1
|
Fontaine V, Boumedine T, Monteiro E, Fournié M, Gersende G, Sahel JA, Picaud S, Veillet S, Lafont R, Latil M, Dilda PJ, Camelo S. RAR Inhibitors Display Photo-Protective and Anti-Inflammatory Effects in A2E Stimulated RPE Cells In Vitro through Non-Specific Modulation of PPAR or RXR Transactivation. Int J Mol Sci 2024; 25:3037. [PMID: 38474284 PMCID: PMC10932305 DOI: 10.3390/ijms25053037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/23/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
N-retinylidene-N-retinylethanolamine (A2E) has been associated with age-related macular degeneration (AMD) physiopathology by inducing cell death, angiogenesis and inflammation in retinal pigmented epithelial (RPE) cells. It was previously thought that the A2E effects were solely mediated via the retinoic acid receptor (RAR)-α activation. However, this conclusion was based on experiments using the RAR "specific" antagonist RO-41-5253, which was found to also be a ligand and partial agonist of the peroxisome proliferator-activated receptor (PPAR)-γ. Moreover, we previously reported that inhibiting PPAR and retinoid X receptor (RXR) transactivation with norbixin also modulated inflammation and angiogenesis in RPE cells challenged in the presence of A2E. Here, using several RAR inhibitors, we deciphered the respective roles of RAR, PPAR and RXR transactivations in an in vitro model of AMD. We showed that BMS 195614 (a selective RAR-α antagonist) displayed photoprotective properties against toxic blue light exposure in the presence of A2E. BMS 195614 also significantly reduced the AP-1 transactivation and mRNA expression of the inflammatory interleukin (IL)-6 and vascular endothelial growth factor (VEGF) induced by A2E in RPE cells in vitro, suggesting a major role of RAR in these processes. Surprisingly, however, we showed that (1) Norbixin increased the RAR transactivation and (2) AGN 193109 (a high affinity pan-RAR antagonist) and BMS 493 (a pan-RAR inverse agonist), which are photoprotective against toxic blue light exposure in the presence of A2E, also inhibited PPARs transactivation and RXR transactivation, respectively. Therefore, in our in vitro model of AMD, several commercialized RAR inhibitors appear to be non-specific, and we propose that the phototoxicity and expression of IL-6 and VEGF induced by A2E in RPE cells operates through the activation of PPAR or RXR rather than by RAR transactivation.
Collapse
Affiliation(s)
- Valérie Fontaine
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France; (V.F.); (T.B.); (M.F.); (J.-A.S.); (S.P.)
| | - Thinhinane Boumedine
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France; (V.F.); (T.B.); (M.F.); (J.-A.S.); (S.P.)
| | - Elodie Monteiro
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France; (V.F.); (T.B.); (M.F.); (J.-A.S.); (S.P.)
| | - Mylène Fournié
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France; (V.F.); (T.B.); (M.F.); (J.-A.S.); (S.P.)
| | - Gendre Gersende
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France; (V.F.); (T.B.); (M.F.); (J.-A.S.); (S.P.)
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France; (V.F.); (T.B.); (M.F.); (J.-A.S.); (S.P.)
- Fondation Ophtalmologique Rothschild, 29 rue Manin, 75019 Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France; (V.F.); (T.B.); (M.F.); (J.-A.S.); (S.P.)
| | - Stanislas Veillet
- Biophytis, Sorbonne Université, BC9, 4 place Jussieu, 75005 Paris, France (M.L.); (P.J.D.)
| | - René Lafont
- Biophytis, Sorbonne Université, BC9, 4 place Jussieu, 75005 Paris, France (M.L.); (P.J.D.)
| | - Mathilde Latil
- Biophytis, Sorbonne Université, BC9, 4 place Jussieu, 75005 Paris, France (M.L.); (P.J.D.)
| | - Pierre J. Dilda
- Biophytis, Sorbonne Université, BC9, 4 place Jussieu, 75005 Paris, France (M.L.); (P.J.D.)
| | - Serge Camelo
- Biophytis, Sorbonne Université, BC9, 4 place Jussieu, 75005 Paris, France (M.L.); (P.J.D.)
| |
Collapse
|
2
|
Fontaine V, Balducci C, Dinan L, Monteiro E, Boumedine T, Fournié M, Nguyen V, Guibout L, Clatot J, Latil M, Veillet S, Sahel JA, Lafont R, Dilda PJ, Camelo S. Anti-Inflammatory Effects and Photo- and Neuro-Protective Properties of BIO203, a New Amide Conjugate of Norbixin, in Development for the Treatment of Age-Related Macular Degeneration (AMD). Int J Mol Sci 2023; 24:5296. [PMID: 36982372 PMCID: PMC10049354 DOI: 10.3390/ijms24065296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/16/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
9'-cis-norbixin (norbixin/BIO201) protects RPE cells against phototoxicity induced by blue light and N-retinylidene-N-retinylethanolamine (A2E) in vitro and preserves visual functions in animal models of age-related macular degeneration (AMD) in vivo. The purpose of this study was to examine the mode of action and the in vitro and in vivo effects of BIO203, a novel norbixin amide conjugate. Compared to norbixin, BIO203 displays improved stability at all temperatures tested for up to 18 months. In vitro, BIO203 and norbixin share a similar mode of action involving the inhibition of PPARs, NF-κB, and AP-1 transactivations. The two compounds also reduce IL-6, IL-8, and VEGF expression induced by A2E. In vivo, ocular maximal concentration and BIO203 plasma exposure are increased compared to those of norbixin. Moreover, BIO203 administered systemically protects visual functions and retinal structure in albino rats subjected to blue-light illumination and in the retinal degeneration model of Abca4-/- Rdh8-/- double knock-out mice following 6 months of oral complementation. In conclusion, we report here that BIO203 and norbixin share similar modes of action and protective effects in vitro and in vivo. BIO203, with its improved pharmacokinetic and stability properties, could be developed for the treatment of retinal degenerative diseases such as AMD.
Collapse
Affiliation(s)
- Valérie Fontaine
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France; (V.F.)
| | - Christine Balducci
- Biophytis, Sorbonne Université, BC9, 4 Place Jussieu, 75005 Paris, France (S.C.)
| | - Laurence Dinan
- Biophytis, Sorbonne Université, BC9, 4 Place Jussieu, 75005 Paris, France (S.C.)
| | - Elodie Monteiro
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France; (V.F.)
| | - Thinhinane Boumedine
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France; (V.F.)
| | - Mylène Fournié
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France; (V.F.)
| | - Vincent Nguyen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France; (V.F.)
| | - Louis Guibout
- Biophytis, Sorbonne Université, BC9, 4 Place Jussieu, 75005 Paris, France (S.C.)
| | - Justine Clatot
- Biophytis, Sorbonne Université, BC9, 4 Place Jussieu, 75005 Paris, France (S.C.)
| | - Mathilde Latil
- Biophytis, Sorbonne Université, BC9, 4 Place Jussieu, 75005 Paris, France (S.C.)
| | - Stanislas Veillet
- Biophytis, Sorbonne Université, BC9, 4 Place Jussieu, 75005 Paris, France (S.C.)
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, 75012 Paris, France; (V.F.)
