1
|
Kudryashova TV, Zaitsev SV, Jiang L, Buckley BJ, McGuckin JP, Goncharov D, Zhyvylo I, Lin D, Newcomb G, Piper B, Bogamuwa S, Saiyed A, Teos L, Pena A, Ranson M, Greenland JR, Wolters PJ, Kelso MJ, Poncz M, DeLisser HM, Cines DB, Goncharova EA, Farkas L, Stepanova V. PAI-1 deficiency drives pulmonary vascular smooth muscle remodeling and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2024; 327:L319-L326. [PMID: 38860847 PMCID: PMC11444499 DOI: 10.1152/ajplung.00110.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by vasoconstriction and remodeling of small pulmonary arteries (PAs). Central to the remodeling process is a switch of pulmonary vascular cells to a proliferative, apoptosis-resistant phenotype. Plasminogen activator inhibitors-1 and -2 (PAI-1 and PAI-2) are the primary physiological inhibitors of urokinase-type and tissue-type plasminogen activators (uPA and tPA), but their roles in PAH are unsettled. Here, we report that: 1) PAI-1, but not PAI-2, is deficient in remodeled small PAs and in early-passage PA smooth muscle and endothelial cells (PASMCs and PAECs) from subjects with PAH compared with controls; 2) PAI-1-/- mice spontaneously develop pulmonary vascular remodeling associated with upregulation of mTORC1 signaling, pulmonary hypertension (PH), and right ventricle (RV) hypertrophy; and 3) pharmacological inhibition of uPA in human PAH PASMCs suppresses proproliferative mTORC1 and SMAD3 signaling, restores PAI-1 levels, reduces proliferation, and induces apoptosis in vitro, and prevents the development of SU5416/hypoxia-induced PH and RV hypertrophy in vivo in mice. These data strongly suggest that downregulation of PAI-1 in small PAs promotes vascular remodeling and PH due to unopposed activation of uPA and consequent upregulation of mTOR and transforming growth factor-β (TGF-β) signaling in PASMCs, and call for further studies to determine the potential benefits of targeting the PAI-1/uPA imbalance to attenuate and/or reverse pulmonary vascular remodeling and PH.NEW & NOTEWORTHY This study identifies a novel role for the deficiency of plasminogen activator inhibitor (PAI)-1 and resultant unrestricted uPA activity in PASMC remodeling and PH in vitro and in vivo, provides novel mechanistic link from PAI-1 loss through uPA-induced Akt/mTOR and TGFβ-Smad3 upregulation to pulmonary vascular remodeling in PH, and suggests that inhibition of uPA to rebalance the uPA-PAI-1 tandem might provide a novel approach to complement current therapies used to mitigate this pulmonary vascular disease.
Collapse
MESH Headings
- Animals
- Plasminogen Activator Inhibitor 1/metabolism
- Plasminogen Activator Inhibitor 1/genetics
- Vascular Remodeling
- Humans
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mice
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Signal Transduction
- Male
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Cell Proliferation
- Mice, Knockout
- Mechanistic Target of Rapamycin Complex 1/metabolism
- Mice, Inbred C57BL
- Apoptosis
- Urokinase-Type Plasminogen Activator/metabolism
- Urokinase-Type Plasminogen Activator/genetics
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/pathology
- Hypertrophy, Right Ventricular/physiopathology
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Plasminogen Activator Inhibitor 2/metabolism
- Plasminogen Activator Inhibitor 2/genetics
Collapse
Grants
- R01 HL159256 NHLBI NIH HHS
- R01HL150638 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL139881 NHLBI NIH HHS
- Nina Ireland Program for Lung Health UCSF | Department of Medicine, University of California, San Francisco (UCSF Department of Medicine)
- R01 HL141462 NHLBI NIH HHS
- R01 HL166932 NHLBI NIH HHS
- R35HL150698 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R24 HL123767 NHLBI NIH HHS
- I01 CX002011 CSRD VA
- R01 HL130261 NHLBI NIH HHS
- R01HL130261 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL166932 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- LAM0139P07-19 LAM Foundation (TheLAMFoundation)
- R01HL139881 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- APP1181179 DHAC | National Health and Medical Research Council (NHMRC)
- TS150032 DOD | USA | MEDCOM | MRDC | U.S. Army Medical Research Acquisition Activity (USAMRAA)
- CX002011 ORD | Clinical Science Research and Development (CSRD)
- Cardiovascular Medical Research and Education Fund (CMREF)
- RO1HL159256 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL172488 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL150638 NHLBI NIH HHS
- R01 HL172488 NHLBI NIH HHS
- RO1HL141462 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R35 HL150698 NHLBI NIH HHS
Collapse
Affiliation(s)
- Tatiana V Kudryashova
- University of Pittsburgh Heart, Blood, and Vascular Medicine Institute, Pittsburgh, Pennsylvania, United States
| | - Sergei V Zaitsev
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Lifeng Jiang
- Department of Internal Medicine, University of California, Davis, California, United States
| | - Benjamin J Buckley
- School of Chemistry and Molecular Bioscience and Molecular Horizons Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Joshua P McGuckin
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, United States
| | - Dmitry Goncharov
- Department of Internal Medicine, University of California, Davis, California, United States
| | - Iryna Zhyvylo
- Department of Internal Medicine, University of California, Davis, California, United States
| | - Derek Lin
- Department of Internal Medicine, University of California, Davis, California, United States
| | - Geoffrey Newcomb
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Bryce Piper
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Srimathi Bogamuwa
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Aisha Saiyed
- Department of Internal Medicine, University of California, Davis, California, United States
| | - Leyla Teos
- Department of Internal Medicine, University of California, Davis, California, United States
| | - Andressa Pena
- University of Pittsburgh Heart, Blood, and Vascular Medicine Institute, Pittsburgh, Pennsylvania, United States
| | - Marie Ranson
- School of Chemistry and Molecular Bioscience and Molecular Horizons Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - John R Greenland
- School of Medicine, University of California, San Francisco, California, United States
- San Francisco Veterans Affairs Health Care System, San Francisco, California, United States
| | - Paul J Wolters
- School of Medicine, University of California, San Francisco, California, United States
| | - Michael J Kelso
- School of Chemistry and Molecular Bioscience and Molecular Horizons Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Mortimer Poncz
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Horace M DeLisser
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Douglas B Cines
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Elena A Goncharova
- Department of Internal Medicine, University of California, Davis, California, United States
| | - Laszlo Farkas
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Victoria Stepanova
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
2
|
Sisson TH, Osterholzer JJ, Leung L, Basrur V, Nesvizhskii A, Subbotina N, Warnock M, Torrente D, Virk AQ, Horowitz JC, Migliorini M, Strickland DK, Kim KK, Huang SK, Lawrence DA. PAI-1 Interaction with Sortilin Related Receptor-1 is Required for Lung Fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606812. [PMID: 39211273 PMCID: PMC11361096 DOI: 10.1101/2024.08.06.606812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) has been previously shown to promote lung fibrosis via a mechanism that requires an intact vitronectin (VTN) binding site. In the present study, employing two distinct murine fibrosis models, we find that VTN is not required for PAI-1 to drive lung scarring. This result suggested the existence of a previously unrecognized profibrotic PAI-1-protein interaction involving the VTN-binding site for PAI-1. Using an unbiased proteomic approach, we identified sortilin related receptor 1 (SorlA) as the most highly enriched PAI-1 interactor in the fibrosing lung. We next investigated the role of SorlA in pulmonary fibrosis and found that SorlA deficiency protected against lung scarring in a murine model. We further show that, while VTN deficiency does not influence fibrogenesis in the presence or absence of PAI-1, SorlA is required for PAI-1 to promote scarring. These results, together with data showing increased SorlA levels in human IPF lung tissue, support a novel mechanism through which the potent profibrotic mediator PAI-1 drives lung fibrosis and implicate SorlA as a new therapeutic target in IPF treatment.
Collapse
|
3
|
Czekay RP, Higgins CE, Aydin HB, Samarakoon R, Subasi NB, Higgins SP, Lee H, Higgins PJ. SERPINE1: Role in Cholangiocarcinoma Progression and a Therapeutic Target in the Desmoplastic Microenvironment. Cells 2024; 13:796. [PMID: 38786020 PMCID: PMC11119900 DOI: 10.3390/cells13100796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
A heterogenous population of inflammatory elements, other immune and nonimmune cells and cancer-associated fibroblasts (CAFs) are evident in solid malignancies where they coexist with the growing tumor mass. In highly desmoplastic malignancies, CAFs are the prominent mesenchymal cell type in the tumor microenvironment (TME), where their presence and abundance signal a poor prognosis. CAFs play a major role in the progression of various cancers by remodeling the supporting stroma into a dense, fibrotic matrix while secreting factors that promote the maintenance of cancer stem-like characteristics, tumor cell survival, aggressive growth and metastasis and reduced sensitivity to chemotherapeutics. Tumors with high stromal fibrotic signatures are more likely to be associated with drug resistance and eventual relapse. Identifying the molecular underpinnings for such multidirectional crosstalk among the various normal and neoplastic cell types in the TME may provide new targets and novel opportunities for therapeutic intervention. This review highlights recent concepts regarding the complexity of CAF biology in cholangiocarcinoma, a highly desmoplastic cancer. The discussion focuses on CAF heterogeneity, functionality in drug resistance, contributions to a progressively fibrotic tumor stroma, the involved signaling pathways and the participating genes.
Collapse
Affiliation(s)
- Ralf-Peter Czekay
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA; (R.-P.C.); (C.E.H.); (R.S.); (S.P.H.)
| | - Craig E. Higgins
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA; (R.-P.C.); (C.E.H.); (R.S.); (S.P.H.)
| | - Hasan Basri Aydin
- Department of Pathology & Laboratory Medicine, Albany Medical College, Albany, NY 12208, USA; (H.B.A.); (N.B.S.); (H.L.)
| | - Rohan Samarakoon
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA; (R.-P.C.); (C.E.H.); (R.S.); (S.P.H.)
| | - Nusret Bekir Subasi
- Department of Pathology & Laboratory Medicine, Albany Medical College, Albany, NY 12208, USA; (H.B.A.); (N.B.S.); (H.L.)
| | - Stephen P. Higgins
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA; (R.-P.C.); (C.E.H.); (R.S.); (S.P.H.)
| | - Hwajeong Lee
- Department of Pathology & Laboratory Medicine, Albany Medical College, Albany, NY 12208, USA; (H.B.A.); (N.B.S.); (H.L.)
| | - Paul J. Higgins
- Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA; (R.-P.C.); (C.E.H.); (R.S.); (S.P.H.)
| |
Collapse
|
4
|
Sao K, Risbud MV. Proteoglycan Dysfunction: A Common Link Between Intervertebral Disc Degeneration and Skeletal Dysplasia. Neurospine 2024; 21:162-178. [PMID: 38569642 PMCID: PMC10992626 DOI: 10.14245/ns.2347342.671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/04/2024] [Accepted: 02/23/2024] [Indexed: 04/05/2024] Open
Abstract
Proteoglycans through their sulfated glycosaminoglycans regulate cell-matrix signaling during tissue development, regeneration, and degeneration processes. Large extracellular proteoglycans such as aggrecan, versican, and perlecan are especially important for the structural integrity of the intervertebral disc and cartilage during development. In these tissues, proteoglycans are responsible for hydration, joint flexibility, and the absorption of mechanical loads. Loss or reduction of these molecules can lead to disc degeneration and skeletal dysplasia, evident from loss of disc height or defects in skeletal development respectively. In this review, we discuss the common proteoglycans found in the disc and cartilage and elaborate on various murine models and skeletal dysplasias in humans to highlight how their absence and/or aberrant expression causes accelerated disc degeneration and developmental defects.
