1
|
Lang J, Li M, Sun B, Feng S, Zhao J, Zhao G, Sun G. CEBPD is a pivotal factor for the activation of NLRP3 inflammasome in traumatic brain injury. Int Immunopharmacol 2025; 159:114930. [PMID: 40414072 DOI: 10.1016/j.intimp.2025.114930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 05/08/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Traumatic brain injury (TBI) is a significant global health concern and a leading cause of mortality and disability worldwide. Neuroinflammation is a pivotal pathological mechanism underlying secondary brain injury following TBI. CCAAT enhancer-binding protein-delta (CEBPD), a transcription factor necessary for regulating immune and inflammatory responses, plays an important role in the progression of neuroinflammatory disorders. However, the role of CEBPD in the prognosis of TBI needs to be determined. We found that the expression of CEBPD increased significantly in TBI patients and animal models, as well as in the HT-22 neuron mechanical scratch injury model. The inhibition of CEBPD by in vivo siRNA effectively suppressed neuronal death, brain edema, and brain contusion volume and alleviated neurofunctional deficits. Knocking down CEBPD considerably inhibited the activation of the neuronal NLRP3 inflammasome, downregulated the expression of the GSDMD N-terminal fragment, and reduced the production of IL-1β and IL-18, significantly mitigating neuronal pyroptosis after TBI. Increasing CEBPD levels led to the activation of the NLRP3 inflammasome and neuronal pyroptosis in the mechanical scratch injury cell model. We also determined that the NLRP3 inflammasome activated by nigericin depended on the CEBPD pathway following TBI. Our results suggested that CEBPD may serve as a pivotal factor in promoting neuronal pyroptosis and that inhibiting CEBPD might be a promising strategy for treating TBI.
Collapse
Affiliation(s)
- Jiadong Lang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Mingkang Li
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Boyu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Shiyao Feng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - JianFei Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Gengshui Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China.
| |
Collapse
|
2
|
Zhang H, Qin X, Yuan H, Xiang L, Yu H. Cathepsin L Aggravates Neuroinflammation via Promoting Microglia M1 Polarization and NLRP3 Activation After Spinal Cord Injury. FASEB J 2025; 39:e70561. [PMID: 40293792 DOI: 10.1096/fj.202403101r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/20/2025] [Accepted: 04/14/2025] [Indexed: 04/30/2025]
Abstract
Neuronal inflammation and apoptosis aggravate the secondary injury after spinal cord injury (SCI). Cathepsin L (CTSL) is a lysosomal cysteine protease with effects on the regulation of inflammation, but its role in SCI remains unclear. The in vivo T10 mouse spinal cord contusion model was established. The results showed that CTSL expression was increased following SCI and then gradually decreased. Moreover, CTSL was mainly expressed in microglia. To detect the function of CTSL, after contusive injury, the mice were immediately injected with lentiviruses carrying CTSL shRNA. The results showed that CTSL depletion promoted functional recovery, accompanied by increased locomotor ability. CTSL deficiency reduced lesion cavity areas by inhibiting neuronal apoptosis and neuroinflammation. Indeed, CTSL deficiency decreased the secretion of TNF-α, IL-6, and MCP-1 and M1 microglia polarization in the spinal cord. CTSL depletion inhibited the expression and assembly of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome. In vitro, CTSL expression was increased in LPS-treated BV2 cells. CTSL silencing repressed LPS-induced M1 polarization, as evidenced by the reduction in TNF-α, IL-6, and MCP-1 expression in the supernatant of BV2 cells. CTSL knockdown induced the downregulation of NLRP3 expression and activation. The inhibition role of CTSL knockdown in microglial inflammation and M1 polarization was reversed by NLRP3 agonist. Collectively, the study suggests that CTSL induces the microglia M1 polarization-mediated inflammation via promoting NLRP3 activation and thereby inhibits functional recovery after SCI.
