1
|
Yadav S, Sapra L, Srivastava RK. Polysaccharides to postbiotics: Nurturing bone health via modulating "gut-immune axis". Int J Biol Macromol 2024; 278:134655. [PMID: 39128750 DOI: 10.1016/j.ijbiomac.2024.134655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The increasing prevalence of individuals affected by bone pathologies globally has sparked catastrophic concerns. Ankylosing spondylitis, osteoporosis, rheumatoid arthritis, osteoarthritis, and fractures alone impact an estimated 1.71 billion people worldwide. The gut microbiota plays a crucial role in interacting with the host through the synthesis of a diverse range of metabolites called gut-associated metabolites (GAMs), which originate from external dietary substrates or endogenous host compounds. Many metabolic disorders have been linked to alterations in the gut microbiota's activity and composition. The development of metabolic illnesses has been linked to certain microbiota-derived metabolites, such as branched-chain amino acids, bile acids, short-chain fatty acids, tryptophan, trimethylamine N-oxide, and indole derivatives. Moreover, the modulation of gut microbiota through biotics (prebiotics, probiotics and postbiotics) presents a promising avenue for therapeutic intervention. Biotics selectively promote the growth of beneficial gut bacteria, thereby enhancing the production of GAMs with potential beneficial effects on bone metabolism. Understanding the intricate interplay between GAMs, and bone-associated genes through molecular informatics holds significant promise for early diagnosis, prognosis, and novel treatment strategies for various bone disorders.
Collapse
Affiliation(s)
- Sumedha Yadav
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
2
|
Li R, Miao Z, Liu Y, Chen X, Wang H, Su J, Chen J. The Brain-Gut-Bone Axis in Neurodegenerative Diseases: Insights, Challenges, and Future Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307971. [PMID: 39120490 PMCID: PMC11481201 DOI: 10.1002/advs.202307971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 06/04/2024] [Indexed: 08/10/2024]
Abstract
Neurodegenerative diseases are global health challenges characterized by the progressive degeneration of nerve cells, leading to cognitive and motor impairments. The brain-gut-bone axis, a complex network that modulates multiple physiological systems, has gained increasing attention owing to its profound effects on the occurrence and development of neurodegenerative diseases. No comprehensive review has been conducted to clarify the triangular relationship involving the brain-gut-bone axis and its potential for innovative therapies for neurodegenerative disorders. In light of this, a new perspective is aimed to propose on the interplay between the brain, gut, and bone systems, highlighting the potential of their dynamic communication in neurodegenerative diseases, as they modulate multiple physiological systems, including the nervous, immune, endocrine, and metabolic systems. Therapeutic strategies for maintaining the balance of the axis, including brain health regulation, intestinal microbiota regulation, and improving skeletal health, are also explored. The intricate physiological interactions within the brain-gut-bone axis pose a challenge in the development of effective treatments that can comprehensively target this system. Furthermore, the safety of these treatments requires further evaluation. This review offers a novel insights and strategies for the prevention and treatment of neurodegenerative diseases, which have important implications for clinical practice and patient well-being.
Collapse
Affiliation(s)
- Rong Li
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Zong Miao
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Yu'e Liu
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Xiao Chen
- Department of OrthopedicsXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
| | - Hongxiang Wang
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| | - Jiacan Su
- Department of OrthopedicsXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
- Institute of Translational MedicineShanghai UniversityShanghai200444China
- Organoid Research CenterShanghai UniversityShanghai200444China
| | - Juxiang Chen
- Department of NeurosurgeryShanghai Changhai HospitalNaval Medical UniversityShanghai200433China
| |
Collapse
|
3
|
Westerlund A, Shikhan A, Sabel N, Asa'ad F, Larsson L. Epigenetic markers of tooth eruption - DNA methylation and histone acetylation. Eur J Oral Sci 2024; 132:e13005. [PMID: 39014296 DOI: 10.1111/eos.13005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024]
Abstract
The present study aimed to evaluate whether epigenetic markers are expressed in the dental follicles surrounding ectopically erupting teeth. Twenty-one dental follicles were collected in 20 adolescent children through surgical exposure of ectopic teeth. The epigenetic modifications of DNA methylation and histone acetylation were evaluated by immunohistochemistry. The results showed cells positive for DNA-methyltransferase 1 (DNMT1), DNA methyltransferase 3 beta (DNMT3B), ten-eleven translocation-2 (TET2), acetyl-histone H3 (AcH3), acetyl-histone H4 (AcH4), 5-methylcytosine (5mC), and 5-hydroxymethylcytosine (5hmC) were present in all the samples. The levels of epigenetic markers representing active chromatin (5hmC, AcH3, AcH4, and TET2) were statistically significantly higher than those of markers representing inactive chromatin (5mC, DNMT3B, DNMT1). In conclusion, follicles in ectopic teeth display major epigenetic modifications. In the follicles, epigenetic markers associated with the activation of bone-related genes are more abundant than markers associated with the inactivation of bone-related genes.
Collapse
Affiliation(s)
- Anna Westerlund
- Department of Orthodontics, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Asal Shikhan
- Department of Periodontology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nina Sabel
- Department of Pediatric Dentistry, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Farah Asa'ad
- Department of Oral Biochemistry, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Larsson
- Department of Oral Biochemistry, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Deng AF, Wang FX, Wang SC, Zhang YZ, Bai L, Su JC. Bone-organ axes: bidirectional crosstalk. Mil Med Res 2024; 11:37. [PMID: 38867330 PMCID: PMC11167910 DOI: 10.1186/s40779-024-00540-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
In addition to its recognized role in providing structural support, bone plays a crucial role in maintaining the functionality and balance of various organs by secreting specific cytokines (also known as osteokines). This reciprocal influence extends to these organs modulating bone homeostasis and development, although this aspect has yet to be systematically reviewed. This review aims to elucidate this bidirectional crosstalk, with a particular focus on the role of osteokines. Additionally, it presents a unique compilation of evidence highlighting the critical function of extracellular vesicles (EVs) within bone-organ axes for the first time. Moreover, it explores the implications of this crosstalk for designing and implementing bone-on-chips and assembloids, underscoring the importance of comprehending these interactions for advancing physiologically relevant in vitro models. Consequently, this review establishes a robust theoretical foundation for preventing, diagnosing, and treating diseases related to the bone-organ axis from the perspective of cytokines, EVs, hormones, and metabolites.
Collapse
Affiliation(s)
- An-Fu Deng
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fu-Xiao Wang
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Si-Cheng Wang
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200444, China
| | - Ying-Ze Zhang
- Department of Orthopaedics, the Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, 050051, China.
| | - Long Bai
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, Zhejiang, China.
| | - Jia-Can Su
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
5
|
Han D, Wang W, Gong J, Ma Y, Li Y. Microbiota metabolites in bone: Shaping health and Confronting disease. Heliyon 2024; 10:e28435. [PMID: 38560225 PMCID: PMC10979239 DOI: 10.1016/j.heliyon.2024.e28435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/16/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
The intricate interplay between the gut microbiota and bone health has become increasingly recognized as a fundamental determinant of skeletal well-being. Microbiota-derived metabolites play a crucial role in dynamic interaction, specifically in bone homeostasis. In this sense, short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate, indirectly promote bone formation by regulating insulin-like growth factor-1 (IGF-1). Trimethylamine N-oxide (TMAO) has been found to increase the expression of osteoblast genes, such as Runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein-2 (BMP2), thus enhancing osteogenic differentiation and bone quality through BMP/SMADs and Wnt signaling pathways. Remarkably, in the context of bone infections, the role of microbiota metabolites in immune modulation and host defense mechanisms potentially affects susceptibility to infections such as osteomyelitis. Furthermore, ongoing research elucidates the precise mechanisms through which microbiota-derived metabolites influence bone cells, such as osteoblasts and osteoclasts. Understanding the multifaceted influence of microbiota metabolites on bone, from regulating homeostasis to modulating susceptibility to infections, has the potential to revolutionize our approach to bone health and disease management. This review offers a comprehensive exploration of this evolving field, providing a holistic perspective on the impact of microbiota metabolites on bone health and diseases.
Collapse
Affiliation(s)
- Dong Han
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Weijiao Wang
- Department of Otolaryngology, Yantaishan Hospital, Yantai 264000, China
| | - Jinpeng Gong
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Yupeng Ma
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| | - Yu Li
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai 264000, China
| |
Collapse
|
6
|
Wang H, Yuan T, Wang Y, Liu C, Li D, Li Z, Sun S. Osteoclasts and osteoarthritis: Novel intervention targets and therapeutic potentials during aging. Aging Cell 2024; 23:e14092. [PMID: 38287696 PMCID: PMC11019147 DOI: 10.1111/acel.14092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
Osteoarthritis (OA), a chronic degenerative joint disease, is highly prevalent among the aging population, and often leads to joint pain, disability, and a diminished quality of life. Although considerable research has been conducted, the precise molecular mechanisms propelling OA pathogenesis continue to be elusive, thereby impeding the development of effective therapeutics. Notably, recent studies have revealed subchondral bone lesions precede cartilage degeneration in the early stage of OA. This development is marked by escalated osteoclast-mediated bone resorption, subsequent imbalances in bone metabolism, accelerated bone turnover, and a decrease in bone volume, thereby contributing significantly to the pathological changes. While the role of aging hallmarks in OA has been extensively elucidated from the perspective of chondrocytes, their connection with osteoclasts is not yet fully understood. There is compelling evidence to suggest that age-related abnormalities such as epigenetic alterations, proteostasis network disruption, cellular senescence, and mitochondrial dysfunction, can stimulate osteoclast activity. This review intends to systematically discuss how aging hallmarks contribute to OA pathogenesis, placing particular emphasis on the age-induced shifts in osteoclast activity. It also aims to stimulate future studies probing into the pathological mechanisms and therapeutic approaches targeting osteoclasts in OA during aging.
Collapse
Affiliation(s)
- Haojue Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Tao Yuan
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Yi Wang
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Changxing Liu
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Dengju Li
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Ziqing Li
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Department of Joint SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| |
Collapse
|
7
|
Peng X, Wang T, Wang Q, Zhao Y, Xu H, Yang H, Gu Y, Tao Y, Yan B, Xu Y, Geng D. Pan-histone deacetylase inhibitor vorinostat suppresses osteoclastic bone resorption through modulation of RANKL-evoked signaling and ameliorates ovariectomy-induced bone loss. Cell Commun Signal 2024; 22:160. [PMID: 38439009 PMCID: PMC10913587 DOI: 10.1186/s12964-024-01525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/11/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Estrogen deficiency-mediated hyperactive osteoclast represents the leading role during the onset of postmenopausal osteoporosis. The activation of a series of signaling cascades triggered by RANKL-RANK interaction is crucial mechanism underlying osteoclastogenesis. Vorinostat (SAHA) is a broad-spectrum pan-histone deacetylase inhibitor (HDACi) and its effect on osteoporosis remains elusive. METHODS The effects of SAHA on osteoclast maturation and bone resorptive activity were evaluated using in vitro osteoclastogenesis assay. To investigate the effect of SAHA on the osteoclast gene networks during osteoclast differentiation, we performed high-throughput transcriptome sequencing. Molecular docking and the assessment of RANKL-induced signaling cascades were conducted to confirm the underlying regulatory mechanism of SAHA on the action of RANKL-activated osteoclasts. Finally, we took advantage of a mouse model of estrogen-deficient osteoporosis to explore the clinical potential of SAHA. RESULTS We showed here that SAHA suppressed RANKL-induced osteoclast differentiation concentration-dependently and disrupted osteoclastic bone resorption in vitro. Mechanistically, SAHA specifically bound to the predicted binding site of RANKL and blunt the interaction between RANKL and RANK. Then, by interfering with downstream NF-κB and MAPK signaling pathway activation, SAHA negatively regulated the activity of NFATc1, thus resulting in a significant reduction of osteoclast-specific gene transcripts and functional osteoclast-related protein expression. Moreover, we found a significant anti-osteoporotic role of SAHA in ovariectomized mice, which was probably realized through the inhibition of osteoclast formation and hyperactivation. CONCLUSION These data reveal a high affinity between SAHA and RANKL, which results in blockade of RANKL-RANK interaction and thereby interferes with RANKL-induced signaling cascades and osteoclastic bone resorption, supporting a novel strategy for SAHA application as a promising therapeutic agent for osteoporosis.
