distinguishing between the primary and the secondary effects of ELF-EMF.
Collapse
Affiliation(s)
- Milena Jankowska
- />Nicolaus Copernicus University, Faculty of Biology and Environmental Protection, Torun, Poland
| | | | - Maria Stankiewicz
- />Nicolaus Copernicus University, Faculty of Biology and Environmental Protection, Torun, Poland
| | - Justyna Rogalska
- />Nicolaus Copernicus University, Faculty of Biology and Environmental Protection, Torun, Poland
| | - Joanna Wyszkowska
- />Nicolaus Copernicus University, Faculty of Biology and Environmental Protection, Torun, Poland
| |
Collapse
|
13
|
Brady MA, Waldman SD, Ethier CR. The application of multiple biophysical cues to engineer functional neocartilage for treatment of osteoarthritis. Part II: signal transduction. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:20-33. [PMID: 25065615 DOI: 10.1089/ten.teb.2013.0760] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The unique mechanoelectrochemical environment of cartilage has motivated researchers to investigate the effect of multiple biophysical cues, including mechanical, magnetic, and electrical stimulation, on chondrocyte biology. It is well established that biophysical stimuli promote chondrocyte proliferation, differentiation, and maturation within "biological windows" of defined dose parameters, including mode, frequency, magnitude, and duration of stimuli (see companion review Part I: Cellular Response). However, the underlying molecular mechanisms and signal transduction pathways activated in response to multiple biophysical stimuli remain to be elucidated. Understanding the mechanisms of biophysical signal transduction will deepen knowledge of tissue organogenesis, remodeling, and regeneration and aiding in the treatment of pathologies such as osteoarthritis. Further, this knowledge will provide the tissue engineer with a potent toolset to manipulate and control cell fate and subsequently develop functional replacement cartilage. The aim of this article is to review chondrocyte signal transduction pathways in response to mechanical, magnetic, and electrical cues. Signal transduction does not occur along a single pathway; rather a number of parallel pathways appear to be activated, with calcium signaling apparently common to all three types of stimuli, though there are different modes of activation. Current tissue engineering strategies, such as the development of "smart" functionalized biomaterials that enable the delivery of growth factors or integration of conjugated nanoparticles, may further benefit from targeting known signal transduction pathways in combination with external biophysical cues.
Collapse
Affiliation(s)
- Mariea A Brady
- 1 Department of Bioengineering, Imperial College London , London, United Kingdom
| | | | | |
Collapse
|
14
|
Kaya S, Celik M, Akdag M, Adiguzel O, Yavuz I, Tumen E, Ulku S, Ayaz SG, Ketani A, Akpolat V, Akkus Z. The Effects of Extremly Low Frequency Magnetic Field and Mangan to the Oral Tissues. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2008.10817571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
15
|
Dimitrijević D, Savić T, Anđelković M, Prolić Z, Janać B. Extremely low frequency magnetic field (50 Hz, 0.5 mT) modifies fitness components and locomotor activity ofDrosophila subobscura. Int J Radiat Biol 2014; 90:337-43. [DOI: 10.3109/09553002.2014.888105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Wu X, Cao MP, Shen YY, Chu KP, Tao WB, Song WT, Liu LP, Wang XH, Zheng YF, Chen SD, Zeng QL, Xia RH. Weak power frequency magnetic field acting similarly to EGF stimulation, induces acute activations of the EGFR sensitive actin cytoskeleton motility in human amniotic cells. PLoS One 2014; 9:e87626. [PMID: 24505297 PMCID: PMC3914819 DOI: 10.1371/journal.pone.0087626] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 12/16/2013] [Indexed: 12/30/2022] Open
Abstract
In this article, we have examined the motility-related effects of weak power frequency magnetic fields (MFs) on the epidermal growth factor receptor (EGFR)-sensitive motility mechanism, including the F-actin cytoskeleton, growth of invasive protrusions and the levels of signal molecules in human amniotic epithelial (FL) cells. Without extracellular EGF stimulation, the field stimulated a large growth of new protrusions, especially filopodia and lamellipodia, an increased population of vinculin-associated focal adhesions. And, an obvious reduction of stress fiber content in cell centers was found, corresponding to larger cell surface areas and decreased efficiency of actin assembly of FL cells in vitro, which was associated with a decrease in overall F-actin content and special distributions. These effects were also associated with changes in protein content or distribution patterns of the EGFR downstream motility-related signaling molecules. All of these effects are similar to those following epidermal growth factor (EGF) stimulation of the cells and are time dependent. These results suggest that power frequency MF exposure acutely affects the migration/motility-related actin cytoskeleton reorganization that is regulated by the EGFR-cytoskeleton signaling pathway. Therefore, upon the MF exposure, cells are likely altered to be ready to transfer into a state of migration in response to the stimuli.
Collapse
Affiliation(s)
- Xia Wu
- Physics Department, East China Normal University, Shanghai, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Mei-Ping Cao
- Physics Department, East China Normal University, Shanghai, China
| | - Yun-Yun Shen
- Bioelectromagnetics Laboratory, Zhejiang University, Hangzhou, China
| | - Ke-Ping Chu
- Physics Department, East China Normal University, Shanghai, China
| | - Wu-Bin Tao
- Physics Department, East China Normal University, Shanghai, China
| | - Wei-Tao Song
- Physics Department, East China Normal University, Shanghai, China
| | - Li-Ping Liu
- School of Life Sciences, Fudan University, Shanghai, China
| | - Xiang-Hui Wang
- Physics Department, East China Normal University, Shanghai, China
| | - Yu-Fang Zheng
- School of Life Sciences, Fudan University, Shanghai, China
| | - Shu-De Chen
- Physics Department, East China Normal University, Shanghai, China
| | - Qun-Li Zeng
- Bioelectromagnetics Laboratory, Zhejiang University, Hangzhou, China
| | - Ruo-Hong Xia
- Physics Department, East China Normal University, Shanghai, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| |
Collapse
|
17
|
Bae JE, Do JY, Kwon SH, Lee SD, Jung YW, Kim SC, Chae KS. Electromagnetic field-induced converse cell growth during a long-term observation. Int J Radiat Biol 2013; 89:1035-44. [PMID: 23859432 DOI: 10.3109/09553002.2013.825063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Professional and public concern about the potential adverse effects of man-made electromagnetic fields (EMF) on the human body has dramatically expanded in recent years. Despite numerous attempts to investigate this issue, the long-standing challenge of reproducibility surrounding alternating EMF effects on human health remains unresolved. Our chief aim was to investigate a plausible mechanism for this phenomenon. MATERIALS AND METHODS Growth of cultured human cancer cells, DU145 and Jurkat, exposed to power frequency magnetic field (MF) (60 Hz, 1 mT) for 3 days, was determined using a 2-(4-Iodophenyl)- 3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium (WST-1) assay and a trypan blue exclusion assay. This experiment was repeated at incubators long-term monitoring period up to 5.3 years. A periodogram analysis was performed to investigate periodic patterns in the MF and sham effects on cell growth. RESULTS Unlike conventional assumptions, the MF effect on growth in both cell types was promotive or suppressive in a period-dependent manner. The converse cell growth induced by the MF was consistent in incubators, with little variation. CONCLUSIONS Spatiotemporal evidence suggests that the period-dependent converse cell growth by the MF may contribute to the poor reproducibility and explain the adverse effects observed in previous experimental and epidemiological investigations. Additionally, the novel approach of this study may be applied to design features required to experimentally determine the effects of EMF on living organisms in a convincing manner.
