1
|
Mohanta S, Saha S, Das NK, Swain N, Kumar S, Goswami C. Tubulin interaction at tubulin-binding sequence 1 (TBS1) is required for proper surface expression and TRPV1 channel activity. Life Sci 2024; 357:123070. [PMID: 39332490 DOI: 10.1016/j.lfs.2024.123070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/01/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
TRPV1, a polymodal and nonselective cation channel has unique gating mechanisms which is regulated by supramolecular complexes at the plasma membrane formed with membrane proteins, lipids and kinase pathways. Crosstalk between microtubule cytoskeleton with TRPV1 at various level has been established. Previously we demonstrated that the positively-charged residues present at specific tubulin-binding stretch sequences (i.e. TBS1 and TBS2, AA 710-730 and 770-797 respectively) located at the C-terminus of TRPV1 are crucial for tubulin interaction and such sequences have evolutionary origin. The nature of TRPV1-tubulin complex and its functional importance remain poorly understood. Here, we made several mutations in the TBS1 and TBS2 regions and characterized such mutants. Though these mutations reduce tubulin interaction drastically, a low and basal-level of tubulin interaction remains with these mutants. Substitution of positively-charged residues (Lys and Arg) to Ala in the TBS1, but not in TBS2 region results in reduced ligand-sensitivity. Such ligand-sensitivity is altered in response to Taxol or Nocodazole. We suggest that tubulin interaction at the TBS1 region favours channel opening while interaction in TBS2 favours channel closure. We demonstrate for the first time the functional significance of TRPV1-tubulin complex and endorse microtubule dynamics as a parameter that can alter TRPV1 channel functions. These findings can be relevant for several physiological functions and also in the context of chemotherapy-induced neuropathic pain caused by various microtubule stabilizing chemotherapeutic drugs. Thus, this characterization may indicate TRPV1 as a potential therapeutic target relevant for chemotherapeutic drug-induced peripheral neuropathies, neurodegeneration and other neurological disorders.
Collapse
Affiliation(s)
- Sushama Mohanta
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Somdatta Saha
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Nilesh Kumar Das
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Nirlipta Swain
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha 752050, India
| | - Satish Kumar
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
2
|
Briânis RC, Andreotti JP, Moreira FA, Iglesias LP. Interplay between endocannabinoid and endovanilloid mechanisms in fear conditioning. Acta Neuropsychiatr 2024; 36:255-264. [PMID: 37982167 DOI: 10.1017/neu.2023.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
OBJECTIVE The transient receptor potential cation channel, subfamily V (vanilloid), member 1 (TRPV1) mediates pain perception to thermal and chemical stimuli in peripheral neurons. The cannabinoid receptor type 1 (CB1), on the other hand, promotes analgesia in both the periphery and the brain. TRPV1 and CB1 have also been implicated in learned fear, which involves the association of a previously neutral stimulus with an aversive event. In this review, we elaborate on the interplay between CB1 receptors and TRPV1 channels in learned fear processing. METHODS We conducted a PubMed search for a narrative review on endocannabinoid and endovanilloid mechanisms on fear conditioning. RESULTS TRPV1 and CB1 receptors are activated by a common endogenous agonist, arachidonoyl ethanolamide (anandamide), Moreover, they are expressed in common neuroanatomical structures and recruit converging cellular pathways, acting in concert to modulate fear learning. However, evidence suggests that TRPV1 exerts a facilitatory role, whereas CB1 restrains fear responses. CONCLUSION TRPV1 and CB1 seem to mediate protective and aversive roles of anandamide, respectively. However, more research is needed to achieve a better understanding of how these receptors interact to modulate fear learning.
Collapse
Affiliation(s)
- Rayssa C Briânis
- Department of Pharmacology, Institute of Biological Sciences; Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Julia P Andreotti
- Department of Pharmacology, Institute of Biological Sciences; Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabrício A Moreira
- Department of Pharmacology, Institute of Biological Sciences; Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lia P Iglesias
- Department of Pharmacology, Institute of Biological Sciences; Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
3
|
Sharopov BR, Philyppov IB, Yeliashov SI, Sotkis GV, Danshyna AO, Falyush OA, Shuba YM. Contribution of transient receptor potential vanilloid 1 (TRPV1) channel to cholinergic contraction of rat bladder smooth muscle. J Physiol 2024; 602:3693-3713. [PMID: 38970617 DOI: 10.1113/jp285514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 06/13/2024] [Indexed: 07/08/2024] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a calcium-permeable ion channel that is gated by the pungent constituent of red chili pepper, capsaicin, and by related chemicals from the group of vanilloids, in addition to noxious heat. It is expressed mostly in sensory neurons to act as a detector of painful stimuli produced by pungent chemicals and high temperatures. Although TRPV1 is also found outside the sensory nervous system, its expression and function in the bladder detrusor smooth muscle (DSM) remain controversial. Here, by using Ca2+ imaging and patch clamp on isolated rat DSM cells, in addition to tensiometry on multicellular DSM strips, we show that TRPV1 is expressed functionally in only a fraction of DSM cells, in which it acts as an endoplasmic reticulum Ca2+-release channel responsible for the capsaicin-activated [Ca2+]i rise. Carbachol-stimulated contractions of multicellular DSM strips contain a TRPV1-dependent component, which is negligible in the circular DSM but reaches ≤50% in the longitudinal DSM. Activation of TRPV1 in rat DSM during muscarinic cholinergic stimulation is ensured by phospholipase A2-catalysed derivation of arachidonic acid and its conversion by lipoxygenases to eicosanoids, which act as endogenous TRPV1 agonists. Immunofluorescence detection of TRPV1 protein in bladder sections and isolated DSM cells confirmed both its preferential expression in the longitudinal DSM sublayer and its targeting to the endoplasmic reticulum. We conclude that TRPV1 is an essential contributor to the cholinergic contraction of bladder longitudinal DSM, which might be important for producing spatial and/or temporal anisotropy of bladder wall deformation in different regions during parasympathetic stimulation. KEY POINTS: The transient receptor potential vanilloid 1 (TRPV1) heat/capsaicin receptor/channel is localized in the endoplasmic reticulum membrane of detrusor smooth muscle (DSM) cells of the rat bladder, operating as a calcium-release channel. Isolated DSM cells are separated into two nearly equal groups, within which the cells either show or do not show TRPV1-dependent [Ca2+]i rise. Carbachol-stimulated, muscarinic ACh receptor-mediated contractions of multicellular DSM strips contain a TRPV1-dependent component. This component is negligible in the circular DSM but reaches ≤50% in longitudinal DSM. Activation of TRPV1 in rat DSM during cholinergic stimulation involves phospholipase A2-catalysed derivation of arachidonic acid and its conversion by lipoxygenases to eicosanoids, which act as endogenous TRPV1 agonists.
Collapse
Affiliation(s)
- Bizhan R Sharopov
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Igor B Philyppov
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Semen I Yeliashov
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ganna V Sotkis
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Anastasiia O Danshyna
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Oksana A Falyush
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yaroslav M Shuba
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
4
|
Rumpa MM, Maier C. TRPV1-Dependent Antiproliferative Activity of Dioecious Maclura pomifera Extracts in Estrogen Receptor-Positive Breast Cancer Cell Lines Involves Multiple Apoptotic Pathways. Int J Mol Sci 2024; 25:5258. [PMID: 38791297 PMCID: PMC11120667 DOI: 10.3390/ijms25105258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Globally, breast cancer is a significant cause of mortality. Recent research focused on identifying compounds regulating the transient receptor potential vanilloid 1 (TRPV1) ion channel activity for the possibility of developing cancer therapeutics. In this study, the antiproliferative properties and mechanisms of action through TRPV1 of Maclura pomifera, a dioecious tree native to the south-central USA, have been investigated. Male and female extracts of spring branch tissues and leaves (500 µg/mL) significantly reduced the viability of MCF-7 and T47D cells by 75-80%. M. pomifera extracts induced apoptosis by triggering intracellular calcium overload via TRPV1. Blocking TRPV1 with the capsazepine antagonist and pretreating cells with the BAPTA-AM chelator boosted cell viability, revealing that M. pomifera phytochemicals activate TRPV1. Both male and female M. pomifera extracts initiated apoptosis through multiple pathways, the mitochondrial, ERK-induced, and endoplasmic reticulum-stress-mediated apoptotic pathways, demonstrated by the expression of activated caspase 3, caspase 9, caspase 8, FADD, FAS, ATF4, and CHOP, the overexpression of phosphorylated PERK and ERK proteins, and the reduction of BCL-2 levels. In addition, AKT and pAKT protein expressions were reduced in female M. pomifera-treated cells, revealing that female plant extract also inhibits PI3K/Akt signaling pathways. These results suggest that phytochemicals in M. pomifera extracts could be promising for developing breast cancer therapeutics.
Collapse
Affiliation(s)
| | - Camelia Maier
- Division of Biology, School of the Sciences, Texas Woman’s University, Denton, TX 76204, USA;
| |
Collapse
|
5
|
Ye W, Lui ST, Zhao Q, Wong YM, Cheng A, Sung HHY, Williams ID, Qian PY, Huang P. Novel marine natural products as effective TRPV1 channel blockers. Int J Biol Macromol 2023; 253:127136. [PMID: 37776932 DOI: 10.1016/j.ijbiomac.2023.127136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Chronic pain management poses a formidable challenge to healthcare, exacerbated by current analgesic options' limitations and adverse effects. Transient receptor potential vanilloid 1 (TRPV1), a non-selective cation channel, has emerged as a promising target for novel analgesics. However, safety and tolerability concerns have constrained the development of TRPV1 modulators. In this study, we explored marine-derived natural products as a source of potential TRPV1 modulators using high-throughput dye-uptake assays. We identified chrexanthomycins, a family of hexacyclic xanthones, exhibited potent TRPV1 inhibitory effects, with compounds cC and cF demonstrating the most significant activity. High-resolution patch-clamp assays confirmed the direct action of these compounds on the TRPV1 channel. Furthermore, in vivo assays revealed that cC and cF effectively suppressed capsaicin-induced pain sensation in mice, comparable to the known TRPV1 inhibitor, capsazepine. Structural-activity relationship analysis highlighted the importance of specific functional groups in modulating TRPV1 activity. Our findings underscore the therapeutic potential of chrexanthomycins and pave the way for further investigations into marine-derived TRPV1 modulators for pain management.