Collapse
Affiliation(s)
- Xiaole Peng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Tianhao Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
- Department of Orthopedics, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214000, Jiangsu, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Yuhu Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Hao Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Ye Gu
- Department of Orthopedics, Changshu First People's Hospital Affiliated to Soochow University, Changshu, 215500, Jiangsu, China
| | - Yunxia Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
| | - Bangsheng Yan
- Department of Orthopedics, Huishan Second People's Hospital, Wuxi, 214174, China.
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
8
|
Lee S, Kim MJ, Ahn SI, Choi SK, Min KY, Choi WS, You JS. Epigenetic landscape analysis reveals the significance of early reduced chromatin accessibility in osteoclastogenesis. Bone 2023; 177:116918. [PMID: 37739296 DOI: 10.1016/j.bone.2023.116918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Recently improved techniques could provide snapshots of chromatin structure generated based on chromatin accessibility. Since chromatin accessibility determines transcriptional potential, it has been attempted in a variety of cell systems. However, there has been no genome-wide analysis of chromatin accessibility for the entire murine osteoclast (OC) differentiation process. We performed an Assay for Transposase-Accessible Chromatin (ATAC)-sequencing (seq) during RANKL-induced OC differentiation and found that global chromatin accessibility decreased, especially early in OC differentiation. The global histone H3K27Ac level, an active histone modification mark, was diminished during OC differentiation by western blot and histone extract experiments. Its genomic enrichment was also reduced based on publicly available H3K27Ac chromatin immunoprecipitation (ChIP)-seq data. ATAC-seq and H3K27Ac ChIP-seq data demonstrated that RANKL induced a less accessible chromatin state during OC differentiation. Restoration of reduced H3K27Ac, presumably representing accessible states upon acetate treatment, suppresses OC differentiation by provoking immune-related gene expression. Subsequential integrative analysis of ATAC-seq, RNA-seq after acetate treatment, and H3K27Ac ChIP-seq reveals that Irf8 and its downstream targets are the most vulnerable to chromatin accessibility changes and acetate supplementation. Taken together, our study generated chromatin accessibility maps during the whole OC differentiation and suggested perturbation of chromatin accessibility might be a potential therapeutic strategy for excessive OC diseases.
Collapse
Affiliation(s)
- Sangyong Lee
- School of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Myoung Jun Kim
- School of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Seor I Ahn
- School of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Sung Kyung Choi
- School of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Keun Young Min
- School of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Wahn Soo Choi
- School of Medicine, Konkuk University, Chungju 27478, Republic of Korea; KU Open Innovation Center, Research Institute of Medical Science, Konkuk University, Republic of Korea
| | - Jueng Soo You
- School of Medicine, Konkuk University, Chungju 27478, Republic of Korea; KU Open Innovation Center, Research Institute of Medical Science, Konkuk University, Republic of Korea.
| |
Collapse
|
9
|
Liaw A, Liu C, Bartold M, Ivanovski S, Han P. Salivary histone deacetylase in periodontal disease: A cross-sectional pilot study. J Periodontal Res 2023; 58:433-443. [PMID: 36717759 DOI: 10.1111/jre.13104] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 02/01/2023]
Abstract
OBJECTIVE The objective of the study was to profile the expression level of histone deacetylase enzymes (HDACs) in human saliva in periodontal health, gingivitis and periodontitis. BACKGROUND HDACs are epigenetic modulators and a group of enzymes that catalyse the removal of acetyl functional groups from the lysine residues of both histone and nonhistone proteins. HDACs have been detected in gingival tissues and may provide valuable insight into the periodontal inflammatory response. However, no studies have investigated the expression of HDACs in saliva from periodontitis-affected individuals and their capacity for periodontal diagnostics and screening. MATERIALS AND METHODS Whole unstimulated saliva was collected from 53 participants (17 healthy, 14 gingivitis and 22 stages III/IV periodontitis). The expression of 11 HDACs in saliva samples was determined using RT-qPCR and diagnostic power was calculated using the receiver operating characteristic (ROC) curves and area under the ROC Curve (AUC). RESULTS Relative to health, the expression of HDAC4, 8 and 10 was downregulated in gingivitis, and the expression of HDAC4, 6, 8 and 9 was downregulated in periodontitis. Increased HDAC1 and decreased HDAC9 expression were observed in periodontitis compared to gingivitis. Higher HDAC1 and lower HDAC6 and 9 expression was observed in periodontitis compared to non-periodontitis (combining health and gingivitis). Expression of HDAC3, 4, 8, 9 and 10 was significantly decreased in periodontal disease (combining gingivitis and periodontitis) compared to health. HDAC4 and 8 exhibited an excellent diagnostic capacity for distinguishing gingivitis and periodontal disease from health (AUC 0.79-0.86). HDAC9 showed an acceptable power in discriminating periodontitis from health, gingivitis and non-periodontitis (AUC 0.76-0.80). Salivary HDAC enzyme activity showed no significant difference among the groups. CONCLUSION This pilot study has demonstrated the differential expression of HDACs in human saliva for the first time and identified HDAC4, 8 and 9 as potential biomarkers in periodontal diagnosis.
Collapse
Affiliation(s)
- Andrew Liaw
- The University of Queensland, School of Dentistry, Brisbane, Queensland, Australia.,The University of Queensland, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, Queensland, Australia
| | - Chun Liu
- The University of Queensland, School of Dentistry, Brisbane, Queensland, Australia.,The University of Queensland, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, Queensland, Australia
| | - Mark Bartold
- The University of Queensland, School of Dentistry, Brisbane, Queensland, Australia.,The University of Queensland, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, Queensland, Australia
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Brisbane, Queensland, Australia.,The University of Queensland, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, Queensland, Australia
| | - Pingping Han
- The University of Queensland, School of Dentistry, Brisbane, Queensland, Australia.,The University of Queensland, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Awuti K, Wang X, Sha L, Leng X. Exploring the regulatory mechanism of osteoporosis based on intestinal flora: A review. Medicine (Baltimore) 2022; 101:e32499. [PMID: 36596003 PMCID: PMC9803483 DOI: 10.1097/md.0000000000032499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Osteoporosis is 1 of the common diseases of bone metabolism in clinic. With the aging of the population in China, osteoporosis is becoming more and more serious, and it has become 1 of the major public health problems. However, traditional therapies, such as calcium therapy and estrogen therapy, can cause serious adverse effects and damage to the body when ingested over a long period of time. Therefore, there is an urgent need to explore alternative therapies with less side effects in clinical practice. Intestinal flora is a hot topic of research in recent years. It has been studied in inflammatory bowel disease, diabetes, depression and so on. Recently, intestinal flora has received increasing attention in the pathways regulating bone metabolism. This paper contains a review of recent studies related to osteoporosis and gut flora in terms of its metabolites, immune, endocrine, and brain-gut axis pathways. The strong association between intestinal flora and bone metabolism suggests, to some extent, that intestinal flora can be a potential target for osteoporosis prevention and treatment, providing new ideas and therapies for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Kasimu Awuti
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| | - Xukai Wang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Liquan Sha
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- * Liquan Sha, The Third Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130117, China ()
| | - Xiangyang Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin Province, China
| |
Collapse
|
11
|
Nam SH, Lee Y, Kim CH, Kim DE, Yang HJ, Park SB. The complex of miRNA2861 and cell-penetrating, dimeric α-helical peptide accelerates the osteogenesis of mesenchymal stem cells. Biomater Res 2022; 26:90. [PMID: 36578054 PMCID: PMC9798695 DOI: 10.1186/s40824-022-00336-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/06/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The restoration of the functional ability of mesenchymal stem cells (MSCs) using epigenetic modification is very promising for patients with weak osteogenesis ability. This study focused on the acceleration of osteogenesis from MSCs using microRNA (miRNA)2861 and a cell-penetrating peptide (CPP), LK. METHODS We performed MSCs penetration test of complex between the LK peptides and miRNA 2861. Three different experiments were performed to investigate the effects of miRNA 2861 on osteogenic differentiation in MSCs: 1) intensity of alizarin red staining, which reflects the status of mineralization by osteoblasts; 2) gene expression related to osteoblast differentiation; and 3) confirmation of corresponding protein translation for comparison with RNA expression levels. RESULTS We found that cLK effectively delivered miRNA 2861 into the cytoplasm of human MSCs and accelerated osteogenic differentiation from MSCs, as well as mineralization. CONCLUSION The complex of miRNA 2861 with LK may have a positive effect on the osteogenic differentiation from MSCs and mineralization. Therapies using miRNAs combined with LK may be good candidates for the augmentation of osteogenesis in patients.
Collapse
Affiliation(s)
- So Hee Nam
- grid.412059.b0000 0004 0532 5816College of Pharmacy, Dongduk Women’s University, Seoul, Korea
| | - Yan Lee
- grid.31501.360000 0004 0470 5905Department of Chemistry, Seoul National University, Seoul, Korea
| | - Chi-Heon Kim
- grid.31501.360000 0004 0470 5905Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea ,grid.412484.f0000 0001 0302 820XClinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Dong Eun Kim
- grid.31501.360000 0004 0470 5905Department of Chemistry, Seoul National University, Seoul, Korea
| | - Hee-Jin Yang
- grid.412479.dDepartment of Neurosurgery, Seoul National University Boramae Medical Center, 20 Boramae-Ro 5-Gil, Dongjak-Gu, Seoul, 07061 Korea
| | - Sung Bae Park
- grid.31501.360000 0004 0470 5905Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea ,grid.412479.dDepartment of Neurosurgery, Seoul National University Boramae Medical Center, 20 Boramae-Ro 5-Gil, Dongjak-Gu, Seoul, 07061 Korea
| |
Collapse
|
12
|
Therapeutic and Metagenomic Potential of the Biomolecular Therapies against Periodontitis and the Oral Microbiome: Current Evidence and Future Perspectives. Int J Mol Sci 2022; 23:ijms232213708. [PMID: 36430182 PMCID: PMC9693164 DOI: 10.3390/ijms232213708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
The principles of periodontal therapy are based on the control of microbial pathogens and host factors that contribute to biofilm dysbiosis, with the aim of modulating the progression of periodontitis and periodontal tissue destruction. It is currently known how differently each individual responds to periodontal treatment, depending on both the bacterial subtypes that make up the dysbiotic biofilm and interindividual variations in the host inflammatory response. This has allowed the current variety of approaches for the management of periodontitis to be updated by defining the goals of target strategies, which consist of reducing the periodontopathogenic microbial flora and/or modulating the host-mediated response. Therefore, this review aims to update the current variety of approaches for the management of periodontitis based on recent target therapies. Recently, encouraging results have been obtained from several studies exploring the effects of some targeted therapies in the medium- and long-term. Among the most promising target therapies analyzed and explored in this review include: cell-based periodontal regeneration, mediators against bone resorption, emdogain (EMD), platelet-rich plasma, and growth factors. The reviewed evidence supports the hypothesis that the therapeutic combination of epigenetic modifications of periodontal tissues, interacting with the dysbiotic biofilm, is a key step in significantly reducing the development and progression of disease in periodontal patients and improving the therapeutic response of periodontal patients. However, although studies indicate promising results, these need to be further expanded and studied to truly realize the benefits that targeted therapies could bring in the treatment of periodontitis.