Collapse
Affiliation(s)
- Ji-Eun Bae
- Department of Nanoscience & Nanotechnology
| | | | | | | | | | | | | |
Collapse
|
18
|
Sert C, Söker S, Deniz M, Nergiz Y. Intracellular Ca2+levels in rat ventricle cells exposed to extremely low frequency magnetic field. Electromagn Biol Med 2011; 30:14-20. [DOI: 10.3109/15368378.2011.566773] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Effects of exposure to a time-varying 1.5 T magnetic field on the neurotransmitter-activated increase in intracellular Ca(2+) in relation to actin fiber and mitochondrial functions in bovine adrenal chromaffin cells. Biochim Biophys Acta Gen Subj 2010; 1800:1221-30. [PMID: 20832450 DOI: 10.1016/j.bbagen.2010.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 09/01/2010] [Accepted: 09/03/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND It has been reported that exposure to electromagnetic fields influences intracellular signal transduction. We studied the effects of exposure to a time-varying 1.5 T magnetic field on membrane properties, membrane cation transport and intracellular Ca(2+) mobilization in relation to signals. We also studied the mechanism of the effect of exposure to the magnetic field on intracellular Ca(2+) release from Ca(2+) stores in adrenal chromaffin cells. METHODS We measured the physiological functions of ER, actin protein, and mitochondria with respect to a neurotransmitter-induced increase in Ca(2+) in chromaffin cells exposed to the time-varying 1.5 T magnetic field for 2h. RESULTS Exposure to the magnetic field significantly reduced the increase in [Ca(2+)]i. The exposure depolarized the mitochondria membrane and lowered oxygen uptake, but did not reduce the intracellular ATP content. Magnetic field-exposure caused a morphological change in intracellular F-actin. F-actin in exposed cells seemed to be less dense than in control cells, but the decrease was smaller than that in cytochalasin D-treated cells. The increase in G-actin (i.e., the decrease in F-actin) due to exposure was recovered by jasplakinolide, but inhibition of Ca(2+) release by the exposure was unaffected. CONCLUSIONS AND GENERAL SIGNIFICANCE These results suggest that the magnetic field-exposure influenced both the ER and mitochondria, but the inhibition of Ca(2+) release from ER was not due to mitochondria inhibition. The effect of eddy currents induced in the culture medium may indirectly influence intracellular actin and suppress the transient increase in [Ca(2+)]i.
Collapse
|
20
|
Zhang X, Liu X, Pan L, Lee I. Magnetic fields at extremely low-frequency (50Hz, 0.8mT) can induce the uptake of intracellular calcium levels in osteoblasts. Biochem Biophys Res Commun 2010; 396:662-6. [DOI: 10.1016/j.bbrc.2010.04.154] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 04/28/2010] [Indexed: 11/24/2022]
|
21
|
Eleuteri AM, Amici M, Bonfili L, Cecarini V, Cuccioloni M, Grimaldi S, Giuliani L, Angeletti M, Fioretti E. 50 Hz extremely low frequency electromagnetic fields enhance protein carbonyl groups content in cancer cells: effects on proteasomal systems. J Biomed Biotechnol 2009; 2009:834239. [PMID: 19672456 PMCID: PMC2722031 DOI: 10.1155/2009/834239] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 05/14/2009] [Accepted: 06/05/2009] [Indexed: 11/17/2022] Open
Abstract
Electromagnetic fields are an assessed cause of prolonging free radicals lifespan. This study was carried out to investigate the influence of extremely low frequency electromagnetic fields on protein oxidation and on the 20S proteasome functionality, the complex responsible for the degradation of oxidized proteins. Caco 2 cells were exposed, for 24-72 hours, to 1 mT, 50 Hz electromagnetic fields. The treatment induced a time-dependent increase both in cell growth and in protein oxidation, more evident in the presence of TPA, while no changes in cell viability were detected. Exposing the cells to 50 Hz electromagnetic fields caused a global activation of the 20S proteasome catalytic components, particularly evident at 72 hours exposure and in the presence of TPA. The finding that EGCG, a natural antioxidant compound, counteracted the field-related pro-oxidant effects demonstrates that the increased proteasome activity was due to an enhancement in intracellular free radicals.
Collapse
Affiliation(s)
- A M Eleuteri
- Department of Biology M.C.A., University of Camerino, 62032 Camerino (MC), Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sun WJ, Chiang H, Fu YT, Yu YN, Xie HY, Lu DQ. EXPOSURE TO 50 HZ ELECTROMAGNETIC FIELDS INDUCES THE PHOSPHORYLATION AND ACTIVITY OF STRESS-ACTIVATED PROTEIN KINASE IN CULTURED CELLS. ACTA ACUST UNITED AC 2009. [DOI: 10.1081/jbc-100108579] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Ruiz-Gómez MJ, Martínez-Morillo M. Enhancement of the cell-killing effect of ultraviolet-C radiation by short-term exposure to a pulsed magnetic field. Int J Radiat Biol 2009; 81:483-90. [PMID: 16263651 DOI: 10.1080/09553000500196805] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE To investigate whether low frequency pulsed magnetic field (PMF) exposures produce alterations in the cell killing induced by ultraviolet C (UVC) radiation. MATERIALS AND METHODS MCF-7 breast cancer cells of exponentially growing cultures were exposed to PMF (25 Hz, 0.75 mT) and UVC (from 6.6 J/m2 to 59.4 J/m2) in two different protocols: (a) cells were exposed to PMF for 30 min and then exposed to UVC at different doses; (b) cells were exposed to PMF for 30 min. After 15 min of the PMF exposure they were exposed simultaneously to PMF+different doses of UVC. After an additional time of 72 h of incubation, viability was measured by the neutral red stain cytotoxicity test. RESULTS Both exposure protocols produced a significant decrease in the post UVC survival at 13.2 J/m2 and 19.8 J/m2, as compared to controls. The simultaneous exposition of PMF and UVC produced an additional increment in cell killing at 26.4 J/m2, being the greater effects obtained for this second exposure protocol. CONCLUSIONS Results of the present study show that PMF in combination with UVC have the ability to augment the cell killing effects of UVC radiation. In addition, the effects appear to be greater when PMF and UVC are applied at the same time.
Collapse
Affiliation(s)
- Miguel J Ruiz-Gómez
- Laboratory of Radiobiology, Department of Radiology and Physical Medicine, Faculty of Medicine, University of Malaga, Spain.
| | | |
Collapse
|
24
|
Santini MT, Rainaldi G, Indovina PL. Cellular effects of extremely low frequency (ELF) electromagnetic fields. Int J Radiat Biol 2009; 85:294-313. [PMID: 19399675 DOI: 10.1080/09553000902781097] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The major areas of research that have characterised investigation of the impact of extremely low frequency (ELF) electromagnetic fields on living systems in the past 50 years are discussed. In particular, selected studies examining the role of these fields in cancer, their effects on immune and nerve cells, and the positive influence of these ELF fields on bone and nerve cells, wound healing and ischemia/reperfusion injury are explored. CONCLUSIONS The literature indicates that there is still no general agreement on the exact biological detrimental effects of ELF fields, on the physical mechanisms that may be behind these effects or on the extent to which these effects may be harmful to humans. Nonetheless, the majority of the in vitro experimental results indicate that ELF fields induce numerous types of changes in cells. Whether or not the perturbations observed at the cellular level can be directly extrapolated to negative effects in humans is still unknown. However, the myriad of effects that ELF fields have on biological systems should not be ignored when evaluating risk to humans from these fields and, consequently, in passing appropriate legislation to safeguard both the general public and professionally-exposed workers. With regard to the positive effects of these fields, the possibility of testing further their efficacy in therapeutic protocols should also not be overlooked.
