1
|
Jin SP, Oh JH, Kim NK, Chung JH. H Antigen expression modulates epidermal Keratinocyte Integrity and differentiation. Biol Res 2024; 57:72. [PMID: 39420441 PMCID: PMC11487879 DOI: 10.1186/s40659-024-00541-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND ABO blood group antigens (ABH antigens) are carbohydrate chains glycosylated on epithelial and red blood cells. Recent findings suggest reduced ABH expression in psoriasis and atopic dermatitis, a chronic inflammatory skin disease with retained scale. H antigen, a precursor for A and B antigens, is synthesized by fucosyltransferase 1 (FUT1). Desmosomes, critical for skin integrity, are known to require N-glycosylation for stability. We investigate the impact of H antigens, a specific type of glycosylation, on desmosomes in keratinocytes. METHOD Primary human keratinocytes were transfected with FUT1 siRNA or recombinant adenovirus for FUT1 overexpression. Cell adhesion and desmosome characteristics and their underlying mechanisms were analyzed. RESULT The knockdown of FUT1, responsible for H2 antigen expression in the skin, increased cell-cell adhesive strength and desmosome size in primary cultured keratinocytes without altering the overall desmosome structure. Desmosomal proteins, including desmogleins or plakophilin, were upregulated, suggesting enhanced desmosome assembly. Reduced H2 antigen expression via FUT1 knockdown led to increased keratinocyte differentiation, evidenced by elevated expression of differentiation markers. Epidermal growth factor receptor (EGFR) has been described to be associated with FUT1 and promotes cell migration and differentiation. The effects of FUT1 knockdown were recapitulated by an EGFR inhibitor concerning desmosomal proteins and cellular differentiation. Further investigation demonstrated that the FUT1 knockdown reduced EGFR signaling by lowering the levels of EGF ligands rather than directly regulating EGFR activity. Moreover, FUT1 overexpression reversed the effects observed in FUT1 knockdown, resulting in the downregulation of desmosomal proteins and differentiation markers while increasing both mRNA and protein levels of EGFR ligands. CONCLUSION The expression level of FUT1 in the epidermis appears to influence cell-cell adhesion and keratinocyte differentiation status, at least partly through regulation of H2 antigen and EGFR ligand expression. These observations imply that the fucosylation of the H2 antigen by FUT1 could play a significant role in maintaining the molecular composition and regulation of desmosomes and suggest a possible involvement of the altered H2 antigen expression in skin diseases, such as psoriasis and atopic dermatitis.
Collapse
Affiliation(s)
- Seon-Pil Jin
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jang-Hee Oh
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Namjoo Kaylee Kim
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University Hospital, Seoul, Republic of Korea.
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea.
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Ziganshina MM, Kulikova GV, Muminova KT, Shchegolev AI, Yarotskaya EL, Khodzhaeva ZS, Sukhikh GT. Features and Comparative Characteristics of Fucosylated Glycans Expression in Endothelial Glycocalyx of Placental Terminal Villi in Patients with Preeclampsia Treated with Different Antihypertensive Regimens. Int J Mol Sci 2023; 24:15611. [PMID: 37958597 PMCID: PMC10649041 DOI: 10.3390/ijms242115611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Antihypertensive therapy is an essential part of management of patients with preeclampsia (PE). Methyldopa (Dopegyt®) and nifedipine (Cordaflex®) are basic medications of therapy since they stabilize blood pressure without affecting the fetus. Their effect on the endothelium of placental vessels has not yet been studied. In this study, we analyzed the effect of antihypertensive therapy on the expression of fucosylated glycans in fetal capillaries of placental terminal villi in patients with early-onset PE (EOPE) and late-onset PE (LOPE), and determined correlation between their expression and mother's hemodynamic parameters, fetoplacental system, factors reflecting inflammatory response, and destructive processes in the endothelial glycocalyx (eGC). A total of 76 women were enrolled in the study: the comparison group consisted of 15 women with healthy pregnancy, and the main group comprised 61 women with early-onset and late-onset PE, who received one-component or two-component antihypertensive therapy. Hemodynamic status was assessed by daily blood pressure monitoring, dopplerometry of maternal placental and fetoplacental blood flows, and the levels of IL-18, IL-6, TNFα, galectin-3, endocan-1, syndecan-1, and hyaluronan in the blood of the mother. Expression of fucosylated glycans was assessed by staining placental sections with AAL, UEA-I, LTL lectins, and anti-LeY MAbs. It was found that (i) expression patterns of fucosylated glycans in eGC capillaries of placental terminal villi in EOPE and LOPE are characterized by predominant expression of structures with a type 2 core and have a similar pattern of quantitative changes, which seems to be due to the impact of one-component and two-component antihypertensive therapy on their expression; (ii) correlation patterns indicate interrelated changes in the molecular composition of eGC fucoglycans and indicators reflecting changes in maternal hemodynamics, fetoplacental hemodynamics, and humoral factors associated with eGC damage. The presented study is the first to demonstrate the features of placental eGC in women with PE treated with antihypertensive therapy. This study also considers placental fucoglycans as a functional part of the eGC, which affects hemodynamics in the mother-placenta-fetus system.
Collapse
Affiliation(s)
- Marina M. Ziganshina
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation, Oparina Str. 4, 117997 Moscow, Russia;
| | - Galina V. Kulikova
- Department of Perinatal Pathology, National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation, Oparina Str. 4, 117997 Moscow, Russia; (G.V.K.); (A.I.S.)
| | - Kamilla T. Muminova
- High Risk Pregnancy Department, National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation, Oparina Str. 4, 117997 Moscow, Russia; (K.T.M.); (Z.S.K.)
| | - Alexander I. Shchegolev
- Department of Perinatal Pathology, National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation, Oparina Str. 4, 117997 Moscow, Russia; (G.V.K.); (A.I.S.)
| | - Ekaterina L. Yarotskaya
- Department of International Cooperation, National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation, Oparina Str. 4, 117997 Moscow, Russia;
| | - Zulfiya S. Khodzhaeva
- High Risk Pregnancy Department, National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation, Oparina Str. 4, 117997 Moscow, Russia; (K.T.M.); (Z.S.K.)
| | - Gennady T. Sukhikh
- Laboratory of Clinical Immunology, National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named after Academician V.I. Kulakov of the Ministry of Health of the Russian Federation, Oparina Str. 4, 117997 Moscow, Russia;
- Department of Obstetrics, Gynecology, Perinatology and Reproductology, Faculty for Postgraduate and Advanced Training of Physicians, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
3
|
Aziz F, Khan I, Shukla S, Dey DK, Yan Q, Chakraborty A, Yoshitomi H, Hwang SK, Sonwal S, Lee H, Haldorai Y, Xiao J, Huh YS, Bajpai VK, Han YK. Partners in crime: The Lewis Y antigen and fucosyltransferase IV in Helicobacter pylori-induced gastric cancer. Pharmacol Ther 2021; 232:107994. [PMID: 34571111 DOI: 10.1016/j.pharmthera.2021.107994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 02/05/2023]
Abstract
Helicobacter pylori (H. pylori) is a major causative agent of chronic gastritis, gastric ulcer and gastric carcinoma. H. pylori cytotoxin associated antigen A (CagA) plays a crucial role in the development of gastric cancer. Gastric cancer is associated with glycosylation alterations in glycoproteins and glycolipids on the cell surface. H. pylori cytotoxin associated antigen A (CagA) plays a significant role in the progression of gastric cancer through post-translation modification of fucosylation to develop gastric cancer. The involvement of a variety of sugar antigens in the progression and development of gastric cancer has been investigated, including type II blood group antigens. Lewis Y (LeY) is overexpressed on the tumor cell surface either as a glycoprotein or glycolipid. LeY is a difucosylated oligosaccharide, which is catalyzed by fucosyltransferases such as FUT4 (α1,3). FUT4/LeY overexpression may serve as potential correlative biomarkers for the prognosis of gastric cancer. We discuss the various aspects of H. pylori in relation to fucosyltransferases (FUT1-FUT9) and its fucosylated Lewis antigens (LeY, LeX, LeA, and LeB) and gastric cancer. In this review, we summarize the carcinogenic effect of H. pylori CagA in association with LeY and its synthesis enzyme FUT4 in the development of gastric cancer as well as discuss its importance in the prognosis and its inhibition by combination therapy of anti-LeY antibody and celecoxib through MAPK signaling pathway preventing gastric carcinogenesis.