Collapse
Affiliation(s)
- Kimheak Sao
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Makarand V. Risbud
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
5
|
Kelly TE, Spillane CL, Ward MP, Hokamp K, Huang Y, Tewari P, Martin CM, Norris LA, Mohamed BM, Bates M, Brooks R, Selemidis S, Brooks DA, Kamran W, Saadeh FA, O’Toole SA, O’Leary JJ. Plasminogen activator inhibitor 1 is associated with high-grade serous ovarian cancer metastasis and is reduced in patients who have received neoadjuvant chemotherapy. Front Cell Dev Biol 2023; 11:1150991. [PMID: 38143926 PMCID: PMC10740207 DOI: 10.3389/fcell.2023.1150991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 11/09/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction: High-grade serous ovarian cancer (HGSOC) is the most prevalent and deadliest subtype of epithelial ovarian cancer (EOC), killing over 140,000 people annually. Morbidity and mortality are compounded by a lack of screening methods, and recurrence is common. Plasminogen-activator-inhibitor 1 (PAI-1, the protein product of SERPIN E1) is involved in hemostasis, extracellular matrix (ECM) remodeling, and tumor cell migration and invasion. Overexpression is associated with poor prognosis in EOC. Platelets significantly increase PAI-1 in cancer cells in vitro, and may contribute to the hematogenous metastasis of circulating tumor cells (CTCs). CTCs are viable tumor cells that intravasate and travel through the circulation-often aided by platelets - with the potential to form secondary metastases. Here, we provide evidence that PAI-1 is central to the platelet-cancer cell interactome, and plays a role in the metastatic cascade. Methods: SK-OV-3 cells where PAI-1 had been silenced, treated with healthy donor platelets, and treated with platelet-conditioned medium were used as an in vitro model of metastatic EOC. Gene expression analysis was performed using RNA-Seq data from untreated cells and cells treated with PAI-1 siRNA or negative control, each with and without platelets. Four cohorts of banked patient plasma samples (n = 239) were assayed for PAI-1 by ELISA. Treatment-naïve (TN) whole blood (WB) samples were evaluated for CTCs in conjunction with PAI-1 evaluation in matched plasma. Results and discussion: Significant phenotypic changes occurring when PAI-1 was silenced and when platelets were added to cells were reflected by RNA-seq data, with PAI-1 observed to be central to molecular mechanisms of EOC metastasis. Increased proliferation was observed in cells treated with platelets. Plasma PAI-1 significantly correlated with advanced disease in a TN cohort, and was significantly reduced in a neoadjuvant chemotherapy (NACT) cohort. PAI-1 demonstrated a trend towards significance in overall survival (OS) in the late-stage TN cohort, and correlation between PAI-1 and neutrophils in this cohort was significant. 72.7% (16/22) of TN patients with plasma PAI-1 levels higher than OS cutoff were CTC-positive. These data support a central role for PAI-1 in EOC metastasis, and highlight PAI-1's potential as a biomarker, prognostic indicator, or gauge of treatment response in HGSOC.
Collapse
Affiliation(s)
- Tanya E. Kelly
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James’s Cancer Institute, St. James’s Hospital, Dublin, Ireland
| | - Cathy L. Spillane
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Mark P. Ward
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James’s Cancer Institute, St. James’s Hospital, Dublin, Ireland
| | - Karsten Hokamp
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Yanmei Huang
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James’s Cancer Institute, St. James’s Hospital, Dublin, Ireland
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Prerna Tewari
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James’s Cancer Institute, St. James’s Hospital, Dublin, Ireland
| | - Cara M. Martin
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James’s Cancer Institute, St. James’s Hospital, Dublin, Ireland
| | - Lucy A. Norris
- Trinity St James’s Cancer Institute, St. James’s Hospital, Dublin, Ireland
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Bashir M. Mohamed
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James’s Cancer Institute, St. James’s Hospital, Dublin, Ireland
| | - Mark Bates
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James’s Cancer Institute, St. James’s Hospital, Dublin, Ireland
| | - Robert Brooks
- Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, STEM College, Royal Melbourne Institute of Technology, Melbourne, VIC, Australia
| | - Douglas A. Brooks
- Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Waseem Kamran
- Division of Gynaegological Oncology, St. James’ Hospital, Dublin, Ireland
| | - Feras Abu Saadeh
- Division of Gynaegological Oncology, St. James’ Hospital, Dublin, Ireland
| | - Sharon A. O’Toole
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James’s Cancer Institute, St. James’s Hospital, Dublin, Ireland
- Department of Obstetrics and Gynaecology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - John J. O’Leary
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity St James’s Cancer Institute, St. James’s Hospital, Dublin, Ireland
| |
Collapse
|
6
|
Lourenço AL, Chuo SW, Bohn MF, Hann B, Khan S, Yevalekar N, Patel N, Yang T, Xu L, Lv D, Drakas R, Lively S, Craik CS. High-throughput optofluidic screening of single B cells identifies novel cross-reactive antibodies as inhibitors of uPAR with antibody-dependent effector functions. MAbs 2023; 15:2184197. [PMID: 36859773 PMCID: PMC9988344 DOI: 10.1080/19420862.2023.2184197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The urokinase-type plasminogen activator receptor (uPAR) is an essential regulator for cell signaling in tumor cell proliferation, adhesion, and metastasis. The ubiquitous nature of uPAR in many aggressive cancer types makes uPAR an attractive target for immunotherapy. Here, we present a rapid and successful workflow for developing cross-reactive anti-uPAR recombinant antibodies (rAbs) using high-throughput optofluidic screening of single B-cells from human uPAR-immunized mice. A total of 80 human and cynomolgus uPAR cross-reactive plasma cells were identified, and selected mouse VH/VL domains were linked to the trastuzumab (Herceptin®) constant domains for the expression of mouse-human chimeric antibodies. The resulting rAbs were characterized by their tumor-cell recognition, binding activity, and cell adhesion inhibition on triple-negative breast cancer cells. In addition, the rAbs were shown to enact antibody-dependent cellular cytotoxicity (ADCC) in the presence of either human natural killer cells or peripheral blood mononuclear cells, and were evaluated for the potential use of uPAR-targeting antibody-drug conjugates (ADCs). Three lead antibodies (11857, 8163, and 3159) were evaluated for their therapeutic efficacy in vivo and were shown to suppress tumor growth. Finally, the binding epitopes of the lead antibodies were characterized, providing information on their unique binding modes to uPAR. Altogether, the strategy identified unique cross-reactive antibodies with ADCC, ADC, and functional inhibitory effects by targeting cell-surface uPAR, that can be tested in safety studies and serve as potential immunotherapeutics.
Collapse
Affiliation(s)
- André Luiz Lourenço
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Shih-Wei Chuo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Markus F Bohn
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Byron Hann
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Shireen Khan
- ChemPartner, South San Francisco, California, USA
| | | | - Nitin Patel
- ChemPartner, South San Francisco, California, USA
| | - Teddy Yang
- Shanghai ChemPartner Co Ltd, Shanghai, China
| | - Lina Xu
- Shanghai ChemPartner Co Ltd, Shanghai, China
| | - Dandan Lv
- Shanghai ChemPartner Co Ltd, Shanghai, China
| | - Robert Drakas
- ShangPharma Innovation Inc, South San Francisco, California, USA
| | - Sarah Lively
- ChemPartner, South San Francisco, California, USA
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
7
|
Mudigonda S, Shah S, Das N, Corpuz JM, Ninkovic N, Al-Jezani N, Underhill TM, Salo PT, Mitha AP, Lyons FG, Cho R, Schmidt TA, Dufour A, Krawetz RJ. Proteoglycan 4 is present within the dura mater and produced by mesenchymal progenitor cells. Cell Tissue Res 2022; 389:483-499. [PMID: 35704103 DOI: 10.1007/s00441-022-03647-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022]
Abstract
Mesenchymal progenitor cells (MPCs) have been recently identified in human and murine epidural fat and have been hypothesized to contribute to the maintenance/repair/regeneration of the dura mater. MPCs can secrete proteoglycan 4 (PRG4/lubricin), and this protein can regulate tissue homeostasis through bio-lubrication and immunomodulatory functions. MPC lineage tracing reporter mice (Hic1) and human epidural fat MPCs were used to determine if PRG4 is expressed by these cells in vivo. PRG4 expression co-localized with Hic1+ MPCs in the dura throughout skeletal maturity and was localized adjacent to sites of dural injury. When Hic1+ MPCs were ablated, PRG4 expression was retained in the dura, yet when Prx1+ MPCs were ablated, PRG4 expression was completely lost. A number of cellular processes were impacted in human epidural fat MPCs treated with rhPRG4, and human MPCs contributed to the formation of epidural fat, and dura tissues were xenotransplanted into mouse dural injuries. We have shown that human and mouse MPCs in the epidural/dura microenvironment produce PRG4 and can contribute to dura homeostasis/repair/regeneration. Overall, these results suggest that these MPCs have biological significance within the dural microenvironment and that the role of PRG4 needs to be further elucidated.
Collapse
Affiliation(s)
- Sathvika Mudigonda
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Sophia Shah
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Nabangshu Das
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Jessica May Corpuz
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Nicoletta Ninkovic
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Nedaa Al-Jezani
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - T Michael Underhill
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Paul T Salo
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alim P Mitha
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Frank G Lyons
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Roger Cho
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tannin A Schmidt
- Biomedical Engineering Department, University of Connecticut Health Center, Farmington, CT, USA
| | - Antoine Dufour
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Roman J Krawetz
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada. .,Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada. .,Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
8
|
Alfano D, Franco P, Stoppelli MP. Modulation of Cellular Function by the Urokinase Receptor Signalling: A Mechanistic View. Front Cell Dev Biol 2022; 10:818616. [PMID: 35493073 PMCID: PMC9045800 DOI: 10.3389/fcell.2022.818616] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/15/2022] [Indexed: 12/15/2022] Open
Abstract
Urokinase-type plasminogen activator receptor (uPAR or CD87) is a glycosyl-phosphatidyl-inositol anchored (GPI) membrane protein. The uPAR primary ligand is the serine protease urokinase (uPA), converting plasminogen into plasmin, a broad spectrum protease, active on most extracellular matrix components. Besides uPA, the uPAR binds specifically also to the matrix protein vitronectin and, therefore, is regarded also as an adhesion receptor. Complex formation of the uPAR with diverse transmembrane proteins, including integrins, formyl peptide receptors, G protein-coupled receptors and epidermal growth factor receptor results in intracellular signalling. Thus, the uPAR is a multifunctional receptor coordinating surface-associated pericellular proteolysis and signal transduction, thereby affecting physiological and pathological mechanisms. The uPAR-initiated signalling leads to remarkable cellular effects, that include increased cell migration, adhesion, survival, proliferation and invasion. Although this is beyond the scope of this review, the uPA/uPAR system is of great interest to cancer research, as it is associated to aggressive cancers and poor patient survival. Increasing evidence links the uPA/uPAR axis to epithelial to mesenchymal transition, a highly dynamic process, by which epithelial cells can convert into a mesenchymal phenotype. Furthermore, many reports indicate that the uPAR is involved in the maintenance of the stem-like phenotype and in the differentiation process of different cell types. Moreover, the levels of anchor-less, soluble form of uPAR, respond to a variety of inflammatory stimuli, including tumorigenesis and viral infections. Finally, the role of uPAR in virus infection has received increasing attention, in view of the Covid-19 pandemics and new information is becoming available. In this review, we provide a mechanistic perspective, via the detailed examination of consolidated and recent studies on the cellular responses to the multiple uPAR activities.