Collapse
Affiliation(s)
- Wenkang Ye
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China; SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen 518060, China
| | - Sin Tung Lui
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qirui Zhao
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yuk Ming Wong
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Aifang Cheng
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Herman H-Y Sung
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ian D Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Pingbo Huang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China; Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
6
|
Kolesova YS, Stroylova YY, Maleeva EE, Moysenovich AM, Pozdyshev DV, Muronetz VI, Andreev YA. Modulation of TRPV1 and TRPA1 Channels Function by Sea Anemones' Peptides Enhances the Viability of SH-SY5Y Cell Model of Parkinson's Disease. Int J Mol Sci 2023; 25:368. [PMID: 38203538 PMCID: PMC10779363 DOI: 10.3390/ijms25010368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Cellular dysfunction during Parkinson's disease leads to neuroinflammation in various brain regions, inducing neuronal death and contributing to the progression of the disease. Different ion channels may influence the process of neurodegeneration. The peptides Ms 9a-1 and APHC3 can modulate the function of TRPA1 and TRPV1 channels, and we evaluated their cytoprotective effects in differentiated to dopaminergic neuron-like SH-SY5Y cells. We used the stable neuroblastoma cell lines SH-SY5Y, producing wild-type alpha-synuclein and its mutant A53T, which are prone to accumulation of thioflavin-S-positive aggregates. We analyzed the viability of cells, as well as the mRNA expression levels of TRPA1, TRPV1, ASIC1a channels, alpha-synuclein, and tyrosine hydroxylase after differentiation of these cell lines using RT-PCR. Overexpression of alpha-synuclein showed a neuroprotective effect and was accompanied by a reduction of tyrosine hydroxylase expression. A mutant alpha-synuclein A53T significantly increased the expression of the pro-apoptotic protein BAX and made cells more susceptible to apoptosis. Generally, overexpression of alpha-synuclein could be a model for the early stages of PD, while expression of mutant alpha-synuclein A53T mimics a genetic variant of PD. The peptides Ms 9a-1 and APHC3 significantly reduced the susceptibility to apoptosis of all cell lines but differentially influenced the expression of the genes of interest. Therefore, these modulators of TRPA1 and TRPV1 have the potential for the development of new therapeutic agents for neurodegenerative disease treatment.
Collapse
Affiliation(s)
- Yuliya S. Kolesova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (Y.S.K.); (E.E.M.); (A.M.M.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Yulia Y. Stroylova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia (V.I.M.)
| | - Ekaterina E. Maleeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (Y.S.K.); (E.E.M.); (A.M.M.)
| | - Anastasia M. Moysenovich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (Y.S.K.); (E.E.M.); (A.M.M.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Denis V. Pozdyshev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia (V.I.M.)
| | - Vladimir I. Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia (V.I.M.)
| | - Yaroslav A. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (Y.S.K.); (E.E.M.); (A.M.M.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| |
Collapse
|
7
|
Deng R, Yu S, Ruan X, Liu H, Zong G, Cheng P, Tao R, Chen W, Wang A, Zhao Y, Wei Z, Lu Y. Capsaicin orchestrates metastasis in gastric cancer via modulating expression of TRPV1 channels and driving gut microbiota disorder. Cell Commun Signal 2023; 21:364. [PMID: 38129926 PMCID: PMC10734064 DOI: 10.1186/s12964-023-01265-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/10/2023] [Indexed: 12/23/2023] Open
Abstract
The association between capsaicin, the major natural pungent compound of chili peppers, and gastric cancer progression has engendered conflicting findings. In this work, we sought to explore the character of a high capsaicin diet in gastric cancer metastasis and its possible mechanism. The impact of high capsaicin consumption on gastric cancer metastasis was investigated in vivo (xenograft mouse and zebrafish models) and in vitro (biochemical and molecular assays). It was demonstrated that high diet of capsaicin gave rise to accelerate tumor metastasis, which was partially mediated by elevating the expression of transient receptor potential vanilloid 1 (TRPV1) in gastric cancer cells. Importantly, we found that genetic depletion of TRPV1 could reduce gastric cancer metastasis by diminishing the motility of tumor cells in vitro, but acted poorly in xenograft mouse model. Considering the distribution of capsaicin in vivo, 16S rRNA sequencing and fecal microbiota transplantation (FMT) were used to appraise whether the gut microbiota involved in the high capsaicin diet induced metastasis. It was demonstrated that the level of Firmicutes and Clostridiales was expressively boosted following the high consumption of capsaicin. This microbial shift contributed to the increased peripheral 5-hydroxytryptamine (5-HT) levels, yielding the aggravated metastatic burden. Collectively, our findings highlighted the potential risk of high capsaicin diet in promoting gastric cancer metastasis by virtue of modulating TRPV1 expression and gut microbiota composition, indicating the importance of controlled consumption of chili peppers for patients with gastric cancer. Video Abstract.
Collapse
Affiliation(s)
- Rui Deng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Suyun Yu
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xingqiu Ruan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Red Cross Hospital of Yulin City, Yulin, 537000, China
| | - Huan Liu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Gangfan Zong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Peng Cheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ruizhi Tao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yang Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
8
|
Xu S, Hao K, Xiong Y, Xu R, Huang H, Wang H. Capsaicin alleviates neuronal apoptosis and schizophrenia-like behavioral abnormalities induced by early life stress. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:77. [PMID: 37935716 PMCID: PMC10630396 DOI: 10.1038/s41537-023-00406-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Early life stress (ELS) is associated with the later development of schizophrenia. In the rodent model, the maternal separation (MS) stress may induce neuronal apoptosis and schizophrenia-like behavior. Although the TRPV1 agonist capsaicin (CAP) has been reported to reduce apoptosis in the central nervous system, its effect in MS models is unclear. Twenty-four hours of MS of Wistar rat pups on postnatal day (PND9) was used as an ELS. Male rats in the adult stage were the subjects of the study. CAP (1 mg/kg/day) intraperitoneal injection pretreatment was undertaken before behavioral tests for 1 week and continued during the tests. Behavioral tests included open field, novel object recognition, Barnes maze test, and pre-pulse inhibition (PPI) test. MS rats showed behavioral deficits and cognitive impairments mimicking symptoms of schizophrenia compared with controls. MS decreased the expression of TRPV1 in the frontal association cortex (FrA) and in the hippocampal CA1, CA3, and dentate gyrus (DG) regions compared with the control group resulting in the increase of pro-apoptotic proteins (BAX, Caspase3, Cleaved-Caspase3) and the decrease of anti-apoptotic proteins (Bcl-2). The number of NeuN++TUNEL+ cells increased in the MS group in the FrA, CA1, CA3, and DG compared with the control group. Neuronal and behavioral impairments of MS were reversed by treatment with CAP. Exposure to ELS may lead to increased neuronal apoptosis and impaired cognitive function with decreased TRPV1 expression in the prefrontal cortex and hippocampus in adulthood. Sustained low-dose administration of CAP improved neuronal apoptosis and cognitive function. Our results provide evidence for future clinical trials of chili peppers or CAP as dietary supplements for the reversal treatment of schizophrenia.
Collapse
Affiliation(s)
- Shilin Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Keke Hao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ying Xiong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Huan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
9
|
Qu Y, Fu Y, Liu Y, Liu C, Xu B, Zhang Q, Jiang P. The role of TRPV1 in RA pathogenesis: worthy of attention. Front Immunol 2023; 14:1232013. [PMID: 37744324 PMCID: PMC10514908 DOI: 10.3389/fimmu.2023.1232013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Transient receptor potential cation channel subfamily V member 1 (TRPV1) is a Ca2+permeable, non-selective cation channel that is found primarily in sensory nerve fibres. Previous studies focused on pain transmission. However, recent studies have found that the TRPV1 channel, in addition to being associated with pain, also plays a role in immune regulation and their dysregulation frequently affects the development of rheumatoid arthritis (RA). A thorough understanding of the mechanism will facilitate the design of new TRPV1-targeted drugs and improve the clinical efficacy of RA. Here, we provide an updated and comprehensive overview of how the TRPV1 channel intrinsically regulates neuronal and immune cells, and how alterations in the TRPV1 channel in synoviocytes or chondrocytes extrinsically affect angiogenesis and bone destruction. Rapid progress has been made in research targeting TRPV1 for the treatment of inflammatory arthritis, but there is still much-uncharted territory regarding the therapeutic role of RA. We present a strategy for targeting the TRPV1 channel in RA therapy, summarising the difficulties and promising advances in current research, with the aim of better understanding the role of the TRPV1 channel in RA pathology, which could accelerate the development of TRPV1-targeted modulators for the design and development of more effective RA therapies.
Collapse
Affiliation(s)
- Yuan Qu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Fu
- Institute of Chinese Orthopedics and Traumatology, Shandong Wendeng Osteopathic Hospital, Weihai, China
| | - Yuan Liu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Xu
- Department of Rheumatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Zhang
- Science and Technology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Jiang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Chu Y, Zhang H, Yang M, Yu R. Molecular Dynamic Simulations Reveal the Activation Mechanisms of Oxidation-Induced TRPV1. Int J Mol Sci 2023; 24:ijms24119553. [PMID: 37298504 DOI: 10.3390/ijms24119553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1), a non-selective cation channel, can be directly activated by oxidants through cysteine modification. However, the patterns of cysteine modification are unclear. Structural analysis showed that the free sulfhydryl groups of residue pairs C387 and C391 were potentially oxidized to form a disulfide bond, which is expected to be closely related to the redox sensing of TRPV1. To investigate if and how the redox states of C387 and C391 activate TRPV1, homology modeling and accelerated molecular dynamic simulations were performed. The simulation revealed the conformational transfer during the opening or closing of the channel. The formation of a disulfide bond between C387 and C391 leads to the motion of pre-S1, which further propagates conformational change to TRP, S6, and the pore helix from near to far. Residues D389, K426, E685-Q691, T642, and T671 contribute to the hydrogen bond transfer and play essential roles in the opening of the channel. The reduced TRPV1 was inactivated mainly by stabilizing the closed conformation. Our study elucidated the redox state of C387-C391 mediated long-range allostery of TRPV1, which provided new insights into the activation mechanism of TRPV1 and is crucial for making significant advances in the treatment of human diseases.
Collapse
Affiliation(s)
- Yanyan Chu
- Marine Biomedical Research Institute of Qingdao, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China
| | - Huanhuan Zhang
- Marine Biomedical Research Institute of Qingdao, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Mengke Yang
- Marine Biomedical Research Institute of Qingdao, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Rilei Yu
- Marine Biomedical Research Institute of Qingdao, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Innovation Platform of Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266100, China
| |
Collapse
|
11
|
Ruiz-Cantero MC, Cortés-Montero E, Jain A, Montilla-García Á, Bravo-Caparrós I, Shim J, Sánchez-Blázquez P, Woolf CJ, Baeyens JM, Cobos EJ. The sigma-1 receptor curtails endogenous opioid analgesia during sensitization of TRPV1 nociceptors. Br J Pharmacol 2023; 180:1148-1167. [PMID: 36478100 DOI: 10.1111/bph.16003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Peripheral sensitization contributes to pathological pain. While prostaglandin E2 (PGE2) and nerve growth factor (NGF) sensitize peptidergic C-nociceptors (TRPV1+), glial cell line-derived neurotrophic factor (GDNF) sensitizes non-peptidergic C-neurons (IB4+). The sigma-1 receptor (sigma-1R) is a Ca2+ -sensing chaperone known to modulate opoid analgesia. This receptor binds both to TRPV1 and the μ opioid receptor, although the functional repercussions of these physical interactions in peripheral sensitization are unknown. EXPERIMENTAL APPROACH We tested the effects of sigma-1 antagonism on PGE2-, NGF-, and GDNF-induced mechanical and heat hyperalgesia in mice. We used immunohistochemistry to determine the presence of endomorphin-2, an endogenous μ receptor agonist, on dorsal root ganglion (DRG) neurons. Recombinant proteins were used to study the interactions between sigma-1R, μ- receptor, and TRPV1. We used calcium imaging to study the effects of sigma-1 antagonism on PGE2-induced sensitization of TRPV1+ nociceptors. KEY RESULTS Sigma1 antagonists reversed PGE2- and NGF-induced hyperalgesia but not GDNF-induced hyperalgesia. Endomorphin-2 was detected on TRPV1+ but not on IB4+ neurons. Peripheral opioid receptor antagonism by naloxone methiodide or administration of an anti-endomorphin-2 antibody to a sensitized paw reversed the antihyperalgesia induced by sigma-1 antagonists. Sigma-1 antagonism transfers sigma-1R from TRPV1 to μ receptors, suggesting that sigma-1R participate in TRPV1-μ receptor crosstalk. Moreover, sigma-1 antagonism reversed, in a naloxone-sensitive manner, PGE2-induced sensitization of DRG neurons to the calcium flux elicited by capsaicin, the prototypic TRPV1 agonist. CONCLUSION AND IMPLICATIONS Sigma-1 antagonism harnesses endogenous opioids produced by TRPV1+ neurons to reduce hyperalgesia by increasing μ receptor activity.