Collapse
Affiliation(s)
- Haocong Zhang
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Xianyun Qin
- Department of Orthopaedics, The 945th Hospital of the Joint Logistic Support Force, Ya'an, Sichuan, China
| | - Hong Yuan
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Liangbi Xiang
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Hailong Yu
- Department of Orthopaedics, The General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Shen Y, Lin P. The Role of Cytokines in Postherpetic Neuralgia. J Integr Neurosci 2025; 24:25829. [PMID: 40302252 DOI: 10.31083/jin25829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/02/2024] [Accepted: 10/23/2024] [Indexed: 05/02/2025] Open
Abstract
Nerve injury is a significant cause of postherpetic neuralgia (PHN). It is marked by upregulated expression of cytokines secreted by immune cells such as tumor necrosis factor alpha, interleukin 1 beta (IL-1β), IL-6, IL-18, and IL-10. In neuropathic pain (NP) due to nerve injury, cytokines are important for the induction of neuroinflammation, activation of glial cells, and expression of cation channels. The release of chemokines due to nerve injury promotes immune cell infiltration, recruiting inflammatory cytokines and further amplifying the inflammatory response. The resulting disequilibrium in neuroimmune response and neuroinflammation leads to a reduction of nerve fibers, altered nerve excitability, and neuralgia. PHN is a typical NP and cytokines may induce PHN by promoting central and peripheral sensitization. Currently, treating PHN is challenging and research on the role of cytokine signaling pathways in PHN is lacking. This review summarizes the potential mechanisms of cytokine-mediated PHN and discusses the cytokine signaling pathways associated with the central and peripheral sensitization of PHN. By elucidating the mechanisms of cytokines, the cells and molecules that regulate cytokines, and their signaling systems in PHN, this review reveals important research developments regarding cytokines and their signaling pathways mediating PHN, highlighting new targets of action for the development of analgesic drugs.
Collapse
Affiliation(s)
- Yunyan Shen
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 310053 Hangzhou, Zhejiang, China
| | - Ping Lin
- Department of Geriatrics, Hangzhou Third People's Hospital, 310009 Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Land WG, Linkermann A. Regulated cell death and DAMPs as biomarkers and therapeutic targets in normothermic perfusion of transplant organs. Part 1: their emergence from injuries to the donor organ. FRONTIERS IN TRANSPLANTATION 2025; 4:1571516. [PMID: 40343197 PMCID: PMC12060192 DOI: 10.3389/frtra.2025.1571516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/31/2025] [Indexed: 05/11/2025]
Abstract
This Part 1 of a bipartite review commences with a succinct exposition of innate alloimmunity in light of the danger/injury hypothesis in Immunology. The model posits that an alloimmune response, along with the presentation of alloantigens, is driven by DAMPs released from various forms of regulated cell death (RCD) induced by any severe injury to the donor or the donor organ, respectively. To provide a strong foundation for this review, which examines RCD and DAMPs as biomarkers and therapeutic targets in normothermic regional perfusion (NRP) and normothermic machine perfusion (NMP) to improve outcomes in organ transplantation, key insights are presented on the nature, classification, and functions of DAMPs, as well as the signaling mechanisms of RCD pathways, including ferroptosis, necroptosis, pyroptosis, and NETosis. Subsequently, a comprehensive discussion is provided on major periods of injuries to the donor or donor organs that are associated with the induction of RCD and DAMPs and precede the onset of the innate alloimmune response in recipients. These periods of injury to donor organs include conditions associated with donation after brain death (DBD) and donation after circulatory death (DCD). Particular emphasis in this discussion is placed on the different origins of RCD-associated DAMPs in DBD and DCD and the different routes they use within the circulatory system to reach potential allografts. The review ends by addressing another particularly critical period of injury to donor organs: their postischemic reperfusion following implantation into the recipient-a decisive factor in determining transplantation outcome. Here, the discussion focuses on mechanisms of ischemia-induced oxidative injury that causes RCD and generates DAMPs, which initiate a robust innate alloimmune response.
