1
|
Balhara R, Verma D, Kaur R, Singh K. MYB transcription factors, their regulation and interactions with non-coding RNAs during drought stress in Brassica juncea. BMC PLANT BIOLOGY 2024; 24:999. [PMID: 39448923 PMCID: PMC11515528 DOI: 10.1186/s12870-024-05736-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Brassica juncea (L.) Czern is an important oilseed crop affected by various abiotic stresses like drought, heat, and salt. These stresses have detrimental effects on the crop's overall growth, development and yield. Various Transcription factors (TFs) are involved in regulation of plant stress response by modulating expression of stress-responsive genes. The myeloblastosis (MYB) TFs is one of the largest families of TFs associated with various developmental and biological processes such as plant growth, secondary metabolism, stress response etc. However, MYB TFs and their regulation by non-coding RNAs (ncRNAs) in response to stress have not been studied in B. juncea. Thus, we performed a detailed study on the MYB TF family and their interactions with miRNAs and Long non coding RNAs. RESULTS Computational investigation of genome and proteome data presented a comprehensive picture of the MYB genes and their protein architecture, including intron-exon organisation, conserved motif analysis, R2R3 MYB DNA-binding domains analysis, sub-cellular localization, protein-protein interaction and chromosomal locations. Phylogenetically, BjuMYBs were further classified into different subclades on the basis of topology and classification in Arabidopsis. A total of 751 MYBs were identified in B. juncea corresponding to 297 1R-BjuMYBs, 440 R2R3-BjuMYBs, 12 3R-BjuMYBs, and 2 4R-BjuMYBs types. We validated the transcriptional profiles of nine selected BjuMYBs under drought stress through RT-qPCR. Promoter analysis indicated the presence of drought-responsive cis-regulatory components. Additionally, the miRNA-MYB TF interactions was also studied, and most of the microRNAs (miRNAs) that target BjuMYBs were involved in abiotic stress response and developmental processes. Regulatory network analysis and expression patterns of lncRNA-miRNA-MYB indicated that selected long non-coding RNAs (lncRNAs) acted as strong endogenous target mimics (eTMs) of the miRNAs regulated expression of BjuMYBs under drought stress. CONCLUSIONS The present study has established preliminary groundwork of MYB TFs and their interaction with ncRNAs in B. juncea and it will help in developing drought- tolerant Brassica crops.
Collapse
Affiliation(s)
- Rinku Balhara
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Deepika Verma
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Ravneet Kaur
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India
| | - Kashmir Singh
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India.
| |
Collapse
|
2
|
Pokharel BR, Sheri V, Kumar M, Zhang Z, Zhang B. The update and transport of aluminum nanoparticles in plants and their biochemical and molecular phototoxicity on plant growth and development: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122875. [PMID: 37931678 DOI: 10.1016/j.envpol.2023.122875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
As aluminum nanoparticles (Al-NPs) are widely used in our daily life and various industries, Al-NPs has been becoming an emerging pollution in the environment. The impact of this NP has been attracting more and more attention from the scientific communities. In this review, we systematically summarized the interactions, uptake, and transport of Al-NPs in the plant system. Al-NPs can enter plants through different pathways and accumulate in various tissues, leading to alter plant growth and development. Al-NPs also affected root, shoot, and leaf characteristics as well as changing nutrient uptake and distribution and inducing oxidative stress via excess reactive radical generation, thereby impairing plant defense systems. Additionally, Al-NPs altered gene expression, which involved in various signaling pathways and metabolic processes in plants, that further altered plants susceptible or tolerant to stressors. The review also emphasized the effects of Al-NP size, surface charge, concentration, and exposure duration on plant growth and development. In the future, more research should be focused on mechanisms underlying Al-NPs phytotoxicity and potential risk to humans and off-target species.
Collapse
Affiliation(s)
| | - Vijay Sheri
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Zhiyong Zhang
- College of Life Sciences, Henan Institute of Sciences and Technology, Xinxiang, Henan 453003, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
3
|
Das S, Sathee L. miRNA mediated regulation of nitrogen response and nitrogen use efficiency of plants: the case of wheat. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1371-1394. [PMID: 38076770 PMCID: PMC10709294 DOI: 10.1007/s12298-023-01336-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/09/2023] [Accepted: 07/20/2023] [Indexed: 10/04/2024]
Abstract
Nitrogen (N) is needed for plant growth and development and is the major limiting nutrient due to its higher demand in agricultural production globally. The use of N fertilizers has increased considerably in recent years to achieve higher cereal yields. High N inputs coupled with declining N use efficiency (NUE) result in the degradation of the environment. Plants have developed multidimensional strategies in response to changes in N availability in soil. These strategies include N stress-induced responses such as changes in gene expression patterns. Several N stress-induced genes and other regulatory factors, such as microRNAs (miRNAs), have been identified in different plant species, opening a new avenue of research in plant biology. This review presents a general overview of miRNA-mediated regulation of N response and NUE. Further, the in-silico target predictions and the predicted miRNA-gene network for nutrient metabolism/homeostasis in wheat provide novel insights. The information on N-regulated miRNAs and the differentially expressed target transcripts are necessary resources for genetic improvement of NUE by genome editing.
Collapse
Affiliation(s)
- Samrat Das
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110 012 India
| |
Collapse
|
4
|
Singh A, Mazahar S, Chapadgaonkar SS, Giri P, Shourie A. Phyto-microbiome to mitigate abiotic stress in crop plants. Front Microbiol 2023; 14:1210890. [PMID: 37601386 PMCID: PMC10433232 DOI: 10.3389/fmicb.2023.1210890] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/11/2023] [Indexed: 08/22/2023] Open
Abstract
Plant-associated microbes include taxonomically diverse communities of bacteria, archaebacteria, fungi, and viruses, which establish integral ecological relationships with the host plant and constitute the phyto-microbiome. The phyto-microbiome not only contributes in normal growth and development of plants but also plays a vital role in the maintenance of plant homeostasis during abiotic stress conditions. Owing to its immense metabolic potential, the phyto-microbiome provides the host plant with the capability to mitigate the abiotic stress through various mechanisms like production of antioxidants, plant growth hormones, bioactive compounds, detoxification of harmful chemicals and toxins, sequestration of reactive oxygen species and other free radicals. A deeper understanding of the structure and functions of the phyto-microbiome and the complex mechanisms of phyto-microbiome mediated abiotic stress mitigation would enable its utilization for abiotic stress alleviation of crop plants and development of stress-resistant crops. This review aims at exploring the potential of phyto-microbiome to alleviate drought, heat, salinity and heavy metal stress in crop plants and finding sustainable solutions to enhance the agricultural productivity. The mechanistic insights into the role of phytomicrobiome in imparting abiotic stress tolerance to plants have been summarized, that would be helpful in the development of novel bioinoculants. The high-throughput modern approaches involving candidate gene identification and target gene modification such as genomics, metagenomics, transcriptomics, metabolomics, and phyto-microbiome based genetic engineering have been discussed in wake of the ever-increasing demand of climate resilient crop plants.
Collapse
Affiliation(s)
- Anamika Singh
- Department of Botany, Maitreyi College, University of Delhi, New Delhi, India
| | - Samina Mazahar
- Department of Botany, Dyal Singh College, University of Delhi, New Delhi, India
| | - Shilpa Samir Chapadgaonkar
- Department of Biosciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, India
| | - Priti Giri
- Department of Botany, Maitreyi College, University of Delhi, New Delhi, India
| | - Abhilasha Shourie
- Department of Biotechnology, Faculty of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad, India
| |
Collapse
|
5
|
Pradhan UK, Meher PK, Naha S, Rao AR, Kumar U, Pal S, Gupta A. ASmiR: a machine learning framework for prediction of abiotic stress-specific miRNAs in plants. Funct Integr Genomics 2023; 23:92. [PMID: 36939943 DOI: 10.1007/s10142-023-01014-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/18/2023] [Accepted: 03/06/2023] [Indexed: 03/21/2023]
Abstract
Abiotic stresses have become a major challenge in recent years due to their pervasive nature and shocking impacts on plant growth, development, and quality. MicroRNAs (miRNAs) play a significant role in plant response to different abiotic stresses. Thus, identification of specific abiotic stress-responsive miRNAs holds immense importance in crop breeding programmes to develop cultivars resistant to abiotic stresses. In this study, we developed a machine learning-based computational model for prediction of miRNAs associated with four specific abiotic stresses such as cold, drought, heat and salt. The pseudo K-tuple nucleotide compositional features of Kmer size 1 to 5 were used to represent miRNAs in numeric form. Feature selection strategy was employed to select important features. With the selected feature sets, support vector machine (SVM) achieved the highest cross-validation accuracy in all four abiotic stress conditions. The highest cross-validated prediction accuracies in terms of area under precision-recall curve were found to be 90.15, 90.09, 87.71, and 89.25% for cold, drought, heat and salt respectively. Overall prediction accuracies for the independent dataset were respectively observed 84.57, 80.62, 80.38 and 82.78%, for the abiotic stresses. The SVM was also seen to outperform different deep learning models for prediction of abiotic stress-responsive miRNAs. To implement our method with ease, an online prediction server "ASmiR" has been established at https://iasri-sg.icar.gov.in/asmir/ . The proposed computational model and the developed prediction tool are believed to supplement the existing effort for identification of specific abiotic stress-responsive miRNAs in plants.
Collapse
Affiliation(s)
- Upendra Kumar Pradhan
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, 110012, India
| | - Prabina Kumar Meher
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, 110012, India.
| | - Sanchita Naha
- Division of Computer Applications, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, 110012, India
| | | | - Upendra Kumar
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Soumen Pal
- Division of Computer Applications, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, 110012, India
| | - Ajit Gupta
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, PUSA, New Delhi, 110012, India
| |
Collapse
|
6
|
Chen P, Wei Q, Yao Y, Wei J, Qiu L, Zhang B, Liu H. Inoculation with Azorhizobium caulinodans ORS571 enhances plant growth and salt tolerance of switchgrass (Panicum virgatum L.) seedlings. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:35. [PMID: 36864528 PMCID: PMC9983177 DOI: 10.1186/s13068-023-02286-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/18/2023] [Indexed: 03/04/2023]
Abstract
BACKGROUND Switchgrass (Panicum virgatum L.) is an important biofuel crop that may contribute to replacing petroleum fuels. However, slow seedling growth and soil salinization affect the growth and development of switchgrass. An increasing number of studies have shown that beneficial microorganisms promote plant growth and increase tolerance to salinity stress. However, the feasibility of inoculating switchgrass with Azorhizobium caulinodans ORS571 to enhance the growth and salt tolerance of its seedlings is unclear. Our previous study showed that A. caulinodans ORS571 could colonize wheat (Triticum aestivum L.) and thereby promote its growth and development and regulate the gene expression levels of microRNAs (miRNAs). RESULTS In this study, we systematically studied the impact of A. caulinodans ORS571 on switchgrass growth and development and the response to salinity stress; we also studied the underlying mechanisms during these biological processes. Inoculation with A. caulinodans ORS571 significantly alleviated the effect of salt stress on seedling growth. Under normal conditions, A. caulinodans ORS571 significantly increased fresh plant weight, chlorophyll a content, protein content, and peroxidase (POD) activity in switchgrass seedlings. Under salt stress, the fresh weight, dry weight, shoot and root lengths, and chlorophyll contents were all significantly increased, and some of these parameters even recovered to normal levels after inoculation with A. caulinodans ORS571. Soluble sugar and protein contents and POD and superoxide dismutase (SOD) activities were also significantly increased, contrary to the results for proline. Additionally, A. caulinodans ORS571 may alleviate salt stress by regulating miRNAs. Twelve selected miRNAs were all upregulated to different degrees under salt stress in switchgrass seedlings. However, the levels of miR169, miR171, miR319, miR393, miR535, and miR854 were decreased significantly after inoculation with A. caulinodans ORS571 under salt stress, in contrast to the expression level of miR399. CONCLUSION This study revealed that A. caulinodans ORS571 increased the salt tolerance of switchgrass seedlings by increasing their water content, photosynthetic efficiency, osmotic pressure maintenance, and reactive oxygen species (ROS) scavenging abilities and regulating miRNA expression. This work provides a new, creative idea for improving the salt tolerance of switchgrass seedlings.