Collapse
Affiliation(s)
- M Carmen Ruiz-Cantero
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain.,Biosanitary Research Institute ibs. GRANADA, Granada, Spain
| | - Elsa Cortés-Montero
- Department of Translational Neurosciences, Neuropharmacology, Cajal Institute, CSIC, Madrid, Spain
| | - Aakanksha Jain
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Ángeles Montilla-García
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
| | - Inmaculada Bravo-Caparrós
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
| | - Jaehoon Shim
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Pilar Sánchez-Blázquez
- Department of Translational Neurosciences, Neuropharmacology, Cajal Institute, CSIC, Madrid, Spain
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - José M Baeyens
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain.,Biosanitary Research Institute ibs. GRANADA, Granada, Spain
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain.,Biosanitary Research Institute ibs. GRANADA, Granada, Spain.,Teófilo Hernando Institute for Drug Discovery, Madrid, Spain
| |
Collapse
|
12
|
Abdalla SS, Harb AA, Almasri IM, Bustanji YK. The interaction of TRPV1 and lipids: Insights into lipid metabolism. Front Physiol 2022; 13:1066023. [PMID: 36589466 PMCID: PMC9797668 DOI: 10.3389/fphys.2022.1066023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1), a non-selective ligand-gated cation channel with high permeability for Ca2+, has received considerable attention as potential therapeutic target for the treatment of several disorders including pain, inflammation, and hyperlipidemia. In particular, TRPV1 regulates lipid metabolism by mechanisms that are not completely understood. Interestingly, TRPV1 and lipids regulate each other in a reciprocal and complex manner. This review surveyed the recent literature dealing with the role of TRPV1 in the hyperlipidemia-associated metabolic syndrome. Besides TRPV1 structure, molecular mechanisms underlying the regulatory effect of TRPV1 on lipid metabolism such as the involvement of uncoupling proteins (UCPs), ATP-binding cassette (ABC) transporters, peroxisome proliferation-activated receptors (PPAR), sterol responsive element binding protein (SREBP), and hypoxia have been discussed. Additionally, this review extends our understanding of the lipid-dependent modulation of TRPV1 activity through affecting both the gating and the expression of TRPV1. The regulatory role of different classes of lipids such as phosphatidylinositol (PI), cholesterol, estrogen, and oleoylethanolamide (OEA), on TRPV1 has also been addressed.
Collapse
Affiliation(s)
- Shtaywy S. Abdalla
- Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan,*Correspondence: Shtaywy S. Abdalla,
| | - Amani A. Harb
- Department of Basic Sciences, Faculty of Arts and Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Ihab M. Almasri
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Gaza, Palestine
| | - Yasser K. Bustanji
- Department of Biopharmaceuticals and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| |
Collapse
|
13
|
Zhou M, Li B, Li N, Li M, Xing C. Regulation of Ca 2+ for Cancer Cell Apoptosis through Photothermal Conjugated Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:2834-2842. [PMID: 35648094 DOI: 10.1021/acsabm.2c00236] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ca2+ overload is caused by the abnormal accumulation of Ca2+, which is a potential therapeutic strategy for inhibiting tumor growth. However, due to the limited intracellular Ca2+ concentration, its anticancer effect is non-significant. Herein, near-infrared (NIR)-responsive nanoparticles NPs-PCa (DPPC-DSPE-PEG2000-NH2@PDPP@CaO2@DOX) were designed and prepared to achieve photothermal trigger of Ca2+ release, thereby increasing intracellular Ca2+ content. Furthermore, the nanoparticles convert light to heat to activate the transient receptor potential cation channel subfamily V member 1 (TRPV1) ion channels, allowing external Ca2+ to flow into the cells, further increasing the Ca2+ concentration. NPs-PCa nanoparticles overcome the limitation of insufficient concentration by increasing Ca2+ in both internal and external approaches. Meanwhile, an imbalance of intracellular Ca2+ induces mitochondrial dysfunction and ultimately results in cancer cell death. This study provides an effective strategy for inhibiting breast cancer tumor growth by regulating Ca2+ concentration.
Collapse
Affiliation(s)
- Mei Zhou
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Boying Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ning Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Mengying Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Chengfen Xing
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China.,School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
14
|
Gallic Acid Inhibits Mesaconitine-Activated TRPV1-Channel-Induced Cardiotoxicity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5731372. [PMID: 35463061 PMCID: PMC9020955 DOI: 10.1155/2022/5731372] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/29/2022] [Indexed: 01/17/2023]
Abstract
Aconiti Kusnezoffii Radix (Caowu) is often combined or processed with Chebulae Fructus (Hezi) to achieve attenuation purposes in Mongolian medicine. Mesaconitine (MA), a main bioactive ingredient of Caowu, is also famous for its high cardiotoxicity while exerting good anti-inflammatory and analgesic properties. Gallic acid (GA), one of the leading chemical components in Hezi, possesses cardiac protection. This study aimed to clarify the detoxification effects of GA from Hezi on MA-induced cardiotoxicity and whether the detoxification mechanism is related to the TRPV1 channel. Cell viability was determined by methyl thiazol tetrazolium (MTT), and lactate dehydrogenase (LDH) leakage rate was determined by ELISA. Hoechst 33258, JC-1, DCFH-DA, and Fluo-3 AM staining were conducted to detect apoptosis, mitochondrial membrane potential, reactive oxygen species (ROS), and Ca2+ respectively; TRPV1 channel current was recorded by whole-cell patch-clamp technology to observe the effect of GA and MA alone or in combination on TRPV1 channel. The results showed that GA exhibited pronounced detoxification effects on MA-induced cardiotoxicity. GA significantly inhibited the MA-induced decrease in cell viability; suppressed the MA-induced LDH leakage rate, apoptosis, and the release of ROS and Ca2+; and alleviated the reduction of mitochondrial membrane potential. We found that MA-induced cardiotoxicity was significantly attenuated in H9c2 cells pretreated with the TRPV1 antagonist BCTC. In the whole-cell patch-clamp experiment, the TRPV1 channel current increase was caused by the GA and MA treatment, whereas it was reduced by the cotreatment of GA and MA. Our data demonstrate that GA in Hezi can reduce MA-induced cardiotoxicity by inhibiting intracellular Ca2+ influx, restoring mitochondrial membrane potential, and reducing apoptosis. The detoxification mechanism may be related to the desensitization of the TRPV1 channel by the combined application of MA and GA.
Collapse
|
15
|
Xu Y, Zhao Y, Gao B. Role of TRPV1 in High Temperature-Induced Mitochondrial Biogenesis in Skeletal Muscle: A Mini Review. Front Cell Dev Biol 2022; 10:882578. [PMID: 35450292 PMCID: PMC9017999 DOI: 10.3389/fcell.2022.882578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a protein that is susceptible to cell environment temperature. High temperatures of 40–45°C can activate the TRPV1 channel. TRPV1 is highly expressed in skeletal muscle and located on the sarcoplasmic reticulum (SR). Therefore, TRPV1 activated by high-temperature stress releases Ca2+ from the SR to the cytoplasm. Cellular Ca2+ accumulation is a key event that enhances TRPV1 activity by directly binding to the N-terminus and C-terminus. Moreover, Ca2+ is the key messenger involved in regulating mitochondrial biogenesis in skeletal muscle. Long-term activation of TRPV1 may promote mitochondrial biogenesis in skeletal muscle through the Ca2+-CaMKII-p38 MAPK-PGC-1α signaling axis. The discovery of the TRPV1 channel highlights the potential mechanism for high-temperature stress improving muscle mitochondrial biogenesis. The appropriate hot stimulus in thermal environments might be beneficial to the muscular mitochondrial adaptation for aerobic capacity. However, the investigation of TRPV1 on mitochondrial biogenesis is at an early stage. Further investigations need to examine the role of TRPV1 in response to mitochondrial biogenesis in skeletal muscle induced by different thermal environments.
Collapse
Affiliation(s)
- Yixiao Xu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yongcai Zhao
- College of Social Sport and Health Sciences, Tianjin University of Sport, Tianjin, China
| | - Binghong Gao
- School of Physical Education and Training, Shanghai University of Sport, Shanghai, China
- *Correspondence: Binghong Gao,
| |
Collapse
|
16
|
Total Sesquiterpene Glycosides from Loquat Leaves Ameliorate HFD-Induced Insulin Resistance by Modulating IRS-1/GLUT4, TRPV1, and SIRT6/Nrf2 Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4706410. [PMID: 34745416 PMCID: PMC8566052 DOI: 10.1155/2021/4706410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/19/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022]
Abstract
Loquat (Eriobotrya japonica Lindl.), a subtropical fruit tree native to Asia, is not only known to be nutritive but also beneficial for the treatment of diabetes in the south of China. To expand its development, this study was undertaken concerning the potential therapeutic role of total sesquiterpene glycosides (TSGs) from loquat leaves in insulin resistance (IR), the major causative factor of type 2 diabetes mellitus (T2DM). Male C57BL/6 mice were fed on high-fat diet (HFD) to induce IR and then were given TSG by oral administration at 25 and 100 mg/kg/day, respectively. TSG notably improved metabolic parameters including body weight, serum glucose, and insulin levels and prevented hepatic injury. Moreover, inflammatory response and oxidative stress were found to be remarkably alleviated in IR mice with TSG supplement. Further research in liver of IR mice demonstrated that TSG repaired the signalings of insulin receptor substrate-1 (IRS-1)/glucose transporter member 4 (GLUT4) and AMP-activated protein kinase (AMPK), which improved glucose and lipid metabolism and prevented lipid accumulation in liver. It was also observed that TSG suppressed the expression of transient receptor potential vanilloid 1 (TRPV1), whereas the signaling pathway of sirtuin-6 (SIRT6)/nuclear factor erythroid 2-related factor 2 (Nrf2) was significantly promoted. Based on the results, the current study demonstrated that TSG from loquat leaves potentially ameliorated IR in vivo by enhancing IRS-1/GLUT4 signaling and AMPK activation and modulating TRPV1 and SIRT6/Nrf2 signaling pathways.