Collapse
Affiliation(s)
- Walter G. Land
- German Academy for Transplantation Medicine, Munich, Germany
- Laboratoire d'ImmunoRhumatologie Moléculaire, plateforme GENOMAX, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut Thématique Interdisciplinaire TRANSPLANTEX NG, Université de Strasbourg, Strasbourg, France
- Department of Integrated Medical Sciences, Medical Science Faculty, State University of Rio De Janeiro, Cabo Frio, Brazil
| | - Andreas Linkermann
- Department of Medicine V, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
5
|
Yan R, Yuan Y, Shi C, Li Y, Li Y, Wang W, Yang L. Kanglexin attenuates spinal cord injury by modulating pyroptosis and polarization via the PKA/NF-κB signaling pathway. Int Immunopharmacol 2025; 153:114401. [PMID: 40101425 DOI: 10.1016/j.intimp.2025.114401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/16/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Neuroinflammation is essential for intricate pathophysiologic mechanisms after spinal cord injury (SCI). Increasing evidence suggests that anthraquinones possess anti-inflammatory properties in central nervous system (CNS) disorders. However, the effects of Kanglexin (Klx), a novel synthetic anthraquinone compound, on SCI remain unknown. METHODS C57BL/6 mice were utilized to establish a contused SCI model to explore the in vivo neuroprotective and inflammatory modulatory effects of Klx. An inflammation model was also created in vitro using BV2 cells. Neuroprotective effects were assessed by evaluating motor function and neuropathologic alterations. Inflammation modulation was analyzed through markers of polarization and pyroptosis, with further mechanistic insights obtained via transcriptome sequencing. RESULTS Klx facilitated the recovery of hindlimb locomotor function and improved neuronal survival after SCI. Both in vitro and in vivo assays revealed that Klx inhibited NLRP3 inflammasome-induced pyroptosis. In addition, Klx promoted the polarization of microglia from the proinflammatory M1 phenotype to the anti-inflammatory M2 phenotype. Mechanistically, Klx enhanced PKA phosphorylation and suppressed NF-κB and IκBα phosphorylation, thereby reducing NF-κB nuclear translocation. CONCLUSION Klx demonstrated neuroprotective and inflammation-modulating effects on SCI, suggesting that it might offer a promising therapeutic alternative for SCI.
Collapse
Affiliation(s)
- Rongbao Yan
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China; NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Ye Yuan
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Ce Shi
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yang Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China; Joint Key Laboratory of Endemic Diseases(Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University), Harbin Medical University, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China; Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, China.
| | - Yang Li
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Wenbo Wang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Lei Yang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China; NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery of Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, China.
| |
Collapse
|
6
|
Li Z, Song X, Song J. Netrin-3 enhances recovery and reduces inflammation following spinal cord injury via suppressing NLRP1 inflammasome activation. Neuropeptides 2025; 111:102521. [PMID: 40367590 DOI: 10.1016/j.npep.2025.102521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/13/2025] [Accepted: 04/21/2025] [Indexed: 05/16/2025]
Abstract
Spinal cord injury (SCI) represents a significant challenge in the field of neurology due to its complex pathology and the limited efficacy of current treatments. The search for effective therapeutic strategies has led to investigations into molecules that can promote neural repair and functional recovery. Netrin-3, previously known for its roles in axonal guidance and development, emerges as a potential candidate for enhancing recovery post-SCI. Hereby, we used gene therapy to increase Netrin-3 expression in SCI mouse models and evaluated neurological recovery through behavioral tests, histological assessments, and biochemical analyses. Additionally, we examined the activation of the NOD-like receptor family pyrin domain containing 1 (NLRP1) inflammasome and production of interleukin-1β (IL-1β) and IL-18, and confirmed the dependency of Netrin-3's neuroprotective effects on the Adenosine Monophosphate-activated Protein Kinase (AMPK) pathway using an AMPK inhibitor. Our results explores the impact of Netrin-3 on neurological recovery following SCI. It was observed that Netrin-3 expression markedly decreased at both mRNA and protein levels after injury. Enhancing Netrin-3 levels through gene therapy improved neurological outcomes, including locomotor function, reduced lesion size, and normalized spinal cord water content compared to untreated injured mice. Furthermore, Netrin-3 administration mitigated oxidative stress by modulating malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity, and inhibited NLRP1 inflammasome activation, resulting in suppressed IL-1β and IL-18 production. The AMPK pathway was activated by Netrin-3 post-injury, suggesting a mechanism underlying its neuroprotective effects. However, these beneficial impacts were abolished by an AMPK inhibitor, indicating the dependency of Netrin-3's protective actions on the AMPK pathway. Collectively, these findings highlight Netrin-3 as a promising target for developing novel therapies aimed at improving restoration from SCI.