- Fondation Ophtalmologique Rothschild, 29 rue Manin, 75019 Paris, France
- Department of Ophthalmology, School of Medicine, The University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - René Lafont
- Biophytis, Sorbonne Université, BC9, 4 Place Jussieu, 75005 Paris, France (S.C.)
| | - Pierre J. Dilda
- Biophytis, Sorbonne Université, BC9, 4 Place Jussieu, 75005 Paris, France (S.C.)
| | - Serge Camelo
- Biophytis, Sorbonne Université, BC9, 4 Place Jussieu, 75005 Paris, France (S.C.)
| |
Collapse
|
3
|
The Effect of A2E on the Ca2+-PKC Signaling Pathway in Human RPE Cells Exposed to Blue Light. J Ophthalmol 2022; 2022:2233223. [PMID: 36304713 PMCID: PMC9596233 DOI: 10.1155/2022/2233223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Aims In a model of blue light-induced damage in N-retinylidene-N-retinylethanolamine (A2E)-loaded human retinal pigment epithelial (RPE) cells, we examined the effect of A2E on the calcium (Ca2+)-protein kinase C (PKC) signaling pathway. Methods Primary human RPE cells were cultured, and the cells in the 4th–6th passages were used in this study. The cells were divided into 5 groups: control cells (no A2E, no blue light), blue light-treated cells, blue light + chloroquine-treated cells, blue light + A2E-treated cells, and blue light + A2E + chloroquine-treated cells. The cells were first treated with chloroquine (15 μM for 12 h) and then loaded with A2E (25 μM for 2 h).The blue light intensity was 2000 ± 500 lux, and the duration was 6 h. After blue light exposure, the cells were cultured for 24 h. Fluo-3/AM staining was used to determine the level of cytoplasmic Ca2+, and the cells were photographed using a laser scanning confocal microscope to analyze the fluorescence intensity. The intracellular levels of inositol triphosphate (IP3) and diacylglycerol (DAG) were measured by enzyme-linked immunosorbent assay (ELISA). Intracellular PKC activity was measured with a nonradioactive nuclide assay. Results Among all cell groups, the levels of Ca2+, DAG, and IP3 were lowest in the control cells (P < 0.05). The Ca2+, DAG, and IP3 levels in the blue light + A2E-treated cells and blue light + chloroquine-treated cells were higher than those in the blue light-treated cells (P < 0.05). The Ca2+, DAG, and IP3 levels were highest in the blue light + A2E + chloroquine-treated group (P < 0.05). PKC activity was lowest in the control cells (P < 0.05). The PKC activity of the blue light + A2E-treated cells and blue light + chloroquine-treated cells was higher than that of the blue light-treated cells (P < 0.05), and the PKC activity of the blue light + A2E + chloroquine-treated cells was the highest (P < 0.05). Conclusion Blue light and A2E increased the levels of Ca2+, IP3, and DAG in human RPE cells and enhanced PKC activity, and blue light and A2E had a synergistic effect. Chloroquine further increased the levels of Ca2+, IP3, and DAG and PKC activity in RPE cells or A2E-loaded RPE cells exposed to blue light.
Collapse
|
4
|
Huang P, Narendran S, Pereira F, Fukuda S, Nagasaka Y, Apicella I, Yerramothu P, Marion KM, Cai X, Sadda SR, Gelfand BD, Ambati J. Subretinal injection in mice to study retinal physiology and disease. Nat Protoc 2022; 17:1468-1485. [PMID: 35418688 PMCID: PMC11146522 DOI: 10.1038/s41596-022-00689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/02/2022] [Indexed: 11/09/2022]
Abstract
Subretinal injection (SRI) is a widely used technique in retinal research and can be used to deliver nucleic acids, small molecules, macromolecules, viruses, cells or biomaterials such as nanobeads. Here we describe how to undertake SRI of mice. This protocol was adapted from a technique initially described for larger animals. Although SRI is a common procedure in eye research laboratories, there is no published guidance on the best practices for determining what constitutes a 'successful' SRI. Optimal injections are required for reproducibility of the procedure and, when carried out suboptimally, can lead to erroneous conclusions. To address this issue, we propose a standardized protocol for SRI with 'procedure success' defined by follow-up examination of the retina and the retinal pigmented epithelium rather than solely via intraoperative endpoints. This protocol takes 7-14 d to complete, depending on the reagent delivered. We have found, by instituting a standardized training program, that trained ophthalmologists achieve reliable proficiency in this technique after ~350 practice injections. This technique can be used to gain insights into retinal physiology and disease pathogenesis and to test the efficacy of experimental compounds in the retina or retinal pigmented epithelium.
Collapse
Affiliation(s)
- Peirong Huang
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siddharth Narendran
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Aravind Eye Care System, Madurai, India
| | - Felipe Pereira
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Shinichi Fukuda
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Tsukuba, Tsukuba, Japan
| | - Yosuke Nagasaka
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ivana Apicella
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Praveen Yerramothu
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | - Xiaoyu Cai
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Srinivas R Sadda
- Doheny Eye Institute, Los Angeles, CA, USA
- Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Bradley D Gelfand
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
5
|
Fang Y, Taubitz T, Tschulakow AV, Heiduschka P, Szewczyk G, Burnet M, Peters T, Biesemeier A, Sarna T, Schraermeyer U, Julien-Schraermeyer S. Removal of RPE lipofuscin results in rescue from retinal degeneration in a mouse model of advanced Stargardt disease: Role of reactive oxygen species. Free Radic Biol Med 2022; 182:132-149. [PMID: 35219849 DOI: 10.1016/j.freeradbiomed.2022.02.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022]
Abstract
Accumulation of lipofuscin in the retinal pigment epithelium (RPE) is a hallmark of aging and is associated with retinal degeneration encountered in age-related macular degeneration (AMD) and Stargardt disease (SD). Currently, treatment for lipofuscin-induced retinal degeneration is unavailable. Here, we report that Remofuscin (INN: soraprazan, a tetrahydropyridoether small molecule) reverses lipofuscin accumulation in aged primary human RPE cells and is non-cytotoxic in aged SD mouse RPE cells in vitro. In addition, we show that the removal of lipofuscin after a single intravitreal injection of Remofuscin results in a rescue from retinal degeneration in a mouse model of advanced SD which is even accompanied by an amelioration of the retinal dysfunction. Finally, we demonstrate that the mechanism causing lipofuscinolysis may involve the reactive oxygen species generated via the presence of Remofuscin. These data suggest a possible therapeutic approach to untreatable lipofuscin-mediated diseases like AMD, SD and lipofuscinopathies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuan Fang
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Tatjana Taubitz
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Alexander V Tschulakow
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany; STZ Ocutox, Preclinical Drug Assessment, Hechingen, Germany
| | - Peter Heiduschka
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Grzegorz Szewczyk
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | | | - Tobias Peters
- Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Antje Biesemeier
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Ulrich Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany; STZ Ocutox, Preclinical Drug Assessment, Hechingen, Germany
| | - Sylvie Julien-Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany; STZ Ocutox, Preclinical Drug Assessment, Hechingen, Germany.
| |
Collapse
|
6
|
Ren J, Ren A, Deng X, Huang Z, Jiang Z, Li Z, Gong Y. Long-Chain Polyunsaturated Fatty Acids and Their Metabolites Regulate Inflammation in Age-Related Macular Degeneration. J Inflamm Res 2022; 15:865-880. [PMID: 35173457 PMCID: PMC8842733 DOI: 10.2147/jir.s347231] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a blinding eye disease, whose incidence strongly increases with ages. The etiology of AMD is complex, including aging, abnormal lipid metabolism, chronic inflammation and oxidative stress. Long-chain polyunsaturated fatty acids (LCPUFA) are essential for ocular structures and functions. This review summarizes the regulatory effects of LCPUFA on inflammation in AMD. LCPUFA are related to aging, autophagy and chronic inflammation. They are metabolized to pro- and anti-inflammatory metabolites by various enzymes. These metabolites stimulate inflammation in response to oxidative stress, causing innate and acquired immune responses. This review also discusses the possible clinical applications, which provided novel targets for the prevention and treatment of AMD and other age-related diseases.
Collapse
Affiliation(s)
- Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Anli Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhengrong Huang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Ziyu Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan University, Wuhan, Hubei, People’s Republic of China
- Correspondence: Yan Gong; Zhi Li, Tel +86 27 6781 1461; +86 27 6781 2622, Fax +86 27 6781 1471; +86 27 6781 3133, Email ;
| |
Collapse
|
7
|
Shukal DK, Malaviya PB, Sharma T. Role of the AMPK signalling pathway in the aetiopathogenesis of ocular diseases. Hum Exp Toxicol 2022; 41:9603271211063165. [PMID: 35196887 DOI: 10.1177/09603271211063165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) plays a precise role as a master regulator of cellular energy homeostasis. AMPK is activated in response to the signalling cues that exhaust cellular ATP levels such as hypoxia, ischaemia, glucose depletion and heat shock. As a central regulator of both lipid and glucose metabolism, AMPK is considered to be a potential therapeutic target for the treatment of various diseases, including eye disorders. OBJECTIVE To review all the shreds of evidence concerning the role of the AMPK signalling pathway in the pathogenesis of ocular diseases. METHOD Scientific data search and review of available information evaluating the influence of AMPK signalling on ocular diseases. RESULTS Review highlights the significance of AMPK signalling in the aetiopathogenesis of ocular diseases, including cataract, glaucoma, diabetic retinopathy, retinoblastoma, age-related macular degeneration, corneal diseases, etc. The review also provides the information on the AMPK-associated pathways with reference to ocular disease, which includes mitochondrial biogenesis, autophagy and regulation of inflammatory response. CONCLUSION The study concludes the role of AMPK in ocular diseases. There is growing interest in the therapeutic utilization of the AMPK pathway for ocular disease treatment. Furthermore, inhibition of AMPK signalling might represent more pertinent strategy than AMPK activation for ocular disease treatment. Such information will guide the development of more effective AMPK modulators for ocular diseases.[Formula: see text].