Collapse
|
17
|
Lou Y, Liu Y, Zhao J, Tian W, Xu N, Zang C, Que K. Activation of Transient Receptor Potential Ankyrin 1 and Vanilloid 1 Channels Promotes Odontogenic Differentiation of Human Dental Pulp Cells. J Endod 2021; 47:1409-1416. [PMID: 34126160 DOI: 10.1016/j.joen.2021.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/20/2021] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) are thermosensitive channels that play an important role in thermal sensation or tooth pain by regulating intracellular Ca2+ concentration that is essential for pulp tissue repair. The aim of this study was to evaluate the role of TRPA1 and TRPV1 channels in the odontogenic differentiation of human dental pulp cells (HDPCs). METHODS HDPCs were isolated from healthy human intact third molars and cultured in odontogenic differentiation medium. Gene and protein expression levels of TRPA1 and TRPV1 channels during the odontogenic differentiation of HDPCs were evaluated by real-time quantitative polymerase chain reaction and Western blot analysis. HDPCs were then treated with channel agonists or antagonists, and the expression levels of odontogenic markers dentin sialophosphoprotein (DSPP) and osteopontin (OPN) were examined. Alkaline phosphatase activity and alizarin red staining were also conducted to detect mineralization levels. RESULTS Consistent with the mineralization degree and DSPP and OPN expression, messenger RNA and protein expression of TRPA1 and TRPV1 channels was up-regulated during the odontogenic differentiation of HDPCs. The application of TRPA1 or TRPV1 agonists increased the mineralized nodules of alizarin red staining and alkaline phosphatase activity and up-regulated the messenger RNA and protein expression of DSPP and OPN, respectively, with the highest values reached on the seventh day (P < .05). On the contrary, the mineralization level and DSPP and OPN expression could be suppressed by using the antagonists of these 2 channels. CONCLUSIONS TRPA1 and TRPV1 channels not only showed up-regulated expression along with the odontogenic differentiation of HDPCs but also could affect the odontogenic differentiation by regulating intracellular Ca2+ concentration.
Collapse
Affiliation(s)
- Yaxin Lou
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin, China
| | - Yangqiu Liu
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin, China
| | - Jiange Zhao
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin, China
| | - Weiping Tian
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Na Xu
- Department of Paediatric Dentistry, Hospital of Stomatology, NanKai University, Tianjin, China
| | - Chengcheng Zang
- Department of Prosthodontics, College of Stomatology, Tianjin Medical University, Tianjin, China.
| | - Kehua Que
- Department of Endodontics, College of Stomatology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
18
|
Szabo I, Zoratti M, Biasutto L. Targeting mitochondrial ion channels for cancer therapy. Redox Biol 2021; 42:101846. [PMID: 33419703 PMCID: PMC8113036 DOI: 10.1016/j.redox.2020.101846] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Pharmacological targeting of mitochondrial ion channels is emerging as a promising approach to eliminate cancer cells; as most of these channels are differentially expressed and/or regulated in cancer cells in comparison to healthy ones, this strategy may selectively eliminate the former. Perturbation of ion fluxes across the outer and inner membranes is linked to alterations of redox state, membrane potential and bioenergetic efficiency. This leads to indirect modulation of oxidative phosphorylation, which is/may be fundamental for both cancer and cancer stem cell survival. Furthermore, given the crucial contribution of mitochondria to intrinsic apoptosis, modulation of their ion channels leading to cytochrome c release may be of great advantage in case of resistance to drugs triggering apoptotic events upstream of the mitochondrial phase. In the present review, we give an overview of the known mitochondrial ion channels and of their modulators capable of killing cancer cells. In addition, we discuss state-of-the-art strategies using mitochondriotropic drugs or peptide-based approaches allowing a more efficient and selective targeting of mitochondrial ion channel-linked events.
Collapse
Affiliation(s)
- Ildiko Szabo
- Department of Biology, University of Padova, Italy; CNR Institute of Neurosciences, Padova, Italy.
| | | | - Lucia Biasutto
- CNR Institute of Neurosciences, Padova, Italy; Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
19
|
Zhong W, Darmani NA. The HCN Channel Blocker ZD7288 Induces Emesis in the Least Shrew ( Cryptotis parva). Front Pharmacol 2021; 12:647021. [PMID: 33995059 PMCID: PMC8117105 DOI: 10.3389/fphar.2021.647021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/12/2021] [Indexed: 12/02/2022] Open
Abstract
Subtypes (1-4) of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are widely expressed in the central and peripheral nervous systems, as well as the cells of smooth muscles in many organs. They mainly serve to regulate cellular excitability in these tissues. The HCN channel blocker ZD7288 has been shown to reduce apomorphine-induced conditioned taste aversion on saccharin preference in rats suggesting potential antinausea/antiemetic effects. Currently, in the least shew model of emesis we find that ZD7288 induces vomiting in a dose-dependent manner, with maximal efficacies of 100% at 1 mg/kg (i.p.) and 83.3% at 10 µg (i.c.v.). HCN channel subtype (1-4) expression was assessed using immunohistochemistry in the least shrew brainstem dorsal vagal complex (DVC) containing the emetic nuclei (area postrema (AP), nucleus tractus solitarius and dorsal motor nucleus of the vagus). Highly enriched HCN1 and HCN4 subtypes are present in the AP. A 1 mg/kg (i.p.) dose of ZD7288 strongly evoked c-Fos expression and ERK1/2 phosphorylation in the shrew brainstem DVC, but not in the in the enteric nervous system in the jejunum, suggesting a central contribution to the evoked vomiting. The ZD7288-evoked c-Fos expression exclusively occurred in tryptophan hydroxylase 2-positive serotonin neurons of the dorsal vagal complex, indicating activation of serotonin neurons may contribute to ZD7288-induced vomiting. To reveal its mechanism(s) of emetic action, we evaluated the efficacy of diverse antiemetics against ZD7288-evoked vomiting including the antagonists/inhibitors of: ERK1/2 (U0126), L-type Ca2+ channel (nifedipine); store-operated Ca2+ entry (MRS 1845); T-type Ca2+ channel (Z944), IP3R (2-APB), RyR receptor (dantrolene); the serotoninergic type 3 receptor (palonosetron); neurokinin 1 receptor (netupitant), dopamine type 2 receptor (sulpride), and the transient receptor potential vanilloid 1 receptor agonist, resiniferatoxin. All tested antiemetics except sulpride attenuated ZD7288-evoked vomiting to varying degrees. In sum, ZD7288 has emetic potential mainly via central mechanisms, a process which involves Ca2+ signaling and several emetic receptors. HCN channel blockers have been reported to have emetic potential in the clinic since they are currently used/investigated as therapeutic candidates for cancer therapy related- or unrelated-heart failure, pain, and cognitive impairment.
Collapse
Affiliation(s)
| | - N. A. Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
20
|
Lemos FO, Bultynck G, Parys JB. A comprehensive overview of the complex world of the endo- and sarcoplasmic reticulum Ca 2+-leak channels. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119020. [PMID: 33798602 DOI: 10.1016/j.bbamcr.2021.119020] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 12/11/2022]
Abstract
Inside cells, the endoplasmic reticulum (ER) forms the largest Ca2+ store. Ca2+ is actively pumped by the SERCA pumps in the ER, where intraluminal Ca2+-binding proteins enable the accumulation of large amount of Ca2+. IP3 receptors and the ryanodine receptors mediate the release of Ca2+ in a controlled way, thereby evoking complex spatio-temporal signals in the cell. The steady state Ca2+ concentration in the ER of about 500 μM results from the balance between SERCA-mediated Ca2+ uptake and the passive leakage of Ca2+. The passive Ca2+ leak from the ER is often ignored, but can play an important physiological role, depending on the cellular context. Moreover, excessive Ca2+ leakage significantly lowers the amount of Ca2+ stored in the ER compared to normal conditions, thereby limiting the possibility to evoke Ca2+ signals and/or causing ER stress, leading to pathological consequences. The so-called Ca2+-leak channels responsible for Ca2+ leakage from the ER are however still not well understood, despite over 20 different proteins have been proposed to contribute to it. This review has the aim to critically evaluate the available evidence about the various channels potentially involved and to draw conclusions about their relative importance.
Collapse
Affiliation(s)
- Fernanda O Lemos
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, B-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, B-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine and Leuven Kanker Instituut, Campus Gasthuisberg O/N-1 B-802, Herestraat 49, B-3000 Leuven, Belgium.
| |
Collapse
|
21
|
Zhao R, Liu X, Qi Z, Yao X, Tsang SY. TRPV1 channels regulate the automaticity of embryonic stem cell-derived cardiomyocytes through stimulating the Na + /Ca 2+ exchanger current. J Cell Physiol 2021; 236:6806-6823. [PMID: 33782967 DOI: 10.1002/jcp.30369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022]
Abstract
Calcium controls the excitation-contraction coupling in cardiomyocytes. Embryonic stem cell-derived cardiomyocytes (ESC-CMs) are an important cardiomyocyte source for regenerative medicine and drug screening. Transient receptor potential vanilloid 1 (TRPV1) channels are nonselective cation channels that permeate sodium and calcium. This study aimed to investigate whether TRPV1 channels regulate the electrophysiological characteristics of ESC-CMs. If yes, what is the mechanism behind? By immunostaining and subcellular fractionation, followed by western blotting, TRPV1 was found to locate intracellularly. The staining pattern of TRPV1 was found to largely overlap with that of the sarco/endoplasmic reticulum Ca2+ -ATPase, the sarcoplasmic reticulum (SR) marker. By electrophysiology and calcium imaging, pharmacological blocker of TRPV1 and the molecular tool TRPV1β (which could functionally knockdown TRPV1) were found to decrease the rate and diastolic depolarization slope of spontaneous action potentials, and the amplitude and frequency of global calcium transients. By calcium imaging, in the absence of external calcium, TRPV1-specific opener increased intracellular calcium; this increase was abolished by preincubation with caffeine, which could deplete SR calcium store. The results suggest that TRPV1 controls calcium release from the SR. By electrophysiology, TRPV1 blockade and functional knockdown of TRPV1 decreased the Na+ /Ca2+ exchanger (NCX) currents from both the forward and reverse modes, suggesting that sodium and calcium through TRPV1 stimulate the NCX activity. Our novel findings suggest that TRPV1 activity is important for regulating the spontaneous activity of ESC-CMs and reveal a novel interplay between TRPV1 and NCX in regulating the physiological functions of ESC-CMs.