Collapse
|
13
|
Liaw A, Liu C, Ivanovski S, Han P. The Relevance of DNA Methylation and Histone Modification in Periodontitis: A Scoping Review. Cells 2022; 11:3211. [PMID: 36291079 PMCID: PMC9601099 DOI: 10.3390/cells11203211] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Periodontitis is a chronic inflammatory disease involving an interplay between bacteria, inflammation, host response genes, and environmental factors. The manifestation of epigenetic factors during periodontitis pathogenesis and periodontal inflammation is still not well understood, with limited reviews on histone modification with periodontitis management. This scoping review aims to evaluate current evidence of global and specific DNA methylation and histone modification in periodontitis and discuss the gaps and implications for future research and clinical practice. Methods: A scoping literature search of three electronic databases was performed in SCOPUS, MEDLINE (PubMed) and EMBASE. As epigenetics in periodontitis is an emerging research field, a scoping review was conducted to identify the extent of studies available and describe the overall context and applicability of these results. Results: Overall, 30 studies were evaluated, and the findings confirmed that epigenetic changes in periodontitis comprise specific modifications to DNA methylation patterns and histone proteins modification, which can either dampen or promote the inflammatory response to bacterial challenge. Conclusions: The plasticity of epigenetic modifications has implications for the future development of targeted epi-drugs and diagnostic tools in periodontitis. Such advances could be invaluable for the early detection and monitoring of susceptible individuals.
Collapse
Affiliation(s)
- Andrew Liaw
- Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), The University of Queensland, Brisbane, QLD 4006, Australia
- School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Chun Liu
- Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), The University of Queensland, Brisbane, QLD 4006, Australia
- School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Sašo Ivanovski
- Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), The University of Queensland, Brisbane, QLD 4006, Australia
- School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Pingping Han
- Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), The University of Queensland, Brisbane, QLD 4006, Australia
- School of Dentistry, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4006, Australia
| |
Collapse
|
14
|
Kulthinee S, Yano N, Zhuang S, Wang L, Zhao TC. Critical Functions of Histone Deacetylases (HDACs) in Modulating Inflammation Associated with Cardiovascular Diseases. PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2022; 29:471-485. [PMID: 35997393 PMCID: PMC9397025 DOI: 10.3390/pathophysiology29030038] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
Histone deacetylases (HDACs) are a superfamily of enzymes that catalyze the removal of acetyl functional groups from lysine residues of histone and non-histone proteins. There are 18 mammalian HDACs, which are classified into four classes based on the primary homology with yeast HDACs. Among these groups, Class I and II HDACs play a major role in lysine deacetylation of the N-terminal histone tails. In mammals, HDACs play a pivotal role in the regulation of gene transcription, cell growth, survival, and proliferation. HDACs regulate the expression of inflammatory genes, as evidenced by the potent anti-inflammatory activity of pan-HDAC inhibitors, which were implicated in several pathophysiologic states in the inflammation process. However, it is unclear how each of the 18 HDAC proteins specifically contributes to the inflammatory gene expression. It is firmly established that inflammation and its inability to converge are central mechanisms in the pathogenesis of several cardiovascular diseases (CVDs). Emerging evidence supports the hypothesis that several different pro-inflammatory cytokines regulated by HDACs are associated with various CVDs. Based on this hypothesis, the potential for the treatment of CVDs with HDAC inhibitors has recently begun to attract attention. In this review, we will briefly discuss (1) pathophysiology of inflammation in cardiovascular disease, (2) the function of HDACs in the regulation of atherosclerosis and cardiovascular diseases, and (3) the possible therapeutic implications of HDAC inhibitors in cardiovascular diseases. Recent studies reveal that histone deacetylase contributes critically to mediating the pathophysiology of inflammation in cardiovascular disease. HDACs are also recognized as one of the major mechanisms in the regulation of inflammation and cardiovascular function. HDACs show promise in developing potential therapeutic implications of HDAC inhibitors in cardiovascular and inflammatory diseases.
Collapse
Affiliation(s)
- Supaporn Kulthinee
- Cardiovascular and Metabolism Laboratories, Department of Surgery and Plastic Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Naohiro Yano
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, RI 02903, USA
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital, Brown University, Providence, RI 02903, USA
| | - Lijiang Wang
- Cardiovascular and Metabolism Laboratories, Department of Surgery and Plastic Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Ting C. Zhao
- Cardiovascular and Metabolism Laboratories, Department of Surgery and Plastic Surgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
- Department of Surgery, Boston University Medical School, Boston, MA 02118, USA
- Correspondence: ; Tel.: +1-401-456-8266; Fax: +1-401-456-2507
| |
Collapse
|
15
|
Larsson L, Kavanagh NM, Nguyen TVN, Castilho RM, Berglundh T, Giannobile WV. Influence of epigenetics on periodontitis and peri-implantitis pathogenesis. Periodontol 2000 2022; 90:125-137. [PMID: 35913702 DOI: 10.1111/prd.12453] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Periodontitis is a disease characterized by tooth-associated microbial biofilms that drive chronic inflammation and destruction of periodontal-supporting tissues. In some individuals, disease progression can lead to tooth loss. A similar condition can occur around dental implants in the form of peri-implantitis. The immune response to bacterial challenges is not only influenced by genetic factors, but also by environmental factors. Epigenetics involves the study of gene function independent of changes to the DNA sequence and its associated proteins, and represents a critical link between genetic and environmental factors. Epigenetic modifications have been shown to contribute to the progression of several diseases, including chronic inflammatory diseases like periodontitis and peri-implantitis. This review aims to present the latest findings on epigenetic influences on periodontitis and to discuss potential mechanisms that may influence peri-implantitis, given the paucity of information currently available.
Collapse
Affiliation(s)
- Lena Larsson
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Department of Periodontology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nolan M Kavanagh
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Trang V N Nguyen
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Rogerio M Castilho
- Department of Periodontics and Oral Medicine and Laboratory of Epithelial Biology, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Tord Berglundh
- Department of Periodontology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - William V Giannobile
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Haas AN, Furlaneto F, Gaio EJ, Gomes SC, Palioto DB, Castilho RM, Sanz M, Messora MR. New tendencies in non-surgical periodontal therapy. Braz Oral Res 2021; 35:e095. [PMID: 34586209 DOI: 10.1590/1807-3107bor-2021.vol35.0095] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this review was to update the evidence of new approaches to non-surgical therapy (NSPT) in the treatment of periodontitis. Preclinical and clinical studies addressing the benefits of adjunctive antimicrobial photodynamic therapy, probiotics, prebiotics/synbiotics, statins, pro-resolving mediators, omega-6 and -3, ozone, and epigenetic therapy were scrutinized and discussed. Currently, the outcomes of these nine new approaches, when compared with subgingival debridement alone, did not demonstrate a significant added clinical benefit. However, some of these new alternative interventions may have the potential to improve the outcomes of NSPT alone. Future evidence based on randomized controlled clinical trials would help clinicians and patients in the selection of different adjunctive therapies.
Collapse
Affiliation(s)
- Alex Nogueira Haas
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Periodontology, Porto Alegre, RS, Brazil
| | - Flavia Furlaneto
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Oral Surgery and Periodontology, Ribeirão Preto, SP, Brazil
| | - Eduardo José Gaio
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Periodontology, Porto Alegre, RS, Brazil
| | - Sabrina Carvalho Gomes
- Universidade Federal do Rio Grande do Sul - UFRGS, School of Dentistry, Department of Periodontology, Porto Alegre, RS, Brazil
| | - Daniela Bazan Palioto
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Oral Surgery and Periodontology, Ribeirão Preto, SP, Brazil
| | - Rogerio Moraes Castilho
- Michigan University, School of Dentistry, Department of Periodontics and Oral Medicine, Ann Arbor, MI, USA
| | - Mariano Sanz
- Complutense University of Madrid, Etiology and Therapy of Periodontal and Peri-implant Diseases Research Group, Madrid, Spain
| | - Michel Reis Messora
- Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Oral Surgery and Periodontology, Ribeirão Preto, SP, Brazil
| |
Collapse
|
17
|
Role of Histone Deacetylases in Monocyte Function in Health and Chronic Inflammatory Diseases. Rev Physiol Biochem Pharmacol 2021; 180:1-47. [PMID: 33974124 DOI: 10.1007/112_2021_59] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Histone deacetylases (HDACs) are a family of 18 members that participate in the epigenetic regulation of gene expression. In addition to histones, some HDACs also deacetylate transcription factors and specific cytoplasmic proteins.Monocytes, as part of the innate immune system, maintain tissue homeostasis and help fight infections and cancer. In these cells, HDACs are involved in multiple processes including proliferation, migration, differentiation, inflammatory response, infections, and tumorigenesis. Here, a systematic description of the role that most HDACs play in these functions is reviewed. Specifically, some HDACs induce a pro-inflammatory response and play major roles in host defense. Conversely, other HDACs reprogram monocytes and macrophages towards an immunosuppressive phenotype. The right balance between both types helps monocytes to respond correctly to the different physiological/pathological stimuli. However, aberrant expressions or activities of specific HDACs are associated with autoimmune diseases along with other chronic inflammatory diseases, infections, or cancer.This paper critically reviews the interesting and extensive knowledge regarding the role of some HDACs in these pathologies. It also shows that as yet, very little progress has been made toward the goal of finding effective HDAC-targeted therapies. However, given their obvious potential, we conclude that it is worth the effort to develop monocyte-specific drugs that selectively target HDAC subtypes with the aim of finding effective treatments for diseases in which our innate immune system is involved.
Collapse
|
18
|
Lu L, Chen X, Liu Y, Yu X. Gut microbiota and bone metabolism. FASEB J 2021; 35:e21740. [PMID: 34143911 DOI: 10.1096/fj.202100451r] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/05/2023]
Abstract
Osteoporosis is the most common metabolic skeletal disease. It is characterized by the deterioration of the skeletal microarchitecture and bone loss, leading to ostealgia, and even bone fractures. Accumulating evidence has indicated that there is an inextricable relationship between the gut microbiota (GM) and bone homeostasis involving host-microbiota crosstalk. Any perturbation of the GM can play an initiating and reinforcing role in disrupting the bone remodeling balance during the development of osteoporosis. Although the GM is known to influence bone metabolism, the mechanisms associated with these effects remain unclear. Herein, we review the current knowledge of how the GM affects bone metabolism in health and disease, summarize the correlation between pathogen-associated molecular patterns of GM structural components and bone metabolism, and discuss the potential mechanisms underlying how GM metabolites regulate bone turnover. Deciphering the complicated relationship between the GM and bone health will provide new insights into the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Lingyun Lu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Zhang L, Zhang L, You H, Sun S, Liao Z, Zhao G, Chen J. Inhibition of osteoclastogenesis by histone deacetylase inhibitor Quisinostat protects mice against titanium particle-induced bone loss. Eur J Pharmacol 2021; 904:174176. [PMID: 34004213 DOI: 10.1016/j.ejphar.2021.174176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Periprosthetic osteolysis (PPO) and subsequent aseptic loosening are major long-term complications after total joint arthroplasty and have become the first causes for further revision surgery. Since PPO is primarily caused by excessive bone resorption stimulated by released wear particles, osteoclast-targeted therapy is considered to be of great potential for PPO prevention and treatment. Accumulating evidences indicated that inhibition of histone deacetylases (HDACs) may represent a novel approach to suppress osteoclast differentiation. However, different inhibitors of HDACs were shown to exhibit distinct safety profiles and efficacy in inhibiting osteoclastogenesis. Quisinostat (Qst) is a hydroxamate-based histone deacetylase inhibitor, and exerts potent anti-cancer activity. However, its effect on osteoclastogenesis and its therapeutic potential in preventing PPO are still unclear. In this study, we found that Qst suppressed RANKL-induced production of TRAP-positive mature osteoclasts, expression of osteoclast-specific genes, formation of F-actin rings, and bone resorption activity at a nanomolar concentration as low as 2 nM in vitro. Furthermore, we found that as low as 30 μg/kg of Qst was sufficient to exert preventive effect on titanium particle-induced osteolysis in the murine calvarial osteolysis model. Mechanistically, we found that Qst suppressed osteoclastogenesis by interfering with NF-κB and c-Fos/NFATc1 pathways. Thus, our study revealed that Qst may serve as a potential therapeutic agent for prevention and treatment of PPO and other osteoclast-mediated diseases.