Collapse
Affiliation(s)
- Dhaval K Shukal
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India.,76793Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Pooja B Malaviya
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India.,76793Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Tusha Sharma
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India
| |
Collapse
|
8
|
Zhang D, Robinson K, Washington I. C20D3-Vitamin A Prevents Retinal Pigment Epithelium Atrophic Changes in a Mouse Model. Transl Vis Sci Technol 2021; 10:8. [PMID: 34878528 PMCID: PMC8662574 DOI: 10.1167/tvst.10.14.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose This study aimed to evaluate the contribution of vitamin A dimerization to retinal pigment epithelium (RPE) atrophic changes. Leading causes of irreversible blindness, including Stargardt disease and age-related macular degeneration (AMD), occur as a result of atrophic changes in RPE. The cause of the RPE atrophic changes is not apparent. During the vitamin A cycle, vitamin A dimerizes, leading to vitamin A cycle byproducts, such as vitamin A dimers, in the RPE. Methods To study the consequence of vitamin A dimerization to RPE atrophic changes, we used a rodent model with accelerated vitamin A dimerization, Abca4−/−/Rdh8−/− mice, and the vitamin A analog C20D3-vitamin A to selectively ameliorate the accelerated rate of vitamin A dimerization. Results We show that ameliorating the rate of vitamin A dimerization with C20D3-vitamin A mitigates pathological changes observed in the prodromal phase of the most prevalent retinal degenerative diseases, including fundus autofluorescence changes, dark adaptation delays, and signature RPE atrophic changes. Conclusions Data demonstrate that the dimerization of vitamin A during the vitamin A cycle is sufficient alone to cause the prerequisite RPE atrophic changes thought to be responsible for the leading causes of irreversible blindness and that correcting the dimerization rate with C20D3-vitamin A may be sufficient to prevent the RPE atrophic changes. Translational Relevance Preventing the dimerization of vitamin A with the vitamin A analog C20D3-vitamin A may be sufficient to alter the clinical course of the most prevalent forms of blindness, including Stargardt disease and age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- Dan Zhang
- Columbia University Medical Center, Ophthalmology, New York, NY, USA
| | - Kiera Robinson
- Columbia University Medical Center, Ophthalmology, New York, NY, USA
| | - Ilyas Washington
- Columbia University Medical Center, Ophthalmology, New York, NY, USA.,biOOrg3.14, Buffalo, WY, USA
| |
Collapse
|
9
|
Zhang D, Mihai DM, Washington I. Vitamin A cycle byproducts explain retinal damage and molecular changes thought to initiate retinal degeneration. Biol Open 2021; 10:273577. [PMID: 34842275 PMCID: PMC8649638 DOI: 10.1242/bio.058600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/03/2021] [Indexed: 01/24/2023] Open
Abstract
In the most prevalent retinal diseases, including Stargardt disease and age-related macular degeneration (AMD), byproducts of vitamin A form in the retina abnormally during the vitamin A cycle. Despite evidence of their toxicity, whether these vitamin A cycle byproducts contribute to retinal disease, are symptoms, beneficial, or benign has been debated. We delivered a representative vitamin A byproduct, A2E, to the rat's retina and monitored electrophysiological, histological, proteomic, and transcriptomic changes. We show that the vitamin A cycle byproduct is sufficient alone to damage the RPE, photoreceptor inner and outer segments, and the outer plexiform layer, cause the formation of sub-retinal debris, alter transcription and protein synthesis, and diminish retinal function. The presented data are consistent with the theory that the formation of vitamin A byproducts during the vitamin A cycle is neither benign nor beneficial but may be sufficient alone to cause the most prevalent forms of retinal disease. Retarding the formation of vitamin A byproducts could potentially address the root cause of several retinal diseases to eliminate the threat of irreversible blindness for millions of people. Summary: During the vitamin A cycle, byproducts of vitamin A form in the eye. Using a rat model, we show that the byproducts alone can explain several retinal derangements observed in the prodromal phase of human retinal disease. Retarding the formation of these byproducts may address the root cause of the most prevalent retinal diseases.
Collapse
Affiliation(s)
- Dan Zhang
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA
| | - Doina M Mihai
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA
| | - Ilyas Washington
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA.,biOOrg3.14, Buffalo, WY 82834, USA
| |
Collapse
|
10
|
A2E-induced inflammation and angiogenesis in RPE cells in vitro are modulated by PPAR-α, -β/δ, -γ, and RXR antagonists and by norbixin. Aging (Albany NY) 2021; 13:22040-22058. [PMID: 34544906 PMCID: PMC8507260 DOI: 10.18632/aging.203558] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 09/03/2021] [Indexed: 12/15/2022]
Abstract
N-retinylidene-N-retinylethanolamine (A2E) plays a central role in age-related macular degeneration (AMD) by inducing angiogenesis and inflammation. A2E effects are mediated at least partly via the retinoic acid receptor (RAR)-α. Here we show that A2E binds and transactivates also peroxisome proliferator-activated receptors (PPAR) and retinoid X receptors (RXR). 9’-cis-norbixin, a di-apocarotenoid is also a ligand of these nuclear receptors (NR). Norbixin inhibits PPAR and RXR transactivation induced by A2E. Moreover, norbixin reduces protein kinase B (AKT) phosphorylation, NF-κB and AP-1 transactivation and mRNA expression of the inflammatory interleukins (IL) -6 and -8 and of vascular endothelial growth factor (VEGF) enhanced by A2E. By contrast, norbixin increases matrix metalloproteinase 9 (MMP9) and C-C motif chemokine ligand 2 (CCL2) mRNA expression in response to A2E. Selective PPAR-α, -β/δ and –γ antagonists inhibit the expression of IL-6 and IL-8 while only the antagonist of PPAR-γ inhibits the transactivation of NF-κB following A2E exposure. In addition, a cocktail of all three PPARs antagonists and also HX531, an antagonist of RXR reproduce norbixin effects on inflammation. Altogether, A2E’s deleterious biological effects could be inhibited through PPAR and RXR regulation. Moreover, the modulation of these NR by norbixin may open new avenues for the treatment of AMD.
Collapse
|
11
|
The Impact of Oxidative Stress on Blood-Retinal Barrier Physiology in Age-Related Macular Degeneration. Cells 2021; 10:cells10010064. [PMID: 33406612 PMCID: PMC7823525 DOI: 10.3390/cells10010064] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023] Open
Abstract
The blood retinal barrier (BRB) is a fundamental eye component, whose function is to select the flow of molecules from the blood to the retina and vice-versa, and its integrity allows the maintenance of a finely regulated microenvironment. The outer BRB, composed by the choriocapillaris, the Bruch's membrane, and the retinal pigment epithelium, undergoes structural and functional changes in age-related macular degeneration (AMD), the leading cause of blindness worldwide. BRB alterations lead to retinal dysfunction and neurodegeneration. Several risk factors have been associated with AMD onset in the past decades and oxidative stress is widely recognized as a key factor, even if the exact AMD pathophysiology has not been exactly elucidated yet. The present review describes the BRB physiology, the BRB changes occurring in AMD, the role of oxidative stress in AMD with a focus on the outer BRB structures. Moreover, we propose the use of cerium oxide nanoparticles as a new powerful anti-oxidant agent to combat AMD, based on the relevant existing data which demonstrated their beneficial effects in protecting the outer BRB in animal models of AMD.
Collapse
|
12
|
Parmar T, Ortega JT, Jastrzebska B. Retinoid analogs and polyphenols as potential therapeutics for age-related macular degeneration. Exp Biol Med (Maywood) 2020; 245:1615-1625. [PMID: 32438835 PMCID: PMC7787542 DOI: 10.1177/1535370220926938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IMPACT STATEMENT Age-related macular degeneration (AMD) is a devastating retinal degenerative disease. Epidemiological reports showed an expected increasing prevalence of AMD in the near future. The only one existing FDA-approved pharmacological treatment involves an anti-vascular endothelial growth factor (VEGF) therapy with serious disadvantages. This limitation emphasizes an alarming need to develop new therapeutic approaches to prevent and treat AMD. In this review, we summarize scientific data unraveling the therapeutic potential of the specific retinoid and natural compounds. The experimental results reported by us and other research groups demonstrated that retinoid analogs and compounds with natural product scaffolds could serve as lead compounds for the development of new therapeutic agents with potential to prevent or slow down the pathogenesis of AMD.