Collapse
Affiliation(s)
- Zhe Li
- Department of Orthopedics, Jinan University Affiliated Shunde Hospital, Foshan 528305, China
| | - Xinghua Song
- Department of Orthopedics, Jinan University Affiliated Shunde Hospital, Foshan 528305, China.
| | - Jialai Song
- Department of Orthopedics, Tianjin Medical University Second Clinical Medical College, Tianjin 300000, China
| |
Collapse
|
7
|
Wang Y, Cai D, Kong J, Zhu N, Guan J, Yang Z, Jia S, Huang J, Zheng W, Zheng X. CircGTF2H2C Regulates NLRP3 Dephosphorylation via Modulating PTPN11 Expression in Spinal Cord Injury. Mol Neurobiol 2025:10.1007/s12035-025-04877-7. [PMID: 40237951 DOI: 10.1007/s12035-025-04877-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/20/2025] [Indexed: 04/18/2025]
Abstract
Pathological changes following spinal cord injury (SCI) are characterized by a gradual enlargement of the lesion area, often leading to cavity formation, accompanied by reactive astrocytic hyperplasia and chronic inflammation. Chronic inflammation tends to stimulate astrocyte activation and spinal cavity cavitation. Post-SCI inflammation primarily results from the activation of M1/M2 microglia, with M1 microglia inducing the death of reactive astrocytes in rats, thereby promoting inflammation. Additionally, the NLRP3 inflammasome is critically involved in the post-SCI inflammatory response, as its activation leads to the release of pro-inflammatory cytokines, further contributing to secondary injury and functional impairment. This study aimed to investigate the molecular mechanisms through which circular RNAs (circRNAs), influence the inflammatory response following spinal cord injury, particularly focusing on its role in modulating NLRP3 activation. Animal and cell models were established, and the success of the models and the secretion of factors were evaluated using the BBB locomotor rating scale, RT-qPCR, and WB. The circular structure of circGTF2H2C was verified through AGE, RNase R treatment, and actinomycin D treatment. Additionally, we investigated the interactions between circGTF2H2C and PTPN11, including the analysis of NLRP3 phosphorylation status through WB and Co-IP. Lastly, potential miRNA interactions with circGTF2H2C and PTPN11 were explored through RNA pull-down assays and luciferase reporter assays to confirm binding relationships. This study confirmed that circGTF2H2C was up-regulated in SCI tissues. Experimental results demonstrated that circGTF2H2C regulated the expression of pro-inflammatory factors IL-1β and IL-18. Further investigation revealed that circGTF2H2C played a pro-inflammatory role by regulating the phosphorylation level of NLRP3, while PTPN11 was also found to contribute to SCI induction. In addition, circGTF2H2C also affected SCI by competitively binding miR-1323 to up-regulate PTPN11. In summary, circGTF2H2C regulates NLRP3 dephosphorylation via PTPN11 in spinal cord injury, highlighting its potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Yong Wang
- Department of Orthopedics, Taizhou Municipal Hospital, No. 581 East of Shifu Avenue Jiaojiang District, Taizhou, 318000, Zhejiang, China
| | - Danyang Cai
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, 317000, Zhejiang Province, China
| | - Jinsong Kong
- Department of Orthopedics, Taizhou Municipal Hospital, No. 581 East of Shifu Avenue Jiaojiang District, Taizhou, 318000, Zhejiang, China
| | - Ning Zhu
- Department of Orthopedics, Taizhou Municipal Hospital, No. 581 East of Shifu Avenue Jiaojiang District, Taizhou, 318000, Zhejiang, China
- Department of Pain Treatment, Taizhou Municipal Hospital, Taizhou, China
