1
|
Hu D, Cao Y, Cai C, Wang G, Zhou M, Peng L, Fan Y, Lai Q, Gao Z. Establishment of human cerebral organoid systems to model early neural development and assess the central neurotoxicity of environmental toxins. Neural Regen Res 2025; 20:242-252. [PMID: 38767489 PMCID: PMC11246146 DOI: 10.4103/nrr.nrr-d-23-00928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/08/2023] [Indexed: 05/22/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202501000-00032/figure1/v/2024-05-14T021156Z/r/image-tiff Human brain development is a complex process, and animal models often have significant limitations. To address this, researchers have developed pluripotent stem cell-derived three-dimensional structures, known as brain-like organoids, to more accurately model early human brain development and disease. To enable more consistent and intuitive reproduction of early brain development, in this study, we incorporated forebrain organoid culture technology into the traditional unguided method of brain organoid culture. This involved embedding organoids in matrigel for only 7 days during the rapid expansion phase of the neural epithelium and then removing them from the matrigel for further cultivation, resulting in a new type of human brain organoid system. This cerebral organoid system replicated the temporospatial characteristics of early human brain development, including neuroepithelium derivation, neural progenitor cell production and maintenance, neuron differentiation and migration, and cortical layer patterning and formation, providing more consistent and reproducible organoids for developmental modeling and toxicology testing. As a proof of concept, we applied the heavy metal cadmium to this newly improved organoid system to test whether it could be used to evaluate the neurotoxicity of environmental toxins. Brain organoids exposed to cadmium for 7 or 14 days manifested severe damage and abnormalities in their neurodevelopmental patterns, including bursts of cortical cell death and premature differentiation. Cadmium exposure caused progressive depletion of neural progenitor cells and loss of organoid integrity, accompanied by compensatory cell proliferation at ectopic locations. The convenience, flexibility, and controllability of this newly developed organoid platform make it a powerful and affordable alternative to animal models for use in neurodevelopmental, neurological, and neurotoxicological studies.
Collapse
Affiliation(s)
- Daiyu Hu
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University School of Medicine, Nantong, Jiangsu Province, China
- Shanghai Engineering Research Center of Organ Repair, Shanghai University School of Medicine, Shanghai, China
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanqing Cao
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University School of Medicine, Nantong, Jiangsu Province, China
- Shanghai Engineering Research Center of Organ Repair, Shanghai University School of Medicine, Shanghai, China
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chenglin Cai
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guangming Wang
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Min Zhou
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University School of Medicine, Nantong, Jiangsu Province, China
- Shanghai Engineering Research Center of Organ Repair, Shanghai University School of Medicine, Shanghai, China
| | - Luying Peng
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yantao Fan
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University School of Medicine, Nantong, Jiangsu Province, China
- Shanghai Engineering Research Center of Organ Repair, Shanghai University School of Medicine, Shanghai, China
| | - Qiong Lai
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University School of Medicine, Nantong, Jiangsu Province, China
- Shanghai Engineering Research Center of Organ Repair, Shanghai University School of Medicine, Shanghai, China
| | - Zhengliang Gao
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University School of Medicine, Nantong, Jiangsu Province, China
- Shanghai Engineering Research Center of Organ Repair, Shanghai University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Saydé T, Hamoui OE, Alies B, Bégaud G, Bessette B, Lacomme S, Barthélémy P, Lespes G, Battu S, Gaudin K. Reproducible 3D culture of multicellular tumor spheroids in supramolecular hydrogel from cancer stem cells sorted by sedimentation field-flow fractionation. J Chromatogr A 2024; 1736:465393. [PMID: 39357173 DOI: 10.1016/j.chroma.2024.465393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024]
Abstract
Three-dimensional (3D) cancer models, such as multicellular tumor spheroids (MCTS), are biological supports used for research in oncology, drug development and nanotoxicity assays. However, due to various analytical and biological challenges, the main recurring problem faced when developing this type of 3D model is the lack of reproducibility. When using a 3D support to assess the effect of biologics, small molecules or nanoparticles, it is essential that the support remains constant over time and multiples productions. This constancy ensures that any effect observed following molecule exposure can be attributed to the molecule itself and not to the heterogeneous properties of the 3D support. In this study, we address these analytical challenges by evaluating for the first time the 3D culture of a sub-population of cancer stem cells (CSCs) from a glioblastoma cancer cell line (U87-MG), produced by a SdFFF (sedimentation field-flow fractionation) cell sorting, in a supramolecular hydrogel composed of single, well-defined molecule (bis-amide bola amphiphile 0.25% w/v) with a stiffness of 0.4 kPa. CSCs were chosen for their ability of self-renewal and multipotency that allow them to generate fully-grown tumors from a small number of cells. The results demonstrate that CSCs cultured in the hydrogel formed spheroids with a mean diameter of 336.67 ± 38.70 µm by Day 35, indicating reproducible growth kinetics. This uniformity is in contrast with spheroids derived from unsorted cells, which displayed a more heterogeneous growth pattern, with a mean diameter of 203.20 ± 102.93 µm by Day 35. Statistical analysis using an unpaired t-test with unequal variances confirmed that this difference in spheroid size is significant, with a p-value of 0.0417 (p < 0.05). These findings demonstrate that CSC-derived spheroids, when cultured in a well-defined hydrogel, exhibit highly reproducible growth patterns compared to spheroids derived from unsorted cells, making them a more reliable 3D model for biological research and drug testing applications.
Collapse
Affiliation(s)
- Tarek Saydé
- Université de Limoges, UMR INSERM 1308 CAPTuR, Faculté de Médecine, 87025 Limoges, France; Université de Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France
| | - Omar El Hamoui
- Université de Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France; Université de Pau et des Pays de l'Adour (E2S/UPPA) CNRS, IPREM, UMR 5254, 64053 Pau Cedex, France
| | - Bruno Alies
- Université de Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France.
| | - Gaëlle Bégaud
- Université de Limoges, UMR INSERM 1308 CAPTuR, Faculté de Médecine, 87025 Limoges, France
| | - Barbara Bessette
- Université de Limoges, UMR INSERM 1308 CAPTuR, Faculté de Médecine, 87025 Limoges, France
| | - Sabrina Lacomme
- Bordeaux Imaging Center, UMS 3420 CNRS-INSERM, Université de Bordeaux, Bordeaux 33076, France
| | - Philippe Barthélémy
- Université de Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France
| | - Gaëtane Lespes
- Université de Pau et des Pays de l'Adour (E2S/UPPA) CNRS, IPREM, UMR 5254, 64053 Pau Cedex, France
| | - Serge Battu
- Université de Limoges, UMR INSERM 1308 CAPTuR, Faculté de Médecine, 87025 Limoges, France.
| | - Karen Gaudin
- Université de Bordeaux, INSERM U1212, UMR CNRS 5320, F-33076 Bordeaux, France
| |
Collapse
|
3
|
Jiang Y, Hao M, Chen S, Xie Y, Liu K. Exploring the impact of microfluidic chip structure on the efficacy of three-dimensional tumor microspheres cultivation. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7005-7014. [PMID: 39282915 DOI: 10.1039/d4ay01343c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Three-dimensional (3D) tumor microspheres can simulate the interaction and growth dynamics of tumor cells, and have been used as a new in vitro model for drug screening and tumor biology related research. The scaffold-free culture of 3D tumor microspheres on microfluidic chips has many advantages, including low cost, high throughput, convenience and flexibility. However, it is still unclear how various factors, such as chip structure, influence the culture effect of tumor microspheres. The lack of standardized evaluation and characterization of the culture effect hinders the further optimization and development of chip function. This study presents numerical simulations of multiple parts or processes of the proposed 3D culture chips with two different structural parameters based on computational fluid dynamics (CFD) methods. An evaluation system for tumor microspheres was established. The prediction of the CFD simulation was consistent with the culture results of the chips, reflecting the important role of the structural parameters of the microtrap in the formation of uniform tumor microspheres. Furthermore, the velocity of cell suspension also had a significant impact on the retention of tumor cells. Additionally, the drug screening results of tumor microspheres indicated that tumor microspheres exhibit greater drug resistance, which may be attributed to their size. These results offer valuable insights into the factors that influence the characteristics of tumor microspheres. This research provides a reference and direction for the optimal design and functional evaluation of scaffold-free 3D culture chips, and holds promise for promoting the development of novel drug research platforms.
Collapse
Affiliation(s)
- Yue Jiang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China.
| | - Ming Hao
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China.
| | - Shulei Chen
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China.
| | - Yuanhua Xie
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China.
| | - Kun Liu
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China.
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, China
| |
Collapse
|
4
|
Baldassari S, Yan M, Ailuno G, Zuccari G, Bassi AM, Vernazza S, Tirendi S, Ferrando S, Comite A, Drava G, Caviglioli G. A Novel Hydrogel Sponge for Three-Dimensional Cell Culture. Pharmaceutics 2024; 16:1341. [PMID: 39458670 PMCID: PMC11511160 DOI: 10.3390/pharmaceutics16101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Three-dimensional (3D) cell culture technologies allow us to overcome the constraints of two-dimensional methods in different fields like biochemistry and cell biology and in pharmaceutical in vitro tests. In this study, a novel 3D hydrogel sponge scaffold, composed of a crosslinked polyacrylic acid forming a porous matrix, has been developed and characterized. METHODS The scaffold was obtained via an innovative procedure involving thermal treatment followed by a salt-leaching step on a matrix-containing polymer along with a gas-forming agent. Based on experimental design for mixtures, a series of formulations were prepared to study the effect of the three components (polyacrylic acid, NaHCO3 and NaCl) on the scaffold mechanical properties, density, swelling behavior and morphological changes. Physical appearance, surface morphology, porosity, molecular diffusion, transparency, biocompatibility and cytocompatibility were also evaluated. RESULTS The hydrogel scaffolds obtained show high porosity and good optical transparency and mechanical resistance. The scaffolds were successfully employed to culture several cell lines for more than 20 days. CONCLUSIONS The developed scaffolds could be an important tool, as such or with a specific coating, to obtain a more predictive cellular response to evaluate drugs in preclinical studies or for testing chemical compounds, biocides and cosmetics, thus reducing animal testing.
Collapse
Affiliation(s)
- Sara Baldassari
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genoa, Italy; (S.B.); (G.A.); (G.Z.); (G.D.)
| | - Mengying Yan
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China;
| | - Giorgia Ailuno
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genoa, Italy; (S.B.); (G.A.); (G.Z.); (G.D.)
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genoa, Italy; (S.B.); (G.A.); (G.Z.); (G.D.)
| | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (A.M.B.); (S.V.); (S.T.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Stefania Vernazza
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (A.M.B.); (S.V.); (S.T.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Sara Tirendi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (A.M.B.); (S.V.); (S.T.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Sara Ferrando
- Laboratory of Comparative Anatomy, Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy;
| | - Antonio Comite
- Department of Chemistry and Industrial Chemistry (DCCI), University of Genoa, 16146 Genoa, Italy;
| | - Giuliana Drava
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genoa, Italy; (S.B.); (G.A.); (G.Z.); (G.D.)
| | - Gabriele Caviglioli
- Department of Pharmacy (DIFAR), University of Genoa, 16148 Genoa, Italy; (S.B.); (G.A.); (G.Z.); (G.D.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
5
|
Pelosi AC, Silva AAR, Fernandes AMAP, Scariot PPM, Oliveira MSP, Porcari AM, Priolli DG, Messias LHD. Metabolomics of 3D cell co-culture reveals alterations in energy metabolism at the cross-talk of colorectal cancer-adipocytes. Front Med (Lausanne) 2024; 11:1436866. [PMID: 39421865 PMCID: PMC11484090 DOI: 10.3389/fmed.2024.1436866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Colorectal cancer (CRC) is the third most incident and the second most lethal malignant tumor. Despite the recognized association between obesity and CRC, further clarification is necessary regarding the lipids that are overexpressed during the development of CRC. In this scenario, the combination of metabolomics and a three-dimensional (3D) co-culture model involving CRC tumor cells and lipids can enhance the knowledge of energy metabolism modifications at the cross-talk between colorectal cancer and adipocytes. This study aimed to screen potential metabolites in the three dimensional (3D) co-culture of CRC and adipocytes by investigating the metabolome composition of this co-culture released into the extracellular space, which is known as the secretome. Methods Pre-adipocyte cells (3T3-L1), human colon carcinoma (HT-29), and the 3D co-culture (3T3-L1 + HT-29) were cultured for the secretome obtention. Then, ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) was employed to analyze the metabolomics of each secretome. Results Overall, 3.731 molecules were detected independent of the cell culture. When comparing the three cultures, 105 molecules presented a statistically significant difference in abundance between groups. Among these molecules, 16 were identified, with a particular emphasis on six lipids (PG 20:0, octadecenal, 3-Hydroxytetracosanoyl-CoA, 9,10-dihydroxy-octadecenoic acid, palmitoleic acid, and PA 18:4) and one amino acid derivative (acetylglutamic acid), which presented significant scores during the partial least-squares discriminant analysis (PLS-DA). Discussion Although it is too early to determine the possible impact of such molecules in a CRC microenvironment, these results open new avenues for further studies on the energy metabolism at the cross-talk of colorectal cancer adipocytes.