Collapse
Affiliation(s)
- Maria T Santini
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanita, Viale Regina Elena, Rome.
| | | | | |
Collapse
|
25
|
Funk RHW, Monsees T, Ozkucur N. Electromagnetic effects - From cell biology to medicine. ACTA ACUST UNITED AC 2008; 43:177-264. [PMID: 19167986 DOI: 10.1016/j.proghi.2008.07.001] [Citation(s) in RCA: 230] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 07/25/2008] [Indexed: 01/03/2023]
Abstract
In this review we compile and discuss the published plethora of cell biological effects which are ascribed to electric fields (EF), magnetic fields (MF) and electromagnetic fields (EMF). In recent years, a change in paradigm took place concerning the endogenously produced static EF of cells and tissues. Here, modern molecular biology could link the action of ion transporters and ion channels to the "electric" action of cells and tissues. Also, sensing of these mainly EF could be demonstrated in studies of cell migration and wound healing. The triggers exerted by ion concentrations and concomitant electric field gradients have been traced along signaling cascades till gene expression changes in the nucleus. Far more enigmatic is the way of action of static MF which come in most cases from outside (e.g. earth magnetic field). All systems in an organism from the molecular to the organ level are more or less in motion. Thus, in living tissue we mostly find alternating fields as well as combination of EF and MF normally in the range of extremely low-frequency EMF. Because a bewildering array of model systems and clinical devices exits in the EMF field we concentrate on cell biological findings and look for basic principles in the EF, MF and EMF action. As an outlook for future research topics, this review tries to link areas of EF, MF and EMF research to thermodynamics and quantum physics, approaches that will produce novel insights into cell biology.
Collapse
Affiliation(s)
- Richard H W Funk
- Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Institut für Anatomie, Germany.
| | | | | |
Collapse
|
26
|
Vianale G, Reale M, Amerio P, Stefanachi M, Di Luzio S, Muraro R. Extremely low frequency electromagnetic field enhances human keratinocyte cell growth and decreases proinflammatory chemokine production. Br J Dermatol 2008; 158:1189-96. [DOI: 10.1111/j.1365-2133.2008.08540.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Hsieh CH, Lee MC, Tsai-Wu JJ, Chen MH, Lee HS, Chiang H, Herbert Wu CH, Jiang CC. Deleterious effects of MRI on chondrocytes. Osteoarthritis Cartilage 2008; 16:343-51. [PMID: 17804262 DOI: 10.1016/j.joca.2007.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 07/03/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To assess how magnetic fields (MFs), with or without concurrent radio frequency (RF), influence chondrocytes and knee joint repair, we applied an MF strength via magnetic resonance imaging (MRI) slightly greater than the frequently used dosage in the clinics and examined the effects of these treatments in vitro on human chondrocytes and in vivo in pigs. METHODS Human chondrocytes were directly exposed to a 3-tesla (T) magnetic field (MF group) or a 3-T static magnetic field plus 125.3 MHz radio frequency (MF+RF group), and cell proliferation, apoptosis, cytosolic Ca2+ ([Ca2+]i) fluxes and expression of the apoptosis-related proteins of the treated cells were examined to assess the effects of the treatments. In the pig study, we examined the effects of the treatments on the recovery of surgically damaged pig knees. RESULTS A 3-T static MF and RF suppressed cell growth and induced apoptosis through p53, p21, p27 and Bax protein expression. In the pig model, we found that MRI surveillance had a deleterious effect on the recovery of the damaged knee cartilage. CONCLUSION Magnetic strength, with or without concurrent RF, suppressed chondrocyte growth in vitro and affected recovery of damaged knee cartilage in vivo in the pig model. These results may be specific to the parameters used in this study and may not apply to other situations, field strengths, forms of cartilage injury, or animal species.
Collapse
Affiliation(s)
- C-H Hsieh
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Sinclair J, Weeks M, Butt A, Worthington JL, Akpan A, Jones N, Waterfield M, Allanand D, Timms JF. Proteomic response ofSchizosaccharomyces pombe to static and oscillating extremely low-frequency electromagnetic fields. Proteomics 2006; 6:4755-64. [PMID: 16897687 DOI: 10.1002/pmic.200500861] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is considerable public concern regarding the health effects of exposure to low-frequency electromagnetic fields. In addition, the association between exposure and disease incidence or the possible biological effects of exposure are unclear. Using 2D-DIGE and MS in a blind study, we have investigated the effects of static and oscillating extremely low-frequency electromagnetic fields (ELF EMFs) on the proteomes of wild type Schizosaccharomyces pombe and a Sty1p deletion mutant which displays increased sensitivity to a variety of cellular stresses. Whilst this study identifies a number of protein isoforms that display significant differential expression across experimental conditions, there was no correlation between their patterns of expression and the ELF EMF exposure regimen. We conclude that there are no significant effects of either static or oscillating EMF on the yeast proteome at the sensitivity afforded by 2D-DIGE. We hypothesise that the proteins identified must be sensitive to subtle changes in culture and/or handling conditions, and that the identification of these proteins in other proteomic studies should be treated with some caution when the results of such studies are interpreted in a biological context.
Collapse
Affiliation(s)
- John Sinclair
- Ludwig Institute for Cancer Research, Department of Biochemistry and Molecular Biology University College London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Li L, Dai Y, Xia R, Chen S, Qiao D. Pulsed electric field exposure of insulin induces anti-proliferative effects on human hepatocytes. Bioelectromagnetics 2006; 26:639-47. [PMID: 16189829 DOI: 10.1002/bem.20156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The purpose of this study was to examine the effects and the mechanism of a pulsed electric field (PEF) on insulin and its subsequent mediation of proliferative changes in human hepatocytes in vitro. The PEF, the electric field intensity coupled into the culture medium, was about 0.7 V/m with a repeating frequency of 50 Hz. Insulin solution was exposed to PEF for 20 min and added to the culture medium of human hepatocytes. Combining fluorescence spectroscopy, immunocytochemistry, microarrays, RT-PCR and MTT, several important events of the insulin signaling pathways were investigated, including ligand-receptor binding capacity, intracellular tyrosine phosphorylation level, gene transcription, and cell proliferation. PEF produced a conformational change of insulin molecule. The binding capacity of insulin to its receptors was reduced to 87% of the control level after PEF treatment, and the average intracellular tyrosine phosphorylation level decreased by 11%. The expression of 55 of 12,000 genes examined was modified, including an increase in the expression of human tyrosine phosphatase and the small GTP-binding protein. Based on these results, a mechanism is proposed to explain the bio-effects of PEF on hepatic cell proliferation through the insulin signaling pathway.