| | - Junhui Guan
- Department of Orthopedics, Taizhou Municipal Hospital, No. 581 East of Shifu Avenue Jiaojiang District, Taizhou, 318000, Zhejiang, China
| | - Zeyu Yang
- Department of Orthopedics, Taizhou Municipal Hospital, No. 581 East of Shifu Avenue Jiaojiang District, Taizhou, 318000, Zhejiang, China
| | - Shunjie Jia
- Department of Orthopedics, Taizhou Municipal Hospital, No. 581 East of Shifu Avenue Jiaojiang District, Taizhou, 318000, Zhejiang, China
| | - Jiehe Huang
- Department of Orthopedics, Taizhou Municipal Hospital, No. 581 East of Shifu Avenue Jiaojiang District, Taizhou, 318000, Zhejiang, China
| | - Wenbiao Zheng
- Department of Orthopedics, Taizhou Municipal Hospital, No. 581 East of Shifu Avenue Jiaojiang District, Taizhou, 318000, Zhejiang, China.
| | - Xin Zheng
- Department of Orthopedics, Taizhou Municipal Hospital, No. 581 East of Shifu Avenue Jiaojiang District, Taizhou, 318000, Zhejiang, China.
| |
Collapse
|
8
|
Hou Y, Zhang Y, Ma L, Luo D, Wang W, E. S, Huang C, Hou Y, Chen S, Zhan J, Xu L, Lin D. Tauroursodeoxycholic acid regulates macrophage/monocyte distribution and improves spinal microenvironment to promote nerve regeneration through inhibiting NF-κB signaling pathway in spinal cord injury. Front Pharmacol 2025; 16:1554945. [PMID: 40276612 PMCID: PMC12019990 DOI: 10.3389/fphar.2025.1554945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Introduction Following spinal cord injury (SCI), blood-borne monocytes infiltrate the spinal cord, differentiate into macrophages, and dominate the lesion site. Inflammatory responses mediated by macrophages determine nerve regeneration and functional recovery after SCI. Tauroursodeoxycholic acid (TUDCA) shows a neuroprotective effect in different SCI animal models. However, the underlying mechanism of TUDCA regulating monocytes/macrophages to impact nerve regeneration after SCI has not been elucidated clearly. This study aims to investigate the effect of TUDCA on monocyte/macrophage distribution and nerve regeneration in the subacute stage of SCI. Methods Transwell analysis, Bromodeoxyuridine (BrdU) staining, and TUNEL staining were performed to evaluate the effect of TUDCA on regulating the inflammatory response to impact spinal neural stem cells (NSCs) proliferation and migration, spinal neuron survival, and axon degeneration in vitro. H&E staining, RNA sequencing, and a series of immunofluorescent staining were performed to investigate the pathological progress, gene expression changes, monocytes/macrophages distribution, and nerve regeneration after TUDCA treatment in SCI mice. Results We found TUDCA restored spinal NSCs migration and proliferation and reduced spinal NSCs and neurons apoptosis and axon degeneration by regulating inflammatory response in vitro. TUDCA treatment promoted wound healing, down-regulated genes related to inflammatory response, and up-regulated genes related to spinal cord development in SCI mice. Conclusions Our study provided evidence that TUDCA treatment regulated monocyte/macrophage distribution and improved the microenvironment to promote nerve regeneration in SCI mice.
Collapse
Affiliation(s)
- Yonghui Hou
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yage Zhang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Ma
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- College of Physical Education and Health, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan Luo
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wanshun Wang
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shunmei E.