Collapse
Affiliation(s)
- Pengyang Chen
- grid.144022.10000 0004 1760 4150College of Life Sciences, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Qiannan Wei
- grid.144022.10000 0004 1760 4150College of Life Sciences, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Yifei Yao
- grid.144022.10000 0004 1760 4150College of Life Sciences, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Jiaqi Wei
- grid.144022.10000 0004 1760 4150College of Life Sciences, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Li Qiu
- grid.144022.10000 0004 1760 4150College of Veterinary Medicine, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| | - Huawei Liu
- College of Life Sciences, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
7
|
Mazalmazraei T, Nejadsadeghi L, Mehdi Khanlou K, Ahmadi DN. Comparative analysis of differentially expressed miRNAs in leaves of three sugarcanes (Saacharum officinarum L.) cultivars during salinity stress. Mol Biol Rep 2023; 50:485-492. [PMID: 36350419 DOI: 10.1007/s11033-022-07349-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Sugarcane is an important industrial plant cultivated mostlyin the arid and semiarid regions. Due to climate change and anthropogenic activities, the sugarcane fieldsare prone to be damagedas a result of salt deposition. The consequence of such phenomena is turning to become a major thread in sugarcane cultivation. To address this issue, the identification of salinity tolerant cultivars would be a suitable strategy to minimize yield loss in the area. It is well known thatthe expression of abiotic stress-responsive genes including noncoding microRNAs (miRNAs) and their codingtargetscould lead to enhancement of stress tolerance in crops. Therefore, the expression study of those noncoding and coding genes under stress conditions is an appropriate approach to screen the tolerant cultivars. In addition, the examination of the expression of miRNA's target genes could provide deeper insight into the molecular stress mechanism and facilitate the identification of tolerant cultivars. METHODS AND RESULTS We aimedto assess the expression of nine candidate miRNAsand their corresponding targeted genes among the studied sugarcane cultivars under high salinity conditions, leading to the identification of the salt-tolerant cultivar. To achieve our goal, a two-factorial experiment with three sugarcane cultivars (CP-48, CP-57, CP-69) and two salinity levels (0 and 8 ds/m) was conducted. The result indicated significant differences in expression with in miRNAs and also their target genes. The highest reduction of miRNAs expression occurred in miR160 while the lowest oneappeared in miR1432. The data also indicated that the higher and the lowest expression of targeted genes occurred in miR160 and miR393 respectively. Among studied cultivars, the CP-57 showed poor performance while CP-69 expresses a superior tolerance to salt stress. CONCLUSIONS Taken together, these results suggested that the monitoring of microRNA expressioncould provide a new approach forthe screening of well-adapted cultivars under salt conditions. Such an approach would be the appropriate solutionto combat plant stress inhigh salinity region/soil. Our result indicated that the miR160 generates sugarcane tolerant to salt stress, can be potentially be used as a biomarker to salt stress.
Collapse
Affiliation(s)
- Tofigh Mazalmazraei
- Department of Plant Production and Genetics, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Leila Nejadsadeghi
- Department of Plant Production and Genetics, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Khosro Mehdi Khanlou
- Department of Plant Production and Genetics, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Daryoosh Nabati Ahmadi
- Department of Plant Production and Genetics, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
8
|
Sharma M, Bhushan S, Sharma D, Kaul S, Dhar MK. A Brief Review of Plant Cell Transfection, Gene Transcript Expression, and Genotypic Integration for Enhancing Compound Production. Methods Mol Biol 2023; 2575:153-179. [PMID: 36301475 DOI: 10.1007/978-1-0716-2716-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plants possess a plethora of important secondary metabolites, which are unique sources of natural pigments, pharmaceutical compounds, food additives, natural pesticides, and other industrial components. The commercial significance of such metabolites/compounds has directed the research toward their production and exploration of methods for enhancement of production. Biotechnological tools are critical in selecting, integrating, multiplying, improving, and analyzing medicinal plants for secondary metabolite production. Out of many techniques that are being explored to enhance secondary metabolite production, "plant cell transfection" is the latest tool to achieve maximum output from the plant source. It is based upon the introduction of foreign DNA into the plant cell relying on physical treatment such as electroporation, cell squeezing, sonoporation, optical transfection nanoparticles, magnetofection, and chemical treatment or biological treatment that depends upon carrier. One of the promising tools that have been exploited is CRISPR-Cas9. Overall, the abovementioned tools focus on the stable transfection of desired gene transcripts. Since the integration and continuous expression of transfected gene of particular trait represents stable transfection of host cell genome, resulting from transfer of required trait to daughter cells ultimately leading to enhanced production of secondary metabolites of interest. This chapter will review a set of biotechnological tools that are candidates for achieving the enhanced bioactive compound production indicated here to be used for drug discovery.
Collapse
Affiliation(s)
- Munish Sharma
- Department of Plant Sciences, Central University of Himachal Pradesh, Shahpur, Kangra, Himachal Pradesh, India.
| | - Sakshi Bhushan
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, India
| | - Deepak Sharma
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Sanjana Kaul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Manoj K Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir, India
| |
Collapse
|
9
|
What Do We Know about Barley miRNAs? Int J Mol Sci 2022; 23:ijms232314755. [PMID: 36499082 PMCID: PMC9740008 DOI: 10.3390/ijms232314755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Plant miRNAs are powerful regulators of gene expression at the post-transcriptional level, which was repeatedly proved in several model plant species. miRNAs are considered to be key regulators of many developmental, homeostatic, and immune processes in plants. However, our understanding of plant miRNAs is still limited, despite the fact that an increasing number of studies have appeared. This systematic review aims to summarize our current knowledge about miRNAs in spring barley (Hordeum vulgare), which is an important agronomical crop worldwide and serves as a common monocot model for studying abiotic stress responses as well. This can help us to understand the connection between plant miRNAs and (not only) abiotic stresses in general. In the end, some future perspectives and open questions are summarized.
Collapse
|
10
|
Shamloo-Dashtpagerdi R, Sisakht JN, Tahmasebi A. MicroRNA miR1118 contributes to wheat (Triticum aestivum L.) salinity tolerance by regulating the Plasma Membrane Intrinsic Proteins1;5 (PIP1;5) gene. JOURNAL OF PLANT PHYSIOLOGY 2022; 278:153827. [PMID: 36206620 DOI: 10.1016/j.jplph.2022.153827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
microRNAs (miRNAs) are important regulators of various adaptive stress responses in crops; however, many details about associations among miRNAs, their target genes and physiochemical responses of crops under salinity stress remain poorly understood. We designed this study in a systems biology context and used a collection of computational, experimental and statistical procedures to uncover some regulatory functions of miRNAs in the response of the important crop, wheat, to salinity stress. Accordingly, under salinity conditions, wheat roots' Expressed Sequence Tag (EST) libraries were computationally mined to identify the most reliable differentially expressed miRNA and its related target gene(s). Then, molecular and physiochemical evaluations were carried out in a separate salinity experiment using two contrasting wheat genotypes. Finally, the association between changes in measured characteristics and wheat salinity tolerance was determined. From the results, miR1118 was assigned as a reliable salinity-responsive miRNA in wheat roots. The expression profiles of miR1118 and its predicted target gene, Plasma Membrane Intrinsic Proteins1,5 (PIP1;5), significantly differed between wheat genotypes. Moreover, results revealed that expression profiles of miR1118 and PIP1;5 significantly correlate to Relative Water Content (RWC), root hydraulic conductance (Lp), photosynthetic activities, plasma membrane damages, osmolyte accumulation and ion homeostasis of wheat. Our results suggest a plausible regulatory node through miR1118 adjusting the wheat water status, maintaining ion homeostasis and mitigating membrane damages, mainly through the PIP1;5 gene, under salinity conditions. To our knowledge, this is the first report on the role of miR1118 and PIP1;5 in wheat salinity response.
Collapse
Affiliation(s)
| | - Javad Nouripour Sisakht
- Department of Plant Production and Genetics, College of Agricultural Engineering, Isfahan University of Technology, Isfahan, Iran
| | | |
Collapse
|
11
|
Shamloo-Dashtpagerdi R, Lindlöf A, Tahmasebi S. Evidence that miR168a contributes to salinity tolerance of Brassica rapa L. via mediating melatonin biosynthesis. PHYSIOLOGIA PLANTARUM 2022; 174:e13790. [PMID: 36169653 DOI: 10.1111/ppl.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Melatonin is a master regulator of diverse biological processes, including plant's abiotic stress responses and tolerance. Despite the extensive information on the role of melatonin in response to abiotic stress, how plants regulate endogenous melatonin content under stressful conditions remains largely unknown. In this study, we computationally mined Expressed Sequence Tag (EST) libraries of salinity-exposed Chinese cabbage (Brassica rapa) to identify the most reliable differentially expressed miRNA and its target gene(s). In light of these analyses, we found that miR168a potentially targets a key melatonin biosynthesis gene, namely O-METHYLTRANSFERASE 1 (OMT1). Accordingly, molecular and physiochemical evaluations were performed in a separate salinity experiment using contrasting B. rapa genotypes. Then, the association between B. rapa salinity tolerance and changes in measured molecular and physiochemical characteristics was determined. Results indicated that the expression profiles of miR168a and OMT1 significantly differed between B. rapa genotypes. Moreover, the expression profiles of miR168a and OMT1 significantly correlated with more melatonin content, robust antioxidant activities, and better ion homeostasis during salinity stress. Our results suggest that miR168a plausibly mediates melatonin biosynthesis, mainly through the OMT1 gene, under salinity conditions and thereby contributes to the salinity tolerance of B. rapa. To our knowledge, this is the first report on the role of miR168a and OMT1 in B. rapa salinity response.
Collapse
Affiliation(s)
| | | | - Sirous Tahmasebi
- Seed and Plant Improvement Research Department, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Shiraz, Iran
| |
Collapse
|
12
|
Begum Y. Regulatory role of microRNAs (miRNAs) in the recent development of abiotic stress tolerance of plants. Gene 2022; 821:146283. [PMID: 35143944 DOI: 10.1016/j.gene.2022.146283] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are a distinct groups of single-stranded non-coding, tiny regulatory RNAs approximately 20-24 nucleotides in length. miRNAs negatively influence gene expression at the post-transcriptional level and have evolved considerably in the development of abiotic stress tolerance in a number of model plants and economically important crop species. The present review aims to deliver the information on miRNA-mediated regulation of the expression of major genes or Transcription Factors (TFs), as well as genetic and regulatory pathways. Also, the information on adaptive mechanisms involved in plant abiotic stress responses, prediction, and validation of targets, computational tools, and databases available for plant miRNAs, specifically focus on their exploration for engineering abiotic stress tolerance in plants. The regulatory function of miRNAs in plant growth, development, and abiotic stresses consider in this review, which uses high-throughput sequencing (HTS) technologies to generate large-scale libraries of small RNAs (sRNAs) for conventional screening of known and novel abiotic stress-responsive miRNAs adds complexity to regulatory networks in plants. The discoveries of miRNA-mediated tolerance to multiple abiotic stresses, including salinity, drought, cold, heat stress, nutritional deficiency, UV-radiation, oxidative stress, hypoxia, and heavy metal toxicity, are highlighted and discussed in this review.