Collapse
Affiliation(s)
- Faisal Aziz
- The Hormel Institute-University of Minnesota, Austin, MN 55912, USA; Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, PR China.
| | - Imran Khan
- The Hormel Institute-University of Minnesota, Austin, MN 55912, USA
| | - Shruti Shukla
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gwal Pahari, Gurugram, Haryana 122003, India
| | - Debasish Kumar Dey
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, PR China
| | | | - Hisae Yoshitomi
- The Hormel Institute-University of Minnesota, Austin, MN 55912, USA
| | - Seung-Kyu Hwang
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Sonam Sonwal
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Hoomin Lee
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Yuvaraj Haldorai
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China; University of Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Yun Suk Huh
- Department of Biological Engineering, NanoBio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea.
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea.
| |
Collapse
|
4
|
Ma Z, Yang H, Peng L, Kuhn C, Chelariu-Raicu A, Mahner S, Jeschke U, von Schönfeldt V. Expression of the Carbohydrate Lewis Antigen, Sialyl Lewis A, Sialyl Lewis X, Lewis X, and Lewis Y in the Placental Villi of Patients With Unexplained Miscarriages. Front Immunol 2021; 12:679424. [PMID: 34135905 PMCID: PMC8202085 DOI: 10.3389/fimmu.2021.679424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background Lewis antigens such as Sialyl Lewis A (sLeA), Sialyl Lewis X (sLeX), Lewis X (LeX), and Lewis Y (LeY) are a class of carbohydrate molecules that are known to mediate adhesion between tumor cells and endothelium by interacting with its selectin ligands. However, their potential role in miscarriage remains enigmatic. This study aims to analyze the expression pattern of sLeA, sLeX, LeX, and LeY in the placental villi tissue of patients with a medical history of unexplained miscarriages. Methods Paraffin-embedded slides originating from placental tissue were collected from patients experiencing a miscarriage early in their pregnancy (6–13 weeks). Tissues collected from spontaneous (n = 20) and recurrent (n = 15) miscarriages were analyzed using immunohistochemical and immunofluorescent staining. Specimens obtained from legally terminated normal pregnancies were considered as control group (n = 18). Assessment of villous vessel density was performed in another cohort (n = 10 each group) of gestation ages-paired placenta tissue. Protein expression was evaluated with Immunoreactive Score (IRS). Statistical analysis was performed by using Graphpad Prism 8. Results Expression of sLeA, sLeX, LeX, and LeY in the syncytiotrophoblast was significantly upregulated in the control group compared with spontaneous and recurrent miscarriage groups. However, no prominent differences between spontaneous and recurrent miscarriage groups were identified. Potential key modulators ST3GAL6 and NEU1 were found to be significantly downregulated in the recurrent miscarriage group and upregulated in the spontaneous group, respectively. Interestingly, LeX and LeY expression was also detected in the endothelial cells of villous vessels in the control group but no significant expression in miscarriage groups. Furthermore, assessment of villous vessel density using CD31 found significantly diminished vessels in all size groups of villi (small villi <200 µm, P = 0.0371; middle villi between 200 and 400 µm, P = 0.0010 and large villi >400 µm, P = 0.0003). Immunofluorescent double staining also indicated the co-localization of LeX/Y and CD31. Conclusions The expression of four mentioned carbohydrate Lewis antigens and their potential modulators, ST3GAL6 and NEU1, in the placenta of patients with miscarriages was significantly different from the normal pregnancy. For the first time, their expression pattern in the placenta was illustrated, which might shed light on a novel understanding of Lewis antigens’ role in the pathogenesis of miscarriages.
Collapse
Affiliation(s)
- Zhi Ma
- Department of Obstetrics and Gynaecology, University Hospital LMU Munich, Munich, Germany
| | - Huixia Yang
- Department of Obstetrics and Gynaecology, University Hospital LMU Munich, Munich, Germany
| | - Lin Peng
- Department of Obstetrics and Gynaecology, University Hospital LMU Munich, Munich, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynaecology, University Hospital Augsburg, Augsburg, Germany
| | - Anca Chelariu-Raicu
- Department of Obstetrics and Gynaecology, University Hospital LMU Munich, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynaecology, University Hospital LMU Munich, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynaecology, University Hospital LMU Munich, Munich, Germany.,Department of Obstetrics and Gynaecology, University Hospital Augsburg, Augsburg, Germany
| | | |
Collapse
|
5
|
Kuo CH, Huang YH, Chen PK, Lee GH, Tang MJ, Conway EM, Shi GY, Wu HL. VEGF-Induced Endothelial Podosomes via ROCK2-Dependent Thrombomodulin Expression Initiate Sprouting Angiogenesis. Arterioscler Thromb Vasc Biol 2021; 41:1657-1671. [PMID: 33730876 DOI: 10.1161/atvbaha.121.315931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Cheng-Hsiang Kuo
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan (C.-H.K., P.-K.C., G.-Y.S.,
H.-L.W.)
- College of Medicine and International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan (C.-H.K., G.-H.L., M.-J.T., H.-L.W.)
| | - Yi-Hsun Huang
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan (Y.-H.H.)
- Department of Ophthalmology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan (Y.-H.H.)
| | - Po-Ku Chen
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan (C.-H.K., P.-K.C., G.-Y.S.,
H.-L.W.)
- Now with Translational Medicine Laboratory, Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan (P.-K. C.)
| | - Gang-Hui Lee
- College of Medicine and International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan (C.-H.K., G.-H.L., M.-J.T., H.-L.W.)
| | - Ming-Jer Tang
- College of Medicine and International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan (C.-H.K., G.-H.L., M.-J.T., H.-L.W.)
| | - Edward M Conway
- Department of Medicine, Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, Canada (E.M.C.)
| | - Guey-Yueh Shi
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan (C.-H.K., P.-K.C., G.-Y.S.,
H.-L.W.)
| | - Hua-Lin Wu
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan, Taiwan (C.-H.K., P.-K.C., G.-Y.S.,
H.-L.W.)
- College of Medicine and International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan (C.-H.K., G.-H.L., M.-J.T., H.-L.W.)
| |
Collapse
|
6
|
Gutiérrez-Huante K, Salinas-Marín R, Mora-Montes HM, Gonzalez RA, Martínez-Duncker I. Human adenovirus type 5 increases host cell fucosylation and modifies Ley antigen expression. Glycobiology 2020; 29:469-478. [PMID: 30869134 DOI: 10.1093/glycob/cwz017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 01/08/2023] Open
Abstract
Certain viral infections are known to modify the glycosylation profile of infected cells through the overexpression of specific host cell fucosyltransferases (FUTs). Infection with CMV (cytomegalovirus), HCV (hepatitis C virus), HSV-1 (herpes simplex virus type-1) and VZV (varicella-zoster virus) increase the expression of fucosylated epitopes, including antigens sLex (Siaα2-3 Galβ1-4(Fucα1-3)GlcNAcβ1-R) and Ley (Fucα1-2 Galβ1-4(Fucα1-3)GlcNAcβ1-R). The reorganization of the glycocalyx induced by viral infection may favor the spread of viral progeny, and alter diverse biological functions mediated by glycans, including recognition by the adaptive immune system. In this work, we aimed to establish whether infection with human adenovirus type 5 (HAd5), a well-known viral vector and infectious agent, causes changes in the glycosylation profile of A549 cells, used as a model of lung epithelium, a natural target of HAd5. We demonstrate for the first time that HAd5 infection causes a significant increase in the cell surface de novo fucosylation, as assessed by metabolic labeling, and that such modification is dependent on the expression of viral genes. The main type of increased fucosylation was determined to be in α1-2 linkage, as assessed by UEA-I lectin binding and supported by the overexpression of FUT1 and FUT2. Also, HAd5-infected cells showed a heterogeneous change in the expression profile of the bi-fucosylated Ley antigen, an antigen associated with enhanced cell proliferation and inhibition of apoptosis.
Collapse
Affiliation(s)
- Kathya Gutiérrez-Huante
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular; Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Cuernavaca, México
| | - Roberta Salinas-Marín
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular; Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Cuernavaca, México
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Col. Noria Alta, Guanajuato, México
| | - Ramón A Gonzalez
- Laboratorio de Virología Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Cuernavaca, México
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular; Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Cuernavaca, México
| |
Collapse
|
7
|
Receptor recognition by meningococcal type IV pili relies on a specific complex N-glycan. Proc Natl Acad Sci U S A 2020; 117:2606-2612. [PMID: 31964828 DOI: 10.1073/pnas.1919567117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacterial infections are frequently based on the binding of lectin-like adhesins to specific glycan determinants exposed on host cell receptors. These interactions confer species-specific recognition and tropism for particular host tissues and represent attractive antibacterial targets. However, the wide structural diversity of carbohydrates hampers the characterization of specific glycan determinants. Here, we characterized the receptor recognition of type IV pili (Tfp), a key adhesive factor present in numerous bacterial pathogens, using Neisseria meningitidis as a model organism. We found that meningococcal Tfp specifically recognize a triantennary sialylated poly-N-acetyllactosamine-containing N-glycan exposed on the human receptor CD147/Basigin, while fucosylated derivatives of this N-glycan impaired bacterial adhesion. Corroborating the inhibitory role of fucosylation on receptor recognition, adhesion of the meningococcus on nonhuman cells expressing human CD147 required prior defucosylation. These findings reveal the molecular basis of the selective receptor recognition by meningococcal Tfp and thereby, identify a potential antibacterial target.