Collapse
Affiliation(s)
- Tanu Parmar
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Joseph T Ortega
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Beata Jastrzebska
- Department of Pharmacology, and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
13
|
Tisi A, Passacantando M, Lozzi L, Maccarone R. Cerium oxide nanoparticles reduce the accumulation of autofluorescent deposits in light-induced retinal degeneration: Insights for age-related macular degeneration. Exp Eye Res 2020; 199:108169. [PMID: 32758489 DOI: 10.1016/j.exer.2020.108169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/10/2020] [Accepted: 07/26/2020] [Indexed: 01/05/2023]
Abstract
Accumulation of lipofuscin deposits in the retinal pigment epithelium (RPE) is one of the main events involved in age-related macular degeneration and its increase together with RPE dysfunction, blood retinal barrier disruption and photoreceptors death progressively leads to blindness. Lipofuscin is the main autofluorescent (AF) component of the retina and therapies to counteract its deposition are a main goal to be achieved, since effective treatments have not yet been identified. Here, we first investigated the spatio-temporal pattern of AF deposits accumulation in the light-damage model of age-related macular degeneration. Afterward, we tested the ability of cerium oxide nanoparticles, a well known anti-oxidant agent, to counteract AF granules accumulation. The treatment was performed both before and after the induction of the degeneration. AF granules were quantified by confocal microscopy on whole mounted retinas. We demonstrated that the acute light-damage increases the accumulation of AF deposits in the hot spot retina in terms of number of granules and percentage of occupied area, with a peak 7 days after the exposure. Remarkably, cerium oxide nanoparticles showed a strong efficacy in preventing the formation of AF deposits when they were injected 3 days before light exposure. Moreover, when the treatment was performed 7 days after light exposure, nanoceria activity was found to be effective also in reducing the amount of the AF granules still deposited up to 60 days. These important results represent the very first evidence about the ability of cerium oxide nanoparticles to counteract AF deposits accumulation in retinal degeneration, laying the foundations for the development of a new therapy possibly targeting lipofuscin in AMD.
Collapse
Affiliation(s)
- A Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio, Coppito 2, 67100, L'Aquila, Italy.
| | - M Passacantando
- Department of Physical and Chemical Science, University of L'Aquila, via Vetoio, Coppito 1, 67100, L'Aquila, Italy.
| | - L Lozzi
- Department of Physical and Chemical Science, University of L'Aquila, via Vetoio, Coppito 1, 67100, L'Aquila, Italy.
| | - R Maccarone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, via Vetoio, Coppito 2, 67100, L'Aquila, Italy.
| |
Collapse
|
14
|
Cheng KJ, Hsieh CM, Nepali K, Liou JP. Ocular Disease Therapeutics: Design and Delivery of Drugs for Diseases of the Eye. J Med Chem 2020; 63:10533-10593. [PMID: 32482069 DOI: 10.1021/acs.jmedchem.9b01033] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ocular drug discovery field has evidenced significant advancement in the past decade. The FDA approvals of Rhopressa, Vyzulta, and Roclatan for glaucoma, Brolucizumab for wet age-related macular degeneration (wet AMD), Luxturna for retinitis pigmentosa, Dextenza (0.4 mg dexamethasone intracanalicular insert) for ocular inflammation, ReSure sealant to seal corneal incisions, and Lifitegrast for dry eye represent some of the major developments in the field of ocular therapeutics. A literature survey also indicates that gene therapy, stem cell therapy, and target discovery through genomic research represent significant promise as potential strategies to achieve tissue repair or regeneration and to attain therapeutic benefits in ocular diseases. Overall, the emergence of new technologies coupled with first-in-class entries in ophthalmology are highly anticipated to restructure and boost the future trends in the field of ophthalmic drug discovery. This perspective focuses on various aspects of ocular drug discovery and the recent advances therein. Recent medicinal chemistry campaigns along with a brief overview of the structure-activity relationships of the diverse chemical classes and developments in ocular drug delivery (ODD) are presented.
Collapse
Affiliation(s)
- Kuei-Ju Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan.,Department of Pharmacy, Taipei Municipal Wanfang Hospital, Taipei Medical University, No. 111, Section 3, Xing-Long Road, Taipei 11696, Taiwan
| | - Chien-Ming Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
15
|
Fontaine V, Monteiro E, Fournié M, Brazhnikova E, Boumedine T, Vidal C, Balducci C, Guibout L, Latil M, Dilda PJ, Veillet S, Sahel JA, Lafont R, Camelo S. Systemic administration of the di-apocarotenoid norbixin (BIO201) is neuroprotective, preserves photoreceptor function and inhibits A2E and lipofuscin accumulation in animal models of age-related macular degeneration and Stargardt disease. Aging (Albany NY) 2020; 12:6151-6171. [PMID: 32255762 PMCID: PMC7185133 DOI: 10.18632/aging.103014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/02/2020] [Indexed: 12/31/2022]
Abstract
Atrophic A\age-related macular degeneration (AMD) and Stargardt disease (STGD) are major blinding diseases affecting millions of patients worldwide, but no treatment is available. In dry AMD and STGD oxidative stress and subretinal accumulation of N-retinylidene-N-retinylethanolamine (A2E), a toxic by-product of the visual cycle, causes retinal pigment epithelium (RPE) and photoreceptor degeneration leading to visual impairment. Acute and chronic retinal degeneration following blue light damage (BLD) in BALB/c mice and aging of Abca4-/- Rdh8-/- mice, respectively, reproduce features of AMD and STGD. Efficacy of systemic administrations of 9'-cis-norbixin (norbixin), a natural di-apocarotenoid, prepared from Bixa orellana seeds with anti-oxidative properties, was evaluated during BLD in BALB/c mice, and in Abca4-/- Rdh8-/- mice of different ages, following three experimental designs: “preventive”, “early curative” and “late curative” supplementations. Norbixin injected intraperitoneally in BALB/c mice, maintained scotopic and photopic electroretinogram amplitude and was neuroprotective. Norbixin chronic oral administration for 6 months in Abca4-/- Rdh8-/- mice following the “early curative” supplementation showed optimal neuroprotection and maintenance of photoreceptor function and reduced ocular A2E accumulation. Thus, norbixin appears promising as a systemic drug candidate for both AMD and STGD treatment.
Collapse
Affiliation(s)
- Valérie Fontaine
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - Elodie Monteiro
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - Mylène Fournié
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - Elena Brazhnikova
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | | | - Cécile Vidal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - Christine Balducci
- Biophytis, Sorbonne Université, Campus Pierre and Marie Curie, Paris 75005, France
| | - Louis Guibout
- Biophytis, Sorbonne Université, Campus Pierre and Marie Curie, Paris 75005, France
| | - Mathilde Latil
- Biophytis, Sorbonne Université, Campus Pierre and Marie Curie, Paris 75005, France
| | - Pierre J Dilda
- Biophytis, Sorbonne Université, Campus Pierre and Marie Curie, Paris 75005, France
| | - Stanislas Veillet
- Biophytis, Sorbonne Université, Campus Pierre and Marie Curie, Paris 75005, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - René Lafont
- Biophytis, Sorbonne Université, Campus Pierre and Marie Curie, Paris 75005, France
| | - Serge Camelo
- Biophytis, Sorbonne Université, Campus Pierre and Marie Curie, Paris 75005, France
| |
Collapse
|
16
|
Pharmacotherapy for metabolic and cellular stress in degenerative retinal diseases. Drug Discov Today 2019; 25:292-304. [PMID: 31809750 DOI: 10.1016/j.drudis.2019.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/08/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
Retinal photoreceptors continually endure stresses associated with prolonged light exposure and the metabolic demands of dark adaptation. Although healthy photoreceptors are able to withstand these stresses for several decades, the disease-affected retina functions at a reduced capacity and is at an increased risk for dysfunction. To alleviate cellular and metabolic stressors in degenerative retinal diseases, a new class of drugs that modulate the metabolic activity of the retina have been developed. A clinical candidate in this class (emixustat) has been shown to reduce retinal pathology in various animal models of human retinal disease and is currently under clinical study. Here, we describe the pharmacological properties of emixustat, its mechanisms of action, and potential for use in the treatment of specific retinal diseases.