Collapse
Affiliation(s)
- Rui Zhao
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xianji Liu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zenghua Qi
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoqiang Yao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Suk Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.,Key Laboratory for Regenerative Medicine, Ministry of Education, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
22
|
Functional Expression of TRPV1 Ion Channel in the Canine Peripheral Blood Mononuclear Cells. Int J Mol Sci 2021; 22:ijms22063177. [PMID: 33804707 PMCID: PMC8003907 DOI: 10.3390/ijms22063177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/25/2022] Open
Abstract
TRPV1, known as a capsaicin receptor, is the best-described transient receptor potential (TRP) ion channel. Recently, it was shown to be expressed by non-excitable cells such as lymphocytes. However, the data regarding the functional expression of the TRPV1 channel in the immune cells are often contradictory. In the present study, we performed a phylogenetical analysis of the canine TRP ion channels, we assessed the expression of TRPV1 in the canine peripheral blood mononuclear cells (PBMC) by qPCR and Western blot, and we determined the functionality of TRPV1 by whole-cell patch-clamp recordings and calcium assay. We found high expression of TRPV2, -M2, and -M7 in the canine PBMCs, while expression of TRPV1, -V4 and, -M5 was relatively low. We confirmed that TRPV1 is expressed on the protein level in the PBMC and it localizes in the plasma membrane. The whole-cell patch-clamp recording revealed that capsaicin application caused a significant increase in the current density. Similarly, the results from the calcium assay show a dose-dependent increase in intracellular calcium level in the presence of capsaicin that was partially abolished by capsazepine. Our study confirms the expression of TRPV1 ion channel on both mRNA and protein levels in the canine PBMC and indicates that the ion channel is functional.
Collapse
|
23
|
Otto M, Bucher C, Liu W, Müller M, Schmidt T, Kardell M, Driessen MN, Rossaint J, Gross ER, Wagner NM. 12(S)-HETE mediates diabetes-induced endothelial dysfunction by activating intracellular endothelial cell TRPV1. J Clin Invest 2021; 130:4999-5010. [PMID: 32584793 DOI: 10.1172/jci136621] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Patients with diabetes develop endothelial dysfunction shortly after diabetes onset that progresses to vascular disease underlying the majority of diabetes-associated comorbidities. Increased lipid peroxidation, mitochondrial calcium overload, and mitochondrial dysfunction are characteristics of dysfunctional endothelial cells in diabetic patients. We here identified that targeting the lipid peroxidation product 12(S)-hydroxyeicosatetraenoic acid-induced [12(S)-HETE-induced] activation of the intracellularly located cation channel transient receptor potential vanilloid 1 (TRPV1) in endothelial cells is a means to causally control early-stage vascular disease in type I diabetic mice. Mice with an inducible, endothelium-specific 12/15-lipoxygenase (12/15Lo) knockout were protected similarly to TRPV1-knockout mice from type 1 diabetes-induced endothelial dysfunction and impaired vascular regeneration following arterial injury. Both 12(S)-HETE in concentrations found in diabetic patients and TRPV1 agonists triggered mitochondrial calcium influx and mitochondrial dysfunction in endothelial cells, and 12(S)-HETE effects were absent in endothelial cells from TRPV1-knockout mice. As a therapeutic consequence, we found that a peptide targeting 12(S)-HETE-induced TRPV1 interaction at the TRPV1 TRP box ameliorated diabetes-induced endothelial dysfunction and augmented vascular regeneration in diabetic mice. Our findings suggest that pharmacological targeting of increased endothelial lipid peroxidation can attenuate diabetes-induced comorbidities related to vascular disease.
Collapse
Affiliation(s)
- Mandy Otto
- Department of Anesthesiology, Intensive Care and Pain Medicine, and
| | - Clarissa Bucher
- Department of Anesthesiology, Intensive Care and Pain Medicine, and
| | - Wantao Liu
- Department of Anesthesiology, Intensive Care and Pain Medicine, and
| | - Melanie Müller
- Department of Anesthesiology, Intensive Care and Pain Medicine, and
| | - Tobias Schmidt
- Department of Anesthesiology, Intensive Care and Pain Medicine, and.,Institute of Physiology I, University Hospital Münster, Münster, Germany
| | - Marina Kardell
- Department of Anesthesiology, Intensive Care and Pain Medicine, and
| | | | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, and
| | - Eric R Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, California, USA
| | | |
Collapse
|
24
|
Fischer MJM, Ciotu CI, Szallasi A. The Mysteries of Capsaicin-Sensitive Afferents. Front Physiol 2020; 11:554195. [PMID: 33391007 PMCID: PMC7772409 DOI: 10.3389/fphys.2020.554195] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
A fundamental subdivision of nociceptive sensory neurons is named after their unique sensitivity to capsaicin, the pungent ingredient in hot chili peppers: these are the capsaicin-sensitive afferents. The initial excitation by capsaicin of these neurons manifested as burning pain sensation is followed by a lasting refractory state, traditionally referred to as "capsaicin desensitization," during which the previously excited neurons are unresponsive not only to capsaicin but a variety of unrelated stimuli including noxious heat. The long sought-after capsaicin receptor, now known as TRPV1 (transient receptor potential cation channel, subfamily V member 1), was cloned more than two decades ago. The substantial reduction of the inflammatory phenotype of Trpv1 knockout mice has spurred extensive efforts in the pharmaceutical industry to develop small molecule TRPV1 antagonists. However, adverse effects, most importantly hyperthermia and burn injuries, have so far prevented any compounds from progressing beyond Phase 2. There is increasing evidence that these limitations can be at least partially overcome by approaches outside of the mainstream pharmaceutical development, providing novel therapeutic options through TRPV1. Although ablation of the whole TRPV1-expressing nerve population by high dose capsaicin, or more selectively by intersectional genetics, has allowed researchers to investigate the functions of capsaicin-sensitive afferents in health and disease, several "mysteries" remain unsolved to date, including the molecular underpinnings of "capsaicin desensitization," and the exact role these nerves play in thermoregulation and heat sensation. This review tries to shed some light on these capsaicin mechanisms.
Collapse
Affiliation(s)
- Michael J. M. Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Cosmin I. Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Arpad Szallasi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
25
|
Wang Y, Mo X, Ping C, Huang Q, Zhang H, Xie C, Zhong B, Li D, Yao J. Site-specific contacts enable distinct modes of TRPV1 regulation by the potassium channel Kvβ1 subunit. J Biol Chem 2020; 295:17337-17348. [PMID: 33060203 PMCID: PMC7863878 DOI: 10.1074/jbc.ra120.015605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/13/2020] [Indexed: 11/06/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) channel is a multimodal receptor that is responsible for nociceptive, thermal, and mechanical sensations. However, which biomolecular partners specifically interact with TRPV1 remains to be elucidated. Here, we used cDNA library screening of genes from mouse dorsal root ganglia combined with patch-clamp electrophysiology to identify the voltage-gated potassium channel auxiliary subunit Kvβ1 physically interacting with TRPV1 channel and regulating its function. The interaction was validated in situ using endogenous dorsal root ganglia neurons, as well as a recombinant expression model in HEK 293T cells. The presence of Kvβ1 enhanced the expression stability of TRPV1 channels on the plasma membrane and the nociceptive current density. Surprisingly, Kvβ1 interaction also shifted the temperature threshold for TRPV1 thermal activation. Using site-specific mapping, we further revealed that Kvβ1 interacted with the membrane-distal domain and membrane-proximal domain of TRPV1 to regulate its membrane expression and temperature-activation threshold, respectively. Our data therefore suggest that Kvβ1 is a key element in the TRPV1 signaling complex and exerts dual regulatory effects in a site-specific manner.
Collapse
Affiliation(s)
- Yuanyuan Wang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, China
| | - Xiaoyi Mo
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, China
| | - Conghui Ping
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, China
| | - Qian Huang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, China
| | - Hao Zhang
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, China
| | - Chang Xie
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, China
| | - Bo Zhong
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, China
| | - Dongdong Li
- Sorbonne Université, Institute of Biology Paris Seine, Neuroscience Paris Seine, Sorbonne Université, Paris, France
| | - Jing Yao
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
26
|
Juárez-Contreras R, Méndez-Reséndiz KA, Rosenbaum T, González-Ramírez R, Morales-Lázaro SL. TRPV1 Channel: A Noxious Signal Transducer That Affects Mitochondrial Function. Int J Mol Sci 2020; 21:ijms21238882. [PMID: 33255148 PMCID: PMC7734572 DOI: 10.3390/ijms21238882] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/24/2020] [Accepted: 10/31/2020] [Indexed: 12/19/2022] Open
Abstract
The Transient Receptor Vanilloid 1 (TRPV1) or capsaicin receptor is a nonselective cation channel, which is abundantly expressed in nociceptors. This channel is an important transducer of several noxious stimuli, having a pivotal role in pain development. Several TRPV1 studies have focused on understanding its structure and function, as well as on the identification of compounds that regulate its activity. The intracellular roles of these channels have also been explored, highlighting TRPV1′s actions in the homeostasis of Ca2+ in organelles such as the mitochondria. These studies have evidenced how the activation of TRPV1 affects mitochondrial functions and how this organelle can regulate TRPV1-mediated nociception. The close relationship between this channel and mitochondria has been determined in neuronal and non-neuronal cells, demonstrating that TRPV1 activation strongly impacts on cell physiology. This review focuses on describing experimental evidence showing that TRPV1 influences mitochondrial function.
Collapse
Affiliation(s)
- Rebeca Juárez-Contreras
- Department of Cognitive Neuroscience, Neurosciences Division, Institute of Cellular Physiology, National Autonomous University of Mexico, UNAM, Mexico City 04510, Mexico; (R.J.-C.); (K.A.M.-R.); (T.R.)
| | - Karina Angélica Méndez-Reséndiz
- Department of Cognitive Neuroscience, Neurosciences Division, Institute of Cellular Physiology, National Autonomous University of Mexico, UNAM, Mexico City 04510, Mexico; (R.J.-C.); (K.A.M.-R.); (T.R.)
| | - Tamara Rosenbaum
- Department of Cognitive Neuroscience, Neurosciences Division, Institute of Cellular Physiology, National Autonomous University of Mexico, UNAM, Mexico City 04510, Mexico; (R.J.-C.); (K.A.M.-R.); (T.R.)
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, “Dr. Manuel Gea González” General Hospital, Mexico City 14080, Mexico;
| | - Sara Luz Morales-Lázaro
- Department of Cognitive Neuroscience, Neurosciences Division, Institute of Cellular Physiology, National Autonomous University of Mexico, UNAM, Mexico City 04510, Mexico; (R.J.-C.); (K.A.M.-R.); (T.R.)