Collapse
|
8
|
Jin X, Bu Q, Zou Y, Feng Y, Wei M. Lewis-antigen-containing ICAM-2/3 on Jurkat leukemia cells interact with DC-SIGN to regulate DC functions. Glycoconj J 2018; 35:287-297. [PMID: 29671117 DOI: 10.1007/s10719-018-9822-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/25/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022]
Abstract
Dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) is an important C-type lectin and plays a critical role in the recognition of pathogens and self-antigens. It has recently been shown that DC-SIGN directly interacts with acute T lymphoblastic leukemia cells. However, the mechanism regulating DC-SIGN-dependent DC association as well as related functions is still elusive. Here we showed that DC-SIGN preferentially bound to a set of malignant T lymphocytes, including Jurkat, CCRF-HSB2 and CCRF-CEM. ICAM-2/3 on Jurkat cells appeared to be the responsible ligands and the block of ICAM-2/3 dramatically impaired DC-SIGN association. We also found that ICAM-2/3 bear a considerable amount of Lewis X, Lewis Y and Lewis A residues, which are important for DC-SIGN recognition. Furthermore, transcriptome analysis revealed an upregulation of fucosyltransferase 4 (FUT4) in Jurkat cells and downregulating FUT4 limited DC-SIGN binding, indicating a previously unappreciated role of FUT4 in the control of Lewis antigens on malignant T lymphocytes. In addition, the presence of Jurkat cells impaired DC maturation and the block of DC-SIGN improved Jurkat cell-mediated effects on DC function and T cell differentiation. Together, we provide evidence that DC-SIGN orients DC association with acute T lymphoblastic leukemia cells and orchestrates DC functions.
Collapse
Affiliation(s)
- Xin Jin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, Changchun, Jilin, 130024, People's Republic of China
| | - Qingpan Bu
- School of Life Sciences, Changchun Normal University, 677 Changji Northroad, Changchun, Jilin, 130032, People's Republic of China
| | - Yingying Zou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, Changchun, Jilin, 130024, People's Republic of China
| | - Yunpeng Feng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, Changchun, Jilin, 130024, People's Republic of China
| | - Min Wei
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, Changchun, Jilin, 130024, People's Republic of China.
| |
Collapse
|
9
|
Blanas A, Sahasrabudhe NM, Rodríguez E, van Kooyk Y, van Vliet SJ. Fucosylated Antigens in Cancer: An Alliance toward Tumor Progression, Metastasis, and Resistance to Chemotherapy. Front Oncol 2018. [PMID: 29527514 PMCID: PMC5829055 DOI: 10.3389/fonc.2018.00039] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aberrant glycosylation of tumor cells is recognized as a universal hallmark of cancer pathogenesis. Overexpression of fucosylated epitopes, such as type I (H1, Lewisa, Lewisb, and sialyl Lewisa) and type II (H2, Lewisx, Lewisy, and sialyl Lewisx) Lewis antigens, frequently occurs on the cancer cell surface and is mainly attributed to upregulated expression of pertinent fucosyltransferases (FUTs). Nevertheless, the impact of fucose-containing moieties on tumor cell biology is not fully elucidated yet. Here, we review the relevance of tumor-overexpressed FUTs and their respective synthesized Lewis determinants in critical aspects associated with cancer progression, such as increased cell survival and proliferation, tissue invasion and metastasis, epithelial to mesenchymal transition, epithelial and immune cell interaction, angiogenesis, multidrug resistance, and cancer stemness. Furthermore, we discuss the potential use of enhanced levels of fucosylation as glycan biomarkers for early prognosis, diagnosis, and disease monitoring in cancer patients.
Collapse
Affiliation(s)
- Athanasios Blanas
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, Netherlands
| | - Neha M Sahasrabudhe
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, Netherlands
| | - Ernesto Rodríguez
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
10
|
Maroni L, Hohenester SD, van de Graaf SFJ, Tolenaars D, van Lienden K, Verheij J, Marzioni M, Karlsen TH, Oude Elferink RPJ, Beuers U. Knockout of the primary sclerosing cholangitis-risk gene Fut2 causes liver disease in mice. Hepatology 2017; 66:542-554. [PMID: 28056490 DOI: 10.1002/hep.29029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/09/2016] [Accepted: 01/03/2017] [Indexed: 01/14/2023]
Abstract
The etiopathogenesis of primary sclerosing cholangitis is unknown. Genetic variants of fucosyltransferase 2 (FUT2) have been identified in genome-wide association studies as risk factors for primary sclerosing cholangitis. We investigated the role of Fut2 in murine liver pathophysiology by studying Fut2-/- mice. Fut2-/- mice were viable and fertile, had lower body weight than wild-type (wt) littermates and gray fur. Half of the Fut2-/- mice showed serum bile salt levels 40 times higher than wt (Fut2-/-high ), whereas the remainder were normocholanemic (Fut2-/-low ). Fut2-/- mice showed normal serum liver tests, bile flow, biliary bile salt secretion, fecal bile salt loss, and expression of major hepatocellular bile salt transporters and cytochrome P450 7a1, the key regulator of bile salt synthesis, indicating that elevated serum bile salts in Fut2-/-high mice were not explained by cholestasis. Fut2-/-high mice, but not Fut2-/-low mice, were sensitive to hydrophobic bile salt feeding (0.3% glycochenodeoxycholate); they rapidly lost weight and showed elevation of serum liver tests (alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase) and areas of liver parenchymal necrosis. Histomorphological evaluation revealed the presence of paraportal shunting vessels, increased numbers of portal vascular structures, wall thickening of some portal arteries, and periductal fibrosis in Fut2-/-high mice more than Fut2-/-low mice and not wt mice. Unconjugated bilirubin and ammonia were or tended to be elevated in Fut2-/-high mice only. Portosystemic shunting was demonstrated by portal angiography, which disclosed virtually complete portosystemic shunting in Fut2-/-high mice, discrete portosystemic shunting in Fut2-/-low mice, and no shunting in wt littermates. CONCLUSION Liver pathology in Fut2-/- mice is dominated by consequences of portosystemic shunting resulting in microcirculatory disturbances, mild (secondary) periductal fibrosis, and sensitivity toward human bile salt toxicity. (Hepatology 2017;66:542-554).
Collapse
Affiliation(s)
- Luca Maroni
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Simon D Hohenester
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Medicine II, University of Munich (LMU), Munich, Germany
| | - Stan F J van de Graaf
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dagmar Tolenaars
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Krijn van Lienden
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Joanne Verheij
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Marco Marzioni
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - Tom H Karlsen
- Norwegian PSC Research Center and Section for Gastroenterology, Department of Transplantation Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ronald P J Oude Elferink
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ulrich Beuers
- Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Fish JE, Cantu Gutierrez M, Dang LT, Khyzha N, Chen Z, Veitch S, Cheng HS, Khor M, Antounians L, Njock MS, Boudreau E, Herman AM, Rhyner AM, Ruiz OE, Eisenhoffer GT, Medina-Rivera A, Wilson MD, Wythe JD. Dynamic regulation of VEGF-inducible genes by an ERK/ERG/p300 transcriptional network. Development 2017; 144:2428-2444. [PMID: 28536097 DOI: 10.1242/dev.146050] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 05/15/2017] [Indexed: 12/20/2022]
Abstract
The transcriptional pathways activated downstream of vascular endothelial growth factor (VEGF) signaling during angiogenesis remain incompletely characterized. By assessing the signals responsible for induction of the Notch ligand delta-like 4 (DLL4) in endothelial cells, we find that activation of the MAPK/ERK pathway mirrors the rapid and dynamic induction of DLL4 transcription and that this pathway is required for DLL4 expression. Furthermore, VEGF/ERK signaling induces phosphorylation and activation of the ETS transcription factor ERG, a prerequisite for DLL4 induction. Transcription of DLL4 coincides with dynamic ERG-dependent recruitment of the transcriptional co-activator p300. Genome-wide gene expression profiling identified a network of VEGF-responsive and ERG-dependent genes, and ERG chromatin immunoprecipitation (ChIP)-seq revealed the presence of conserved ERG-bound putative enhancer elements near these target genes. Functional experiments performed in vitro and in vivo confirm that this network of genes requires ERK, ERG and p300 activity. Finally, genome-editing and transgenic approaches demonstrate that a highly conserved ERG-bound enhancer located upstream of HLX (which encodes a transcription factor implicated in sprouting angiogenesis) is required for its VEGF-mediated induction. Collectively, these findings elucidate a novel transcriptional pathway contributing to VEGF-dependent angiogenesis.
