1
|
Ghamrawi A, Basso R, Shakik N, Haddad L, Nasr Z, Harmouch C. Wharton's Jelly Mesenchymal Stem Cells: Shaping the Future of Osteoarthritis Therapy with Advancements in Chitosan-Hyaluronic Acid Scaffolds. Stem Cells Dev 2025; 34:1-16. [PMID: 39605205 DOI: 10.1089/scd.2024.0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
This review explores the potential of Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) in cartilage regeneration and osteoarthritis treatment. It covers key factors influencing chondrogenesis, including growth factors, cytokines, and hypoxia, focusing on precise timing. The effectiveness of three-dimensional cultures and scaffold-based strategies in chondrogenic differentiation is discussed. Specific biomaterials such as chitosan and hyaluronic acid are highlighted for tissue engineering. The document reviews clinical applications, incorporating evidence from animal research and early trials and molecular and histological assessments of chondrogenic differentiation processes. It addresses challenges and strategies for optimizing MSC-derived chondrocyte therapy, emphasizing the immunomodulatory properties of these cells. The review concludes as a comprehensive road map for future research and clinical applications in regenerative medicine.
Collapse
Affiliation(s)
- Ahed Ghamrawi
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli, Lebanon
| | - Rasha Basso
- Department of Medical Laboratory Sciences, Faculty of Health Sciences University of Balamand, Beirut, Lebanon
| | - Nour Shakik
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli, Lebanon
| | - Lara Haddad
- Department of Medical Laboratory Sciences, Faculty of Health Sciences University of Balamand, Beirut, Lebanon
| | - Zeina Nasr
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli, Lebanon
| | - Chaza Harmouch
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, Tripoli, Lebanon
| |
Collapse
|
2
|
Wang M, Wang J, Xu X, Li E, Xu P. Engineering gene-activated bioprinted scaffolds for enhancing articular cartilage repair. Mater Today Bio 2024; 29:101351. [PMID: 39649247 PMCID: PMC11621797 DOI: 10.1016/j.mtbio.2024.101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/10/2024] Open
Abstract
Untreated articular cartilage injuries often result in severe chronic pain and dyskinesia. Current repair strategies have limitations in effectively promoting articular cartilage repair, underscoring the need for innovative therapeutic approaches. A gene-activated matrix (GAM) is a promising and comprehensive therapeutic strategy that integrates tissue-engineered scaffold-guided gene therapy to promote long-term articular cartilage repair by enhancing gene retention, reducing gene loss, and regulating gene release. However, for effective articular cartilage repair, the GAM scaffold must mimic the complex gradient structure of natural articular cartilage. Three-dimensional (3D) bioprinting technology has emerged as a compelling solution, offering the ability to precisely create complex microstructures that mimic the natural articular cartilage. In this review, we summarize the recent research progress on GAM and 3D bioprinted scaffolds in articular cartilage tissue engineering (CTE), while also exploring future challenges and development directions. This review aims to provide new ideas and concepts for the development of gene-activated bioprinted scaffolds with specific properties tailored to meet the stringent requirements of articular cartilage repair.
Collapse
Affiliation(s)
- Min Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Jiachen Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Xin Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Erliang Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
- Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an, 710000, China
| |
Collapse
|
3
|
Kronenberg D, Brand M, Everding J, Wendler L, Kieselhorst E, Timmen M, Hülskamp MD, Stange R. Integrin α2β1 deficiency enhances osteogenesis via BMP-2 signaling for accelerated fracture repair. Bone 2024; 190:117318. [PMID: 39500403 DOI: 10.1016/j.bone.2024.117318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/11/2024]
Abstract
Previous studies have shown that the absence of the collagen-binding integrin α2β1 confers protection against osteoporosis, primarily by enhancing osteoblast-mediated matrix formation, with a particular increase in collagen type I production. This study aimed to elucidate the mechanism underlying this increased matrix production. Our findings demonstrate that osteoblasts lacking integrin α2 secrete a pro-osteogenic factor that activates both TGF-β and BMP signaling pathways. Among these, BMP-2 was identified as the key signaling protein responsible for this effect, as its expression was significantly upregulated during osteoblast differentiation. Moreover, integrin α2 deficiency led to earlier and elevated BMP-2 secretion at the cell surface during osteogenesis, which promoted accelerated osteoblast differentiation. This phenomenon likely contributes to enhanced matrix production in aging animals, providing a protective effect against osteoporosis. To explore the broader implications of this phenotype, we utilized a fracture healing model. In integrin α2-deficient 12 weeks old female mice, elevated serum levels of BMP-2 were detected during the early stages of fracture repair. This upregulation of BMP signaling within the fracture callus accelerated the healing process, resulting in faster formation and mineralization of the cartilaginous callus. Additionally, the elevated BMP-2 levels facilitated earlier differentiation of chondrocytic cells, evidenced by the premature appearance of collagen type II- and type X-positive cells during endochondral ossification. Despite the accelerated healing, the overall biomechanical integrity of the repaired fractures remained uncompromised. Thus, the modulation of integrin α2β1 presents a promising therapeutic target for enhancing fracture repair by regulating BMP-2 signaling in a physiologically relevant manner.
Collapse
Affiliation(s)
- Daniel Kronenberg
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine, University of Muenster, Muenster, Germany
| | - Melanie Brand
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine, University of Muenster, Muenster, Germany
| | - Jens Everding
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
| | - Louisa Wendler
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine, University of Muenster, Muenster, Germany
| | - Eric Kieselhorst
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine, University of Muenster, Muenster, Germany
| | - Melanie Timmen
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine, University of Muenster, Muenster, Germany
| | - Michael D Hülskamp
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine, University of Muenster, Muenster, Germany; Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine, University of Muenster, Muenster, Germany.
| |
Collapse
|
4
|
Hamad-Alrashid H, Muntión S, Sánchez-Guijo F, Borrajo-Sánchez J, Parreño-Manchado F, García-Cenador MB, García-Criado FJ. Bone Regeneration with Dental Pulp Stem Cells in an Experimental Model. J Pers Med 2024; 14:1075. [PMID: 39590567 PMCID: PMC11595977 DOI: 10.3390/jpm14111075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The therapeutic approach to bone mass loss and bone's limited self-regeneration is a major focus of research, emphasizing new biomaterials and cell therapy. Tissue bioengineering emerges as a potential alternative to conventional treatments. In this study, an experimental model of a critical bone lesion in rats was used to investigate bone regeneration by treating the defect with biomaterials Evolution® and Gen-Os® (OsteoBiol®, Turín, Italy), with or without mesenchymal stromal cells from dental pulp (DP-MSCs). METHODS Forty-six adult male Wistar rats were subjected to a 5-mm critical bone defect in the right mandible, which does not regenerate without intervention. The rats were randomly assigned to a Simulated Group, Control Group, or two Study Groups (using Evolution®, Gen-Os®, and DP-MSCs). The specimens were euthanized at three or six months, and radiological, histological, and ELISA tests were conducted to assess bone regeneration. RESULTS The radiological results showed that the DP-MSC group achieved uniform radiopacity and continuity in the bone edge, with near-complete structural defect restitution. Histologically, full bone regeneration was observed, with well-organized, vascularized lamellar bone and no lesion edges. These findings were supported by increases in endoglin, transforming growth factor-beta 1 (TGF-β1), protocollagen, parathormone, and calcitonin, indicating a conducive environment for bone regeneration. CONCLUSIONS The use of DP-MSCs combined with biomaterials with appropriate three-dimensional matrices is a promising therapeutic option for further exploration.
Collapse
Affiliation(s)
- Haifa Hamad-Alrashid
- Doctoral School “Studii Salamantini”, University of Salamanca, 37008 Salamanca, Spain;
| | - Sandra Muntión
- Biomedical Research Institute (IBSAL), 37007 Salamanca, Spain; (S.M.); (F.J.G.-C.)
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y León, 37007 Salamanca, Spain;
| | - Fermín Sánchez-Guijo
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y León, 37007 Salamanca, Spain;
- Hematology Department, University Hospital of Salamanca, 37007 Salamanca, Spain
- Department of Medicine, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain
| | - Javier Borrajo-Sánchez
- Department of Biomedical and Diagnostic Sciences, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain;
| | - Felipe Parreño-Manchado
- Department of Surgery, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain;
- Coordinator of the Esophagogastric Surgery and Obesity Unit, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - M. Begoña García-Cenador
- Biomedical Research Institute (IBSAL), 37007 Salamanca, Spain; (S.M.); (F.J.G.-C.)
- Department of Surgery, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain;
| | - F. Javier García-Criado
- Biomedical Research Institute (IBSAL), 37007 Salamanca, Spain; (S.M.); (F.J.G.-C.)
- Department of Surgery, Faculty of Medicine, University of Salamanca, 37007 Salamanca, Spain;
| |
Collapse
|
5
|
Faheem S, Hameed H, Paiva-Santos AC, Khan MA, Ghumman SA, Hameed A. The role of chondroitin sulphate as a potential biomaterial for hepatic tissue regeneration: A comprehensive review. Int J Biol Macromol 2024; 280:136332. [PMID: 39482129 DOI: 10.1016/j.ijbiomac.2024.136332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/26/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024]
Abstract
Chondroitin sulphate is an anionic hetero-polysaccharide, having numerous structural affinities for building the bio-active components. In addition to biodegradable/biocompatible activities, chondroitin sulphate also possesses anti-coagulant/anti-thrombogenic, anti-inflammatory, anti-oxidant as well as anti-tumor activities. Chondroitin sulphate has an inherited affinity for glycosylation enzymes and receptors, which are overexpressed over degenerated cells and organelles. Because of this affinity, chondroitin sulphate is nominated as an active cellular/subcellular targeted biological macromolecule to assist in site-specific delivery. Chondroitin sulphate is mainly considered a promising biomaterial for drug targeting and tissue engineering due to its specific physicochemical, mechanical, bio-degradation, and biological characteristics. In this review, the fundamental applications of chondroitin sulphate in hepatic tissue engineering are discussed. Chondroitin sulphate along with mesenchymal stem cells (MSCs) based scaffold and hydrogels for biopharmaceuticals' delivery in hepatic tissue engineering are critically discussed. In addition, the manuscript also describes leading features and markers involved in hepatic damage, and the potential role of chondroitin sulphate-based delivery systems in hepatic tissue engineering.
Collapse
Affiliation(s)
- Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | | | - Anam Hameed
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Gulberg III, Lahore 54000, Pakistan.
| |
Collapse
|
6
|
Wei J, Xu S, Liu Y, Zhang L, Chen H, Li J, Duan M, Niu Z, Huang M, Zhang D, Zhou X, Xie J. TGF-β2 enhances glycolysis in chondrocytes via TβRI/p-Smad3 signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119788. [PMID: 38879132 DOI: 10.1016/j.bbamcr.2024.119788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/22/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
Chondrocytes rely heavily on glycolysis to maintain the metabolic homeostasis and cartilage matrix turnover. Glycolysis in chondrocytes is remodeled by diverse biochemical and biomechanical factors due to the sporty joint microenvironment. Transforming growth factor-β2 (TGF-β2), one of the most abundant TGF-β superfamily members in chondrocytes, has increasingly attracted attention in cartilage physiology and pathology. Although previous studies have emphasized the importance of TGF-β superfamily members on cell metabolism, whether and how TGF-β2 modulates glycolysis in chondrocytes remains elusive. In the current study, we investigated the effects of TGF-β2 on glycolysis in chondrocytes and explored the underlying biomechanisms. The results showed that TGF-β2 could enhance glycolysis in chondrocytes by increasing glucose consumption, up-regulating liver-type ATP-dependent 6-phosphofructokinase (Pfkl) expression, and boosting lactate production. The TGF-β2 signal entered chondrocytes via TGF-β receptor type I (TβRI), and activated p-Smad3 signaling to regulate the glycolytic pathway. Subsequent experiments employing specific inhibitors of TβRI and p-Smad3 further substantiated the role of TGF-β2 in enhancement of glycolysis via TβRI/p-Smad3 axis in chondrocytes. The results provide new understanding of the metabolic homeostasis in chondrocytes induced by TGF-β superfamily and might shed light on the prevention and treatment of related osteoarticular diseases.