Collapse
Affiliation(s)
- Andrea Corazzi Pelosi
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, Brazil
| | - Alex Ap. Rosini Silva
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, Brazil
| | - Anna Maria Alves Piloto Fernandes
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, Brazil
| | - Pedro Paulo Menezes Scariot
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, Brazil
| | - Manoela Stahl Parisotto Oliveira
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, Brazil
| | - Andreia M. Porcari
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, Brazil
| | - Denise Gonçalves Priolli
- Coloproctology Service of the Federal University of São Paulo, São Paulo and Faculty of Health Sciences Pitágoras de Codó, Codó, Brazil
| | - Leonardo Henrique Dalcheco Messias
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, Brazil
| |
Collapse
|
6
|
Ritter P, Oliveto S, Cordiglieri C, Fasciani A, Di Buduo CA, della Volpe L, Bocconi A, Conci C, Miguel CP, Di Micco R, Balduini A, Raimondi MT, Biffo S. A millifluidic bioreactor allows the long term culture of primary lymphocytes or CD34 + hematopoietic cells while allowing the detection of tumorigenic expansion. Front Bioeng Biotechnol 2024; 12:1388312. [PMID: 39416278 PMCID: PMC11479935 DOI: 10.3389/fbioe.2024.1388312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Long-term culture of primary lymphocytes and hematopoietic stem and progenitor cells (HSPCs) is pivotal to their expansion and study. Furthermore, genetic engineering of the above-mentioned primary human cells has several safety needs, including the requirement of efficient in vitro assays for unwanted tumorigenic events. In this work, we tested and optimized the Miniaturized Optically Accessible Bioreactor (MOAB) platform. The MOAB consists of a millifluidic cell culture device with three optically-accessible culture chambers. Inside the MOAB, we inserted a silk-based framework that resembles some properties of the bone marrow environment and cultivated in this device either CD4+ T lymphocytes isolated from healthy donor buffy coat or cord blood-derived hematopoietic CD34+ cells. A fraction of these cells is viable for up to 3 months. Next, we tested the capability of the MOAB to detect tumorigenic events. Serial dilutions of engineered fluorescent tumor cells were mixed with either CD4+ or CD34+ primary cells, and their growth was followed. By this approach, we successfully detected as little as 100 tumorigenic cells mixed with 100,000 primary cells. We found that non-tumorigenic primary cells colonized the silk environment, whereas tumor cells, after an adaptation phase, expanded and entered the circulation. We conclude that the millifluidic platform allows the detection of rare tumorigenic events in the long-term culture of human cells.
Collapse
Affiliation(s)
- Paolo Ritter
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, Milan, Italy
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Stefania Oliveto
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Chiara Cordiglieri
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, Milan, Italy
| | - Alessandra Fasciani
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, Milan, Italy
| | | | - Lucrezia della Volpe
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Bocconi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Claudio Conci
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | | | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- University School for Advanced Studies IUSS, Pavia, Italy
| | | | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Stefano Biffo
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, INGM, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Sahu P, Camarillo IG, Dettin M, Zamuner A, Teresa Conconi M, Barozzi M, Giri P, Sundararajan R, Sieni E. Electroporation enhances cell death in 3D scaffold-based MDA-MB-231 cells treated with metformin. Bioelectrochemistry 2024; 159:108734. [PMID: 38762949 DOI: 10.1016/j.bioelechem.2024.108734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Triple-negative breast cancer (TNBC), the most aggressive subtype of breast cancer lacks estrogen, progesterone, and HER2 receptors and hence, is therapeutically challenging. Towards this, we studied an alternate therapy by repurposing metformin (FDA-approved type-2 diabetic drug with anticancer properties) in a 3D-scaffold culture, with electrical pulses. 3D cell culture was used to simulate the tumor microenvironment more closely and MDA-MB-231, human TNBC cells, treated with both 5 mM metformin (Met) and 8 electrical pulses at 2500 V/cm, 10 µs (EP1) and 800 V/cm, 100 µs (EP2) at 1 Hz were studied in 3D and 2D. They were characterized using cell viability, reactive oxygen species (ROS), glucose uptake, and lactate production assays at 24 h. Cell viability, as low as 20 % was obtained with EP1 + 5 mM Met. They exhibited 1.65-fold lower cell viability than 2D with EP1 + 5 mM Met. ROS levels indicated a 2-fold increase in oxidative stress for EP1 + 5 mM Met, while the glucose uptake was limited to only 9 %. No significant change in the lactate production indicated glycolytic arrest and a non-conducive environment for MDA-MB-231 growth. Our results indicate that 3D cell culture, with a more realistic tumor environment that enhances cell death using metformin and electrical pulses could be a promising approach for TNBC therapeutic intervention studies.
Collapse
Affiliation(s)
- Praveen Sahu
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Ignacio G Camarillo
- Deptartment of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA
| | - Monica Dettin
- Department of Industrial Engineering, University of Padova, Padova 35122, Italy
| | - Annj Zamuner
- Department of Industrial Engineering, University of Padova, Padova 35122, Italy; Department of Civil, Environmental, and Architectural Engineering, University of Padova, Italy
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Marco Barozzi
- Department of Theoretical and Applied Sciences, University of Insubria, Varese 21100, Italy
| | - Pragatheiswar Giri
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Raji Sundararajan
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Elisabetta Sieni
- Department of Theoretical and Applied Sciences, University of Insubria, Varese 21100, Italy.
| |
Collapse
|
8
|
Kim SE, Yun S, Doh J, Kim HN. Imaging-Based Efficacy Evaluation of Cancer Immunotherapy in Engineered Tumor Platforms and Tumor Organoids. Adv Healthc Mater 2024; 13:e2400475. [PMID: 38815251 DOI: 10.1002/adhm.202400475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Cancer immunotherapy is used to treat tumors by modulating the immune system. Although the anticancer efficacy of cancer immunotherapy has been evaluated prior to clinical trials, conventional in vivo animal and endpoint models inadequately replicate the intricate process of tumor elimination and reflect human-specific immune systems. Therefore, more sophisticated models that mimic the complex tumor-immune microenvironment must be employed to assess the effectiveness of immunotherapy. Additionally, using real-time imaging technology, a step-by-step evaluation can be applied, allowing for a more precise assessment of treatment efficacy. Here, an overview of the various imaging-based evaluation platforms recently developed for cancer immunotherapeutic applications is presented. Specifically, a fundamental technique is discussed for stably observing immune cell-based tumor cell killing using direct imaging, a microwell that reproduces a confined space for spatial observation, a droplet assay that facilitates cell-cell interactions, and a 3D microphysiological system that reconstructs the vascular environment. Furthermore, it is suggested that future evaluation platforms pursue more human-like immune systems.
Collapse
Affiliation(s)
- Seong-Eun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Suji Yun
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, South Korea
| | - Junsang Doh
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, South Korea
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Institute of Engineering Research, Bio-MAX institute, Soft Foundry Institute, Seoul National University, Seoul, 08826, South Korea
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
9
|
Nong TAT, Le TTH, Vu VT, Nguyen MQ, Can DQH, Dong THY, Nguyen TPT, Hoang VH, Nguyen PH. Inhibitory Activity of Compounds Isolated from Ligustrum robustum (Roxb.) Against HepG2 Liver Cancer Cells: Isocubein and 4-(2-Acetoxyethyl)phenol as Potential Candidates. Chem Biodivers 2024; 21:e202401065. [PMID: 39004876 DOI: 10.1002/cbdv.202401065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/22/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
Many herbal species in the genus Ligustrum have been shown to contain compounds with anti-cancer biological activity. This study aimed to isolate some compounds from the leaves of Ligustrum robustum (Roxb.) Blume (L. robustum) and evaluate their effects against liver cancer cells. As a result, seven previously reported compounds (1-7) were isolated, including four lignans (1-4) and three phenolic derivatives (5-7). The structures of these compounds were determined using spectroscopic methods and comparison with reported data. All isolates were assessed for their inhibitory effects on HepG2 liver cancer cells. Screening results revealed that two compounds, isocubein (3) and 4-(2-acetoxyethyl)phenol (7), exhibited strong inhibitory activity against cell proliferation, with IC50 values of 3.1±0.9 and 4.5±14 μM, respectively. Further analyses demonstrated that both compounds could suppress the formation and development of 3D tumorspheres in terms of quantity and size. Additionally, isocubein (3) and 4-(2-acetoxyethyl)phenol (7) exhibited the ability to inhibit the migration of HepG2 cells. This study represents the first report on the inhibitory activity against HepG2 liver cancer cells of extracts and isolated compounds from L. robustum, providing valuable information for future research aiming to develop products for liver cancer treatment.
Collapse
Affiliation(s)
- Thi Anh Thu Nong
- Thai Nguyen University of Medicine and Pharmacy, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Thi Thanh Huong Le
- Thai Nguyen University of Sciences, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Van Tuan Vu
- Faculty of Pharmacy, Phenikaa University, Hanoi, Vietnam
| | - Mai Quynh Nguyen
- Center for Interdisciplinary Science and Education, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Dinh Quang Hung Can
- Thai Nguyen University of Sciences, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Thi Hoang Yen Dong
- Thai Nguyen University of Medicine and Pharmacy, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Thi Phuong Thao Nguyen
- Thai Nguyen University of Medicine and Pharmacy, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Van Hung Hoang
- Center for Interdisciplinary Science and Education, Thai Nguyen University, Thai Nguyen, Vietnam
| | - Phu Hung Nguyen
- Center for Interdisciplinary Science and Education, Thai Nguyen University, Thai Nguyen, Vietnam
| |
Collapse
|
10
|
Alajmi K, Hartford M, Roy NS, Bhattacharya A, Kaity S, Cavanagh BL, Roy S, Kaur K. Selenium nanoparticle-functionalized injectable chitosan/collagen hydrogels as a novel therapeutic strategy to enhance stem cell osteoblastic differentiation for bone regeneration. J Mater Chem B 2024; 12:9268-9282. [PMID: 39171482 DOI: 10.1039/d4tb00984c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Stem cells are an essential consideration in the fields of tissue engineering and regenerative medicine. Understanding how nanoengineered biomaterials and mesenchymal stem cells (MSCs) interact is crucial for their role in bone regeneration. Taking advantage of the structural stability of selenium nanoparticles (Se-NPs) and biological properties of natural polymers, Se-NPs-functionalized, injectable, thermoresponsive hydrogels with an interconnected molecular structure were prepared to identify their role in the osteogenic differentiation of different types of mesenchymal stem cells. Further, comprehensive characterization of their structural and biological properties was performed. The results showed that the hydrogels undergo a sol to gel transition with the help of β-glycerophosphate, while functionalization with Se-NPs significantly enhances their biological response through stabilizing their polymeric structure by forming Se-O covalent bonds. Further results suggest that Se-NPs enhance the differentiation of MSCs toward osteogenic lineage in both the 2D as well as 3D. We demonstrated that the Se-NPs-functionalized hydrogels could enhance the differentiation of osteoporotic bone-derived MSCs. We also focused on specific cell surface marker expression (CD105, CD90, CD73, CD45, CD34) based on the exposure of healthy rats' bone marrow-derived stem cells (BMSCs) to the Se-NP-functionalized hydrogels. This study provides essential evidence for pre-clinical/clinical applications, highlighting the potential of the nanoengineered biocompatible elastic hydrogels for bone regeneration in diseased bone.
Collapse
Affiliation(s)
- Khaled Alajmi
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland.
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland
| | - Matthew Hartford
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland.
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland
| | - Nakka Sharmila Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India.
| | - Anamitra Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India.
| | - Santanu Kaity
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India.
| | - Brenton L Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, Dublin D02YN77, Ireland
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal 700054, India.
| | - Kulwinder Kaur
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland.
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin D02YN77, Ireland
| |
Collapse
|
11
|
Rudolph S, Roh TT, Longo B, Shokoufandeh M, Mumuney F, Chadha A, Wang X, Li G, Wang X, Chen Y, Kaplan D. Perfused In Vitro Intestine Tissue Model to Evaluate the Role of Stromal and Immune Cells in Epithelial Response to Inflammatory Cues and Drug Therapies. ACS APPLIED BIO MATERIALS 2024; 7:6078-6088. [PMID: 39146214 DOI: 10.1021/acsabm.4c00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
We establish an in vitro perfusion intestinal tissue bioreactor system tailored to study drug responses related to inflammatory bowel disease (IBD). The system includes key components including multiple human intestinal cell types (colonoids, myofibroblasts, and macrophages), a three-dimensional (3D) intestinal architecture, and fluid flow. Inclusion of myofibroblasts resulted in increased secretion of cytokines such as glypican-1 (GCP-1), granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin 1-α (IL-1α), whereas inclusion of macrophages resulted in increased secretion of monocyte chemoattractant proteins (MCPs) demonstrating a significant role of both stromal and immune cell types in intestinal inflammation. The system is responsive to drug treatments, as reflected in the reduction of pro-inflammatory cytokine production in tissue in some treatment scenarios. While future studies are needed to evaluate more nuanced responses in an IBD context, the present study demonstrates the ability to establish a 3D intestinal model with multiple relevant cell types and flow that is responsive to both inflammatory cues and various drug treatment options.
Collapse
Affiliation(s)
- Sara Rudolph
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Terrence T Roh
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Brooke Longo
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Mina Shokoufandeh
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Fatimah Mumuney
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Anushka Chadha
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Xiuli Wang
- Department of Histology & Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - David Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
12
|
Little LD, Barnett SE, Issitt T, Bonsall S, Carolan VA, Allen E, Cole LM, Cross NA, Coulson JM, Haywood-Small SL. Volatile organic compound analysis of malignant pleural mesothelioma chorioallantoic membrane xenografts. J Breath Res 2024; 18:046010. [PMID: 39163890 PMCID: PMC11388873 DOI: 10.1088/1752-7163/ad7166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/20/2024] [Indexed: 08/22/2024]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer associated with asbestos exposure. MPM is often diagnosed late, at a point where limited treatment options are available, but early intervention could improve the chances of successful treatment for MPM patients. Biomarkers to detect MPM in at-risk individuals are needed to implement early diagnosis technologies. Volatile organic compounds (VOCs) have previously shown diagnostic potential as biomarkers when analysed in MPM patient breath. In this study, chorioallantoic membrane (CAM) xenografts of MPM cell lines were used as models of MPM tumour development for VOC biomarker discovery with the aim of generating targets for investigation in breath, biopsies or other complex matrices. VOC headspace analysis of biphasic or epithelioid MPM CAM xenografts was performed using solid-phase microextraction and gas chromatography-mass spectrometry. We successfully demonstrated the capture, analysis and separation of VOC signatures from CAM xenografts and controls. A panel of VOCs was identified that showed discrimination between MPM xenografts generated from biphasic and epithelioid cells and CAM controls. This is the first application of the CAM xenograft model for the discovery of VOC biomarkers associated with MPM histological subtypes. These findings support the potential utility of non-invasive VOC profiling from breath or headspace analysis of tissues for detection and monitoring of MPM.