Collapse
|
9
|
Chu Y, Bucci JC, Peterson CB. Dissecting molecular details and functional effects of the high-affinity copper binding site in plasminogen activator Inhibitor-1. Protein Sci 2020; 30:597-612. [PMID: 33345392 DOI: 10.1002/pro.4017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 11/08/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is the primary inhibitor for plasminogen activators, tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). As a unique member in the serine protease inhibitor (serpin) family, PAI-1 is metastable and converts to an inactive, latent structure with a half-life of 1-2 hr under physiological conditions. Unusual effects of metals on the rate of the latency conversion are incompletely understood. Previous work has identified two residues near the N-terminus, H2 and H3, which reside in a high-affinity copper-binding site in PAI-1 [Bucci JC, McClintock CS, Chu Y, Ware GL, McConnell KD, Emerson JP, Peterson CB (2017) J Biol Inorg Chem 22:1123-1,135]. In this study, neighboring residues, H10, E81, and H364, were tested as possible sites that participate in Cu(II) coordination at the high-affinity site. Kinetic methods, gel sensitivity assays, and isothermal titration calorimetry (ITC) revealed that E81 and H364 have different roles in coordinating metal and mediating the stability of PAI-1. H364 provides a third histidine in the metal-coordination sphere with H2 and H3. In contrast, E81 does not appear to be required for metal ligation along with histidines; contacts made by the side-chain carboxylate upon metal binding are perturbed and, in turn, influence dynamic fluctuations within the region encompassing helices D, E, and F and the W86 loop that are important in the pathway for the PAI-1 latency conversion. This investigation underscores a prominent role of protein dynamics, noncovalent bonding networks and ligand binding in controlling the stability of the active form of PAI-1.
Collapse
Affiliation(s)
- Yuzhuo Chu
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Joel C Bucci
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Cynthia B Peterson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
10
|
Biasella F, Plössl K, Karl C, Weber BHF, Friedrich U. Altered Protein Function Caused by AMD-associated Variant rs704 Links Vitronectin to Disease Pathology. Invest Ophthalmol Vis Sci 2020; 61:2. [PMID: 33259607 PMCID: PMC7718807 DOI: 10.1167/iovs.61.14.2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/07/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Vitronectin, a cell adhesion and spreading factor, is suspected to play a role in the pathogenesis of age-related macular degeneration (AMD), as it is a major component of AMD-specific extracellular deposits (e.g., soft drusen, subretinal drusenoid deposits). The present study addressed the impact of AMD-associated non-synonymous variant rs704 in the vitronectin-encoding gene VTN on vitronectin functionality. Methods Effects of rs704 on vitronectin expression and processing were analyzed by semi-quantitative sequencing of VTN transcripts from retinal pigment epithelium (RPE) cells generated from human induced pluripotent stem cells (hiPSCs) and from human neural retina, as well as by western blot analyses on heterologously expressed vitronectin isoforms. Binding of vitronectin isoforms to retinal and endothelial cells was analyzed by western blot. Immunofluorescence staining followed extracellular matrix (ECM) deposition in cultured RPE cells heterologously expressing the vitronectin isoforms. Adhesion of fluorescently labeled RPE or endothelial cells in dependence of recombinant vitronectin or vitronectin-containing ECM was investigated fluorometrically or microscopically. Tube formation and migration assays addressed effects of vitronectin on angiogenesis-related processes. Results Variant rs704 affected expression, secretion, and processing but not oligomerization of vitronectin. Cell binding and influence on RPE-mediated ECM deposition differed between AMD-risk-associated and non-AMD-risk-associated protein isoforms. Finally, vitronectin affected adhesion and endothelial tube formation. Conclusions The AMD-risk-associated vitronectin isoform exhibits increased expression and altered functionality in cellular processes related to the sub-RPE aspects of AMD pathology. Although further research is required to address the subretinal disease aspects, this initial study supports an involvement of vitronectin in AMD pathogenesis.
Collapse
Affiliation(s)
- Fabiola Biasella
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Karolina Plössl
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Claudia Karl
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Bernhard H. F. Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
| | - Ulrike Friedrich
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| |
Collapse
|
11
|
Cathepsin g Degrades Both Glycosylated and Unglycosylated Regions of Lubricin, a Synovial Mucin. Sci Rep 2020; 10:4215. [PMID: 32144329 PMCID: PMC7060204 DOI: 10.1038/s41598-020-61161-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/20/2020] [Indexed: 12/22/2022] Open
Abstract
Lubricin (PRG4) is a mucin type protein that plays an important role in maintaining normal joint function by providing lubrication and chondroprotection. Improper lubricin modification and degradation has been observed in idiopathic osteoarthritis (OA), while the detailed mechanism still remains unknown. We hypothesized that the protease cathepsin G (CG) may participate in degrading lubricin in synovial fluid (SF). The presence of endogenous CG in SF was confirmed in 16 patients with knee OA. Recombinant human lubricin (rhPRG4) and native lubricin purified from the SF of patients were incubated with exogenous CG and lubricin degradation was monitored using western blot, staining by Coomassie or Periodic Acid-Schiff base in gels, and with proteomics. Full length lubricin (∼300 kDa), was efficiently digested with CG generating a 25-kDa protein fragment, originating from the densely glycosylated mucin domain (∼250 kDa). The 25-kDa fragment was present in the SF from OA patients, and the amount was increased after incubation with CG. A CG digest of rhPRG4 revealed 135 peptides and 72 glycopeptides, and confirmed that the protease could cleave in all domains of lubricin, including the mucin domain. Our results suggest that synovial CG may take part in the degradation of lubricin, which could affect the pathological decrease of the lubrication in degenerative joint disease.
Collapse
|
12
|
Circulating miR-30c as a predictive biomarker of type 2 diabetes mellitus with coronary heart disease by regulating PAI-1/VN interactions. Life Sci 2019; 239:117092. [PMID: 31760103 DOI: 10.1016/j.lfs.2019.117092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/30/2022]
Abstract
AIMS Type 2 diabetes mellitus (DM2) is associated with coronary heart disease (CHD) and is characterized by high levels of plasminogen activator inhibitor (PAI)-1. Circulating microRNAs have been reported as potential diagnostic biomarkers for DM2 and CHD. However, the underlying mechanisms have largely remained unclear. MAIN METHODS The changes of circulating miR-30c, PAI-1 and vitronetin (VN) in plasma from CHD, noncomplicated (NC) + DM2, CHD + DM2 subjects and control individuals were assessed by quantitative reverse transcription PCR (qRT-PCR) and ELISA assays, respectively. The effects of miR-30c on VN expression by targeting PAI-1 were assessed in vitro SMC and in ex vivo plasma, using bioinformatic analysis, miRNA transfection, luciferase assays, qRT-PCR and western blot, respectively. KEY FINDINGS We found that decreased circulating miR-30c was negatively correlated with the severity of coronary lesions and the resulting elevated PAI-1 and VN levels. Circulating miR-30c significantly distinguished between patients with CHD + DM2, NC + DM2, CHD and control subjects, and that were significantly associated with certain risk factors for progression from a normal individual to one with CHD + DM2. Furthermore, we also showed that miR-30c plays a previously unrecognized role in regulating the expression of VN levels via regulating PAI-1 levels in vitro SMC and in ex vivo plasma. SIGNIFICANCE These findings provide a novel regulatory mechanism of miR-30c in regulating PAI-1/VN interactions and that may serve as a diagnostic biomarker of DM2 that is complicated with CHD.
Collapse
|
13
|
Lee Y, Choi J, Hwang NS. Regulation of lubricin for functional cartilage tissue regeneration: a review. Biomater Res 2018; 22:9. [PMID: 29568558 PMCID: PMC5857089 DOI: 10.1186/s40824-018-0118-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/05/2018] [Indexed: 01/20/2023] Open
Abstract
Background Lubricin is chondrocyte-secreted glycoprotein that primarily conducts boundary lubrication between joint surfaces. Besides its cytoprotective function and extracellular matrix (ECM) attachment, lubricin is recommended as a novel biotherapeutic protein that restore functional articular cartilage. Likewise, malfunction of lubrication in damaged articular cartilage caused by complex and multifaceted matter is a major concern in the field of cartilage tissue engineering. Main body Although a noticeable progress has been made toward cartilage tissue regeneration through numerous approaches such as autologous chondrocyte implantation, osteochondral grafts, and microfracture technique, the functionality of engineered cartilage is a challenge for complete reconstruction of cartilage. Thus, delicate modulation of lubricin along with cell/scaffold application will expand the research on cartilage tissue engineering. Conclusion In this review, we will discuss the empirical analysis of lubricin from fundamental interpretation to the practical design of gene expression regulation.
Collapse
Affiliation(s)
- Yunsup Lee
- 1School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| | - Jaehoon Choi
- 1School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| | - Nathaniel S Hwang
- 1School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea.,2Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 152-742 Republic of Korea.,3N-Bio/BioMAX Institute, Seoul National University, Seoul, 152-742 Republic of Korea
| |
Collapse
|
14
|
Nakatsuka E, Sawada K, Nakamura K, Yoshimura A, Kinose Y, Kodama M, Hashimoto K, Mabuchi S, Makino H, Morii E, Yamaguchi Y, Yanase T, Itai A, Morishige KI, Kimura T. Plasminogen activator inhibitor-1 is an independent prognostic factor of ovarian cancer and IMD-4482, a novel plasminogen activator inhibitor-1 inhibitor, inhibits ovarian cancer peritoneal dissemination. Oncotarget 2017; 8:89887-89902. [PMID: 29163796 PMCID: PMC5685717 DOI: 10.18632/oncotarget.20834] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 08/06/2017] [Indexed: 12/04/2022] Open
Abstract
In the present study, the therapeutic potential of targeting plasminogen activator inhibitor-1 (PAI-1) in ovarian cancer was tested. Tissues samples from 154 cases of ovarian carcinoma were immunostained with anti-PAI-1 antibody, and the prognostic value was analyzed. Among the samples, 67% (104/154) showed strong PAI-1 expression; this was significantly associated with poor prognosis (progression-free survival: 20 vs. 31 months, P = 0.0033). In particular, among patients with stage II-IV serous adenocarcinoma, PAI-1 expression was an independent prognostic factor. The effect of a novel PAI-1 inhibitor, IMD-4482, on ovarian cancer cell lines was assessed and its therapeutic potential was examined using a xenograft mouse model of ovarian cancer. IMD-4482 inhibited in vitro cell adhesion to vitronectin in PAI-1-positive ovarian cancer cells, followed by the inhibition of extracellular signal-regulated kinase and focal adhesion kinase phosphorylation through dissociation of the PAI-urokinase receptor complex from integrin αVβ3. IMD-4482 caused G0/G1 cell arrest and inhibited the proliferation of PAI-1-positive ovarian cancer cells. In the xenograft model, IMD-4482 significantly inhibited peritoneal dissemination with the reduction of PAI-1 expression and the inhibition of focal adhesion kinase phosphorylation. Collectively, the functional inhibition of PAI-1 significantly inhibited ovarian cancer progression, and targeting PAI-1 may be a potential therapeutic strategy in ovarian cancer.