Collapse
|
17
|
Marie M, Gondouin P, Pagan D, Barrau C, Villette T, Sahel J, Picaud S. Blue-violet light decreases VEGFa production in an in vitro model of AMD. PLoS One 2019; 14:e0223839. [PMID: 31644596 PMCID: PMC6808507 DOI: 10.1371/journal.pone.0223839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022] Open
Abstract
Blue light is an identified risk factor for age-related macular degeneration (AMD). The production of vascular endothelial growth factor (VEGF), leading to neovascularization, is a major complication of the wet form of this disease. We investigated how blue light affects VEGF expression and secretion using A2E-loaded retinal pigment epithelium (RPE) cells, a cell model of AMD. Incubation of RPE cells with A2E resulted in a significant increase in VEGF mRNA and, intracellular and secreted VEGF protein levels, but not mRNA levels of VEGFR1 or VEGFR2. Blue light exposure of A2E-loaded RPE cells resulted in a decrease in VEGF mRNA and protein levels, but an increase in VEGFR1 levels. The toxicity of 440 nm light on A2E-loaded RPE cells was enhanced by VEGF supplementation. Our results suggest that age-related A2E accumulation may result in VEGF synthesis and release. This synthesis of VEGF, which enhances blue light toxicity for the RPE cells, is itself suppressed by blue light. Anti-VEGF therapy may therefore improve RPE survival in AMD.
Collapse
Affiliation(s)
- Mélanie Marie
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Pauline Gondouin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Delphine Pagan
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | | | - José Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
18
|
Lin CH, Wu MR, Huang WJ, Chow DSL, Hsiao G, Cheng YW. Low-Luminance Blue Light-Enhanced Phototoxicity in A2E-Laden RPE Cell Cultures and Rats. Int J Mol Sci 2019; 20:ijms20071799. [PMID: 30979028 PMCID: PMC6480556 DOI: 10.3390/ijms20071799] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/30/2019] [Accepted: 04/08/2019] [Indexed: 12/28/2022] Open
Abstract
N-retinylidene-N-retinylethanolamine (A2E) and other bisretinoids are components of lipofuscin and accumulate in retinal pigment epithelial (RPE) cells—these adducts are recognized in the pathogenesis of retinal degeneration. Further, blue light-emitting diode (LED) light (BLL)-induced retinal toxicity plays an important role in retinal degeneration. Here, we demonstrate that low-luminance BLL enhances phototoxicity in A2E-laden RPE cells and rats. RPE cells were subjected to synthetic A2E, and the effects of BLL on activation of apoptotic biomarkers were examined by measuring the levels of cleaved caspase-3. BLL modulates the protein expression of zonula-occludens 1 (ZO-1) and paracellular permeability in A2E-laden RPE cells. Early inflammatory and angiogenic genes were also screened after short-term BLL exposure. In this study, we developed a rat model for A2E treatment with or without BLL exposure for 21 days. BLL exposure caused fundus damage, decreased total retinal thickness, and caused neuron transduction injury in the retina, which were consistent with the in vitro data. We suggest that the synergistic effects of BLL and A2E accumulation in the retina increase the risk of retinal degeneration. These outcomes help elucidate the associations between BLL/A2E and angiogenic/apoptotic mechanisms, as well as furthering therapeutic strategies.
Collapse
Affiliation(s)
- Cheng-Hui Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Man-Ru Wu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Diana Shu-Lian Chow
- Institute of Drug Education and Research, College of Pharmacy, University of Houston, Texas 77004, USA.
| | - George Hsiao
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
19
|
Fontaine V, Monteiro E, Brazhnikova E, Lesage L, Balducci C, Guibout L, Feraille L, Elena PP, Sahel JA, Veillet S, Lafont R. Norbixin Protects Retinal Pigmented Epithelium Cells and Photoreceptors against A2E-Mediated Phototoxicity In Vitro and In Vivo. PLoS One 2016; 11:e0167793. [PMID: 27992460 PMCID: PMC5161507 DOI: 10.1371/journal.pone.0167793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/20/2016] [Indexed: 12/31/2022] Open
Abstract
The accumulation of N-retinylidene-N-retinylethanolamine (A2E, a toxic by-product of the visual pigment cycle) in the retinal pigment epithelium (RPE) is a major cause of visual impairment in the elderly. Photooxidation of A2E results in retinal pigment epithelium degeneration followed by that of associated photoreceptors. Present treatments rely on nutrient supplementation with antioxidants. 9’-cis-Norbixin (a natural diapocarotenoid, 97% purity) was prepared from Bixa orellana seeds. It was first evaluated in primary cultures of porcine retinal pigment epithelium cells challenged with A2E and illuminated with blue light, and it provided an improved photo-protection as compared with lutein or zeaxanthin. In Abca4-/-Rdh8-/- mice (a model of dry AMD), intravitreally-injected norbixin maintained the electroretinogram and protected photoreceptors against light damage. In a standard rat blue-light model of photodamage, norbixin was at least equally as active as phenyl-N-tert-butylnitrone, a free radical spin-trap. Chronic experiments performed with Abca4-/-Rdh8-/- mice treated orally for 3 months with norbixin showed a reduced A2E accumulation in the retina. Norbixin appears promising for developing an oral treatment of macular degeneration. A drug candidate (BIO201) with 9’-cis-norbixin as the active principle ingredient is under development, and its potential will be assessed in a forthcoming clinical trial.
Collapse
Affiliation(s)
- Valérie Fontaine
- Sorbonne Universités, UPMC Univ Paris, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, Paris, France
- * E-mail:
| | - Elodie Monteiro
- Sorbonne Universités, UPMC Univ Paris, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, Paris, France
| | - Elena Brazhnikova
- Sorbonne Universités, UPMC Univ Paris, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, Paris, France
| | - Laëtitia Lesage
- Sorbonne Universités, UPMC Univ Paris, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, Paris, France
| | - Christine Balducci
- Biophytis, Parc BIOCITECH, 102 Avenue Gaston Roussel, Romainville, France
| | - Louis Guibout
- Biophytis, Parc BIOCITECH, 102 Avenue Gaston Roussel, Romainville, France
| | | | | | - José-Alain Sahel
- Sorbonne Universités, UPMC Univ Paris, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, Paris, France
| | - Stanislas Veillet
- Biophytis, Parc BIOCITECH, 102 Avenue Gaston Roussel, Romainville, France
| | - René Lafont
- Biophytis, Parc BIOCITECH, 102 Avenue Gaston Roussel, Romainville, France
| |
Collapse
|
20
|
Jin HL, Lee SC, Kwon YS, Choung SY, Jeong KW. A novel fluorescence-based assay for measuring A2E removal from human retinal pigment epithelial cells to screen for age-related macular degeneration inhibitors. J Pharm Biomed Anal 2016; 117:560-7. [PMID: 26604166 DOI: 10.1016/j.jpba.2015.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/02/2015] [Accepted: 10/06/2015] [Indexed: 01/08/2023]
Abstract
Age-related macular degeneration (AMD) is a common retinal disease that leads to irreversible central vision loss in the elderly population. Recent studies have identified many factors related to the development of dry AMD, such as aging, cigarette smoking, genetic predispositions, and oxidative stress, eventually inducing the accumulation of lipofuscin, which is one of the most critical risk factors. One of the major lipofuscins in retinal pigment epithelial (RPE) cells is N-retinylidene-N-retinylethanolamine (also known as A2E), a pyridinium bis-retinoid. Currently there is a lack of effective therapy to prevent or restore vision loss caused by dry AMD. Recent studies have shown that 430 nm blue light induces the oxidation of A2E and the activation of caspase-3 to subsequently cause the death of RPE cells, suggesting that removal of A2E from retinal pigment cells might be critical for preventing AMD. Here, we developed a fluorescence-labeled A2E analog (A2E-BDP) that functions similar to A2E in RPE cells, but is more sensitive to detection than A2E. A2E-BDP-based tracing of intracellular A2E will be helpful, not only for studying the accumulation and removal of A2E in human RPE cells but also for identifying possible inhibitors of AMD.