Collapse
Affiliation(s)
- Liam D Little
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield S1 1WB, United Kingdom
| | - Sarah E Barnett
- Egg Facility, Liverpool Shared Research Facilities, Technology Infrastructure and Environment Directorate, University of Liverpool, Liverpool, United Kingdom
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Theo Issitt
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield S1 1WB, United Kingdom
| | - Sam Bonsall
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield S1 1WB, United Kingdom
| | - Vikki A Carolan
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield S1 1WB, United Kingdom
| | - Elizabeth Allen
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield S1 1WB, United Kingdom
| | - Laura M Cole
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield S1 1WB, United Kingdom
| | - Neil A Cross
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield S1 1WB, United Kingdom
| | - Judy M Coulson
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Sarah L Haywood-Small
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield S1 1WB, United Kingdom
| |
Collapse
|
13
|
Yao H, Ren Y, Wu F, Liu J, Li J, Cao L, Yan M, Li X. Discovery of new cyclopropane sulfonamide derivatives as EGFR inhibitors to overcome C797S-mediated resistance and EGFR double mutation. Eur J Med Chem 2024; 275:116590. [PMID: 38908104 DOI: 10.1016/j.ejmech.2024.116590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/24/2024]
Abstract
The C797S mutation of EGFR leads to Osimertinib resistance by blocking the covalent binding of Cys797. To develop new agents that can overcome EGFR mutation resistance, thirty seven new cyclopropane sulfonamide derivatives were synthesized and evaluated as EGFRL858R/T790M/C797S or EGFRDel19/T790M/C797S inhibitors by structure-based screening. Most of the synthesized compounds exhibit good to excellent anti proliferation activity against to BaF3-EGFR L858R/T790M/C797S and BaF3-C797S/Del19/T790M cancer cell lines. Representative compounds 8l showed inhibitory activity against the two cancer cell lines with the IC50 values of 0.0012 and 0.0013 μM, respectively. Another compound 8h, exhibited slightly lower activity (0.0042 and 0.0034 μM of the IC50 values) to both of the two tri-mutation cell lines, but excellent activities against H1975 and PC9 cells with IC50 values of 13 and 19 nM, respectively. Considering the acquired drug resistance of tumors is a gradual process, we chose 8h for further in vivo and mechanism study. 8h was demonstrated significantly inhibited tumor growth with 72.1 % of the TGI in the BaF3/EGFR-TM xenograft tumor model and 83.5 % in the H1975-DM xenograft tumor model. Compound 8h was confirmed to be safe with no significant side effects as showed by the results of in vitro assay of human normal cells and the sections of animals major organs. Mechanism studies showed that in addition to inhibiting EGFR mutations, 8h can also target the tumor microenvironment and induce tumor cell apoptosis. All these results indicate that 8h deserves further investigation as an EGFR inhibitor to overcome C797S-mediated resistance.
Collapse
Affiliation(s)
- Han Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanyuan Ren
- Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou, 510990, PR China
| | - Feng Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiadai Liu
- Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou, 510990, PR China
| | - Jianheng Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Longcai Cao
- Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou, 510990, PR China
| | - Ming Yan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xingshu Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou, 510990, PR China.
| |
Collapse
|
14
|
Kim S, Yeop Baek S, Cha C. Bioactive Microgels with Tunable Microenvironment as a 3D Platform to Guide the Complex Physiology of Hepatocellular Carcinoma Spheroids. Chembiochem 2024:e202400482. [PMID: 39226234 DOI: 10.1002/cbic.202400482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
Miniaturized three-dimensional tissue models, such as spheroids, have become a highly useful and efficient platform to investigate tumor physiology and explore the effect of chemotherapeutic efficacy over traditional two-dimensional monolayer culture, since they can provide more in-depth analysis, especially in regards to intercellular interactions and diffusion. The development of most tumor spheroids relies on the high proliferative capacity and self-aggregation behavior of tumor cells. However, it often disregards the effect of microenvironmental factors mediated by extracellular matrix, which are indispensable components of tissue structure. In this study, hepatocellular carcinoma (HCC) cells are encapsulated in bioactive microgels consisting of gelatin and hyaluronic acid designed to emulate tumor microenvironment in order to induce hepatic tumor spheroid formation. Two different subtypes of HCC's, HepG2 and Hep3B cell lines, are explored. The physicomechanical and biochemical properties of the microgels, controlled by changing the crosslinking density and polymer composition, are clearly shown to have substantial influence over the formation and spheroid formation. Moreover, the spheroids made from different cells and microgel properties display highly variable chemoresistance effects, further highlighting the importance of microenvironmental factors guiding tumor spheroid physiology.
Collapse
Affiliation(s)
- Suntae Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Seung Yeop Baek
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Chaenyung Cha
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Republic of Korea
| |
Collapse
|
15
|
Dortaj H, Amani AM, Tayebi L, Azarpira N, Ghasemi Toudeshkchouei M, Hassanpour-Dehnavi A, Karami N, Abbasi M, Najafian-Najafabadi A, Zarei Behjani Z, Vaez A. Droplet-based microfluidics: an efficient high-throughput portable system for cell encapsulation. J Microencapsul 2024; 41:479-501. [PMID: 39077800 DOI: 10.1080/02652048.2024.2382744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
One of the goals of tissue engineering and regenerative medicine is restoring primary living tissue function by manufacturing a 3D microenvironment. One of the main challenges is protecting implanted non-autologous cells or tissues from the host immune system. Cell encapsulation has emerged as a promising technique for this purpose. It involves entrapping cells in biocompatible and semi-permeable microcarriers made from natural or synthetic polymers that regulate the release of cellular secretions. In recent years, droplet-based microfluidic systems have emerged as powerful tools for cell encapsulation in tissue engineering and regenerative medicine. These systems offer precise control over droplet size, composition, and functionality, allowing for creating of microenvironments that closely mimic native tissue. Droplet-based microfluidic systems have extensive applications in biotechnology, medical diagnosis, and drug discovery. This review summarises the recent developments in droplet-based microfluidic systems and cell encapsulation techniques, as well as their applications, advantages, and challenges in biology and medicine. The integration of these technologies has the potential to revolutionise tissue engineering and regenerative medicine by providing a precise and controlled microenvironment for cell growth and differentiation. By overcoming the immune system's challenges and enabling the release of cellular secretions, these technologies hold great promise for the future of regenerative medicine.
Collapse
Affiliation(s)
- Hengameh Dortaj
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ashraf Hassanpour-Dehnavi
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Karami
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Najafian-Najafabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Zarei Behjani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Milton LA, Davern JW, Hipwood L, Chaves JCS, McGovern J, Broszczak D, Hutmacher DW, Meinert C, Toh YC. Liver click dECM hydrogels for engineering hepatic microenvironments. Acta Biomater 2024; 185:144-160. [PMID: 38960110 DOI: 10.1016/j.actbio.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Decellularized extracellular matrix (dECM) hydrogels provide tissue-specific microenvironments which accommodate physiological cellular phenotypes in 3D in vitro cell cultures. However, their formation hinges on collagen fibrillogenesis, a complex process which limits regulation of physicochemical properties. Hence, achieving reproducible results with dECM hydrogels poses as a challenge. Here, we demonstrate that thiolation of solubilized liver dECM enables rapid formation of covalently crosslinked hydrogels via Michael-type addition, allowing for precise control over mechanical properties and superior organotypic biological activity. Investigation of various decellularization methodologies revealed that treatment of liver tissue with Triton X-100 and ammonium hydroxide resulted in near complete DNA removal with significant retention of the native liver proteome. Chemical functionalization of pepsin-solubilized liver dECMs via 1-ethyl-3(3-dimethylamino)propyl carbodiimide (EDC)/N-hydroxysuccinimide (NHS) coupling of l-Cysteine created thiolated liver dECM (dECM-SH), which rapidly reacted with 4-arm polyethylene glycol (PEG)-maleimide to form optically clear hydrogels under controlled conditions. Importantly, Young's moduli could be precisely tuned between 1 - 7 kPa by varying polymer concentrations, enabling close replication of healthy and fibrotic liver conditions in in vitro cell cultures. Click dECM-SH hydrogels were cytocompatible, supported growth of HepG2 and HepaRG liver cells, and promoted liver-specific functional phenotypes as evidenced by increased metabolic activity, as well CYP1A2 and CYP3A4 activity and excretory function when compared to monolayer culture and collagen-based hydrogels. Our findings demonstrate that click-functionalized dECM hydrogels offer a highly controlled, reproducible alternative to conventional tissue-derived hydrogels for in vitro cell culture applications. STATEMENT OF SIGNIFICANCE: Traditional dECM hydrogels face challenges in reproducibility and mechanical property control due to variable crosslinking processes. We introduce a click hydrogel based on porcine liver decellularized extracellular matrix (dECM) that circumnavigates these challenges. After optimizing liver decellularization for ECM retention, we integrated thiol-functionalized liver dECM with polyethylene-glycol derivatives through Michael-type addition click chemistry, enabling rapid, room-temperature gelation. This offers enhanced control over the hydrogel's mechanical and biochemical properties. The resultant click dECM hydrogels mimic the liver's natural ECM and exhibit greater mechanical tunability and handling ease, facilitating their application in high-throughput and industrial settings. Moreover, these hydrogels significantly improve the function of HepaRG-derived hepatocytes in 3D culture, presenting an advancement for liver tissue cell culture models for drug testing applications.
Collapse
Affiliation(s)
- Laura A Milton
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; Gelomics Pty Ltd, Brisbane, Australia
| | - Jordan W Davern
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; Gelomics Pty Ltd, Brisbane, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia
| | - Luke Hipwood
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; Gelomics Pty Ltd, Brisbane, Australia; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Juliana C S Chaves
- Cell & Molecular Biology Department, Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jacqui McGovern
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia; Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia
| | - Daniel Broszczak
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Dietmar W Hutmacher
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia; Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, Australia
| | - Christoph Meinert
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; Gelomics Pty Ltd, Brisbane, Australia.
| | - Yi-Chin Toh
- Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, Australia; Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia; Centre for Microbiome Research, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
17
|
Dong L, Xie YL, Zhang RT, Hu QY. Models of sepsis-induced acute kidney injury. Life Sci 2024; 352:122873. [PMID: 38950643 DOI: 10.1016/j.lfs.2024.122873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Sepsis-induced acute kidney injury (S-AKI) is one of the most serious life-threatening complications of sepsis. The pathogenesis of S-AKI is complex and there is no effective specific treatment. Therefore, it is crucial to choose suitable preclinical models that are highly similar to human S-AKI to study the pathogenesis and drug treatment. In this review, we summarized recent advances in the development models of S-AKI, providing reference for the reasonable selection of experimental models as basic research and drug development of S-AKI.
Collapse
Affiliation(s)
- Liang Dong
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Yi-Ling Xie
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Ren-Tao Zhang
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Qiong-Ying Hu
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), School of Medicine, Taizhou University, Taizhou 318000, Zhejiang, China.
| |
Collapse
|
18
|
Wang J, Dai S, Xiang N, Zhang L, Zhong W, Shao P, Feng S. Cell-Based Meat Scaffold Based on a 3D-Printed Starch-Based Gel. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19143-19154. [PMID: 39105716 DOI: 10.1021/acs.jafc.4c04559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Starch was mixed with a gel to produce a starch-based gel ink, which exhibited favorable printing characteristics. Through the optimization of infill density, 3D-printed scaffolds with 50% infill density and a highly ordered microstructure were successfully fabricated. The addition of calcium carbonate nanoparticles-glucono delta lactone (CaCO3 NPs-GDL) had notable effects on the swelling degree, in vitro digestion, water stability, and pore distribution of the scaffolds. When the amount of CaCO3 NPs in the starch-based gel was 0.075 g, the resulting 3D-printed gel scaffold with a 50% infill density proved to be the most suitable for cultivating cell-based meat. It featured pore sizes ranging from 80 to 120 μm and a compression modulus of 246.76 Pa. After 7 days of proliferation, the C2C12 mouse skeletal myoblasts exhibited an approximately 2.81-fold increase in cell numbers. The fusion index and maturation index of C2C12 cells on the scaffolds were 57.00 ± 0.45% and 34.56 ± 0.56%, respectively. The starch-based gel scaffolds demonstrated excellent water stability and in vitro degradability. Moreover, C2C12 cells exhibited successful proliferation and differentiation on the starch-based scaffolds, ultimately leading to the production of cell-based meat. This study developed a starch-based composite gel scaffold for the manufacture of cell-based meat.