Collapse
Affiliation(s)
- Erika Nakatsuka
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kenjiro Sawada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Koji Nakamura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Akihito Yoshimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasuto Kinose
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Michiko Kodama
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kae Hashimoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Seiji Mabuchi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroshi Makino
- Department of Obstetrics and Gynecology, Gifu University Graduate School of Medicine, Gifu, Gifu, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | - Ken-ichirou Morishige
- Department of Obstetrics and Gynecology, Gifu University Graduate School of Medicine, Gifu, Gifu, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
15
|
Fortenberry YM, Brandal SM, Carpentier G, Hemani M, Pathak AP. Intracellular Expression of PAI-1 Specific Aptamers Alters Breast Cancer Cell Migration, Invasion and Angiogenesis. PLoS One 2016; 11:e0164288. [PMID: 27755560 PMCID: PMC5068744 DOI: 10.1371/journal.pone.0164288] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 09/22/2016] [Indexed: 02/07/2023] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is elevated in various cancers, where it has been shown to effect cell migration and invasion and angiogenesis. While, PAI-1 is a secreted protein, its intercellular levels are increased in cancer cells. Consequently, intracellular PAI-1 could contribute to cancer progression. While various small molecule inhibitors of PAI-1 are currently being investigated, none specifically target intracellular PAI-1. A class of inhibitors, termed aptamers, has been used effectively in several clinical applications. We previously generated RNA aptamers that target PAI-1 and demonstrated their ability to inhibit extracellular PAI-1. In the current study we explored the effect of these aptamers on intracellular PAI-1. We transiently transfected the PAI-1 specific aptamers into both MDA-MB-231 human breast cancer cells, and human umbilical vein endothelial cells (HUVECs) and studied their effects on cell migration, invasion and angiogenesis. Aptamer expressing MDA-MB-231 cells exhibited a decrease in cell migration and invasion. Additionally, intracellular PAI-1 and urokinase plasminogen activator (uPA) protein levels decreased, while the PAI-1/uPA complex increased. Moreover, a significant decrease in endothelial tube formation in HUVECs transfected with the aptamers was observed. In contrast, conditioned media from aptamer transfected MDA-MB-231 cells displayed a slight pro-angiogenic effect. Collectively, our study shows that expressing functional aptamers inside breast and endothelial cells is feasible and may exhibit therapeutic potential.
Collapse
Affiliation(s)
- Yolanda M Fortenberry
- Department of Pediatric Hematology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.,Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Stephanie M Brandal
- Department of Pediatric Hematology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Gilles Carpentier
- Laboratoire CRRET, Faculté des Sciences et Technologie, Université Paris-Est Créteil, 61 avenue du général De Gaulle, 94010 Créteil, France
| | - Malvi Hemani
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Arvind P Pathak
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
16
|
Wheaton AK, Velikoff M, Agarwal M, Loo TT, Horowitz JC, Sisson TH, Kim KK. The vitronectin RGD motif regulates TGF-β-induced alveolar epithelial cell apoptosis. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1206-17. [PMID: 27106291 PMCID: PMC4935469 DOI: 10.1152/ajplung.00424.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/14/2016] [Indexed: 01/11/2023] Open
Abstract
Transforming growth factor-β (TGF-β) is a critical driver of acute lung injury and fibrosis. Injury leads to activation of TGF-β, which regulates changes in the cellular and matrix makeup of the lung during the repair and fibrosis phase. TGF-β can also initiate alveolar epithelial cell (AEC) apoptosis. Injury leads to destruction of the laminin-rich basement membrane, which is replaced by a provisional matrix composed of arginine-glycine-aspartate (RGD) motif-containing plasma matrix proteins, including vitronectin and fibronectin. To determine the role of specific matrix proteins on TGF-β-induced apoptosis, we studied primary AECs cultured on different matrix conditions and utilized mice with deletion of vitronectin (Vtn(-/-)) or mice in which the vitronectin RGD motif is mutated to nonintegrin-binding arginine-glycine-glutamate (RGE) (Vtn(RGE/RGE)). We found that AECs cultured on fibronectin and vitronectin or in wild-type mouse serum are resistant to TGF-β-induced apoptosis. In contrast, AECs cultured on laminin or in serum from Vtn(-/-) or Vtn(RGE/RGE) mice undergo robust TGF-β-induced apoptosis. Plasminogen activator inhibitor-1 (PAI-1) sensitizes AECs to greater apoptosis by disrupting AEC engagement to vitronectin. Inhibition of integrin-associated signaling proteins augments AEC apoptosis. Mice with transgenic deletion of PAI-1 have less apoptosis after bleomycin, but deletion of vitronectin or disruption of the vitronectin RGD motif reverses this protection, suggesting that the proapoptotic function of PAI-1 is mediated through vitronectin inhibition. Collectively, these data suggest that integrin-matrix signaling is an important regulator of TGF-β-mediated AEC apoptosis and that PAI-1 functions as a natural regulator of this interaction.
Collapse
Affiliation(s)
- Amanda K Wheaton
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Miranda Velikoff
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Manisha Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Tiffany T Loo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Thomas H Sisson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Kevin K Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
17
|
A ligand-independent integrin β1 mechanosensory complex guides spindle orientation. Nat Commun 2016; 7:10899. [PMID: 26952307 PMCID: PMC4786777 DOI: 10.1038/ncomms10899] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 01/29/2016] [Indexed: 12/20/2022] Open
Abstract
Control of spindle orientation is a fundamental process for embryonic development, morphogenesis and tissue homeostasis, while defects are associated with tumorigenesis and other diseases. Force sensing is one of the mechanisms through which division orientation is determined. Here we show that integrin β1 plays a critical role in this process, becoming activated at the lateral regions of the cell cortex in a ligand-independent manner. This activation is force dependent and polar, correlating with the spindle capture sites. Inhibition of integrin β1 activation on the cortex and disruption of its asymmetric distribution leads to spindle misorientation, even when cell adhesion is β1 independent. Examining downstream targets reveals that a cortical mechanosensory complex forms on active β1, and regulates spindle orientation irrespective of cell context. We propose that ligand-independent integrin β1 activation is a conserved mechanism that allows cell responses to external stimuli.
Collapse
|
18
|
Vitronectin-binding PAI-1 protects against the development of cardiac fibrosis through interaction with fibroblasts. J Transl Med 2014; 94:633-44. [PMID: 24687120 PMCID: PMC4361016 DOI: 10.1038/labinvest.2014.51] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 02/27/2013] [Accepted: 03/06/2014] [Indexed: 01/18/2023] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) promotes or abates fibrotic processes occurring in different organs. Binding of PAI-1 to vitronectin, an extracellular matrix component, may inhibit vitronectin-integrin complex-mediated cellular responses in pathophysiological conditions. To investigate the importance of plasmin suppression vs vitronectin-binding pathways of PAI-1 in cardiac fibrosis, we studied uninephrectomized mice fed a high salt diet and infused with angiotensin II (Ang II) together with different PAI-1 variants, including PAI-1AK (AK) that inhibits plasminogen activators but does not bind vitronectin, PAI-1RR (RR) that binds vitronectin but does not have protease inhibitory effects or control PAI-1 (CPAI), the control mutant that has similar molecular backbone and half-life as AK and RR while retaining all functions of native PAI-1. Compared with RR and CPAI, non-vitronectin-binding AK significantly increased expression of cardiac fibroblast marker, periostin (Ang+AK 8.40±3.55 vs Ang+RR 2.23±0.44 and Ang+CPAI 2.33±0.12% positive area, both P<0.05) and cardiac fibrosis (Ang+AK 1.79±0.26% vs Ang+RR 0.91±0.18% and Ang+CPAI 0.81±0.12% fibrotic area, both P<0.05), as well as Col1 mRNA (Ang+AK 12.81±1.84 vs Ang+RR 4.04±1.06 and Ang+CPAI 5.23±1.21 fold increase, both P<0.05). To elucidate mechanisms underlying the protective effects of vitronectin-binding PAI-1 against fibrosis, fibroblasts from normal adult human ventricles were stimulated with Ang and different PAI-1 variants. Protease inhibitory AK and CPAI increased supernatant fibronectin, while decreasing plasminogen activator/plasmin activities and matrix metalloproteinase. RR and CPAI variants significantly reduced fibroblast expression of integrin β3, vitronectin level in the supernatant and fibroblast adhesion to vitronectin compared with the non-vitronectin-binding AK. Further, RR and CPAI preserved apoptotic, decreased anti-apoptotic and proliferative activities in fibroblasts. Thus, PAI-1 promotes or protects against development of cardiac fibrosis differentially through the protease inhibitory pathway or through its binding to vitronectin.
Collapse
|
19
|
Fleetwood AJ, Achuthan A, Schultz H, Nansen A, Almholt K, Usher P, Hamilton JA. Urokinase plasminogen activator is a central regulator of macrophage three-dimensional invasion, matrix degradation, and adhesion. THE JOURNAL OF IMMUNOLOGY 2014; 192:3540-7. [PMID: 24616477 DOI: 10.4049/jimmunol.1302864] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Urokinase plasminogen activator (uPA) and its receptor (uPAR) coordinate a plasmin-mediated proteolytic cascade that has been implicated in cell adhesion, cell motility, and matrix breakdown, for example, during inflammation. As part of their function during inflammatory responses, macrophages move through tissues and encounter both two-dimensional (2D) surfaces and more complex three-dimensional (3D) interstitial matrices. Based on approaches employing uPA gene-deficient macrophages, plasminogen supplementation, and neutralization with specific protease inhibitors, it is reported in this study that uPA activity is a central component of the invasion of macrophages through a 3D Matrigel barrier; it also has a nonredundant role in macrophage-mediated matrix degradation. For murine macrophages, matrix metalloproteinase-9 activity was found to be required for these uPA-mediated effects. Evidence for a unique role for uPA in the inverse relationship between macrophage adhesion and 2D migration was also noted: macrophage adhesion to vitronectin was enhanced by uPA and blocked by plasminogen activator inhibitor-1, the latter approach also able to enhance in turn the 2D migration on this matrix protein. It is therefore proposed that uPA can have a key role in the inflammatory response at several levels as a central regulator of macrophage 3D invasion, matrix remodeling, and adhesion.
Collapse
Affiliation(s)
- Andrew J Fleetwood
- Department of Medicine, University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | | | | | | | | | | | | |
Collapse
|
20
|
Mengele K, Napieralski R, Magdolen V, Reuning U, Gkazepis A, Sweep F, Brünner N, Foekens J, Harbeck N, Schmitt M. Characteristics of the level-of-evidence-1 disease forecast cancer biomarkers uPA and its inhibitor PAI-1. Expert Rev Mol Diagn 2014; 10:947-62. [DOI: 10.1586/erm.10.73] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Simone TM, Higgins SP, Higgins CE, Lennartz MR, Higgins PJ. Chemical Antagonists of Plasminogen Activator Inhibitor-1: Mechanisms of Action and Therapeutic Potential in Vascular Disease. J Mol Genet Med 2014; 8. [PMID: 26110015 PMCID: PMC4476021 DOI: 10.4172/1747-0862.1000125] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Tessa M Simone
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York 12208, USA
| | - Stephen P Higgins
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York 12208, USA
| | - Craig E Higgins
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York 12208, USA
| | - Michelle R Lennartz
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York 12208, USA
| | - Paul J Higgins
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York 12208, USA
| |
Collapse
|
22
|
Noh H, Hong S, Huang S. Role of urokinase receptor in tumor progression and development. Am J Cancer Res 2013; 3:487-95. [PMID: 23843896 PMCID: PMC3706692 DOI: 10.7150/thno.4218] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 08/15/2012] [Indexed: 12/21/2022] Open
Abstract
Elevated level of urokinase receptor (uPAR) is detected in various aggressive cancer types and is closely associated with poor prognosis of cancers. Binding of uPA to uPAR triggers the conversion of plasminogen to plasmin and the subsequent activation of metalloproteinases. These events confer tumor cells with the capability to degrade the components of the surrounding extracellular matrix, thus contributing to tumor cell invasion and metastasis. uPA-uPAR interaction also elicits signals that stimulate cell proliferation/survival and the expression of tumor-promoting genes, thus assisting tumor development. In addition to its interaction with uPA, uPAR also interacts with vitronectin and this interaction promotes cancer metastasis by activating Rac and stimulating cell migration. Although underlying mechanisms are yet to be fully elucidated, uPAR has been shown to facilitate epithelial-mesenchymal transition (EMT) and induce cancer stem cell-like properties in breast cancer cells. The fact that uPAR lacks intracellular domain suggests that its signaling must be mediated through its co-receptors. Indeed, uPAR interacts with diverse transmembrane proteins including integrins, ENDO180, G protein-coupled receptors and growth factor receptors in cancer cells and these interactions are proven to be critical for the role of uPAR in tumorigenesis. Inhibitory peptide that prevents uPA-uPAR interaction has shown the promise to prolong patients' survival in the early stage of clinical trial. The importance of uPAR's co-receptor in uPAR's tumor-promoting effects implicate that anti-cancer therapeutic agents may also be developed by disrupting the interactions between uPAR and its functional partners.