Collapse
Affiliation(s)
- Yasmin Begum
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India; Center of Excellence in Systems Biology and Biomedical Engineering (TEQIP Phase-III), University of Calcutta, JD-2, Sector III, Salt Lake, Kolkata 700106, West Bengal, India.
| |
Collapse
|
13
|
Sequencing and de novo transcriptome assembly for discovering regulators of gene expression in Jack (Artocarpus heterophyllus). Genomics 2022; 114:110356. [PMID: 35364267 DOI: 10.1016/j.ygeno.2022.110356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/12/2022] [Accepted: 03/27/2022] [Indexed: 01/14/2023]
Abstract
Jack (Artocarpus heterophyllus) is a multipurpose fruit-tree species with minimal genomic resources. The study reports developing comprehensive transcriptome data containing 80,411 unigenes with an N50 value of 1265 bp. We predicted 64,215 CDSs from the unigenes and annotated and functionally categorized them into the biological process (23,230), molecular function (27,149), and cellular components (17,284). From 80,411 unigenes, we discovered 16,853 perfect SSRs with 192 distinct repeat motif types reiterating 4 to 22 times. Besides, we identified 2741 TFs from 69 TF families, 53 miRNAs from 19 conserved miRNA families, 25,953 potential lncRNAs, and placed three functional eTMs in different lncRNA-miRNA pairs. The regulatory networks involving genes, TFs, and miRNAs identified several regulatory and regulated nodes providing insight into miRNAs' gene associations and transcription factor-mediated regulation. The comparison of expression patterns of some selected miRNAs vis-à-vis their corresponding target genes showed an inverse relationship indicating the possible miRNA-mediated regulation of the genes.
Collapse
|
14
|
Genome-Wide Investigation of the MiR166 Family Provides New Insights into Its Involvement in the Drought Stress Responses of Tea Plants (Camellia sinensis (L.) O. Kuntze). FORESTS 2022. [DOI: 10.3390/f13040628] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
MicroRNA166 (miR166) is a highly conserved plant miRNA that plays a crucial role in plant growth and the resistance to various abiotic stresses. However, the miR166s in tea (Camellia sinensis (L.) O. Kuntze) have not been comprehensively identified and analyzed. This study identified 30 mature miR166s and twelve pre-miR166s in tea plants. An evolutionary analysis revealed that csn-miR166s originating from the 3′ arm of their precursors were more conserved than the csn-miR166s derived from the 5′ arm of their precursors. The twelve pre-miR166s in tea were divided into two groups, with csn-MIR166 Scaffold364-2 separated from the other precursors. The Mfold-based predictions indicated that the twelve csn-MIR166s formed typical and stable structures comprising a stem-loop hairpin, with minimum free energy ranging from −110.90 to −71.80 kcal/mol. An analysis of the CsMIR166 promoters detected diverse cis-acting elements, including those related to light responses, biosynthesis and metabolism, abiotic stress defenses, and hormone responses. There was no one-to-one relationship between the csn-miR166s and their targets, but most csn-miR166s targeted HD-Zip III genes. Physiological characterization of tea plants under drought stress showed that leaf water content proportionally decreased with the aggravation of drought stress. In contrast, tea leaves’ malondialdehyde (MDA) content proportionally increased. Moreover, the cleavage site of the ATHB-15-like transcript was identified according to a modified 5′ RNA ligase-mediated rapid amplification of cDNA ends. The RT-qPCR data indicated that the transcription of nine csn-miR166s was negatively correlated with their target gene.
Collapse
|
15
|
Ansari MA, Bano N, Kumar A, Dubey AK, Asif MH, Sanyal I, Pande V, Pandey V. Comparative transcriptomic analysis and antioxidant defense mechanisms in clusterbean (Cyamopsis tetragonoloba (L.) Taub.) genotypes with contrasting drought tolerance. Funct Integr Genomics 2022; 22:625-642. [PMID: 35426545 DOI: 10.1007/s10142-022-00860-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 01/16/2023]
Abstract
To understand drought tolerance mechanism(s) in clusterbean (Cyamopsis tetragonoloba), we conducted physiological, biochemical, and de novo comparative transcriptome analysis of drought-tolerant (RGC-1002) and drought-sensitive (RGC-1066) genotypes subjected to 30 days of drought stress. Relative water content (RWC) was maintained in tolerant genotype but was reduced in sensitive genotype. Leaf pigment concentrations were higher in tolerant genotype. Net photosynthesis was significantly decreased in sensitive genotype but insignificant reduction was found in tolerant genotype. Enzymatic antioxidant (GR, APX, DHAR) activities were enhanced in tolerant genotype, while there were insignificant changes in these enzymes in sensitive genotype. The ratios of antioxidant molecules (ASC/DHA and GSH/GSSG) were higher in tolerant genotype as compared to sensitive genotype. In sensitive genotype, 6625 differentially expressed genes (DEGs) were upregulated and 5365 genes were downregulated. In tolerant genotype, 5206 genes were upregulated and 2793 genes were downregulated. In tolerant genotype, transketolase family protein, phosphoenolpyruvate carboxylase 3, temperature-induced lipocalin, and cytochrome oxidase were highly upregulated. Moreover, according to Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the drought tolerance may be attributed to upregulated starch and sucrose metabolism-related genes in tolerant genotype. Finally, quantitative real-time PCR confirmed the reproducibility of the RNA-seq data.
Collapse
Affiliation(s)
- Mohd Akram Ansari
- Plant Ecology and Climate Change Science Division, CSIR-NBRI, Lucknow, India. .,Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India.
| | - Nasreen Bano
- Plant Molecular Biology and Biotechnology Division, CSIR-NBRI, Lucknow, India
| | - Anil Kumar
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India.,Plant Molecular Biology and Biotechnology Division, CSIR-NBRI, Lucknow, India
| | - Arvind Kumar Dubey
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India.,Plant Molecular Biology and Biotechnology Division, CSIR-NBRI, Lucknow, India
| | - Mehar Hasan Asif
- Plant Molecular Biology and Biotechnology Division, CSIR-NBRI, Lucknow, India
| | - Indraneel Sanyal
- Plant Molecular Biology and Biotechnology Division, CSIR-NBRI, Lucknow, India
| | - Veena Pande
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India
| | - Vivek Pandey
- Plant Ecology and Climate Change Science Division, CSIR-NBRI, Lucknow, India.
| |
Collapse
|
16
|
Exploring the Effect of Methyl Jasmonate on the Expression of microRNAs Involved in Biosynthesis of Active Compounds of Rosemary Cell Suspension Cultures through RNA-Sequencing. Int J Mol Sci 2022; 23:ijms23073704. [PMID: 35409063 PMCID: PMC8998883 DOI: 10.3390/ijms23073704] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Our aim in the experiment was to study the effects of methyl jasmonates (MeJA) on the active compounds of rosemary suspension cells, the metabolites' change of contents under different concentrations of MeJA, including 0 (CK), 10 (M10), 50 (M50) and 100 μM MeJA (M100). The results demonstrated that MeJA treatments promoted the accumulation of rosmarinic acid (RA), carnosic acid (CA), flavonoids, jasmonate (JA), gibberellin (GA), and auxin (IAA); but reduced the accumulations of abscisic acid (ABA), salicylic acid (SA), and aspartate (Asp). In addition, 50 and 100 μM MeJA promoted the accumulation of alanine (Ala) and glutamate (Glu), and 50 μM MeJA promoted the accumulation of linoleic acid and alpha-linolenic acid in rosemary suspension cells. Comparative RNA-sequencing analysis of different concentrations of MeJA showed that a total of 30, 61, and 39 miRNAs were differentially expressed in the comparisons of CKvsM10, CKvsM50, CKvsM100, respectively. The analysis of the target genes of the differentially expressed miRNAs showed that plant hormone signal transduction, linoleic acid, and alpha-linolenic acid metabolism-related genes were significantly enriched. In addition, we found that miR160a-5p target ARF, miR171d_1 and miR171f_3 target DELLA, miR171b-3p target ETR, and miR156a target BRI1, which played a key role in rosemary suspension cells under MeJA treatments. qRT-PCR of 12 differentially expressed miRNAs and their target genes showed a high correlation between the RNA-seq and the qRT-PCR result. Amplification culture of rosemary suspension cells in a 5 L stirred bioreactor showed that cell biomass accumulation in the bioreactor was less than that in the shake flask under the same conditions, and the whole cultivation period was extended to 14 d. Taken together, MeJA promoted the synthesis of the active compounds in rosemary suspension cells in a wide concentration range via concentration-dependent differential expression patterns. This study provided an overall view of the miRNAs responding to MeJA in rosemary.
Collapse
|
17
|
Zaman F, Zhang M, Liu Y, Wang Z, Xu L, Guo D, Luo Z, Zhang Q. DkmiR397 Regulates Proanthocyanidin Biosynthesis via Negative Modulating DkLAC2 in Chinese PCNA Persimmon. Int J Mol Sci 2022; 23:ijms23063200. [PMID: 35328620 PMCID: PMC8951489 DOI: 10.3390/ijms23063200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/01/2023] Open
Abstract
Persimmon fruits accumulate a large amount of proanthocyanidins (PAs), which makes an astringent sensation. Proanthocyanidins (PAs) are the polymers of flavan-3-ols stored in plant vacuoles under laccase activation. A laccase gene, DkLAC2, is putatively involved in PAs biosynthesis and regulated by microRNA (DkmiR397) in persimmon. However, the polymerization of PAs in association with miRNA397 still needs to be explored in persimmon. Here, we identified pre-DkmiR397 and its target gene DkLAC2 in ‘Eshi 1’ persimmon. Histochemical staining with GUS and dual luciferase assay both confirmed DkmiR397-DkLAC2 binding after co-transformation in tobacco leaves. Diverse expression patterns of DkLAC2 and DkmiR397 were exhibited during persimmon fruit development stages. Moreover, a contrasting expression pattern was also observed after the combined DkLAC2-miR397 transformation in persimmon leaves, suggesting that DkmiR397 might be a negative regulator of DkLAC2. Similarly, the transient transformation of DkmiR397 in persimmon fruit discs in vitro also reduced PA accumulation by repressing DkLAC2, whereas the up-regulation of DkLAC2 increased the accumulation of PAs by short tandem target mimic STTM-miR397. A similar expression pattern was observed when overexpressing of DkLAC2 in Arabidopsis wild type (WT) and overexpression of DkLAC2, DkmiR397 in persimmon leaf callus. Our results revealed that the role of DkmiR397 repressed the expression of DkLAC2 concerning PA biosynthesis, providing a potential target for the manipulation of PAs metabolism in persimmon.
Collapse
|
18
|
Li B, Karthikeyan A, Wang L, Yin J, Jin T, Liu H, Li K, Gai J, Zhi H. Discovery and characterization of differentially expressed soybean miRNAs and their targets during soybean mosaic virus infection unveils novel insight into Soybean-SMV interaction. BMC Genomics 2022; 23:171. [PMID: 35236286 PMCID: PMC8889786 DOI: 10.1186/s12864-022-08385-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/07/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Soybean mosaic virus (SMV) is one of the most devastating pathogens of soybean. MicroRNAs (miRNAs) are a class of non-coding RNAs (21-24 nucleotides) which are endogenously produced by the plant host as part of a general gene expression regulatory mechanisms, but also play roles in regulating plant defense against pathogens. However, miRNA-mediated plant response to SMV in soybean is not as well documented. RESULT In this study, we analyzed 18 miRNA libraries, including three biological replicates from two soybean lines (Resistant and susceptible lines to SMV strain SC3 selected from the near-isogenic lines of Qihuang No. 1 × Nannong1138-2) after virus infection at three different time intervals (0 dpi, 7 dpi and 14 dpi). A total of 1,092 miRNAs, including 608 known miRNAs and 484 novel miRNAs were detected. Differential expression analyses identified the miRNAs profile changes during soybean-SMV interaction. Then, miRNAs potential target genes were predicted via data mining, and functional annotation was done by Gene Ontology (GO) analysis. The expression patterns of several miRNAs were validated by quantitative real-time PCR. We also validated the miRNA-target gene interaction by agrobacterium-mediated transient expression in Nicotiana benthamiana. CONCLUSION We have identified a large number of miRNAs and their target genes and also functional annotations. We found that multiple miRNAs were differentially expressed in the two lines and targeted a series of NBS-LRR resistance genes. It is worth mentioning that many of these genes exist in the previous fine-mapping interval of the resistance gene locus. Our study provides additional information on soybean miRNAs and an insight into the role of miRNAs during SMV-infection in soybean.