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong, China
| | | | - Yu Hou
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shudong Chen
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiheng Zhan
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Liangliang Xu
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dingkun Lin
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Zhu S, Hu Z, Xu S, Tu Y. Ticagrelor alleviates neuroinflammation after traumatic brain injury by inhibiting NLRP3 inflammasome-mediated pyroptosis. Neuroreport 2025; 36:306-313. [PMID: 40177828 DOI: 10.1097/wnr.0000000000002151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Traumatic brain injury (TBI) is often accompanied by secondary brain injury (SBI), with neuroinflammation being a core mechanism of SBI. Pyroptosis is a key driver of neuroinflammatory responses, and inhibiting pyroptosis can reduce neuroinflammation after TBI and promote tissue and functional recovery. The activation of the NLRP3 inflammasome mediates the classical pyroptosis pathway, and ticagrelor can inhibit NLRP3 inflammasome activation. This study aimed to investigate the differences in pyroptosis inhibition induced by TBI with different doses of ticagrelor by targeting the activation of the NLRP3 inflammasome. Mice were randomly divided into four groups: sham, TBI, 50 mg/kg ticagrelor treatment, and 150 mg/kg ticagrelor treatment. After 24 h of treatment, brain tissue surrounding the injury was collected for immunoblot detection of pyroptosis-related protein expression and ELISA detection of inflammatory cytokine release. On day 3 after treatment, BBB permeability and brain edema were assessed by injection of Evans blue and measurement of brain tissue water content. On day 7 after treatment, mice were sacrificed, and the extent of injury was assessed through hematoxylin and eosin and Nissl staining, while the levels of pyroptosis markers and neuroinflammation in brain tissue were detected by immunohistochemistry. On day 21 after treatment, the Morris water maze was used to evaluate neural function recovery. Compared with the TBI group, high-dose ticagrelor treatment inhibited pyroptosis in mouse brain tissue, reduced the release of inflammatory cytokines, alleviated brain edema, lowered neuroinflammation levels, and promoted neural function recovery (P < 0.05). Therefore, ticagrelor holds promise as a clinical drug for treating TBI.
Collapse
Affiliation(s)
| | | | - Shengxuan Xu
- School of Public Health, Nanjing Medical University
| | - Yiming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Montazeri-Khosh Z, Ebrahimpour A, Keshavarz M, Sheybani-Arani M, Samiei A. Combination therapies and other therapeutic approaches targeting the NLRP3 inflammasome and neuroinflammatory pathways: a promising approach for traumatic brain injury. Immunopharmacol Immunotoxicol 2025; 47:159-175. [PMID: 39762721 DOI: 10.1080/08923973.2024.2444956] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/15/2024] [Indexed: 03/29/2025]
Abstract
OBJECTIVES Traumatic brain injury (TBI) precipitates a neuroinflammatory cascade, with the NLRP3 inflammasome emerging as a critical mediator. This review scrutinizes the complex activation pathways of the NLRP3 inflammasome by underscoring the intricate interplay between calcium signaling, mitochondrial disturbances, redox imbalances, lysosomal integrity, and autophagy. It is hypothesized that a combination therapy approach-integrating NF-κB pathway inhibitors with NLRP3 inflammasome antagonists-holds the potential to synergistically dampen the inflammatory storm associated with TBI. METHODS A comprehensive analysis of literature detailing NLRP3 inflammasome activation pathways and therapeutic interventions was conducted. Empirical evidence supporting the concurrent administration of MCC950 and Rapamycin was reviewed to assess the efficacy of dual-action strategies compared to single-agent treatments. RESULTS Findings highlight potassium efflux and calcium signaling as novel targets for intervention, with cathepsin B inhibitors showing promise in mitigating neuroinflammation. Dual therapies, particularly MCC950 and Rapamycin, demonstrate enhanced efficacy in reducing neuroinflammation. Autophagy promotion, alongside NLRP3 inhibition, emerges as a complementary therapeutic avenue to reverse neuroinflammatory damage. CONCLUSION Combination therapies targeting the NLRP3 inflammasome and related pathways offer significant potential to enhance recovery in TBI patients. This review presents compelling evidence for the development of such strategies, marking a new frontier in neuroinflammatory research and therapeutic innovation.