Collapse
|
23
|
Plasminogen activator inhibitor-1 is increased in colonic epithelial cells from patients with colitis-associated cancer. J Crohns Colitis 2013; 7:403-11. [PMID: 22921465 PMCID: PMC5279899 DOI: 10.1016/j.crohns.2012.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/02/2012] [Accepted: 08/02/2012] [Indexed: 02/08/2023]
Abstract
BACKGROUND Patients with long-term ulcerative colitis are at risk for developing colorectal cancer. METHODS Archival formalin-fixed paraffin-embedded tissue from ulcerative colitis patients who underwent a colectomy for high-grade dysplasia or carcinoma was examined for changes in expression of plasminogen activator inhibitor-1 (PAI-1) as well as other mediators of inflammation-associated cancer. Epithelia from areas of colons that showed histologic evidence of carcinoma, high-grade dysplasia, and epithelia that were not dysplastic or malignant but did contain evidence of prior inflammation (quiescent colitis) was microdissected using laser capture microscopy. mRNA was extracted from the microdissected tissue and PCR array analysis was performed. To extend our findings, PAI-1 protein levels were determined using immunohistochemistry. RESULTS The mRNA expression of PAI-1 is increased 6-fold (p=0.02) when comparing the carcinoma group to the quiescent colitis group; increases were also observed in NFKB2, REL, SRC, and VEGFA. The protein levels of PAI-1 are increased by 50% (p<0.001) in high-grade dysplasia and by 60% (p<0.001) in carcinoma when compared to the quiescent colitis group. CONCLUSIONS The increase in PAI-1 in high-grade dysplasia and carcinoma suggests a functional role for PAI-1 in malignant transformation in colitis-associated cancer. PAI-1 could also prove a useful diagnostic marker to identify patients at risk for neoplasia and it may be a useful therapeutic target to treat colitis-associated cancer.
Collapse
|
24
|
McNeel AK, Cushman RA, Vallet JL. The plasminogen activator system in the ovine placentome during late gestation and stage-two of parturition. Mol Reprod Dev 2013; 80:466-73. [PMID: 23585221 DOI: 10.1002/mrd.22183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 04/09/2013] [Indexed: 11/10/2022]
Abstract
The process of placental separation is not completely understood. In domestic animals, especially cattle, it is important that expulsion of the fetal membranes takes place in a timely manner in order to achieve maximal reproductive efficiency. The activity of the matrix-metalloprotease (MMP) family of proteases is known to be reduced in placentomes from cases of retained placenta. Members of the MMP family are known to be activated by the plasminogen activator (PA) family of proteases. We hypothesized that the expression and activity of the PA family increase in the cotyledon and/or caruncle as parturition approaches, with maximal expression and activity at parturition. To test this hypothesis, we performed reverse-transcriptase quantitative PCR and plasminogen-casein zymography to detect the presence and activity of PA family members in the placentome leading up to and during parturition in spontaneous and dexamethasone-induced parturient ewes. The results from our experiments indicated that serine proteases inhibitor E1 (SERPINE1) mRNA abundance in the cotyledon was different between treatment groups (P = 0.0002). In the caruncle, gene expression for plasminogen activator urokinase-type (PLAU) was different (P = 0.0154), and there was a strong trend for differences in SERPINE1 expression (P = 0.0565). These results demonstrate that expression of the PA system in the placentome changes from late pregnancy to parturition, and the presence or activity of these enzymes may occur after fetal expulsion.
Collapse
Affiliation(s)
- Anthony K McNeel
- United States Department of Agriculture (USDA), Agricultural Research Service, US Meat Animal Research Center, Reproduction Research Unit, Clay Center, NE 68933-0166, USA.
| | | | | |
Collapse
|
25
|
Wang LF, Han ZB, Li M, Yang P, Xv B, Zhang JP, Han ZC. Recombinant hemangiopoietin promotes cell adhesion and binds heparin in its multimeric form. Mol Med Rep 2013; 7:959-64. [PMID: 23338621 DOI: 10.3892/mmr.2013.1274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/04/2013] [Indexed: 11/06/2022] Open
Abstract
Hemangiopoietin (HAPO) is a novel growth factor stimulating the proliferation of hematopoietic and endothelial progenitor cells in vitro and in vivo. The native protein is a 294‑amino acid multimodular protein. The N‑terminus constitutes of two somatomedin B (SMB) homology domains that contain 14 cysteines. The central region is a putative heparin‑binding domain (pHBD) and the C‑terminus contains mucin‑like repeats. In the present study, we demonstrated that prokaryotic recombinant human HAPO (rhHAPO) self‑associates into a multimeric form with a mass weight of ~129 kDa, suggesting a homologous tetramer. rhHAPO in its multimeric form was found to be more stable and more potent in promoting HESS‑5 cell adhesion. Multimeric rhHAPO had a higher affinity to heparin compared with its dimeric form, although there was no significant conformational change. C‑terminal repeats-truncated rhHAPO (rhHAPOΔmucin) was also found to be assembled into a multimer, while deletion of pHBD (rhHAPOΔmucin‑pHBD) caused the protein to remain in a dimeric form, demonstrating that SMB domains participate in self‑aggregation of the molecule and that the pHBD region promotes the tetramerization.
Collapse
Affiliation(s)
- Li-Fang Wang
- Department of Basic Medicine, Zhejiang Medical College, Hangzhou 310053, PR China
| | | | | | | | | | | | | |
Collapse
|
26
|
Almholt K, Juncker-Jensen A, Lærum OD, Johnsen M, Rømer J, Lund LR. Spontaneous metastasis in congenic mice with transgenic breast cancer is unaffected by plasminogen gene ablation. Clin Exp Metastasis 2012; 30:277-88. [PMID: 22996753 DOI: 10.1007/s10585-012-9534-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 09/12/2012] [Indexed: 11/25/2022]
Abstract
Plasminogen (Plg) plays a central role in tissue remodeling during ontogeny, development, and in pathological tissue remodeling following physical injury, inflammation and cancer. Plg/plasmin is, however, not critical for these processes, as they all occur to a varying extent in its absence, suggesting that there is a functional redundancy with other proteases. To explore this functional overlap in the transgenic MMTV-PyMT breast cancer metastasis model, we have combined Plg deficiency and a pharmacological metalloprotease inhibitor, which is known to reduce metastasis in this model, and has been shown to synergistically inhibit other tissue remodeling events in Plg-deficient mice. While metalloprotease inhibition dramatically reduced metastasis, we found no effect of Plg deficiency on metastasis, either independently or in combination with metalloprotease inhibition. We further show that Plg gene deficiency is of no significant consequence in this metastasis model, when analyzed in two different congenic strains: the FVB strain, and a F1 hybrid of the FVB and C57BL/6J strains. We suggest that the extensive backcrossing performed prior to our studies has eliminated the confounding effect of a known polymorphic metastasis modifier gene region located adjacent to the Plg gene.
Collapse
Affiliation(s)
- Kasper Almholt
- Finsen Laboratory, Rigshospitalet, Copenhagen Biocenter, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
27
|
Brandal S, Blake CM, Sullenger BA, Fortenberry YM. Effects of plasminogen activator inhibitor-1-specific RNA aptamers on cell adhesion, motility, and tube formation. Nucleic Acid Ther 2011; 21:373-81. [PMID: 22103403 PMCID: PMC3279719 DOI: 10.1089/nat.2011.0320] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/09/2011] [Indexed: 11/12/2022] Open
Abstract
The serine protease inhibitor (serpin) plasminogen activator inhibitor-1 (PAI-1) is associated with the pathophysiology of several diseases, including cancer and cardiovascular disease. The extracellular matrix protein vitronectin increases at sites of vessel injury and is also present in fibrin clots. Integrins present on the cell surface bind to vitronectin and anchor the cell to the extracellular matrix. However, the binding of PAI-1 to vitronectin prevents this interaction, thereby decreasing both cell adhesion and migration. We previously developed PAI-1-specific RNA aptamers that bind to (or in the vicinity of) the vitronectin binding site of PAI-1. These aptamers prevented cancer cells from detaching from vitronectin in the presence of PAI-1, resulting in an increase in cell adhesion. In the current study, we used in vitro assays to investigate the effects that these aptamers have on human aortic smooth muscle cell (HASMC) and human umbilical vein endothelial cell (HUVEC) migration, adhesion, and proliferation. The PAI-1-specific aptamers (SM20 and WT15) increased attachment of HASMCs and HUVECs to vitronectin in the presence of PAI-1 in a dose-dependent manner. Whereas PAI-1 significantly inhibited cell migration through its interaction with vitronectin, both SM20 and WT15 restored cell migration. The PAI-1 vitronectin binding mutant (PAI-1AK) did not facilitate cell detachment or have an effect on cell migration. The effect on cell proliferation was minimal. Additionally, both SM20 and WT15 promoted tube formation on matrigel that was supplemented with vitronectin, thereby reversing the PAI-1's inhibition of tube formation. Collectively, results from this study show that SM20 and WT15 bind to the PAI-1's vitronectin binding site and interfere with its effect on cell migration, adhesion, and tube formation. By promoting smooth muscle and endothelial cell migration, these aptamers can potentially eliminate the adverse effects of elevated PAI-1 levels in the pathogenesis of vascular disease.
Collapse
Affiliation(s)
- Stephanie Brandal
- Department of Pediatric Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charlene M. Blake
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Bruce A. Sullenger
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Yolanda M. Fortenberry
- Department of Pediatric Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
28
|
Vascular Pathology as a Potential Therapeutic Target in SCI. Transl Stroke Res 2011; 2:556-74. [PMID: 24323683 DOI: 10.1007/s12975-011-0128-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/21/2011] [Accepted: 10/25/2011] [Indexed: 10/15/2022]
Abstract
Acute traumatic spinal cord injury (SCI) is characterized by a progressive secondary degeneration which exacerbates the loss of penumbral tissue and neurological function. Here, we first provide an overview of the known pathophysiological mechanisms involving injured microvasculature and molecular regulators that contribute to the loss and dysfunction of existing and new blood vessels. We also highlight the differences between traumatic and ischemic injuries which may yield clues as to the more devastating nature of traumatic injuries, possibly involving toxicity associated with hemorrhage. We also discuss known species differences with implications for choosing models, their relevance and utility to translate new treatments towards the clinic. Throughout this review, we highlight the potential opportunities and proof-of-concept experimental studies for targeting therapies to endothelial cell-specific responses. Lastly, we comment on the need for vascular mechanisms to be included in drug development and non-invasive diagnostics such as serum and cerebrospinal fluid biomarkers and imaging of spinal cord pathology.