Collapse
Affiliation(s)
- Lejun Li
- Key Laboratory of Optical and Magnetic Resonance Spectroscopy, East China Normal University, Shanghai, China
| | | | | | | | | |
Collapse
|
31
|
McCreary CR, Dixon SJ, Fraher LJ, Carson JJL, Prato FS. Real-time measurement of cytosolic free calcium concentration in Jurkat cells during ELF magnetic field exposure and evaluation of the role of cell cycle. Bioelectromagnetics 2006; 27:354-64. [PMID: 16715520 DOI: 10.1002/bem.20248] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Extremely low frequency magnetic fields (ELF MF) have been reported to alter a number of cell signaling pathways, including those involved in proliferation, differentiation and apoptosis where cytosolic free calcium ([Ca(2+)](c)) plays an important role. To better understand the biological conditions under which ELF MF exposure might alter [Ca(2+)](c), we measured [Ca(2+)](c) by ratiometric fluorescence spectrophotometry during exposure to ELF MF in Jurkat E6.1 cells synchronized to different phases of the cell cycle. Suspensions of cells were exposed either to a near zero MF (Null) or a 60 Hz, 100 microT sinusoidal MF superimposed upon a collinear 78.1 microT static MF (AC + DC). An initial series of experiments indicated that the maximum increase in [Ca(2+)](c) above baseline after stimulation with anti-CD3 was significantly higher in samples exposed to AC + DC (n = 30) compared to Null (n = 30) with the largest difference in G2-M enriched samples. However, in a second study with G2-M enriched cells, samples treated with AC + DC (n = 17) were not statistically different from Null-treated samples (n = 27). Detailed analysis revealed that the dynamics in [Ca(2+)](c) before and after stimulation with anti-CD3 were dissimilar between Null samples from each study. From the results, we concluded (i) that the ELF MF increased [Ca(2+)](c) during an antibody-induced signaling event, (ii) that the ELF MF effect did not depend to a large degree on cell cycle, and (iii) that a field-related change in [Ca(2+)](c) signaling appeared to correlate with features in the [Ca(2+)](c) dynamics. Future work could evaluate [Ca(2+)](c) dynamics in relation to the phase of the cell cycle and inter-study variation, which may reveal factors important for the observation of real-time effects of ELF MF on [Ca(2+)](c).
Collapse
Affiliation(s)
- Cheryl R McCreary
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
32
|
Rosenspire AJ, Kindzelskii AL, Simon BJ, Petty HR. Real-time control of neutrophil metabolism by very weak ultra-low frequency pulsed magnetic fields. Biophys J 2005; 88:3334-47. [PMID: 15749780 PMCID: PMC1305481 DOI: 10.1529/biophysj.104.056663] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In adherent and motile neutrophils NAD(P)H concentration, flavoprotein redox potential, and production of reactive oxygen species and nitric oxide, are all periodic and exhibit defined phase relationships to an underlying metabolic oscillation of approximately 20 s. Utilizing fluorescence microscopy, we have shown in real-time, on the single cell level, that the system is sensitive to externally applied periodically pulsed weak magnetic fields matched in frequency to the metabolic oscillation. Depending upon the phase relationship of the magnetic pulses to the metabolic oscillation, the magnetic pulses serve to either increase the amplitude of the NAD(P)H and flavoprotein oscillations, and the rate of production of reactive oxygen species and nitric oxide or, alternatively, collapse the metabolic oscillations and curtail production of reactive oxygen species and nitric oxide. Significantly, we demonstrate that the cells do not directly respond to the magnetic fields, but instead are sensitive to the electric fields which the pulsed magnetic fields induce. These weak electric fields likely tap into an endogenous signaling pathway involving calcium channels in the plasma membrane. We estimate that the threshold which induced electric fields must attain to influence cell metabolism is of the order of 10(-4) V/m.
Collapse
Affiliation(s)
- Allen J Rosenspire
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA.
| | | | | | | |
Collapse
|
33
|
Pilger A, Ivancsits S, Diem E, Steffens M, Kolb HA, Rüdiger HW. No effects of intermittent 50 Hz EMF on cytoplasmic free calcium and on the mitochondrial membrane potential in human diploid fibroblasts. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2004; 43:203-7. [PMID: 15340854 DOI: 10.1007/s00411-004-0252-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Accepted: 07/28/2004] [Indexed: 05/24/2023]
Abstract
The recently described increase in DNA strand breaks of cultured human diploid fibroblasts after intermittent exposure to extremely-low-frequency electromagnetic fields (ELF-EMF) of more than about 70 microT ELF-EMF is difficult to explain by a direct induction of covalent bond disruption. Therefore the hypothesis has been tested that ELF-EMF-induced DNA strand breaks might be mediated by cellular processes that cause alteration of the intracellular concentration of free calcium ([Ca2+]i) and/or the membrane potential (DeltaPsi(m)). [Ca2+]i was determined by the ratiometric fura-2 technique. Changes in DeltaPsi(m) were assessed by using the potential-dependent lipophilic cationic probe JC-1. Human fibroblasts were exposed to intermittent ELF-EMF (50 Hz, 1000 microT). Although exposure of fiboblasts to ELF-EMF resulted in a highly significant increase in DNA strand breaks as determined by the comet assay, no effect on JC-1 fluorescence emission or on [Ca2+]i has been observed when comparing exposed with sham-exposed cells. Therefore, it is suggested that ELF-EMF-induced DNA strand breaks are unlikely to be caused by intracellular changes that affect [Ca2+]i and/or DeltaPsi(m).
Collapse
Affiliation(s)
- Alexander Pilger
- Division of Occupational Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
34
|
Milani M, Ballerini M, Ferraro L, Zabeo M, Barberis M, Cannone M, Faraone V. Contaminant effect on cellular metabolic differential pressure curves. JOURNAL OF BIOMEDICAL OPTICS 2004; 9:1074-1088. [PMID: 15447028 DOI: 10.1117/1.1782591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The possibility of a pressure monitoring system by differential pressure sensors to detect contaminant effects on cellular cultures metabolic activity is discussed using Saccharomyces cerevisiae, lymphocyte, and AHH1 cell cultures. Metabolic (aerobic and anaerobic) processes in cells are accompanied by CO(2) production that induces changes in pressure values when cells are cultured in sealed vessels. These values are subsequently converted in voltage units and plotted pressure dynamics versus time. This procedure leads to a standard curve, typical of the cellular line, which characterizes cellular metabolism when all parameters are controlled, such as temperature and nutrients. Different phases appear in the S. cerevisiae differential pressure curve: an initial growth up to a maximum, followed by a decrement that leads to a typical "depression" (pressure values inside the test-tubes are lower than the initial one) after about 35 h from the beginning. The S. cerevisiae differential pressure curve is successfully used to test the effects of chemical (Amuchina, trieline) and physical (UV radiation, blue light, magnetic fields) contaminants. The same technique is applied to lymphocytes and AHH1 cultures to investigate the effects generated by a 72-h exposure to a 50-Hz, 60-microT electromagnetic field. Lymphocyte samples, cultured in a PHA medium, grow less than control ones, but exhibit a greater metabolic activity: changes in the exposure system configuration influence neither sample growth differences nor metabolic response variations between control and irradiated samples, while all the other irradiation parameters remain constant. Control and irradiated lymphocyte samples, without PHA in culture medium, show the same behavior both during irradiation and metabolic test. AHH1 control and irradiated samples show no difference both in growth percentage during irradiation and in metabolic activity. Different cell cultures respond to the same stimulus in different manners.