Collapse
Affiliation(s)
- Liwei Zhang
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Lei Zhang
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Hongji You
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Shengxuan Sun
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Zirui Liao
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Gang Zhao
- Department of Hand Surgery, Wuxi No.9 People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214062, China.
| | - Jianquan Chen
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, 215007, China; Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.
| |
Collapse
|
20
|
Tu Y, Yang R, Xu X, Zhou X. The microbiota-gut-bone axis and bone health. J Leukoc Biol 2021; 110:525-537. [PMID: 33884666 DOI: 10.1002/jlb.3mr0321-755r] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/16/2021] [Accepted: 04/05/2021] [Indexed: 02/05/2023] Open
Abstract
The gastrointestinal tract is colonized by trillions of microorganisms, consisting of bacteria, fungi, and viruses, known as the "second gene pool" of the human body. In recent years, the microbiota-gut-bone axis has attracted increasing attention in the field of skeletal health/disorders. The involvement of gut microbial dysbiosis in multiple bone disorders has been recognized. The gut microbiota regulates skeletal homeostasis through its effects on host metabolism, immune function, and hormonal secretion. Owing to the essential role of the gut microbiota in skeletal homeostasis, novel gut microbiota-targeting therapeutics, such as probiotics and prebiotics, have been proven effective in preventing bone loss. However, more well-controlled clinical trials are still needed to evaluate the long-term efficacy and safety of these ecologic modulators in the treatment of bone disorders.
Collapse
Affiliation(s)
- Ye Tu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Ran Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Xin Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
21
|
Lee S, Kim HS, Kim MJ, Min KY, Choi WS, You JS. Glutamine metabolite α-ketoglutarate acts as an epigenetic co-factor to interfere with osteoclast differentiation. Bone 2021; 145:115836. [PMID: 33383217 DOI: 10.1016/j.bone.2020.115836] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 01/23/2023]
Abstract
Osteoclasts (OCs) have been well-known involved in the exacerbation of bone-related diseases. However, the role of metabolites on osteoclastogenesis has not been well characterized. Herein, we found osteoclastogenesis was negatively regulated by α-ketoglutarate (αKG) in vitro and in vivo (C57BL/6 mouse). Kinetic transcriptome analysis revealed the upregulation of solute carrier family 7 member 11 (Slc7a11), a subunit of the cysteine/glutamate antiporter, as well as the downregulation of typical OC maker genes through αKG treatment. Given that Slc7a11 could control ROS level through glutathione import, we measured intracellular ROS, then RANKL-induced ROS production was inhibited by αKG. Notably, we highlight that αKG plays an epigenetic co-factor at the Slc7a11 promoter by demethylating repressive histone H3K9 methylation and simultaneously increasing the nuclear factor erythroid 2-related factor (Nrf2) binding, a critical transcription factor through chromatin immunoprecipitation (ChIP) analysis. Together, we suggested that αKG could be a therapeutic strategy for OC activated diseases.
Collapse
Affiliation(s)
- Sangyong Lee
- School of Medicine, Konkuk University, Seoul, South Korea
| | - Hyuk Soon Kim
- Department of Biomedical Sciences, College of Natural Science, Dong-A University, Busan, South Korea; Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea
| | - Myoung Jun Kim
- School of Medicine, Konkuk University, Seoul, South Korea
| | - Keun Young Min
- School of Medicine, Konkuk University, Seoul, South Korea
| | - Wahn Soo Choi
- School of Medicine, Konkuk University, Seoul, South Korea; Research Institute of Medical Science, KU Open Innovation Center, Konkuk University, Seoul, South Korea
| | - Jueng Soo You
- School of Medicine, Konkuk University, Seoul, South Korea; Research Institute of Medical Science, KU Open Innovation Center, Konkuk University, Seoul, South Korea.
| |
Collapse
|
22
|
Li C, Pi G, Li F. The Role of Intestinal Flora in the Regulation of Bone Homeostasis. Front Cell Infect Microbiol 2021; 11:579323. [PMID: 33777828 PMCID: PMC7994858 DOI: 10.3389/fcimb.2021.579323] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/09/2021] [Indexed: 12/16/2022] Open
Abstract
Intestinal flora located within the intestinal tract comprises a large number of cells, which are referred to as the second gene pool of the human body and form a complex symbiotic relationship with the host. The knowledge of the complex interaction between the intestinal flora and various life activities of the host is a novel and rapidly expanding field. Recently, many studies are being conducted on the relationship between the intestinal flora and bone homeostasis and indicate that the intestinal flora can regulate bone homeostasis via the host immune, metabolic, and endocrine systems. What’s more, based on several clinical and preclinical pieces of evidence, changing the composition and function of the host intestinal flora through the application of probiotics, prebiotics, and fecal microbiota transplantation is being considered to be a potential novel target for the regulation of bone homeostasis. Here, we searched relevant literature and reviewed the role of the intestinal flora in the regulation of bone homeostasis and its modulating interventions.
Collapse
Affiliation(s)
- Chengxiang Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guofu Pi
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Wang JS, Yoon SH, Wein MN. Role of histone deacetylases in bone development and skeletal disorders. Bone 2021; 143:115606. [PMID: 32829038 PMCID: PMC7770092 DOI: 10.1016/j.bone.2020.115606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 02/08/2023]
Abstract
Bone cells must constantly respond to hormonal and mechanical cues to change gene expression programs. Of the myriad of epigenomic mechanisms used by cells to dynamically alter cell type-specific gene expression, histone acetylation and deacetylation has received intense focus over the past two decades. Histone deacetylases (HDACs) represent a large family of proteins with a conserved deacetylase domain first described to deacetylate lysine residues on histone tails. It is now appreciated that multiple classes of HDACs exist, some of which are clearly misnamed in that acetylated lysine residues on histone tails is not the major function of their deacetylase domain. Here, we will review the roles of proteins bearing deacetylase domains in bone cells, focusing on current genetic evidence for each individual HDAC gene. While class I HDACs are nuclear proteins whose primary role is to deacetylate histones, class IIa and class III HDACs serve other important cellular functions. Detailed knowledge of the roles of individual HDACs in bone development and remodeling will set the stage for future efforts to specifically target individual HDAC family members in the treatment of skeletal diseases such as osteoporosis.
Collapse
Affiliation(s)
- Jialiang S Wang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sung-Hee Yoon
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Abstract
Aging is characterized by the functional decline of tissues and organs and increased risk of aging-associated disorders, which pose major societal challenges and are a public health priority. Despite extensive human genetics studies, limited progress has been made linking genetics with aging. There is a growing realization that the altered assembly, structure and dynamics of the gut microbiota actively participate in the aging process. Age-related microbial dysbiosis is involved in reshaping immune responses during aging, which manifest as immunosenescence (insufficiency) and inflammaging (over-reaction) that accompany many age-associated enteric and extraenteric diseases. The gut microbiota can be regulated, suggesting a potential target for aging interventions. This review summarizes recent findings on the physiological succession of gut microbiota across the life-cycle, the roles and mechanisms of gut microbiota in healthy aging, alterations of gut microbiota and aging-associated diseases, and the gut microbiota-targeted anti-aging strategies.
Collapse
Affiliation(s)
- Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Liu
- Department of Intensive Care Unit, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiumei Yan
- Department of Geriatrics, Lishui Second People's Hospital, Lishui, Zhejiang, China
| | - Shaochang Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
Kim KT, Lee YS, Han I. The Role of Epigenomics in Osteoporosis and Osteoporotic Vertebral Fracture. Int J Mol Sci 2020; 21:E9455. [PMID: 33322579 PMCID: PMC7763330 DOI: 10.3390/ijms21249455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/29/2022] Open
Abstract
Osteoporosis is a complex multifactorial condition of the musculoskeletal system. Osteoporosis and osteoporotic vertebral fracture (OVF) are associated with high medical costs and can lead to poor quality of life. Genetic factors are important in determining bone mass and structure, as well as any predisposition for bone degradation and OVF. However, genetic factors are not enough to explain osteoporosis development and OVF occurrence. Epigenetics describes a mechanism for controlling gene expression and cellular processes without altering DNA sequences. The main mechanisms in epigenetics are DNA methylation, histone modifications, and non-coding RNAs (ncRNAs). Recently, alterations in epigenetic mechanisms and their activity have been associated with osteoporosis and OVF. Here, we review emerging evidence that epigenetics contributes to the machinery that can alter DNA structure, gene expression, and cellular differentiation during physiological and pathological bone remodeling. A progressive understanding of normal bone metabolism and the role of epigenetic mechanisms in multifactorial osteopathy can help us better understand the etiology of the disease and convert this information into clinical practice. A deep understanding of these mechanisms will help in properly coordinating future individual treatments of osteoporosis and OVF.
Collapse
Affiliation(s)
- Kyoung-Tae Kim
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (K.-T.K.); (Y.-S.L.)
- Department of Neurosurgery, Kyungpook National University Hospital, Daegu 41944, Korea
| | - Young-Seok Lee
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (K.-T.K.); (Y.-S.L.)
- Department of Neurosurgery, Kyungpook National University Chilgok Hospital, Daegu 41944, Korea
| | - Inbo Han
- Department of Neurosurgery, CHA University School of medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do 13496, Korea
| |
Collapse
|
26
|
Asa'ad F, Monje A, Larsson L. Role of epigenetics in alveolar bone resorption and regeneration around periodontal and peri‐implant tissues. Eur J Oral Sci 2019; 127:477-493. [DOI: 10.1111/eos.12657] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Farah Asa'ad
- Institute of Odontology The Sahlgrenska Academy University of Gothenburg Göteborg Sweden
| | - Alberto Monje
- Department of Oral Surgery and Stomatology ZMK School of Dentistry Bern Switzerland
- Department of Periodontology Universitat Internacional de Catalunya Barcelona Spain
| | - Lena Larsson
- Department of Periodontology Institute of Odontology University of Gothenburg Göteborg Sweden
| |
Collapse
|
27
|
Montalvany-Antonucci CC, Duffles LF, de Arruda JAA, Zicker MC, de Oliveira S, Macari S, Garlet GP, Madeira MFM, Fukada SY, Andrade I, Teixeira MM, Mackay C, Vieira AT, Vinolo MA, Silva TA. Short-chain fatty acids and FFAR2 as suppressors of bone resorption. Bone 2019; 125:112-121. [PMID: 31100533 DOI: 10.1016/j.bone.2019.05.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022]
Abstract
Short-chain fatty acids (SCFAs) exert a variety of immune and metabolic functions by binding to G-protein-coupled receptors, mainly free fatty acid receptor 2 (FFAR2). However, the effects of SCFAs and FFARs on bone remodeling, especially in alveolar bone, have been less explored. In this study, we investigated the influence of the SCFA/FFAR2 axis on alveolar bone. Bone samples from wild-type (WT) and FFAR2-deficient mice (FFAR2-/-) were analyzed using micro-CT, histology and qPCR. WT and FFAR2-/- animals received a high-fiber diet (HFD) reported to increase circulating levels of SCFAs. Additionally, we analyzed the effects of SCFAs and a synthetic FFAR2 agonist, phenylacetamide-1 (CTMB), on bone cell differentiation. The participation of histone deacetylase inhibitors (iHDACs) in the effects of SCFAs was further assessed in vitro. CTMB treatment was also evaluated in vivo during orthodontic tooth movement (OTM). FFAR2-/- mice exhibited deterioration of maxillary bone parameters. Consistent with this, FFAR2-/- mice exhibited a significant increase of OTM and changes in bone cell numbers and in the expression of remodeling markers. The HFD partially reversed bone loss in the maxillae of FFAR2-/- mice. In WT mice, the HFD induced changes in the bone markers apparently favoring a bone formation scenario. In vitro, bone marrow cells from FFAR2-/- mice exhibited increased differentiation into osteoclasts, while no changes in osteoblasts were observed. In line with this, differentiation of osteoclasts was diminished by SCFAs and CTMB. Moreover, CTMB treatment significantly reduced OTM. Pretreatment of osteoclasts with iHDACs did not modify the effects of SCFAs on these cells. In conclusion, SCFAs function as regulators of bone resorption. The effects of SCFAs on osteoclasts are dependent on FFAR2 activation and are independent of the inhibition of HDACs. FFAR2 agonists may be useful to control bone osteolysis.