Collapse
|
29
|
PAI-1: An Integrator of Cell Signaling and Migration. Int J Cell Biol 2011; 2011:562481. [PMID: 21837240 PMCID: PMC3151495 DOI: 10.1155/2011/562481] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 05/09/2011] [Accepted: 05/17/2011] [Indexed: 12/23/2022] Open
Abstract
Cellular migration, over simple surfaces or through complex stromal barriers, requires coordination between detachment/re-adhesion cycles, involving structural components of the extracellular matrix and their surface-binding elements (integrins), and the precise regulation of the pericellular proteolytic microenvironment. It is now apparent that several proteases and protease inhibitors, most notably urokinase plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1), also interact with several cell surface receptors transducing intracellular signals that significantly affect both motile and proliferative programs. These events appear distinct from the original function of uPA/PAI-1 as modulators of the plasmin-based proteolytic cascade. The multifaceted interactions of PAI-1 with specific matrix components (i.e., vitronectin), the low-density lipoprotein receptor-related protein-1 (LRP1), and the uPA/uPA receptor complex have dramatic consequences on the migratory phenotype and may underlie the pathophysiologic sequalae of PAI-1 deficiency and overexpression. This paper focuses on the increasingly intricate role of PAI-1 as a major mechanistic determinant of the cellular migratory phenotype.
Collapse
|
30
|
Thompson LC, Goswami S, Peterson CB. Metals affect the structure and activity of human plasminogen activator inhibitor-1. II. Binding affinity and conformational changes. Protein Sci 2011; 20:366-78. [PMID: 21280128 DOI: 10.1002/pro.567] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human plasminogen activator inhibitor type 1 (PAI-1) is a serine protease inhibitor with a metastable active conformation. The lifespan of the active form of PAI-1 is modulated via interaction with the plasma protein, vitronectin, and various metal ions. These metal ions fall into two categories: Type I metals, including calcium, magnesium, and manganese, stabilize PAI-1 in the absence of vitronectin, whereas Type II metals, including cobalt, copper, and nickel, destabilize PAI-1 in the absence of vitronectin, but stabilize PAI-1 in its presence. To provide a mechanistic basis for understanding the unusual modulation of PAI-1 structure and activity, the binding characteristics and conformational effects of these two types of metals were further evaluated. Steady-state binding measurements using surface plasmon resonance indicated that both active and latent PAI-1 exhibit a dissociation constant in the low micromolar range for binding to immobilized nickel. Stopped-flow measurements of approach-to-equilibrium changes in intrinsic protein fluorescence indicated that the Type I and Type II metals bind in different modes that induce distinct conformational effects on PAI-1. Changes in the observed rate constants with varying concentrations of metal allowed accurate determination of binding affinities for cobalt, nickel, and copper, yielding dissociation constants of ∼40, 30, and 0.09 μM, respectively. Competition experiments that tested effects on PAI-1 stability were consistent with these measurements of affinity and indicate that copper binds tightly to PAI-1.
Collapse
Affiliation(s)
- Lawrence C Thompson
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | |
Collapse
|
31
|
Thompson LC, Goswami S, Ginsberg DS, Day DE, Verhamme IM, Peterson CB. Metals affect the structure and activity of human plasminogen activator inhibitor-1. I. Modulation of stability and protease inhibition. Protein Sci 2011; 20:353-65. [PMID: 21280127 DOI: 10.1002/pro.568] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Human plasminogen activator inhibitor type 1 (PAI-1) is a serine protease inhibitor with a metastable active conformation. Under physiological conditions, half of the inhibitor transitions to a latent state within 1-2 h. The interaction between PAI-1 and the plasma protein vitronectin prolongs this active lifespan by ∼50%. Previously, our group demonstrated that PAI-1 binds to resins using immobilized metal affinity chromatography (Day, U.S. Pat. 7,015,021 B2, March 21, 2006). In this study, the effect of these metals on function and stability was investigated by measuring the rate of the transition from the active to latent conformation. All metals tested showed effects on stability, with the majority falling into one of two types depending on their effects. The first type of metal, which includes magnesium, calcium and manganese, invoked a slight stabilization of the active conformation of PAI-1. A second category of metals, including cobalt, nickel and copper, showed the opposite effects and a unique vitronectin-dependent modulation of PAI-1 stability. This second group of metals significantly destabilized PAI-1, although the addition of vitronectin in conjunction with these metals resulted in a marked stabilization and slower conversion to the latent conformation. In the presence of copper and vitronectin, the half-life of active PAI-1 was extended to 3 h, compared to a half-life of only ∼30 min with copper alone. Nickel had the largest effect, reducing the half-life to ∼5 min. Together, these data demonstrate a heretofore-unknown role for metals in modulating PAI-1 stability.
Collapse
Affiliation(s)
- Lawrence C Thompson
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | |
Collapse
|
32
|
Participation of the urokinase-type plasminogen activator receptor (uPAR) in neutrophil transendothelial migration. Mol Immunol 2011; 48:1168-77. [DOI: 10.1016/j.molimm.2011.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/04/2011] [Accepted: 02/23/2011] [Indexed: 11/19/2022]
|
33
|
Labied S, Blacher S, Carmeliet P, Noël A, Frankenne F, Foidart JM, Munaut C. Transient reduction of placental angiogenesis in PAI-1-deficient mice. Physiol Genomics 2010; 43:188-98. [PMID: 21119013 DOI: 10.1152/physiolgenomics.00147.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Murine placentation is associated with the invasion of maternal endometrium by trophoblasts and an extensive maternal and fetal angiogenesis. Plasminogen activator inhibitor-1 (PAI-1) is transiently produced by spongiotrophoblasts and trophoblast giant cells at 10.5-11.5 days postcoitum (dpc). Knowing the key contribution of PAI-1 in the regulation of angiogenesis, we have now analyzed the consequence of PAI-1 deficiency on murine placentation. Morphological and quantitative computer-assisted image analysis revealed abnormal placental morphology in PAI-1-/- mice at 10.5 and 12.5 dpc. At 10.5 dpc, the genetic ablation of PAI-1 resulted in a transient reduction of both maternal and fetal vascularizations in the placenta and increased trophoblast cell density. This was associated with a poorer development of the labyrinth and an extension of the decidua. A larger spongiotrophoblast layer appeared at 12.5 dpc in PAI-1-deficient mice. Placental morphology was normalized at 14.5 dpc. Microarray analyses performed on laser capture microdissected labyrinths revealed that 46 genes were differentially expressed between the two genotypes at 10.5 dpc. However, only 11 genes were still differently modulated at 14.5 dpc, when normalization of placental morphology had taken place. This transcriptomic profiling highlighted a dysregulation in the expression of placenta-related cathepsin family members. Altogether our data provide evidence for a transient impaired placental morphology in PAI-1-deficient mice that is then normalized, leading to normal embryonic development.
Collapse
Affiliation(s)
- Soraya Labied
- Laboratory of Tumour and Development Biology, University of Liège, Tour de Pathologie (B23), Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer (GIGA Cancer), Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
34
|
Kandenwein JA, Park-Simon TW, Schramm J, Simon M. uPA/PAI-1 expression and uPA promoter methylation in meningiomas. J Neurooncol 2010; 103:533-9. [DOI: 10.1007/s11060-010-0411-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 09/06/2010] [Indexed: 12/31/2022]
|
35
|
Garg N, Goyal N, Strawn TL, Wu J, Mann KM, Lawrence DA, Fay WP. Plasminogen activator inhibitor-1 and vitronectin expression level and stoichiometry regulate vascular smooth muscle cell migration through physiological collagen matrices. J Thromb Haemost 2010; 8:1847-54. [PMID: 20492459 PMCID: PMC2941703 DOI: 10.1111/j.1538-7836.2010.03907.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Vascular smooth muscle cell (VSMC) migration is a critical process in arterial remodeling. Purified plasminogen activator inhibitor-1 (PAI-1) is reported to both promote and inhibit VSMC migration on two-dimensional (D) surfaces. OBJECTIVE To determine the effects of PAI-1 and vitronectin (VN) expressed by VSMC themselves on migration through physiological collagen matrices. METHODS We studied migration of wild-type (WT), PAI-1-deficient, VN-deficient, PAI-1/VN doubly-deficient (DKO) and PAI-1-transgenic (Tg) VSMC through three-D collagen gels. RESULTS WT VSMC migrated significantly slower than PAI-1- and VN-deficient VSMC, but significantly faster than DKO VSMC. Experiments with recombinant PAI-1 suggested that basal VSMC PAI-1 expression inhibits migration by binding VN, which is secreted by VSMC and binds collagen. However, PAI-1-over-expressing Tg VSMC migrated faster than WT VSMC. Reconstitution experiments with recombinant PAI-1 mutants suggested that the pro-migratory effect of PAI-1 over-expression required its anti-plasminogen activator (PA) and LDL receptor-related protein (LRP) binding functions, but not VN binding. While promoting VSMC migration in the absence of PAI-1, VN inhibited the pro-migratory effect of active PAI-1. CONCLUSIONS In isolation, VN and PAI-1 are each pro-migratory. However, via formation of a high-affinity, non-motogenic complex, PAI-1 and VN each buffers the other's pro-migratory effect. The level of PAI-1 expression by VSMC and the concentration of VN in extracellular matrix are critical determinants of whether PAI-1 and VN promote or inhibit migration. These findings help to rectify previously conflicting reports and suggest that PAI-1/VN stoichiometry plays an important role in VSMC migration and vascular remodeling.
Collapse
Affiliation(s)
- N Garg
- Department of Internal Medicine, University of Missouri School of Medicine and Research Service, Harry S. Truman Memorial Veterans Affairs Hospital, Columbia, MO, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Francischetti IMB, Kotsyfakis M, Andersen JF, Lukszo J. Cyr61/CCN1 displays high-affinity binding to the somatomedin B(1-44) domain of vitronectin. PLoS One 2010; 5:e9356. [PMID: 20195466 PMCID: PMC2829074 DOI: 10.1371/journal.pone.0009356] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 01/22/2010] [Indexed: 01/20/2023] Open
Abstract
Background Cyr61 is a member of the CCN (Cyr61, connective tissue growth, NOV) family of extracellular-associated (matricellular) proteins that present four distinct functional modules, namely insulin-like growth factor binding protein (IGFBP), von Willebrand factor type C (vWF), thrombospondin type 1 (TSP), and C-terminal growth factor cysteine knot (CT) domain. While heparin sulphate proteoglycans reportedly mediate the interaction of Cyr61 with the matrix and cell surface, the role of other extracellular associated proteins has not been revealed. Methods and Findings In this report, surface plasmon resonance (SPR) experiments and solid-phase binding assays demonstrate that recombinant Cyr61 interacts with immobilized monomeric or multimeric vitronectin (VTNC) with KD in the nanomolar range. Notably, the binding site for Cyr61 was identified as the somatomedin B domain (SMTB 1–44) of VTNC, which mediates its interaction with PAI-1, uPAR, and integrin αvβ3. Accordingly, PAI-1 outcompetes Cyr61 for binding to immobilized SMTB 1–44, and Cyr61 attenuates uPAR-mediated U937 adhesion to VTNC. In contrast, isothermal titration calorimetry shows that Cyr61 does not display high-affinity binding for SMTB 1-44 in solution. Nevertheless, competitive ELISA revealed that multimeric VTNC, heat-modified monomeric VTNC, or SMTB 1–44 at high concentrations attenuate Cyr61 binding to immobilized VTNC, while monomeric VTNC was ineffective. Therefore, immobilization of VTNC exposes cryptic epitopes that recognize Cyr61 with high affinity, as reported for a number of antibodies, β-endorphin, and other molecules. Conclusions The finding that Cyr61 interacts with the SMTB 1–44 domain suggests that VTNC represent a point of anchorage for CCN family members to the matrix. Results are discussed in the context of the role of CCN and VTNC in matrix biology and angiogenesis.
Collapse
Affiliation(s)
- Ivo M B Francischetti
- Section of Vector Biology, Laboratory of Malaria and Vector Research, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | | | |
Collapse
|
37
|
Abstract
Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation and tissue remodelling and in many human cancers, in which it frequently indicates poor prognosis. uPAR regulates proteolysis by binding the extracellular protease urokinase-type plasminogen activator (uPA; also known as urokinase) and also activates many intracellular signalling pathways. Coordination of extracellular matrix (ECM) proteolysis and cell signalling by uPAR underlies its important function in cell migration, proliferation and survival and makes it an attractive therapeutic target in cancer and inflammatory diseases. uPAR lacks transmembrane and intracellular domains and so requires transmembrane co-receptors for signalling. Integrins are essential uPAR signalling co-receptors and a second uPAR ligand, the ECM protein vitronectin, is also crucial for this process.