Collapse
Affiliation(s)
- Jieya Wei
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Siqun Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Li Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hao Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiazhou Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhixing Niu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Minglei Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jing Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
7
|
Rafiyan M, Tootoonchi E, Golpour M, Davoodvandi A, Reiter RJ, Asemi R, Sharifi M, Rasooli Manesh SM, Asemi Z. Melatonin for gastric cancer treatment: where do we stand? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03451-7. [PMID: 39287677 DOI: 10.1007/s00210-024-03451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Gastric cancer (GC) is the third leading reason of death in men and the fourth in women. Studies have documented an inhibitory function of melatonin on the proliferation, progression and invasion of GC cells. MicroRNAs (miRNAs) are small, non-coding RNAs that play an important function in regulation of biological processes and gene expression of the cells. Some studies reported that melatonin can suppress the progression of GC by regulating the exosomal miRNAs. Thus, melatonin represents a promising potential therapeutic agent for subjects with GC. Herein, we evaluate the existing data of both in vivo and in vitro studies to clarify the molecular processes involved in the therapeutic effects of melatonin in GC. The data emphasize the critical function of melatonin in several signaling ways by which it may inhibit cancer cell proliferation, decrease chemo-resistance, induce apoptosis as well as limit invasion, angiogenesis, and metastasis. This review provides a resource that identifies some of the mechanisms by which melatonin controls GC enlargement. In light of the findings, melatonin should be considered a novel and testable therapeutic mediator for GC treatment.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Elham Tootoonchi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdieh Golpour
- Student Research Committee, Mazandarn University of Medical Sciences, Sari, Mazandaran, Iran
| | - Amirhossein Davoodvandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
8
|
Pande S, Pati F, Chakraborty P. Harnessing Peptide-Based Hydrogels for Enhanced Cartilage Tissue Engineering. ACS APPLIED BIO MATERIALS 2024; 7:5885-5905. [PMID: 39159490 DOI: 10.1021/acsabm.4c00879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Cartilage tissue engineering remains a formidable challenge due to its complex, avascular structure and limited regenerative capacity. Traditional approaches, such as microfracture, autografts, and stem cell delivery, often fail to restore functional tissue adequately. Recently, there has been a surge in the exploration of new materials that mimic the extracellular microenvironment necessary to guide tissue regeneration. This review investigates the potential of peptide-based hydrogels as an innovative solution for cartilage regeneration. These hydrogels, formed via supramolecular self-assembly, exhibit excellent properties, including biocompatibility, ECM mimicry, and controlled biodegradation, making them highly suitable for cartilage tissue engineering. This review explains the structure of cartilage and the principles of supramolecular and peptide hydrogels. It also delves into their specific properties relevant to cartilage regeneration. Additionally, this review presents recent examples and a comparative analysis of various peptide-based hydrogels used for cartilage regeneration. The review also addresses the translational challenges of these materials, highlighting regulatory hurdles and the complexities of clinical application. This comprehensive investigation provides valuable insights for biomedical researchers, tissue engineers, and clinical professionals aiming to enhance cartilage repair methodologies.
Collapse
Affiliation(s)
- Shreya Pande
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Priyadarshi Chakraborty
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| |
Collapse
|
9
|
Zhu R, Liao HY, Huang YC, Shen HL. Application of Injectable Hydrogels as Delivery Systems in Osteoarthritis and Rheumatoid Arthritis. Br J Hosp Med (Lond) 2024; 85:1-41. [PMID: 39212571 DOI: 10.12968/hmed.2024.0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Osteoarthritis and rheumatoid arthritis, though etiologically distinct, are both inflammatory joint diseases that cause progressive joint injury, chronic pain, and loss of function. Therefore, long-term treatment with a focus on relieving symptoms is needed. At present, the primary treatment for arthritis is drug therapy, both oral and intravenous. Although significant progress has been achieved for these treatment methods in alleviating symptoms, certain prominent drawbacks such as the substantial side effects and limited absorption of medications call for an urgent need for improved drug delivery methods. Injected hydrogels can be used as a delivery system to deliver drugs to the joint cavity in a controlled manner and continuously release them, thereby enhancing drug retention in the joint cavity to improve therapeutic effectiveness, which is attributed to the desirable attributes of the delivery system such as low immunogenicity, good biodegradability and biocompatibility. This review summarizes the types of injectable hydrogels and analyzes their applications as delivery systems in arthritis treatment. We also explored how hydrogels counteract inflammation, bone and cartilage degradation, and oxidative stress, while promoting joint cartilage regeneration in the treatment of osteoarthritis (OA) and rheumatoid arthritis (RA). This review also highlights new approaches to developing injectable hydrogels as delivery systems for OA and RA.
Collapse
Affiliation(s)
- Rong Zhu
- Department of Rheumatology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Hai-Yang Liao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Yi-Chen Huang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Hai-Li Shen
- Department of Rheumatology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
10
|
Aftabi S, Barzegar Behrooz A, Cordani M, Rahiman N, Sadeghdoust M, Aligolighasemabadi F, Pistorius S, Alavizadeh SH, Taefehshokr N, Ghavami S. Therapeutic targeting of TGF-β in lung cancer. FEBS J 2024. [PMID: 39083441 DOI: 10.1111/febs.17234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Transforming growth factor-β (TGF-β) plays a complex role in lung cancer pathophysiology, initially acting as a tumor suppressor by inhibiting early-stage tumor growth. However, its role evolves in the advanced stages of the disease, where it contributes to tumor progression not by directly promoting cell proliferation but by enhancing epithelial-mesenchymal transition (EMT) and creating a conducive tumor microenvironment. While EMT is typically associated with enhanced migratory and invasive capabilities rather than proliferation per se, TGF-β's influence on this process facilitates the complex dynamics of tumor metastasis. Additionally, TGF-β impacts the tumor microenvironment by interacting with immune cells, a process influenced by genetic and epigenetic changes within tumor cells. This interaction highlights its role in immune evasion and chemoresistance, further complicating lung cancer therapy. This review provides a critical overview of recent findings on TGF-β's involvement in lung cancer, its contribution to chemoresistance, and its modulation of the immune response. Despite the considerable challenges encountered in clinical trials and the development of new treatments targeting the TGF-β pathway, this review highlights the necessity for continued, in-depth investigation into the roles of TGF-β. A deeper comprehension of these roles may lead to novel, targeted therapies for lung cancer. Despite the intricate behavior of TGF-β signaling in tumors and previous challenges, further research could yield innovative treatment strategies.
Collapse
Affiliation(s)
- Sajjad Aftabi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Iran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Iran
| | - Mohammadamin Sadeghdoust
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Farnaz Aligolighasemabadi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
| | - Stephen Pistorius
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Iran
| | - Nima Taefehshokr
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Canada
- Paul Albrechtsen Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
- Faculty Academy of Silesia, Faculty of Medicine, Katowice, Poland
- Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
11
|
Chen J, Wang Y, Tang T, Li B, Kundu B, Kundu SC, Reis RL, Lin X, Li H. Enhanced effects of slowly co-released TGF-β3 and BMP-2 from biomimetic calcium phosphate-coated silk fibroin scaffolds in the repair of osteochondral defects. J Nanobiotechnology 2024; 22:453. [PMID: 39080653 PMCID: PMC11290091 DOI: 10.1186/s12951-024-02712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Bioactive agents have demonstrated regenerative potential for cell-free bone tissue engineering. Nevertheless, certain challenges persist, including ineffective delivery methods and confined therapeutic potency. Here, we demonstrated that the biomimetic calcium phosphate coating system (BioCaP) could effectively uptake and slowly release the incorporated bioactive agents compared to the surface absorption system via osteoclast-mediated degradation of BioCaP coatings. The release kinetics were determined as a function of time. The release rate was stable without remarkable burst release during the first 1 day, followed by a sustained release from day 7 to day 19. Then, we developed the bi-functional BioCaP-coated silk fibroin scaffolds enabling the effective co-delivery of TGF-β3 and BMP-2 (SFI-T/SFI-B) and the corresponding slow release of TGF-β3 and BMP-2 exhibited superior potential in promoting chondrogenesis and osteogenesis without impairing cell vitality in vitro. The SFI-T/SFI-B scaffolds could improve cartilage and bone regeneration in 5 × 4 mm rabbit osteochondral (OC) defect. These findings indicate that the biomimetic calcium-phosphate coated silk fibroin scaffolds with slowly co-released TGF-β3 and BMP-2 effectively promote the repair of OC defects, hence facilitating the future clinical translation of controlled drug delivery in tissue engineering.
Collapse
Affiliation(s)
- Jiping Chen
- Department of Stomatology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Nanjing, Jiangsu, China
- Orthodontic Department, Nanjing Stomatological Hospital, Medical School of Nanjing University, No. 30 Zhongyang Road, Nanjing, Jiangsu, China
| | - Yanyi Wang
- Orthodontic Department, Nanjing Stomatological Hospital, Medical School of Nanjing University, No. 30 Zhongyang Road, Nanjing, Jiangsu, China
| | - Tianyi Tang
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, Royal Free Hospital, Rowland Hill Street, London, NW3 2PF, UK
| | - Baochao Li
- Orthodontic Department, Nanjing Stomatological Hospital, Medical School of Nanjing University, No. 30 Zhongyang Road, Nanjing, Jiangsu, China
| | - Banani Kundu
- 3B's Research Group, I3Bs-Research Institute On Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência E Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
- Department of Biotechnology, Adamas University, Kolkata, 700126, India
| | - Subhas C Kundu
- 3B's Research Group, I3Bs-Research Institute On Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência E Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute On Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência E Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Xingnan Lin
- School/Hospital of Stomatology, Zhejiang Chinese Medical University, No.548 Binwen Road, Hangzhou, 310053, China.
| | - Huang Li
- Orthodontic Department, Nanjing Stomatological Hospital, Medical School of Nanjing University, No. 30 Zhongyang Road, Nanjing, Jiangsu, China.
| |
Collapse
|
12
|
Hao M, Xue L, Wen X, Sun L, Zhang L, Xing K, Hu X, Xu J, Xing D. Advancing bone regeneration: Unveiling the potential of 3D cell models in the evaluation of bone regenerative materials. Acta Biomater 2024; 183:1-29. [PMID: 38815683 DOI: 10.1016/j.actbio.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Bone, a rigid yet regenerative tissue, has garnered extensive attention for its impressive healing abilities. Despite advancements in understanding bone repair and creating treatments for bone injuries, handling nonunions and large defects remains a major challenge in orthopedics. The rise of bone regenerative materials is transforming the approach to bone repair, offering innovative solutions for nonunions and significant defects, and thus reshaping orthopedic care. Evaluating these materials effectively is key to advancing bone tissue regeneration, especially in difficult healing scenarios, making it a critical research area. Traditional evaluation methods, including two-dimensional cell models and animal models, have limitations in predicting accurately. This has led to exploring alternative methods, like 3D cell models, which provide fresh perspectives for assessing bone materials' regenerative potential. This paper discusses various techniques for constructing 3D cell models, their pros and cons, and crucial factors to consider when using these models to evaluate bone regenerative materials. We also highlight the significance of 3D cell models in the in vitro assessments of these materials, discuss their current drawbacks and limitations, and suggest future research directions. STATEMENT OF SIGNIFICANCE: This work addresses the challenge of evaluating bone regenerative materials (BRMs) crucial for bone tissue engineering. It explores the emerging role of 3D cell models as superior alternatives to traditional methods for assessing these materials. By dissecting the construction, key factors of evaluating, advantages, limitations, and practical considerations of 3D cell models, the paper elucidates their significance in overcoming current evaluation method shortcomings. It highlights how these models offer a more physiologically relevant and ethically preferable platform for the precise assessment of BRMs. This contribution is particularly significant for "Acta Biomaterialia" readership, as it not only synthesizes current knowledge but also propels the discourse forward in the search for advanced solutions in bone tissue engineering and regeneration.
Collapse
Affiliation(s)
- Minglu Hao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China.
| | - Linyuan Xue
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China
| | - Xiaobo Wen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China
| | - Li Sun
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Kunyue Xing
- Alliance Manchester Business School, The University of Manchester, Manchester M139PL, UK
| | - Xiaokun Hu
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao 26600, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Sharma P, Patil A, Sharma S, Rout T, Hemgude P, Sabane A. Presence of single nucleotide polymorphisms in transforming growth factor β and insulin-like growth factor 1 in class II malocclusions due to retrognathic mandible. Folia Med (Plovdiv) 2024; 66:243-249. [PMID: 38690820 DOI: 10.3897/folmed.66.e115709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/23/2024] [Indexed: 05/03/2024] Open
Abstract
AIM The aim of this study was to evaluate specific single nucleotide polymorphisms (SNP) of transforming growth factor-beta (TGF-β) (rs1800469) and insulin-like growth factor-1 (IGF-1) (rs17032362) genes in Class II individuals with a normal maxilla and retrognathic (short) mandible.