Collapse
Affiliation(s)
- C C Montalvany-Antonucci
- Department of Oral Surgery and Pathology, Faculty of Dentistry, Federal University of Minas Gerais, MG, Brazil; Department of Orthodontics, Faculty of Dentistry, Pontifical Catholic University, Belo Horizonte, MG, Brazil
| | - L F Duffles
- Department of Oral Surgery and Pathology, Faculty of Dentistry, Federal University of Minas Gerais, MG, Brazil
| | - J A A de Arruda
- Department of Oral Surgery and Pathology, Faculty of Dentistry, Federal University of Minas Gerais, MG, Brazil
| | - M C Zicker
- Department of Food Science, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - S de Oliveira
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - S Macari
- Department of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - G P Garlet
- Department of Biological Sciences, School of Dentistry of Bauru, University of São Paulo, Bauru, SP, Brazil
| | - M F M Madeira
- Department of Microbiology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - S Y Fukada
- Department of Pharmacological Science, Faculty of Pharmacy, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - I Andrade
- Department of Orthodontics, Faculty of Dentistry, Pontifical Catholic University, Belo Horizonte, MG, Brazil
| | - M M Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - C Mackay
- Department of Immunology, Monash University, Melbourne, Australia
| | - A T Vieira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - M A Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - T A Silva
- Department of Oral Surgery and Pathology, Faculty of Dentistry, Federal University of Minas Gerais, MG, Brazil.
| |
Collapse
|
28
|
Zaiss MM, Jones RM, Schett G, Pacifici R. The gut-bone axis: how bacterial metabolites bridge the distance. J Clin Invest 2019; 129:3018-3028. [PMID: 31305265 DOI: 10.1172/jci128521] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The gut microbiome is a key regulator of bone health that affects postnatal skeletal development and skeletal involution. Alterations in microbiota composition and host responses to the microbiota contribute to pathological bone loss, while changes in microbiota composition that prevent, or reverse, bone loss may be achieved by nutritional supplements with prebiotics and probiotics. One mechanism whereby microbes influence organs of the body is through the production of metabolites that diffuse from the gut into the systemic circulation. Recently, short-chain fatty acids (SCFAs), which are generated by fermentation of complex carbohydrates, have emerged as key regulatory metabolites produced by the gut microbiota. This Review will focus on the effects of SCFAs on the musculoskeletal system and discuss the mechanisms whereby SCFAs regulate bone cells.
Collapse
Affiliation(s)
- Mario M Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, Georgia, USA.,Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
29
|
Algate K, Haynes D, Fitzsimmons T, Romeo O, Wagner F, Holson E, Reid R, Fairlie D, Bartold P, Cantley M. Histone deacetylases 1 and 2 inhibition suppresses cytokine production and osteoclast bone resorption in vitro. J Cell Biochem 2019; 121:244-258. [DOI: 10.1002/jcb.29137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/07/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Kent Algate
- Bone and Joint Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School The University of Adelaide Adelaide South Australia Australia
| | - David Haynes
- Bone and Joint Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School The University of Adelaide Adelaide South Australia Australia
| | - Tracy Fitzsimmons
- Faculty of Health and Medical Sciences, Adelaide Dental School The University of Adelaide Adelaide South Australia Australia
| | - Ornella Romeo
- Bone and Joint Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School The University of Adelaide Adelaide South Australia Australia
| | - Florence Wagner
- Stanley Center for Psychiatric Research Broad Institute of MIT and Harvard Cambridge Massachusetts
| | - Edward Holson
- Stanley Center for Psychiatric Research Broad Institute of MIT and Harvard Cambridge Massachusetts
| | - Robert Reid
- Division of Chemistry and Structural Biology, ARC Centre of Excellence for Advanced Molecular Imaging, Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
| | - David Fairlie
- Division of Chemistry and Structural Biology, ARC Centre of Excellence for Advanced Molecular Imaging, Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
| | - Peter Bartold
- Faculty of Health and Medical Sciences, Adelaide Dental School The University of Adelaide Adelaide South Australia Australia
| | - Melissa Cantley
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School The University of Adelaide Adelaide South Australia Australia
- Cancer Theme South Australian Health and Medical Research Institute Adelaide South Australia Australia
| |
Collapse
|
30
|
Lawlor L, Yang XB. Harnessing the HDAC-histone deacetylase enzymes, inhibitors and how these can be utilised in tissue engineering. Int J Oral Sci 2019; 11:20. [PMID: 31201303 PMCID: PMC6572769 DOI: 10.1038/s41368-019-0053-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 02/07/2023] Open
Abstract
There are large knowledge gaps regarding how to control stem cells growth and differentiation. The limitations of currently available technologies, such as growth factors and/or gene therapies has led to the search of alternatives. We explore here how a cell's epigenome influences determination of cell type, and potential applications in tissue engineering. A prevalent epigenetic modification is the acetylation of DNA core histone proteins. Acetylation levels heavily influence gene transcription. Histone deacetylase (HDAC) enzymes can remove these acetyl groups, leading to the formation of a condensed and more transcriptionally silenced chromatin. Histone deacetylase inhibitors (HDACis) can inhibit these enzymes, resulting in the increased acetylation of histones, thereby affecting gene expression. There is strong evidence to suggest that HDACis can be utilised in stem cell therapies and tissue engineering, potentially providing novel tools to control stem cell fate. This review introduces the structure/function of HDAC enzymes and their links to different tissue types (specifically bone, cardiac, neural tissues), including the history, current status and future perspectives of using HDACis for stem cell research and tissue engineering, with particular attention paid to how different HDAC isoforms may be integral to this field.
Collapse
Affiliation(s)
- Liam Lawlor
- Department of Oral Biology, University of Leeds, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK
- Doctoral Training Centre in Tissue Engineering and Regenerative Medicine, Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Xuebin B Yang
- Department of Oral Biology, University of Leeds, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, LS9 7TF, UK.
- Doctoral Training Centre in Tissue Engineering and Regenerative Medicine, Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK.
| |
Collapse
|
31
|
Comparison of Different Histone Deacetylase Inhibitors in Attenuating Inflammatory Pain in Rats. Pain Res Manag 2019; 2019:1648919. [PMID: 30809320 PMCID: PMC6369477 DOI: 10.1155/2019/1648919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/25/2018] [Indexed: 12/17/2022]
Abstract
Histone deacetylase inhibitors (HDACIs), which interfere with the epigenetic process of histone acetylation, have shown analgesic effects in animal models of persistent pain. The HDAC family comprises 18 genes; however, the different effects of distinct classes of HDACIs on pain relief remain unclear. The aim of this study was to determine the efficacy of these HDACIs on attenuating thermal hyperalgesia in persistent inflammatory pain. Persistent inflammatory pain was induced by injecting Complete Freund's Adjuvant (CFA) into the left hind paw of rats. Then, HDACIs targeting class I (entinostat (MS-275)) and class IIa (sodium butyrate, valproic acid (VPA), and 4-phenylbutyric acid (4-PBA)), or class II (suberoylanilide hydoxamic acid (SAHA), trichostatin A (TSA), and dacinostat (LAQ824)) were administered intraperitoneally once daily for 3 or 4 days. We found that the injection of SAHA once a day for 3 days significantly attenuated CFA-induced thermal hyperalgesia from day 4 and lasted 7 days. In comparison with SAHA, suppression of hyperalgesia by 4-PBA peaked on day 2, whereas that by MS-275 occurred on days 5 and 6. Fatigue was a serious side effect seen with MS-275. These findings will be beneficial for optimizing the selection of specific HDACIs in medical fields such as pain medicine and neuropsychiatry.
Collapse
|
32
|
Guo D, Hong D, Wang P, Wang J, Chen L, Zhao W, Zhang L, Yao C, Chu B, Chen S, Li Z, Chen H. Histone deacetylase inhibitor CI-994 inhibits osteoclastogenesis via suppressing NF-κB and the downstream c-Fos/NFATc1 signaling pathways. Eur J Pharmacol 2019; 848:96-104. [PMID: 30682334 DOI: 10.1016/j.ejphar.2019.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 01/09/2023]
Abstract
[4-(acetylamino)-N-(2-amino-phenyl) benzamide] (CI-994) is a histone deacetylase 1-3 specific inhibitor that has been shown to indirectly increase the production of Dickkopf-1, which is an inhibitor of osteoclastic development. However, whether CI-994 has an influence on receptor activator of nuclear factor-kappa B ligand (RANKL)-induced osteoclastogenesis is still unclear; in our study, this mechanism was investigated. In an in vitro study, using a tartrate-resistant acid phosphatase (TRAP) stain, an F-actin ring, bone absorption test, quantitative PCR and Western blotting, the role of CI-994 in osteoclastogenesis and the expression of related genes and proteins were investigated. In an in vivo study, the effect of CI-994 on osteolysis was evaluated using a titanium particle-induced murine calvarial osteolysis model. Our results indicated that CI-994 inhibited osteoclast differentiation and the function of bone resorption without cytotoxic effects. Moreover, CI-994 inhibited the expression of osteoclast-related genes, including ACP5, CTSK, NFATc1, c-Fos, DC-STAMP and V-ATPase-d2. Furthermore, CI-994 suppressed the phosphorylation of IκBα and p65 and the expression of downstream c-Fos and NFATc1. Consistent with the in vitro results described above, our in vivo experiment indicated that CI-994 inhibited Ti-induced osteolysis. In conclusion, CI-994 inhibited osteoclastogenesis by suppressing NF-κB and the downstream c-Fos/NFATc1 signaling pathway. Thus, this study showed the possibility of using CI-994 for the treatment of exorbitant osteoclastic bone resorption.
Collapse
Affiliation(s)
- Di Guo
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai 317000, China; Bone development and metabolism research center of Taizhou Hospital, Linhai 317000, China
| | - Dun Hong
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai 317000, China; Bone development and metabolism research center of Taizhou Hospital, Linhai 317000, China
| | - Peng Wang
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai 317000, China; Bone development and metabolism research center of Taizhou Hospital, Linhai 317000, China
| | - Jiacheng Wang
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai 317000, China; Bone development and metabolism research center of Taizhou Hospital, Linhai 317000, China
| | - Lihua Chen
- Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai 317000, China; Bone development and metabolism research center of Taizhou Hospital, Linhai 317000, China
| | - Weibo Zhao
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai 317000, China; Bone development and metabolism research center of Taizhou Hospital, Linhai 317000, China
| | - Liwei Zhang
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai 317000, China; Orthopedic Institute, Soochow University of Medicine, Soochow 215008, China
| | - Can Yao
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai 317000, China; Bone development and metabolism research center of Taizhou Hospital, Linhai 317000, China
| | - Binxiang Chu
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai 317000, China; Bone development and metabolism research center of Taizhou Hospital, Linhai 317000, China
| | - Shenao Chen
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai 317000, China; Bone development and metabolism research center of Taizhou Hospital, Linhai 317000, China
| | - Zhiyan Li
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai 317000, China; Bone development and metabolism research center of Taizhou Hospital, Linhai 317000, China
| | - Haixiao Chen
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai 317000, China; Bone development and metabolism research center of Taizhou Hospital, Linhai 317000, China.
| |
Collapse
|
33
|
Teknos TN, Grecula J, Agrawal A, Old MO, Ozer E, Carrau R, Kang S, Rocco J, Blakaj D, Diavolitsis V, Kumar B, Kumar P, Pan Q, Palettas M, Wei L, Baiocchi R, Savvides P. A phase 1 trial of Vorinostat in combination with concurrent chemoradiation therapy in the treatment of advanced staged head and neck squamous cell carcinoma. Invest New Drugs 2018; 37:702-710. [PMID: 30569244 DOI: 10.1007/s10637-018-0696-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022]
Abstract
Purpose Vorinostat is a potent HDAC inhibitor that sensitizes head and neck squamous cell carcinoma (HNSCC) to cytotoxic therapy while sparing normal epithelium. The primary objective of this Phase I study was to determine the maximally tolerated dose (MTD) and safety of Vorinostat in combination with standard chemoradiation therapy treatment in HNSCC. Patients and Methods Eligible patients had pathologically confirmed Stage III, IVa, IVb HNSCC, that was unresectable or borderline resectable involving the larynx, hypopharynx, nasopharynx, and oropharynx. Vorinostat was administered at the assigned dosage level (100-400 mg, three times weekly) in a standard 3 + 3 dose escalation design. Vorinostat therapy began 1 week prior to initiation of standard, concurrent chemoradiation therapy and continued during the entire course of therapy. Results Twenty six patients met eligibility criteria and completed the entire protocol. The primary tumor sites included tonsil (12), base of tongue (9), posterior pharyngeal wall (1), larynx (4) and hypopharynx (3). Of the 26 patients, 17 were HPV-positive and 9 were HPV-negative. The MTD of Vorinostat was 300 mg administered every other day. Anemia (n = 23/26) and leukopenia (n = 20/26) were the most commonly identified toxicities. The most common Grade3/4 events included leukopenia (n = 11) and lymphopenia (n = 17). No patient had Grade IV mucositis, dermatitis or xerostomia. The median follow time was 33.8 months (range 1.6-82.9 months). Twenty four of 26 (96.2%) patients had a complete response to therapy. Conclusion Vorinostat in combination with concurrent chemoradiation therapy is a safe and highly effective treatment regimen in HNSCC. There was a high rate of complete response to therapy with toxicity rates comparable, if not favorable to existing therapies. Further investigation in Phase II and III trials is strongly recommended.