Collapse
|
21
|
Bavik C, Henry SH, Zhang Y, Mitts K, McGinn T, Budzynski E, Pashko A, Lieu KL, Zhong S, Blumberg B, Kuksa V, Orme M, Scott I, Fawzi A, Kubota R. Visual Cycle Modulation as an Approach toward Preservation of Retinal Integrity. PLoS One 2015; 10:e0124940. [PMID: 25970164 PMCID: PMC4430241 DOI: 10.1371/journal.pone.0124940] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/19/2015] [Indexed: 01/10/2023] Open
Abstract
Increased exposure to blue or visible light, fluctuations in oxygen tension, and the excessive accumulation of toxic retinoid byproducts places a tremendous amount of stress on the retina. Reduction of visual chromophore biosynthesis may be an effective method to reduce the impact of these stressors and preserve retinal integrity. A class of non-retinoid, small molecule compounds that target key proteins of the visual cycle have been developed. The first candidate in this class of compounds, referred to as visual cycle modulators, is emixustat hydrochloride (emixustat). Here, we describe the effects of emixustat, an inhibitor of the visual cycle isomerase (RPE65), on visual cycle function and preservation of retinal integrity in animal models. Emixustat potently inhibited isomerase activity in vitro (IC50 = 4.4 nM) and was found to reduce the production of visual chromophore (11-cis retinal) in wild-type mice following a single oral dose (ED50 = 0.18 mg/kg). Measure of drug effect on the retina by electroretinography revealed a dose-dependent slowing of rod photoreceptor recovery (ED50 = 0.21 mg/kg) that was consistent with the pattern of visual chromophore reduction. In albino mice, emixustat was shown to be effective in preventing photoreceptor cell death caused by intense light exposure. Pre-treatment with a single dose of emixustat (0.3 mg/kg) provided a ~50% protective effect against light-induced photoreceptor cell loss, while higher doses (1–3 mg/kg) were nearly 100% effective. In Abca4-/- mice, an animal model of excessive lipofuscin and retinoid toxin (A2E) accumulation, chronic (3 month) emixustat treatment markedly reduced lipofuscin autofluorescence and reduced A2E levels by ~60% (ED50 = 0.47 mg/kg). Finally, in the retinopathy of prematurity rodent model, treatment with emixustat during the period of ischemia and reperfusion injury produced a ~30% reduction in retinal neovascularization (ED50 = 0.46mg/kg). These data demonstrate the ability of emixustat to modulate visual cycle activity and reduce pathology associated with various biochemical and environmental stressors in animal models. Other attributes of emixustat, such as oral bioavailability and target specificity make it an attractive candidate for clinical development in the treatment of retinal disease.
Collapse
Affiliation(s)
- Claes Bavik
- Acucela, Inc., 1301 2nd Avenue, Suite 1900, Seattle, Washington 98101, United States of America
| | - Susan Hayes Henry
- Acucela, Inc., 1301 2nd Avenue, Suite 1900, Seattle, Washington 98101, United States of America
| | - Yan Zhang
- Acucela, Inc., 1301 2nd Avenue, Suite 1900, Seattle, Washington 98101, United States of America
| | - Kyoko Mitts
- Acucela, Inc., 1301 2nd Avenue, Suite 1900, Seattle, Washington 98101, United States of America
| | - Tim McGinn
- Acucela, Inc., 1301 2nd Avenue, Suite 1900, Seattle, Washington 98101, United States of America
| | - Ewa Budzynski
- Acucela, Inc., 1301 2nd Avenue, Suite 1900, Seattle, Washington 98101, United States of America
| | - Andriy Pashko
- Acucela, Inc., 1301 2nd Avenue, Suite 1900, Seattle, Washington 98101, United States of America
| | - Kuo Lee Lieu
- Acucela, Inc., 1301 2nd Avenue, Suite 1900, Seattle, Washington 98101, United States of America
| | - Sheng Zhong
- Acucela, Inc., 1301 2nd Avenue, Suite 1900, Seattle, Washington 98101, United States of America
| | - Bruce Blumberg
- University of California, Irvine, School of Biological Sciences, 4351 Natural Sciences II, Irvine, California 92697, United States of America
| | - Vladimir Kuksa
- Acucela, Inc., 1301 2nd Avenue, Suite 1900, Seattle, Washington 98101, United States of America
| | - Mark Orme
- Acucela, Inc., 1301 2nd Avenue, Suite 1900, Seattle, Washington 98101, United States of America
| | - Ian Scott
- Acucela, Inc., 1301 2nd Avenue, Suite 1900, Seattle, Washington 98101, United States of America
| | - Ahmad Fawzi
- Acucela, Inc., 1301 2nd Avenue, Suite 1900, Seattle, Washington 98101, United States of America
| | - Ryo Kubota
- Acucela, Inc., 1301 2nd Avenue, Suite 1900, Seattle, Washington 98101, United States of America
- * E-mail:
| |
Collapse
|
22
|
Penn J, Mihai DM, Washington I. Morphological and physiological retinal degeneration induced by intravenous delivery of vitamin A dimers in rabbits. Dis Model Mech 2014; 8:131-8. [PMID: 25504631 PMCID: PMC4314778 DOI: 10.1242/dmm.017194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The eye uses vitamin A as a cofactor to sense light and, during this process, some vitamin A molecules dimerize, forming vitamin A dimers. A striking chemical signature of retinas undergoing degeneration in major eye diseases such as age-related macular degeneration (AMD) and Stargardt disease is the accumulation of these dimers in the retinal pigment epithelium (RPE) and Bruch's membrane (BM). However, it is not known whether dimers of vitamin A are secondary symptoms or primary insults that drive degeneration. Here, we present a chromatography-free method to prepare gram quantities of the vitamin A dimer, A2E, and show that intravenous administration of A2E to the rabbit results in retinal degeneration. A2E-damaged photoreceptors and RPE cells triggered inflammation, induced remolding of the choroidal vasculature and triggered a decline in the retina's response to light. Data suggest that vitamin A dimers are not bystanders, but can be primary drivers of retinal degeneration. Thus, preventing dimer formation could be a preemptive strategy to address serious forms of blindness.
Collapse
Affiliation(s)
- Jackie Penn
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA
| | - Doina M Mihai
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA
| | - Ilyas Washington
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA.
| |
Collapse
|
23
|
Perez Bay AE, Schreiner R, Benedicto I, Rodriguez-Boulan EJ. Galectin-4-mediated transcytosis of transferrin receptor. J Cell Sci 2014; 127:4457-69. [PMID: 25179596 DOI: 10.1242/jcs.153437] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Some native epithelia, for example, retinal pigment epithelium (RPE) and kidney proximal tubule (KPT), constitutively lack the basolateral sorting adaptor AP-1B; this results in many basolateral plasma membrane proteins being repositioned to the apical domain, where they perform essential functions for their host organs. We recently reported the underlying apical polarity reversal mechanism: in the absence of AP-1B-mediated basolateral sorting, basolateral proteins are shuttled to the apical plasma membrane through a transcytotic pathway mediated by the plus-end kinesin KIF16B. Here, we demonstrate that this apical transcytotic pathway requires apical sorting of basolateral proteins, which is mediated by apical signals and galectin-4. Using RPE and KPT cell lines, and AP-1B-knockdown MDCK cells, we show that mutation of the N-glycan linked to N727 in the basolateral marker transferrin receptor (TfR) or knockdown of galectin-4 inhibits TfR transcytosis to apical recycling endosomes and the apical plasma membrane, and promotes TfR lysosomal targeting and subsequent degradation. Our results report a new role of galectins in basolateral to apical epithelial transcytosis.