Collapse
Affiliation(s)
- Marziale Milani
- University of Milan-Bicocca, Department of Material Sciences, via Cozzi 53, IT-20125 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
35
|
Potenza L, Ubaldi L, De Sanctis R, De Bellis R, Cucchiarini L, Dachà M. Effects of a static magnetic field on cell growth and gene expression in Escherichia coli. Mutat Res 2004; 561:53-62. [PMID: 15238230 DOI: 10.1016/j.mrgentox.2004.03.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Revised: 03/08/2004] [Accepted: 03/19/2004] [Indexed: 10/26/2022]
Abstract
Escherichia coli cultures exposed to a 300mT static magnetic field (SMF) were studied in order to analyse possible induced changes in cellular growth and gene expression. Biomass was evaluated by visible-light spectrometry and gene expression analyses were carried out by use of RNA arbitrarily primed PCR. The bacterial strain XL-1Blue, cultivated in traditional and modified Luria-Bertani medium, was exposed to SMF generated by permanent neodymium magnetic disks. The results show alterations induced by SMF in terms of increased cell proliferation and changes in gene expression compared with control groups. Three cDNAs were found to be expressed only in the exposed cells, whereas one cDNA was more expressed in the controls. One clone, expressed only in the exposed cells, corresponds to a putative transposase. This is of particular interest in that it suggests that exposure to a magnetic field may stimulate transposition activity.
Collapse
Affiliation(s)
- Lucia Potenza
- Giorgio Fornaini Institute of Biological Chemistry, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy.
| | | | | | | | | | | |
Collapse
|
36
|
Simkó M, Mattsson MO. Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: Possible immune cell activation. J Cell Biochem 2004; 93:83-92. [PMID: 15352165 DOI: 10.1002/jcb.20198] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is presently an intense discussion if electromagnetic field (EMF) exposure has consequences for human health. This include exposure to structures and appliances that emit in the extremely low frequency (ELF) range of the electromagnetic spectrum, as well as emission coming from communication devices using the radiofrequency part of the spectrum. Biological effects of such exposures have been noted frequently, although the implication for specific health effects is not that clear. The basic interaction mechanism(s) between such fields and living matter is unknown. Numerous hypotheses have been suggested, although none is convincingly supported by experimental data. Various cellular components, processes, and systems can be affected by EMF exposure. Since it is unlikely that EMF can induce DNA damage directly, most studies have examined EMF effects on the cell membrane level, general and specific gene expression, and signal transduction pathways. In addition, a large number of studies have been performed regarding cell proliferation, cell cycle regulation, cell differentiation, metabolism, and various physiological characteristics of cells. Although 50/60 Hz EMF do not directly lead to genotoxic effects, it is possible that certain cellular processes altered by exposure to EMF indirectly affect the structure of DNA causing strand breaks and other chromosomal aberrations. The aim of this article is to present a hypothesis of a possible initial cellular event affected by exposure to ELF EMF, an event which is compatible with the multitude of effects observed after exposure. Based on an extensive literature review, we suggest that ELF EMF exposure is able to perform such activation by means of increasing levels of free radicals. Such a general activation is compatible with the diverse nature of observed effects. Free radicals are intermediates in natural processes like mitochondrial metabolism and are also a key feature of phagocytosis. Free radical release is inducible by ionizing radiation or phorbol ester treatment, both leading to genomic instability. EMF might be a stimulus to induce an "activated state" of the cell such as phagocytosis, which then enhances the release of free radicals, in turn leading to genotoxic events. We envisage that EMF exposure can cause both acute and chronic effects that are mediated by increased free radical levels: (1) Direct activation of, for example macrophages (or other cells) by short-term exposure to EMF leads to phagocytosis (or other cell specific responses) and consequently, free radical production. This pathway may be utilized to positively influence certain aspects of the immune response, and could be useful for specific therapeutic applications. (2) EMF-induced macrophage (cell) activation includes direct stimulation of free radical production. (3) An increase in the lifetime of free radicals by EMF leads to persistently elevated free radical concentrations. In general, reactions in which radicals are involved become more frequent, increasing the possibility of DNA damage. (4) Long-term EMF exposure leads to a chronically increased level of free radicals, subsequently causing an inhibition of the effects of the pineal gland hormone melatonin. Taken together, these EMF induced reactions could lead to a higher incidence of DNA damage and therefore, to an increased risk of tumour development. While the effects on melatonin and the extension of the lifetime of radicals can explain the link between EMF exposure and the incidence of for example leukaemia, the two additional mechanisms described here specifically for mouse macrophages, can explain the possible correlation between immune cell system stimulation and EMF exposure.
Collapse
Affiliation(s)
- Myrtill Simkó
- Division of Environmental Physiology, Institute of Cell Biology and Biosystems Technology, University of Rostock, Albert-Einstein-Strasse 3, D-18059 Rostock, Germany.
| | | |
Collapse
|
37
|
Grassi C, D'Ascenzo M, Torsello A, Martinotti G, Wolf F, Cittadini A, Azzena GB. Effects of 50Hz electromagnetic fields on voltage-gated Ca2+ channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium 2004; 35:307-15. [PMID: 15036948 DOI: 10.1016/j.ceca.2003.09.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2003] [Revised: 08/07/2003] [Accepted: 09/07/2003] [Indexed: 10/26/2022]
Abstract
Possible correlation between the effects of electromagnetic fields (EFs) on voltage-gated Ca(2+) channels, cell proliferation and apoptosis was investigated in neural and neuroendocrine cells. Exposure to 50 Hz EFs significantly enhanced proliferation in human neuroblastoma IMR32 (+40%) and rat pituitary GH3 cells (+38%). In IMR32 cells EF stimulation also inhibited puromycin- and H(2)O(2)-induced apoptosis (-22 and -33%, respectively). EF effects on proliferation and apoptosis were counteracted by Ca(2+) channel blockade. In whole-cell patch-clamp experiments 24-72 h exposure to EFs increased macroscopic Ba(2+)-current density in both GH3 (+67%) and IMR32 cells (+40%). Single-channel recordings showed that gating of L and N channels was instead unaffected, thus suggesting that the observed enhancement of current density was due to increased number of voltage-gated Ca(2+) channels. Western blot analysis of plasma membrane-enriched microsomal fractions of GH3 and IMR32 cells confirmed enhanced expression of Ca(2+) channel subunit alpha(1) following exposure to EFs. These data provide the first direct evidence that EFs enhance the expression of voltage-gated Ca(2+) channels on plasma membrane of the exposed cells. The consequent increase in Ca(2+) influx is likely responsible for the EF-induced modulation of neuronal cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Claudio Grassi
- Institute of Human Physiology, Medical School, Catholic University S. Cuore, Largo F. Vito 1, 00168 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
38
|
Ikehara T, Yamaguchi H, Hosokawa K, Miyamoto H, Aizawa K. Effects of ELF magnetic field on membrane protein structure of living HeLa cells studied by Fourier transform infrared spectroscopy. Bioelectromagnetics 2003; 24:457-64. [PMID: 12955750 DOI: 10.1002/bem.10120] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The effects of exposure to a 50 Hz magnetic field (maximum of 41.7 to 43.6 mT) on the membrane protein structures of living HeLa cells were studied using attenuated total reflection infrared spectroscopy. One min of such exposure shifted peak absorbance of the amide I band to a smaller wave number, reduced peak absorbance of the amide II band, and increased absorbance at around 1600 cm(-1). These results suggest that exposure to the ELF magnetic field has reversible effects on the N-H inplane bending and C-N stretching vibrations of peptide linkages, and changes the secondary structures of alpha-helix and beta-sheet in cell membrane proteins.