Collapse
Affiliation(s)
| | - Amol Patil
- Bharati Vidyapeeth Dental College and Hospital, Pune, India
| | | | - Tanisha Rout
- Bharati Vidyapeeth Dental College and Hospital, Pune, India
| | | | - Anand Sabane
- Bharati Vidyapeeth Dental College and Hospital, Pune, India
| |
Collapse
|
14
|
Wei Z, Ye H, Li Y, Li X, Liu Y, Chen Y, Yu J, Wang J, Ye X. Mechanically tough, adhesive, self-healing hydrogel promotes annulus fibrosus repair via autologous cell recruitment and microenvironment regulation. Acta Biomater 2024; 178:50-67. [PMID: 38382832 DOI: 10.1016/j.actbio.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
Annulus fibrosus (AF) defect is an important cause of disc re-herniation after discectomy. The self-regeneration ability of the AF is limited, and AF repair is always hindered by the inflammatory microenvironment after injury. Hydrogels represent one of the most promising materials for AF tissue engineering strategies. However, currently available commercial hydrogels cannot withstand the harsh mechanical load within intervertebral disc. In the present study, an innovative triple cross-linked oxidized hyaluronic acid (OHA)-dopamine (DA)- polyacrylamide (PAM) composite hydrogel, modified with collagen mimetic peptide (CMP) and supplied with transforming growth factor beta 1 (TGF-β1) (OHA-DA-PAM/CMP/TGF-β1 hydrogel) was developed for AF regeneration. The hydrogel exhibited robust mechanical strength, strong bioadhesion, and significant self-healing capabilities. Modified with collagen mimetic peptide, the hydrogel exhibited extracellular-matrix-mimicking properties and sustained the AF cell phenotype. The sustained release of TGF-β1 from the hydrogel was pivotal in recruiting AF cells and promoting extracellular matrix production. Furthermore, the composite hydrogel attenuated LPS-induced inflammatory response and promote ECM synthesis in AF cells via suppressing NFκB/NLRP3 pathway. In vivo, the composite hydrogel successfully sealed AF defects and alleviated intervertebral disk degeneration in a rat tail AF defect model. Histological evaluation showed that the hydrogel integrated well with host tissue and facilitated AF repair. The strategy of recruiting endogenous cells and providing an extracellular-matrix-mimicking and anti-inflammatory microenvironment using the mechanically tough composite OHA-DA-PAM/CMP/TGF-β1 hydrogel may be applicable for AF defect repair in the clinic. STATEMENT OF SIGNIFICANCE: Annulus fibrosus (AF) repair is challenging due to its limited self-regenerative capacity and post-injury inflammation. In this study, a mechanically tough and highly bioadhesive triple cross-linked composite hydrogel, modified with collagen mimetic peptide (CMP) and supplemented with transforming growth factor beta 1 (TGF-β1), was developed to facilitate AF regeneration. The sustained release of TGF-β1 enhanced AF cell recruitment, while both TGF-β1 and CMP could modulate the microenvironment to promote AF cell proliferation and ECM synthesis. In vivo, this composite hydrogel effectively promoted the AF repair and mitigated the intervertebral disc degeneration. This research indicates the clinical potential of the OHA-DA-PAM/CMP/TGF-β1 composite hydrogel for repairing AF defects.
Collapse
Affiliation(s)
- Zhenyuan Wei
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Han Ye
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai 200031, China
| | - Yucai Li
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Xiaoxiao Li
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yi Liu
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Yujie Chen
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Jiangming Yu
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| | - Jielin Wang
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| | - Xiaojian Ye
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; Center for Spinal Minimally Invasive Research, Shanghai Jiao Tong University, Shanghai 200336, China; Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China.
| |
Collapse
|
15
|
Wu M, Wu S, Chen W, Li YP. The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease. Cell Res 2024; 34:101-123. [PMID: 38267638 PMCID: PMC10837209 DOI: 10.1038/s41422-023-00918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Transforming growth factor-βs (TGF-βs) and bone morphometric proteins (BMPs) belong to the TGF-β superfamily and perform essential functions during osteoblast and chondrocyte lineage commitment and differentiation, skeletal development, and homeostasis. TGF-βs and BMPs transduce signals through SMAD-dependent and -independent pathways; specifically, they recruit different receptor heterotetramers and R-Smad complexes, resulting in unique biological readouts. BMPs promote osteogenesis, osteoclastogenesis, and chondrogenesis at all differentiation stages, while TGF-βs play different roles in a stage-dependent manner. BMPs and TGF-β have opposite functions in articular cartilage homeostasis. Moreover, TGF-β has a specific role in maintaining the osteocyte network. The precise activation of BMP and TGF-β signaling requires regulatory machinery at multiple levels, including latency control in the matrix, extracellular antagonists, ubiquitination and phosphorylation in the cytoplasm, nucleus-cytoplasm transportation, and transcriptional co-regulation in the nuclei. This review weaves the background information with the latest advances in the signaling facilitated by TGF-βs and BMPs, and the advanced understanding of their diverse physiological functions and regulations. This review also summarizes the human diseases and mouse models associated with disordered TGF-β and BMP signaling. A more precise understanding of the BMP and TGF-β signaling could facilitate the development of bona fide clinical applications in treating bone and cartilage disorders.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Shali Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
16
|
Liu B, Jia Q, Hong IS, Dang X, Wu Z, Wang H, Cheng JC, Fang L. TGF-β1 and TGF-β3, but not TGF-β2, are upregulated in the ovaries of ovarian hyperstimulation syndrome†. Biol Reprod 2024; 110:116-129. [PMID: 37801702 DOI: 10.1093/biolre/ioad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/07/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023] Open
Abstract
Ovarian hyperstimulation syndrome (OHSS) is a life-threatening and potentially fatal complication during in vitro fertilization treatment. The levels of transforming growth factor-β1 (TGF-β1) are upregulated in human follicular fluid and granulosa-lutein cells (hGL) of OHSS patients and could contribute to the development of OHSS by downregulating steroidogenic acute regulatory protein (StAR) expression. However, whether the same is true for the other two members of the TGF-β family, TGF-β2 and -β3, remains unknown. We showed that all three TGF-β isoforms were expressed in human follicular fluid. In comparison, TGF-β1 was expressed at the highest level, followed by TGF-β2 and TGF-β3. Compared to non-OHSS patients, follicular fluid levels of TGF-β1 and TGF-β3 were significantly upregulated in OHSS patients. The same results were observed in mRNA levels of TGF-β isoforms in hGL cells and ovaries of OHSS rats. In addition, StAR mRNA levels were upregulated in hGL cells of OHSS patients and the ovaries of OHSS rats. Treatment cells with TGF-β isoforms downregulated the StAR expression with a comparable effect. Moreover, activations of SMAD3 signaling were required for TGF-β isoforms-induced downregulation of StAR expression. This study indicates that follicular fluid TGF-β1 and TGF-β3 levels could be used as biomarkers and therapeutic targets for the OHSS.
Collapse
Affiliation(s)
- Boqun Liu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiongqiong Jia
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, Republic of Korea
| | - Xuan Dang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ze Wu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hailong Wang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Strauß S, Diemer M, Bucan V, Kuhbier JW, Asendorf T, Vogt PM, Schlottmann F. Spider silk enhanced tissue engineering of cartilage tissue: Approach of a novel bioreactor model using adipose derived stromal cells. J Appl Biomater Funct Mater 2024; 22:22808000241226656. [PMID: 38253568 DOI: 10.1177/22808000241226656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Human cartilage tissue remains a challenge for the development of therapeutic options due to its poor vascularization and reduced regenerative capacities. There are a variety of research approaches dealing with cartilage tissue engineering. In addition to different biomaterials, numerous cell populations have been investigated in bioreactor-supported experimental setups to improve cartilage tissue engineering. The concept of the present study was to investigate spider silk cocoons as scaffold seeded with adipose-derived stromal cells (ASC) in a custom-made bioreactor model using cyclic axial compression to engineer cartilage-like tissue. For chemical induction of differentiation, BMP-7 and TGF-β2 were added and changes in cell morphology and de-novo tissue formation were investigated using histological staining to verify chondrogenic differentiation. By seeding spider silk cocoons with ASC, a high colonization density and cell proliferation could be achieved. Mechanical induction of differentiation using a newly established bioreactor model led to a more roundish cell phenotype and new extracellular matrix formation, indicating a chondrogenic differentiation. The addition of BMP-7 and TGF-β2 enhanced the expression of cartilage specific markers in immunohistochemical staining. Overall, the present study can be seen as pilot study and valuable complementation to the published literature.
Collapse
Affiliation(s)
- Sarah Strauß
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Maximilian Diemer
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Vesna Bucan
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Jörn W Kuhbier
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
- Department of Plastic, Aesthetic and Hand Surgery, Helios Klinikum Hildesheim, Hildesheim, Germany
| | - Tomke Asendorf
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Peter M Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Frederik Schlottmann
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
18
|
Cheng Y, Zhang Z. Expression and Clinical Significance of microRNA-138-5p and TGF-β3 in Peripheral Blood of Patients With Ankylosing Spondylitis. Global Spine J 2023:21925682231209626. [PMID: 37978926 DOI: 10.1177/21925682231209626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
STUDY DESIGN Clinical study. OBJECTIVE Our work was aimed at exploring the expression and clinical significance of microRNA-138-5p (miR-138-5p) and Transforming Growth Factor-beta 3 (TGF-β3) in peripheral blood of patients with ankylosing spondylitis (AS). METHODS Forty-seven patients with AS were selected as the AS group, and the staging of the enrolled AS patients was based on the BASDAI score: <4 points were classified as the stable stage (stable group) and ≥4 points were classified as the active stage (active group). Forty-seven cases were selected from the same period of healthy physical examination in our hospital as the control group. miR-138-5p and TGF-β3 levels and disease activity factors in peripheral blood were measured in all patients. RESULTS Compared to healthy subjects, reduced miR-138-5p levels and increased TGF-β3 levels were found in AS patient. Even more, level of miR-138-5p was decreased and level of TGF-β3 was found to be increased in active disease stage of AS in comparison to inactive disease. Correlation analysis disclosed that miR-138-5p expression in peripheral blood of AS patients was negatively correlated with TGF-β3, HLA-B27, ESR, CRP, and BASDAI; serum TGF-β3 was positively correlated with HLA-B27, ESR, CRP, and BASDAI. The ROC curve analysis disclosed that miR-138-5p and TGF-β3 had certain diagnostic value for AS, and the combined detection could improve the clinical diagnostic capability of this disease. CONCLUSION miR-138-5p and TGF-β3 in peripheral blood of AS patients are potential biological markers for the diagnosis of AS and are expected to be new clinical diagnostic indicators.
Collapse
Affiliation(s)
- Yonghong Cheng
- Department of Spinal Surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhidong Zhang
- Department of Spinal Surgery, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
19
|
Huang Y, Zhao H, Wang Y, Bi S, Zhou K, Li H, Zhou C, Wang Y, Wu W, Peng B, Tang J, Pan B, Wang B, Chen Z, Li Z, Zhang Z. The application and progress of tissue engineering and biomaterial scaffolds for total auricular reconstruction in microtia. Front Bioeng Biotechnol 2023; 11:1089031. [PMID: 37811379 PMCID: PMC10556751 DOI: 10.3389/fbioe.2023.1089031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/21/2023] [Indexed: 10/10/2023] Open
Abstract
Microtia is a congenital deformity of the ear with an incidence of about 0.8-4.2 per 10,000 births. Total auricular reconstruction is the preferred treatment of microtia at present, and one of the core technologies is the preparation of cartilage scaffolds. Autologous costal cartilage is recognized as the best material source for constructing scaffold platforms. However, costal cartilage harvest can lead to donor-site injuries such as pneumothorax, postoperative pain, chest wall scar and deformity. Therefore, with the need of alternative to autologous cartilage, in vitro and in vivo studies of biomaterial scaffolds and cartilage tissue engineering have gradually become novel research hot points in auricular reconstruction research. Tissue-engineered cartilage possesses obvious advantages including non-rejection, minimally invasive or non-invasive, the potential of large-scale production to ensure sufficient donors and controllable morphology. Exploration and advancements of tissue-engineered cartilaginous framework are also emerging in aspects including three-dimensional biomaterial scaffolds, acquisition of seed cells and chondrocytes, 3D printing techniques, inducing factors for chondrogenesis and so on, which has greatly promoted the research process of biomaterial substitute. This review discussed the development, current application and research progress of cartilage tissue engineering in auricular reconstruction, particularly the usage and creation of biomaterial scaffolds. The development and selection of various types of seed cells and inducing factors to stimulate chondrogenic differentiation in auricular cartilage were also highlighted. There are still confronted challenges before the clinical application becomes widely available for patients, and its long-term effect remains to be evaluated. We hope to provide guidance for future research directions of biomaterials as an alternative to autologous cartilage in ear reconstruction, and finally benefit the transformation and clinical application of cartilage tissue engineering and biomaterials in microtia treatment.
Collapse
Affiliation(s)
- Yeqian Huang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Hanxing Zhao
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Yixi Wang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Siwei Bi
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Zhou
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Hairui Li
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Yudong Wang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqing Wu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Peng
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Jun Tang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Bo Pan
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoyun Wang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhixing Chen
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| | - Zhenyu Zhang
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Plastic Reconstructive and Aesthetic Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Yu L, Cavelier S, Hannon B, Wei M. Recent development in multizonal scaffolds for osteochondral regeneration. Bioact Mater 2023; 25:122-159. [PMID: 36817819 PMCID: PMC9931622 DOI: 10.1016/j.bioactmat.2023.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/30/2022] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Osteochondral (OC) repair is an extremely challenging topic due to the complex biphasic structure and poor intrinsic regenerative capability of natural osteochondral tissue. In contrast to the current surgical approaches which yield only short-term relief of symptoms, tissue engineering strategy has been shown more promising outcomes in treating OC defects since its emergence in the 1990s. In particular, the use of multizonal scaffolds (MZSs) that mimic the gradient transitions, from cartilage surface to the subchondral bone with either continuous or discontinuous compositions, structures, and properties of natural OC tissue, has been gaining momentum in recent years. Scrutinizing the latest developments in the field, this review offers a comprehensive summary of recent advances, current hurdles, and future perspectives of OC repair, particularly the use of MZSs including bilayered, trilayered, multilayered, and gradient scaffolds, by bringing together onerous demands of architecture designs, material selections, manufacturing techniques as well as the choices of growth factors and cells, each of which possesses its unique challenges and opportunities.