Collapse
Affiliation(s)
- Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, Canada .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada.,Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto M5S 3H2, Canada
| | - Manuel Cantu Gutierrez
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lan T Dang
- Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada.,Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto M5S 3H2, Canada
| | - Nadiya Khyzha
- Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada.,Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto M5S 3H2, Canada
| | - Zhiqi Chen
- Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada.,Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto M5S 3H2, Canada
| | - Shawn Veitch
- Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada.,Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto M5S 3H2, Canada
| | - Henry S Cheng
- Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada.,Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto M5S 3H2, Canada
| | - Melvin Khor
- Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada.,Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto M5S 3H2, Canada
| | - Lina Antounians
- Genetics and Genome Biology, Hospital for Sick Children, Toronto M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Makon-Sébastien Njock
- Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada.,Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto M5S 3H2, Canada
| | - Emilie Boudreau
- Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada.,Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto M5S 3H2, Canada
| | - Alexander M Herman
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexander M Rhyner
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Oscar E Ruiz
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George T Eisenhoffer
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Graduate School of Biomedical Sciences, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alejandra Medina-Rivera
- Genetics and Genome Biology, Hospital for Sick Children, Toronto M5G 0A4, Canada.,Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Querétaro 76230, México
| | - Michael D Wilson
- Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto M5S 3H2, Canada.,Genetics and Genome Biology, Hospital for Sick Children, Toronto M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Joshua D Wythe
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA .,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
12
|
Tan KP, Ho MY, Cho HC, Yu J, Hung JT, Yu ALT. Fucosylation of LAMP-1 and LAMP-2 by FUT1 correlates with lysosomal positioning and autophagic flux of breast cancer cells. Cell Death Dis 2016; 7:e2347. [PMID: 27560716 PMCID: PMC5108328 DOI: 10.1038/cddis.2016.243] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/19/2016] [Accepted: 06/22/2016] [Indexed: 12/11/2022]
Abstract
Alpha1,2-fucosyltransferases, FUT1 and FUT2, which transfer fucoses onto the terminal galactose of N-acetyl-lactosamine via α1,2-linkage have been shown to be highly expressed in various types of cancers. A few studies have shown the involvement of FUT1 substrates in tumor cell proliferation and migration. Lysosome-associated membrane protein 1, LAMP-1, has been reported to carry alpha1,2-fucosylated Lewis Y (LeY) antigens in breast cancer cells, however, the biological functions of LeY on LAMP-1 remain largely unknown. Whether or not its family member, LAMP-2, displays similar modifications and functions as LAMP-1 has not yet been addressed. In this study, we have presented evidence supporting that both LAMP-1 and 2 are substrates for FUT1, but not FUT2. We have also demonstrated the presence of H2 and LeY antigens on LAMP-1 by a targeted nanoLC-MS(3) and the decreased levels of fucosylation on LAMP-2 by MALDI-TOF analysis upon FUT1 knockdown. In addition, we found that the expression of LeY was substantial in less invasive ER+/PR+/HER- breast cancer cells (MCF-7 and T47D) but negligible in highly invasive triple-negative MDA-MB-231 cells, of which LeY levels were correlated with the levels of LeY carried by LAMP-1 and 2. Intriguingly, we also observed a striking change in the subcellular localization of lysosomes upon FUT1 knockdown from peripheral distribution of LAMP-1 and 2 to a preferential perinuclear accumulation. Besides that, knockdown of FUT1 led to an increased rate of autophagic flux along with diminished activity of mammalian target of rapamycin complex 1 (mTORC1) and enhanced autophagosome-lysosome fusion. This may be associated with the predominantly perinuclear distribution of lysosomes mediated by FUT1 knockdown as lysosomal positioning has been reported to regulate mTOR activity and autophagy. Taken together, our results suggest that downregulation of FUT1, which leads to the perinuclear localization of LAMP-1 and 2, is correlated with increased rate of autophagic flux by decreasing mTOR signaling and increasing autolysosome formation.
Collapse
Affiliation(s)
- Keng-Poo Tan
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ming-Yi Ho
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Huan-Chieh Cho
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Chang Gung University, Taoyuan, Taiwan
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Alice Lin-Tsing Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Chang Gung University, Taoyuan, Taiwan
- Department of Pediatrics, University of California in San Diego, San Diego, CA, USA
| |
Collapse
|
13
|
Devarapu SK, Mamidi S, Plöger F, Dill O, Blixt O, Kirschfink M, Schwartz-Albiez R. Cytotoxic activity against human neuroblastoma and melanoma cells mediated by IgM antibodies derived from peripheral blood of healthy donors. Int J Cancer 2016; 138:2963-73. [PMID: 26830059 DOI: 10.1002/ijc.30025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/07/2016] [Accepted: 01/21/2016] [Indexed: 12/21/2022]
Abstract
A small percentage of healthy donors identified in the Western population carry antibodies in their peripheral blood which convey cytotoxic activity against certain human melanoma and neuroblastoma cell lines. We measured the cytotoxic activity of sera and plasmas from healthy donors on the human neuroblastoma cell line Kelly and various melanoma cell lines. Antibodies of IgM isotype, presumably belonging to the class of naturally occurring antibodies, exerted cytotoxic activity in a complement-dependent fashion. Apart from complement-dependent tumor cell lysis, we observed C3 opsonization in all tumor cell lines upon treatment with cytotoxic plasmas. Cell lines tested primarily expressed membrane complement regulatory proteins (mCRP) CD46, CD55 and CD59 to various extents. Blocking of mCRPs by monoclonal antibodies enhanced cell lysis and opsonization, though some melanoma cells remained resistant to complement attack. Epitopes recognized by cytotoxic antibodies were represented by gangliosides such as GD2 and GD3, as evidenced by cellular sialidase pretreatment and enhanced expression of distinct gangliosides. It remains to be clarified why only a small fraction of healthy persons carry these antitumor cytotoxic antibodies.
Collapse
Affiliation(s)
| | - Srinivas Mamidi
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | | | | | - Ola Blixt
- Center for Glycomics, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
14
|
Amin MA, Campbell PL, Ruth JH, Isozaki T, Rabquer BJ, Alex Stinson W, O'Brien M, Edhayan G, Ohara RA, Vargo J, Domino SE, Koch AE. A key role for Fut1-regulated angiogenesis and ICAM-1 expression in K/BxN arthritis. Ann Rheum Dis 2015; 74:1459-66. [PMID: 24665114 DOI: 10.1136/annrheumdis-2013-204814] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/28/2014] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Angiogenesis contributes to the pathogenesis of rheumatoid arthritis. Fucosyltransferases (Futs) are involved in angiogenesis and tumour growth. Here, we examined the role of Fut1 in angiogenesis and K/BxN serum transfer arthritis. METHODS We examined Fut1 expression in human dermal microvascular endothelial cells (HMVECs) by quantitative PCR. We performed a number of angiogenesis assays to determine the role of Fut1 using HMVECs, Fut1 null (Fut1(-/-)), and wild type (wt) endothelial cells (ECs) and mice. K/BxN serum transfer arthritis was performed to determine the contribution of Fut1-mediated angiogenesis in Fut1(-/-) and wt mice. A static adhesion assay was implemented with RAW264.7 (mouse macrophage cell line) and mouse ECs. Quantitative PCR, immunofluorescence and flow cytometry were performed with Fut1(-/-) and wt ECs for adhesion molecule expression. RESULTS Tumour necrosis factor-α induced Fut1 mRNA and protein expression in HMVECs. HMVECs transfected with Fut1 antisense oligodeoxynucleotide and Fut1(-/-) ECs formed significantly fewer tubes on Matrigel. Fut1(-/-) mice had reduced angiogenesis in Matrigel plug and sponge granuloma angiogenesis assays compared with wt mice. Fut1(-/-) mice were resistant to K/BxN serum transfer arthritis and had decreased angiogenesis and leucocyte ingress into inflamed joints. Adhesion of RAW264.7 cells to wt mouse ECs was significantly reduced when Fut1 was lacking. Fut1(-/-) ECs had decreased intercellular adhesion molecule-1 (ICAM-1) expression at mRNA and protein levels compared with wt ECs. ICAM-1 was also decreased in Fut1(-/-) arthritic ankle cryosections compared with wt ankles. CONCLUSIONS Fut1 plays an important role in regulating angiogenesis and ICAM-1 expression in inflammatory arthritis.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Experimental/physiopathology
- Cell Adhesion/physiology
- Cell Line
- Cells, Cultured
- Disease Models, Animal
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Fucosyltransferases/deficiency
- Fucosyltransferases/genetics
- Fucosyltransferases/physiology
- Humans
- Intercellular Adhesion Molecule-1/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Mice
- Mice, Knockout
- Neovascularization, Pathologic/physiopathology
- RNA, Messenger/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
- Galactoside 2-alpha-L-fucosyltransferase
Collapse
Affiliation(s)
- Mohammad A Amin
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Phillip L Campbell
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jeffrey H Ruth
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Takeo Isozaki
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Bradley J Rabquer
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - W Alex Stinson
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Martin O'Brien
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gautam Edhayan
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ray A Ohara
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jonathon Vargo
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Steven E Domino
- Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alisa E Koch
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA Veteran's Administration, Ann Arbor, Michigan, USA
| |
Collapse
|
15
|
Vasconcelos-Dos-Santos A, Oliveira IA, Lucena MC, Mantuano NR, Whelan SA, Dias WB, Todeschini AR. Biosynthetic Machinery Involved in Aberrant Glycosylation: Promising Targets for Developing of Drugs Against Cancer. Front Oncol 2015; 5:138. [PMID: 26161361 PMCID: PMC4479729 DOI: 10.3389/fonc.2015.00138] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/02/2015] [Indexed: 12/22/2022] Open
Abstract
Cancer cells depend on altered metabolism and nutrient uptake to generate and keep the malignant phenotype. The hexosamine biosynthetic pathway is a branch of glucose metabolism that produces UDP-GlcNAc and its derivatives, UDP-GalNAc and CMP-Neu5Ac and donor substrates used in the production of glycoproteins and glycolipids. Growing evidence demonstrates that alteration of the pool of activated substrates might lead to different glycosylation and cell signaling. It is already well established that aberrant glycosylation can modulate tumor growth and malignant transformation in different cancer types. Therefore, biosynthetic machinery involved in the assembly of aberrant glycans are becoming prominent targets for anti-tumor drugs. This review describes three classes of glycosylation, O-GlcNAcylation, N-linked, and mucin type O-linked glycosylation, involved in tumor progression, their biosynthesis and highlights the available inhibitors as potential anti-tumor drugs.