Collapse
Affiliation(s)
- Toshitaka Ikehara
- Department of Physiology, Course of Preventive Medicine, School of Medicine, The University of Tokushima, Tokushima, Japan
| | | | | | | | | |
Collapse
|
39
|
Madec F, Billaudel B, Charlet de Sauvage R, Sartor P, Veyret B. Effects of ELF and static magnetic fields on calcium oscillations in islets of Langerhans. Bioelectrochemistry 2003; 60:73-80. [PMID: 12893312 DOI: 10.1016/s1567-5394(03)00049-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several experimental studies have produced contradictory results on the effects of extremely low frequency (ELF) magnetic fields on cellular processes involving calcium ions. Furthermore, the few positive results have not been independently replicated. In most of these studies, isolated cells were used. Our study used mouse islets of Langerhans, in which very regular oscillations of calcium concentration can be observed at length. These oscillations are sustained by processes that imply energetic and inter-intracellular communication. Various magnetic fields were applied, either sinusoidal at different frequencies (50 Hz or multiples of the natural oscillation frequency) at 0.1 or 1 mT or static at 1 mT. Islets were also exposed to "cyclotron resonance" conditions. There was neither alteration of the fundamental oscillation frequency nor the degree of organisation under all exposure conditions. Using this sensitive model, we could not show new evidence of alterations of calcium processes under exposure to various magnetic fields.
Collapse
Affiliation(s)
- F Madec
- PIOM Laboratory, ENSCPB, University of Bordeaux 1, 16 Pey Berland Avenue, 33607 Cedex, Pessac, France
| | | | | | | | | |
Collapse
|
40
|
Craviso GL, Poss J, Lanctot C, Lundback SS, Chatterjee I, Publicover NG. Intracellular calcium activity in isolated bovine adrenal chromaffin cells in the presence and absence of 60 Hz magnetic fields. Bioelectromagnetics 2002; 23:557-67. [PMID: 12395410 DOI: 10.1002/bem.10045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study examined whether 60 Hz magnetic field (MF) exposure alters intracellular calcium levels ([Ca(2+)](i)) in isolated bovine adrenal chromaffin cells, a classic model of neural responses. [Ca(2+)](i) was monitored by fluorescence video imaging of cells loaded with the calcium indicator fluo-4 during exposures to magnetic flux densities of 0.01, 0.1, 1.0, 1.4, or 2.0 mT. MFs generated by Helmholtz coils constructed from bifilar wire allowed both 60 Hz field and sham exposures. Following a 5 min monitoring period to establish baseline patterns, cells were subjected for 10 min to a 60 Hz MF, sham field or no field. Reference calcium responses and assessment of cell excitability were obtained by the sequential addition of the nicotinic cholinergic receptor agonist dimethylphenylpiperazinium (DMPP) and a depolarizing concentration of KCl. Throughout an 8 day culture period, cells exhibited spontaneous fluctuations in [Ca(2+)](i). Comparisons of the number of cells exhibiting transients, the number and types of calcium transients, as well as the time during monitoring when transients occurred showed no significant differences between MF exposed cells and either sham exposed or nonexposed cells. With respect to the percentage of cells responding to DMPP, differences between 1 and 2 mT exposed cells and both nonexposed and sham exposed cells reached statistical significance during the first day in culture. No statistically significant differences were observed for responses to KCl. In summary, our data indicate that [Ca(2+)](i) in chromaffin cells is unaffected by the specific 60 Hz MF intensities used in this study. On the other hand, plasma membrane nicotinic receptors may be affected in a manner that is important for ligand-receptor interactions.
Collapse
Affiliation(s)
- Gale L Craviso
- Department of Pharmacology, University of Nevada, Reno, Nevada 89557, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Gartzke J, Lange K. Cellular target of weak magnetic fields: ionic conduction along actin filaments of microvilli. Am J Physiol Cell Physiol 2002; 283:C1333-46. [PMID: 12372794 DOI: 10.1152/ajpcell.00167.2002] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The interaction of weak electromagnetic fields (EMF) with living cells is a most important but still unresolved biophysical problem. For this interaction, thermal and other types of noise appear to cause severe restrictions in the action of weak signals on relevant components of the cell. A recently presented general concept of regulation of ion and substrate pathways through microvilli provides a possible theoretical basis for the comprehension of physiological effects of even extremely low magnetic fields. The actin-based core of microfilaments in microvilli is proposed to represent a cellular interaction site for magnetic fields. Both the central role of F-actin in Ca2+ signaling and its polyelectrolyte nature eliciting specific ion conduction properties render the microvillar actin filament bundle an ideal interaction site for magnetic and electric fields. Ion channels at the tip of microvilli are connected with the cytoplasm by a bundle of microfilaments forming a diffusion barrier system. Because of its polyelectrolyte nature, the microfilament core of microvilli allows Ca2+ entry into the cytoplasm via nonlinear cable-like cation conduction through arrays of condensed ion clouds. The interaction of ion clouds with periodically applied EMFs and field-induced cation pumping through the cascade of potential barriers on the F-actin polyelectrolyte follows well-known physical principles of ion-magnetic field (MF) interaction and signal discrimination as described by the stochastic resonance and Brownian motor hypotheses. The proposed interaction mechanism is in accord with our present knowledge about Ca2+ signaling as the biological main target of MFs and the postulated extreme sensitivity for coherent excitation by very low field energies within specific amplitude and frequency windows. Microvillar F-actin bundles shielded by a lipid membrane appear to function like electronic integration devices for signal-to-noise enhancement; the influence of coherent signals on cation transduction is amplified, whereas that of random noise is reduced.
Collapse
Affiliation(s)
- Joachim Gartzke
- Bundesanstalt für Arbeitsschutz und Arbeitsmedizin, D-10317 Berlin, Germany.
| | | |
Collapse
|
42
|
Zhou J, Yao G, Zhang J, Chang Z. CREB DNA binding activation by a 50-Hz magnetic field in HL60 cells is dependent on extra- and intracellular Ca(2+) but not PKA, PKC, ERK, or p38 MAPK. Biochem Biophys Res Commun 2002; 296:1013-8. [PMID: 12200150 DOI: 10.1016/s0006-291x(02)02022-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To investigate the possible mechanism of gene transcription changes induced by magnetic field (MF), we examined the DNA binding behavior of the transcription factor cyclic-AMP responsive element binding protein (CREB) in HL60 cells after exposure to a 0.1mT 50-Hz extremely low frequency (ELF) sinusoidal MF by a gel shift assay. Magnetic field induced a time-dependent activation of CREB binding. The complex formation increased shortly after MF exposure for 10min, reaching a peak level after 1h, and then recovered to basal level at 4h after exposure. A novel MF-induced ATF2/ATF2 homodimer formation was observed after MF exposure for 30min, 1, and 2h. Furthermore, We found that the MF-induced increase of CREB DNA binding in HL60 cells was dependent on both extracellular and intracellular Ca(2+) but not PKA, PKC, ERK, or p38 MAPK by using various pathway inhibitors. These data indicate that MF exposure activates CREB DNA binding through calcium-related signal transduction pathways under our experimental conditions.