Collapse
Affiliation(s)
- Harvey W Smith
- Goodman Cancer Centre, McGill University, West Montreal, Quebec, H3A 1A3, Canada.
| | | |
Collapse
|
38
|
Bao JP, Chen WP, Wu LD. Lubricin: a novel potential biotherapeutic approaches for the treatment of osteoarthritis. Mol Biol Rep 2010; 38:2879-85. [PMID: 20099082 DOI: 10.1007/s11033-010-9949-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 01/14/2010] [Indexed: 10/19/2022]
Abstract
Osteoarthritis (OA) is a multi-factor disorder of sinovial joints, which characterized by escalated degeneration and loss of articular cartilage. Treatment of OA is a critical unmet need in medicine for regeneration of damaged articular cartilage in elderly. On the other hand, lubricin, a glycoprotein specifically synthesized by chondrocytes located at the surface of articular cartilage, has been shown to provide boundary lubrication of congruent articular surfaces under conditions of high contact pressure and near zero sliding speed. Lubrication of these surfaces is critical to normal joint function, while different gene expressions of lubricin had been found in the synovium of rheumatoid arthritis (RA) and OA. Moreover, mutations or lacking of lubricin gene have been shown to link to the joint disease such as camptodactyly-arthropathy-coxa vara-pericarditis syndrome (CACP), synovial hyperplasia and failure of joint function, suggesting an important role of lubricin in the pathogenesis of these joint disease. Recent studies demonstrate that administration with recombinant lubricin in the joint cavity would be effective in the prevention of cartilage degeneration in animal OA models. Therefore, a treatment with lubricin which would protect cartilage in vivo would be desirable. This article reviews recent findings with regard to the possible role of lubricin in the progression of OA, and further discusses lubricin as a novel potential biotherapeutic approaches for the treatment of OA.
Collapse
Affiliation(s)
- Jia-Peng Bao
- Department of Orthopedics Surgery, The Second Hospital of Medical College, Zhejiang University, JieFang Road 88#, 310009 Hangzhou, People's Republic of China
| | | | | |
Collapse
|
39
|
Czekay RP, Loskutoff DJ. Plasminogen activator inhibitors regulate cell adhesion through a uPAR-dependent mechanism. J Cell Physiol 2009; 220:655-63. [PMID: 19472211 DOI: 10.1002/jcp.21806] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Binding of type-1 plasminogen activator inhibitor (PAI-1) to cell surface urokinase (uPA) promotes inactivation and internalization of adhesion receptors (e.g., urokinase receptor (uPAR), integrins) and leads to cell detachment from a variety of extracellular matrices. In this report, we begin to examine the mechanism of this process. We show that neither specific antibodies to uPA, nor active site inhibitors of uPA, can detach the cells. Thus, cell detachment is not simply the result of the binding of macromolecules to uPA and/or of the inactivation of uPA. We further demonstrate that another uPA inhibitor, protease nexin-1 (PN-1), also stimulates cell detachment in a uPA/uPAR-dependent manner. The binding of both inhibitors to uPA leads to the specific inactivation of the matrix-engaged integrins and the subsequent detachment of these integrins from the underlying extracellular matrix (ECM). This inhibitor-mediated inactivation of integrins requires direct interaction between uPAR and those integrins since cells attached to the ECM through integrins incapable of binding uPAR do not respond to the presence of either PAI-1 of PN-1. Although both inhibitors initiate the clearance of uPAR, only PAI-1 triggers the internalization of integrins. However, cell detachment by PAI-1 or PN-1 does not depend on the endocytosis of these integrins since cell detachment was also observed when clearance of these integrins was blocked. Thus, PAI-1 and PN-1 induce cell detachment through two slightly different mechanisms that affect integrin metabolism. These differences may be important for distinct cellular processes that require controlled changes in the subcellular localization of these receptors.
Collapse
Affiliation(s)
- Ralf-Peter Czekay
- Albany Medical College, Center for Cell Biology & Cancer Research, 47 New Scotland Avenue, Albany, NY 12208, USA.
| | | |
Collapse
|
40
|
Maillard C, Bouquet C, Petitjean M, Mestdagt M, Frau E, Jost M, Masset A, Opolon P, Beermann F, Abitbol M, Foidart J, Perricaudet M, Noel A. Reduction of brain metastases in plasminogen activator inhibitor-1-deficient mice with transgenic ocular tumors. Carcinogenesis 2008; 29:2236-42. [DOI: 10.1093/carcin/bgn204] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Vitronectin inhibits plasminogen activator inhibitor-1-induced signalling and chemotaxis by blocking plasminogen activator inhibitor-1 binding to the low-density lipoprotein receptor-related protein. Int J Biochem Cell Biol 2008; 41:578-85. [PMID: 18703159 DOI: 10.1016/j.biocel.2008.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/04/2008] [Accepted: 07/10/2008] [Indexed: 11/21/2022]
Abstract
We have previously reported that the serpin plasminogen activator inhibitor-1 activates the Janus kinase (Jak)/signal transducer and activator of transcription (Stat) signalling pathway and stimulates cell migration by binding to the low-density lipoprotein receptor-related protein. All the free forms (cleaved, latent or active) of this inhibitor were shown to be motogenic. However, the plasminogen activator inhibitor-1 can also interact with vitronectin which acts as a cofactor by increasing the half-life of the active form of the serpin. Since vitronectin influences most of the biological functions of the plasminogen activator inhibitor-1, we explored the effects of vitronectin on signalling and cell migration induced by this serpin. We found that the interaction between vitronectin and the plasminogen activator inhibitor-1 suppressed signalling and cell migration. In fact, a purified vitronectin(1-97)/plasminogen activator inhibitor-1 complex was not chemotactic. Vitronectin interaction with the plasminogen activator inhibitor-1 blocks the binding of this serpin to its motogenic receptor, the low-density lipoprotein receptor-related protein. Consequently, vitronectin inhibits the activation of the Janus kinase/signal transducer and activator of transcription signalling pathway by the plasminogen activator inhibitor-1 and subsequent cell migration. In conclusion, we have unveiled a new inhibitory role of vitronectin, which turns off the intracellular signalling and migration-promoting activity of the plasminogen activator inhibitor-1. Thus, the motogenic (cleaved, latent or active) and non-motogenic (in complex with vitronectin) forms of the plasminogen activator inhibitor-1 have different properties that may explain the rather contrasting physiological and pathological roles of this serpin.
Collapse
|
42
|
Shah C, Yang G, Lee I, Bielawski J, Hannun YA, Samad F. Protection from high fat diet-induced increase in ceramide in mice lacking plasminogen activator inhibitor 1. J Biol Chem 2008; 283:13538-48. [PMID: 18359942 PMCID: PMC2376236 DOI: 10.1074/jbc.m709950200] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 02/29/2008] [Indexed: 12/22/2022] Open
Abstract
Obesity increases the risk for metabolic and cardiovascular disease, and adipose tissue plays a central role in this process. Ceramide, the key intermediate of sphingolipid metabolism, also contributes to obesity-related disorders. We show that a high fat diet increased ceramide levels in the adipose tissues and plasma in C57BL/6J mice via a mechanism that involves an increase in gene expression of enzymes mediating ceramide generation through the de novo pathway (e.g. serine palmitoyltransferase) and via the hydrolysis of sphingomyelin (acid sphingomyelinase and neutral sphingomyelinase). Although the induction of total ceramide in response to the high fat diet was modest, dramatic increases were observed for C16, C18, and C18:1 ceramides. Next, we investigated the relationship of ceramide to plasminogen activator inhibitor-1 (PAI-1), the primary inhibitor of plasminogen activation and another key player in obesity. PAI-1 is consistently elevated in obesity and thought to contribute to increased artherothrombotic events and more recently to obesity-mediated insulin resistance. Interestingly, the changes in ceramide were attenuated in mice lacking PAI-1. Mechanistically, mice lacking PAI-1 were protected from diet-induced increase in serine palmitoyltransferase, acid sphingomyelinase, and neutral sphingomyelinase mRNA, providing a mechanistic link for decreased ceramide in PAI-1-/- mice. The decreases in plasma free fatty acids and adipose tumor necrosis factor-alpha in PAI-1-/- mice may have additionally contributed indirectly to improvements in ceramide profile in these mice. This study has identified a novel link between sphingolipid metabolism and PAI-1 and also suggests that ceramide may be an intermediary molecule linking elevated PAI-1 to insulin resistance.
Collapse
Affiliation(s)
- Charmi Shah
- Torrey Pines Institute for Molecular Studies, San Diego, California 92121, USA
| | | | | | | | | | | |
Collapse
|
43
|
Vial D, McKeown-Longo PJ. PAI1 stimulates assembly of the fibronectin matrix in osteosarcoma cells through crosstalk between the alphavbeta5 and alpha5beta1 integrins. J Cell Sci 2008; 121:1661-70. [PMID: 18445685 DOI: 10.1242/jcs.020149] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The plasminogen activation system regulates matrix remodeling through both proteolytic and non-proteolytic mechanisms. Studies were undertaken to determine the effects of the plasminogen activator inhibitor 1 (PAI1) on the assembly of the fibronectin matrix. The addition of PAI1 to MG-63 cells caused a 1.5- to threefold increase in the rate of fibronectin matrix assembly which was associated with an increase in beta integrin activation. PAI1 treatment led to a marked decrease in focal contacts and stress fibers, whereas tensin-containing matrix contacts remained unaffected. The effects of PAI1 on matrix assembly were independent of both urokinase-type plasminogen activator (uPA) and urokinase-type plasminogen activator receptor (uPAR), indicating that the stimulation of matrix assembly by PAI1 does not depend on its anti-proteolytic activity or on the association of uPAR with integrin receptors. Antagonists of the alphavbeta5 integrin mimicked the effect of PAI1 on cell morphology and fibronectin matrix deposition, indicating that stimulation of matrix assembly by PAI1 required disruption of the interaction between the alphavbeta5 integrin and vitronectin. Consistent with this conclusion, the Q123K PAI1 mutant which does not bind vitronectin had no effect on matrix assembly. Our data identify PAI1 as a novel regulator of fibronectin matrix assembly, and indicate that this regulation occurs through a previously undescribed crosstalk between the alphavbeta5 and alpha5beta1 integrins.
Collapse
Affiliation(s)
- Daniel Vial
- Center for Cell Biology and Cancer Research MC-165, Albany Medical College, Albany, NY 12208, USA
| | | |
Collapse
|
44
|
SERPINE1 (PAI-1) is deposited into keratinocyte migration "trails" and required for optimal monolayer wound repair. Arch Dermatol Res 2008; 300:303-10. [PMID: 18386027 DOI: 10.1007/s00403-008-0845-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/27/2007] [Accepted: 03/05/2008] [Indexed: 01/12/2023]
Abstract
Cutaneous tissue injury, both in vivo and in vitro, initiates activation of a "wound repair" transcriptional program. One such highly induced gene encodes plasminogen activator inhibitor type-1 (PAI-1, SERPINE1). PAI-1-GFP, expressed as a fusion protein under inducible control of +800 bp of the wound-activated PAI-1 promoter, prominently "marked" keratinocyte migration trails during the real-time of monolayer scrape-injury repair. Addition of active recombinant PAI-1 to wounded wild-type keratinocyte monolayers as well as to PAI-1(-/-) MEFs and PAI-1(-/-) keratinocytes significantly stimulated directional motility above basal levels in all cell types. PAI-1 expression knockdown or antibody-mediated functional inhibition, in contrast, effectively attenuated injury repair. The defect in wound-associated migratory activity as a consequence of antisense-mediated PAI-1 down-regulation was effectively reversed by addition of recombinant PAI-1 immediately after scrape injury. One possible mechanism underlying the PAI-1-dependent motile response may involve fine control of the keratinocyte substrate detachment/re-attachment process. Exogenous PAI-1 significantly enhanced keratinocyte spread cell "footprint" area while PAI-1 neutralizing antibodies, but not control non-immune IgG, effectively inhibited spreading with apoptotic hallmarks evident within 24 h. Importantly, PAI-1 not only stimulated keratinocyte adhesion and wound-initiated planar migration but also rescued keratinocytes from plasminogen-induced substrate detachment/anoikis. The early transcriptional response of the PAI-1 gene to monolayer trauma and its prominence in the injury repair genetic signature are consistent with its function as both a survival factor and regulator of the time course of epithelial migration as part of the cutaneous injury response program.