Collapse
Affiliation(s)
- Theodoros N Teknos
- Otolaryngology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA. .,Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| | - J Grecula
- Radiation Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - A Agrawal
- Otolaryngology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - M O Old
- Otolaryngology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - E Ozer
- Otolaryngology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - R Carrau
- Otolaryngology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - S Kang
- Otolaryngology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - J Rocco
- Otolaryngology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - D Blakaj
- Radiation Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - V Diavolitsis
- Radiation Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - B Kumar
- Otolaryngology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - P Kumar
- Otolaryngology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - Q Pan
- Otolaryngology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - M Palettas
- Center for Biostatistics, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - L Wei
- Center for Biostatistics, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - R Baiocchi
- Hematology-Medical Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| | - P Savvides
- Hematology-Medical Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC - James), Columbus, OH, USA
| |
Collapse
|
34
|
Kim K, Shin Y, Kim J, Ulmer TS, An W. H3K27me1 is essential for MMP-9-dependent H3N-terminal tail proteolysis during osteoclastogenesis. Epigenetics Chromatin 2018; 11:23. [PMID: 29807539 PMCID: PMC5971420 DOI: 10.1186/s13072-018-0193-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/21/2018] [Indexed: 12/31/2022] Open
Abstract
Background MMP-9 plays a direct role in the activation of pro-osteoclastogenic genes by cleaving histone H3N-terminal tail (H3NT) and altering chromatin architecture. Although H3 acetylation at K18 has been shown to stimulate MMP-9 enzymatic activity toward H3NT, nothing is known about the influence of other H3NT modifications on this epigenetic reaction. Results We show that H3 monomethylation at lysine 27 (H3K27me1) is essential for MMP-9-dependent H3NT proteolysis during RANKL-induced osteoclast differentiation. Through the recognition of H3K27me1 mark, MMP-9 localizes and generates H3NT proteolysis at the genes encoding osteoclast differentiation factors. By using RNAi and small molecule inhibitor approaches, we also confirmed that G9a is the major methyltransferase to catalyze H3K27me1 for MMP-9-dependent H3NT proteolysis and trigger the expression of osteoclast-specific genes. Conclusions Our data establish new functions for G9a-mediated H3K27me1 in MMP-9-dependent H3NT proteolysis and demonstrate how histone modification can be exploited to regulate osteoclastogenic gene expression at the molecular level. Further studies are warranted to investigate the detailed mechanism by which G9a overexpression with concomitant dysregulation of osteoclastogenesis contributes to the pathogenesis of bone disorders. Electronic supplementary material The online version of this article (10.1186/s13072-018-0193-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyunghwan Kim
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA.,Department of Biology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Yonghwan Shin
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jinman Kim
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Tobias S Ulmer
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA, 90089, USA
| | - Woojin An
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
35
|
|
36
|
Abstract
Purpose The focus of this review is to provide an overview of the recent findings on the role of epigenetic mechanisms in periodontal disease, including disease susceptibility, progression, and as potential treatment options. Recent Findings The findings on the influence of oral pathogens on epigenetic regulation of pathogen recognition receptors, such as Toll-like receptors, as well as pro-inflammatory cytokines suggest an important role for epigenetics in the regulation of the host immune response. Recent studies also show that the epigenetic pattern in periodontitis lesions differ from that of healthy and gingivitis tissue. In addition, these patterns differ between tissues in the same individual. Research is also indicating a role for both DNA methylation and histone acetylation on cells osteogenic differentiation and bone regeneration. Summary Knowledge of epigenetic pattern in periodontal diseases may add not only to the knowledge of susceptibility of the disease but may also be a diagnostic tool to identify patients at risk to develop the severe form of periodontitis. In addition, recent research within gene therapy and tissue engineering indicate a role for epigenetics also to improve regeneration of periodontal tissues.
Collapse
Affiliation(s)
- Lena Larsson
- Department of Periodontology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Box 450, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Bone remodeling is a diverse field of study with many direct clinical applications; past studies have implicated epigenetic alterations as key factors of both normal bone tissue development and function and diseases of pathologic bone remodeling. The purpose of this article is to review the most important recent advances that link epigenetic changes to the bone remodeling field. RECENT FINDINGS Epigenetics describes three major phenomena: DNA modification via methylation, histone side chain modifications, and short non-coding RNA sequences which work in concert to regulate gene transcription in a heritable fashion. Recent findings include the role of DNA methylation changes of Wnt, RANK/RANKL, and other key signaling pathways, epigenetic regulation of osteoblast and osteoclast differentiation, and others. Although much work has been done, much is still unknown. Future epigenome-wide studies should focus on extending the tissue coverage, integrating multiple epigenetic analyses with transcriptome data, and working to uncover epigenetic changes linked with early events in aberrant bone remodeling.
Collapse
Affiliation(s)
- Ali Husain
- Division of Rheumatology, Immunology, and Allergy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Matlock A Jeffries
- Division of Rheumatology, Immunology, and Allergy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, 825 NE 13th St., Laboratory MC400, Oklahoma City, OK, USA.
| |
Collapse
|
38
|
Blixt NC, Faulkner BK, Astleford K, Lelich R, Schering J, Spencer E, Gopalakrishnan R, Jensen ED, Mansky KC. Class II and IV HDACs function as inhibitors of osteoclast differentiation. PLoS One 2017; 12:e0185441. [PMID: 28953929 PMCID: PMC5617211 DOI: 10.1371/journal.pone.0185441] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/12/2017] [Indexed: 02/07/2023] Open
Abstract
Histone deacetylases (HDACs) are negative regulators of transcription and have been shown to regulate specific changes in gene expression. In vertebrates, eighteen HDACs have thus far been identified and subdivided into four classes (I-IV). Key roles for several HDACs in bone development and biology have been elucidated through in vitro and in vivo models. By comparison, there is a paucity of data on the roles of individual HDACs in osteoclast formation and function. In this study, we investigated the gene expression patterns and the effects of suppressing individual class II (Hdac4, 5, 6, 9, and 10) and class IV (Hdac11) HDACs during osteoclast differentiation. We demonstrated that HDAC class II and IV members are differentially expressed during osteoclast differentiation. Additionally, individual shRNA-mediated suppression of Hdac4, 5, 9, 10 and 11 expression resulted in increased multinucleated osteoclast size and demineralization activity, with little to no change in the overall number of multinucleated osteoclasts formed compared with control shRNA-treated cells. We also detected increased expression of genes highly expressed in osteoclasts, including c-Fos, Nfatc1, Dc-stamp and Cathepsin K. These observations indicate that HDACs cooperatively regulate shared targets in a non-redundant manner.
Collapse
Affiliation(s)
- Nicholas C. Blixt
- Departmment of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Bora K. Faulkner
- Departmment of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kristina Astleford
- Department of Developmental and Surgical Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Rosemary Lelich
- Department of Developmental and Surgical Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jacob Schering
- Department of Developmental and Surgical Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ekaterina Spencer
- Department of Developmental and Surgical Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Rajaram Gopalakrishnan
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Eric D. Jensen
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (EDJ); (KCM)
| | - Kim C. Mansky
- Department of Developmental and Surgical Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (EDJ); (KCM)
| |
Collapse
|
39
|
Cantley MD, Zannettino ACW, Bartold PM, Fairlie DP, Haynes DR. Histone deacetylases (HDAC) in physiological and pathological bone remodelling. Bone 2017; 95:162-174. [PMID: 27913271 DOI: 10.1016/j.bone.2016.11.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/31/2016] [Accepted: 11/28/2016] [Indexed: 11/21/2022]
Abstract
Histone deacetylases (HDACs)2 play important roles in the epigenetic regulation of gene expression in cells and are emerging therapeutic targets for treating a wide range of diseases. HDAC inhibitors (HDACi)3 that act on multiple HDAC enzymes have been used clinically to treat a number of solid and hematological malignancies. HDACi are also currently being studied for their efficacy in non-malignant diseases, including pathologic bone loss, but this has necessitated a better understanding of the roles of individual HDAC enzymes, particularly the eleven zinc-containing isozymes. Selective isozyme-specific inhibitors currently being developed against class I HDACs (1, 2, 3 and 8) and class II HDACs (4, 5, 6, 7, 9 and 10) will be valuable tools for elucidating the roles played by individual HDACs in different physiological and pathological settings. Isozyme-specific HDACi promise to have greater efficacy and reduced side effects, as required for treating chronic disease over extended periods of time. This article reviews the current understanding of roles for individual HDAC isozymes and effects of HDACi on bone cells, (osteoblasts, osteoclasts and osteocytes), in relation to bone remodelling in conditions characterised by pathological bone loss, including periodontitis, rheumatoid arthritis and myeloma bone disease.
Collapse
Affiliation(s)
- M D Cantley
- Discipline of Physiology, School of Medicine, University of Adelaide, SA 5005, Australia; Myeloma Research Laboratory, Cancer Theme, SAHMRI, Adelaide, SA 5000, Australia; Colgate Australian Clinical Dental Research Centre, Adelaide Dental School, University of Adelaide, SA 5005, Australia.
| | - A C W Zannettino
- Discipline of Physiology, School of Medicine, University of Adelaide, SA 5005, Australia; Myeloma Research Laboratory, Cancer Theme, SAHMRI, Adelaide, SA 5000, Australia
| | - P M Bartold
- Colgate Australian Clinical Dental Research Centre, Adelaide Dental School, University of Adelaide, SA 5005, Australia
| | - D P Fairlie
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - D R Haynes
- Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide, SA 5005, Australia
| |
Collapse
|
40
|
Hemming S, Cakouros D, Codrington J, Vandyke K, Arthur A, Zannettino A, Gronthos S. EZH2 deletion in early mesenchyme compromises postnatal bone microarchitecture and structural integrity and accelerates remodeling. FASEB J 2016; 31:1011-1027. [PMID: 27934660 DOI: 10.1096/fj.201600748r] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/22/2016] [Indexed: 02/03/2023]
Abstract
In this study, we examined the functional importance of EZH2 during skeletal development and homeostasis using the conditional deletion of Ezh2 (Ezh2fl/fl ) in early mesenchyme with the use of a Prrx-1-cre driver mouse (Ezh2+/+). Heterozygous (Ezh2+/-) newborn and 4-wk-old mice exhibited increased skeletal size, growth plate size, and weight when compared to the wild-type control (Ezh2+/+), whereas homozygous deletion of Ezh2 (Ezh2-/-) resulted in skeletal deformities and reduced skeletal size, growth plate size, and weight in newborn and 4-wk-old mice. Ezh2-/- mice exhibited enhanced trabecular patterning. Osteogenic cortical and trabecular bone formation was enhanced in Ezh2+/- and Ezh2-/- animals. Ezh2+/- and Ezh2-/- mice displayed thinner cortical bone and decreased mechanical strength compared to the wild-type control. Differences in cortical bone thickness were attributed to an increased number of osteoclasts, corresponding with elevated levels of the bone turnover markers cross-linked C-telopeptide-1 and tartrate-resistant acid phosphatase, detected within serum. Moreover, Ezh2+/- mice displayed increased osteoclastogenic potential coinciding with an upregulation of Rankl and M-csf expression by mesenchymal stem cells (MSCs). MSCs isolated from Ezh2+/- mice also exhibited increased trilineage potential compared with wild-type bone marrow stromal/stem cells (BMSCs). Gene expression studies confirmed the upregulation of known Ezh2 target genes in Ezh2-/- bone tissue, many of which are involved in Wnt/BMP signaling as promoters of osteogenesis and inhibitors of adipogenesis. In summary, EZH2 appears to be an important orchestrator of skeletal development, postnatal bone remodelling and BMSC fate determination in vitro and in vivo-Hemming, S., Cakouros, D., Codrington, J., Vandyke, K., Arthur, A., Zannettino, A., Gronthos, S. EZH2 deletion in early mesenchyme compromises postnatal bone microarchitecture and structural integrity and accelerates remodeling.