Collapse
Affiliation(s)
| | - Isadora A Oliveira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| | - Miguel Clodomiro Lucena
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| | - Natalia Rodrigues Mantuano
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| | - Stephen A Whelan
- Department of Biochemistry, Cardiovascular Proteomics Center, Boston University School of Medicine , Boston, MA , USA
| | - Wagner Barbosa Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| | - Adriane Regina Todeschini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| |
Collapse
|
16
|
Neofunctionalization of the Sec1 α1,2fucosyltransferase paralogue in leporids contributes to glycan polymorphism and resistance to rabbit hemorrhagic disease virus. PLoS Pathog 2015; 11:e1004759. [PMID: 25875017 PMCID: PMC4398370 DOI: 10.1371/journal.ppat.1004759] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/21/2015] [Indexed: 12/13/2022] Open
Abstract
RHDV (rabbit hemorrhagic disease virus), a virulent calicivirus, causes high mortalities in European rabbit populations (Oryctolagus cuniculus). It uses α1,2fucosylated glycans, histo-blood group antigens (HBGAs), as attachment factors, with their absence or low expression generating resistance to the disease. Synthesis of these glycans requires an α1,2fucosyltransferase. In mammals, there are three closely located α1,2fucosyltransferase genes rSec1, rFut2 and rFut1 that arose through two rounds of duplications. In most mammalian species, Sec1 has clearly become a pseudogene. Yet, in leporids, it does not suffer gross alterations, although we previously observed that rabbit Sec1 variants present either low or no activity. Still, a low activity rSec1 allele correlated with survival to an RHDV outbreak. We now confirm the association between the α1,2fucosyltransferase loci and survival. In addition, we show that rabbits express homogenous rFut1 and rFut2 levels in the small intestine. Comparison of rFut1 and rFut2 activity showed that type 2 A, B and H antigens recognized by RHDV strains were mainly synthesized by rFut1, and all rFut1 variants detected in wild animals were equally active. Interestingly, rSec1 RNA levels were highly variable between individuals and high expression was associated with low binding of RHDV strains to the mucosa. Co-transfection of rFut1 and rSec1 caused a decrease in rFut1-generated RHDV binding sites, indicating that in rabbits, the catalytically inactive rSec1 protein acts as a dominant-negative of rFut1. Consistent with neofunctionalization of Sec1 in leporids, gene conversion analysis showed extensive homogenization between Sec1 and Fut2 in leporids, at variance with its limited degree in other mammals. Gene conversion additionally involving Fut1 was also observed at the C-terminus. Thus, in leporids, unlike in most other mammals where it became extinct, Sec1 evolved a new function with a dominant-negative effect on rFut1, contributing to fucosylated glycan diversity, and allowing herd protection from pathogens such as RHDV. There are three members of the α1,2fucosyltransferases gene family in mammalian genomes, Fut1, Fut2 and Sec1. The encoded fucosyltransferases are key enzymes for the synthesis of glycans that can be used as ligands by pathogens. However, the polymorphism of expression of these fucosylated glycans on epithelial cell types contributes to protection at the species level. In most mammalian species Sec1 is a pseudogene and in humans, genetic variation of α1,2fucosylated glycans is provided by FUT2 polymorphisms. Rabbit haemorrhagic disease virus (RHDV) uses α1,2fucosylated glycans as attachment factors. It induces an acute disease with very high mortalities in rabbit populations. We now confirm an association between genetic markers in the rabbit Sec1-Fut2 genomic region and survival to RHDV. We show that the Fut1 gene is the main contributor to the synthesis of RHDV binding sites although individual variation is not achieved by Fut1 polymorphisms but by variation in levels of Sec1 transcription. The Sec1 protein acting as a dominant-negative of Fut1, high Sec1 expression leads to a decreased number of RHDV binding sites. Thus, unlike in other mammals, in rabbits Sec1 underwent neofunctionalization. It contributes to generate diversity of fucosylated glycans, a key mechanism for escaping pathogens such as RHDV.
Collapse
|
17
|
Aldi S, Capone A, Giovampaola CD, Ermini L, Pianigiani E, Mariotti G, Rosati F. Identification of a novel, alpha2-fucosylation-dependent uptake system in highly proliferative cells. Tissue Cell 2015; 47:33-8. [DOI: 10.1016/j.tice.2014.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 10/04/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022]
|
18
|
Shendre A, Wiener HW, Zhi D, Vazquez AI, Portman MA, Shrestha S. High-density genotyping of immune loci in Kawasaki disease and IVIG treatment response in European-American case-parent trio study. Genes Immun 2014; 15:534-42. [PMID: 25101798 PMCID: PMC4257866 DOI: 10.1038/gene.2014.47] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 12/04/2022]
Abstract
Kawasaki disease (KD) is a diffuse and acute small-vessel vasculitis observed in children, and has genetic and autoimmune components. We genotyped 112 case-parent trios of European decent (confirmed by ancestry informative markers) using the immunoChip array, and performed association analyses with susceptibility to KD and intravenous immunoglobulin (IVIG) non-response. KD susceptibility was assessed using the transmission disequilibrium test, whereas IVIG non-response was evaluated using multivariable logistic regression analysis. We replicated single-nucleotide polymorphisms (SNPs) in three gene regions (FCGR, CD40/CDH22 and HLA-DQB2/HLA-DOB) that have been previously associated with KD and provide support to other findings of several novel SNPs in genes with a potential pathway in KD pathogenesis. SNP rs838143 in the 3'-untranslated region of the FUT1 gene (2.7 × 10(-5)) and rs9847915 in the intergenic region of LOC730109 | BRD7P2 (6.81 × 10(-7)) were the top hits for KD susceptibility in additive and dominant models, respectively. The top hits for IVIG responsiveness were rs1200332 in the intergenic region of BAZ1A | C14orf19 (1.4 × 10(-4)) and rs4889606 in the intron of the STX1B gene (6.95 × 10(-5)) in additive and dominant models, respectively. Our study suggests that genes and biological pathways involved in autoimmune diseases have an important role in the pathogenesis of KD and IVIG response mechanism.