Collapse
Affiliation(s)
- Bowen Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, 63243, South Korea
| | - Liqun Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jinlong Yin
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Tongtong Jin
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hui Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Kai Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Junyi Gai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Haijian Zhi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
19
|
Saini N, Nikalje GC, Zargar SM, Suprasanna P. Molecular insights into sensing, regulation and improving of heat tolerance in plants. PLANT CELL REPORTS 2022; 41:799-813. [PMID: 34676458 DOI: 10.1007/s00299-021-02793-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Climate-change-mediated increase in temperature extremes has become a threat to plant productivity. Heat stress-induced changes in growth pattern, sensitivity to pests, plant phonologies, flowering, shrinkage of maturity period, grain filling, and increased senescence result in significant yield losses. Heat stress triggers multitude of cellular, physiological and molecular responses in plants beginning from the early sensing followed by signal transduction, osmolyte synthesis, antioxidant defense, and heat stress-associated gene expression. Several genes and metabolites involved in heat perception and in the adaptation response have been isolated and characterized in plants. Heat stress responses are also regulated by the heat stress transcription factors (HSFs), miRNAs and transcriptional factors which together form another layer of regulatory circuit. With the availability of functionally validated candidate genes, transgenic approaches have been applied for developing heat-tolerant transgenic maize, tobacco and sweet potato. In this review, we present an account of molecular mechanisms of heat tolerance and discuss the current developments in genetic manipulation for heat tolerant crops for future sustainable agriculture.
Collapse
Affiliation(s)
- Nupur Saini
- Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vidyalaya, Raipur, 492012, India
| | - Ganesh Chandrakant Nikalje
- PG Department of Botany, Seva Sadan's R. K. Talreja College of Arts, Science and Commerce, Ulhasnagar, 421003, India.
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, 190019, India
| | - Penna Suprasanna
- Ex-Scientist, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Mumbai, 400085, India.
| |
Collapse
|
20
|
Hajieghrari B, Farrokhi N. Plant RNA-mediated gene regulatory network. Genomics 2021; 114:409-442. [PMID: 34954000 DOI: 10.1016/j.ygeno.2021.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/21/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
Abstract
Not all transcribed RNAs are protein-coding RNAs. Many of them are non-protein-coding RNAs in diverse eukaryotes. However, some of them seem to be non-functional and are resulted from spurious transcription. A lot of non-protein-coding transcripts have a significant function in the translation process. Gene expressions depend on complex networks of diverse gene regulatory pathways. Several non-protein-coding RNAs regulate gene expression in a sequence-specific system either at the transcriptional level or post-transcriptional level. They include a significant part of the gene expression regulatory network. RNA-mediated gene regulation machinery is evolutionarily ancient. They well-evolved during the evolutionary time and are becoming much more complex than had been expected. In this review, we are trying to summarizing the current knowledge in the field of RNA-mediated gene silencing.
Collapse
Affiliation(s)
- Behzad Hajieghrari
- Department of Agricultural Biotechnology, College of Agriculture, Jahrom University, Jahrom, Iran.
| | - Naser Farrokhi
- Department of Cell, Molecular Biology Faculty of Life Sciences, Biotechnology, Shahid Beheshti University, G. C Evin, Tehran, Iran.
| |
Collapse
|
21
|
Rahman A, Sinha KV, Sopory SK, Sanan-Mishra N. Influence of virus-host interactions on plant response to abiotic stress. PLANT CELL REPORTS 2021; 40:2225-2245. [PMID: 34050797 DOI: 10.1007/s00299-021-02718-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Environmental factors play a significant role in controlling growth, development and defense responses of plants. Changes in the abiotic environment not only significantly alter the physiological and molecular pathways in plants, but also result in attracting the insect pests that carry a payload of viruses. Invasion of plants by viruses triggers the RNA silencing based defense mechanism in plants. In counter defense the viruses have gained the ability to suppress the host RNA silencing activities. A new paradigm has emerged, with the recognition that plant viruses also have the intrinsic capacity to modulate host plant response to environmental cues, in an attempt to favour their own survival. Thus, plant-virus interactions provide an excellent system to understand the signals in crosstalk between biotic (virus) and abiotic stresses. In this review, we have summarized the basal plant defense responses to pathogen invasion while emphasizing on the role of RNA silencing as a front line of defense response to virus infection. The emerging knowledge indicates overlap between RNA silencing with the innate immune responses during antiviral defense. The suppressors of RNA silencing serve as Avr proteins, which can be recognized by the host R proteins. The defense signals also function in concert with the phytohormones to influence plant responses to abiotic stresses. The current evidence on the role of virus induced host tolerance to abiotic stresses is also discussed.
Collapse
Affiliation(s)
- Adeeb Rahman
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kumari Veena Sinha
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sudhir K Sopory
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
22
|
Arora S, Chaudhary B. Global expression dynamics and miRNA evolution profile govern floral/fiber architecture in the modern cotton (Gossypium). PLANTA 2021; 254:62. [PMID: 34459999 DOI: 10.1007/s00425-021-03711-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/23/2021] [Indexed: 05/15/2023]
Abstract
Majority of differentially expressed miRNAs with functional attributes have been recruited independently and parallelly during allopolyploidy followed by the millennia of human selection of both domesticated G. hirsutum and G. barbadense. The genus Gossypium is a marvelous evolutionary model for studying allopolyploidy and morpho-evolution of long-spinnable fibers from the ancestral wild-fuzz. Many genes, transcription factors, and notably, the regulatory miRNAs essentially govern such remarkable modern fiber phenotypes. To comprehend the impact of allopolyploidy on the evolutionary selection of transcriptional dynamicity of key miRNAs, comparative transcriptome profiling of vegetative and fiber tissues of domesticated diploid G. arboreum (A2) and allopolyploid cotton species G. hirsutum (AD1), and G. barbadense (AD2) identified > 300 differentially expressed miRNAs (DEmiRs) within or between corresponding tissues of A2, AD1 and AD2 species. Up to 49% and 32% DEmiRs were up- and down-regulated at fiber initiation stage of AD1 and AD2 species, respectively, whereas 50% and 18% DEmiRs were up- and down-regulated at fiber elongation stage of both the allopolyploid species. Interestingly, A-subgenome-specific DEmiRs exhibit expression dominance in the allopolyploid genetic backgrounds. Comparative spatio-temporal expression analyses of AD1 and AD2 species discovered that a majority of DEmiRs were recruited independently under millennia of human selection during domestication. Functional annotations of these DEmiRs revealed selection of associated molecular functions such as hormone-signaling, calcium-signaling and reactive oxygen species (ROS) signaling during fiber initiation and elongation. To validate the functional attributes of annotated DEmiRs, we demonstrated for the first time that the target-mimicry-based constitutive diminution of auxin-signaling associated miR167 directly affected the differentiation of floral and fiber tissues of transgenic cotton. These results strongly suggested that the evolutionarily favored DEmiRs including miR167 were involved in the transcriptional regulation of numerous genes during cotton evolution for enhanced fiber-associated agronomic traits.
Collapse
Affiliation(s)
- Sakshi Arora
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India
| | - Bhupendra Chaudhary
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India.
| |
Collapse
|
23
|
Mani V, Assefa AD, Hahn BS. Transcriptome Analysis and miRNA Target Profiling at Various Stages of Root-Knot Nematode Meloidogyne incognita Development for Identification of Potential Regulatory Networks. Int J Mol Sci 2021; 22:ijms22147442. [PMID: 34299062 PMCID: PMC8307930 DOI: 10.3390/ijms22147442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/03/2021] [Accepted: 07/08/2021] [Indexed: 12/30/2022] Open
Abstract
Root-knot nematodes (RKNs) are a group of plant-parasitic nematodes that cause damage to various plant species and extensive economical losses. In this study, we performed integrated analysis of miRNA and mRNA expression data to explore the regulation of miRNA and mRNA in RKNs. In particular, we aimed to elucidate the mRNA targets of Meloidogyne incognita miRNAs and variations of the RKN transcriptome during five stages of its life cycle. Stage-wise RNA sequencing of M. incognita resulted in clean read numbers of 56,902,902, 50,762,456, 40,968,532, 47,309,223, and 51,730,234 for the egg, J2, J3, J4, and female stages, respectively. Overall, stage-dependent mRNA sequencing revealed that 17,423 genes were expressed in the transcriptome of M. incognita. The egg stage showed the maximum number of transcripts, and 12,803 gene transcripts were expressed in all stages. Functional Gene Ontology (GO) analysis resulted in three main GO classes: biological process, cellular components, and molecular function; the detected sequences were longer than sequences in the reference genome. Stage-wise selected fragments per kilobase of transcript per million mapped reads (FPKM) values of the top 10 stage-specific and common mRNAs were used to construct expression profiles, and 20 mRNAs were validated through quantitative real-time PCR (qRT-PCR). Next, we used three target prediction programs (miRanda, RNAhybrid, and PITA) to obtain 2431 potential target miRNA genes in RKNs, which regulate 8331 mRNAs. The predicted potential targets of miRNA were generally involved in cellular and metabolic processes, binding of molecules in the cell, membranes, and organelles. Stage-wise miRNA target analysis revealed that the egg stage contains heat shock proteins, transcriptional factors, and DNA repair proteins, whereas J2 includes DNA replication, heat shock, and ubiquitin-conjugating pathway-related proteins; the J3 and J4 stages are represented by the major sperm protein domain and translation-related proteins, respectively. In the female stage, we found proteins related to the maintenance of molybdopterin-binding domain-containing proteins and ubiquitin-mediated protein degradation. In total, 29 highly expressed stage-specific mRNA-targeting miRNAs were analyzed using qRT-PCR to validate the sequence analysis data. Overall, our findings provide new insights into the molecular mechanisms occurring at various developmental stages of the RKN life cycle, thus aiding in the identification of potential control strategies.
Collapse
Affiliation(s)
- Vimalraj Mani
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea;
| | - Awraris Derbie Assefa
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea;
| | - Bum-Soo Hahn
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea;
- Correspondence: ; Tel.: +82-63-238-4930
| |
Collapse
|
24
|
Owusu Adjei M, Zhou X, Mao M, Rafique F, Ma J. MicroRNAs Roles in Plants Secondary Metabolism. PLANT SIGNALING & BEHAVIOR 2021; 16:1915590. [PMID: 33938393 PMCID: PMC8205019 DOI: 10.1080/15592324.2021.1915590] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 05/20/2023]
Abstract
Plant growth and development is dependent on the regulation of classes of microRNAs (miRNAs) that have emerged as important gene regulators. These miRNAs can regulate plant gene expression to function. They play an important roles in biological homeostasis and environmental response controls. A wide range of plant biological and metabolic processes, including developmental timing, tissues specific development, and differentiation, depends on miRNAs. They perpetually regulate secondary metabolite functions in different plant family lines. Mapping of molecular phylogenies shows the distribution of secondary metabolism in the plant territory. More importantly, a lot of information related to miRNA regulatory processes in plants is revealed, but the role of miRNAs in secondary metabolism regulation and functions of the metabolites are still unclear. In this review, we pinnacle some potential miRNAs regulating the secondary metabolite biosynthesis activities in plants. This will provide an alternative knowledge for functional studies of secondary metabolism.