Collapse
Affiliation(s)
- Sarah Hemming
- Mesenchymal Stem Cell Laboratory, School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Dimitrios Cakouros
- Mesenchymal Stem Cell Laboratory, School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - John Codrington
- School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia, Australia
| | - Kate Vandyke
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Myeloma Research Laboratory, School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia; and.,South Australia Pathology, Adelaide, South Australia, Australia
| | - Agneiszka Arthur
- Mesenchymal Stem Cell Laboratory, School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Andrew Zannettino
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.,Myeloma Research Laboratory, School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia; and
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, Australia; .,Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
41
|
Chen CL, Lee CC, Liu FL, Chen TC, Ahmed Ali AA, Chang DM, Huang HS. Design, synthesis and SARs of novel salicylanilides as potent inhibitors of RANKL-induced osteoclastogenesis and bone resorption. Eur J Med Chem 2016; 117:70-84. [PMID: 27089213 DOI: 10.1016/j.ejmech.2016.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 01/28/2023]
Abstract
Inhibiting osteoclastogenesis is a promising therapeutic target for treating osteoclast-related diseases. Herein, we synthesized a series of modified salicylanilides and their corresponding 3-phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-dione and 10-phenyldibenzo[b,f][1,4]oxazepin-11(10H)-one derivatives, and investigated the effects of such compounds on RANKL-induced osteoclast formation. Among them, a salicylanilide derivative (A04) and its 3-phenyl-2H-benzo[e][1,3]oxazine-2,4(3H)-dione derivative (B04) markedly suppressed RANKL-induced osteoclast differentiation and showed no significant cytotoxic effects at doses higher than that required to inhibit osteoclast formation. Both compounds reduced osteoclast formation and bone resorptive activity of osteoclasts in a dose-dependent manner. Further, the anti-osteoclastogenic effects of A04 and B04 may operate through reducing the RANKL-induced nuclear translocation of NFATc1. Accordingly, we present the potent anti-osteoclastogenic compounds A04 and B04 as promising candidates for further optimization as anti-resorptive agents.
Collapse
Affiliation(s)
- Chun-Liang Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan, ROC; School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan, ROC
| | - Chia-Chung Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan, ROC; School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan, ROC
| | - Fei-Lan Liu
- Rheumatology/Immunology/Allergy, Taipei Veterans General Hospital, Taipei 112, Taiwan, ROC
| | - Tsung-Chih Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan, ROC; School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan, ROC
| | - Ahmed Atef Ahmed Ali
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, ROC; Taiwan International Graduate Program, Molecular and Cell Biology Program, Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, ROC
| | - Deh-Ming Chang
- Rheumatology/Immunology/Allergy, Taipei Veterans General Hospital, Taipei 112, Taiwan, ROC; Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, ROC.
| | - Hsu-Shan Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan, ROC; School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan, ROC; Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan, ROC.
| |
Collapse
|
42
|
Saad S, Dharmapatni AASSK, Crotti TN, Cantley MD, Algate K, Findlay DM, Atkins GJ, Haynes DR. Semaphorin-3a, neuropilin-1 and plexin-A1 in prosthetic-particle induced bone loss. Acta Biomater 2016; 30:311-318. [PMID: 26602825 DOI: 10.1016/j.actbio.2015.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 12/30/2022]
Abstract
Peri-prosthetic osteolysis (PPO) occurs in response to prosthetic wear particles causing an inflammatory reaction in the surrounding tissue that leads to subsequent bone loss. Semaphorin-3a (SEM3A), neuropilin-1 (NRP1) and plexin-A1 (PLEXA1) are axonal guidance molecules that have been recently implicated in regulating bone metabolism. This study investigated SEM3A, NRP1 and PLEXA1 protein and mRNA expression in human PPO tissue and polyethylene (PE) particle-stimulated human peripheral blood mononuclear cell (PBMC)-derived osteoclasts in vitro. In addition, the effects of tumour necrosis factor alpha (TNFα) on cultured osteoclasts was assessed. In PPO tissues, a granular staining pattern of SEM3A and NRP1 was observed within large multi-nucleated cells that contained prosthetic wear particles. Immunofluorescent staining confirmed the expression of SEM3A, NRP1 and PLEXA1 in large multi-nucleated human osteoclasts in vitro. Furthermore, SEM3A, NRP1 and PLEXA1 mRNA levels progressively increased throughout osteoclast differentiation induced by receptor activator of nuclear factor κB ligand (RANKL), and the presence of PE particles further increased mRNA expression of all three molecules. Soluble SEM3A was detected in human osteoclast culture supernatant at days 7 and 17 of culture, as assessed by ELISA. TNFα treatment for 72h markedly decreased the mRNA expression of SEM3A, NRP1 and PLEXA1 by human osteoclasts in vitro. Our findings suggest that SEM3A, NRP1 and PLEXA1 may have important roles in PPO, and their interactions, alone or as a complex, may have a role in pathological bone loss progression. STATEMENT OF SIGNIFICANCE Peri-prosthetic osteolysis occurs in response to prosthetic wear particles causing an inflammatory reaction in the surrounding tissue that leads to subsequent bone loss. The rate of hip and knee arthroplasty is increasing by at least 5% per year. However, these joint replacements have a finite lifespan, with data from the National Joint Replacement Registry (Australia) showing that the major cause of failure of total hip replacements is aseptic loosening. In aseptic loosening, wear particles liberated from prostheses are phagocytosed by macrophages, leading to release of inflammatory cytokines and up-regulation of osteoclast formation and activity. Semaphorin-3a, neuropilin-1 and plexin-A1 are axonal guidance molecules that have been recently implicated in regulating bone metabolism. This is the first report to show that these molecules may be involved in the implant failure.
Collapse
Affiliation(s)
- S Saad
- Discipline of Anatomy and Pathology, School of Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - A A S S K Dharmapatni
- Discipline of Anatomy and Pathology, School of Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - T N Crotti
- Discipline of Anatomy and Pathology, School of Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - M D Cantley
- Discipline of Anatomy and Pathology, School of Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - K Algate
- Discipline of Anatomy and Pathology, School of Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - D M Findlay
- Centre for Orthopedic and Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia
| | - G J Atkins
- Centre for Orthopedic and Trauma Research, The University of Adelaide, Adelaide, South Australia, Australia
| | - D R Haynes
- Discipline of Anatomy and Pathology, School of Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
43
|
Bradley EW, Carpio LR, van Wijnen AJ, McGee-Lawrence ME, Westendorf JJ. Histone Deacetylases in Bone Development and Skeletal Disorders. Physiol Rev 2015; 95:1359-81. [PMID: 26378079 PMCID: PMC4600951 DOI: 10.1152/physrev.00004.2015] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Histone deacetylases (Hdacs) are conserved enzymes that remove acetyl groups from lysine side chains in histones and other proteins. Eleven of the 18 Hdacs encoded by the human and mouse genomes depend on Zn(2+) for enzymatic activity, while the other 7, the sirtuins (Sirts), require NAD2(+). Collectively, Hdacs and Sirts regulate numerous cellular and mitochondrial processes including gene transcription, DNA repair, protein stability, cytoskeletal dynamics, and signaling pathways to affect both development and aging. Of clinical relevance, Hdacs inhibitors are United States Food and Drug Administration-approved cancer therapeutics and are candidate therapies for other common diseases including arthritis, diabetes, epilepsy, heart disease, HIV infection, neurodegeneration, and numerous aging-related disorders. Hdacs and Sirts influence skeletal development, maintenance of mineral density and bone strength by affecting intramembranous and endochondral ossification, as well as bone resorption. With few exceptions, inhibition of Hdac or Sirt activity though either loss-of-function mutations or prolonged chemical inhibition has negative and/or toxic effects on skeletal development and bone mineral density. Specifically, Hdac/Sirt suppression causes abnormalities in physiological development such as craniofacial dimorphisms, short stature, and bone fragility that are associated with several human syndromes or diseases. In contrast, activation of Sirts may protect the skeleton from aging and immobilization-related bone loss. This knowledge may prolong healthspan and prevent adverse events caused by epigenetic therapies that are entering the clinical realm at an unprecedented rate. In this review, we summarize the general properties of Hdacs/Sirts and the research that has revealed their essential functions in bone forming cells (e.g., osteoblasts and chondrocytes) and bone resorbing osteoclasts. Finally, we offer predictions on future research in this area and the utility of this knowledge for orthopedic applications and bone tissue engineering.
Collapse
Affiliation(s)
- Elizabeth W Bradley
- Mayo Clinic, Departments of Orthopedic Surgery and of Biochemistry and Molecular Biology, and Mayo Graduate School, Rochester, Minnesota; and Georgia Regents University, Department of Cellular Biology and Anatomy, Augusta, Georgia
| | - Lomeli R Carpio
- Mayo Clinic, Departments of Orthopedic Surgery and of Biochemistry and Molecular Biology, and Mayo Graduate School, Rochester, Minnesota; and Georgia Regents University, Department of Cellular Biology and Anatomy, Augusta, Georgia
| | - Andre J van Wijnen
- Mayo Clinic, Departments of Orthopedic Surgery and of Biochemistry and Molecular Biology, and Mayo Graduate School, Rochester, Minnesota; and Georgia Regents University, Department of Cellular Biology and Anatomy, Augusta, Georgia
| | - Meghan E McGee-Lawrence
- Mayo Clinic, Departments of Orthopedic Surgery and of Biochemistry and Molecular Biology, and Mayo Graduate School, Rochester, Minnesota; and Georgia Regents University, Department of Cellular Biology and Anatomy, Augusta, Georgia
| | - Jennifer J Westendorf
- Mayo Clinic, Departments of Orthopedic Surgery and of Biochemistry and Molecular Biology, and Mayo Graduate School, Rochester, Minnesota; and Georgia Regents University, Department of Cellular Biology and Anatomy, Augusta, Georgia
| |
Collapse
|
44
|
Cantley MD, Dharmapatni AASSK, Algate K, Crotti TN, Bartold PM, Haynes DR. Class I and II histone deacetylase expression in human chronic periodontitis gingival tissue. J Periodontal Res 2015; 51:143-51. [PMID: 26031835 DOI: 10.1111/jre.12290] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Histone deacetylase inhibitors (HDACi) are being considered to treat chronic inflammatory diseases at low doses. Currently HDACi that are more specific are being developed to target particular HDACs; therefore, this study aimed to determine levels and distribution of class I and II HDAC in human gingival samples obtained from patients with chronic periodontitis. MATERIAL AND METHODS Gingival biopsies were obtained from patients with and without (mild inflammation, no bone loss) periodontitis. Total RNA was isolated for real-time quantitative polymerase chain reaction to determine expression of HDACs 1-10. Immunohistochemistry was used to determine protein distribution of HDACs 1, 5, 8 and 9. Factor VIII, CD3 and tartrate resistant acid phosphatase (TRAP) were detected in serial sections to identify blood vessels, lymphocytes, pre-osteoclasts and osteoclasts cells respectively. Tumour necrosis factor α (TNF-α) expression was also assessed. RESULTS mRNA for HDAC 1, 5, 8 and 9 were significantly upregulated in chronic periodontitis gingival tissues compared to non-periodontitis samples (p < 0.05). Significantly higher HDAC 1 protein expression was observed in chronic periodontitis samples (p < 0.05), and was associated with CD3, TRAP and TNF-α-positive cells. HDAC 1, 5, 8 and 9 were expressed strongly by the factor VIII-positive microvasculature in the chronic periodontitis gingival tissues. CONCLUSIONS HDAC 1, 5, 8 and 9 expression was higher in gingival tissues from patients with chronic periodontitis compared to non-periodontitis samples. Results suggest that these HDACs could therefore be targeted with specific acting HDACi.