Collapse
Affiliation(s)
- Jing Wang
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Siqing Dai
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Ning Xiang
- Shanghai Shiwei Biotechnology Co., Ltd. (CellX), Shanghai 201203, China
| | - Le Zhang
- Institute for Biomedical Materials and Devices (IBMD), University of Technology Sydney, Ultimo 2007, Australia
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Ping Shao
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, Zhejiang University of Technology, China National Light Industry, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Simin Feng
- Department of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, Zhejiang University of Technology, China National Light Industry, Hangzhou, Zhejiang 310014, People's Republic of China
| |
Collapse
|
19
|
Rahman TT, Wood N, Akib YM, Qin H, Pei Z. Experimental Study on Compatibility of Human Bronchial Epithelial Cells in Collagen-Alginate Bioink for 3D Printing. Bioengineering (Basel) 2024; 11:862. [PMID: 39329604 PMCID: PMC11429095 DOI: 10.3390/bioengineering11090862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/29/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
This paper reports an experimental study on the compatibility of human bronchial epithelial (HBE) cells in a collagen-alginate bioink. The compatibility was assessed using the culture well method with three bioink compositions prepared from a 10% alginate solution and neutralized TeloCol-10 mg/mL collagen stock solution. Cell viability, quantified by (live cell count-dead cell count)/live cell count within the HBE cell-laden hydrogel, was evaluated using the live/dead assay method from Day 0 to Day 6. Experimental results demonstrated that the collagen-alginate 4:1 bioink composition exhibited the highest cell viability on Day 6 (85%), outperforming the collagen-alginate 1:4 bioink composition and the alginate bioink composition, which showed cell viability of 75% and 45%, respectively. Additionally, the live cell count was highest for the collagen-alginate 4:1 bioink composition on Day 0, a trend that persisted through Days 1 to 6, underscoring its superior performance in maintaining cell viability and promoting cell proliferation. These findings show that the compatibility of HBE cells with the collagen-alginate 4:1 bioink composition was higher compared with the other two bioink compositions.
Collapse
Affiliation(s)
- Taieba Tuba Rahman
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA; (Y.M.A.); (Z.P.)
| | - Nathan Wood
- Department of Biology, Texas A&M University, College Station, TX 77843, USA; (N.W.); (H.Q.)
| | - Yeasir Mohammad Akib
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA; (Y.M.A.); (Z.P.)
| | - Hongmin Qin
- Department of Biology, Texas A&M University, College Station, TX 77843, USA; (N.W.); (H.Q.)
| | - Zhijian Pei
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA; (Y.M.A.); (Z.P.)
| |
Collapse
|
20
|
Colella A, Biondi G, Marrano N, Francioso E, Fracassi L, Crovace AM, Recchia A, Natalicchio A, Paradies P. Generation of Insulin-Producing Cells from Canine Bone Marrow-Derived Mesenchymal Stem Cells: A Preliminary Study. Vet Sci 2024; 11:380. [PMID: 39195834 PMCID: PMC11359947 DOI: 10.3390/vetsci11080380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Cell-based therapy using insulin-producing cells (IPCs) is anticipated as an alternative treatment option to insulin injection or pancreatic islet transplantation for the treatment of diabetes mellitus in both human and veterinary medicine. Several protocols were reported for the differentiation of mesenchymal stem cells (MSCs) into IPCs; to date, glucose-responsive IPCs have only been obtained from canine adipose tissue-derived MSCs (cAD-MSCs), but not from canine bone marrow-derived MSCs (cBM-MSCs). Therefore, this study aims to generate in vitro glucose-responsive IPCs from cBM-MSCs using two differentiation protocols: a two-step protocol using trichostatin (TSA) and a three-step protocol using mercaptoethanol to induce pancreatic and duodenal homeobox gene 1 (PDX-1) expression. A single experiment was carried out for each protocol. BM-MSCs from one dog were successfully cultured and expanded. Cells exposed to the two-step protocol appeared rarely grouped to form small clusters; gene expression analysis showed a slight increase in PDX-1 and insulin expression, but no insulin protein production nor secretion in the culture medium was detected either under basal conditions or following glucose stimulation. Conversely, cells exposed to the three-step protocol under a 3D culture system formed colony-like structures; insulin gene expression was upregulated compared to undifferentiated control and IPCs colonies secreted insulin in the culture medium, although insulin secretion was not enhanced by high-glucose culture conditions. The single experiment results suggest that the three-step differentiation protocol could generate IPCs from cBM-MSCs; however, further experiments are needed to confirm these data. The ability of IPCs from cBM- MSCs to produce insulin, described here for the first time, is a preliminary interesting result. Nevertheless, the IPCs' unresponsiveness to glucose, if confirmed, would affect its clinical application. Further studies are necessary to establish a differentiation protocol in this perspective.
Collapse
Affiliation(s)
- Antonella Colella
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| | - Giuseppina Biondi
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Internal Medicine, Endocrinology, Andrology and Metabolic Diseases Section, University of Bari Aldo Moro, 70124 Bari, Italy; (G.B.); (N.M.); (A.N.)
| | - Nicola Marrano
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Internal Medicine, Endocrinology, Andrology and Metabolic Diseases Section, University of Bari Aldo Moro, 70124 Bari, Italy; (G.B.); (N.M.); (A.N.)
| | - Edda Francioso
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| | - Laura Fracassi
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| | - Alberto M. Crovace
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy;
| | - Alessandra Recchia
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| | - Annalisa Natalicchio
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Internal Medicine, Endocrinology, Andrology and Metabolic Diseases Section, University of Bari Aldo Moro, 70124 Bari, Italy; (G.B.); (N.M.); (A.N.)
| | - Paola Paradies
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, Valenzano, 70010 Bari, Italy; (A.C.); (E.F.); (L.F.); (A.R.)
| |
Collapse
|
21
|
Li S, Qiu J, Guo Z, Gao Q, Huang CY, Hao Y, Hu Y, Liang T, Zhai M, Zhang Y, Nie B, Chang WJ, Wang W, Xi R, Wei R. Formation and culture of cell spheroids by using magnetic nanostructures resembling a crown of thorns. Biofabrication 2024; 16:045018. [PMID: 39053493 DOI: 10.1088/1758-5090/ad6794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/25/2024] [Indexed: 07/27/2024]
Abstract
In contrast to traditional two-dimensional cell-culture conditions, three-dimensional (3D) cell-culture models closely mimic complexin vivoconditions. However, constructing 3D cell culture models still faces challenges. In this paper, by using micro/nano fabrication method, including lithography, deposition, etching, and lift-off, we designed magnetic nanostructures resembling a crown of thorns. This magnetic crown of thorns (MCT) nanostructure enables the isolation of cells that have endocytosed magnetic particles. To assess the utility of this nanostructure, we used high-flux acquisition of Jurkat cells, an acute-leukemia cell line exhibiting the native phenotype, as an example. The novel structure enabled Jurkat cells to form spheroids within just 30 min by leveraging mild magnetic forces to bring together endocytosed magnetic particles. The size, volume, and arrangement of these spheroids were precisely regulated by the dimensions of the MCT nanostructure and the array configuration. The resulting magnetic cell clusters were uniform in size and reached saturation after 1400 s. Notably, these cell clusters could be easily separated from the MCT nanostructure through enzymatic digestion while maintaining their integrity. These clusters displayed a strong proliferation rate and survival capabilities, lasting for an impressive 96 h. Compared with existing 3D cell-culture models, the approach presented in this study offers the advantage of rapid formation of uniform spheroids that can mimicin vivomicroenvironments. These findings underscore the high potential of the MCT in cell-culture models and magnetic tissue enginerring.
Collapse
Affiliation(s)
- Shijiao Li
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Jingjiang Qiu
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Industrial Technology Research Institute, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Zhongwei Guo
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Qiulei Gao
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Chen-Yu Huang
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States of America
| | - Yilin Hao
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yifan Hu
- Industrial Technology Research Institute, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Henan Spring Biotechnology Ltd Company, Zhengzhou 450001, People's Republic of China
- Division of Logistics, Weistron Co., Ltd, Zhengzhou 450001, People's Republic of China
| | - Tianshui Liang
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Ming Zhai
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yudong Zhang
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Bangbang Nie
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Wei-Jen Chang
- Department of Biology, Hamilton College, Clinton, NY, United States of America
| | - Wen Wang
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Rui Xi
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, People's Republic of China
| | - Ronghan Wei
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Industrial Technology Research Institute, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
22
|
Oliverio R, Liberelle B, Patenaude V, Moreau V, Thomas E, Virgilio N, Banquy X, De Crescenzo G. Cofunctionalization of Macroporous Dextran Hydrogels with Adhesive Peptides and Growth Factors Enables Vascular Spheroid Sprouting. ACS Biomater Sci Eng 2024; 10:5080-5093. [PMID: 39038278 DOI: 10.1021/acsbiomaterials.4c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Ensuring good definition of scaffolds used for 3D cell culture is a prominent challenge that hampers the development of tissue engineering platforms. Since dextran repels cell adhesion, using dextran-based materials biofunctionalized through a bottom-up approach allows for precise control over material definition. Here, we report the design of dextran hydrogels displaying a fully interconnected macropore network for the culture of vascular spheroids in vitro. We biofunctionalized the hydrogels with the RGD peptide sequence to promote cell adhesion. We used an affinity peptide pair, the E/K coiled coil, to load the gels with epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF). Dual functionalization with adhesive and proliferative cues allows vascular spheroids to colonize naturally cell-repellant dextran. In supplement-depleted medium, we report improved colonization of the macropores compared to that of unmodified dextran. Altogether, we propose a well-defined and highly versatile platform for tissue engineering and tissue vascularization applications.
Collapse
Affiliation(s)
- Romane Oliverio
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
- Faculty of Pharmacy, Axe Formulation et Analyse du Médicament (AFAM), Université de Montréal, Montréal H3T 1J4, Québec, Canada
| | - Benoît Liberelle
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Victor Patenaude
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Vaiana Moreau
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
- Department of Chemical Engineering, Centre de Recherche sur les Systèmes Polymères et Composites à Haute Performance (CREPEC), Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Elian Thomas
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Nick Virgilio
- Department of Chemical Engineering, Centre de Recherche sur les Systèmes Polymères et Composites à Haute Performance (CREPEC), Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Xavier Banquy
- Faculty of Pharmacy, Axe Formulation et Analyse du Médicament (AFAM), Université de Montréal, Montréal H3T 1J4, Québec, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| |
Collapse
|
23
|
Gan L, Jiang Q, Huang D, Wu X, Zhu X, Wang L, Xie W, Huang J, Fan R, Jing Y, Tang G, Li XD, Guo J, Yin S. A natural small molecule alleviates liver fibrosis by targeting apolipoprotein L2. Nat Chem Biol 2024:10.1038/s41589-024-01704-3. [PMID: 39103634 DOI: 10.1038/s41589-024-01704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Abstract
Liver fibrosis is an urgent clinical problem without effective therapies. Here we conducted a high-content screening on a natural Euphorbiaceae diterpenoid library to identify a potent anti-liver fibrosis lead, 12-deoxyphorbol 13-palmitate (DP). Leveraging a photo-affinity labeling approach, apolipoprotein L2 (APOL2), an endoplasmic reticulum (ER)-rich protein, was identified as the direct target of DP. Mechanistically, APOL2 is induced in activated hepatic stellate cells upon transforming growth factor-β1 (TGF-β1) stimulation, which then binds to sarcoplasmic/ER calcium ATPase 2 (SERCA2) to trigger ER stress and elevate its downstream protein kinase R-like ER kinase (PERK)-hairy and enhancer of split 1 (HES1) axis, ultimately promoting liver fibrosis. As a result, targeting APOL2 by DP or ablation of APOL2 significantly impairs APOL2-SERCA2-PERK-HES1 signaling and mitigates fibrosis progression. Our findings not only define APOL2 as a novel therapeutic target for liver fibrosis but also highlight DP as a promising lead for treatment of this symptom.
Collapse
Affiliation(s)
- Lu Gan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiwei Jiang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dong Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xueji Wu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinying Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Wang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Xie
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jialuo Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Runzhu Fan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yihang Jing
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory (SZBL), Shenzhen, China
| | - Guihua Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiang David Li
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory (SZBL), Shenzhen, China
- Department of Chemistry, University of Hong Kong, Hong Kong, China
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
24
|
Deng ZM, Dai FF, Wang RQ, Deng HB, Yin TL, Cheng YX, Chen GT. Organ-on-a-chip: future of female reproductive pathophysiological models. J Nanobiotechnology 2024; 22:455. [PMID: 39085921 PMCID: PMC11290169 DOI: 10.1186/s12951-024-02651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
The female reproductive system comprises the internal and external genitalia, which communicate through intricate endocrine pathways. Besides secreting hormones that maintain the female secondary sexual characteristics, it also produces follicles and offspring. However, the in vitro systems have been very limited in recapitulating the specific anatomy and pathophysiology of women. Organ-on-a-chip technology, based on microfluidics, can better simulate the cellular microenvironment in vivo, opening a new field for the basic and clinical research of female reproductive system diseases. This technology can not only reconstruct the organ structure but also emulate the organ function as much as possible. The precisely controlled fluidic microenvironment provided by microfluidics vividly mimics the complex endocrine hormone crosstalk among various organs of the female reproductive system, making it a powerful preclinical tool and the future of pathophysiological models of the female reproductive system. Here, we review the research on the application of organ-on-a-chip platforms in the female reproductive systems, focusing on the latest progress in developing models that reproduce the physiological functions or disease features of female reproductive organs and tissues, and highlighting the challenges and future directions in this field.