Collapse
Affiliation(s)
- Aditi Shendre
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| | - Howard W. Wiener
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| | - Degui Zhi
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL
| | - Ana I Vazquez
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL
| | - Michael A. Portman
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL
| | - Sadeep Shrestha
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
19
|
Cheng JY, Wang SH, Lin J, Tsai YC, Yu J, Wu JC, Hung JT, Lin JJ, Wu YY, Yeh KT, Yu AL. Globo-H Ceramide Shed from Cancer Cells Triggers Translin-Associated Factor X-Dependent Angiogenesis. Cancer Res 2014; 74:6856-66. [DOI: 10.1158/0008-5472.can-14-1651] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Khusal R, Da Costa Dias B, Moodley K, Penny C, Reusch U, Knackmuss S, Little M, Weiss SFT. In vitro inhibition of angiogenesis by antibodies directed against the 37kDa/67kDa laminin receptor. PLoS One 2013; 8:e58888. [PMID: 23554951 PMCID: PMC3595224 DOI: 10.1371/journal.pone.0058888] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/07/2013] [Indexed: 11/24/2022] Open
Abstract
The 37kDa/67kDa laminin receptor (LRP/LR) is a central receptor mediating interactions between tumour cells and the basement membrane and is thereby a key player in adhesion and invasion, essential processes in metastatic cancer. To affect continued tumour growth, tumours induce angiogenesis for the constant delivery of nutrients and oxygen. This study aims to determine the blocking effect of the anti-LRP/LR specific antibody, W3 on the angiogenic potential of HUVE (human umbilical vein endothelial) cells. Flow cytometric analysis revealed that 97% of HUVE cells display cell surface LRP/LR. An angiogenesis assay was conducted employing HUVE cells seeded on the basement membrane reconstituent Matrigel™ supplemented with the pro-angiogenic factor vascular endothelial growth factor (VEGF). Post 18h incubation at 37°C tubular structures, namely tube lengths were assessed. Treatment of established tubular structures with 100 µg/ml anti-LRP/LR specific antibody completely blocked angiogenesis. Our findings suggest a central role of the 37kDa/67kDa LRP/LR in tube formation and recommends anti-LRP/LR specific antibodies as potential therapeutic tools for treatment of tumour angiogenesis.
Collapse
Affiliation(s)
- Raksha Khusal
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Bianca Da Costa Dias
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Kiashanee Moodley
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Clement Penny
- Department of Internal Medicine, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Uwe Reusch
- Affimed Therapeutics AG, Technologiepark, Im Neuenheimer Feld 582, Heidelberg, Germany
| | - Stefan Knackmuss
- Affimed Therapeutics AG, Technologiepark, Im Neuenheimer Feld 582, Heidelberg, Germany
| | - Melvyn Little
- Affimed Therapeutics AG, Technologiepark, Im Neuenheimer Feld 582, Heidelberg, Germany
| | - Stefan F. T. Weiss
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
21
|
Vascular Endothelium. TISSUE FUNCTIONING AND REMODELING IN THE CIRCULATORY AND VENTILATORY SYSTEMS 2013. [DOI: 10.1007/978-1-4614-5966-8_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Tsou PS, Ruth JH, Campbell PL, Isozaki T, Lee S, Marotte H, Domino SE, Koch AE, Amin MA. A novel role for inducible Fut2 in angiogenesis. Angiogenesis 2013; 16:195-205. [PMID: 23065099 PMCID: PMC4441274 DOI: 10.1007/s10456-012-9312-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 10/03/2012] [Indexed: 12/30/2022]
Abstract
RATIONALE Angiogenesis plays an important role in wound healing and tumor growth. Fucosyltransferases synthesize fucosylated glycans and may play a major role in vascular biology. OBJECTIVE To examine the role of an alpha(1,2) fucosyltransferase (Fut2) in angiogenesis. METHODS AND RESULTS We found that Fut2 mRNA and protein expression is inducible in human dermal microvascular endothelial cells (HMVECs). After finding that Fut2 is inducible in HMVECs, we examined if Fut2 contributes to angiogenesis. We found that Fut2 null endothelial cell (EC) migration and tube formation were significantly less compared to wild type (wt) ECs. Angiogenesis was impaired in Fut2 null compared to wt mice in the mouse Matrigel plug and the sponge granuloma angiogenesis assays. To assess the characteristics of Fut2 null ECs in vivo, we performed Matrigel plug angiogenesis assays in wt mice using Fut2 null and wt mouse ECs. We found a significant decrease in Fut2 null EC incorporation in neoangiogenesis compared to wt ECs. ERK1/2 activation, fibroblast growth factor receptor2, and vascular endothelial growth factor expression were less in Fut2 null ECs, suggesting a possible mechanism of impaired angiogenesis when Fut2 is lacking. CONCLUSIONS These data suggest a novel role for Fut2 as a regulator of angiogenesis.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- Department of Medicine, University of Michigan Medical School, Ann Arbor, 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Marano G, Gronewold C, Frank M, Merling A, Kliem C, Sauer S, Wiessler M, Frei E, Schwartz-Albiez R. An easily accessible sulfated saccharide mimetic inhibits in vitro human tumor cell adhesion and angiogenesis of vascular endothelial cells. Beilstein J Org Chem 2012; 8:787-803. [PMID: 23015827 PMCID: PMC3388867 DOI: 10.3762/bjoc.8.89] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/11/2012] [Indexed: 12/11/2022] Open
Abstract
Oligosaccharides aberrantly expressed on tumor cells influence processes such as cell adhesion and modulation of the cell’s microenvironment resulting in an increased malignancy. Schmidt’s imidate strategy offers an effective method to synthesize libraries of various oligosaccharide mimetics. With the aim to perturb interactions of tumor cells with extracellular matrix proteins and host cells, molecules with 3,4-bis(hydroxymethyl)furan as core structure were synthesized and screened in biological assays for their abilities to interfere in cell adhesion and other steps of the metastatic cascade, such as tumor-induced angiogenesis. The most active compound, (4-{[(β-D-galactopyranosyl)oxy]methyl}furan-3-yl)methyl hydrogen sulfate (GSF), inhibited the activation of matrix-metalloproteinase-2 (MMP-2) as well as migration of the human melanoma cells of the lines WM-115 and WM-266-4 in a two-dimensional migration assay. GSF inhibited completely the adhesion of WM-115 cells to the extracellular matrix (ECM) proteins, fibrinogen and fibronectin. In an in vitro angiogenesis assay with human endothelial cells, GSF very effectively inhibited endothelial tubule formation and sprouting of blood vessels, as well as the adhesion of endothelial cells to ECM proteins. GSF was not cytotoxic at biologically active concentrations; neither were 3,4-bis{[(β-D-galactopyranosyl)oxy]methyl}furan (BGF) nor methyl β-D-galactopyranoside nor 3,4-bis(hydroxymethyl)furan, which were used as controls, eliciting comparable biological activity. In silico modeling experiments, in which binding of GSF to the extracellular domain of the integrin αvβ3 was determined, revealed specific docking of GSF to the same binding site as the natural peptidic ligands of this integrin. The sulfate in the molecule coordinated with one manganese ion in the binding site. These studies show that this chemically easily accessible molecule GSF, synthesized in three steps from 3,4-bis(hydroxymethyl)furan and benzoylated galactose imidate, is nontoxic and antagonizes cell physiological processes in vitro that are important for the dissemination and growth of tumor cells in vivo.
Collapse
Affiliation(s)
- Grazia Marano
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany ; Calvatis GmbH, Dr.-Albert-Reimann-Str. 16a, 68526 Ladenburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Schwartz-Albiez R. Naturally occurring antibodies directed against carbohydrate tumor antigens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 750:27-43. [PMID: 22903664 DOI: 10.1007/978-1-4614-3461-0_3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Healthy persons carry within their pool of circulating antibodies immunoglobulins preferentially of IgM isotype, which are directed against a variety of tumor-associated antigens. In closer scrutiny of their nature, some of these antibodies could be defined as naturally occurring antibodies due to the germline configuration of the variable immunoglobulin region. The majority of these immunoglobulins recognize carbohydrate antigens which can be classified as oncofetal antigens. Many of these IgM antibodies present in the peripheral blood circulation can bind to tumor cells and of these a minor portion are also able to destroy tumor cells by several mechanisms, as for instance complement-mediated cytolysis or apoptosis. It was postulated that anti-carbohydrate antibodies are part of an anti-tumor immune response, while their presence in the peripheral blood of healthy donors is still waiting for a plausible explanation. It may be that recognition of defined epitopes, including carbohydrate sequences, by naturally occurring antibodies constitutes the humoral arm of an anti-tumor immune response as part of the often postulated tumor surveillance. The cytotoxic capacity of these antibodies inspired several research groups and pharmaceutical companies to design novel strategies of immunoglobulin-based anti-tumor immunotherapy.