Collapse
Affiliation(s)
- M D Cantley
- Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - A A S S K Dharmapatni
- Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - K Algate
- Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - T N Crotti
- Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - P M Bartold
- Colgate Australian Clinical Dental Research Centre, School of Dentistry, University of Adelaide, Adelaide, SA, Australia
| | - D R Haynes
- Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
45
|
Cantley MD, Fairlie DP, Bartold PM, Marino V, Gupta PK, Haynes DR. Inhibiting histone deacetylase 1 suppresses both inflammation and bone loss in arthritis. Rheumatology (Oxford) 2015; 54:1713-23. [PMID: 25832610 DOI: 10.1093/rheumatology/kev022] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Histone deacetylase 1 (HDAC1) is highly expressed in the synovium of RA patients. Thus we aimed to investigate a novel HDAC inhibitor (HDACi), NW-21, designed to target HDAC1. The effect of NW-21 on osteoclast formation and activity, cytokine and chemokine expression in vitro and arthritis in mice was assessed. METHODS The effects on human osteoclast formation and activity derived from human blood monocytes stimulated with receptor activator of nuclear factor κB ligand (RANKL) and M-CSF were assessed. The anti-inflammatory activity of NW-21 was assessed using human monocytes stimulated with either TNF-α or lipopolysaccharide for 24 h. mRNA expression of monocyte chemotactic protein 1 (MCP-1), TNF-α, macrophage inflammatory protein 1α (MIP-1α), IL-1 and RANTES (regulated on activation, normal T cell expressed and secreted) was assessed. The effect of NW-21 in the collagen antibody-induced arthritis model was assessed following daily oral administration at 5 mg/kg/day. The HDAC1 inhibitors NW-21 and MS-275 were compared with a broad-acting HDACi, 1179.4b. Effects on inflammation and bone were assessed using paw inflammation scoring, histology and live animal micro-CT. RESULTS NW-21 suppressed osteoclast formation and activity as well as significantly reducing mRNA expression of MCP-1 and MIP-1α in monocytes stimulated by lipopolysaccharide or TNF-α (P < 0.05) in vitro. Only inhibitors that targeted HDAC1 (NW-21 and MS-275) reduced inflammation and bone loss in the arthritis model. CONCLUSION The results indicate that inhibitors targeting HDAC1, such as NW-21 and MS-275, may be useful for treating RA, as such drugs can simultaneously target both inflammation and bone resorption.
Collapse
Affiliation(s)
- Melissa D Cantley
- Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA,
| | - David P Fairlie
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, and
| | - P Mark Bartold
- Colgate Australian Clinical Dental Research Centre, School of Dentistry, University of Adelaide, Adelaide, SA, Australia
| | - Victor Marino
- Colgate Australian Clinical Dental Research Centre, School of Dentistry, University of Adelaide, Adelaide, SA, Australia
| | - Praveer K Gupta
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, and
| | - David R Haynes
- Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA
| |
Collapse
|
46
|
Libby EN, Becker PS, Burwick N, Green DJ, Holmberg L, Bensinger WI. Panobinostat: a review of trial results and future prospects in multiple myeloma. Expert Rev Hematol 2014; 8:9-18. [PMID: 25410127 DOI: 10.1586/17474086.2015.983065] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multiple myeloma is an incurable often devastating disease that is responsible for 1-2% of all cancers. Multiple myeloma is the second most common hematologic malignancy. Over the past two decades, advances in therapy have doubled life expectancy. Unfortunately, all patients ultimately relapse. Novel agents (immunomodulatory drugs and proteasome inhibitors) have changed the outlook for patients, but further breakthroughs are needed. Epigenetic treatments offer potential for advancing therapy by modifying oncogene responses. The acetylation status of various proteins can affect the availability of chromatin for transcription. This response may be modulated epigenetically to advantage using histone deacetylase inhibitors like panobinostat.
Collapse
Affiliation(s)
- Edward N Libby
- University of Washington School of Medicine - Medical Oncology, 825 Eastlake Ave E, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
47
|
Tsuda H, Zhao N, Imai K, Ochiai K, Yang P, Suzuki N. BIX01294 suppresses osteoclast differentiation on mouse macrophage-like Raw264.7 cells. Bosn J Basic Med Sci 2014; 13:271-5. [PMID: 24289765 DOI: 10.17305/bjbms.2013.2339] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gene expressionis controlled by epigenetic mechanisms including histone methylation. Osteoclasts are bone-resorptive cells that differentiate from hematopoietic-precursor cells by receptor activator of nuclear factor-κB ligand (RANKL) stimulation. Although BIX01294, a specific inhibitor of G9a, which works as a histone H3 lysine 9 (H3K9) methyltransferase, reportedly changes cellular differentiational stage, its effect on osteoclast differentiation is unclear. In this study, the effects of BIX01294 on osteoclast differentiation were examined. Here, we showed that BIX01294 dose-dependently reduced RANKL-induced tartrate-resistant acid phosphatase positive multinuclear osteoclast-like cell differentiation from murine macrophage-like Raw264.7 cells. During differentiation, growth rates reduced only less than 14% of those of cells stimulated with RANKL alone by BIX01294 treatment. Moreover, western blot analysis showed that BIX01294 reduced RANKL-induced carbonic anhydrase II and cathepsin K production and decreased RANKL-induced nuclear factor of activated T-cell c1, a master regulatory transcription factor, production during osteoclast differentiation. These results suggest that BIX01294 suppresses RANKL-induced osteoclast differentiation. This is the first report about the effect of BIX01294 on osteoclast differentiation.
Collapse
Affiliation(s)
- Hiromasa Tsuda
- Department of Biochemistry, School of Dentistry, Nihon University, 1-8-13 Kanda Surugadai Chiyoda-ku, Tokyo 101-8310, Japan. Division of Functional Morphology and Immunology, Dental Research Center, School of Dentistry, Nihon University 1-8-13 Kanda Surugadai Chiyoda-ku, Tokyo 101-8310, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Preclinical anti-arthritic study and pharmacokinetic properties of a potent histone deacetylase inhibitor MPT0G009. Cell Death Dis 2014; 5:e1166. [PMID: 24722291 PMCID: PMC5424110 DOI: 10.1038/cddis.2014.133] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 01/30/2023]
Abstract
The pathology of rheumatoid arthritis includes synoviocyte proliferation and inflammatory mediator expression, which may result from dysregulated epigenetic control by histone deacetylase (HDAC). Thus, HDAC inhibitors may be useful for treating inflammatory disease. This was a preclinical study of the HDAC inhibitor, MPT0G009. The IC50 values of MPT0G009 for HDAC1, 2, 3, 6 and 8 enzymatic activities were significantly lower than those for the currently marketed HDAC inhibitor suberoylanilide hydroxamic acid (SAHA; vorinostat). In addition, MPT0G009 markedly inhibited cytokine secretion and macrophage colony-stimulating factor/receptor activator of nuclear factor kappa B ligand-induced osteoclastogenesis by macrophages (50 ng/ml each). These MPT0G009 effects on cytokine secretion and osteoclast formation were reduced by the overexpression of HDAC 1 (class I HDAC) and 6 (class II HDAC) in cells, suggesting that these effects were due to the inhibition of its activity. In an in vivo rat model, oral administration of MPT0G009 (25 mg/kg) significantly inhibited paw swelling and bone destruction. Furthermore, compared with SAHA, MPT0G009 exhibited longer half-life (9.53 h for oral administration) and higher oral bioavailability (13%) in rats. These results established the preclinical anti-arthritic efficacy and pharmacokinetic parameters of MPT0G009, which may provide a new therapeutic approach for treating inflammatory arthritis.
Collapse
|
49
|
Cantley MD, Rainsford KD, Haynes DR. Effects of Osteochondrin S and select connective tissue ribonucleinate components on human osteoclasts in vitro. J Pharm Pharmacol 2013; 65:1214-22. [DOI: 10.1111/jphp.12088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 05/09/2013] [Indexed: 12/17/2022]
Abstract
Abstract
Objectives
Osteochondrin S, a natural product derived from connective tissues and yeast, is used to treat osteoarthritis. The aim of this study was to determine the effect of Osteochondrin S on human osteoclast activity in vitro.
Methods
Osteoclasts were derived from human peripheral blood mononuclear cells stimulated with macrophage colony-stimulating factor and receptor activator of nuclear factor kappa B (RANK) ligand. Cells were treated with 23.5–587.2 ng/ml Osteochondrin S or 0.2–5 mg/ml of RNA components (synovia, placenta, intervertebral disc or cartilage). The effects on osteoclast formation and resorptive activity were assessed. Real-time polymerase chain reaction was conducted to assess the expression of key osteoclast genes.
Key findings
Osteochondrin S and the individual RNA extracts resulted in a concentration-dependent inhibition of human osteoclast activity. Osteochondrin S did not affect RANK, nuclear factor of activated T cells (NFATc1), osteoclast-associated receptor or cathepsin K expression. However, there was a significant (P < 0.05) reduction in mRNA expression of calcitonin receptor. Osteochondrin S treatment also significantly increased the expression of osteoclast inhibitory factor interferon-β and, interestingly, increased the expression of tumour necrosis-α-like weak inducer of apoptosis (TWEAK).
Conclusions
Osteochondrin S inhibited the resorptive ability of osteoclasts. These actions are likely to occur at a late stage during osteoclast formation, downstream of NFATc1. Overall, the findings show that Osteochondrin S inhibition of osteoclast activity may be responsible for its beneficial effects on diseases such as osteoarthritis.
Collapse
Affiliation(s)
- Melissa D Cantley
- Discipline of Anatomy and Pathology, School of Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - K D Rainsford
- Biomedical Research Centre, Sheffield Hallam University, Sheffield, UK
| | - David R Haynes
- Discipline of Anatomy and Pathology, School of Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
50
|
Comparison of the ability of chondroitin sulfate derived from bovine, fish and pigs to suppress human osteoclast activity in vitro. Inflammopharmacology 2013; 21:407-12. [PMID: 23644893 DOI: 10.1007/s10787-013-0171-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
Chondroitin sulfate (CS) compounds are commonly used to manage OA symptoms. Recent literature has indicated that abnormal subchondral bone metabolism may have a role in the pathogenesis of OA. The aim of this study was to access the effects of chondroitin sulfate obtained from bovine, fish and porcine sources on human osteoclast formation and activity in vitro. Human osteoclasts were generated from blood mononuclear cells. Cells were cultured over 17 days with the addition of macrophage colony stimulating factor (M-CSF) and then stimulated with receptor activator of nuclear factor kappa B ligand from day 7. Cells were treated with the CS commencing from day 7 onwards. To assess effects on osteoclasts, tartrate resistant acid phosphatate (TRAP) expression and resorption of whale dentine assays were used. Bovine-derived CS consistently suppressed osteoclast activity at concentrations as low as 1 μg/ml. Fish and porcine CS was less consistent in their effects varying with different donor cells. All CS compounds had little effect on TRAP activity. mRNA analysis using real-time PCR of bovine CS treated cells indicated that the inhibition of activity was not due to inhibition of the late stage NFATc1 transcription factor (p > 0.05). These results are consistent with CS inhibition of mature osteoclast activity rather than the formation of mature osteoclasts. It would appear that there are differences in activity of the different CS compounds with bovine-derived CS being the most consistently effective inhibitor of osteoclast resorption, but the results need to be confirmed.
Collapse
|