Collapse
Affiliation(s)
- Zhi-Min Deng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Fang-Fang Dai
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Rui-Qi Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Hong-Bing Deng
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei, 430060, China
| | - Tai-Lang Yin
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| | - Gan-Tao Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| |
Collapse
|
25
|
Zhang J, Sun X, Heng Y, Zeng Y, Wang Y, Shen Y, Peng A, Tang W, Zeng M, Yu Z. Transforming Cell-Drug Interaction through Granular Hydrogel-Mediated Delivery of Polyplex Nanoparticles for Enhanced Safety and Extended Efficacy in Gene Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39784-39795. [PMID: 39036892 DOI: 10.1021/acsami.4c05425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The utilization of hydrogels for DNA/cationic polymer polyplex nanoparticle (polyplex) delivery has significantly advanced gene therapy in tissue regeneration and cancer treatment. However, persistent challenges related to the efficacy and safety of encapsulated polyplexes, stemming from issues such as aggregation, degradation, or difficulties in controlled release during or postintegration with hydrogel scaffolds, necessitate further exploration. Here, we introduce an injectable gene therapy gel achieved by incorporating concentrated polyplexes onto densely packed hydrogel microparticles (HMPs). Polyplexes, when uniformly adhered to the gene therapy gel through reversible electrostatic interactions, can detach from the HMP surface in a controlled manner, contrasting with free polyplexes, and thereby reducing dose-dependent toxicity during transfection. Additionally, the integration of RGD cell adhesion peptides enhances the scaffolding characteristics of the gel, facilitating cell adhesion, migration, and further minimizing toxicity during gene drug administration. Notably, despite the overall transfection efficiency showing average performance, utilizing confocal microscopy to meticulously observe and analyze the cellular states infiltrating into various depths of the gene therapy gel resulted in the groundbreaking discovery of significantly enhanced local transfection efficiency, with primary cell transfection approaching 80%. This phenomenon could be potentially attributed to the granular hydrogel-mediated delivery of polyplex nanoparticles, which revolutionizes the spatial and temporal distribution and thus the "encounter" mode between polyplexes and cells. Moreover, the gene therapy gel's intrinsic injectability and self-healing properties offer ease of administration, making it a highly promising candidate as a novel gene transfection gel dressing with significant potential across various fields, including regenerative medicine and innovative living materials.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Ximeng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Yongyuan Heng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Yunfeng Zeng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Yijia Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Yu Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Anhui Peng
- Electric Power Branch, Huaibei Mining Co., Ltd, Huaibei 235000, P. R. China
| | - Wenzhe Tang
- Electric Power Branch, Huaibei Mining Co., Ltd, Huaibei 235000, P. R. China
| | - Ming Zeng
- Department of Dermatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, P. R. China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, P. R. China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| |
Collapse
|
26
|
Li C, He W, Song Y, Zhang X, Sun J, Zhou Z. Advances of 3D Cell Co-Culture Technology Based on Microfluidic Chips. BIOSENSORS 2024; 14:336. [PMID: 39056612 PMCID: PMC11274478 DOI: 10.3390/bios14070336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Cell co-culture technology aims to study the communication mechanism between cells and to better reveal the interactions and regulatory mechanisms involved in processes such as cell growth, differentiation, apoptosis, and other cellular activities. This is achieved by simulating the complex organismic environment. Such studies are of great significance for understanding the physiological and pathological processes of multicellular organisms. As an emerging cell cultivation technology, 3D cell co-culture technology, based on microfluidic chips, can efficiently, rapidly, and accurately achieve cell co-culture. This is accomplished by leveraging the unique microchannel structures and flow characteristics of microfluidic chips. The technology can simulate the native microenvironment of cell growth, providing a new technical platform for studying intercellular communication. It has been widely used in the research of oncology, immunology, neuroscience, and other fields. In this review, we summarize and provide insights into the design of cell co-culture systems on microfluidic chips, the detection methods employed in co-culture systems, and the applications of these models.
Collapse
Affiliation(s)
- Can Li
- Engineering Research Center of TCM Intelligence Health Service, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (C.L.); (Y.S.); (X.Z.)
| | - Wei He
- Department of Clinical Medical Engineering, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;
| | - Yihua Song
- Engineering Research Center of TCM Intelligence Health Service, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (C.L.); (Y.S.); (X.Z.)
| | - Xia Zhang
- Engineering Research Center of TCM Intelligence Health Service, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (C.L.); (Y.S.); (X.Z.)
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210009, China
| | - Zuojian Zhou
- Engineering Research Center of TCM Intelligence Health Service, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, China; (C.L.); (Y.S.); (X.Z.)
| |
Collapse
|
27
|
Kerneis F, Bognar E, Stanbery L, Moon S, Kim DH, Deng Y, Hughes E, Chun TH, Tharp D, Zupanc H, Jay C, Walter A, Nemunaitis J, Lahann J. 3D engineered scaffold for large-scale Vigil immunotherapy production. Sci Rep 2024; 14:15556. [PMID: 38969656 PMCID: PMC11226630 DOI: 10.1038/s41598-024-65993-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
Previously, we reported successful cellular expansion of a murine colorectal carcinoma cell line (CT-26) using a three-dimensional (3D) engineered extracellular matrix (EECM) fibrillar scaffold structure. CCL-247 were grown over a limited time period of 8 days on 3D EECM or tissue culture polystyrene (TCPS). Cells were then assayed for growth, electroporation efficiency and Vigil manufacturing release criteria. Using EECM scaffolds, we report an expansion of CCL-247 (HCT116), a colorectal carcinoma cell line, from a starting concentration of 2.45 × 105 cells to 1.9 × 106 cells per scaffold. Following expansion, 3D EECM-derived cells were assessed based on clinical release criteria of the Vigil manufacturing process utilized for Phase IIb trial operation with the FDA. 3D EECM-derived cells passed all Vigil manufacturing release criteria including cytokine expression. Here, we demonstrate successful Vigil product manufacture achieving the specifications necessary for the clinical trial product release of Vigil treatment. Our results confirm that 3D EECM can be utilized for the expansion of human cancer cell CCL-247, justifying further clinical development involving human tissue sample manufacturing including core needle biopsy and minimal ascites samples.
Collapse
Affiliation(s)
| | | | | | - Seongjun Moon
- University of Michigan Biointerfaces Institute, Ann Arbor, MI, 48109, USA
| | - Do Hoon Kim
- University of Michigan Biointerfaces Institute, Ann Arbor, MI, 48109, USA
| | - Yuxuan Deng
- University of Michigan Biointerfaces Institute, Ann Arbor, MI, 48109, USA
| | - Elliot Hughes
- University of Michigan Biointerfaces Institute, Ann Arbor, MI, 48109, USA
| | - Tae-Hwa Chun
- University of Michigan Biointerfaces Institute, Ann Arbor, MI, 48109, USA
- Department of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | | | | | - Chris Jay
- Gradalis, Inc, Dallas, TX, 75006, USA
| | - Adam Walter
- Gradalis, Inc, Dallas, TX, 75006, USA
- Department of Gynecologic Oncology, Promedica, Toledo, OH, 43560, USA
| | | | - Joerg Lahann
- University of Michigan Biointerfaces Institute, Ann Arbor, MI, 48109, USA
| |
Collapse
|
28
|
Singhal R, Sarangi MK, Rath G. Injectable Hydrogels: A Paradigm Tailored with Design, Characterization, and Multifaceted Approaches. Macromol Biosci 2024; 24:e2400049. [PMID: 38577905 DOI: 10.1002/mabi.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Biomaterials denoting self-healing and versatile structural integrity are highly curious in the biomedicine segment. The injectable and/or printable 3D printing technology is explored in a few decades back, which can alter their dimensions temporarily under shear stress, showing potential healing/recovery tendency with patient-specific intervention toward the development of personalized medicine. Thus, self-healing injectable hydrogels (IHs) are stunning toward developing a paradigm for tissue regeneration. This review comprises the designing of IHs, rheological characterization and stability, several benchmark consequences for self-healing IHs, their translation into tissue regeneration of specific types, applications of IHs in biomedical such as anticancer and immunomodulation, wound healing and tissue/bone regeneration, antimicrobial potentials, drugs, gene and vaccine delivery, ocular delivery, 3D printing, cosmeceuticals, and photothermal therapy as well as in other allied avenues like agriculture, aerospace, electronic/electrical industries, coating approaches, patents associated with therapeutic/nontherapeutic avenues, and numerous futuristic challenges and solutions.
Collapse
Affiliation(s)
- Rishika Singhal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, 751030, India
| |
Collapse
|
29
|
Sharkey C, White R, Finocchiaro M, Thomas J, Estevam J, Konry T. Advancing Point-of-Care Applications with Droplet Microfluidics: From Single-Cell to Multicellular Analysis. Annu Rev Biomed Eng 2024; 26:119-139. [PMID: 38316063 DOI: 10.1146/annurev-bioeng-110222-102142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Recent advances in single-cell and multicellular microfluidics technology have provided powerful tools for studying cancer biology and immunology. The ability to create controlled microenvironments, perform high-throughput screenings, and monitor cellular interactions at the single-cell level has significantly advanced our understanding of tumor biology and immune responses. We discuss cutting-edge multicellular and single-cell microfluidic technologies and methodologies utilized to investigate cancer-immune cell interactions and assess the effectiveness of immunotherapies. We explore the advantages and limitations of the wide range of 3D spheroid and single-cell microfluidic models recently developed, highlighting the various approaches in device generation and applications in immunotherapy screening for potential opportunities for point-of-care approaches.
Collapse
Affiliation(s)
- Christina Sharkey
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA;
- Department of Surgery, Division of Urology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Rachel White
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA;
| | - Michael Finocchiaro
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA;
| | - Judene Thomas
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA;
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA
| | - Jose Estevam
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA;
| | - Tania Konry
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA;
| |
Collapse
|
30
|
Yu J, Zhang Y, Ran R, Kong Z, Zhao D, Zhao W, Yang Y, Gao L, Zhang Z. Research Progress in the Field of Tumor Model Construction Using Bioprinting: A Review. Int J Nanomedicine 2024; 19:6547-6575. [PMID: 38957180 PMCID: PMC11217009 DOI: 10.2147/ijn.s460387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
The development of therapeutic drugs and methods has been greatly facilitated by the emergence of tumor models. However, due to their inherent complexity, establishing a model that can fully replicate the tumor tissue situation remains extremely challenging. With the development of tissue engineering, the advancement of bioprinting technology has facilitated the upgrading of tumor models. This article focuses on the latest advancements in bioprinting, specifically highlighting the construction of 3D tumor models, and underscores the integration of these two technologies. Furthermore, it discusses the challenges and future directions of related techniques, while also emphasizing the effective recreation of the tumor microenvironment through the emergence of 3D tumor models that resemble in vitro organs, thereby accelerating the development of new anticancer therapies.
Collapse
Affiliation(s)
- Jiachen Yu
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Yingchun Zhang
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Rong Ran
- Department of Anesthesia, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Zixiao Kong
- China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Duoyi Zhao
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Wei Zhao
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Yingxin Yang
- General Hospital of Northern Theater Command, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Lianbo Gao
- Department of Neurology, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| | - Zhiyu Zhang
- Department of Orthopedics, the Fourth Affiliated Hospital of China Medical University, China Medical University, Shen Yang, 110032, People’s Republic of China
| |
Collapse
|
31
|
Song WH, Lim YS, Kim JE, Kang HY, Lee C, Rajbongshi L, Hwang SY, Oh SO, Kim BS, Lee D, Song YJ, Yoon S. A Marine Collagen-Based 3D Scaffold for In Vitro Modeling of Human Prostate Cancer Niche and Anti-Cancer Therapeutic Discovery. Mar Drugs 2024; 22:295. [PMID: 39057404 PMCID: PMC11277582 DOI: 10.3390/md22070295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Recently, the need to develop a robust three-dimensional (3D) cell culture system that serves as a valuable in vitro tumor model has been emphasized. This system should closely mimic the tumor growth behaviors observed in vivo and replicate the key elements and characteristics of human tumors for the effective discovery and development of anti-tumor therapeutics. Therefore, in this study, we developed an effective 3D in vitro model of human prostate cancer (PC) using a marine collagen-based biomimetic 3D scaffold. The model displayed distinctive molecular profiles and cellular properties compared with those of the 2D PC cell culture. This was evidenced by (1) increased cell proliferation, migration, invasion, colony formation, and chemoresistance; (2) upregulated expression of crucial multidrug-resistance- and cancer-stemness-related genes; (3) heightened expression of key molecules associated with malignant progressions, such as epithelial-mesenchymal transition transcription factors, Notch, matrix metalloproteinases, and pluripotency biomarkers; (4) robust enrichment of prostate cancer stem cells (CSCs); and (5) enhanced expression of integrins. These results suggest that our 3D in vitro PC model has the potential to serve as a research platform for studying PC and prostate CSC biology, as well as for screening novel therapies targeting PC and prostate CSCs.
Collapse
Affiliation(s)
- Won Hoon Song
- Department of Urology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| | - Ye Seon Lim
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| | - Ji-Eun Kim
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| | - Hae Yeong Kang
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
| | - Changyong Lee
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| | - Lata Rajbongshi
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| | - Seon Yeong Hwang
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
| | - Sae-Ock Oh
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Dongjun Lee
- Department of Convergence Medicine, Pusan National University College of Medicine, Yangsan 50612, Republic of Korea;
| | - Yong Jung Song
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital and Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea
| | - Sik Yoon
- Department of Anatomy and Convergence Medical Sciences, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea; (Y.S.L.); (J.-E.K.); (H.Y.K.); (C.L.); (L.R.); (S.Y.H.); (S.-O.O.)