Collapse
Affiliation(s)
- Jiliang Zhou
- Laboratory of Molecular and Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | | | | | | |
Collapse
|
43
|
Harris PA, Lamb J, Heaton B, Wheatley DN. Possible attenuation of the G2 DNA damage cell cycle checkpoint in HeLa cells by extremely low frequency (ELF) electromagnetic fields. Cancer Cell Int 2002; 2:3. [PMID: 12069691 PMCID: PMC116433 DOI: 10.1186/1475-2867-2-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2002] [Accepted: 05/07/2002] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND: The issue remains unresolved as to whether low frequency magnetic fields can affect cell behaviour, with the possibility that they may be in part responsible for the increased incidence of leukaemia in parts of the population exposed to them. METHODS: Combined treatment of HeLa cells with gamma-irradiation (1, 3 and 5 Grays) and extra low frequency magnetic fields of ~50 Hz was carried out under rigorously controlled conditions. RESULTS: Synchronised cells progressing from S-phase arrived at mitosis on average marginally ahead of irradiation controls not exposed to ELF. In no instance out of a total of twenty separate experiments did this "double-insult" further delay entry of cells into mitosis, as had been anticipated. CONCLUSION: This apparently "non-genotoxic" agent (ELF) appears to be capable of affecting cells that would normally arrest for longer in G2, suggesting a weakening of the stringency of the late cycle (G2) checkpoint.
Collapse
Affiliation(s)
- Paul A Harris
- Section of Surgery, Division of Clinical Sciences (University of Sheffield), Clinical Sciences Centre, Northern General Hospital, Herries Road, Sheffield, S5 7AU, UK
| | - Justin Lamb
- Department of Adult Oncology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA
| | - Brian Heaton
- Department of BioMedical Physics and BioEngineering, University Medical Buildings, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Denys N Wheatley
- Department of Cell Pathology, University of Aberdeen, MacRobert Building, 581 King Street, Aberdeen AB24 5UA, UK
| |
Collapse
|
44
|
McCreary CR, Thomas AW, Prato FS. Factors confounding cytosolic calcium measurements in Jurkat E6.1 cells during exposure to ELF magnetic fields. Bioelectromagnetics 2002; 23:315-28. [PMID: 11948612 DOI: 10.1002/bem.10019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Reported changes in the cytosolic calcium concentration ([Ca2+](c)) as a result of exposure to extremely low frequency (ELF) magnetic fields (MF) have been equivocal. In this study, we examine the possibility that some of these differences are attributable to variability associated with the cell cycle, pH of the suspension medium, and response to a calcium agonist. We used a custom designed spectrofluorimeter to measure [Ca2+](c) in Indo 1-AM loaded Jurkat E6.1 cells suspended in conditioned RPMI 1640 medium containing 10% fetal bovine serum. Four exposures were examined: zero static MF (Null), 60 Hz 100 microT(peak) sinusoidal MF (AC), 78 microT static MF (DC), and the combination of the 60 Hz and the 78 microT static MF (AD + DC). A significant decrease in normalized [Ca2+](c) values between 375-495 s for the DC and AC + DC groups was found in comparison to the Null group. However, statistical analysis indicated that cell cycle and quality of the alpha-CD3 monoclonal antibody response were significant covariates, while pH was not a significant covariate. When the effect of these covariates was taken into account, all exposure groups were significantly different from the control. Our results suggest that ELF MF effects may not be seen unless correction is made for biological variability of each cell preparation with respect to cell cycle and [Ca2+](c) response to antigen stimulation.
Collapse
Affiliation(s)
- Cheryl R McCreary
- Imaging Division Lawson, Health Research Institute, London, Ontario, Canada.
| | | | | |
Collapse
|
45
|
Boland A, Delapierre D, Mossay D, Dresse A, Seutin V. Effect of intermittent and continuous exposure to electromagnetic fields on cultured hippocampal cells. Bioelectromagnetics 2002; 23:97-105. [PMID: 11835256 DOI: 10.1002/bem.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study was designed to assess the effect of 50 Hz electromagnetic fields (EMFs) on hippocampal cell cultures in the presence or absence of either sodium nitroprusside (SNP, a NO donor) or Fe2+ induced oxidative stress. One week old cultured rat hippocampal cells were exposed to either intermittent EMFs (IEMFs, 50 Hz, 0-5 mT, 1 min ON/OFF cycles, repeated 10 times every 2 h, 6 times/day during 48 h) or continuous EMFs (CEMFs, 50 Hz, 0-5 mT for 48 h). In a second set of experiments, the effect on such EMFs applied in combination with oxidative stress induced by 0.5 microM Fe2+ or SNP was estimated. At the end of both sets of experiments, cell mortality was assessed by lactate dehydrogenase measurements (LDH). Neither type of exposure to EMFs was observed to modify the basal rate of cell mortality. The exposure to CEMFs in presence of either NO or Fe2+ did not induce any significant increase in cell death. However, when cells were exposed to EMFs in the presence of NO, we observed a significant increase in cell death of 11 and 23% (P<0.001) at 2.5 and 5 mT, respectively. This effect had some specificity because IEMFs did not modify the effect of Fe2+ on cell mortality. Although the effects of IEMFs reported in this study were only observed at very high intensities, our model may prove valuable in trying to identify one cellular target of EMFs.
Collapse
Affiliation(s)
- A Boland
- Laboratory of Pharmacology, Institute of Pathology B23a, University of Liège, Liège, Belgium.
| | | | | | | | | |
Collapse
|
46
|
Robison JG, Pendleton AR, Monson KO, Murray BK, O'Neill KL. Decreased DNA repair rates and protection from heat induced apoptosis mediated by electromagnetic field exposure. Bioelectromagnetics 2002; 23:106-12. [PMID: 11835257 DOI: 10.1002/bem.103] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this study, we demonstrate that electromagnetic field (EMF) exposure results in protection from heat induced apoptosis in human cancer cell lines in a time dependent manner. Apoptosis protection was determined by growing HL-60, HL-60R, and Raji cell lines in a 0.15 mT 60 Hz sinusoidal EMF for time periods between 4 and 24 h. After induction of apoptosis, cells were analyzed by the neutral comet assay to determine the percentage of apoptotic cells. To discover the duration of this protection, cells were grown in the EMF for 24 h and then removed for 24 to 48 h before heat shock and neutral comet assays were performed. Our results demonstrate that EMF exposure offers significant protection from apoptosis (P<.0001 for HL-60 and HL-60R, P<.005 for Raji) after 12 h of exposure and that protection can last up to 48 h after removal from the EMF. In this study we further demonstrate the effect of the EMF on DNA repair rates. DNA repair data were gathered by exposing the same cell lines to the EMF for 24 h before damaging the exposed cells and non-exposed cells with H2O2. Cells were allowed to repair for time periods between 0 and 15 min before analysis using the alkaline comet assay. Results showed that EMF exposure significantly decreased DNA repair rates in HL-60 and HL-60R cell lines (P<.001 and P<.01 respectively), but not in the Raji cell line. Importantly, our apoptosis results show that a minimal time exposure to an EMF is needed before observed effects. This may explain previous studies showing no change in apoptosis susceptibility and repair rates when treatments and EMF exposure were administered concurrently. More research is necessary, however, before data from this in vitro study can be applied to in vivo systems.