Collapse
Affiliation(s)
- Andres E Perez Bay
- Margaret Dyson Vision Research Institute, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Ryan Schreiner
- Margaret Dyson Vision Research Institute, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Ignacio Benedicto
- Margaret Dyson Vision Research Institute, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Enrique J Rodriguez-Boulan
- Margaret Dyson Vision Research Institute, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
24
|
Kenney MC, Chwa M, Atilano SR, Falatoonzadeh P, Ramirez C, Malik D, Tarek M, Cáceres-del-Carpio J, Nesburn AB, Boyer DS, Kuppermann BD, Vawter M, Jazwinski SM, Miceli M, Wallace DC, Udar N. Inherited mitochondrial DNA variants can affect complement, inflammation and apoptosis pathways: insights into mitochondrial-nuclear interactions. Hum Mol Genet 2014; 23:3537-51. [PMID: 24584571 PMCID: PMC4049308 DOI: 10.1093/hmg/ddu065] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/03/2014] [Accepted: 02/10/2014] [Indexed: 12/21/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss in developed countries. While linked to genetic polymorphisms in the complement pathway, there are many individuals with high risk alleles that do not develop AMD, suggesting that other 'modifiers' may be involved. Mitochondrial (mt) haplogroups, defined by accumulations of specific mtDNA single nucleotide polymorphisms (SNPs) which represent population origins, may be one such modifier. J haplogroup has been associated with high risk for AMD while the H haplogroup is protective. It has been difficult to assign biological consequences for haplogroups so we created human ARPE-19 cybrids (cytoplasmic hybrids), which have identical nuclei but mitochondria of either J or H haplogroups, to investigate their effects upon bioenergetics and molecular pathways. J cybrids have altered bioenergetic profiles compared with H cybrids. Q-PCR analyses show significantly lower expression levels for seven respiratory complex genes encoded by mtDNA. J and H cybrids have significantly altered expression of eight nuclear genes of the alternative complement, inflammation and apoptosis pathways. Sequencing of the entire mtDNA was carried out for all the cybrids to identify haplogroup and non-haplogroup defining SNPs. mtDNA can mediate cellular bioenergetics and expression levels of nuclear genes related to complement, inflammation and apoptosis. Sequencing data suggest that observed effects are not due to rare mtDNA variants but rather the combination of SNPs representing the J versus H haplogroups. These findings represent a paradigm shift in our concepts of mt-nuclear interactions.
Collapse
Affiliation(s)
- M Cristina Kenney
- Gavin Herbert Eye Institute, Department of Pathology and Laboratory Medicine,
| | | | | | | | | | | | | | | | - Anthony B Nesburn
- Gavin Herbert Eye Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David S Boyer
- Retina-Vitreous Associates Medical Group, Beverly Hills, CA, USA
| | | | - Marquis Vawter
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | | | - Michael Miceli
- Tulane Center for Aging, Tulane University, New Orleans, LA, USA
| | - Douglas C Wallace
- Children's Hospital of Philadelphia, Center for Mitochondrial and Epigenomic Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
25
|
Beta cyclodextrins bind, stabilize, and remove lipofuscin bisretinoids from retinal pigment epithelium. Proc Natl Acad Sci U S A 2014; 111:E1402-8. [PMID: 24706818 DOI: 10.1073/pnas.1400530111] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Accumulation of lipofuscin bisretinoids (LBs) in the retinal pigment epithelium (RPE) is the alleged cause of retinal degeneration in genetic blinding diseases (e.g., Stargardt) and a possible etiological agent for age-related macular degeneration. Currently, there are no approved treatments for these diseases; hence, agents that efficiently remove LBs from RPE would be valuable therapeutic candidates. Here, we show that beta cyclodextrins (β-CDs) bind LBs and protect them against oxidation. Computer modeling and biochemical data are consistent with the encapsulation of the retinoid arms of LBs within the hydrophobic cavity of β-CD. Importantly, β-CD treatment reduced by 73% and 48% the LB content of RPE cell cultures and of eyecups obtained from Abca4-Rdh8 double knock-out (DKO) mice, respectively. Furthermore, intravitreal administration of β-CDs reduced significantly the content of bisretinoids in the RPE of DKO animals. Thus, our results demonstrate the effectiveness of β-CDs to complex and remove LB deposits from RPE cells and provide crucial data to develop novel prophylactic approaches for retinal disorders elicited by LBs.
Collapse
|
26
|
Álvarez R, Vaz B, Gronemeyer H, de Lera ÁR. Functions, therapeutic applications, and synthesis of retinoids and carotenoids. Chem Rev 2013; 114:1-125. [PMID: 24266866 DOI: 10.1021/cr400126u] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rosana Álvarez
- Departamento de Química Orgánica, Centro de Investigación Biomédica (CINBIO), and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo , 36310 Vigo, Spain
| | | | | | | |
Collapse
|
27
|
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness in aged individuals. Recent advances have highlighted the essential role of immune processes in the development, progression and treatment of AMD. In this Review we discuss recent discoveries related to the immunological aspects of AMD pathogenesis. We outline the diverse immune cell types, inflammatory activators and pathways that are involved. Finally, we discuss the future of inflammation-directed therapeutics to treat AMD in the growing aged population.
Collapse
|
28
|
Ramkumar HL, Tuo J, Shen DF, Zhang J, Cao X, Chew EY, Chan CC. Nutrient supplementation with n3 polyunsaturated fatty acids, lutein, and zeaxanthin decrease A2E accumulation and VEGF expression in the retinas of Ccl2/Cx3cr1-deficient mice on Crb1rd8 background. J Nutr 2013; 143:1129-35. [PMID: 23677863 PMCID: PMC3681547 DOI: 10.3945/jn.112.169649] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Age-Related Eye Diseases Study 2 (AREDS2) clinical trial is assessing the effects of higher dietary xanthophyll (lutein and zeaxanthin) and long-chain n3 polyunsaturated fatty acid (LCPUFA) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) intake on progression to advanced age-related macular degeneration (AMD). This study's purpose was to examine the retinal effects of the AREDS2 formulation on Chemokine (C-C motif) ligand 2 (Ccl2(-/-))/CX3C chemokine receptor 1 (Cx3cr1(-/-)) mice on Crumbs homolog 1 retinal degeneration phenotype 8 (Crb1(rd8)) background (DKO), which develop focal retinal lesions with certain features similar to AMD. DKO and C57BL/6N rd8 background mice (WT) were bred and randomized into 4 groups. Two groups, WT mice on AREDS2 diet (A-WT) and DKO mice on AREDS2 diet (A-DKO), were supplemented daily with 1.76 μmol of lutein, 35.1 μmol of zeaxanthin, 215 μmol EPA, and 107 μmol of DHA, and 2 control groups, WT mice on control diet (C-WT) and DKO mice on control diet (C-DKO), were fed an isocaloric diet. All mice had monthly fundus photos and were killed after 3 mo for biochemical and histologic analyses. After 3 mo, 81% of A-DKO mice had lesion regression compared with 25% of C-DKO mice (P < 0.05). Toxic retinal 2-[2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E,3E,5E,7E-octatetra-enyl]-1-(2-hydroxyethyl)-4-[4-methyl-6(2,6,6-trimethyl-1-cyclohexen-1-yl) 1E,3E,5E,7E-hexatrienyl]-pyridinium (A2E) concentrations were significantly lower in A-DKO compared with C-DKO mice. The outer nuclear layer thickness in A-DKO mice was significantly greater than that in C-DKO mice. Retinal expression of inducible nitric oxide synthase (iNos) tumor necrosis factor-α (Tnf-α), Cyclooxygenase-2 (Cox-2), interleukin1beta (IL-1β), and vascular endothelial growth factor (Vegf) was significantly lower in A-DKO compared with C-DKO mice. Xanthophylls and LCPUFAs have antiinflammatory, neuroprotective, and antiangiogenic properties. Our data provide potential mechanisms by which the AREDS2 formula has a protective effect on retinal lesions in DKO mice.
Collapse
Affiliation(s)
- Hema L. Ramkumar
- Laboratory of Immunology,Howard Hughes Medical Institute, Chevy Chase, MD,Department of Ophthalmology, Shiley Eye Center, University of California-San Diego, San Diego, CA
| | | | | | | | - Xiaoguang Cao
- Laboratory of Immunology,Department of Ophthalmology, Peking University People’s Hospital, Beijing, China
| | - Emily Y. Chew
- Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Chi-Chao Chan
- Laboratory of Immunology,Histology Core, and,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
29
|
Klettner A, Kauppinen A, Blasiak J, Roider J, Salminen A, Kaarniranta K. Cellular and molecular mechanisms of age-related macular degeneration: from impaired autophagy to neovascularization. Int J Biochem Cell Biol 2013; 45:1457-67. [PMID: 23603148 DOI: 10.1016/j.biocel.2013.04.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 01/18/2023]
Abstract
Age-related macular degeneration (AMD) is a complex, degenerative and progressive disease involving multiple genetic and environmental factors. It can result in severe visual loss e.g. AMD is the leading cause of blindness in the elderly in the western countries. Although age, genetics, diet, smoking, and many cardiovascular factors are known to be linked with this disease there is increasing evidence that long-term oxidative stress, impaired autophagy clearance and inflammasome mediated inflammation are involved in the pathogenesis. Under certain conditions these may trigger detrimental processes e.g. release of vascular endothelial growth factor (VEGF), causing choroidal neovascularization e.g. in wet AMD. This review ties together these crucial pathological threads in AMD.