- Immune Reconstitution Research Center of Medical Research Institute, Pusan National University College of Medicine, Yangsan 626-870, Republic of Korea;
| |
Collapse
|
32
|
Seydel CM, Gonzaga BMDS, Coelho LL, Garzoni LR. Exploring the Dimensions of Pre-Clinical Research: 3D Cultures as an Investigative Model of Cardiac Fibrosis in Chagas Disease. Biomedicines 2024; 12:1410. [PMID: 39061986 PMCID: PMC11274318 DOI: 10.3390/biomedicines12071410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 07/28/2024] Open
Abstract
A three-dimensional (3D) cell culture can more precisely mimic tissues architecture and functionality, being a promising alternative model to study disease pathophysiology and drug screening. Chagas disease (CD) is a neglected parasitosis that affects 7 million people worldwide. Trypanosoma cruzi's (T. cruzi) mechanisms of invasion/persistence continue to be elucidated. Benznidazole (BZ) and Nifurtimox (NF) are trypanocidal drugs with few effects on the clinical manifestations of the chronic disease. Chronic Chagas cardiomyopathy (CCC) is the main manifestation of CD due to its frequency and severity. The development of fibrosis and hypertrophy in cardiac tissue can lead to heart failure and sudden death. Thus, there is an urgent need for novel therapeutic options. Our group has more than fifteen years of expertise using 3D primary cardiac cell cultures, being the first to reproduce fibrosis and hypertrophy induced by T. cruzi infection in vitro. These primary cardiac spheroids exhibit morphological and functional characteristics that are similar to heart tissue, making them an interesting model for studying CD cardiac fibrosis. Here, we aim to demonstrate that our primary cardiac spheroids are great preclinical models which can be used to develop new insights into CD cardiac fibrosis, presenting advances already achieved in the field, including disease modeling and drug screening.
Collapse
Affiliation(s)
| | | | | | - Luciana Ribeiro Garzoni
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (C.M.S.); (B.M.d.S.G.); (L.L.C.)
| |
Collapse
|
33
|
Fadil SA, Aljoud FA, Yonbawi AR, Almalki AJ, Hareeri RH, Ashi A, AlQriqri MA, Bawazir NS, Alshangiti HH, Shaala LA, Youssef DTA, Alkhilaiwi FA. Red Sea Sponge Callyspongia siphonella Extract Induced Growth Inhibition and Apoptosis in Breast MCF-7 and Hepatic HepG-2 Cancer Cell Lines in 2D and 3D Cell Cultures. Onco Targets Ther 2024; 17:521-536. [PMID: 38948385 PMCID: PMC11214578 DOI: 10.2147/ott.s467083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction The increasing incidence of cancer diseases necessitates the urgent exploration of new bioactive compounds. One of the trends in drug discovery is marine sponges which is gaining significant support due to the abundant production of natural pharmaceutical compounds obtained from marine ecosystems. This study evaluates the anticancer properties of an organic extract from the Red Sea sponge Callyspongia siphonella (C. siphonella) on HepG-2 and MCF-7 cancer cell lines. Methods C. siphonella was collected, freeze-dried, and extracted using a methanol-dichloromethane mixture. The extract was analyzed via Liquid Chromatography-Mass Spectrometry. Cytotoxic effects were assessed through cell viability assays, apoptosis detection, cell cycle analysis, mitochondrial membrane potential assays, scratch-wound healing assays, and 3D cell culture assays. Results Fifteen compounds were identified in the C. siphonella extract. The extract showed moderate cytotoxicity against MCF-7 and HepG-2 cells, with IC50 values of 35.6 ± 6.9 μg/mL and 64.4 ± 8 μg/mL, respectively, after 48 hours of treatment. It induced cell cycle arrest at the G2/M phase in MCF-7 cells and the S phase in HepG-2 cells. Apoptosis increased significantly in both cell lines, accompanied by reduced mitochondrial membrane potential. The extract inhibited cell migration, with notable reductions after 24 and 48 hours. In 3D cell cultures, the extract had IC50 values of 5.1 ± 2 μg/mL for MCF-7 and 166.4 ± 27 μg/mL for HepG-2 after 7 days of treatment, showing greater potency in MCF-7 spheres compared to HepG-2 spheres. Discussion and Conclusion The anticancer activity is attributed to the bioactive compounds. The C. siphonella extract's ability to induce apoptosis, disrupt mitochondrial membrane potential, and arrest the cell cycle highlights its potential as a novel anticancer agent. Additional research is required to investigate the underlying mechanism by which this extract functions as a highly effective anticancer agent.
Collapse
Affiliation(s)
- Sana A Fadil
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Fadwa A Aljoud
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Scientific Research Center, Dar Al-Hekma University, Jeddah, 22246, Saudi Arabia
| | - Ahmed R Yonbawi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ahmad J Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rawan H Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abrar Ashi
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mehal Atallah AlQriqri
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Nada S Bawazir
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hadeel H Alshangiti
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Lamiaa A Shaala
- Suez Canal University Hospital, Suez Canal University, Ismailia, 41522, Egypt
- Natural Products Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Diaa T A Youssef
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Natural Products Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, 41523, Egypt
| | - Faris A Alkhilaiwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
34
|
Bloise N, Giannaccari M, Guagliano G, Peluso E, Restivo E, Strada S, Volpini C, Petrini P, Visai L. Growing Role of 3D In Vitro Cell Cultures in the Study of Cellular and Molecular Mechanisms: Short Focus on Breast Cancer, Endometriosis, Liver and Infectious Diseases. Cells 2024; 13:1054. [PMID: 38920683 PMCID: PMC11201503 DOI: 10.3390/cells13121054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Over the past decade, the development of three-dimensional (3D) models has increased exponentially, facilitating the unravelling of fundamental and essential cellular mechanisms by which cells communicate with each other, assemble into tissues and organs and respond to biochemical and biophysical stimuli under both physiological and pathological conditions. This section presents a concise overview of the most recent updates on the significant contribution of different types of 3D cell cultures including spheroids, organoids and organ-on-chip and bio-printed tissues in advancing our understanding of cellular and molecular mechanisms. The case studies presented include the 3D cultures of breast cancer (BC), endometriosis, the liver microenvironment and infections. In BC, the establishment of 3D culture models has permitted the visualization of the role of cancer-associated fibroblasts in the delivery of exosomes, as well as the significance of the physical properties of the extracellular matrix in promoting cell proliferation and invasion. This approach has also become a valuable tool in gaining insight into general and specific mechanisms of drug resistance. Given the considerable heterogeneity of endometriosis, 3D models offer a more accurate representation of the in vivo microenvironment, thereby facilitating the identification and translation of novel targeted therapeutic strategies. The advantages provided by 3D models of the hepatic environment, in conjunction with the high throughput characterizing various platforms, have enabled the elucidation of complex molecular mechanisms underlying various threatening hepatic diseases. A limited number of 3D models for gut and skin infections have been developed. However, a more profound comprehension of the spatial and temporal interactions between microbes, the host and their environment may facilitate the advancement of in vitro, ex vivo and in vivo disease models. Additionally, it may pave the way for the development of novel therapeutic approaches in diverse research fields. The interested reader will also find concluding remarks on the challenges and prospects of using 3D cell cultures for discovering cellular and molecular mechanisms in the research areas covered in this review.
Collapse
Affiliation(s)
- Nora Bloise
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), Unità di Ricerca (UdR) INSTM, University of Pavia, 27100 Pavia, Italy; (M.G.); (E.P.); (E.R.); (S.S.); (C.V.)
- UOR6 Nanotechnology Laboratory, Department of Prevention and Rehabilitation in Occupational Medicine and Specialty Medicine, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), Operative Unit (OU) of University of Pavia, 27100 Pavia, Italy
| | - Marialaura Giannaccari
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), Unità di Ricerca (UdR) INSTM, University of Pavia, 27100 Pavia, Italy; (M.G.); (E.P.); (E.R.); (S.S.); (C.V.)
| | - Giuseppe Guagliano
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano, P.zza L. Da Vinci 32, 20133 Milan, Italy; (G.G.); (P.P.)
| | - Emanuela Peluso
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), Unità di Ricerca (UdR) INSTM, University of Pavia, 27100 Pavia, Italy; (M.G.); (E.P.); (E.R.); (S.S.); (C.V.)
| | - Elisa Restivo
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), Unità di Ricerca (UdR) INSTM, University of Pavia, 27100 Pavia, Italy; (M.G.); (E.P.); (E.R.); (S.S.); (C.V.)
| | - Silvia Strada
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), Unità di Ricerca (UdR) INSTM, University of Pavia, 27100 Pavia, Italy; (M.G.); (E.P.); (E.R.); (S.S.); (C.V.)
- UOR6 Nanotechnology Laboratory, Department of Prevention and Rehabilitation in Occupational Medicine and Specialty Medicine, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy
| | - Cristina Volpini
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), Unità di Ricerca (UdR) INSTM, University of Pavia, 27100 Pavia, Italy; (M.G.); (E.P.); (E.R.); (S.S.); (C.V.)
- UOR6 Nanotechnology Laboratory, Department of Prevention and Rehabilitation in Occupational Medicine and Specialty Medicine, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy
| | - Paola Petrini
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta”, Politecnico di Milano, P.zza L. Da Vinci 32, 20133 Milan, Italy; (G.G.); (P.P.)
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), Operative Unit (OU) of Politecnico di Milano, 20133 Milan, Italy
| | - Livia Visai
- Molecular Medicine Department (DMM), Centre for Health Technologies (CHT), Unità di Ricerca (UdR) INSTM, University of Pavia, 27100 Pavia, Italy; (M.G.); (E.P.); (E.R.); (S.S.); (C.V.)
- UOR6 Nanotechnology Laboratory, Department of Prevention and Rehabilitation in Occupational Medicine and Specialty Medicine, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), Operative Unit (OU) of University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
35
|
Nwokoye PN, Abilez OJ. Bioengineering methods for vascularizing organoids. CELL REPORTS METHODS 2024; 4:100779. [PMID: 38759654 PMCID: PMC11228284 DOI: 10.1016/j.crmeth.2024.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/01/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024]
Abstract
Organoids, self-organizing three-dimensional (3D) structures derived from stem cells, offer unique advantages for studying organ development, modeling diseases, and screening potential therapeutics. However, their translational potential and ability to mimic complex in vivo functions are often hindered by the lack of an integrated vascular network. To address this critical limitation, bioengineering strategies are rapidly advancing to enable efficient vascularization of organoids. These methods encompass co-culturing organoids with various vascular cell types, co-culturing lineage-specific organoids with vascular organoids, co-differentiating stem cells into organ-specific and vascular lineages, using organoid-on-a-chip technology to integrate perfusable vasculature within organoids, and using 3D bioprinting to also create perfusable organoids. This review explores the field of organoid vascularization, examining the biological principles that inform bioengineering approaches. Additionally, this review envisions how the converging disciplines of stem cell biology, biomaterials, and advanced fabrication technologies will propel the creation of increasingly sophisticated organoid models, ultimately accelerating biomedical discoveries and innovations.
Collapse
Affiliation(s)
- Peter N Nwokoye
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Oscar J Abilez
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; Division of Pediatric CT Surgery, Stanford University, Stanford, CA 94305, USA; Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Maternal and Child Health Research Institute, Stanford University, Stanford, CA 94305, USA; Bio-X Program, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
36
|
Yu G, Ding J, Yang N, Ge L, Chen N, Zhang X, Wang Q, Liu X, Zhang X, Jiang X, Geng Y, Zhang C, Pan J, Wang X, Gao W, Li Z, Zhang H, Ni W, Xiao J, Zhou K, Yang L. Evaluating the pro-survival potential of apoptotic bodies derived from 2D- and 3D- cultured adipose stem cells in ischaemic flaps. J Nanobiotechnology 2024; 22:333. [PMID: 38877492 PMCID: PMC11177420 DOI: 10.1186/s12951-024-02533-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/09/2024] [Indexed: 06/16/2024] Open
Abstract
In the realm of large-area trauma flap transplantation, averting ischaemic necrosis emerges as a pivotal concern. Several key mechanisms, including the promotion of angiogenesis, the inhibition of oxidative stress, the suppression of cell death, and the mitigation of inflammation, are crucial for enhancing skin flap survival. Apoptotic bodies (ABs), arising from cell apoptosis, have recently emerged as significant contributors to these functions. This study engineered three-dimensional (3D)-ABs using tissue-like mouse adipose-derived stem cells (mADSCs) cultured in a 3D environment to compare their superior biological effects against 2D-ABs in bolstering skin flap survival. The findings reveal that 3D-ABs (85.74 ± 4.51) % outperform 2D-ABs (76.48 ± 5.04) % in enhancing the survival rate of ischaemic skin flaps (60.45 ± 8.95) % (all p < 0.05). Mechanistically, they stimulated angiogenesis, mitigated oxidative stress, suppressed apoptosis, and facilitated the transition of macrophages from M1 to M2 polarization (all p < 0.05). A comparative analysis of microRNA (miRNA) profiles in 3D- and 2D-ABs identified several specific miRNAs (miR-423-5p-up, miR30b-5p-down, etc.) with pertinent roles. In summary, ABs derived from mADSCs cultured in a 3D spheroid-like arrangement exhibit heightened biological activity compared to those from 2D-cultured mADSCs and are more effective in promoting ischaemic skin flap survival. These effects are attributed to their influence on specific miRNAs.
Collapse
Affiliation(s)
- Gaoxiang Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
- Department of Hand Surgery, Ningbo Sixth Hospital, Ningbo, 315042, China
| | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Lu Ge
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
| | - Nuo Chen
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xuzi Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiuchen Wang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xian Liu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xuanlong Zhang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Xiaoqiong Jiang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Chenxi Zhang
- Department of Hand Surgery, Ningbo Sixth Hospital, Ningbo, 315042, China
| | - Jiadong Pan
- Department of Hand Surgery, Ningbo Sixth Hospital, Ningbo, 315042, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhijie Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Jian Xiao
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Liangliang Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
37
|
Markova L, Maji M, Kostrhunova H, Novohradsky V, Kasparkova J, Gibson D, Brabec V. Multiaction Pt(IV) Prodrugs Releasing Cisplatin and Dasatinib Are Potent Anticancer and Anti-Invasive Agents Displaying Synergism between the Two Drugs. J Med Chem 2024; 67:9745-9758. [PMID: 38819023 DOI: 10.1021/acs.jmedchem.4c00888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Herein, we describe the general design, synthesis, characterization, and biological activity of new multitargeting Pt(IV) prodrugs that combine antitumor cisplatin and dasatinib, a potent inhibitor of Src kinase. These prodrugs exhibit impressive antiproliferative and anti-invasive activities in tumor cell lines in both two-dimensional (2D) monolayers of cell cultures and three-dimensional (3D) spheroids. We show that the cisplatin moiety and dasatinib in the investigated Pt(IV) complexes are both involved in the mechanism of action in MCF7 breast cancer cells and act synergistically. Thus, combining dasatinib and cisplatin into one molecule, compared to using individual components in a mix, may bring several advantages, such as significantly higher activity in cancer cell lines and higher selectivity for tumor cells. Most importantly, Pt(IV)-dasatinib complexes hold significant promise for potential anticancer therapies by targeting epithelial-mesenchymal transition, thus preventing the spread and metastasis of tumors, a value unachievable by a simple combination of both individual components.