Collapse
Affiliation(s)
- Mark Owusu Adjei
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xuzixin Zhou
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Meiqin Mao
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fatima Rafique
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jun Ma
- College of Landscape Architecture of Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Nitrogen Starvation-Responsive MicroRNAs Are Affected by Transgenerational Stress in Durum Wheat Seedlings. PLANTS 2021; 10:plants10050826. [PMID: 33919185 PMCID: PMC8143135 DOI: 10.3390/plants10050826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022]
Abstract
Stress events have transgenerational effects on plant growth and development. In Mediterranean regions, water-deficit and heat (WH) stress is a frequent issue that negatively affects crop yield and quality. Nitrogen (N) is an essential plant macronutrient and often a yield-limiting factor for crops. Here, the response of durum wheat seedlings to N starvation under the transgenerational effects of WH stress was investigated in two genotypes. Both genotypes showed a significant reduction in seedling height, leaf number, shoot and root weight (fresh and dry), primary root length, and chlorophyll content under N starvation stress. However, in the WH stress-tolerant genotype, the percentage reduction of most traits was lower in progeny from the stressed parents than progeny from the control parents. Small RNA sequencing identified 1534 microRNAs in different treatment groups. Differentially expressed microRNAs (DEMs) were characterized subject to N starvation, parental stress and genotype factors, with their target genes identified in silico. GO and KEGG enrichment analyses revealed the biological functions, associated with DEM-target modules in stress adaptation processes, that could contribute to the phenotypic differences observed between the two genotypes. The study provides the first evidence of the transgenerational effects of WH stress on the N starvation response in durum wheat.
Collapse
|
26
|
Chaudhary S, Grover A, Sharma PC. MicroRNAs: Potential Targets for Developing Stress-Tolerant Crops. Life (Basel) 2021; 11:life11040289. [PMID: 33800690 PMCID: PMC8066829 DOI: 10.3390/life11040289] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
Crop yield is challenged every year worldwide by changing climatic conditions. The forecasted climatic scenario urgently demands stress-tolerant crop varieties to feed the ever-increasing global population. Molecular breeding and genetic engineering approaches have been frequently exploited for developing crops with desired agronomic traits. Recently, microRNAs (miRNAs) have emerged as powerful molecules, which potentially serve as expression markers during stress conditions. The miRNAs are small non-coding endogenous RNAs, usually 20-24 nucleotides long, which mediate post-transcriptional gene silencing and fine-tune the regulation of many abiotic- and biotic-stress responsive genes in plants. The miRNAs usually function by specifically pairing with the target mRNAs, inducing their cleavage or repressing their translation. This review focuses on the exploration of the functional role of miRNAs in regulating plant responses to abiotic and biotic stresses. Moreover, a methodology is also discussed to mine stress-responsive miRNAs from the enormous amount of transcriptome data available in the public domain generated using next-generation sequencing (NGS). Considering the functional role of miRNAs in mediating stress responses, these molecules may be explored as novel targets for engineering stress-tolerant crop varieties.
Collapse
Affiliation(s)
- Saurabh Chaudhary
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
- Correspondence: (S.C.); (P.C.S.)
| | - Atul Grover
- Defence Institute of Bio-Energy Research, Defence Research and Development Organisation (DRDO), Haldwani 263139, India;
| | - Prakash Chand Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi 110078, India
- Correspondence: (S.C.); (P.C.S.)
| |
Collapse
|
27
|
Dhaka N, Sharma R. MicroRNA-mediated regulation of agronomically important seed traits: a treasure trove with shades of grey! Crit Rev Biotechnol 2021; 41:594-608. [PMID: 33682533 DOI: 10.1080/07388551.2021.1873238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Seed development is an intricate process with multiple levels of regulation. MicroRNAs (miRNAs) have emerged as one of the crucial components of molecular networks underlying agronomically important seed traits in diverse plant species. In fact, loss of function of the genes regulating miRNA biogenesis also exhibits defects in seed development. A total of 21 different miRNAs have experimentally been shown to regulate seed size, nutritional content, vigor, and shattering, and have been reviewed here. The mechanism details of the associated regulatory cascades mediated through transcriptional regulators, phytohormones, basic metabolic machinery, and secondary siRNAs are elaborated. Co-localization of miRNAs and their target regions with seed-related QTLs provides new avenues for engineering these traits using conventional breeding programs or biotechnological interventions. While global analysis of miRNAs using small RNA sequencing studies are expanding the repertoire of candidate miRNAs, recent revelations on their inheritance, transport, and mechanism of action would be instrumental in designing better strategies for optimizing agronomically relevant seed traits.
Collapse
Affiliation(s)
- Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Haryana, India.,Crop Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rita Sharma
- Crop Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
28
|
Sun Y, Xiong X, Wang Q, Zhu L, Wang L, He Y, Zeng H. Integrated Analysis of Small RNA, Transcriptome, and Degradome Sequencing Reveals the MiR156, MiR5488 and MiR399 are Involved in the Regulation of Male Sterility in PTGMS Rice. Int J Mol Sci 2021; 22:ijms22052260. [PMID: 33668376 PMCID: PMC7956645 DOI: 10.3390/ijms22052260] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023] Open
Abstract
A photoperiod- and thermo-sensitive genic male sterile (PTGMS) line is the basic material for two-hybrid rice and is an important genetic breeding resource. Peiai64S (PA64S) is an important germplasm resource of PTGMS rice, and it has been applied to two-line hybrid rice systems in China. Pollen fertility in PA64S is regulated by the temperature and photoperiod, but the mechanism of the fertility transition is unclear. In this study, we obtained the male fertile plant PA64S(F) and the male sterile plant PA64S(S) by controlling different temperatures under long light conditions and used the male fertile and sterile plants to investigate the role of microRNAs (miRNAs) in regulating male fertility in rice. We performed the small RNA library sequencing of anthers from PA64S(S) and PA64S(F). A total of 196 miRNAs were identified-166 known miRNAs among 27 miRNA families and 30 novel miRNAs. In the transcriptome analysis, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially expressed genes revealed significant enrichment in the synthesis and metabolism of fatty acids and some secondary metabolism pathways such as fatty acid metabolism and phenylalanine metabolism. With a comprehensive analysis of miRNA, transcriptome, and degradome sequencing, we identified that 13 pairs of miRNA/target genes regulated male fertility in rice by responding to temperature change, among which the miR156, miR5488, and miR399 affect the male fertility of PA64S by influencing SPLs, the lignin synthesis of anther walls, and the flavonoid metabolism pathway. The results provide a new understanding of PTGMS rice, which will help us better understand the potential regulatory mechanisms of male sterility in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying He
- Correspondence: (Y.H.); (H.Z.)
| | | |
Collapse
|
29
|
Xie D, Yu Y, Dai Z, Sun J, Su J. Identification and characterization of miRNAs and target genes in developing flax seeds by multigroup analysis. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1903337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Dongwei Xie
- Department of Biotechnology, School of Life Science, Nantong University, Jiangsu, Nantong, PR China
| | - Yue Yu
- Laboratory of Germplasm Resources and Utilization of Economic Crops in South China, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Hunan, Changsha, PR China
| | - Zhigang Dai
- Laboratory of Germplasm Resources and Utilization of Economic Crops in South China, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Hunan, Changsha, PR China
| | - Jian Sun
- Department of Biotechnology, School of Life Science, Nantong University, Jiangsu, Nantong, PR China
| | - Jianguang Su
- Laboratory of Germplasm Resources and Utilization of Economic Crops in South China, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Hunan, Changsha, PR China
| |
Collapse
|
30
|
Dalio RJD, Litholdo CG, Arena G, Magalhães D, Machado MA. Contribution of Omics and Systems Biology to Plant Biotechnology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1346:171-188. [DOI: 10.1007/978-3-030-80352-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
31
|
Multi-Omics Analysis of Small RNA, Transcriptome, and Degradome in T. turgidum-Regulatory Networks of Grain Development and Abiotic Stress Response. Int J Mol Sci 2020; 21:ijms21207772. [PMID: 33096606 PMCID: PMC7589925 DOI: 10.3390/ijms21207772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 01/04/2023] Open
Abstract
Crop reproduction is highly sensitive to water deficit and heat stress. The molecular networks of stress adaptation and grain development in tetraploid wheat (Triticum turgidum durum) are not well understood. Small RNAs (sRNAs) are important epigenetic regulators connecting the transcriptional and post-transcriptional regulatory networks. This study presents the first multi-omics analysis of the sRNAome, transcriptome, and degradome in T. turgidum developing grains, under single and combined water deficit and heat stress. We identified 690 microRNAs (miRNAs), with 84 being novel, from 118 sRNA libraries. Complete profiles of differentially expressed miRNAs (DEMs) specific to genotypes, stress types, and different reproductive time-points are provided. The first degradome sequencing report for developing durum grains discovered a significant number of new target genes regulated by miRNAs post-transcriptionally. Transcriptome sequencing profiled 53,146 T. turgidum genes, swith differentially expressed genes (DEGs) enriched in functional categories such as nutrient metabolism, cellular differentiation, transport, reproductive development, and hormone transduction pathways. miRNA-mRNA networks that affect grain characteristics such as starch synthesis and protein metabolism were constructed on the basis of integrated analysis of the three omics. This study provides a substantial amount of novel information on the post-transcriptional networks in T. turgidum grains, which will facilitate innovations for breeding programs aiming to improve crop resilience and grain quality.
Collapse
|
32
|
Jeyaraj A, Elango T, Li X, Guo G. Utilization of microRNAs and their regulatory functions for improving biotic stress tolerance in tea plant [ Camellia sinensis (L.) O. Kuntze]. RNA Biol 2020; 17:1365-1382. [PMID: 32478595 PMCID: PMC7549669 DOI: 10.1080/15476286.2020.1774987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/04/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs play a central role in responses to biotic stressors through their interactions with their target mRNAs. Tea plant (Camellia sinensis L.), an important beverage crop, is vulnerable to tea geometrid and anthracnose disease that causes considerable crop loss and tea production worldwide. Sustainable production of tea in the current scenario to biotic factors is major challenges. To overcome the problem of biotic stresses, high-throughput sequencing (HTS) with bioinformatics analyses has been used as an effective approach for the identification of stress-responsive miRNAs and their regulatory functions in tea plant. These stress-responsive miRNAs can be utilized for miRNA-mediated gene silencing to enhance stress tolerance in tea plant. Therefore, this review summarizes the current understanding of miRNAs regulatory functions in tea plant responding to Ectropis oblique and Colletotrichum gloeosporioides attacks for future miRNA research. Also, it highlights the utilization of miRNA-mediated gene silencing strategies for developing biotic stress-tolerant tea plant.