Collapse
Affiliation(s)
- Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Sacha Cavelier
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Brett Hannon
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
| | - Mei Wei
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
- Department of Mechanical Engineering, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
21
|
Salkin H, Acar MB, Gonen ZB, Basaran KE, Ozcan S. Comparative proteomics analysis of transforming growth factor-beta1-overexpressed human dental pulp stem cell-derived secretome on CD44-mediated fibroblast activation via canonical smad signal pathway. Connect Tissue Res 2023; 64:205-218. [PMID: 36421034 DOI: 10.1080/03008207.2022.2144733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE The aim of this study investigates whether the secretome collected from human dental pulp stem cells (hDPSCs) transfected with transforming growth factor-beta1 (TGF-β1) is related to CD44 expression of fibroblasts and canonical smad signaling pathway via proteomic analyzes. MATERIALS AND METHODS In order to obtain secretome, hDPSCs were conditioned with serum-free alpha-MEM in an incubator containing 37°C, 5% CO2, and humidity for 18-24 h. Proteins in control and TGF-β1 secretome were analyzed by tandem mass spectrometry-based shotgun proteomic method. Bioinformatic evaluations were completed via Ingenuity Pathway Analysis (IPA, QIAGEN) software. CD44 expressions in fibroblasts were evaluated by real time-PCR, western blot, and immunofluorescent staining. The relationship of canonical smad pathway and CD44 was analyzed by western blot and LC-MS/MS. Cell cycle, proliferation and wound healing tests were performed in the secretome groups. RESULTS Venn diagram was showed 174 common proteins were identified from each group. In the control secretome 140 unique proteins were identified and 66 entries were exclusive for TGF-β1 secretome. CD44 gene and protein expressions were increased in fibroblasts treated with TGF-β1 secretome. Relationship between targeted protein data showed that activation of the canonical TGF-β1/Smad pathway was up-regulated CD44 expression in fibroblasts. The canonical smad pathway-mediated upregulation of CD44 may increase the mitotic activity, proliferation, and wound healing potential in fibroblasts. CONCLUSION While TGF-β1-transfected hDPSC secretome may be a potential therapeutic candidate in regenerative connective tissue therapies as it induces fibroblast activation, anti-TGF-β1-based therapies would be considered in histopathological conditions such as pulmonary fibrosis or hepatic fibrosis.
Collapse
Affiliation(s)
- H Salkin
- Vocational School, Department of Medical Services and Techniques, Program of Pathology Laboratory Techniques, Beykent University, Istanbul, Turkey
| | - M B Acar
- Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Z B Gonen
- Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - K E Basaran
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - S Ozcan
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey
| |
Collapse
|
22
|
Xia S, Li Y, You P, Hu C. Screening of anti-liver fibrosis peptides from turtle shell protein using two-enzyme hydrolysis by molecular docking. Food Funct 2023; 14:1476-1483. [PMID: 36648420 DOI: 10.1039/d2fo03307k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Turtle shell as a food residue of Pelodiscus sinensis (a type of edible aquatic animal) is widely used in Traditional Chinese Medicine for hepatic fibrosis therapy. Previous studies have demonstrated that the peptides (<6 kDa) derived from turtle shells are considered effective components. The protein of turtle shells has important potential as a source of bioactive peptides which may play a role as ingredients in functional foods. In the present study, the protein of turtle shell was hydrolyzed using a two-enzyme combination. It was found that the hydrolysates obtained by a combination of pepsin and trypsin showed the highest anti-liver fibrosis activity relative to other combinations in a cell viability assay. The hydrolysates were separated and purified by ultra-filtration (<6 kDa), gel filtration chromatography (GFC) and high-performance liquid chromatography (HPLC). Subsequently, the sequences of purified peptides were analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). Molecular docking was used to analyze the interaction of these peptides with the transforming growth factor-β1 (TGF-β1) receptor. Two (GPPGVPGPGPL, TSLPVPAPV) of these novel peptides displayed lower binding energies to the TGF-β1 receptor (-8.18 kcal mol-1, -8 kcal mol-1). Finally, the above two peptides were synthesized chemically and their in vitro anti-liver fibrosis activity was verified by MTT assay. Among them, GPPGVPGPGPL showed a better in vitro anti-liver fibrosis activity (IC50: 80.13 μM). We established a method to obtain anti-liver fibrosis peptides from turtle shells by using bioactivity-guided isolation with molecular docking. Turtle shell protein is an excellent source of anti-liver fibrosis peptides which can offer therapeutic and commercial benefits as an ingredient in functional foods.
Collapse
Affiliation(s)
- Shufan Xia
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu Road West, Wuhan, 430065, People's Republic of China
| | - Yao Li
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu Road West, Wuhan, 430065, People's Republic of China
| | - Pengtao You
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, 16 Huangjiahu Road West, Wuhan 430065, People's Republic of China
| | - Chunling Hu
- College of Pharmacy, Hubei University of Chinese Medicine, 16 Huangjiahu Road West, Wuhan, 430065, People's Republic of China
| |
Collapse
|
23
|
Li DX, Ma Z, Szojka ARA, Lan X, Kunze M, Mulet-Sierra A, Westover L, Adesida AB. Non-hypertrophic chondrogenesis of mesenchymal stem cells through mechano-hypoxia programing. J Tissue Eng 2023; 14:20417314231172574. [PMID: 37216035 PMCID: PMC10192798 DOI: 10.1177/20417314231172574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/09/2023] [Indexed: 05/24/2023] Open
Abstract
Cartilage tissue engineering aims to generate functional replacements to treat cartilage defects from damage and osteoarthritis. Human bone marrow-derived mesenchymal stem cells (hBM-MSC) are a promising cell source for making cartilage, but current differentiation protocols require the supplementation of growth factors like TGF-β1 or -β3. This can lead to undesirable hypertrophic differentiation of hBM-MSC that progress to bone. We have found previously that exposing engineered human meniscus tissues to physiologically relevant conditions of the knee (mechanical loading and hypoxia; hence, mechano-hypoxia conditioning) increased the gene expression of hyaline cartilage markers, SOX9 and COL2A1, inhibited hypertrophic marker COL10A1, and promoted bulk mechanical property development. Adding further to this protocol, we hypothesize that combined mechano-hypoxia conditioning with TGF-β3 growth factor withdrawal will promote stable, non-hypertrophic chondrogenesis of hBM-MSC embedded in an HA-hydrogel. We found that the combined treatment upregulated many cartilage matrix- and development-related markers while suppressing many hypertrophic- and bone development-related markers. Tissue level assessments with biochemical assays, immunofluorescence, and histochemical staining confirmed the gene expression data. Further, mechanical property development in the dynamic compression treatment shows promise toward generating functional engineered cartilage through more optimized and longer culture conditions. In summary, this study introduced a novel protocol to differentiate hBM-MSC into stable, cartilage-forming cells.
Collapse
Affiliation(s)
- David Xinzheyang Li
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Civil and Environmental
Engineering, Faculty of Engineering, AB, University of Alberta, Edmonton, AB,
Canada
| | - Zhiyao Ma
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Alexander RA Szojka
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Xiaoyi Lan
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Civil and Environmental
Engineering, Faculty of Engineering, AB, University of Alberta, Edmonton, AB,
Canada
| | - Melanie Kunze
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Aillette Mulet-Sierra
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Lindsey Westover
- Department of Mechanical Engineering,
Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
| | - Adetola B Adesida
- Department of Surgery, Faculty of
Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
24
|
Dicks AR, Steward N, Guilak F, Wu CL. Chondrogenic Differentiation of Human-Induced Pluripotent Stem Cells. Methods Mol Biol 2023; 2598:87-114. [PMID: 36355287 PMCID: PMC9830630 DOI: 10.1007/978-1-0716-2839-3_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The generation of large quantities of genetically defined human chondrocytes remains a critical step for the development of tissue engineering strategies for cartilage regeneration and high-throughput drug screening. This protocol describes chondrogenic differentiation of human-induced pluripotent stem cells (hiPSCs), which can undergo genetic modification and the capacity for extensive cell expansion. The hiPSCs are differentiated in a stepwise manner in monolayer through the mesodermal lineage for 12 days using defined growth factors and small molecules. This is followed by 28 days of chondrogenic differentiation in a 3D pellet culture system using transforming growth factor beta 3 and specific compounds to inhibit off-target differentiation. The 6-week protocol results in hiPSC-derived cartilaginous tissue that can be characterized by histology, immunohistochemistry, and gene expression or enzymatically digested to isolate chondrocyte-like cells. Investigators can use this protocol for experiments including genetic engineering, in vitro disease modeling, or tissue engineering.
Collapse
Affiliation(s)
- Amanda R Dicks
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
- Shriners Hospitals for Children - St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University, St. Louis, MO, USA
| | - Nancy Steward
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
- Shriners Hospitals for Children - St. Louis, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University, St. Louis, MO, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.
- Shriners Hospitals for Children - St. Louis, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.
- Center of Regenerative Medicine, Washington University, St. Louis, MO, USA.
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery and Rehabilitation, Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
25
|
Wu F, Xu X, Li W, Hong Y, Lai H, Zhang J, Wu X, Zhou K, Hu N. Nanoparticle-Delivered Transforming Growth Factor-β1 siRNA Induces PD-1 against Gastric Cancer by Transforming the Phenotype of the Tumor Immune Microenvironment. Pharmaceuticals (Basel) 2022; 15:ph15121487. [PMID: 36558938 PMCID: PMC9787292 DOI: 10.3390/ph15121487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Immune checkpoint blockade (ICB) is currently considered to be an important therapeutic method, which obtained FDA approval for clinical use in gastric cancer in 2017. As a new mechanism, it was found that the effect of αPDL1 could be improved by blocking the TGF-β1 signaling pathway, which converts the tumor immune microenvironment from the "immune-excluded phenotype" to the "immune-inflamed phenotype". Based on this phenomenon, this project was designed to prepare TGF-β1-siRNA-loaded PEG-PCL nanoparticles conjugated to αPDL1 (siTGF-β1-αPDL1-PEG-PCL) since we have linked similar antibodies to PEG-PCL previously. Therefore, MFC tumor-engrafted mice were established to simulate the biological characteristics of converting the phenotype of the immune microenvironment, and to study the anti-tumor effect and possible molecular mechanism. In this study, αPDL1 antibody conjugates markedly increased the cell uptake of NPs. The produced αPDL1-PEG-PCL NPs efficiently reduced the amounts of TGF-β1 mRNA in MFC cells, converting the immune microenvironment of MFC tumors engrafted mice from the "immune-excluded phenotype" to the "immune-inflamed phenotype". PDL1-harboring gastric cancer had increased susceptibility to αPDL1. The value of this drug-controlled release system targeting the tumor microenvironment in immune checkpoint therapy of gastric cancer would provide a scientific basis for clinically applying nucleic acid drugs.
Collapse
Affiliation(s)
- Fenglei Wu
- Department of Oncology, The First Affiliated Hospital of Kangda College of Nanjing Medical University (The Affiliated Lianyungang Hospital of Xuzhou Medical University), Xuzhou 221004, China
| | - Xiujuan Xu
- Department of Radiation Oncology, Lianyungang Second People’s Hospital (Lianyungang Cancer Hospital), Lianyungang 222023, China
| | - Wei Li
- Center of Research Laboratory, The First Affiliated Hospital of Kangda College of Nanjing Medical University (The Affiliated Lianyungang Hospital of Xuzhou Medical University), Xuzhou 221004, China
| | - Yidong Hong
- Department of Oncology, The First Affiliated Hospital of Kangda College of Nanjing Medical University (The Affiliated Lianyungang Hospital of Xuzhou Medical University), Xuzhou 221004, China
| | - Huan Lai
- Department of Oncology, The First Affiliated Hospital of Kangda College of Nanjing Medical University (The Affiliated Lianyungang Hospital of Xuzhou Medical University), Xuzhou 221004, China
| | - Jingzhou Zhang
- Department of Oncology, The First Affiliated Hospital of Kangda College of Nanjing Medical University (The Affiliated Lianyungang Hospital of Xuzhou Medical University), Xuzhou 221004, China
| | - Xueyu Wu
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University (The First People’s Hospital of Lianyungang), Lianyungang 222002, China
| | - Kangjie Zhou
- Department of Oncology, The First Affiliated Hospital of Kangda College of Nanjing Medical University (The Affiliated Lianyungang Hospital of Xuzhou Medical University), Xuzhou 221004, China
| | - Nan Hu
- Department of Oncology, The First Affiliated Hospital of Kangda College of Nanjing Medical University (The Affiliated Lianyungang Hospital of Xuzhou Medical University), Xuzhou 221004, China
- Correspondence:
| |
Collapse
|
26
|
Yu P, Mao F, Chen J, Ma X, Dai Y, Liu G, Dai F, Liu J. Characteristics and mechanisms of resorption in lumbar disc herniation. Arthritis Res Ther 2022; 24:205. [PMID: 35999644 PMCID: PMC9396855 DOI: 10.1186/s13075-022-02894-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 07/26/2022] [Indexed: 12/12/2022] Open
Abstract
Lumbar disc herniation (LDH) can be spontaneously absorbed without surgical treatment. However, the pathogenesis and physiological indications for predicting protrusion reabsorption are still unclear, which prevents clinicians from preferentially choosing conservative treatment options for LDH patients with reabsorption effects. The purpose of this review was to summarize previous reports on LDH reabsorption and to discuss the clinical and imaging features that favor natural absorption. We highlighted the biological mechanisms involved in the phenomenon of LDH reabsorption, including macrophage infiltration, inflammatory responses, matrix remodeling, and neovascularization. In addition, we summarized and discussed potential clinical treatments for promoting reabsorption. Current evidence suggests that macrophage regulation of inflammatory mediators, matrix metalloproteinases, and specific cytokines in intervertebral disc is essential for the spontaneous reabsorption of LDH.