Collapse
Affiliation(s)
- Lenka Markova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, CZ-61200 Brno, Czech Republic
| | - Moumita Maji
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hana Kostrhunova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, CZ-61200 Brno, Czech Republic
| | - Vojtech Novohradsky
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, CZ-61200 Brno, Czech Republic
| | - Jana Kasparkova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, CZ-61200 Brno, Czech Republic
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Viktor Brabec
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, CZ-61200 Brno, Czech Republic
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
38
|
Ding Z, Greenberg ZF, Serafim MF, Ali S, Jamieson JC, Traktuev DO, March K, He M. Understanding molecular characteristics of extracellular vesicles derived from different types of mesenchymal stem cells for therapeutic translation. EXTRACELLULAR VESICLE 2024; 3:100034. [PMID: 38957857 PMCID: PMC11218754 DOI: 10.1016/j.vesic.2024.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Mesenchymal stem cells (MSCs) have been studied for decades as candidates for cellular therapy, and their secretome, including secreted extracellular vesicles (EVs), has been identified to contribute significantly to regenerative and reparative functions. Emerging evidence has suggested that MSC-EVs alone, could be used as therapeutics that emulate the biological function of MSCs. However, just as with MSCs, MSC-EVs have been shown to vary in composition, depending on the tissue source of the MSCs as well as the protocols employed in culturing the MSCs and obtaining the EVs. Therefore, the importance of careful choice of cell sources and culture environments is receiving increasing attention. Many factors contribute to the therapeutic potential of MSC-EVs, including the source tissue, isolation technique, and culturing conditions. This review illustrates the molecular landscape of EVs derived from different types of MSC cells along with culture strategies. A thorough analysis of publicly available omic datasets was performed to advance the precision understanding of MSC-EVs with unique tissue source-dependent molecular characteristics. The tissue-specific protein and miRNA-driven Reactome ontology analysis was used to reveal distinct patterns of top Reactome ontology pathways across adipose, bone marrow, and umbilical MSC-EVs. Moreover, a meta-analysis assisted by an AI technique was used to analyze the published literature, providing insights into the therapeutic translation of MSC-EVs based on their source tissues.
Collapse
Affiliation(s)
- Zuo Ding
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Zachary F. Greenberg
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Maria Fernanda Serafim
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Samantha Ali
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Julia C. Jamieson
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Dmitry O. Traktuev
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Keith March
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
39
|
Lee D, Kim SM, Kim D, Baek SY, Yeo SJ, Lee JJ, Cha C, Park SA, Kim TD. Microfluidics-assisted fabrication of natural killer cell-laden microgel enhances the therapeutic efficacy for tumor immunotherapy. Mater Today Bio 2024; 26:101055. [PMID: 38693995 PMCID: PMC11061753 DOI: 10.1016/j.mtbio.2024.101055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 05/03/2024] Open
Abstract
Recently, interest in cancer immunotherapy has increased over traditional anti-cancer therapies such as chemotherapy or targeted therapy. Natural killer (NK) cells are part of the immune cell family and essential to tumor immunotherapy as they detect and kill cancer cells. However, the disadvantage of NK cells is that cell culture is difficult. In this study, porous microgels have been fabricated using microfluidic channels to effectively culture NK cells. Microgel fabrication using microfluidics can be mass-produced in a short time and can be made in a uniform size. Microgels consist of photo cross-linkable polymers such as methacrylic gelatin (GelMa) and can be regulated via controlled GelMa concentrations. NK92 cell-laden three-dimensional (3D) microgels increase mRNA expression levels, NK92 cell proliferation, cytokine release, and anti-tumor efficacy, compared with two-dimensional (2D) cultures. In addition, the study confirms that 3D-cultured NK92 cells enhance anti-tumor effects compared with enhancement by 2D-cultured NK92 cells in the K562 leukemia mouse model. Microgels containing healthy NK cells are designed to completely degrade after 5 days allowing NK cells to be released to achieve cell-to-cell interaction with cancer cells. Overall, this microgel system provides a new cell culture platform for the effective culturing of NK cells and a new strategy for developing immune cell therapy.
Collapse
Affiliation(s)
- Dongjin Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Republic of Korea
| | - Seok Min Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Dahong Kim
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Republic of Korea
- Department of Applied Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Yeop Baek
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Seon Ju Yeo
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Republic of Korea
| | - Jae Jong Lee
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Republic of Korea
| | - Chaenyung Cha
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Su A Park
- Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, Republic of Korea
| | - Tae-Don Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| |
Collapse
|
40
|
Aye KTN, Ferreira JN, Chaweewannakorn C, Souza GR. Advances in the application of iron oxide nanoparticles (IONs and SPIONs) in three-dimensional cell culture systems. SLAS Technol 2024; 29:100132. [PMID: 38582355 DOI: 10.1016/j.slast.2024.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND The field of tissue engineering has remarkably progressed through the integration of nanotechnology and the widespread use of magnetic nanoparticles. These nanoparticles have resulted in innovative methods for three-dimensional (3D) cell culture platforms, including the generation of spheroids, organoids, and tissue-mimetic cultures, where they play a pivotal role. Notably, iron oxide nanoparticles and superparamagnetic iron oxide nanoparticles have emerged as indispensable tools for non-contact manipulation of cells within these 3D environments. The variety and modification of the physical and chemical properties of magnetic nanoparticles have profound impacts on cellular mechanisms, metabolic processes, and overall biological function. This review article focuses on the applications of magnetic nanoparticles, elucidating their advantages and potential pitfalls when integrated into 3D cell culture systems. This review aims to shed light on the transformative potential of magnetic nanoparticles in terms of tissue engineering and their capacity to improve the cultivation and manipulation of cells in 3D environments.
Collapse
Affiliation(s)
- Khin The Nu Aye
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Joao N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chayanit Chaweewannakorn
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Department of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Occlusion, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| | - Glauco R Souza
- Greiner Bio-One North America, Inc., 4238 Capital Drive, Monroe, NC 28110, USA
| |
Collapse
|
41
|
de Araújo TBS, Nogueira RLR, Siquara da Rocha LDO, Bastos IN, Dias RB, Souza BSDF, Lambert DW, Coletta RD, Silva VAO, Gurgel Rocha CA. Enhancing scaffold-free spheroid models: 3D cell bioprinting method for metastatic HSC3-Oral squamous carcinoma cell line. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100158. [PMID: 38852983 DOI: 10.1016/j.slasd.2024.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024]
Abstract
3D in vitro systems offer advantages over the shortcomings of two-dimensional models by simulating the morphological and functional features of in vivo-like environments, such as cell-cell and cell-extracellular matrix interactions, as well as the co-culture of different cell types. Nevertheless, these systems present technical challenges that limit their potential in cancer research requiring cell line- and culture-dependent standardization. This protocol details the use of a magnetic 3D bioprinting method and other associated techniques (cytotoxicity assay and histological analysis) using oral squamous cell carcinoma cell line, HSC3, which offer advantages compared to existing widely used approaches. This protocol is particularly timely, as it validates magnetic bioprinting as a method for the rapid deployment of 3D cultures as a tool for compound screening and development of heterotypic cultures such as co-culture of oral squamous cell carcinoma cells with cancer-associated fibroblasts (HSC3/CAFs).
Collapse
Affiliation(s)
- Taís Bacelar Sacramento de Araújo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Bahia, Brazil; Department of Propaedeutics, School of Dentistry of the Federal University of Bahia, Salvador 40110-150, Bahia, Brazil
| | - Raphael Luís Rocha Nogueira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Bahia, Brazil; Department of Pathology, School of Medicine of the Federal University of Bahia, Salvador 40110-909, Bahia, Brazil
| | - Leonardo de Oliveira Siquara da Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Bahia, Brazil; Department of Pathology, School of Medicine of the Federal University of Bahia, Salvador 40110-909, Bahia, Brazil
| | - Iasmin Nogueira Bastos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Bahia, Brazil; Department of Propaedeutics, School of Dentistry of the Federal University of Bahia, Salvador 40110-150, Bahia, Brazil
| | - Rosane Borges Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Bahia, Brazil; Department of Propaedeutics, School of Dentistry of the Federal University of Bahia, Salvador 40110-150, Bahia, Brazil
| | - Bruno Solano De Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Bahia, Brazil; Department of Pathology, School of Medicine of the Federal University of Bahia, Salvador 40110-909, Bahia, Brazil; Center for Biotechnology and Cell Therapy, D'Or Institute for Research and Education (IDOR), São Rafael Hospital, Salvador 41253-190, Brazil
| | | | - Ricardo D Coletta
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-903, São Paulo, Brazil; Graduate Program in Oral Biology, School of Dentistry University of Campinas, Piracicaba 13414-903, São Paulo, Brazil
| | - Viviane Aline Oliveira Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Bahia, Brazil; Department of Pathology, School of Medicine of the Federal University of Bahia, Salvador 40110-909, Bahia, Brazil; Center for Biotechnology and Cell Therapy, D'Or Institute for Research and Education (IDOR), São Rafael Hospital, Salvador 41253-190, Brazil; Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, São Paulo, Brazil.
| | - Clarissa A Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, Bahia, Brazil; Department of Propaedeutics, School of Dentistry of the Federal University of Bahia, Salvador 40110-150, Bahia, Brazil; Department of Pathology, School of Medicine of the Federal University of Bahia, Salvador 40110-909, Bahia, Brazil; Center for Biotechnology and Cell Therapy, D'Or Institute for Research and Education (IDOR), São Rafael Hospital, Salvador 41253-190, Brazil.
| |
Collapse
|
42
|
Rodríguez-Mandujano L, Pimentel-Domínguez R, Tamariz E, Campos-Puente E, Giraldo-Betancur AL, Avila R. Fibrillogenesis in collagen hydrogels accelerated by carboxylated microbeads. Biomed Mater 2024; 19:045005. [PMID: 38688293 DOI: 10.1088/1748-605x/ad459a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
Collagen type I is a material widely used for 3D cell culture and tissue engineering. Different architectures, such as gels, sponges, membranes, and nanofibers, can be fabricated with it. In collagen hydrogels, the formation of fibrils and fibers depends on various parameters, such as the source of collagen, pH, temperature, concentration, age, etc. In this work, we study the fibrillogenesis process in collagen type I hydrogels with different types of microbeads embedded, using optical techniques such as turbidity assay and confocal reflectance microscopy. We observe that microbeads embedded in the collagen matrix hydrogels modify the fibrillogenesis. Our results show that carboxylated fluorescent microbeads accelerate 3.6 times the gelation, while silica microbeads slow down the formation of collagen fibrils by a factor of 1.9, both compared to pure collagen hydrogels. Our observations suggest that carboxylate microbeads act as nucleation sites and the early collagen fibrils bind to the microbeads.
Collapse
Affiliation(s)
- Laura Rodríguez-Mandujano
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, 76230 Querétaro, Mexico
| | - Reinher Pimentel-Domínguez
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, 76230 Querétaro, Mexico
| | - Elisa Tamariz
- Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico
| | - Edgar Campos-Puente
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, 76230 Querétaro, Mexico
| | - Astrid Lorena Giraldo-Betancur
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Querétaro, Libramiento Norponiente, #2000 C.P., 76230 Querétaro, Mexico
| | - Remy Avila
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, 76230 Querétaro, Mexico
| |
Collapse
|
43
|
Jeong S, Fuwad A, Yoon S, Jeon TJ, Kim SM. A Microphysiological Model to Mimic the Placental Remodeling during Early Stage of Pregnancy under Hypoxia-Induced Trophoblast Invasion. Biomimetics (Basel) 2024; 9:289. [PMID: 38786499 PMCID: PMC11118815 DOI: 10.3390/biomimetics9050289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Placental trophoblast invasion is critical for establishing the maternal-fetal interface, yet the mechanisms driving trophoblast-induced maternal arterial remodeling remain elusive. To address this gap, we developed a three-dimensional microfluidic placenta-on-chip model that mimics early pregnancy placentation in a hypoxic environment. By studying human umbilical vein endothelial cells (HUVECs) under oxygen-deprived conditions upon trophoblast invasion, we observed significant HUVEC artery remodeling, suggesting the critical role of hypoxia in placentation. In particular, we found that trophoblasts secrete matrix metalloproteinase (MMP) proteins under hypoxic conditions, which contribute to arterial remodeling by the degradation of extracellular matrix components. This MMP-mediated remodeling is critical for facilitating trophoblast invasion and proper establishment of the maternal-fetal interface. In addition, our platform allows real-time monitoring of HUVEC vessel contraction during trophoblast interaction, providing valuable insights into the dynamic interplay between trophoblasts and maternal vasculature. Collectively, our findings highlight the importance of MMP-mediated arterial remodeling in placental development and underscore the potential of our platform to study pregnancy-related complications and evaluate therapeutic interventions.