Collapse
Affiliation(s)
- Jacob G Robison
- Department of Microbiology, Brigham Young University, Provo, Utah 84602, USA
| | | | | | | | | |
Collapse
|
47
|
Johansson O, Gangi S, Liang Y, Yoshimura K, Jing C, Liu PY. Cutaneous mast cells are altered in normal healthy volunteers sitting in front of ordinary TVs/PCs--results from open-field provocation experiments. J Cutan Pathol 2001; 28:513-9. [PMID: 11737520 DOI: 10.1034/j.1600-0560.2001.281004.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Considerable controversy has surrounded the question of possible biological responses to electromagnetic fields (EMFs) generated from visual display terminals (VDTs), such as personal computers (PCs) and ordinary television sets (TVs). The cellular and molecular mechanisms for such potential harmful health hazards have not yet been understood, although clues from the literature include mast cells and histamine. The aim of this study was therefore to investigate possible biological mast cell responses to TV/PC screens. METHODS Using the indirect immunofluorescence technique, we studied the presence of histamine-containing mast cells in the dermis of healthy volunteers. Cutaneous biopsies taken before and after exposure to ordinary TV/PC screens for 2 or 4 h were investigated in 13 healthy subjects. RESULTS Our present in vivo study indicates that normal cutaneous mast cells could be altered by exposure from ordinary TV/PC screens. To our great surprise, we found the number of mast cells in the papillary and reticular dermis to increase, to varying degrees, in 5 out the 13 subjects after such an exposure. A migration of mast cells towards the uppermost dermis appeared as the most important event. Thus, the normally upper "empty zone" of the dermis disappeared, and instead, a higher density of mast cells were found in this zone. These cells also seemed to have a tendency to increase in number towards the epidermal-dermal junctional zone and some of them lost their granular content and the cytoplasm shrunk (=degranulation). These findings could only be seen in the exposed skin. Two of the 13 cases instead showed a decrease in mast cell number, but the shift in mast cells towards the upper dermis was still visible. Twenty-four h after the provocation, the cellular number and location were normalized in all subjects. CONCLUSIONS By definition, normal healthy volunteers are assumed not to react to a TV/PC screen provocation. To our great surprise, this proved not to be true. The present results might lay a foundation to understand the underlying cause of so-called "screen dermatitis" with special reference to mast cells. However, blind or double-blind experiments using patients ought to be further investigated in order to find out the exact cause for the observed changes. Such causes include the effects of surrounding airborne chemicals, stress factors, etc.
Collapse
Affiliation(s)
- O Johansson
- The Experimental Dermatology Unit, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
48
|
Simkó M, Droste S, Kriehuber R, Weiss DG. Stimulation of phagocytosis and free radical production in murine macrophages by 50 Hz electromagnetic fields. Eur J Cell Biol 2001; 80:562-6. [PMID: 11561907 DOI: 10.1078/0171-9335-00187] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Effects of 50 Hz electromagnetic fields on phagocytosis and free radical production were examined in mouse bone marrow-derived macrophages. Macrophages were in vitro exposed to electromagnetic fields using different magnetic field densities (0.5-1.5 mT). Short-time exposure (45 min) to electromagnetic fields resulted in significantly increased phagocytic uptake (36.3% +/- 15.1%) as quantified by measuring the internalization rate of latex beads. Stimulation with 1 nM 12-0-tetradecanoylphorbol-13-acetate (TPA) showed the same increased phagocytic activity as 1 mT electromagnetic fields. However, co-exposure to electromagnetic fields and TPA showed no further increase of bead uptake, and therefore we concluded that because of the absence of additive effects, the electromagnetic fields-induced stimulation of mouse bone marrow-derived macrophages does not involve the protein kinase C signal transduction pathway. Furthermore, a significant increased superoxide production after exposure to electromagnetic fields was detected.
Collapse
Affiliation(s)
- M Simkó
- University of Rostock, Institute of Cell Biology and Biosystems Technology, Division of Environmental Physiology, Germany.
| | | | | | | |
Collapse
|
49
|
Nordenson I, Mild KH, Järventaus H, Hirvonen A, Sandström M, Wilén J, Blix N, Norppa H. Chromosomal aberrations in peripheral lymphocytes of train engine drivers. Bioelectromagnetics 2001; 22:306-15. [PMID: 11424153 DOI: 10.1002/bem.55] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Studies of Swedish railway employees have indicated that railroad engine drivers have an increased cancer morbidity and incidence of chronic lymphatic leukemia. The drivers are exposed to relatively high magnetic fields (MF), ranging from a few to over a hundred microT. Although the possible genotoxic potential of MF is unclear, some earlier studies have indicated that occupational exposure to MF may increase chromosome aberrations in blood lymphocytes. Since an increased level of chromosomal aberrations has been suggested to predict elevated cancer risk, we performed a cytogenetic analysis on cultured (48 h) peripheral lymphocytes of Swedish train engine drivers. A pilot study of 18 engine drivers indicated a significant difference in the frequency of cells with chromosomal aberrations (gaps included or excluded) in comparison with seven concurrent referents (train dispatchers) and a control group of 16 office workers. The engine drivers had about four times higher frequency of cells with chromosome-type aberrations (excluding gaps) than the office workers (P < 0.01) and the dispatchers (P < 0.05). Seventy-eight percent of the engine drivers showed at least one cell per 100 with chromosome-type aberrations compared with 29% among the dispatchers and 31% among the office workers. In a follow-up study, another 30 engine drivers showed an increase (P < 0.05) in the frequency of cells with chromosome-type aberrations (gaps excluded) as compared with 30 referent policemen. Sixty percent of the engine drivers had one or more cells (per 100 cells) with chromosome-type aberrations compared with 30% among the policemen. In conclusion, the results of the two studies support the hypothesis that exposure to MF at mean intensities of 2-15 microT can induce chromosomal damage.
Collapse
Affiliation(s)
- I Nordenson
- National Institute for Working Life, Umeå, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ishido M, Nitta H, Kabuto M. Magnetic fields (MF) of 50 Hz at 1.2 microT as well as 100 microT cause uncoupling of inhibitory pathways of adenylyl cyclase mediated by melatonin 1a receptor in MF-sensitive MCF-7 cells. Carcinogenesis 2001; 22:1043-8. [PMID: 11408347 DOI: 10.1093/carcin/22.7.1043] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Magnetic fields (MF) of 60 Hz at 1.2 microT were previously shown to inhibit the antiproliferative effect of melatonin on MCF-7 cells (Liburdy,R.P., 1993, J. Pimeal Res. 14, 89-97). In addition, three laboratories (Blackman,C.F. and Benane,S.G., 1998; Luben,R.A. and Morgan,A.P., 1998; Morris,J.E., Chrisler,W.B., Miller,D.L., Sasser,L.B. and Anderson,L.E., 1998; 20th Annual Meeting of the Bioelectromagnetics Society, At. Pete Beach, FL) independently reported results consistent with this finding. In this study, we investigated the molecular basis of the biological effects of MF using MCF-7 cells. Only 1a melatonin receptors were identified by the [125I]melatonin binding assay and RT-PCR analysis. Moreover, preceding exposures to MF of 100 microT for 3, 5 and 7 days blocked the melatonin-induced inhibition of cAMP accumulation in a time-dependent manner, while none of the melatonin receptor functions or GTPase and adenylyl cyclase activities were affected. Estrogen-evoked cell proliferation was not altered by MF either. Exposure to 1.2 microT MF exerted the same effects on the melatonin-signaling pathway as that to 100 microT. Thus, this is the first study to provide evidence that MF may cause uncoupling of signal transduction from melatonin receptors to adenylyl cyclase.
Collapse
Affiliation(s)
- M Ishido
- Regional Environment Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-0053, Japan
| | | | | |
Collapse
|