Collapse
Affiliation(s)
- Anburaj Jeyaraj
- Tea Research Institute, Nanjing Agricultural University, Nanjing, China
- Department of Biotechnology, Karpagam Academy of Higher Education, Tamilnadu, India
| | - Tamilselvi Elango
- Tea Research Institute, Nanjing Agricultural University, Nanjing, China
| | - Xinghui Li
- Tea Research Institute, Nanjing Agricultural University, Nanjing, China
| | - Guiyi Guo
- Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Xinyang Agriculture and Forestry University, Xinyang, P.R. China
| |
Collapse
|
33
|
|
34
|
miRTil: An Extensive Repository for Nile Tilapia microRNA Next Generation Sequencing Data. Cells 2020; 9:cells9081752. [PMID: 32707870 PMCID: PMC7465656 DOI: 10.3390/cells9081752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 12/04/2022] Open
Abstract
Nile tilapia is the third most cultivated fish worldwide and a novel model species for evolutionary studies. Aiming to improve productivity and contribute to the selection of traits of economic impact, biotechnological approaches have been intensively applied to species enhancement. In this sense, recent studies have focused on the multiple roles played by microRNAs (miRNAs) in the post-transcriptional regulation of protein-coding genes involved in the emergence of phenotypes with relevance for aquaculture. However, there is still a growing demand for a reference resource dedicated to integrating Nile Tilapia miRNA information, obtained from both experimental and in silico approaches, and facilitating the analysis and interpretation of RNA sequencing data. Here, we present an open repository dedicated to Nile Tilapia miRNAs: the “miRTil database”. The database stores data on 734 mature miRNAs identified in 11 distinct tissues and five key developmental stages. The database provides detailed information about miRNA structure, genomic context, predicted targets, expression profiles, and relative 5p/3p arm usage. Additionally, miRTil also includes a comprehensive pre-computed miRNA-target interaction network containing 4936 targets and 19,580 interactions.
Collapse
|
35
|
Parmar S, Gharat SA, Tagirasa R, Chandra T, Behera L, Dash SK, Shaw BP. Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity. PLoS One 2020; 15:e0230958. [PMID: 32294092 PMCID: PMC7159242 DOI: 10.1371/journal.pone.0230958] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/12/2020] [Indexed: 12/31/2022] Open
Abstract
Soil salinization is a serious problem for cultivation of rice, as among cereals rice is the most salt sensitive crop, and more than 40% of the total agricultural land amounting to approximately 80 million ha the world over is salt affected. Salinity affects a plant in a varieties of ways, including ion toxicity, osmotic stress and oxidative damage. Since miRNAs occupy the top place in biochemical events determining a trait, understanding their role in salt tolerance is highly desirable, which may allow introduction of the trait in the rice cultivars of choice through biotechnological interventions. High throughput sequencing of sRNAs in the root and shoot tissues of the seedlings of the control and NaCl treated Pokkali, a salt-tolerant rice variety, identified 75 conserved miRNAs and mapped 200 sRNAs to the rice genome as novel miRNAs. Expression of nine novel miRNAs and two conserved miRNAs were confirmed by Northern blotting. Several of both conserved and novel miRNAs that expressed differentially in root and/or shoot tissues targeted transcription factors like AP2/EREBP domain protein, ARF, NAC, MYB, NF-YA, HD-Zip III, TCP and SBP reported to be involved in salt tolerance or in abiotic stress tolerance in general. Most of the novel miRNAs expressed in the salt tolerant wild rice Oryza coarctata, suggesting conservation of miRNAs in taxonomically related species. One of the novel miRNAs, osa-miR12477, also targeted L-ascorbate oxidase (LAO), indicating build-up of oxidative stress in the plant upon salt treatment, which was confirmed by DAB staining. Thus, salt tolerance might involve miRNA-mediated regulation of 1) cellular abundance of the hormone signaling components like EREBP and ARF, 2) synthesis of abiotic stress related transcription factors, and 3) antioxidative component like LAO for mitigation of oxidative damage. The study clearly indicated importance of osa-miR12477 regulated expression of LAO in salt tolerance in the plant.
Collapse
Affiliation(s)
- Shaifaly Parmar
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Sachin Ashruba Gharat
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Ravichandra Tagirasa
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Tilak Chandra
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Lambodar Behera
- Crop Improvement Division, ICAR-National Rice Research Institute (Formerly Central Rice Research Institute), Cuttack, Odisha, India
| | - Sushant Kumar Dash
- Crop Improvement Division, ICAR-National Rice Research Institute (Formerly Central Rice Research Institute), Cuttack, Odisha, India
| | - Birendra Prasad Shaw
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
36
|
Liu J, Fan H, Wang Y, Han C, Wang X, Yu J, Li D, Zhang Y. Genome-Wide microRNA Profiling Using Oligonucleotide Microarray Reveals Regulatory Networks of microRNAs in Nicotiana benthamiana During Beet Necrotic Yellow Vein Virus Infection. Viruses 2020; 12:E310. [PMID: 32178444 PMCID: PMC7150760 DOI: 10.3390/v12030310] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 01/15/2023] Open
Abstract
Beet necrotic yellow vein virus (BNYVV) infections induce stunting and leaf curling, as well as root and floral developmental defects and leaf senescence in Nicotiana benthamiana. A microarray analysis with probes capable of detecting 1596 candidate microRNAs (miRNAs) was conducted to investigate differentially expressed miRNAs and their targets upon BNYVV infection of N. benthamiana plants. Eight species-specific miRNAs of N. benthamiana were identified. Comprehensive characterization of the N. benthamiana microRNA profile in response to the BNYVV infection revealed that 129 miRNAs were altered, including four species-specific miRNAs. The targets of the differentially expressed miRNAs were predicted accordingly. The expressions of miR164, 160, and 393 were up-regulated by BNYVV infection, and those of their target genes, NAC21/22, ARF17/18, and TIR, were down-regulated. GRF1, which is a target of miR396, was also down-regulated. Further genetic analysis of GRF1, by Tobacco rattle virus-induced gene silencing, assay confirmed the involvement of GRF1 in the symptom development during BNYVV infection. BNYVV infection also induced the up-regulation of miR168 and miR398. The miR398 was predicted to target umecyanin, and silencing of umecyanin could enhance plant resistance against viruses, suggesting the activation of primary defense response to BNYVV infection in N. benthamiana. These results provide a global profile of miRNA changes induced by BNYVV infection and enhance our understanding of the mechanisms underlying BNYVV pathogenesis.
Collapse
Affiliation(s)
- Junying Liu
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (J.L.); (H.F.); (Y.W.)
- Laboratory of Phytopathology, College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Huiyan Fan
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (J.L.); (H.F.); (Y.W.)
| | - Ying Wang
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (J.L.); (H.F.); (Y.W.)
| | - Chenggui Han
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (J.L.); (H.F.); (Y.W.)
| | - Xianbing Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (X.W.); (J.Y.); (D.L.)
| | - Jialin Yu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (X.W.); (J.Y.); (D.L.)
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (X.W.); (J.Y.); (D.L.)
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; (X.W.); (J.Y.); (D.L.)
| |
Collapse
|
37
|
Baykal U. Development of a sensitive primer extension method for direct detection and quantification of miRNAs from plants. PLoS One 2020; 15:e0230251. [PMID: 32163493 PMCID: PMC7067424 DOI: 10.1371/journal.pone.0230251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/25/2020] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNA molecules that regulate target gene expression in various organisms. Functional studies are therefore required to determine their temporal and spatial expression patterns. Primer extension has been used as a sensitive and reliable approach to identify miRNAs (∼21–22 nt) in the mammalian system and can be used in other systems such as plants. However, a well-defined method is required for ease of application and reproducibility. Here, a radioactive primer extension method was developed for the quantitative detection of miRNAs found in total RNA samples from plants. As a proof of concept, miR173 and miR828 were detected by primer extension in total RNA samples isolated from Arabidopsis. The assay involved the extension reaction of the miRNA guide strand with a radiolabeled specific primer. Using a manual DNA sequencer, primers extended with reverse transcriptase were separated on a denaturing polyacrylamide gel. The gel was then dried and exposed to a PhosphorImager screen for size-dependent product identification up to a single base difference. Quantification was done based on the intensity of radioactive signals by normalizing the cDNA products to an internal control. The primer extension was proven to be efficient to detect and quantify miRNAs in plant total RNA samples without subsequent enrichment of low-molecular-weight RNA species. This method, optimized for Arabidopsis, can be applied to a wide variety of organisms for the detection and quantification of miRNAs as well as siRNAs.
Collapse
Affiliation(s)
- Ulku Baykal
- Department of Genetics and Bioengineering, Giresun University, Güre, Giresun, Turkey
- * E-mail:
| |
Collapse
|
38
|
Yang Z, Zhu P, Kang H, Liu L, Cao Q, Sun J, Dong T, Zhu M, Li Z, Xu T. High-throughput deep sequencing reveals the important role that microRNAs play in the salt response in sweet potato (Ipomoea batatas L.). BMC Genomics 2020; 21:164. [PMID: 32066373 PMCID: PMC7027035 DOI: 10.1186/s12864-020-6567-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/07/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs), a class of small regulatory RNAs, have been proven to play important roles in plant growth, development and stress responses. Sweet potato (Ipomoea batatas L.) is an important food and industrial crop that ranks seventh in staple food production. However, the regulatory mechanism of miRNA-mediated abiotic stress response in sweet potato remains unclear. RESULTS In this study, we employed deep sequencing to identify both conserved and novel miRNAs from salinity-exposed sweet potato cultivars and its untreated control. Twelve small non-coding RNA libraries from NaCl-free (CK) and NaCl-treated (Na150) sweet potato leaves and roots were constructed for salt-responsive miRNA identification in sweet potatoes. A total of 475 known miRNAs (belonging to 66 miRNA families) and 175 novel miRNAs were identified. Among them, 51 (22 known miRNAs and 29 novel miRNAs) were significantly up-regulated and 76 (61 known miRNAs and 15 novel miRNAs) were significantly down-regulated by salinity stress in sweet potato leaves; 13 (12 known miRNAs and 1 novel miRNAs) were significantly up-regulated and 9 (7 known miRNAs and 2 novel miRNAs) were significantly down-regulated in sweet potato roots. Furthermore, 636 target genes of 314 miRNAs were validated by degradome sequencing. Deep sequencing results confirmed by qRT-PCR experiments indicated that the expression of most miRNAs exhibit a negative correlation with the expression of their targets under salt stress. CONCLUSIONS This study provides insights into the regulatory mechanism of miRNA-mediated salt response and molecular breeding of sweet potatoes though miRNA manipulation.
Collapse
Affiliation(s)
- Zhengmei Yang
- 0000 0000 9698 6425grid.411857.eKey Lab of Phylogeny and Comparative Genomics of the Jiangsu Province, Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116 Jiangsu Province China
| | - Panpan Zhu
- 0000 0001 0356 9399grid.14005.30Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757 South Korea
| | - Hunseung Kang
- 0000 0001 0356 9399grid.14005.30Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757 South Korea
| | - Lin Liu
- 0000 0001 0472 9649grid.263488.3Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong China
| | - Qinghe Cao
- Xuzhou Academy of Agricultural Sciences/Sweet Potato Research Institute, CAAS, Xuzhou, 221121 Jiangsu China
| | - Jian Sun
- 0000 0000 9698 6425grid.411857.eKey Lab of Phylogeny and Comparative Genomics of the Jiangsu Province, Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116 Jiangsu Province China
| | - Tingting Dong
- 0000 0000 9698 6425grid.411857.eKey Lab of Phylogeny and Comparative Genomics of the Jiangsu Province, Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116 Jiangsu Province China
| | - Mingku Zhu
- 0000 0000 9698 6425grid.411857.eKey Lab of Phylogeny and Comparative Genomics of the Jiangsu Province, Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116 Jiangsu Province China
| | - Zongyun Li
- 0000 0000 9698 6425grid.411857.eKey Lab of Phylogeny and Comparative Genomics of the Jiangsu Province, Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116 Jiangsu Province China
| | - Tao Xu
- 0000 0000 9698 6425grid.411857.eKey Lab of Phylogeny and Comparative Genomics of the Jiangsu Province, Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116 Jiangsu Province China
| |
Collapse
|
39
|
|
40
|
Sun FY, Liu L, Yu Y, Ruan XM, Wang CY, Hu QW, Wu DX, Sun G. MicroRNA-mediated responses to colchicine treatment in barley. PLANTA 2020; 251:44. [PMID: 31907626 DOI: 10.1007/s00425-019-03326-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
In Hordeum vulgare, nine differentially expressed novel miRNAs were induced by colchicine. Five novel miRNA in colchicine solution showed the opposite expression patterns as those in water. Colchicine is a commonly used agent for plant chromosome set doubling. MicroRNA-mediated responses to colchicine treatment in plants have not been characterized. Here, we characterized new microRNAs induced by colchicine treatment in Hordeum vulgare using high-throughput sequencing. Our results showed that 39 differentially expressed miRNAs were affected by water treatment, including 34 novel miRNAs and 5 known miRNAs; 42 miRNAs, including 37 novel miRNAs and 5 known miRNAs, were synergistically affected by colchicine and water, and 9 differentially expressed novel miRNAs were induced by colchicine. The novel_mir69, novel_mir57, novel_mir75, novel_mir38, and novel_mir56 in colchicine treatment showed the opposite expression patterns as those in water. By analyzing these 9 differentially expressed novel miRNAs and their targets, we found that novel_mir69, novel_mir56 and novel_mir25 co-target the genes involving the DNA repair pathway. Based on our results, microRNA-target regulation network under colchicine treatment was proposed, which involves actin, cell cycle regulation, cell wall synthesis, and the regulation of oxidative stress. Overall, the results demonstrated the critical role of microRNAs mediated responses to colchicine treatment in plants.