Collapse
Affiliation(s)
- Alexa Klettner
- Department of Ophthalmology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Tuo J, Pang JJ, Cao X, Shen D, Zhang J, Scaria A, Wadsworth SC, Pechan P, Boye SL, Hauswirth WW, Chan CC. AAV5-mediated sFLT01 gene therapy arrests retinal lesions in Ccl2(-/-)/Cx3cr1(-/-) mice. Neurobiol Aging 2012; 33:433.e1-10. [PMID: 21397984 PMCID: PMC3136657 DOI: 10.1016/j.neurobiolaging.2011.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 01/08/2011] [Accepted: 01/26/2011] [Indexed: 12/18/2022]
Abstract
To test the effects of adeno-associated virus encoding sFLT01 (AAV5.sFLT01) on the retinal lesions in Ccl2(-/-)/Cx3cr1(-/-) mice, a model for age-related macular degeneration (AMD), AAV5.sFLT01 was injected into the subretinal space of the right eyes and the left eyes served as controls. Histology found no retinal toxicity due to the treatment after 3 months. The treated eyes showed lesion arrest compared with lesion progression in the left eyes by fundus monitoring monthly and histological evaluation 3 months after treatment. Retinal ultrastructure showed fewer lipofuscin and better preserved photoreceptors after the treatment. A2E, a major component of lipofuscin, was lower in the treated eyes than in the control eyes. Molecular analysis showed that AAV5.sFLT01 lowered retinal extracellular signal-regulated kinase (ERK) phosphorylation and inducible nitric oxide synthetase expression, which suggested the involvement of reactive nitrogen species in the retinal lesions of Ccl2(-/-)/Cx3cr1(-/-). We concluded that local delivery of AAV5.sFLT01 can stabilize retinal lesions in Ccl2(-/-)/Cx3cr1(-/-) mice. The findings provide further support for the potential beneficial effects of sFLT01 gene therapy for age-related macular degeneration.
Collapse
Affiliation(s)
- Jingsheng Tuo
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD
| | | | - Xiaoguang Cao
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD
- Department of Ophthalmology, People’s Hospital, Beijing University, Beijing, China
| | - Defen Shen
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD
| | - Jun Zhang
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD
| | - Abraham Scaria
- Department of Molecular Biology, Genzyme Corporation, Framingham, MA
| | | | - Peter Pechan
- Department of Molecular Biology, Genzyme Corporation, Framingham, MA
| | - Sanford L. Boye
- Department of Ophthalmology, University of Florida, Gainesville, FL
| | | | - Chi-Chao Chan
- Immunopathology Section, Laboratory of Immunology, National Eye Institute, NIH, Bethesda, MD
| |
Collapse
|
31
|
Ardeljan D, Tuo J, Chan CC. Carboxyethylpyrrole plasma biomarkers in age-related macular degeneration. DRUG FUTURE 2011; 36:712-718. [PMID: 23847393 DOI: 10.1358/dof.2011.036.09.1678338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Age-related macular degeneration causes irreversible central blindness in people over the age of 50 and is increasing in prevalence among elderly populations. There are currently limited treatment options available for the exudative form of the disease and no formal treatments for the geographic atrophy form aside from lifestyle change and incorporation of antioxidant supplements in the diet. As such, it is important to be able to assess high-risk AMD patients as early as possible in order to prescribe preventative measures. Carboxyethylpyrrole (CEP) is a promising plasma biomarker suited to this purpose. Both CEP immunoreactivity levels as well as anti-CEP autoantibody titers are significantly elevated in AMD patients and thus provide the potential to assess AMD susceptibility with approximately 80% accuracy when evaluated alongside genomic AMD markers. Moreover, strong evidence implicates CEP as functionally related to AMD pathogenesis, a role which must be explored further. This avenue of research will foster improved understanding of the disease itself and perhaps reveal better therapeutic targets and options. Further research into the role of CEP in AMD pathogenesis and the application of CEP as an AMD biomarker is merited.
Collapse
Affiliation(s)
- Daniel Ardeljan
- Immunopathology Section, Laboratory of Immunology National Eye Institute, National Institutes of Health
| | | | | |
Collapse
|
32
|
Salminen A, Kauppinen A, Hyttinen JM, Toropainen E, Kaarniranta K. Endoplasmic reticulum stress in age-related macular degeneration: trigger for neovascularization. Mol Med 2010; 16:535-42. [PMID: 20683548 DOI: 10.2119/molmed.2010.00070] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 07/26/2010] [Indexed: 12/18/2022] Open
Abstract
Age-related macular degeneration (AMD) can be classified into two main categories: the atrophic, dry form and the exudative, wet form. The crucial difference between dry and wet AMD is the development of choroidal neovascularization in wet AMD. One fundamental cause of the neovascularization is the increased expression of VEGF (vascular endothelial growth factor) in retinal pigment epithelial cells. Progression of AMD is linked to augmentation of cellular stress, for example, oxidative stress, proteotoxic stress, inflammation and hypoxia. All these conditions can trigger stress in endoplasmic reticulum (ER), which maintains protein quality control in cells. ER stress induces the unfolded protein response (UPR) via IRE1 (inositol-requiring protein-1), PERK (protein kinase RNA-like ER kinase) and ATF6 (activating transcription factor-6) transducers. UPR signaling is a double-edged sword, that is, it can restore cellular homeostasis as far as possible, but ultimately may lead to chronic, overwhelming stress that can cause apoptotic cell death. Interestingly, ER stress is a well-known inducer of angiogenesis in cancer. Moreover, stress conditions associated with the progress of AMD can induce the expression of VEGF. We discuss the role of ER stress in the regulation of neovascularization and the conversion of dry AMD to its wet, detrimental counterpart.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, University of Eastern Finland, Kuopio, Finland.
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Wright AF, Chakarova CF, Abd El-Aziz MM, Bhattacharya SS. Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat Rev Genet 2010; 11:273-84. [PMID: 20212494 DOI: 10.1038/nrg2717] [Citation(s) in RCA: 445] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
35
|
Kuny S, Gaillard F, Mema SC, Freund PR, Zhang K, Macdonald IM, Sparrow JR, Sauvé Y. Inner retina remodeling in a mouse model of stargardt-like macular dystrophy (STGD3). Invest Ophthalmol Vis Sci 2009; 51:2248-62. [PMID: 19933199 DOI: 10.1167/iovs.09-4718] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose. To investigate the impact of progressive age-related photoreceptor degeneration on retinal integrity in Stargardt-like macular dystrophy (STGD3). Methods. The structural design of the inner retina of the ELOVL4 transgenic mouse model of STGD3 was compared with that of age-matched littermate wild-type (WT) mice from 1 to 24 months of age by using immunohistofluorescence and confocal microscopy and by relying on antibodies against cell-type-specific markers, synapse-associated proteins, and neurotransmitters. Results. Müller cell reactivity occurred at the earliest age studied, before photoreceptor loss. This finding is perhaps not surprising, considering the cell's ubiquitous roles in retina homeostasis. Second-order neurons displayed salient morphologic changes as a function of photoreceptoral input loss. Age-related sprouting of dendritic fibers from rod bipolar and horizontal cells into the ONL did not occur. In contrast, with the loss of photoreceptor sensory input, these second-order neurons progressively bore fewer synapses. After rod loss, the few remaining cones showed abnormal opsin expression, revealing tortuous branched axons. After complete ONL loss (beyond 18 months of age), localized areas of extreme retinal disruptions were observed in the central retina. RPE cell invasion, dense networks of strongly reactive Müller cell processes, and invagination of axons and blood vessels were distinctive features of these regions. In addition, otherwise unaffected cholinergic amacrine cells displayed severe perturbation of their cell bodies and synaptic plexi in these areas. Conclusions. Remodeling in ELOVL4 transgenic mice follows a pattern similar to that reported after other types of hereditary retinopathies in animals and humans, pointing to a potentially common pathophysiologic mechanism.
Collapse
Affiliation(s)
- Sharee Kuny
- Department of Ophthalmology, University of Alberta, Edmonton Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|