- Correspondence:
| |
Collapse
|
27
|
Modulation of TRPV1 channel function by natural products in the treatment of pain. Chem Biol Interact 2020; 330:109178. [DOI: 10.1016/j.cbi.2020.109178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/22/2020] [Accepted: 06/09/2020] [Indexed: 01/01/2023]
|
28
|
Darmani NA, Henry DA, Zhong W, Chebolu S. Ultra-low doses of the transient receptor potential vanilloid 1 agonist, resiniferatoxin, prevents vomiting evoked by diverse emetogens in the least shrew (Cryptotis parva). Behav Pharmacol 2020; 31:3-14. [PMID: 31503071 DOI: 10.1097/fbp.0000000000000499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Published studies have shown that the transient receptor potential vanilloid 1 (TRPV1) receptor agonist, resiniferatoxin (RTX), has pro and antiemetic effects. RTX can suppress vomiting evoked by a variety of nonselective emetogens such as copper sulfate and cisplatin in several vomit-competent species. In the least shrew, we have already demonstrated that combinations of ultra-low doses of RTX and low doses of the cannabinoid CB1/2 receptor agonist delta-9-tetrahydrocannabinol (Δ-THC) produce additive antiemetic effects against cisplatin-evoked vomiting. In the current study, we investigated the broad-spectrum antiemetic potential of very low nonemetic doses of RTX against a diverse group of specific emetogens including selective and nonselective agonists of serotonergic 5-hydroxytrptamine (5-HT3) receptor (5-HT and 2-Me-5-HT), dopaminergic D2 receptor (apomorphine and quinpirole), cholinergic M1 receptor (pilocarpine and McN-A-343), as well as the selective substance P neurokinin NK1 receptor agonist GR73632, the selective L-Type calcium channel agonist FPL64176, and the sarcoplasmic endoplasmic reticulum calcium ATPase (SERCA) inhibitor thapsigargin. When administered subcutaneously, ultra-low (0.01 µg/kg) to low (5.0 µg/kg) doses of RTX suppressed vomiting induced by the aforementioned emetogens in a dose-dependent fashion with 50% inhibitory dose values ranging from 0.01 to 1.26 µg/kg. This study is the first to demonstrate that low nanomolar nonemetic doses of RTX have the capacity to completely abolish vomiting caused by diverse receptor specific emetogens in the least shrew model of emesis.
Collapse
Affiliation(s)
- Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | | | | | | |
Collapse
|
29
|
Belkacemi L, Darmani NA. Dopamine receptors in emesis: Molecular mechanisms and potential therapeutic function. Pharmacol Res 2020; 161:105124. [PMID: 32814171 DOI: 10.1016/j.phrs.2020.105124] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022]
Abstract
Dopamine is a member of the catecholamine family and is associated with multiple physiological functions. Together with its five receptor subtypes, dopamine is closely linked to neurological disorders such as schizophrenia, Parkinson's disease, depression, attention deficit-hyperactivity, and restless leg syndrome. Unfortunately, several dopamine receptor-based agonists used to treat some of these diseases cause nausea and vomiting as impending side-effects. The high degree of cross interactions of dopamine receptor ligands with many other targets including G-protein coupled receptors, transporters, enzymes, and ion-channels, add to the complexity of discovering new targets for the treatment of nausea and vomiting. Using activation status of signaling cascades as mechanism-based biomarkers to foresee drug sensitivity combined with the development of dopamine receptor-based biased agonists may hold great promise and seems as the next step in drug development for the treatment of such multifactorial diseases. In this review, we update the present knowledge on dopamine and dopamine receptors and their potential roles in nausea and vomiting. The pre- and clinical evidence provided in this review supports the implication of both dopamine and dopamine receptor agonists in the incidence of emesis. Besides the conventional dopaminergic antiemetic drugs, potential novel antiemetic targeting emetic protein signaling cascades may offer superior selectivity profile and potency.
Collapse
Affiliation(s)
- Louiza Belkacemi
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, USA.
| |
Collapse
|
30
|
Xu S, Cheng X, Wu L, Zheng J, Wang X, Wu J, Yu H, Bao J, Zhang L. Capsaicin induces mitochondrial dysfunction and apoptosis in anaplastic thyroid carcinoma cells via TRPV1-mediated mitochondrial calcium overload. Cell Signal 2020; 75:109733. [PMID: 32771398 DOI: 10.1016/j.cellsig.2020.109733] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022]
Abstract
Anaplastic thyroid cancer (ATC) is a rare malignancy and has a poor prognosis due to its aggressive behavior and resistance to treatments. Calcium (Ca2+) serves as a ubiquitous cellular second messenger and influences several tumor behaviors. Therefore, Ca2+ modulation is expected to be a novel therapeutic target in cancers. However, whether Ca2+ modulation is effective in ATC therapy remains unknown. In this study, we reported that capsaicin (CAP), a transient receptor potential vanilloid type1 (TRPV1) agonist, inhibited the viability of anaplastic thyroid cancer cells. Capsaicin treatment triggered Ca2+ influx by TRPV1 activation, resulting in disequilibrium of intracellular calcium homeostasis. The rapidly increased cytosolic Ca2+ concentration was mirrored in the mitochondria and caused a severe condition of mitochondrial calcium overload in ATC cells. In addition, the disruption of mitochondrial calcium homeostasis caused by capsaicin led to mitochondrial dysfunction in ATC cells, as evidenced by the production of mitochondrial reactive oxygen species (ROS), depolarization of mitochondrial membrane potential (ΔΨm), and opening of mitochondrial permeability transition pore (mPTP). Next, the resulting release of cyt c into the cytosol triggered apoptosome assembly and subsequent caspase activation and apoptosis. It was worth noting that both TRPV1 antagonist (capsazepine) and calcium chelator (BAPTA) could attenuate aberrant Ca2+ homeostasis, mitochondrial dysfunction and apoptosis induced by capsaicin treatment. Thus, our study demonstrated that capsaicin induced mitochondrial calcium overload and apoptosis in ATC cells through a TRPV1-mediated pathway. The better understanding of the anti-cancer mechanisms of calcium modulation provides a potential target for the ATC therapy.
Collapse
Affiliation(s)
- Shichen Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Xian Cheng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Liying Wu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiangxia Zheng
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaowen Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jing Wu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Huixin Yu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Jiandong Bao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Li Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China; Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; School of Life science and Technology, Southeast University, Nanjing 210096, China.
| |
Collapse
|
31
|
Transient receptor potential vanilloid 1 antagonism in neuroinflammation, neuroprotection and epigenetic regulation: potential therapeutic implications for severe psychiatric disorders treatment. Psychiatr Genet 2020; 30:39-48. [PMID: 32097233 DOI: 10.1097/ypg.0000000000000249] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Hu J, Chen W, Qiu Z, Lv H. Robust expression of SIRT6 inhibits pulpitis via activation of the TRPV1 channel. Cell Biochem Funct 2020; 38:676-682. [PMID: 32236974 DOI: 10.1002/cbf.3528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022]
Abstract
Invasion of dentinal tubules and pulp tissue by pathogenic bacteria may cause infection leading to pulpitis. Sirtuin 6 (SIRT6) is a NAD-dependent protein deacetylase encoded by the SIRT6 gene. The effect of SIRT6 on lipopolysaccharide (LPS)-induced pulpitis and its mechanism of action were discussed in this study. Dental pulp cells (DPCs) were extracted from human teeth and injected with LPS to induce inflammation. The cells injected with LPS showed substantially decreased expression of SIRT6. The overexpression of SIRT6, induced by plasmid-transfection of DPCs with SIRT6 overexpressing vector, led to a marked decrease in proinflammatory cytokines (IL-6, IL-1β, and TNF-α) and deactivation of NF kappa B pathway. Additionally, dentin matrix protein-1 (DMP1), a promoter of inflammation in dental pulp tissues, was downregulated. Further investigation revealed that SIRT6 promotes ubiquitination of the transient receptor potential vanilloid 1 (TRPV1) channel, leading to its degradation and deactivation. The role of TRPV1 in the anti-inflammatory effects of SIRT6 was determined through incubation of SIRT6-expressing dental pulp stem cells (DPSCs) with capsaicin. This incubation counteracted the effect of SIRT6 on cytokines and DMP1. The injection of lentivirus-SIRT6 attenuated LPS-induced pulpitis in vivo by suppressing TRPV1 activity. Thus, SIRT6 inhibits the TRPV1 channel during LPS-induced inflammation of dental pulp. SIGNIFICANCE OF THE STUDY: This study discussed the effect of sirtuin 6 (SIRT6) on lipopolysaccharide (LPS)-induced pulpitis as well as its mechanism of action and found that SIRT6 may be a negative regulator of pulpitis. Additionally, low expression of SIRT6 and high expression of transient receptor potential vanilloid 1 (TRPV1) in LPS-treated human dental pulp cells are closely associated with proinflammatory cytokines, dentin matrix protein 1 expression, and activation of the NF-κB pathway, which indicated that TRPV1 may be a biomarker for pulpitis and the SIRT6-TRPV1-CGRP axis maybe a clinical target due to their role regulating inflammation and neuropathic pain.
Collapse
Affiliation(s)
- Jia Hu
- Department of Endodontics, Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou, Fujian, China.,Fujian Provincial Key Laboratory of Stomatology, Fuzhou, Fujian, China
| | - Weiran Chen
- Fujian Provincial Key Laboratory of Stomatology, Fuzhou, Fujian, China.,Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Zailing Qiu
- Fujian Provincial Key Laboratory of Stomatology, Fuzhou, Fujian, China.,Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Hongbing Lv
- Department of Endodontics, Affiliated Stomatological Hospital of Fujian Medical University, Fuzhou, Fujian, China.,Fujian Provincial Key Laboratory of Stomatology, Fuzhou, Fujian, China
| |
Collapse
|
33
|
O'Leary C, McGahon MK, Ashraf S, McNaughten J, Friedel T, Cincolà P, Barabas P, Fernandez JA, Stitt AW, McGeown JG, Curtis TM. Involvement of TRPV1 and TRPV4 Channels in Retinal Angiogenesis. Invest Ophthalmol Vis Sci 2019; 60:3297-3309. [PMID: 31369032 DOI: 10.1167/iovs.18-26344] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We investigate the contribution of TRPV1 and TRPV4 channels to retinal angiogenesis. Methods Primary retinal microvascular endothelial cells (RMECs) were used for RT-PCR, Western blotting, immunolabeling, Ca2+ signaling, and whole-cell patch-clamp studies while localization of TRPV1 also was assessed in retinal endothelial cells using whole mount preparations. The effects of pharmacologic blockers of TRPV1 and TRPV4 on retinal angiogenic activity was evaluated in vitro using sprout formation, cell migration, proliferation, and tubulogenesis assays, and in vivo using the mouse model of oxygen-induced retinopathy (OIR). Heteromultimerization of TRPV1 and TRPV4 channels in RMECs was assessed using proximity ligation assays (PLA) and electrophysiologic recording. Results TRPV1 mRNA and protein expression were identified in RMECs. TRPV1 labelling was found to be mainly localized to the cytoplasm with some areas of staining colocalizing with the plasma membrane. Staining patterns for TRPV1 were broadly similar in endothelial cells of intact vessels within retinal flat mounts. Functional expression of TRPV1 and TRPV4 in RMECs was confirmed by patch-clamp recording. Pharmacologic inhibition of TRPV1 or TRPV4 channels suppressed in vitro retinal angiogenesis through a mechanism involving the modulation of tubulogenesis. Blockade of these channels had no effect on VEGF-stimulated angiogenesis or Ca2+ signals in vitro. PLA and patch-clamp studies revealed that TRPV1 and TRPV4 form functional heteromeric channel complexes in RMECs. Inhibition of either channel reduced retinal neovascularization and promoted physiologic revascularization of the ischemic retina in the OIR mouse model. Conclusions TRPV1 and TRPV4 channels represent promising targets for therapeutic intervention in vasoproliferative diseases of the retina.