Collapse
Affiliation(s)
- Pengfei Yu
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People's Republic of China
| | - Feng Mao
- Department of Orthopaedic Surgery, Kunshan Integrated TCM and Western Medicine Hospital, Suzhou, 215332, People's Republic of China
| | - Jingyun Chen
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Xiaoying Ma
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yuxiang Dai
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People's Republic of China
| | - Guanhong Liu
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People's Republic of China
| | - Feng Dai
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People's Republic of China
| | - Jingtao Liu
- Department of Orthopaedic Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, People's Republic of China.
| |
Collapse
|
27
|
Zheng L, Guan Z, Xue M. TGF-β Signaling Pathway-Based Model to Predict the Subtype and Prognosis of Head and Neck Squamous Cell Carcinoma. Front Genet 2022; 13:862860. [PMID: 35586572 PMCID: PMC9108263 DOI: 10.3389/fgene.2022.862860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/31/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Although immunotherapy with immune checkpoint therapy has been used to treat head and neck squamous cell carcinoma (HNSCC), response rates and treatment sensitivity remain limited. Recent studies have indicated that transforming growth factor-β (TGF-β) may be an important target for novel cancer immunotherapies. Materials and methods: We collected genomic profile data from The Cancer Genome Atlas and Gene Expression Omnibus. The least absolute shrinkage and selection operator method and Cox regression were used to establish a prognostic model. Gene set enrichment analysis was applied to explore biological functions. Tracking of indels by decomposition and subclass mapping algorithms were adopted to evaluate immunotherapy efficiency. Result: We established a seven TGF-β pathway-associated gene signature with good prediction efficiency. The high-risk score subgroup mainly showed enrichment in tumor-associated signaling such as hypoxia and epithelial-mesenchymal transition (EMT) pathways; This subgroup was also associated with tumor progression. The low-risk score subgroup was more sensitive to immunotherapy and the high-risk score subgroup to cisplatin, erlotinib, paclitaxel, and crizotinib. Conclusion: The TGF-β pathway signature gene model provides a novel perspective for evaluating effectiveness pre-immunotherapy and may guide further studies of precision immuno-oncology.
Collapse
Affiliation(s)
- Lian Zheng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenjie Guan
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhenjie Guan, ; Miaomiao Xue,
| | - Miaomiao Xue
- Department of General Dentistry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhenjie Guan, ; Miaomiao Xue,
| |
Collapse
|
28
|
Primadhi RA, Gunawan H, Rachmayati S, Nagar Rasyid H. Autologous osteophyte grafting for ankle arthrodesis. SICOT J 2022; 8:10. [PMID: 35363135 PMCID: PMC8973299 DOI: 10.1051/sicotj/2022007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/14/2022] [Indexed: 01/15/2023] Open
Abstract
Purpose: Various graft sources had been identified to facilitate gap-filling in ankle arthrodesis procedures with related articular defects. This was a preliminary study with the aim of analyzing the efficacy and feasibility of using autologous osteophyte as a grafting source. Methods: Retrospective evaluation of ten patients having ankle arthrodesis procedure using identical anterior approach and plate fixation technique was conducted. Basic anthropometric measurements and underlying disease were recorded. Functional outcome and fusion rate were assessed at a 12-month post-surgery follow-up visit. Results: The underlying diseases include primary osteoarthritis (OA), post-traumatic OA, rheumatoid arthritis, and Charcot arthropathy. The patient’s age mean was 56.6 years (range 36–71 years), and BMI varied from 17.9 kg/m2 to 29.3 kg/m2. Nearly all patients had improved functional outcomes as described by foot and ankle ability measure (FAAM) score and fusion rate as described by modified radiographic union score for tibia (RUST). One patient had failed surgery due to implant failure with diminished protective foot sensory. Conclusion: Osteophytes from the distal tibia and talar neck were a viable source of bone graft, especially for ankle arthrodesis using anterior approach among various ages and BMI, in which the surgeons would not need additional incision for graft harvesting.
Collapse
Affiliation(s)
- Raden Andri Primadhi
- Department of Orthopaedics and Traumatology, Universitas Padjadjaran Medical School/Hasan Sadikin Hospital Jalan Pasteur 38 Bandung 40161 Indonesia
- Corresponding author:
| | - Hendra Gunawan
- Department of Dermato-Venereology, Universitas Padjadjaran Medical School/Hasan Sadikin Hospital Jalan Pasteur 38 Bandung 40161 Indonesia
| | - Sylvia Rachmayati
- Department of Clinical Pathology, Universitas Padjadjaran Medical School/Hasan Sadikin Hospital Jalan Pasteur 38 Bandung 40161 Indonesia
| | - Hermawan Nagar Rasyid
- Department of Orthopaedics and Traumatology, Universitas Padjadjaran Medical School/Hasan Sadikin Hospital Jalan Pasteur 38 Bandung 40161 Indonesia
| |
Collapse
|
29
|
Zheng Q, Wang Z, Sun Z, Wen J, Duan T, Zhang B. In vivo and in vitro performances of chitosan-coated Mg-Zn-Zr-Gd-Ca alloys as bone biodegradable materials in rat models. J Biomater Appl 2022; 36:1786-1799. [PMID: 35276054 DOI: 10.1177/08853282211052385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mg alloys have attracted significant attention as promising biomedical materials, specifically as fixation materials for promoting fracture healing. However, their unsatisfactory corrosion resistances hinder further clinical applications and thus require attention. This study aims to determine the performance of novel chitosan-coated Mg-1Zn-0.3Zr-2Gd-1Ca alloy and its ability to promote the healing of osteoporotic fractures. Moreover, its corrosion resistance and biocompatibility were assessed. Performance degradations of the samples were measured via electrochemical tests, weight loss test and morphological analysis, and the uncoated and chitosan-coated fixations were compared based on their effects on biocompatibility via the cytotoxicity test, X-rays, and hematoxylin and eosin staining. The effect of bone growth and healing was investigated via immunohistochemical test. Results of the electrochemical tests indicated that compared with the bare body, chitosan-coated Mg-Zn-Ca-Zr-Gd alloys improved by one order of magnitude. Additionally, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and weight loss test demonstrated that the corrosion resistance of the chitosan-coated Mg alloy is better than that of the uncoated alloy. In addition, cytotoxicity analysis indicated that the viability and morphology of the chitosan-coated alloy groups were superior to the uncoated groups in vitro. During in vivo analysis, chitosan-coated and uncoated Mg-1Zn-0.3Zr-2Gd-1Ca alloys were implanted into ovariectomized SD female rats with osteoporotic fractures for 1, 2, and 3 weeks. No displacement and shedding were observed through X-rays, and pathological analyses proved that the material was not harmful for liver and kidney tissues. Immunohistochemistry revealed that the chitosan-coated Mg-Zn-Ca-Zr-Gd alloy material contributed to the healing of osteoporotic fractures in the SD rat models. In conclusion, this study demonstrated the chitosan-coated Mg-Zn-Ca-Zr-Gd alloys have improved corrosion resistance and biocompatibility. Moreover, the alloy was found to accelerate the healing of osteoporotic fractures in SD rat models. Therefore, it has significant potential as a fixation material for osteoporotic fractures.
Collapse
Affiliation(s)
- Qiuxia Zheng
- Department of surgery, Central Laboratory of Luoyang Central Hospital, 74623The Luoyang Central Hospital affiliated of Zhengzhou University, Luoyang, China
| | - Zhanhui Wang
- Department of surgery, Central Laboratory of Luoyang Central Hospital, 74623The Luoyang Central Hospital affiliated of Zhengzhou University, Luoyang, China
| | - Zongbin Sun
- Department of surgery, Central Laboratory of Luoyang Central Hospital, 74623The Luoyang Central Hospital affiliated of Zhengzhou University, Luoyang, China
| | - Jiuba Wen
- School of Material Science and Engine, 74623Henan University of science and technology, Luoyang, China
| | - Tinghe Duan
- Department of surgery, Central Laboratory of Luoyang Central Hospital, 74623The Luoyang Central Hospital affiliated of Zhengzhou University, Luoyang, China
| | - Bingbing Zhang
- Key Laboratory of Molecular Medicine for Liver Injury and Repair, 74623Henan University of science and technology, Luoyang, China
| |
Collapse
|
30
|
Zhu M, Zhong W, Cao W, Zhang Q, Wu G. Chondroinductive/chondroconductive peptides and their-functionalized biomaterials for cartilage tissue engineering. Bioact Mater 2022; 9:221-238. [PMID: 34820567 PMCID: PMC8585793 DOI: 10.1016/j.bioactmat.2021.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
The repair of articular cartilage defects is still challenging in the fields of orthopedics and maxillofacial surgery due to the avascular structure of articular cartilage and the limited regenerative capacity of mature chondrocytes. To provide viable treatment options, tremendous efforts have been made to develop various chondrogenically-functionalized biomaterials for cartilage tissue engineering. Peptides that are derived from and mimic the functions of chondroconductive cartilage extracellular matrix and chondroinductive growth factors, represent a unique group of bioactive agents for chondrogenic functionalization. Since they can be chemically synthesized, peptides bear better reproducibility, more stable efficacy, higher modifiability and yielding efficiency in comparison with naturally derived biomaterials and recombinant growth factors. In this review, we summarize the current knowledge in the designs of the chondroinductive/chondroconductive peptides, the underlying molecular mechanisms and their-functionalized biomaterials for cartilage tissue engineering. We also systematically compare their in-vitro and in-vivo efficacies in inducing chondrogenesis. Our vision is to stimulate the development of novel peptides and their-functionalized biomaterials for cartilage tissue engineering.
Collapse
Affiliation(s)
- Mingjing Zhu
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands
| | - Wenchao Zhong
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Wei Cao
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Qingbin Zhang
- Department of Temporomandibular Joint, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, 510182, China
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| |
Collapse
|
31
|
Umbilical Cord Mesenchymal Stromal Cells for Cartilage Regeneration Applications. Stem Cells Int 2022; 2022:2454168. [PMID: 35035489 PMCID: PMC8758292 DOI: 10.1155/2022/2454168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/13/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
Chondropathies are increasing worldwide, but effective treatments are currently lacking. Mesenchymal stromal cell (MSCs) transplantation represents a promising approach to counteract the degenerative and inflammatory environment characterizing those pathologies, such as osteoarthritis (OA) and rheumatoid arthritis (RA). Umbilical cord- (UC-) MSCs gained increasing interest due to their multilineage differentiation potential, immunomodulatory, and anti-inflammatory properties as well as higher proliferation rates, abundant supply along with no risks for the donor compared to adult MSCs. In addition, UC-MSCs are physiologically adapted to survive in an ischemic and nutrient-poor environment as well as to produce an extracellular matrix (ECM) similar to that of the cartilage. All these characteristics make UC-MSCs a pivotal source for a stem cell-based treatment of chondropathies. In this review, the regenerative potential of UC-MSCs for the treatment of cartilage diseases will be discussed focusing on in vitro, in vivo, and clinical studies.
Collapse
|
32
|
Li M, Sun D, Zhang J, Wang Y, Wei Q, Wang Y. Application and development of 3D bioprinting in cartilage tissue engineering. Biomater Sci 2022; 10:5430-5458. [DOI: 10.1039/d2bm00709f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioprinting technology can build complex tissue structures and has the potential to fabricate engineered cartilage with bionic structures for achieving cartilage defect repair/regeneration.
Collapse
Affiliation(s)
- Mingyang Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Daocen Sun
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Juan Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanmei Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qinghua Wei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanen Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, P.R. China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
33
|
Yi H, Wang Y, Liang Q, Mao X. Preclinical and Clinical Amelioration of Bone Fractures with Mesenchymal Stromal Cells: a Systematic Review and Meta-Analysis. Cell Transplant 2022; 31:9636897211051743. [PMID: 35916286 PMCID: PMC9350497 DOI: 10.1177/09636897211051743] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Even though reunion of bone fracture confronts clinicians, mesenchymal stromal
cells (MSCs) are investigated to be curative in bone fracture. This study aimed
to explore the application potential of MSCs for healing bone fractures. By
inputting search terms and retrieving studies published up to March 2021,
multiple databases, including PubMed, EMBASE, Web of Science, and Cochrane
Library, were searched to identify eligible studies. The mean difference (MD)
and 95% confidence interval (95% CI) were calculated to analyze the main results
in the meta-analysis. Data analysis was performed using Engauge Digitizer 10.8
and R Software. Of the 31 articles, 26 were preclinical studies
(n = 913), and 5 were clinical trials (n =
335). Preclinically, MSCs therapy significantly augmented the progress of bone
regeneration [(bone volume over tissue volume (MD7.35, p <
0.01)], despite some non-significant effects (on the callus index, bone
strength, work to failure, and stiffness). Clinically, the MSC group had a
significantly reduced incidence of poor recovery (odds ratio (OR) 0.30,
p < 0.01); however, a significant decrease in healing
time was not observed in the MSC group (MD 2.47, p = 0.26). In
summary, our data suggest that patients with bone fractures benefited from MSC
administration and that MSCs are a potentially useful agent for bone
regeneration. Despite these satisfactory outcomes, larger randomised clinical
trials (RCTs) are necessary to confirm these findings.