Collapse
Affiliation(s)
- Fang-Yao Sun
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Lin Liu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yi Yu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xin-Ming Ruan
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Cheng-Yu Wang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| | - Qun-Wen Hu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - De-Xiang Wu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| | - Genlou Sun
- Biology Department, Saint Mary's University, Halifax, NS, B3H 3C3, Canada.
| |
Collapse
|
41
|
Thornburg TE, Liu J, Li Q, Xue H, Wang G, Li L, Fontana JE, Davis KE, Liu W, Zhang B, Zhang Z, Liu M, Pan X. Potassium Deficiency Significantly Affected Plant Growth and Development as Well as microRNA-Mediated Mechanism in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2020; 11:1219. [PMID: 32922417 PMCID: PMC7456879 DOI: 10.3389/fpls.2020.01219] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/27/2020] [Indexed: 05/08/2023]
Abstract
It is well studied that potassium (K+) deficiency induced aberrant growth and development of plant and altered the expression of protein-coding genes. However, there are not too many systematic investigations on root development affected by K+ deficiency, and there is no report on miRNA expression during K+ deficiency in wheat. In this study, we found that K+ deficiency significantly affected wheat seedling growth and development, evidenced by reduced plant biomass and small plant size. In wheat cultivar AK-58, up-ground shoots were more sensitive to K+ deficiency than roots. K+ deficiency did not significantly affect root vitality but affected root development, including root branching, root area, and root size. K+ deficiency delayed seminal root emergence but enhanced seminal root elongation, total root length, and correspondingly total root surface area. K+ deficiency also affected root and leaf respiration at the early exposure stage, but these effects were not observed at the later stage. One potential mechanism causing K+ deficiency impacts is microRNAs (miRNAs), one important class of small regulatory RNAs. K+ deficiency induced the aberrant expression of miRNAs and their targets, which further affected plant growth, development, and response to abiotic stresses, including K+ deficiency. Thereby, this positive root adaption to K+ deficiency is likely associated with the miRNA-involved regulation of root development.
Collapse
Affiliation(s)
- Thomas Elliott Thornburg
- Henan Collaborative Innovation Center of Modern Biological Breeding and Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, China
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Jia Liu
- Henan Collaborative Innovation Center of Modern Biological Breeding and Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, China
| | - Qian Li
- Henan Collaborative Innovation Center of Modern Biological Breeding and Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, China
| | - Huiyun Xue
- Henan Collaborative Innovation Center of Modern Biological Breeding and Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, China
| | - Guo Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding and Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, China
| | - Lijie Li
- Henan Collaborative Innovation Center of Modern Biological Breeding and Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, China
| | - Julia Elise Fontana
- Henan Collaborative Innovation Center of Modern Biological Breeding and Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, China
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Kyle E. Davis
- Henan Collaborative Innovation Center of Modern Biological Breeding and Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, China
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Wanying Liu
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Zhiyong Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding and Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, China
- *Correspondence: Zhiyong Zhang, ; Mingjiu Liu, ; Xiaoping Pan,
| | - Mingjiu Liu
- Henan Collaborative Innovation Center of Modern Biological Breeding and Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan Institute of Science and Technology, Xinxiang, China
- *Correspondence: Zhiyong Zhang, ; Mingjiu Liu, ; Xiaoping Pan,
| | - Xiaoping Pan
- Department of Biology, East Carolina University, Greenville, NC, United States
- *Correspondence: Zhiyong Zhang, ; Mingjiu Liu, ; Xiaoping Pan,
| |
Collapse
|
42
|
Das A, Nigam D, Junaid A, Tribhuvan KU, Kumar K, Durgesh K, Singh NK, Gaikwad K. Expressivity of the key genes associated with seed and pod development is highly regulated via lncRNAs and miRNAs in Pigeonpea. Sci Rep 2019; 9:18191. [PMID: 31796783 PMCID: PMC6890743 DOI: 10.1038/s41598-019-54340-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
Non-coding RNA’s like miRNA, lncRNA, have gained immense importance as a significant regulatory factor in different physiological and developmental processes in plants. In an effort to understand the molecular role of these regulatory agents, in the present study, 3019 lncRNAs and 227 miRNAs were identified from different seed and pod developmental stages in Pigeonpea, a major grain legume of Southeast Asia and Africa. Target analysis revealed that 3768 mRNAs, including 83 TFs were targeted by lncRNAs; whereas 3060 mRNA, including 154 TFs, were targeted by miRNAs. The targeted transcription factors majorly belong to WRKY, MYB, bHLH, etc. families; whereas the targeted genes were associated with the embryo, seed, and flower development. Total 302 lncRNAs interact with miRNAs and formed endogenous target mimics (eTMs) which leads to sequestering of the miRNAs present in the cell. Expression analysis showed that notably, Cc_lncRNA-2830 expression is up-regulated and sequestrates miR160h in pod leading to higher expression of the miR160h target gene, Auxin responsive factor-18. A similar pattern was observed for SPIKE, Auxin signaling F-box-2, Bidirectional sugar transporter, and Starch synthetase-2 eTMs. All the identified target mRNAs code for transcription factor and genes are involved in the processes like cell division, plant growth and development, starch synthesis, sugar transportation and accumulation of storage proteins which are essential for seed and pod development. On a combinatorial basis, our study provides a lncRNA and miRNA based regulatory insight into the genes governing seed and pod development in Pigeonpea.
Collapse
Affiliation(s)
- Antara Das
- ICAR- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Deepti Nigam
- ICAR- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Alim Junaid
- ICAR- National Research Centre on Plant Biotechnology, New Delhi, India
| | | | - Kuldeep Kumar
- ICAR- National Research Centre on Plant Biotechnology, New Delhi, India
| | | | - N K Singh
- ICAR- National Research Centre on Plant Biotechnology, New Delhi, India
| | - Kishor Gaikwad
- ICAR- National Research Centre on Plant Biotechnology, New Delhi, India.
| |
Collapse
|
43
|
Ražná K, Cagáň Ľ. The Role of MicroRNAs in Genome Response to Plant-Lepidoptera Interaction. PLANTS (BASEL, SWITZERLAND) 2019; 8:E529. [PMID: 31757090 PMCID: PMC6963388 DOI: 10.3390/plants8120529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 02/06/2023]
Abstract
RNA interference is a known phenomenon of plant immune responses, involving the regulation of gene expression. The key components triggering the silencing of targeted sequences are double-stranded RNA molecules. The regulation of host-pathogen interactions is controlled by miRNA molecules, which regulate the expression of host resistance genes or the genes of the pathogen. The review focused on basic principles of RNA interference as a gene-silencing-based defense mechanism and the role of miRNA molecules in insect genomes. RNA interference as a tool for plant protection management is discussed. The review summarizes current miRNA-based biotechnology approaches for plant protection management.
Collapse
Affiliation(s)
- Katarína Ražná
- Department of Genetics and Plant Breeding, Slovak University of Agriculture, 94976 Nitra, Slovakia
| | - Ľudovít Cagáň
- Department of Plant Protection; Slovak University of Agriculture, 94976 Nitra, Slovakia;
| |
Collapse
|
44
|
Xu X, Wang K, Pan J, Chen X. Small RNA sequencing identifies cucumber miRNA roles in waterlogging-triggered adventitious root primordia formation. Mol Biol Rep 2019; 46:6381-6389. [PMID: 31538299 DOI: 10.1007/s11033-019-05084-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/17/2019] [Indexed: 01/03/2023]
Abstract
The formation of adventitious roots (ARs) is a key morphological adaptation of cucumber (Cucumis sativus L.) to waterlogging stress. MicroRNAs (miRNAs) constitute a group of non-coding small RNAs (sRNA) that play crucial roles in regulating diverse biological processes, including waterlogging acclimation. However, which specific miRNAs and how they are involved in waterlogging-triggered de novo AR primordia formation are not fully known. Here, Illumina sRNA sequencing was applied to sequence six sRNA libraries generated from the waterlogging-tolerant cucumber Zaoer-N after 48 h of waterlogging and the control. A total of 358 cucumber miRNAs, 312 known and 46 novel, were obtained. Among them, 23 were differentially expressed, with 10 and 13 being up- and downregulated, respectively. A qPCR expression study confirmed that the identified differentially expressed miRNAs were credible. A total of 657 putative miRNA target genes were predicted for the 23 miRNAs using an in silico approach. A gene ontology enrichment analysis revealed that target genes functioning in cell redox homeostasis, cytoskeleton, photosynthesis and cell growth were over-represented. In total, 58 of the 657 target genes showed inverse expression patterns compared with their respective miRNAs through a combined analysis of sRNA- and RNA-sequencing-based transcriptome datasets using the same experimental design. The target gene annotation included a peroxidase, a GDSL esterases/lipase and two heavy metal-associated isoprenylated plant proteins. Our results provide an important framework for understanding the unique miRNA patterns seen in responses to waterlogging and the miRNA-mediated formation of de novo AR primordia in cucumber.
Collapse
Affiliation(s)
- Xuewen Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Kaixuan Wang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jiawei Pan
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
45
|
Khan MR, Adam V, Rizvi TF, Zhang B, Ahamad F, Jośko I, Zhu Y, Yang M, Mao C. Nanoparticle-Plant Interactions: Two-Way Traffic. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901794. [PMID: 31318142 PMCID: PMC6800249 DOI: 10.1002/smll.201901794] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/24/2019] [Indexed: 05/03/2023]
Abstract
In this Review, an effort is made to discuss the most recent progress and future trend in the two-way traffic of the interactions between plants and nanoparticles (NPs). One way is the use of plants to synthesize NPs in an environmentally benign manner with a focus on the mechanism and optimization of the synthesis. Another way is the effects of synthetic NPs on plant fate with a focus on the transport mechanisms of NPs within plants as well as NP-mediated seed germination and plant development. When NPs are in soil, they can be adsorbed at the root surface, followed by their uptake and inter/intracellular movement in the plant tissues. NPs may also be taken up by foliage under aerial deposition, largely through stomata, trichomes, and cuticles, but the exact mode of NP entry into plants is not well documented. The NP-plant interactions may lead to inhibitory or stimulatory effects on seed germination and plant development, depending on NP compositions, concentrations, and plant species. In numerous cases, radiation-absorbing efficiency, CO2 assimilation capacity, and delay of chloroplast aging have been reported in the plant response to NP treatments, although the mechanisms involved in these processes remain to be studied.