Collapse
Affiliation(s)
- Caitriona O'Leary
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Mary K McGahon
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Sadaf Ashraf
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Jennifer McNaughten
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Thomas Friedel
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Patrizia Cincolà
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Peter Barabas
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Jose A Fernandez
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - J Graham McGeown
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Tim M Curtis
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| |
Collapse
|
34
|
Xiao F, Zhou Y, Liu Y, Xie M, Guo G. Inhibitory Effect of Sirtuin6 (SIRT6) on Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells. Med Sci Monit 2019; 25:8412-8421. [PMID: 31701920 PMCID: PMC6858786 DOI: 10.12659/msm.917118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The imbalance between bone resorption and formation is the basic mechanism underlying osteoporosis in the elderly. Osteogenesis is the differentiation of human mesenchymal stem cells (hMSCs) into osteoblasts. Sirtuin6 (SIRT6) regulates various biological functions, including differentiation. Transient receptor potential cation channel subfamily V member 1 (TRPV1) is a non-selective cation channel that can be activated by physical and chemical stimulation. However, experimental data supporting the role of SIRT6 in osteogenic differentiation (OD) of hMSCs are lacking. MATERIAL AND METHODS Differentiation of hMSCs was induced. The expressions of SIRT6, TRPV1, and CGRP were detected by Q-PCR, Western blot, and ELISA, respectively. SIRT6 was overexpressed in hMSCs by transfection. ALP activity and Alizarin Red staining were utilized to detect the effect of SIRT6 on hMSC OD. Then, capsaicin and capsazepine, the TRPV1 agonist and antagonist, respectively, were administrated to assess the role of TRPV1. RESULTS SIRT6 expression was downregulated during hMSC differentiation. SIRT6 overexpression was accompanied by reduced expression of specific genes and alkaline phosphatase (ALP) activity in osteoblasts. Furthermore, TRPV1 channel was also reduced by SIRT6 overexpression via ubiquitinating TRPV1. Capsaicin was utilized in SIRT6-overexpressed cells. Capsaicin therapy counteracted the effect of SIRT6 overexpression on OD, and markedly decreased OD. CONCLUSIONS The SIRT6-TRPV1-CGRP signal axis is the key to regulating OD in hMSCs, which could be a potential therapeutic target for osteoporosis and bone loss-related diseases.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Yun Zhou
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Yongfu Liu
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Mian Xie
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Guancheng Guo
- Department of Emergency Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
35
|
Hsu CC, Chien KH, Yarmishyn AA, Buddhakosai W, Wu WJ, Lin TC, Chiou SH, Chen JT, Peng CH, Hwang DK, Chen SJ, Chang YL. Modulation of osmotic stress-induced TRPV1 expression rescues human iPSC-derived retinal ganglion cells through PKA. Stem Cell Res Ther 2019; 10:284. [PMID: 31547874 PMCID: PMC6755708 DOI: 10.1186/s13287-019-1363-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/25/2019] [Accepted: 07/28/2019] [Indexed: 12/27/2022] Open
Abstract
Background Transient receptor potential vanilloid 1 (TRPV1), recognized as a hyperosmolarity sensor, is a crucial ion channel involved in the pathogenesis of neural and glial signaling. Recently, TRPV1 was determined to play a role in retinal physiology and visual transmission. In this study, we sought to clarify the role of TRPV1 and the downstream pathway in the osmotic stress-related retina ganglion cell (RGC) damage. Methods First, we modified the RGC differentiation protocol to obtain a homogeneous RGC population from human induced pluripotent stem cells (hiPSCs). Subsequently, we induced high osmotic pressure in the hiPSC-derived RGCs by administering NaCl solution and observed the behavior of the TRPV1 channel and its downstream cascade. Results We obtained a purified RGC population from the heterogeneous retina cell population using our modified method. Our findings revealed that TRPV1 was activated after 24 h of NaCl treatment. Upregulation of TRPV1 was noted with autophagy and apoptosis induction. Downstream protein expression analysis indicated increased phosphorylation of CREB and downregulated brain-derived neurotrophic factor (BDNF). However, hyperosmolarity-mediated defective morphological change and apoptosis of RGCs, CREB phosphorylation, and BDNF downregulation were abrogated after concomitant treatment with the PKA inhibitor H89. Conclusion Collectively, our study results indicated that the TRPV1–PKA pathway contributed to cellular response under high levels of osmolarity stress; furthermore, the PKA inhibitor had a protective effect on RGCs exposed to this stress. Therefore, our findings may assist in the treatment of eye diseases involving RGC damage.
Collapse
Affiliation(s)
- Chih-Chien Hsu
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan
| | - Ke-Hung Chien
- Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan.,Department of Ophthalmology, Tri-Service General Hospital and National Defense Medical Center, Taipei, 114, Taiwan
| | - Aliaksandr A Yarmishyn
- Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Waradee Buddhakosai
- Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Wen-Ju Wu
- Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Tai-Chi Lin
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan
| | - Shih-Hwa Chiou
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Jiann-Torng Chen
- Department of Ophthalmology, Tri-Service General Hospital and National Defense Medical Center, Taipei, 114, Taiwan
| | - Chi-Hsien Peng
- Department of Ophthalmology, Shin Kong Wu Ho-Su Memorial Hospital and Fu-Jen Catholic University, Taipei, Taiwan
| | - De-Kuang Hwang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, 112, Taiwan. .,School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan.
| | - Yuh-Lih Chang
- Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan. .,School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan. .,Department of Pharmacy, Taipei Veterans General Hospital; Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
36
|
Zhang X, Hu M, Yang Y, Xu H. Organellar TRP channels. Nat Struct Mol Biol 2018; 25:1009-1018. [PMID: 30374082 DOI: 10.1038/s41594-018-0148-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 09/28/2018] [Indexed: 02/08/2023]
Abstract
Mammalian transient receptor potential (TRP) channels mediate Ca2+ flux and voltage changes across membranes in response to environmental and cellular signals. At the plasma membrane, sensory TRPs act as neuronal detectors of physical and chemical environmental signals, and receptor-operated (metabotropic) TRPs decode extracellular neuroendocrine cues to control body homeostasis. In intracellular membranes, such as those in lysosomes, organellar TRPs respond to compartment-derived signals to control membrane trafficking, signal transduction, and organelle function. Complementing mouse and human genetics and high-resolution structural approaches, physiological studies employing natural agonists and synthetic inhibitors have become critical in resolving the in vivo functions of metabotropic, sensory, and organellar TRPs.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Meiqin Hu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yexin Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
37
|
Bishnoi M, Khare P, Brown L, Panchal SK. Transient receptor potential (TRP) channels: a metabolic TR(i)P to obesity prevention and therapy. Obes Rev 2018; 19:1269-1292. [PMID: 29797770 DOI: 10.1111/obr.12703] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/26/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022]
Abstract
Cellular transport of ions, especially by ion channels, regulates physiological function. The transient receptor potential (TRP) channels, with 30 identified so far, are cation channels with high calcium permeability. These ion channels are present in metabolically active tissues including adipose tissue, liver, gastrointestinal tract, brain (hypothalamus), pancreas and skeletal muscle, which suggests a potential role in metabolic disorders including obesity. TRP channels have potentially important roles in adipogenesis, obesity development and its prevention and therapy because of their physiological properties including calcium permeability, thermosensation and taste perception, involvement in cell metabolic signalling and hormone release. This wide range of actions means that organ-specific actions are unlikely, thus increasing the possibility of adverse effects. Delineation of responses to TRP channels has been limited by the poor selectivity of available agonists and antagonists. Food constituents that can modulate TRP channels are of interest in controlling metabolic status. TRP vanilloid 1 channels modulated by capsaicin have been the most studied, suggesting that this may be the first target for effective pharmacological modulation in obesity. This review shows that most of the TRP channels are potential targets to reduce metabolic disorders through a range of mechanisms.
Collapse
Affiliation(s)
- M Bishnoi
- Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, S.A.S. Nagar (Mohali), Punjab, India.,Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| | - P Khare
- Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, S.A.S. Nagar (Mohali), Punjab, India
| | - L Brown
- Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia.,School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | - S K Panchal
- Functional Foods Research Group, Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| |
Collapse
|
38
|
Zhang R, Li H, Guo Q, Zhang L, Zhu J, Ji J. Sirtuin6 inhibits c-triggered inflammation through TLR4 abrogation regulated by ROS and TRPV1/CGRP. J Cell Biochem 2018; 119:9141-9153. [PMID: 30105859 DOI: 10.1002/jcb.27176] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/24/2018] [Indexed: 01/03/2023]
Abstract
Propionibacterium acnes induces inflammatory and plays a vital role in the formation of comedones through activation of inflammatory cells, keratinocytes, and sebocytes. Sirtuin6 (SIRT6), along with ADP-ribosyltransferase and deacetylase, has been proposed to mediate various biological functions, including inflammation. Nevertheless, no strong experimental evidence has been provided to support the effect of SIRT6 in treatment of inflammatory situation. Therefore, this study addressed the inhibitory effect of SIRT6 against P. acnes-triggered inflammation in human keratinocytes and monocyte cell lines. In our study, proinflammation capacity of P. acnes was confirmed by increased levels of various inflammatory modulators, such as interleukin (IL)-1β, IL-6, IL-12, monocyte chemoattractant protein-1, interferon-γ, and tumor necrosis facto-α, both in vivo and in vitro. P. acnes stimulation also decreased SIRT6 expression, whereas, SIRT6 overexpression successfully suppressed the production of these cytokines in P. acnes-infected cells, and therefore controlled inflammation. Furthermore, we found that challenge of P. acnes stimulated the expression of toll-like receptor 4 (TLR4) in both cell lines. Nevertheless, SIRT6 overexpression attenuated the expression of TLR4 and consequently inhibited the P. acnes-triggered phosphorylation of nuclear transcription factor-kappa B (NF-κB) subunit, p65. Moreover, deactivation of TLR4 signaling pathway by SIRT6 overexpression resulted in significant downregulation of the transient receptor potential vanilloid (TRPV) pathway, cAMP response element-binding protein (CREB)/calcitonin gene-related peptide (CGRP) signaling, and NF-κB-regulated production of reactive oxygen species. These results indicate that SIRT6 serves as a potential therapeutic target to alleviate acne inflammation.
Collapse
Affiliation(s)
- Ruohua Zhang
- Department of Dermatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongmin Li
- Department of Dermatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qin Guo
- Department of Dermatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lulu Zhang
- Department of Dermatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Zhu
- Department of Dermatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin Ji
- Department of Dermatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
39
|
Filippova LV, Fedorova AV, Nozdrachev AD. Mechanism of Activation of Enteric Nociceptive Neurons via Interaction of TLR4 and TRPV1 Receptors. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2018; 479:44-46. [PMID: 29790024 DOI: 10.1134/s0012496618020023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Indexed: 11/22/2022]
Abstract
Evidence obtained by immunohistochemical double labeling and confocal laser scanning microscopy suggests that capsaicin, a ligand of the TRPV1 nociceptive vanilloid receptor, increases the number of TLR4-positive neurons in the rat colon myenteric plexus. In colitis caused by trinitrobenzene sulfonate, an increase in TRPV1 expression was more significant in both plexuses. Specific inhibitor of the TLR4 (C34) pattern-recognition receptor reduces TRPV1 expression in enteric neurons of both intact rats and rats with induced acute colitis. Thus, stimulation of nociceptive neurons by means of direct activation of their receptors of innate immunity (TLR4) is one of the possible mechanisms underlying the visceral pain in bacterial invasion and inflammatory bowel diseases.