Collapse
Affiliation(s)
- Hanxiao Yi
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yang Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Qunying Liang
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoqun Mao
- Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
34
|
A pilot study of circulating levels of TGF-β1 and TGF-β2 as biomarkers of bone healing in patients with non-hypertrophic pseudoarthrosis of long bones. Bone Rep 2021; 16:101157. [PMID: 34950754 PMCID: PMC8671858 DOI: 10.1016/j.bonr.2021.101157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022] Open
Abstract
Background Pseudoarthrosis or non-union is a complication with an incidence of 5-10% of bone fractures, most frequently located in the diaphysis of long bones. The management of this complication is addressed by means of complex surgical procedures and is a concern for orthopaedic and trauma surgeons nowadays. The use of biomarkers for diagnosing patients at risk of non-union would help us to establish special measures for early corrective treatment. Methods Prospective exploratory pilot study with a cohort of 20 patients diagnosed of non-hypertrophic pseudoarthrosis of long bones who were treated surgically with either autologous bone graft or a Tissue Engineering Product composed of bone marrow-derived Mesenchymal Stromal Cells. Patients were followed for 12 months and plasma blood samples were obtained to determine circulating levels of Transforming Growth Factor Beta 1 and Beta 2 (TGF-β1 and TGF-β2, respectively) at inclusion, and at 1 week, 2 weeks, and months 1, 2, 3, 6 and 12 after surgery. Radiological bone healing was evaluated by the Tomographic Union Score (TUS). Results Basal levels of TGF-β1 and TGF-β2 were determined in the twenty patients (26,702 ± 14,537 pg/mL and 307.8 ± 83.1 pg/mL, respectively). Three of them withdrew from the study, so complete follow-up was conducted on 17 patients (9 successfully healed vs. 8 that did not heal). Statistically significant differences between the bone healing group and the non-union group were found at month 12 for both TGF-β1 (p = 0.005) and TGF-β2 (p = 0.02). Conclusions TGF-β1 and TGF-β2 are biomarkers that correlate with clinical evidence of bone regeneration and may be used to monitor patients, although early predictive value after intervention needs to be further studied in combination with other molecules.
Collapse
|
35
|
Wu Z, Korntner SH, Mullen AM, Zeugolis DI. Collagen type II: From biosynthesis to advanced biomaterials for cartilage engineering. BIOMATERIALS AND BIOSYSTEMS 2021; 4:100030. [PMID: 36824570 PMCID: PMC9934443 DOI: 10.1016/j.bbiosy.2021.100030] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Collagen type II is the major constituent of cartilage tissue. Yet, cartilage engineering approaches are primarily based on collagen type I devices that are associated with suboptimal functional therapeutic outcomes. Herein, we briefly describe cartilage's development and cellular and extracellular composition and organisation. We also provide an overview of collagen type II biosynthesis and purification protocols from tissues of terrestrial and marine species and recombinant systems. We then advocate the use of collagen type II as a building block in cartilage engineering approaches, based on safety, efficiency and efficacy data that have been derived over the years from numerous in vitro and in vivo studies.
Collapse
Affiliation(s)
- Z Wu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - SH Korntner
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - AM Mullen
- Teagasc Research Centre, Ashtown, Ireland
| | - DI Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
- Correspondence author at: REMODEL, NUI Galway & UCD.
| |
Collapse
|
36
|
Wang JY, Chen CM, Chen CF, Wu PK, Chen WM. Suppression of Estrogen Receptor Alpha Inhibits Cell Proliferation, Differentiation and Enhances the Chemosensitivity of P53-Positive U2OS Osteosarcoma Cell. Int J Mol Sci 2021; 22:ijms222011238. [PMID: 34681897 PMCID: PMC8540067 DOI: 10.3390/ijms222011238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022] Open
Abstract
Osteosarcoma is a highly malignant musculoskeletal tumor that is commonly noticed in adolescent children, young children, and elderly adults. Due to advances in surgery, chemotherapy and imaging technology, survival rates have improved to 70–80%, but chemical treatments do not enhance patient survival; in addition, the survival rate after chemical treatments is still low. The most obvious clinical feature of osteosarcoma is new bone formation, which is called “sun burst”. Estrogen receptor alpha (ERα) is an essential feature of osteogenesis and regulates cell growth in various tumors, including osteosarcoma. In this study, we sought to investigate the role of ERα in osteosarcoma and to determine if ERα can be used as a target to facilitate the chemosensitivity of osteosarcoma to current treatments. The growth rate of each cell clone was assayed by MTT and trypan blue cell counting, and cell cycle analysis was conducted by flow cytometry. Osteogenic differentiation was induced by osteogenic induction medium and quantified by ARS staining. The effects of ERα on the chemoresponse of OS cells treated with doxorubicin were evaluated by colony formation assay. Mechanistic studies were conducted by examining the levels of proteins by Western blot. The role of ERα on OS prognosis was investigated by an immunohistochemical analysis of OS tissue array. The results showed an impaired growth rate and a decreased osteogenesis ability in the ERα-silenced P53(+) OS cell line U2OS, but not in P53(−) SAOS2 cells, compared with the parental cell line. Cotreatment with tamoxifen, an estrogen receptor inhibitor, increased the sensitivity to doxorubicin, which decreased the colony formation of P53(+) U2OS cells. Cell cycle arrest in the S phase was observed in P53(+) U2OS cells cotreated with low doses of doxorubicin and tamoxifen, while increased levels of apoptosis factors indicated cell death. Moreover, patients with ER−/P53(+) U2OS showed better chemoresponse rates (necrosis rate > 90%) and impaired tumor sizes, which were compatible with the findings of basic research. Taken together, ERα may be a potential target of the current treatments for osteosarcoma that can control tumor growth and improve chemosensitivity. In addition, the expression of ERα in osteosarcoma can be a prognostic factor to predict the response to chemotherapy.
Collapse
Affiliation(s)
- Jir-You Wang
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chao-Ming Chen
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Cheng-Fong Chen
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
| | - Po-Kuei Wu
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence:
| | - Wei-Ming Chen
- Department of Orthopaedics, Taipei Veterans General Hospital, Taipei City 112, Taiwan; (J.-Y.W.); (C.-M.C.); (C.-F.C.); (W.-M.C.)
- Department of Orthopaedics, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei City 112, Taiwan
| |
Collapse
|
37
|
LHPP suppresses colorectal cancer cell migration and invasion in vitro and in vivo by inhibiting Smad3 phosphorylation in the TGF-β pathway. Cell Death Discov 2021; 7:273. [PMID: 34608127 PMCID: PMC8490460 DOI: 10.1038/s41420-021-00657-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
The roles of phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) in tumorigenesis have been recently proven in hepatocellular carcinoma (HCC), cervical, pancreatic, bladder, and thyroid cancers. Previous research demonstrated that LHPP repressed cell proliferation and growth by inactivating the phosphatidylinositol 3-kinase/AKT signaling pathway in vitro and in vivo. However, the functions and potential mechanisms of LHPP as a tumor suppressor in colorectal cancer (CRC) metastasis are still unknown. Consequently, the Transwell assay and xenograft nude model showed that LHPP inhibited migration and invasion of CRC cells in vitro and in vivo, respectively. The expression of total and nuclear epithelial-to-mesenchymal transition (EMT)-related proteins were significantly reduced after LHPP upregulation. Human Gene Expression Array and IPA (Ingenuity Pathway Analysis) commercial software were applied to identify differentially expressed genes (DEGs) and potential cell signaling pathways. A total of 330 different genes were observed, including 177 upregulated genes and 153 downregulated genes. Bioinformatics analysis suggested that the transforming growth factor-β (TGF-β) signaling pathway was highly inactivated in this study. Then, Smad3 phosphorylation was apparently decreased, whereas Smad7 expression was markedly enhanced after upregulating LHPP expression. These results were proven once again after TGF-β1 stimulation. Furthermore, a specific inhibitor of Smad3 phosphorylation (SIS3) was applied to verify that LHPP repressed EMT of cancer cells by attenuating TGF-β/Smad signaling. The results suggested that suppression of the TGF-β/Smad signaling pathway by LHPP overexpression could be abolished by SIS3.
Collapse
|
38
|
Sankaranarayanan NV, Nagarajan B, Desai UR. Combinatorial Virtual Library Screening Study of Transforming Growth Factor-β2-Chondroitin Sulfate System. Int J Mol Sci 2021; 22:7542. [PMID: 34299163 PMCID: PMC8305211 DOI: 10.3390/ijms22147542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/30/2022] Open
Abstract
Transforming growth factor-beta (TGF-β), a member of the TGF-β cytokine superfamily, is known to bind to sulfated glycosaminoglycans (GAGs), but the nature of this interaction remains unclear. In a recent study, we found that preterm human milk TGF-β2 is sequestered by chondroitin sulfate (CS) in its proteoglycan form. To understand the molecular basis of the TGF-β2-CS interaction, we utilized the computational combinatorial virtual library screening (CVLS) approach in tandem with molecular dynamics (MD) simulations. All possible CS oligosaccharides were generated in a combinatorial manner to give 24 di- (CS02), 192 tetra- (CS04), and 1536 hexa- (CS06) saccharides. This library of 1752 CS oligosaccharides was first screened against TGF-β2 using the dual filter CVLS algorithm in which the GOLDScore and root-mean-square-difference (RMSD) between the best bound poses were used as surrogate markers for in silico affinity and in silico specificity. CVLS predicted that both the chain length and level of sulfation are critical for the high affinity and high specificity recognition of TGF-β2. Interestingly, CVLS led to identification of two distinct sites of GAG binding on TGF-β2. CVLS also deduced the preferred composition of the high specificity hexasaccharides, which were further assessed in all-atom explicit solvent MD simulations. The MD results confirmed that both sites of binding form stable GAG-protein complexes. More specifically, the highly selective CS chains were found to engage the TGF-β2 monomer with high affinity. Overall, this work present key principles of recognition with regard to the TGF-β2-CS system. In the process, it led to the generation of the in silico library of all possible CS oligosaccharides, which can be used for advanced studies on other protein-CS systems. Finally, the study led to the identification of unique CS sequences that are predicted to selectively recognize TGF-β2 and may out-compete common natural CS biopolymers.
Collapse
Affiliation(s)
- Nehru Viji Sankaranarayanan
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA; (N.V.S.); (B.N.)
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Balaji Nagarajan
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA; (N.V.S.); (B.N.)
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Umesh R. Desai
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA; (N.V.S.); (B.N.)
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
39
|
Groblewska M, Mroczko B. Pro- and Antiangiogenic Factors in Gliomas: Implications for Novel Therapeutic Possibilities. Int J Mol Sci 2021; 22:ijms22116126. [PMID: 34200145 PMCID: PMC8201226 DOI: 10.3390/ijms22116126] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis, a complex, multistep process of forming new blood vessels, plays crucial role in normal development, embryogenesis, and wound healing. Malignant tumors characterized by increased proliferation also require new vasculature to provide an adequate supply of oxygen and nutrients for developing tumor. Gliomas are among the most frequent primary tumors of the central nervous system (CNS), characterized by increased new vessel formation. The processes of neoangiogenesis, necessary for glioma development, are mediated by numerous growth factors, cytokines, chemokines and other proteins. In contrast to other solid tumors, some biological conditions, such as the blood–brain barrier and the unique interplay between immune microenvironment and tumor, represent significant challenges in glioma therapy. Therefore, the objective of the study was to present the role of various proangiogenic factors in glioma angiogenesis as well as the differences between normal and tumoral angiogenesis. Another goal was to present novel therapeutic options in oncology approaches. We performed a thorough search via the PubMed database. In this paper we describe various proangiogenic factors in glioma vasculature development. The presented paper also reviews various antiangiogenic factors necessary in maintaining equilibrium between pro- and antiangiogenic processes. Furthermore, we present some novel possibilities of antiangiogenic therapy in this type of tumors.