Collapse
|
25
|
The recombinant lectin-like domain of thrombomodulin inhibits angiogenesis through interaction with Lewis Y antigen. Blood 2011; 119:1302-13. [PMID: 22101897 DOI: 10.1182/blood-2011-08-376038] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lewis Y Ag (LeY) is a cell-surface tetrasaccharide that participates in angiogenesis. Recently, we demonstrated that LeY is a specific ligand of the recombinant lectin-like domain of thrombomodulin (TM). However, the biologic function of interaction between LeY and TM in endothelial cells has never been investigated. Therefore, the role of LeY in tube formation and the role of the recombinant lectin-like domain of TM-TM domain 1 (rTMD1)-in antiangiogenesis were investigated. The recombinant TM ectodomain exhibited lower angiogenic activity than did the recombinant TM domains 2 and 3. rTMD1 interacted with soluble LeY and membrane-bound LeY and inhibited soluble LeY-mediated chemotaxis of endothelial cells. LeY was highly expressed on membrane ruffles and protrusions during tube formation on Matrigel. Blockade of LeY with rTMD1 or Ab against LeY inhibited endothelial tube formation in vitro. Epidermal growth factor (EGF) receptor in HUVECs was LeY modified. rTMD1 inhibited EGF receptor signaling, chemotaxis, and tube formation in vitro, and EGF-mediated angiogenesis and tumor angiogenesis in vivo. We concluded that LeY is involved in vascular endothelial tube formation and rTMD1 inhibits angiogenesis via interaction with LeY. Administration of rTMD1 or recombinant adeno-associated virus vector carrying TMD1 could be a promising antiangiogenesis strategy.
Collapse
|
26
|
Heimburg-Molinaro J, Lum M, Vijay G, Jain M, Almogren A, Rittenhouse-Olson K. Cancer vaccines and carbohydrate epitopes. Vaccine 2011; 29:8802-26. [PMID: 21964054 PMCID: PMC3208265 DOI: 10.1016/j.vaccine.2011.09.009] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/18/2011] [Accepted: 09/06/2011] [Indexed: 12/17/2022]
Abstract
Tumor-associated carbohydrate antigens (TACA) result from the aberrant glycosylation that is seen with transformation to a tumor cell. The carbohydrate antigens that have been found to be tumor-associated include the mucin related Tn, Sialyl Tn, and Thomsen-Friedenreich antigens, the blood group Lewis related Lewis(Y), Sialyl Lewis(X) and Sialyl Lewis(A), and Lewis(X) (also known as stage-specific embryonic antigen-1, SSEA-1), the glycosphingolipids Globo H and stage-specific embryonic antigen-3 (SSEA-3), the sialic acid containing glycosphingolipids, the gangliosides GD2, GD3, GM2, fucosyl GM1, and Neu5GcGM3, and polysialic acid. Recent developments have furthered our understanding of the T-independent type II response that is seen in response to carbohydrate antigens. The selection of a vaccine target antigen is based on not only the presence of the antigen in a variety of tumor tissues but also on the role this antigen plays in tumor growth and metastasis. These roles for TACAs are being elucidated. Newly acquired knowledge in understanding the T-independent immune response and in understanding the key roles that carbohydrates play in metastasis are being applied in attempts to develop an effective vaccine response to TACAs. The role of each of the above mentioned carbohydrate antigens in cancer growth and metastasis and vaccine attempts using these antigens will be described.
Collapse
Affiliation(s)
| | - Michelle Lum
- Department of Cellular and Molecular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263
| | - Geraldine Vijay
- University of Texas, MD Anderson Cancer Center, Houston, Texas 77030
| | - Miten Jain
- Department of Biomolecular Engineering, University of California Santa Cruz, CA 95064
| | - Adel Almogren
- Department Of Pathology, College of Medicine, King Saud University, Riyadh, 11461 Saudi Arabia
| | - Kate Rittenhouse-Olson
- Department Of Pathology, College of Medicine, King Saud University, Riyadh, 11461 Saudi Arabia
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, Buffalo, NY 14214
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14214
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263
| |
Collapse
|
27
|
Regulation of glycosyltransferases and Lewis antigens expression by IL-1β and IL-6 in human gastric cancer cells. Glycoconj J 2011; 28:99-110. [PMID: 21365246 DOI: 10.1007/s10719-011-9327-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 01/13/2011] [Accepted: 02/17/2011] [Indexed: 01/27/2023]
Abstract
Inflammation of stomach mucosa has been postulated as initiator of gastric carcinogenesis and the presence of pro-inflammatory cytokines can regulate specific genes involved in this process. The cellular expression pattern of glycosyltransferases and Lewis antigens detected in the normal mucosa changed during the neoplassic transformation. The aim of this work was to determine the regulation of specific fucosyltransferases and sialyltransferases by IL-1β and IL-6 pro-inflammatory cytokines in MKN45 gastric cancer cells. IL-1β induced significant increases in the mRNA levels of FUT1, FUT2 and FUT4, and decreases of FUT3 and FUT5. In IL-6 treatments, enhanced FUT1 and lower FUT3 and FUT5 mRNA expression were detected. No substantial changes were observed in the levels of ST3GalIII and ST3GalIV. The activation of FUT1, FUT2 and FUT4 by IL-1β is through the NF-κB pathway and the down-regulation of FUT3 and FUT5 by IL-6 is through the gp130/STAT-3 pathway, since they are inhibited specifically by panepoxydone and AG490, respectively. The levels of Lewis antigens after IL-1β or IL-6 stimulation decreased for sialyl-Lewis x, and no significant differences were found in the rest of the Lewis antigens analyzed, as it was also observed in subcutaneous mice tumors from MKN45 cells treated with IL-1β or IL-6. In addition, in 61 human intestinal-type gastric tumors, sialyl-Lewis x was highly detected in samples from patients that developed metastasis. These results indicate that the expression of the fucosyltransferases involved in the synthesis of Lewis antigens in gastric cancer cells can be specifically modulated by IL-1β and IL-6 inflammatory cytokines.
Collapse
|
28
|
Palumberi D, Aldi S, Ermini L, Ziche M, Finetti F, Donnini S, Rosati F. RNA-mediated gene silencing of FUT1 and FUT2 influences expression and activities of bovine and human fucosylated nucleolin and inhibits cell adhesion and proliferation. J Cell Biochem 2010; 111:229-38. [PMID: 20506485 DOI: 10.1002/jcb.22692] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In a previous article, we demonstrated the existence of fucosyl-containing O-glycans forms of nucleolin in bovine post-capillary venular endothelial cells (CVEC) and malignant cultured human A431 cells. The tool for this discovery was an antibody found to interact strongly and exclusively with nucleolin in total protein extracts. The antibody was originally raised against a mollusc glycoprotein and was demonstrated to be directed against its O-glycans, recently found to belong prevalently to the blood group H-antigen type with fucose linked in alpha1, 2 to galactose. Here, we show that si-RNA induced down-regulation of the expression of FUT1 and FUT2, the fucosyltransferases required for the biosynthesis of the terminal glycan motif Fucalpha-2-Galbeta-R, reduced expression of the fucosylated nucleolin glycoforms and their exposure at the cell surface in CVEC. Treatment of the cells with FUT1/2 siRNA also reduced their ability to bind and internalize endostatin and their adhesion efficiency and inhibited cell growth. Expression of FUT1, FUT2, and FUT6 was also analyzed in serum-stimulated versus serum-starved cells and in cells treated with FUT1 and FUT2 siRNA. A reduced expression of fucosylated nucleolin and inhibition of cell growth by suppressing FUT1/2 expression was also tested and shown to be exhibited in human A431 cells.
Collapse
Affiliation(s)
- Domenico Palumberi
- Laboratory of Cell Biology and Glycobiology, Department of Evolutionary Biology, University of Siena, Siena, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Lin WM, Karsten U, Goletz S, Cheng RC, Cao Y. Co-expression of CD173 (H2) and CD174 (Lewis Y) with CD44 suggests that fucosylated histo-blood group antigens are markers of breast cancer-initiating cells. Virchows Arch 2010; 456:403-9. [PMID: 20300773 DOI: 10.1007/s00428-010-0897-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 02/10/2010] [Accepted: 02/16/2010] [Indexed: 12/27/2022]
Abstract
Histo-blood group antigens CD173 (H2) and CD174 (Lewis Y) are known to be developmentally regulated carbohydrate antigens which are expressed to a varying degree on many human carcinomas. We hypothesized that they might represent markers of cancer-initiating cells (or cancer stem cells, CSC). In order to test this hypothesis, we examined the co-expression of CD173 and CD174 with stem cell markers CD44 and CD133 by flow cytometry analysis, immunocytochemistry, and immunohistochemistry on cell lines and tissue sections from breast cancer. In three breast cancer cell lines, the percentage of CD173(+)/CD44(+) cells ranged from 17% to >60% and of CD174(+)/CD44(+) from 21% to 57%. In breast cancer tissue sections from 15 patients, up to 50% of tumor cells simultaneously expressed CD173, CD174, and CD44 antigens. Co-expression of CD173 and CD174 with CD133 was also observed, but to a lesser percentage. Co-immunoprecipitation and sandwich ELISA experiments on breast cancer cell lines suggested that CD173 and CD174 are carried on the CD44 molecule. The results show that in these tissues CD173 (H2) and CD174 (LeY) are associated with CD44 expression, suggesting that these carbohydrate antigens are markers of cancer-initiating cells or of early progenitors of breast carcinomas.