Collapse
|
45
|
Role of Fibrinolysis in the Nasal System. RECENT ADVANCES IN THROMBOSIS AND HEMOSTASIS 2008 2008. [PMCID: PMC7121017 DOI: 10.1007/978-4-431-78847-8_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this chapter, we show the presence of tissue-type plasminogen activator (t-PA), urokinase-type plasminogen activator (u-PA), and plasminogen activator inhibitor-1 (PAI-1) in nasal mucosa. It is suggested that t-PA synthesized in mucous cells is promptly secreted and modifies the watery nasal discharge in allergic rhinitis and that u-PA activity may help with the passage of large amounts of rhinorrhea by reducing its viscosity. Furthermore, we clarify the relation between fibrinolytic components and the pathology of allergy, particularly during the development of nasal allergy and nasal tissue changes. Wild-type (WT) mice can develop nasal allergy for ovalbumin (OVA) sensitization, but PAI-1-deficient mice (PAI-1-/-) cannot. The production of specific immunoglobulins IgG1 and IgE in the serum and production of interleukins IL-4 and IL-5 in splenocyte culture supernatant increased significantly in WT-OVA mice. In PAI-1-/- mice, these reactions were absent, and specific IgG2a in serum and interferon-γ in splenocyte culture medium increased significantly. Histopathologically, there was marked goblet cell hyperplasia and eosinophil infiltration into the nasal mucosa in WT-OVA mice, but these were absent in PAI-1-/- mice. These results indicate that the immune response in WT-OVA mice can be classified as a dominant Th2 response, which would promote collagen deposition. In contrast, the Th2 response in PAI-1-/- mice was down-regulated and the immune response shifted from Th2-dominant reaction to a Th1-dominant one. Taken together, these findings suggest that PAI-1 plays an important role not only in thrombolysis but also in the immune response.
Collapse
|
46
|
Petzinger J, Saltel F, Hersemeyer K, Daniel JM, Preissner KT, Wehrle-Haller B, Kanse SM. Urokinase receptor (CD87) clustering in detergent-insoluble adhesion patches leads to cell adhesion independently of integrins. ACTA ACUST UNITED AC 2007; 14:137-55. [PMID: 17957530 DOI: 10.1080/15419060701557487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The urokinase-type plasminogen activator receptor (uPAR) is a glycosylphosphatidyl inositol-anchored protein that mediates cell adhesion to the extracellular matrix protein vitronectin (VN). We demonstrate here that this cell adhesion process is accompanied by the formation of an adhesion patch characterized by an accumulation of uPAR into areas of direct contact between the cell and the matrix. The adhesion patch requires the glycolipid anchor and develops only on a VN-coated substrate, but not on fibronectin. It consists of detergent-insoluble microdomains that accumulate F-actin and tyrosine-phosphorylated proteins, but not beta(1) integrins. Lack of inhibition of adhesion in the presence of integrin-blocking reagents and adhesion on a VN fragment without the RGD sequence indicated that the adhesion of uPAR-bearing cells on VN could occur independently of integrins. Hence, uPAR-mediated cell adhesion on VN relies on the formation of a unique cellular structure that we have termed "detergent-insoluble adhesion patch" (DIAP).
Collapse
Affiliation(s)
- Jutta Petzinger
- Institute for Biochemistry, Justus-Liebig University, Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Beaulieu LM, Whitley BR, Wiesner TF, Rehault SM, Palmieri D, Elkahloun AG, Church FC. Breast cancer and metabolic syndrome linked through the plasminogen activator inhibitor-1 cycle. Bioessays 2007; 29:1029-38. [PMID: 17876797 PMCID: PMC4046619 DOI: 10.1002/bies.20640] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is a physiological inhibitor of urokinase (uPA), a serine protease known to promote cell migration and invasion. Intuitively, increased levels of PAI-1 should be beneficial in downregulating uPA activity, particularly in cancer. By contrast, in vivo, increased levels of PAI-1 are associated with a poor prognosis in breast cancer. This phenomenon is termed the "PAI-1 paradox". Many factors are responsible for the upregulation of PAI-1 in the tumor microenvironment. We hypothesize that there is a breast cancer predisposition to a more aggressive stage when PAI-1 is upregulated as a consequence of Metabolic Syndrome (MetS). MetS exerts a detrimental effect on the breast tumor microenvironment that supports cancer invasion. People with MetS have an increased risk of coronary heart disease, stroke, peripheral vascular disease and hyperinsulinemia. Recently, MetS has also been identified as a risk factor for breast cancer. We hypothesize the existence of the "PAI-1 cycle". Sustained by MetS, adipocytokines alter PAI-1 expression to promote angiogenesis, tumor-cell migration and procoagulant microparticle formation from endothelial cells, which generates thrombin and further propagates PAI-1 synthesis. All of these factors culminate in a chemotherapy-resistant breast tumor microenvironment. The PAI-1 cycle may partly explain the PAI-1 paradox. In this hypothesis paper, we will discuss further how MetS upregulates PAI-1 and how an increased level of PAI-1 can be linked to a poor prognosis.
Collapse
Affiliation(s)
- Lea M. Beaulieu
- Departments of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7035
| | - Brandi R. Whitley
- Departments of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7035
| | - Theodore F. Wiesner
- Departments of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7035
| | - Sophie M. Rehault
- Departments of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7035
| | - Diane Palmieri
- Departments of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7035
| | - Abdel G. Elkahloun
- NHGRI-NIH Genome Technology Branch, National Institute of Health, Bethesda, MD 20892
| | - Frank C. Church
- Departments of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599-7035
| |
Collapse
|
48
|
Qi L, Higgins SP, Lu Q, Samarakoon R, Wilkins-Port CE, Ye Q, Higgins CE, Staiano-Coico L, Higgins PJ. SERPINE1 (PAI-1) is a prominent member of the early G0 --> G1 transition "wound repair" transcriptome in p53 mutant human keratinocytes. J Invest Dermatol 2007; 128:749-53. [PMID: 17882266 PMCID: PMC2654242 DOI: 10.1038/sj.jid.5701068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Li Qi
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA
| | - Stephen P. Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA
| | - Qi Lu
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York, USA
| | - Rohan Samarakoon
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA
| | | | - Qunhui Ye
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA
| | - Craig E. Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA
| | - Lisa Staiano-Coico
- Department of Surgery, Weill Medical College of Cornell University, New York, New York, USA
| | - Paul J. Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, USA
| |
Collapse
|
49
|
Onalan O, Balta G, Oto A, Kabakci G, Tokgozoglu L, Aytemir K, Altay C, Gurgey A, Nazli N. Plasminogen activator inhibitor-1 4G4G genotype is associated with myocardial infarction but not with stable coronary artery disease. J Thromb Thrombolysis 2007; 26:211-7. [PMID: 17721742 DOI: 10.1007/s11239-007-0083-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Accepted: 02/01/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND A case control study was conducted to test the hypothesis that plasminogen activator inhibitor type-1 (PAI-1) 4G/5G gene polymorphism confers an increased risk for myocardial infarction (MI) in patients with known coronary atherosclerosis. METHODS One hundred fifty-six consecutive patients who presented with acute MI and 111 stable coronary artery disease (SCAD) patients with documented critical coronary artery stenoses were prospectively enrolled. PAI-1 4G/5G gene polymorphism and conventional atherosclerotic risk factors were studied in all patients. PAI-1 4G/5G gene polymorphism was studied in another 281 healthy blood bank donors. RESULTS The frequency 4G4G genotype was significantly higher in the MI group as compared to SCAD group (32.7% vs. 15.3%, P = 0.001) while it was not statistically significant between MI and healthy control groups (32.7% vs. 26.0%, P = 0.136). Comparing with healthy controls SCAD group had significantly lower frequency of 4G4G genotype (P = 0.024). In comparison with SCAD group PAI-1 4G/4G genotype, male sex and smoking habits favored to MI in univariate analysis with a P value of less than 0.2. These variables were included in multivariate regression model to estimate the associated risk for MI. PAI-1 4G/4G genotype was the only independent variable (OR 2.67, 95%CI 1.43-4.96, P = 0.002) associated with MI in this regression model. Comparing with healthy control group 4G4G genotype was not associated with MI (OR 1.38, 95%CI 0.90-2.12). However, presence of 4G4G genotype had a protective effect against development of SCAD (OR 0.52, 96%CI 0.29-0.92). CONCLUSION Compared to patients with critical coronary stenoses, PAI-1 4G/4G genotype was found to be an independent predictor for development of MI in this population. PAI-1 4G4G genotype have a protective effect against development of high grade stable coronary stenoses.
Collapse
Affiliation(s)
- Orhan Onalan
- Faculty of Medicine, Department of Cardiology, Hacettepe University, Ankara, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Elia C, Cassol E, Sidenius N, Blasi F, Castagna A, Poli G, Alfano M. Inhibition of HIV replication by the plasminogen activator is dependent on vitronectin-mediated cell adhesion. J Leukoc Biol 2007; 82:1212-20. [PMID: 17704294 DOI: 10.1189/jlb.0407251] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Urokinase-type plasminogen activator (uPA), an inducer of macrophage adhesion, inhibits HIV-1 expression in PMA-stimulated, chronically infected U1 cells. We investigated whether uPA-dependent cell adhesion played a role in uPA-dependent inhibition of HIV-1 replication in these cells. Monocyte-derived macrophages (MDM) were generated from monocytes of HIV-infected individuals or from cells of seronegative donors infected acutely in vitro. U1 cells were stimulated in the presence or absence of uPA in standard tissue culture (TC) plates, allowing firm cell adhesion or ultra-low adhesion (ULA) plates. Moreover, U1 cells were also maintained in the presence or absence of vitronectin (VN)-containing sera or serum from VN(-/-) mice. Virus production was evaluated by RT activity in culture supernatants, whereas cell adhesion was by crystal violet staining and optical microscopy. uPA inhibited HIV replication in MDM and PMA-stimulated U1 cells in TC plates but not in ULA plates. uPA failed to inhibit HIV expression in U1 cells stimulated with IL-6, which induces virus expression but not cell adhesion in TC plates. VN, known to bind to the uPA/uPA receptor complex, was crucial for these adhesion-dependent, inhibitory effects of uPA on HIV expression, in that they were not observed in TC plates in the presence of VN(-/-) mouse serum. HIV production in control cell cultures was increased significantly in ULA versus TC plates, indicating that macrophage cell adhesion per se curtails HIV replication. In conclusion, uPA inhibits HIV-1 replication in macrophages via up-regulation of cell adhesion to the substrate mediated by VN.
Collapse
Affiliation(s)
- Chiara Elia
- DIBIT, AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, Via Olgettina, 58, 20132, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|