Collapse
Affiliation(s)
- L V Filippova
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia.
| | - A V Fedorova
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - A D Nozdrachev
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
40
|
Supra-pharmacological concentration of capsaicin stimulates brown adipogenesis through induction of endoplasmic reticulum stress. Sci Rep 2018; 8:845. [PMID: 29339762 PMCID: PMC5770457 DOI: 10.1038/s41598-018-19223-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/18/2017] [Indexed: 01/12/2023] Open
Abstract
We previously showed that brown (pre)adipocytes express Trpv1, a capsaicin receptor, and that capsaicin stimulates differentiation of brown preadipocytes in the late stages of brown adipogenesis. The present study revealed that treatment with 100 μM capsaicin stimulates brown adipogenesis by inducing endoplasmic reticulum (ER) stress. Treatment with capsaicin (100 μM) during brown adipogenesis enhanced lipid accumulation and the expression of Ucp1, a gene selectively expressed in brown adipocytes. Capsaicin treatment also caused an increase in the cytosolic calcium concentration even when extracellular calcium was removed. I-RTX, a Trpv1 inhibitor, did not modulate the increase in cytosolic calcium concentration, lipid accumulation or Ucp1 expression. Previous studies revealed that the release of calcium from the ER induces ER stress, leading to the conversion of X-box binding protein 1 (Xbp1) pre-mRNA to spliced Xbp1 (sXbp1) as well as the up-regulation of Chop expression. Capsaicin treatment increased the expression of sXbp1 and Chop in brown preadipocytes and did not enhance lipid accumulation or Ucp1 expression in Xbp1 knockdown cells. The present results describe a novel mechanism of brown adipogenesis regulation via ER stress that is induced by a supra-pharmacological concentration of capsaicin.
Collapse
|
41
|
Stueber T, Eberhardt MJ, Caspi Y, Lev S, Binshtok A, Leffler A. Differential cytotoxicity and intracellular calcium-signalling following activation of the calcium-permeable ion channels TRPV1 and TRPA1. Cell Calcium 2017; 68:34-44. [PMID: 29129206 DOI: 10.1016/j.ceca.2017.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/05/2017] [Accepted: 10/17/2017] [Indexed: 11/18/2022]
Abstract
Several members of the transient receptor channel (TRP) family can mediate a calcium-dependent cytotoxicity. In sensory neurons, vanilloids like capsaicin induce neurotoxicity by activating TRPV1. The closely related ion channel TRPA1 is also activated by irritants, but it is unclear if and how TRPA1 mediates cell death. In the present study we explored cytotoxicity and intracellular calcium signalling resulting from activation of TRPV1 and TRPA1, either heterologously expressed in HEK 293 cells or in native mouse dorsal root ganglion (DRG) neurons. While activation of TRPV1 by the vanilloids capsaicin, resiniferatoxin and anandamide results in calcium-dependent cell death, activation by protons and the oxidant chloramine-T failed to reduce cell viability. The TRPA1-agonists acrolein, carvacrol and capsazepine all induced cytotoxicity, but this effect is independent of TRPA1. Activation of both TRPA1 and TRPV1 triggers a strong influx of external calcium, but also a strong calcium-release from intracellular stores most likely including the endoplasmic reticulum (ER). Activation of TRPV1, but not TRPA1 also results in a strong increase of mitochondrial calcium both in HEK 293 cells and mouse DRG neurons. Our data demonstrate that activation of TRPV1, but not TRPA1 mediates a calcium-dependent cell death. While both receptors mediate a release of calcium from intracellular stores, only activation of TRPV1 seems to mediate a robust and probably lethal increase in mitochondrial calcium.
Collapse
Affiliation(s)
- Thomas Stueber
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Mirjam J Eberhardt
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Yaki Caspi
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Shaya Lev
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Alexander Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University Faculty of Medicine, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Andreas Leffler
- Department of Anaesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
42
|
Leukocyte TRP channel gene expressions in patients with non-valvular atrial fibrillation. Sci Rep 2017; 7:9272. [PMID: 28839241 PMCID: PMC5571177 DOI: 10.1038/s41598-017-10039-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/10/2017] [Indexed: 12/22/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia in clinical practice and is a major cause of morbidity and mortality. The upregulation of TRP channels is believed to mediate the progression of electrical remodelling and the arrhythmogenesis of the diseased heart. However, there is limited data about the contribution of the TRP channels to development of AF. The aim of this study was to investigate leukocyte TRP channels gene expressions in non-valvular atrial fibrillation (NVAF) patients. The study included 47 NVAF patients and 47 sex and age matched controls. mRNA was extracted from blood samples, and real-time polymerase chain reaction was performed for gene expressions by using a dynamic array system. Low levels of TRP channel expressions in the controls were markedly potentiated in NVAF group. We observed marked increases in MCOLN1 (TRPML1), MCOLN2 (TRPML2), MCOLN3 (TRPML3), TRPA1, TRPM1, TRPM2, TRPM3, TRPM4, TRPM5, TRPM6, TRPM7, TRPM8, TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, TRPC7, TRPV1, TRPV2, TRPV3, TRPV4, TRPV5, TRPV6, and PKD2 (TRPP2) gene expressions in NVAF patients (P < 0.05). However, there was no change in PKD1 (TRPP1) gene expression. This is the first study to provide evidence that elevated gene expressions of TRP channels are associated with the pathogenesis of NVAF.
Collapse
|
43
|
Hou X, Li H, Zhang C, Wang J, Li X, Li X. Overexpression of Fibulin-5 attenuates burn-induced inflammation via TRPV1/CGRP pathway. Exp Cell Res 2017; 357:320-327. [DOI: 10.1016/j.yexcr.2017.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/17/2017] [Accepted: 05/31/2017] [Indexed: 11/30/2022]
|
44
|
Kim HK, Noh YH, Nilius B, Ko KS, Rhee BD, Kim N, Han J. Current and upcoming mitochondrial targets for cancer therapy. Semin Cancer Biol 2017. [PMID: 28627410 DOI: 10.1016/j.semcancer.2017.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria are essential intracellular organelles that regulate energy metabolism, cell death, and signaling pathways that are important for cell proliferation and differentiation. Therefore, mitochondria are fundamentally implicated in cancer biology, including initiation, growth, metastasis, relapse, and acquired drug resistance. Based on these implications, mitochondria have been proposed as a major therapeutic target for cancer treatment. In addition to classical view of mitochondria in cancer biology, recent studies found novel pathophysiological roles of mitochondria in cancer. In this review, we introduce recent concepts of mitochondrial roles in cancer biology including mitochondrial DNA mutation and epigenetic modulation, energy metabolism reprogramming, mitochondrial channels, involvement in metastasis and drug resistance, and cancer stem cells. We also discuss the role of mitochondria in emerging cancer therapeutic strategies, especially cancer immunotherapy and CRISPR-Cas9 system gene therapy.
Collapse
Affiliation(s)
- Hyoung Kyu Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea; Department of Integrated Biomedical Science, College of Medicine, Inje University, Busan, Republic of Korea
| | - Yeon Hee Noh
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Bernd Nilius
- KU Leuven, Department Cell Mol Medicine, Leuven, 3000, Belgium
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea.
| |
Collapse
|
45
|
Extraoral Taste Receptor Discovery: New Light on Ayurvedic Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017. [PMID: 28642799 PMCID: PMC5469997 DOI: 10.1155/2017/5435831] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
More and more research studies are revealing unexpectedly important roles of taste for health and pathogenesis of various diseases. Only recently it has been shown that taste receptors have many extraoral locations (e.g., stomach, intestines, liver, pancreas, respiratory system, heart, brain, kidney, urinary bladder, pancreas, adipose tissue, testis, and ovary), being part of a large diffuse chemosensory system. The functional implications of these taste receptors widely dispersed in various organs or tissues shed a new light on several concepts used in ayurvedic pharmacology (dravyaguna vijnana), such as taste (rasa), postdigestive effect (vipaka), qualities (guna), and energetic nature (virya). This review summarizes the significance of extraoral taste receptors and transient receptor potential (TRP) channels for ayurvedic pharmacology, as well as the biological activities of various types of phytochemical tastants from an ayurvedic perspective. The relative importance of taste (rasa), postdigestive effect (vipaka), and energetic nature (virya) as ethnopharmacological descriptors within Ayurveda boundaries will also be discussed.
Collapse
|
46
|
Takata N, Ohshima Y, Suzuki-Karasaki M, Yoshida Y, Tokuhashi Y, Suzuki-Karasaki Y. Mitochondrial Ca2+ removal amplifies TRAIL cytotoxicity toward apoptosis-resistant tumor cells via promotion of multiple cell death modalities. Int J Oncol 2017; 51:193-203. [PMID: 28560396 DOI: 10.3892/ijo.2017.4020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/16/2017] [Indexed: 11/06/2022] Open
Abstract
Ca2+ has emerged as a new target for cancer treatment since tumor-specific traits in Ca2+ dynamics contributes to tumorigenesis, malignant phenotypes, drug resistance, and survival in different tumor types. However, Ca2+ has a dual (pro-death and pro-survival) function in tumor cells depending on the experimental conditions. Therefore, it is necessary to minimize the onset of the pro-survival Ca2+ signals caused by the therapy. For this purpose, a better understanding of pro-survival Ca2+ pathways in cancer cells is critical. Here we report that Ca2+ protects malignant melanoma (MM) and osteosarcoma (OS) cells from tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) cytotoxicity. Simultaneous measurements using the site-specific Ca2+ probes showed that acute TRAIL treatment rapidly and dose-dependently increased the cytosolic Ca2+ concentration ([Ca2+]cyt) and mitochondrial Ca2+ concentration ([Ca2+]mit) Pharmacological analyses revealed that the [Ca2+]mit remodeling was under control of mitochondrial Ca2+ uniporter (MCU), mitochondrial permeability transition pore (MPTP), and a Ca2+ transport pathway sensitive to capsazepine and AMG9810. Ca2+ chelators and the MCU inhibitor ruthenium 360, an MPTP opener atractyloside, capsazepine, and AMG9810 all decreased [Ca2+]mit and sensitized these tumor cells to TRAIL cytotoxicity. The Ca2+ modulation enhanced both apoptotic and non-apoptotic cell death. Although the [Ca2+]mit reduction potentiated TRAIL-induced caspase-3/7 activation and cell membrane damage within 24 h, this potentiation of cell death became pronounced at 72 h, and not blocked by caspase inhibition. Our findings suggest that in MM and OS cells mitochondrial Ca2+ removal can promote apoptosis and non-apoptotic cell death induction by TRAIL. Therefore, mitochondrial Ca2+ removal can be exploited to overcome the resistance of these cancers to TRAIL.
Collapse
Affiliation(s)
- Natsuhiko Takata
- Department of Orthopedic Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yohei Ohshima
- Department of Orthopedic Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Miki Suzuki-Karasaki
- Department of Orthopedic Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yukihiro Yoshida
- Department of Orthopedic Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yasuaki Tokuhashi
- Department of Orthopedic Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | | |
Collapse
|