Collapse
Affiliation(s)
- Seorin Jeong
- Department of Mechanical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (S.J.); (A.F.)
| | - Ahmed Fuwad
- Department of Mechanical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (S.J.); (A.F.)
- Department of Biomedical Engineering, School of Mechanical & Manufacturing Engineering (SMME), National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Sunhee Yoon
- Department of Biological Sciences and Bioengineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea;
| | - Tae-Joon Jeon
- Department of Biological Sciences and Bioengineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea;
- Biohybrid Systems Research Center, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Biological Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Sun Min Kim
- Department of Mechanical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (S.J.); (A.F.)
- Department of Biological Sciences and Bioengineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea;
- Biohybrid Systems Research Center, Inha University, 100, Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
44
|
Mabry SA, Pavon N. Exploring the prospects, advancements, and challenges of in vitro modeling of the heart-brain axis. Front Cell Neurosci 2024; 18:1386355. [PMID: 38766369 PMCID: PMC11099243 DOI: 10.3389/fncel.2024.1386355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024] Open
Abstract
Research on bidirectional communication between the heart and brain has often relied on studies involving nonhuman animals. Dependance on animal models offer limited applicability to humans and a lack of high-throughput screening. Recently, the field of 3D cell biology, specifically organoid technology, has rapidly emerged as a valuable tool for studying interactions across organ systems, i.e., gut-brain axis. The initial success of organoid models indicates the usefulness of 3D cultures for elucidating the intricate interactivity of the autonomic nervous system and overall health. This perspective aims to explore the potential of advancing in vitro modeling of the heart-brain axis by discussing the benefits, applications, and adaptability of organoid technologies. We closely examine the current state of brain organoids in conjunction with the advancements of cardiac organoids. Moreover, we explore the use of combined organoid systems to investigate pathophysiology and provide a platform for treatment discovery. Finally, we address the challenges that accompany the use of 3D models for studying the heart-brain axis with an emphasis on generating tailored engineering strategies for further refinement of dynamic organ system modeling in vitro.
Collapse
Affiliation(s)
- Senegal Alfred Mabry
- Affect and Cognition Laboratory, Department of Psychology and Human Development, College of Human Ecology, Cornell University, Ithaca, NY, United States
| | - Narciso Pavon
- ChangHui Pak Laboratory, Department of Biochemistry and Molecular Biology, College of Natural Sciences, University of Massachusetts-Amherst, Amherst, MA, United States
| |
Collapse
|
45
|
Xia X, Wu Y, Chen Z, Du D, Chen X, Zhang R, Yan J, Wong IN, Huang R. Colon cancer inhibitory properties of Caulerpa lentillifera polysaccharide and its molecular mechanisms based on three-dimensional cell culture model. Int J Biol Macromol 2024; 267:131574. [PMID: 38615857 DOI: 10.1016/j.ijbiomac.2024.131574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Caulerpa lentillifera is rich in polysaccharides, and its polysaccharides show a significant effect in different biological activities including anti-cancer activity. As an edible algae-derived polysaccharide, exploring the role of colon cancer can better develop the application from a dietary therapy perspective. However, more in-depth studies of C. lentillifera polysaccharide on anti-colon cancer activity and mechanism are needed. In this study, we found that Caulerpa lentillifera polysaccharides (CLP) showed potential anti-colon cancer effect on human colon cancer cell HT29 in monolayer (IC50 = 1.954 mg/mL) and spheroid (IC50 = 0.402 mg/mL). Transcriptomics and metabolomics analyses revealed that CLP had an inhibitory effect on HT29 3D spheroid cells by activating aminoacyl-tRNA biosynthesis as well as arginine and proline metabolism pathways. Furthermore, the anti-colon cancer effects of CLP were confirmed through other human colon cancer cell HCT116 and LoVo in monolayer cells (IC50 = 1.890 mg/mL and 1.437 mg/mL, respectively) and 3D spheroid cells (IC50 = 0.344 mg/mL and 0.975 mg/mL, respectively), and three patient-derived organoids with IC50 values of 6.333-8.780 mg/mL. This study provided basic data for the potential application of CLP in adjuvant therapeutic food for colon cancer on multiple levels, while further investigation of detailed mechanism in vivo was still required.
Collapse
Affiliation(s)
- Xuewei Xia
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yulin Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zexin Chen
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou 510535, China; Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Danyi Du
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Guangzhou 510515, China
| | - Xiaodan Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Rongxin Zhang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Centre, Guangzhou 510060, China; State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Jun Yan
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; Department of Gastrointestinal Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
46
|
Chen W, Wu P, Jin C, Chen Y, Li C, Qian H. Advances in the application of extracellular vesicles derived from three-dimensional culture of stem cells. J Nanobiotechnology 2024; 22:215. [PMID: 38693585 PMCID: PMC11064407 DOI: 10.1186/s12951-024-02455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024] Open
Abstract
Stem cells (SCs) have been used therapeutically for decades, yet their applications are limited by factors such as the risk of immune rejection and potential tumorigenicity. Extracellular vesicles (EVs), a key paracrine component of stem cell potency, overcome the drawbacks of stem cell applications as a cell-free therapeutic agent and play an important role in treating various diseases. However, EVs derived from two-dimensional (2D) planar culture of SCs have low yield and face challenges in large-scale production, which hinders the clinical translation of EVs. Three-dimensional (3D) culture, given its ability to more realistically simulate the in vivo environment, can not only expand SCs in large quantities, but also improve the yield and activity of EVs, changing the content of EVs and improving their therapeutic effects. In this review, we briefly describe the advantages of EVs and EV-related clinical applications, provide an overview of 3D cell culture, and finally focus on specific applications and future perspectives of EVs derived from 3D culture of different SCs.
Collapse
Affiliation(s)
- Wenya Chen
- Department of Orthopaedics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Peipei Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Can Jin
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Yinjie Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Chong Li
- Department of Orthopaedics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China.
| | - Hui Qian
- Department of Orthopaedics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China.
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
47
|
Cerutti L, Brofiga M. Unraveling brain diseases: The promise of brain-on-a-chip models. J Neurosci Methods 2024; 405:110105. [PMID: 38460796 DOI: 10.1016/j.jneumeth.2024.110105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Brain disorders, encompassing a wide spectrum of neurological and psychiatric conditions, present a formidable challenge in modern medicine. Despite decades of research, the intricate complexity of the human brain still eludes comprehensive understanding, impeding the development of effective treatments. Recent advancements in microfluidics and tissue engineering have led to the development of innovative platforms known as "Brain-on-a-Chip" (BoC) i.e., advanced in vitro systems that aim to replicate the microenvironment of the brain with the highest possible fidelity. This technology offers a promising test-bed for studying brain disorders at the cellular and network levels, providing insights into disease mechanisms, drug screening, and, in perspective, the development of personalized therapeutic strategies. In this review, we provide an overview of the BoC models developed over the years to model and understand the onset and progression of some of the most severe neurological disorders in terms of incidence and debilitation (stroke, Parkinson's, Alzheimer's, and epilepsy). We also report some of the cutting-edge therapeutic approaches whose effects were evaluated by means of these technologies. Finally, we discuss potential challenges, and future perspectives of the BoC models.
Collapse
Affiliation(s)
- Letizia Cerutti
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBIRS), University of Genova, Genova, Italy
| | - Martina Brofiga
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBIRS), University of Genova, Genova, Italy; ScreenNeuroPharm s.r.l, Sanremo, Italy; Neurofacility, Istituto Italiano di Tecnologia, Genova, Italy.
| |
Collapse
|
48
|
Kim W, Kim G. Engineered 3D liver-tissue model with minispheroids formed by a bioprinting process supported with in situ electrical stimulation. Bioact Mater 2024; 35:382-400. [PMID: 38379698 PMCID: PMC10876469 DOI: 10.1016/j.bioactmat.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Three-dimensional (3D) bioprinting, an effective technique for building cell-laden structures providing native extracellular matrix environments, presents challenges, including inadequate cellular interactions. To address these issues, cell spheroids offer a promising solution for improving their biological functions. Particularly, minispheroids with 50-100 μm diameters exhibit enhanced cellular maturation. We propose a one-step minispheroid-forming bioprinting process incorporating electrical stimulation (E-MS-printing). By stimulating the cells, minispheroids with controlled diameters were generated by manipulating the bioink viscosity and stimulation intensity. To validate its feasibility, E-MS-printing process was applied to fabricate an engineered liver model designed to mimic the hepatic lobule unit. E-MS-printing was employed to print the hepatocyte region, followed by bioprinting the central vein using a core-shell nozzle. The resulting constructs displayed native liver-mimetic structures containing minispheroids, which facilitated improved hepatic cell maturation, functional attributes, and vessel formation. Our results demonstrate a new potential 3D liver model that can replicate native liver tissues.
Collapse
Affiliation(s)
- WonJin Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon, 16419, Republic of Korea
| | - GeunHyung Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM), Suwon, 16419, Republic of Korea
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
49
|
Welsh A, Serala K, Prince S, Smith GS. Selective Targeting of Regulated Rhabdomyosarcoma Cells by Trinuclear Ruthenium(II)-Arene Complexes. J Med Chem 2024; 67:6673-6686. [PMID: 38569098 PMCID: PMC11056987 DOI: 10.1021/acs.jmedchem.4c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
The use of benzimidazole-based trinuclear ruthenium(II)-arene complexes (1-3) to selectively target the rare cancer rhabdomyosarcoma is reported. Preliminary cytotoxic evaluations of the ruthenium complexes in an eight-cancer cell line panel revealed enhanced, selective cytotoxicity toward rhabdomyosarcoma cells (RMS). The trinuclear complex 1 was noted to show superior short- and long-term cytotoxicity in RMS cell lines and enhanced selectivity relative to cisplatin. Remarkably, 1 inhibits the migration of metastatic RMS cells and maintains superior activity in a 3D multicellular spheroid model in comparison to that of the clinically used cisplatin. Mechanistic insights reveal that 1 effectively induces genomic DNA damage, initiates autophagy, and prompts the intrinsic and extrinsic apoptotic pathways in RMS cells. To the best of our knowledge, 1 is the first trinuclear ruthenium(II) arene complex to selectively kill RMS cells in 2D and 3D cell cultures.
Collapse
Affiliation(s)
- Athi Welsh
- Department
of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Karabo Serala
- Department
of Human Biology, Faculty of Health Science, University of Cape Town, Observatory, Cape Town 7935, South Africa
| | - Sharon Prince
- Department
of Human Biology, Faculty of Health Science, University of Cape Town, Observatory, Cape Town 7935, South Africa
| | - Gregory S. Smith
- Department
of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| |
Collapse
|
50
|
Choe MS, Yeo HC, Kim JS, Lee J, Lee HJ, Kim HR, Baek KM, Jung NY, Choi M, Lee MY. Simple modeling of familial Alzheimer's disease using human pluripotent stem cell-derived cerebral organoid technology. Stem Cell Res Ther 2024; 15:118. [PMID: 38659053 PMCID: PMC11040922 DOI: 10.1186/s13287-024-03732-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Cerebral organoids (COs) are the most advanced in vitro models that resemble the human brain. The use of COs as a model for Alzheimer's disease (AD), as well as other brain diseases, has recently gained attention. This study aimed to develop a human AD CO model using normal human pluripotent stem cells (hPSCs) that recapitulates the pathological phenotypes of AD and to determine the usefulness of this model for drug screening. METHODS We established AD hPSC lines from normal hPSCs by introducing genes that harbor familial AD mutations, and the COs were generated using these hPSC lines. The pathological features of AD, including extensive amyloid-β (Aβ) accumulation, tauopathy, and neurodegeneration, were analyzed using enzyme-linked immunosorbent assay, Amylo-Glo staining, thioflavin-S staining, immunohistochemistry, Bielschowsky's staining, and western blot analysis. RESULTS The AD COs exhibited extensive Aβ accumulation. The levels of paired helical filament tau and neurofibrillary tangle-like silver deposits were highly increased in the AD COs. The number of cells immunoreactive for cleaved caspase-3 was significantly increased in the AD COs. In addition, treatment of AD COs with BACE1 inhibitor IV, a β-secretase inhibitor, and compound E, a γ-secretase inhibitor, significantly attenuated the AD pathological features. CONCLUSION Our model effectively recapitulates AD pathology. Hence, it is a valuable platform for understanding the mechanisms underlying AD pathogenesis and can be used to test the efficacy of anti-AD drugs.
Collapse
Affiliation(s)
- Mu Seog Choe
- Department of Molecular Physiology, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Vessel-Organ Interaction Research Center (VOICE, MRC), Kyungpook National University, 41566, Daegu, Republic of Korea
| | - Han Cheol Yeo
- Department of Molecular Physiology, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Vessel-Organ Interaction Research Center (VOICE, MRC), Kyungpook National University, 41566, Daegu, Republic of Korea
| | - Joong Sun Kim
- Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University, 61186, Gwangju, Republic of Korea
| | - Jean Lee
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, 03080, Seoul, Republic of Korea
| | - Hae Jun Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences (KIRAMS), 01812, Seoul, Republic of Korea
| | - Hyung-Ryong Kim
- Department of Pharmacology, College of Dentistry, Jeonbuk National University, 54896, Jeonju, Republic of Korea
| | - Kyung Min Baek
- Department of Cardiovascular and Neurologic Disease, College of Oriental Medicine, Daegu Haany University, 42158, Daegu, Republic of Korea
| | - Na-Yeon Jung
- Department of Neurology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, 50612, Yangsan, Republic of Korea
| | - Murim Choi
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, 03080, Seoul, Republic of Korea.
| | - Min Young Lee
- Department of Molecular Physiology, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Vessel-Organ Interaction Research Center (VOICE, MRC), Kyungpook National University, 41566, Daegu, Republic of Korea.
| |
Collapse
|