Collapse
Affiliation(s)
- Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland
- Correspondence: ; Tel.: +48-858318785
| |
Collapse
|
40
|
Tian G, Jiang S, Li J, Wei F, Li X, Ding Y, Yang Z, Sun Z, Zha K, Wang F, Huang B, Peng L, Wang Q, Tian Z, Yang X, Wang Z, Guo Q, Guo W, Liu S. Cell-free decellularized cartilage extracellular matrix scaffolds combined with interleukin 4 promote osteochondral repair through immunomodulatory macrophages: In vitro and in vivo preclinical study. Acta Biomater 2021; 127:131-145. [PMID: 33812074 DOI: 10.1016/j.actbio.2021.03.054] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
Cartilage regeneration is a complex physiological process. Synovial macrophages play a critical immunomodulatory role in the acute inflammatory response surrounding joint injury. Due to the contrasting differences and heterogeneity of macrophage, the phenotype of macrophages are the key determinants of the healing response after cartilage injury. Biomaterials derived from extracellular matrix have been used for the repair and reconstruction of a variety of tissues by modulating the host macrophage response. However, the immunomodulatory effect of decellularized cartilage extracellular matrix (ECM) on macrophages has not been elucidated. It is necessary to clarify the immunomodulatory properties of decellularized cartilage matrix (DCM) to guide the design of cartilage regeneration materials. Here, we prepared porcine articular cartilage derived DCM and determined the response of mouse bone marrow-derived macrophages (BMDMs) to the pepsin-solubilized DCM (PDCM) in vitro. Macrophages activated by the PDCM could promote bone marrow-derived mesenchymal stem cells (BMSCs) invasion, migration, proliferation, and chondrogenic differentiation. Then, we verified that early optimization of the immunomodulatory effects of the cell-free DCM scaffold using IL-4 in vivo could achieve good cartilage regeneration in a rat knee osteochondral defect model. Therefore, this decellularized cartilage ECM scaffold combined with accurate and active immunomodulatory strategies provides a new approach for the development of cartilage regeneration materials. STATEMENT OF SIGNIFICANCE: This work reports a decellularized cartilage extracellular matrix (DCM) scaffold combined with an accurate and active immunomodulatory strategy to improve cartilage regeneration. Our findings demonstrated that the pepsin-solubilized DCM (PDCM) activated bone marrow-derived macrophages to polarize to a constructive macrophage phenotype. These polarized macrophages promoted bone marrow-derived mesenchymal stem cell invasion, migration, proliferation, and chondrogenic differentiation. DCM scaffolds combined with early-stage intra-articular injection of IL-4 created a wound-healing microenvironment and improved cartilage regeneration in a rat knee osteochondral defect model.
Collapse
|
41
|
A cytokine in turmoil: Transforming growth factor beta in cancer. Biomed Pharmacother 2021; 139:111657. [PMID: 34243626 DOI: 10.1016/j.biopha.2021.111657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/09/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer remains one of the debilitating health threats to mankind in view of its incurable nature. Many factors are complicit in the initiation, progression and establishment of cancers. Early detection of cancer is the only window of hope that allows for appreciable management and possible limited survival. However, understanding of cancer biology and knowledge of the key factors that interplay at multi-level in the initiation and progression of cancer may hold possible avenues for cancer treatment and management. In particular, dysregulation of growth factor signaling such as that of transforming growth factor beta (TGF-β) and its downstream mediators play key roles in various cancer subtypes. Expanded understanding of the context/cell type-dependent roles of TGF-β and its downstream signaling mediators in cancer may provide leads for cancer pharmacotherapy. Reliable information contained in original articles, reviews, mini-reviews and expert opinions on TGF-β, cancer and the specific roles of TGF-β signaling in various cancer subtypes were retrieved from major scientific data bases including PubMed, Scopus, Medline, Web of Science core collections just to mention but a sample by using the following search terms: TGF-β in cancer, TGF-β and colorectal cancer, TGF-β and brain cancer, TGF-β in cancer initiation, TGF-β and cell proliferation, TGF-β and cell invasion, and TGF-β-based cancer therapy. Retrieved information and reports were carefully examined, contextualized and synchronized into a coherent scientific content to highlight the multiple roles of TGF-β signaling in normal and cancerous cells. From a conceptual standpoint, development of pharmacologically active agents that exert non-specific inhibitory effects on TGF-β signaling on various cell types will undoubtedly lead to a plethora of serious side effects in view of the multi-functionality and pleiotropic nature of TGF-β. Such non-specific targeting of TGF-β could derail any beneficial therapeutic intention associated with TGF-β-based therapy. However, development of pharmacologically active agents designed specifically to target TGF-β signaling in cancer cells may improve cancer pharmacotherapy. Similarly, specific targeting of downstream mediators of TGF-β such as TGF-β type 1 and II receptors (TβRI and TβRII), receptor-mediated Smads, mitogen activated protein kinase (MAPK) and importing proteins in cancer cells may be crucial for cancer pharmacotherapy.
Collapse
|
42
|
Leakey JEA, Ali AA, Babb AR, Badgley HL, Davis KJ, Juliar BE, Leakey TI, Lewis SM, Patton RE, Seng JE. Subchronic toxicity evaluation of glucosamine and glucosamine in combination with chondroitin sulfate in obese Zucker rats. Toxicol Appl Pharmacol 2021; 412:115371. [PMID: 33345901 DOI: 10.1016/j.taap.2020.115371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022]
Abstract
D-glucosamine is a widely consumed dietary supplement used to promote joint health and treat osteoarthritis. It also stimulates intracellular hexosamine flux and increases transforming growth factor β1 (TGFβ1) mRNA expression and insulin resistance in animal studies. The effects of D-glucosamine exposure were investigated in obese Zucker rats. Male (leprfa/leprfa) Zucker rats were exposed to 30, 120, 300 and 600 mg D-glucosamine HCl per kg/day either alone or with chondroitin sulfate (24, 96, 240 and 480 mg/kg/day respectively) for 90 days. After 4 weeks exposure, these doses produced CmaxD-glucosamine concentrations of up to 24 μM in tail vein serum concurrent with a transient 30% increase in blood glucose concentration in the 600 mg/kg/day dose group. D-Glucosamine did not significantly alter body weight, blood glucose or serum insulin levels at any dose tested after 13 weeks exposure, but did increase urinary TGFβ1 concentrations. The Zucker rats developed nephropathy and scrotal sores that were related to their hyperglycemia and obesity, and D-glucosamine exposure exacerbated these conditions to a small extent. The incidence of pulmonary osseous metaplasia was increased in rats exposed to D-glucosamine and a single incidence of adrenal osseous metaplasia was noted in one animal exposed to 600/480 mg D-glucosamine HCl/chondroitin sulfate. These lesions may have been treatment related. These studies suggest that the risk of adverse effects of oral D-glucosamine is small compared to that of hyperglycemia in these animals, but the potential for TGFβ1-mediated pathologies, such as osseous metaplasia and renal nephropathy may be increased.
Collapse
Affiliation(s)
- Julian E A Leakey
- Office of Scientific Coordination, 3900 NCTR Rd., Jefferson, AR 72079, United States of America.
| | - A Afshan Ali
- Office of Scientific Coordination, 3900 NCTR Rd., Jefferson, AR 72079, United States of America
| | - Amy R Babb
- Office of Scientific Coordination, 3900 NCTR Rd., Jefferson, AR 72079, United States of America
| | - Heidi L Badgley
- Toxicologic Pathology Associates, 3900 NCTR Rd., Jefferson, AR 72079, United States of America
| | - Kelly J Davis
- Toxicologic Pathology Associates, 3900 NCTR Rd., Jefferson, AR 72079, United States of America
| | - Beth E Juliar
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Rd., Jefferson, AR 72079, United States of America
| | - Tatiana I Leakey
- Office of Scientific Coordination, 3900 NCTR Rd., Jefferson, AR 72079, United States of America
| | - Sherry M Lewis
- Office of Scientific Coordination, 3900 NCTR Rd., Jefferson, AR 72079, United States of America
| | - Ralph E Patton
- Toxicologic Pathology Associates, 3900 NCTR Rd., Jefferson, AR 72079, United States of America
| | - John E Seng
- Toxicologic Pathology Associates, 3900 NCTR Rd., Jefferson, AR 72079, United States of America
| |
Collapse
|
43
|
Liu J, Chen Q, Alkam E, Zheng X, Li Y, Wang L, Fang J. Association between gene polymorphisms of TGF-β and Smad3 and susceptibility to arthritis: a meta-analysis. Expert Rev Clin Immunol 2020; 16:943-954. [PMID: 33012198 DOI: 10.1080/1744666x.2020.1816826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES This meta-analysis was performed to investigate the associations between single-nucleotide polymorphisms (SNPs) in the TGF- β and Smad3 genes and arthritis. METHODS A meta-analysis was performed in STATA 14.0, with publication bias and meta-regression analysis. All types of arthritis were included, and subgroup analyses were performed to interpret variations among different types of arthritis. RESULTS Twenty-two qualified studieswere selected to analyze the pooled accuracy, and 4 SNP sites were involved. The analysis of the TGFB1 SNP rs1800470 showed an association with arthritis in allelic (P = 0.011), homozygous (P = 0.034) and recessive (P = 0.021) genetic models. The analysis of the TGFB1 SNP rs1800471 demonstrated a close association with rheumatoid arthritis (RA) in homozygous (P = 0.000, 95%) and recessive (P = 0.008) models. The analysis of the SMAD3 SNP rs12901499 revealed a close association with osteoarthritis (OA) in the allelic (P = 0.001) model. CONCLUSION This research showed that genetic variants of the TGF-β pathway impact arthritis. The polymorphisms rs1800470, rs1800471 and rs12901499 were correlated with a higher prevalence of arthritis.
Collapse
Affiliation(s)
- Jianxin Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, Sichuan, China
| | - Qing Chen
- West China Medical School, Sichuan University , Chengdu, Sichuan, China
| | - Erpan Alkam
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, Sichuan, China
| | - Xiaolan Zheng
- Department of Pediatrics, West China Second University Hospital, Sichuan University , Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University , Chengdu, Sichuan, China
| | - Yifei Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University , Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University , Chengdu, Sichuan, China
| | - Lufei Wang
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry , Chapel Hill, NC, USA
| | - Jie Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu, Sichuan, China
| |
Collapse
|
44
|
Ye C, Chen J, Qu Y, Liu H, Yan J, Lu Y, Yang Z, Wang F, Li P. Naringin and bone marrow mesenchymal stem cells repair articular cartilage defects in rabbit knees through the transforming growth factor-β superfamily signaling pathway. Exp Ther Med 2020; 20:59. [PMID: 32952649 PMCID: PMC7485297 DOI: 10.3892/etm.2020.9187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to assess the effect of a combination of naringin and rabbit bone marrow mesenchymal stem cells (BMSCs) on the repair of cartilage defects in rabbit knee joints and to assess possible involvement of the transforming growth factor-β (TGF-β) signaling pathway in this process. After establishing an articular cartilage defect model in rabbit knees, 20 New Zealand rabbits were divided into a sham operation group (Sham), a model group (Mod), a naringin treatment group (Nar), a BMSC group (BMSCs) and a naringin + BMSC group (Nar/BMSCs). At 12 weeks after treatment, the cartilage was evaluated using the International Cartilage Repair Society (ICRS)'s macroscopic evaluation of cartilage repair scale, the ICRS's visual histological assessment scale, the Modified O'Driscoll grading system, histological staining (hematoxylin and eosin staining, toluidine blue staining and safranin O staining) and immunohistochemical staining (type-II collagen, TGF-β3 and SOX-9 immunostaining). Using the above grading systems to quantify the extent of repair, histological quantification and macro quantification of joint tissue repair showed that the Nar/BMSCs group displayed repair after treatment in comparison to the untreated Mod group. Among the injury model groups (Mod, Nar, BMSCs and Nar/BMSCs), the Nar/BMSCs group displayed the highest degree of morphological repair. The results of histological and immunohistochemical staining of the repaired region of the joint defect indicated that the BMSCs had a satisfactory effect on the repair of the joint structure but had a poor effect on the repair of cartilage quality. The Nar/BMSCs group displayed satisfactory therapeutic effects on both repair of the joint structure and cartilage quality. The expression level of type-II collagen was high in the Nar/BMSCs group. Additionally, staining of TGF-β3 and SOX-9 in the Nar/BMSCs group was the strongest compared with that of any other group in the present study. Naringin and/BMSCs together demonstrated a more efficient repair effect on articular cartilage defects in rabbit knees than the use of either treatment alone in terms of joint structure and cartilage quality. One potential mechanism of naringin action may be through activation and continuous regulation of the TGF-β superfamily signaling pathway, which can promote BMSCs to differentiate into chondrocytes.