Collapse
Affiliation(s)
- Mujeebur Rahman Khan
- Department of Plant Protection, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Tanveer Fatima Rizvi
- Department of Plant Protection, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, U.S.A
| | - Faheem Ahamad
- Department of Plant Protection, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Izabela Jośko
- Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland
| | - Ye Zhu
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Science, Engineering and Technology, University of Oklahoma, Norman, OK 73019, U.S.A
| | - Mingying Yang
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Science, Engineering and Technology, University of Oklahoma, Norman, OK 73019, U.S.A
| |
Collapse
|
46
|
Zeng W, Sun Z, Lai Z, Yang S, Chen H, Yang X, Tao J, Tang X. Determination of the MiRNAs Related to Bean Pyralid Larvae Resistance in Soybean Using Small RNA and Transcriptome Sequencing. Int J Mol Sci 2019; 20:E2966. [PMID: 31216642 PMCID: PMC6628378 DOI: 10.3390/ijms20122966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/15/2019] [Accepted: 06/17/2019] [Indexed: 01/05/2023] Open
Abstract
Soybean is one of the most important oil crops in the world. Bean pyralid is a major leaf-feeding insect of soybean. In order to screen out the functional genes and regulatory pathways related to the resistance for bean pyralid larvae, the small RNA and transcriptome sequencing were performed based on the highly resistant material (Gantai-2-2) and highly susceptible material (Wan 82-178) of soybean. The results showed that, when comparing 48 h feeding with 0 h feeding, 55 differentially expressed miRNAs were identified in Gantai-2-2 and 58 differentially expressed miRNAs were identified in Wan82-178. When comparing Gantai-2-2 with Wan82-178, 77 differentially expressed miRNAs were identified at 0 h feeding, and 70 differentially expressed miRNAs were identified at 48 h feeding. The pathway analysis of the predicted target genes revealed that the plant hormone signal transduction, RNA transport, protein processing in the endoplasmic reticulum, zeatin biosynthesis, ubiquinone and other terpenoid-quinone biosynthesis, and isoquinoline alkaloid biosynthesis may play important roles in soybean's defense against the stress caused by bean pyralid larvae. According to conjoint analysis of the miRNA/mRNA, a total of 20 differentially expressed miRNAs were negatively correlated with 26 differentially expressed target genes. The qRT-PCR analysis verified that the small RNA sequencing results were credible. According to the analyses of the differentially expressed miRNAs, we speculated that miRNAs are more likely to play key roles in the resistance to insects. Gma-miR156q, Gma-miR166u, Gma-miR166b, Gma-miR166j-3p, Gma-miR319d, Gma-miR394a-3p, Gma-miR396e, and so on-as well as their negatively regulated differentially expressed target genes-may be involved in the regulation of soybean resistance to bean pyralid larvae. These results laid a foundation for further in-depth research regarding the action mechanisms of insect resistance.
Collapse
Affiliation(s)
- Weiying Zeng
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Zudong Sun
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Zhenguang Lai
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Shouzhen Yang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Huaizhu Chen
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Xinghai Yang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Jiangrong Tao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Xiangmin Tang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| |
Collapse
|
47
|
Ravichandran S, Ragupathy R, Edwards T, Domaratzki M, Cloutier S. MicroRNA-guided regulation of heat stress response in wheat. BMC Genomics 2019; 20:488. [PMID: 31195958 PMCID: PMC6567507 DOI: 10.1186/s12864-019-5799-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022] Open
Abstract
Background With rising global temperature, understanding plants’ adaptation to heat stress has implications in plant breeding. MicroRNAs (miRNAs) are small, non-coding, regulatory RNAs guiding gene expression at the post-transcriptional level. In this study, small RNAs and the degradome (parallel analysis of RNA ends) of leaf tissues collected from control and heat-stressed wheat plants immediately at the end of the stress period and 1 and 4 days later were analysed. Results Sequencing of 24 small RNA libraries produced 55.2 M reads while 404 M reads were obtained from the corresponding 24 PARE libraries. From these, 202 miRNAs were ascertained, of which mature miRNA evidence was obtained for 104 and 36 were found to be differentially expressed after heat stress. The PARE analysis identified 589 transcripts targeted by 84 of the ascertained miRNAs. PARE sequencing validated the targets of the conserved members of miRNA156, miR166 and miR393 families as squamosa promoter-binding-like, homeobox leucine-zipper and transport inhibitor responsive proteins, respectively. Heat stress responsive miRNA targeted superoxide dismutases and an array of homeobox leucine-zipper proteins, F-box proteins and protein kinases. Query of miRNA targets to interactome databases revealed a predominant association of stress responses such as signalling, antioxidant activity and ubiquitination to superoxide dismutases, F-box proteins, pentatricopeptide repeat-containing proteins and mitochondrial transcription termination factor-like proteins. Conclusion The interlaced data set generated in this study identified and validated heat stress regulated miRNAs and their target genes associated with thermotolerance. Such accurate identification and validation of miRNAs and their target genes are essential to develop novel regulatory gene-based breeding strategies. Electronic supplementary material The online version of this article (10.1186/s12864-019-5799-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sridhar Ravichandran
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada
| | - Raja Ragupathy
- Plant Science Department, University of Manitoba, Winnipeg, Manitoba, Canada.,Present address: Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta, Canada
| | - Tara Edwards
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada
| | - Michael Domaratzki
- Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sylvie Cloutier
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada.
| |
Collapse
|
48
|
Wang X, Yu G, Zhao J, Cui N, Yu Y, Fan H. Functional Identification of Corynespora cassiicola-Responsive miRNAs and Their Targets in Cucumber. FRONTIERS IN PLANT SCIENCE 2019; 10:668. [PMID: 31214213 PMCID: PMC6554439 DOI: 10.3389/fpls.2019.00668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Target leaf spot (TLS), which is caused by Corynespora cassiicola (C. cassiicola), is one of the most important diseases in cucumber (Cucumis sativus L.). Our previous research identified several C. cassiicola-responsive miRNAs in cucumber by high-throughput sequencing, including two known miRNAs and two novel miRNAs. The target genes of these miRNAs were related to secondary metabolism. In this study, we verified the interaction between these miRNAs and target genes by histochemical staining and fluorescence quantitative assays of GUS. We transiently expressed the candidate miRNAs and target genes in cucumber cotyledons to investigate the resistance to C. cassiicola. Transient expression of miR164d, miR396b, Novel-miR1, and Novel-miR7 in cucumber resulted in decreased resistance to C. cassiicola, while transient expression of NAC (inhibited by miR164d), APE (inhibited by miR396b), 4CL (inhibited by Novel-miR1), and PAL (inhibited by Novel-miR7) led to enhanced resistance to C. cassiicola. In addition, overexpression of 4CL and PAL downregulated lignin synthesis, and overexpression of Novel-miR1 and Novel-miR7 also downregulated lignin synthesis, indicating that the regulation of 4CL and PAL by Novel-miR1 and Novel-miR7 could affect lignin content. The tobacco rattle virus (TRV) induced short tandem target mimic (STTM)-miRNA silencing vector was successfully constructed, and target miRNAs were successfully silenced. The identification of disease resistance and lignin content showed that silencing candidate miRNAs could improve cucumber resistance to C. cassiicola.
Collapse
Affiliation(s)
- Xiangyu Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Guangchao Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Junyue Zhao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Na Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
49
|
Zhao T, Xu X, Wang M, Li C, Li C, Zhao R, Zhu S, He Q, Chen J. Identification and profiling of upland cotton microRNAs at fiber initiation stage under exogenous IAA application. BMC Genomics 2019; 20:421. [PMID: 31138116 PMCID: PMC6537205 DOI: 10.1186/s12864-019-5760-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 05/02/2019] [Indexed: 12/18/2022] Open
Abstract
Background Cotton is the most essential textile crop worldwide, and phytohormones are critical for cotton fiber development. One example is the role of auxin in fiber initiation, but we know little molecular basis. MicroRNAs (miRNAs) have a significant function in cotton development; nevertheless their role in fiber initiation remains unclear. Here, exogenous IAA was applied to cotton plant before anthesis. Utilizing small RNA sequencing, the mechanism underlying miRNA-mediated regulation of fiber initiation under exogenous IAA treatment was investigated. Results With exogenous IAA application, the endogenous IAA and GA contents of IAA treated (IT) ovules were higher than control (CK) ovules at the fiber initiation stage, while endogenous ABA content was lower in IT than CK. Using scanning electron microscopy, we found the fiber number and size were significantly promoted in IT at 0 DPA. Fiber quality analysis showed that fiber length, uniformity, strength, elongation, and micronaire of IT were higher than CK, though not statistically significant, while lint percent was significantly higher in IT. We generated six small RNA libraries using − 3, 0, and 3 DPA ovules of IT and CK, and identified 58 known miRNAs and 83 novel miRNAs together with the target genes. The differential expressed miRNAs number between IT and CK at − 3, 0, 3 DPA was 34, 16 and 24, respectively. Gene ontology and KEGG pathway enrichment analyses for the target genes of the miRNAs expressed in a differential manner showed that they were significantly enriched in 30 terms and 8 pathways. QRT-PCR for those identified miRNAs and the target genes related to phytohormones and fiber development was performed, and results suggested a potential role of these miRNAs in fiber initiation. Conclusions The exogenous IAA application affected the relative phytohormone contents in ovule and promoted fiber initiation in cotton. Identification and profiling of miRNAs and their targets at the fiber initiation stage provided insights for miRNAs’ regulation function of fiber initiation. These findings not only shed light on the regulatory network of fiber growth but also offer clues for cotton fiber amelioration strategies in cotton. Electronic supplementary material The online version of this article (10.1186/s12864-019-5760-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tianlun Zhao
- Department of Agronomy, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Xiaojian Xu
- Department of Agronomy, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Min Wang
- Department of Agronomy, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Cheng Li
- Department of Agronomy, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Cong Li
- Department of Agronomy, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Rubing Zhao
- Department of Agronomy, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Shuijin Zhu
- Department of Agronomy, Zhejiang University, Zhejiang, 310058, Hangzhou, China
| | - Qiuling He
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, Zhejiang Sci-Tech University, Zhejiang, 310018, Hangzhou, China.
| | - Jinhong Chen
- Department of Agronomy, Zhejiang University, Zhejiang, 310058, Hangzhou, China.
| |
Collapse
|
50
|
Djami-Tchatchou AT, Dubery IA. miR393 regulation of lectin receptor-like kinases associated with LPS perception in Arabidopsis thaliana. Biochem Biophys Res Commun 2019; 513:88-92. [PMID: 30940349 DOI: 10.1016/j.bbrc.2019.03.170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 11/16/2022]
Abstract
microRNAs regulate dynamic aspects of innate immunity in Arabidopsis thaliana in response to lipopolysaccharides. Lectin-domain receptor-like kinases function as surveillance proteins and miR393 targets transcripts of an L-type LecRK (LECRK-V.7, At3g59740). This study investigated miR393 regulation of LecRLKs associated with LPS perception. Following pre-treatment of wild type -, miR393 ab double mutant - and miR393 overexpressor plants with LPS, the expression of miR393 and two other LecRLK genes (G-type lectin S-receptor-like protein kinases, SD1-13 (At1g11330) and SD1-29 (At1g61380) were evaluated. Overexpression and repression of miR393 respectively suppressed and induced transcripts of the LecRLK genes. The results indicate that miR393 regulates the three LecRLKs following perception of bacterial LPS, in support of immunity and basal resistance.
Collapse
Affiliation(s)
- Arnaud T Djami-Tchatchou
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa.
| | - Ian A Dubery
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa.
| |
Collapse
|