Collapse
Affiliation(s)
- Wei-Ming Lin
- Laboratory of Molecular and Experimental Pathology, Key Laboratory of Animal Models and Human Disease Mechanisms of CAS and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming, Yunnan 650223, China
| | | | | | | | | |
Collapse
|
30
|
Muinelo-Romay L, Gil-Martín E, Fernández-Briera A. α(1,2)fucosylation in human colorectal carcinoma. Oncol Lett 2010; 1:361-366. [PMID: 22966309 DOI: 10.3892/ol_00000064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 10/29/2009] [Indexed: 11/06/2022] Open
Abstract
Lewis(b) and Lewis(y) (Le) antigens are known to be elevated in colorectal tumours. Alterations in the catalytic behaviour of GDP-L-fucose:β-D-galactoside α(1,2)fucosyltransferase [α(1,2)FT, EC: 2.4.1.69], the key enzyme in their synthesis, have been suggested as being responsible for these changes. In particular, an aberrant tumour-specific α(1,2)FT activity that converts Le(a) and Le(x) to Le(b) and Le(y) determinants, respectively, has been reported in colorectal cancer tissues. To clarify the catalytic function of this enzyme during colorectal tumorigenesis, we analyzed α(1,2)FT activity levels in healthy and tumour colon specimens using different acceptor substrates and determined the kinetic properties of the enzyme. To complete the study, the aberrant Le(a)/Le(x) α(1,2)fucosylation was determined in healthy and tumour colorectal tissues. A correlation analysis between the activity levels and various standard clinicopathological features, such as tumour stage, was also carried out to elucidate the role of these activities in tumour progression. The results obtained confirm the enhanced α(1,2)fucosylation in colorectal neoplastic tissues and the importance of the aberrant Le(a)/Le(x) α(1,2)FT activity in this increase. However, taking into account the high levels of Le(a)/Le(x) fucosylation observed in healthy control tissues, we must rule out the idea of a colorectal tumour-specific α(1,2)FT. On the other hand, no significant association was observed between α(1,2)FT activity levels and the clinicopathological characteristics. Overall, our results suggest that α(1,2)FT activity plays a critical role in the accumulation of Le(b) and Le(y) antigens in human colorectal carcinoma.
Collapse
Affiliation(s)
- L Muinelo-Romay
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain
| | | | | |
Collapse
|
31
|
Willhauck-Fleckenstein M, Moehler TM, Merling A, Pusunc S, Goldschmidt H, Schwartz-Albiez R. Transcriptional regulation of the vascular endothelial glycome by angiogenic and inflammatory signalling. Angiogenesis 2010; 13:25-42. [PMID: 20162350 DOI: 10.1007/s10456-010-9162-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 01/15/2010] [Indexed: 11/25/2022]
Abstract
Vascular endothelial cells undergo many molecular changes during pathological processes such as inflammation and tumour development. Tumours such as malignant lymphomas affecting bone marrow are dependent on interactions with endothelial cells for (1) site-specific homing and (2) tumour-induced angiogenesis. Modifications in glycosylation are responsible for fine-tuning of distinct endothelial surface receptors. In order to gain a comprehensive insight into the regulation of the endothelial glycome, comprising genes encoding for sugar transporters (sugar s/t), glycosyltransferases (GT), glycan-degrading enzymes (GD) and lectins (GBP), we performed gene profiling analysis of the human bone marrow-derived microvascular endothelial cell line HBMEC-60 that resembles closely in its biological behaviour primary bone marrow endothelial cells. HBMEC were activated by either angiogenic VEGF or the inflammatory cytokine TNF. Approximately 48% (207 genes) of the 432 glycome genes tested were found to be expressed in HBMEC-60 cells. Inflammatory and angiogenic signals produce different profiles of up- or down-regulated glycome genes, most prominent changes were seen under TNF stimulation in terms of signal intensity and number of alterations. Stimulation by VEGF and TNF affected primarily genes encoding for glycosyltransferases and in particular those important for terminal modulation. For instance, an enhanced alpha2,6 sialylation was observed after TNF stimulation at the transcriptional and glycan expression level whereas transcription of ST3Gal1 sialylating in alpha2,3 position was enhanced after VEGF stimulation. Transcriptional analysis of the glycome gives insights into the differential regulation of glycosylation pathways and may help to understand the functional impact of endothelial glycosylation.
Collapse
|
32
|
A possible role for metallic ions in the carbohydrate cluster recognition displayed by a Lewis Y specific antibody. PLoS One 2009; 4:e7777. [PMID: 19901987 PMCID: PMC2770121 DOI: 10.1371/journal.pone.0007777] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Accepted: 10/20/2009] [Indexed: 11/22/2022] Open
Abstract
Background Lewis Y (Ley) is a blood group-related carbohydrate that is expressed at high surface densities on the majority of epithelial carcinomas and is a promising target for antibody-based immunotherapy. A humanized Ley-specific antibody (hu3S193) has shown encouraging safety, pharmacokinetic and tumor-targeting properties in recently completed Phase I clinical trials. Methodology/Principal Findings We report the three-dimensional structures for both the free (unliganded) and bound (Ley tetrasaccharide) hu3S193 Fab from the same crystal grown in the presence of divalent zinc ions. There is no evidence of significant conformational changes occurring in either the Ley carbohydrate antigen or the hu3S193 binding site, which suggests a rigid fit binding mechanism. In the crystal, the hu3S193 Fab molecules are coordinated at their protein-protein interface by two zinc ions and in solution aggregation of Fab can be initiated by zinc, but not magnesium ions. Dynamic light scattering revealed that zinc ions could initiate a sharp transition from hu3S193 Fab monomers to large multimeric aggregates in solution. Conclusions/Significance Zinc ions can mediate interactions between hu3S193 Fab in crystals and in solution. Whether metallic ion mediated aggregation of antibody occurs in vivo is not known, but the present results suggest that similar clustering mechanisms could occur when hu3S193 binds to Ley on cells, particularly given the high surface densities of antigen on the target tumor cells.
Collapse
|
33
|
Abrantes J, Posada D, Guillon P, Esteves PJ, Le Pendu J. Widespread gene conversion of alpha-2-fucosyltransferase genes in mammals. J Mol Evol 2009; 69:22-31. [PMID: 19533213 PMCID: PMC2706377 DOI: 10.1007/s00239-009-9239-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Revised: 03/13/2009] [Accepted: 04/15/2009] [Indexed: 11/25/2022]
Abstract
The alpha-2-fucosyltransferases (alpha2FTs) are enzymes involved in the biosynthesis of alpha2fucosylated glycan structures. In mammalian genomes, there are three alpha2FT genes located in tandem-FUT1, FUT2, and Sec1-each contained within a single exon. It has been suggested that these genes originated from two successive duplications, with FUT1 being generated first and FUT2 and Sec1 second. Despite gene conversion being considered the main mechanism of concerted evolution in gene families, previous studies of primates alpha2FTs failed to detect it, although the occurrence of gene conversion between FUT2 and Sec1 was recently reported in a human allele. The primary aim of our work was to initiate a broader study on the molecular evolution of mammalian alpha2FTs. Sequence comparison leads us to confirm that the three genes appeared by two rounds of duplication. In addition, we were able to detect multiple gene-conversion events at the base of primates and within several nonprimate species involving FUT2 and Sec1. Gene conversion involving FUT1 and either FUT2 or Sec1 was also detected in rabbit. The extent of gene conversion between the alpha2FTs genes appears to be species-specific, possibly related to functional differentiation of these genes. With the exception of rabbits, gene conversion was not observed in the region coding the C-terminal part of the catalytic domain. In this region, the number of amino acids that are identical between FUT1 and FUT2, but different in Sec1, is higher than in other parts of the protein. The biologic meaning of this observation may be related to functional constraints.
Collapse
Affiliation(s)
- Joana Abrantes
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Rua Padre Armando Quintas, Vairao, Portugal
- INSERM, U892, Institut de Biologie, Université de Nantes, 9 Quai Moncousu, 44093 Nantes, Cedex 01, France
- Departamento de Zoologia e Antropologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - David Posada
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Campus Lagoas-Marcosende, Universidad de Vigo, Vigo, 36310 Spain
| | - Patrice Guillon
- INSERM, U892, Institut de Biologie, Université de Nantes, 9 Quai Moncousu, 44093 Nantes, Cedex 01, France
| | - Pedro J. Esteves
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Rua Padre Armando Quintas, Vairao, Portugal
- CITS, Centro de Investigação em Tecnologias da Saúde, IPSN, CESPU, Gandra, Portugal
| | - Jacques Le Pendu
- INSERM, U892, Institut de Biologie, Université de Nantes, 9 Quai Moncousu, 44093 Nantes, Cedex 01, France
| |
Collapse
|