Collapse
Affiliation(s)
- Chao Ye
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Jing Chen
- Preventative Treatment of Disease Department, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Yi Qu
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Hang Liu
- Orthopedics Department, Huguosi Hospital, Beijing University of Chinese Medicine, Beijing 100035, P.R. China
| | - Junxing Yan
- Orthopedics Department, Tongzhou District Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Beijing 101100, P.R. China
| | - Yingdong Lu
- Pathology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Zheng Yang
- SATCM Key Laboratory of Renowned Physician and Classical Formula, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Fengxian Wang
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Pengyang Li
- Orthopedics Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| |
Collapse
|
45
|
Chen L, Liu J, Guan M, Zhou T, Duan X, Xiang Z. Growth Factor and Its Polymer Scaffold-Based Delivery System for Cartilage Tissue Engineering. Int J Nanomedicine 2020; 15:6097-6111. [PMID: 32884266 PMCID: PMC7434569 DOI: 10.2147/ijn.s249829] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/02/2020] [Indexed: 02/05/2023] Open
Abstract
The development of biomaterials, stem cells and bioactive factors has led to cartilage tissue engineering becoming a promising tactic to repair cartilage defects. Various polymer three-dimensional scaffolds that provide an extracellular matrix (ECM) mimicking environment play an important role in promoting cartilage regeneration. In addition, numerous growth factors have been found in the regenerative process. However, it has been elucidated that the uncontrolled delivery of these factors cannot fully exert regenerative potential and can also elicit undesired side effects. Considering the complexity of the ECM, neither scaffolds nor growth factors can independently obtain successful outcomes in cartilage tissue engineering. Therefore, collectively, an appropriate combination of growth factors and scaffolds have great potential to promote cartilage repair effectively; this approach has become an area of considerable interest in recent investigations. Of late, an increasing trend was observed in cartilage tissue engineering towards this combination to develop a controlled delivery system that provides adequate physical support for neo-cartilage formation and also enables spatiotemporally delivery of growth factors to precisely and fully exert their chondrogenic potential. This review will discuss the role of polymer scaffolds and various growth factors involved in cartilage tissue engineering. Several growth factor delivery strategies based on the polymer scaffolds will also be discussed, with examples from recent studies highlighting the importance of spatiotemporal strategies for the controlled delivery of single or multiple growth factors in cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Li Chen
- Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China.,School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jiaxin Liu
- Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Ming Guan
- School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Tongqing Zhou
- School of Dentistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xin Duan
- Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Zhou Xiang
- Department of Orthopedics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
46
|
Klein C, Monet M, Barbier V, Vanlaeys A, Masquelet AC, Gouron R, Mentaverri R. The Masquelet technique: Current concepts, animal models, and perspectives. J Tissue Eng Regen Med 2020; 14:1349-1359. [PMID: 32621637 DOI: 10.1002/term.3097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/02/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022]
Abstract
Bone reconstruction within a critical-sized defect remains a real challenge in orthopedic surgery. The Masquelet technique is an innovative, two-step therapeutic approach for bone reconstruction in which the placement of a poly (methylmethacrylate) spacer into the bone defect induces the neo-formation of a tissue called "induced membrane." This surgical technique has many advantages and is often preferred to a vascularized bone flap or Ilizarov's technique. Although the Masquelet technique has achieved high clinical success rates since its development by Alain-Charles Masquelet in the early 2000s, very little is known about how the process works, and few animal models of membrane induction have been developed. Our successful use of this technique in the clinic and our interest in the mechanisms of tissue regeneration (notably bone regeneration) prompted us to develop a surgical model of the Masquelet technique in rats. Here, we provide a comprehensive review of the literature on animal models of membrane induction, encompassing the defect site, the surgical procedure, and the histologic and osteogenic properties of the induced membrane. We also discuss the advantages and disadvantages of those models to facilitate efforts in characterizing the complex biological mechanisms that underlie membrane induction.
Collapse
Affiliation(s)
- Céline Klein
- Department of Pediatric Orthopedic Surgery, Amiens University Medical Center, Jules Verne University of Picardie, Amiens, France.,MP3CV-EA7517, CURS, miens University Medical Center, Jules Verne University of Picardie, Amiens, France
| | - Michael Monet
- MP3CV-EA7517, CURS, miens University Medical Center, Jules Verne University of Picardie, Amiens, France
| | - Vincent Barbier
- Department of Pediatric Orthopedic Surgery, Amiens University Medical Center, Jules Verne University of Picardie, Amiens, France.,MP3CV-EA7517, CURS, miens University Medical Center, Jules Verne University of Picardie, Amiens, France
| | - Alison Vanlaeys
- MP3CV-EA7517, CURS, miens University Medical Center, Jules Verne University of Picardie, Amiens, France
| | - Alain-Charles Masquelet
- Service de Chirurgie Orthopédique, Traumatologie et Chirurgie de la Main, Saint-Antoine Hospital, Paris, France
| | - Richard Gouron
- Department of Pediatric Orthopedic Surgery, Amiens University Medical Center, Jules Verne University of Picardie, Amiens, France.,MP3CV-EA7517, CURS, miens University Medical Center, Jules Verne University of Picardie, Amiens, France
| | - Romuald Mentaverri
- MP3CV-EA7517, CURS, miens University Medical Center, Jules Verne University of Picardie, Amiens, France.,Department of Biochemistry and Endocrine Biology, Amiens University Medical Center, Jules Verne University of Picardie, Amiens, France
| |
Collapse
|
47
|
Ogasawara N, Kano F, Hashimoto N, Mori H, Liu Y, Xia L, Sakamaki T, Hibi H, Iwamoto T, Tanaka E, Yamamoto A. Factors secreted from dental pulp stem cells show multifaceted benefits for treating experimental temporomandibular joint osteoarthritis. Osteoarthritis Cartilage 2020; 28:831-841. [PMID: 32272195 DOI: 10.1016/j.joca.2020.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/17/2020] [Accepted: 03/19/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Temporomandibular joint osteoarthritis (TMJOA) is a degenerative disease characterized by progressive cartilage degeneration, abnormal bone remodeling, and chronic pain. In this study, we aimed to investigate effective therapies to reverse or suppress TMJOA progression. DESIGN To this end, we performed intravenous administration of serum free conditioned media from human exfoliated deciduous teeth stem cells (SHED-CM) into a mechanical-stress induced murine TMJOA model. RESULTS SHED-CM administration markedly suppressed temporal muscle inflammation, and improved bone integrity and surface smoothness of the destroyed condylar cartilage. Moreover, SHED-CM treatment decreased the number of IL-1β, iNOS, and MMP-13 expressing chondrocytes, whereas it specifically increased PCNA-positive cells in the multipotent polymorphic cell layer. Notably, the numbers of TdT-mediated dUTP nick end labeling (TUNEL)-positive apoptotic chondrocytes in the SHED-CM treated condyles were significantly lower than in those treated with DMEM, whereas the proteoglycan positive area was restored to a level similar to that of the sham treated group, demonstrating that SHED-CM treatment regenerated the mechanical-stress injured condylar cartilage and subchondral bone. Secretome analysis revealed that SHED-CM contained multiple therapeutic factors that act in osteochondral regeneration. CONCLUSIONS Our data demonstrated that SHED-CM treatment promoted the regeneration and repair of mechanical-stress induced mouse TMJOA. Our observations suggest that SHED-CM has potential to be a potent tissue-regenerating therapeutic agent for patients with severe TMJOA.
Collapse
Affiliation(s)
- N Ogasawara
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan; Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan.
| | - F Kano
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan.
| | - N Hashimoto
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan.
| | - H Mori
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan.
| | - Y Liu
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan; Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan.
| | - L Xia
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan; Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan.
| | - T Sakamaki
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan.
| | - H Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - T Iwamoto
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan.
| | - E Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan.
| | - A Yamamoto
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan.
| |
Collapse
|
48
|
Shi L, Tee BC, Cotter L, Sun Z. Enhance Mandibular Symphyseal Surface Bone Growth with Autologous Mesenchymal Stem Cell Sheets: An Animal Study. Aesthetic Plast Surg 2020; 44:191-200. [PMID: 31701201 DOI: 10.1007/s00266-019-01494-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/31/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION The size and shape of the chin strongly influence facial profile and harmony. The current correction of chin deficiency mostly relies on genioplasty surgery involving osteotomy. To avoid osteotomy, one possible alternative is to enhance bone growth at the mental protuberance area with cell sheet transplantation. This study was undertaken to evaluate the efficacy of this approach in a pig model. MATERIALS AND METHODS Five 4-month-old pigs were included for mandibular bone marrow aspiration and MSC isolation. Triple-layer MSC sheets were then fabricated and utilized using culture-expanded MSCs. Four weeks after bone marrow aspiration, subperiosteal pockets were created on the labial symphyseal surface, followed by transplantation of autogenous MSC sheets to one randomly chosen side with the other side (control) receiving no transplantation. Six weeks after the surgery, the pigs were euthanized and the specimens from both sides were collected for computed tomography (CT) and histological and immunohistochemical analysis. Measurements between the experimental and control sides were compared using paired t tests. RESULTS MSC sheet fabrication and transplantation were reliably conducted. The labial cortical bone thickness increased significantly with MSC sheet transplantation by an average of 2 mm (p = 0.0001). The average measurements of mineral apposition rate and cell proliferation at the cell sheet side tended to be higher than the control side although the differences did not reach statistical significance (p = 0.1-0.2). Tissue mineral density measurements from CT images and bone volume fraction (BV/TV) measurements from histologic images were identical between the two sides (p > 0.5). CONCLUSION These data provide a proof of concept that autologous MSC sheets may be transplanted to the subperiosteal region of the mandibular symphysis to stimulate local surface bone growth. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Collapse
|
49
|
Schizas NP, Savvidou O, Diamantopoulou K, Papadakis S, Papagelopoulos PJ, Triantafyllopoulos IK. The combination of microfracture with induction of Wnt / β- Catenin pathway, leads to enhanced cartilage regeneration. J Orthop Surg Res 2019; 14:428. [PMID: 31829205 PMCID: PMC6907130 DOI: 10.1186/s13018-019-1484-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/22/2019] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Microfracture does not lead to complete healing of full-thickness cartilage defects. The aim of this study was to evaluate the effect of modifying Wnt/β-catenin signaling following microfracture, on the restoration of a full-thickness cartilage defect in a rabbit model. The modification of the canonical Wnt pathway was achieved through per os administration of lithium carbonate, which is an intracellular inhibitor of glycogen synthase kinase 3-β (Gsk3-β) and therefore induces Wnt/β-catenin signaling. MATERIALS AND METHODS Full-thickness cartilage defects of 4 mm in diameter were created in the patellar groove of the right femurs of 18 male New Zealand white rabbits. The rabbits were divided into three groups of six (n = 6) based on post-surgery treatment differences, as follows: microfracture only (group 1), microfracture plus lithium carbonate 7 mM in the drinking water for 1 week (group 2), microfracture plus lithium carbonate 7 mM in the drinking water for 4 weeks (group 3). All animals were sacrificed 9 weeks after surgery. The outcome was assessed histologically, by using the International Cartilage Repair Society (ICRS) visual histological scale. Immunohistochemistry for type II collagen was also conducted. RESULTS Statistical analysis of the histological ICRS scores showed that group 3 was significantly superior to group 1 in four out of six ICRS categories, while group 2 was superior to 1 in only two out of six. CONCLUSION The combination of microfracture and systematic administration of lithium carbonate 7 mM for 4 weeks shows statistically significant superiority in four out of six ICRS categories compared with microfracture only for the treatment of full-thickness cartilage defects in a rabbit experimental model.
Collapse
Affiliation(s)
- Nikitas P Schizas
- Laboratory for the Research of Musculoskeletal System, Medical School, National and Kapodistrian University of Athens, 10 Athinas Street, 14561, Kifissia, Greece.
| | - Olga Savvidou
- First Department of Orthopaedics, Athens University Medical School, National and Kapodistrian University of Athens, School of Medicine, 41 Ventouri Street, 15562, Holargos, Athens, Greece
| | - Kalliopi Diamantopoulou
- Pathology Department, KAT Hospital Kifissia, 2 Nikis Street, 14561, Kifissia, Athens, Greece
| | - Stamatios Papadakis
- 2nd Department of Orthopaedic Surgery, KAT Hospital Kifissia, 2 Nikis Street, 14561, Kifissia, Athens, Greece
| | - Panayiotis J Papagelopoulos
- First Department of Orthopaedics, Athens University Medical School, National and Kapodistrian University of Athens, School of Medicine, 41 Ventouri Street, 15562, Holargos, Athens, Greece
| | - Ioannis K Triantafyllopoulos
- Laboratory for the Research of Musculoskeletal System, Medical School, National and Kapodistrian University of Athens, 10 Athinas Street, 14561, Kifissia, Greece
| |
Collapse
|
50
|
Schizas N, Savvidou O, Triantafyllopoulos I, Papadakis S, Dontas I, Papagelopoulos P. Adjuvant therapies for the enhancement of microfracture technique in cartilage repair. Orthop Rev (Pavia) 2019; 11:7950. [PMID: 31588257 PMCID: PMC6776922 DOI: 10.4081/or.2019.7950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 08/25/2019] [Indexed: 12/29/2022] Open
Abstract
The classic technique of microfracture does not promote hyaline cartilage restoration. Subchondral bone perforations lead to the formation of a clot containing pluripotent progenitor cells and finally the cartilage defect is filled by fibrocartilage tissue. Researchers have focused on enhancing the quality of the newly formed tissue in cartilage defects after microfracture arthroscopic surgery. Adjuvant treatments are categorized in four main groups: scaffolds, pharmaceutical agents, growth factors and combinations of the aforementioned. Several experimental studies utilize pharmaceutical or biological agents in combination with microfracture, to improve the quality of the regenerated cartilage. The mechanism of action of the agents used is either to exert a chondroprotective effect on the newly formed fibrocartilage tissue, or to induce the recruitment of mesenchymal stem cells towards chondrogenesis instead of osteogenesis during microfracture repair. Additionally, scaffolds have been used for both release of the biological agents and mechanical support of the newly formed blood clot. This review highlights current data regarding the combination of microfracture technique with adjuvant treatments in order to ameliorate the final outcome.
Collapse
Affiliation(s)
- Nikitas Schizas
- Laboratory for the Research of Musculoskeletal System, Medical School, National and Kapodistrian University of Athens
| | - Olga Savvidou
- First Department of Orthopedic Surgery, Medical School, National and Kapodistrian University of Athens
| | - Ioannis Triantafyllopoulos
- Laboratory for the Research of Musculoskeletal System, Medical School, National and Kapodistrian University of Athens
| | | | - Ismene Dontas
- Laboratory for the Research of Musculoskeletal System, Medical School, National and Kapodistrian University of Athens
| | - Panayiotis Papagelopoulos
- First Department of Orthopedic Surgery, Medical School, National and Kapodistrian University of Athens
| |
Collapse
|