Collapse
Affiliation(s)
- Zana Montazeri-Khosh
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ahmad Ebrahimpour
- Student Research Committee, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mina Keshavarz
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Afshin Samiei
- Tobacco and Health Research Center, Endocrinology and Metabolism Research Center, Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
11
|
Tian H, Zheng J, Wang F, Zhang W, Chen Y, Wang X, Wang X, Xi J, Hu J, Zhang Y. NLRP3 inflammasome promotes functional repair after spinal cord injury in mice by regulating autophagy and its mechanism. Int Immunopharmacol 2025; 149:114230. [PMID: 39922115 DOI: 10.1016/j.intimp.2025.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/25/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Inflammation at the injury site exacerbates tissue cell death following a spinal cord injury (SCI). Studies show that NLRP3 inflammasomes are crucial in the inflammation following Spinal Cord Injury, and NLRP3 inflammasomes have been shown to promote cells to undergo excessive autophagy in other diseases. Moreover, excessive autophagy levels could hinder functional repair post-SCI. In this regard, we hypothesized that inhibiting NLRP3 inflammasomes could reduce autophagy levels at the injury site, thus promoting functional repair post-SCI. METHODS Herein, a mouse SCI model was used for in vivo experiments, and an in vitro neuroinflammatory model created using LPS-activated BV2 cells was used for in vitro experiments. Histopathological staining was used to assess tissue repair. Western Blot (WB) and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) were used to detect changes in relevant autophagy molecules, macrophage polarization-related markers and downstream inflammatory factors, and Immunofluorescence (IF) was used to detect changes in macrophage polarization. RESULTS Following SCI, the inhibition of NLRP3 inflammasomes resulting from intraperitoneal injection of MCC950 significantly reduced autophagy levels at the injury site, resulting in both histological and behavioral improvements. In addition, the phosphorylation of mTOR during inhibition of NLRP3 inflammasomes to reduce autophagy levels further improved the immune microenvironment at the injury site, and M2-type macrophages were significantly upregulated M2-type macrophages. Moreover, in vitro experiments yielded results consistent with those of in vivo experiments regarding changes in autophagy-related indexes and polarization-related markers. CONCLUSIONS Inhibition of NLRP3 inflammasomes can reduce autophagy level at the injury site to promote functional recovery and play a neuroprotective role. Moreover, phosphorylation of mTOR during the process of inhibition of NLRP3 inflammasomes to reduce autophagy, leading to reduced autophagy levels, could improve the immune microenvironment at the injury site, thus promoting functional recovery and histopathological repair post-SCI.
Collapse
Affiliation(s)
- Haozhe Tian
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Juan Zheng
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Fangli Wang
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Wenjing Zhang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases Bengbu China; Clinical laboratory of The First Affiliated Hospital of Bengbu Medical University Bengbu China
| | - Yuqing Chen
- School of Laboratory Medicine Bengbu Medical University Bengbu China
| | - Xiangshu Wang
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Xiaoxuan Wang
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Jin Xi
- Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Jianguo Hu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases Bengbu China; Clinical laboratory of The First Affiliated Hospital of Bengbu Medical University Bengbu China.
| | - Yuxin Zhang
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China.
| |
Collapse
|
12
|
He X, Deng B, Zhang C, Zhang G, Yang F, Zhu D, Yang Y, Ma B, Hu X, Wang Y, Kang X. HSPA1A inhibits pyroptosis and neuroinflammation after spinal cord injury via DUSP1 inhibition of the MAPK signaling pathway. Mol Med 2025; 31:53. [PMID: 39924492 PMCID: PMC11809008 DOI: 10.1186/s10020-025-01086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/16/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Inflammation and proinflammatory programmed cell death, referred to as pyroptosis, are important causes of poor functional recovery after traumatic spinal cord injury (TSCI). Heat shock protein family A member 1A (HSPA1A) is a molecular chaperone protein that is highly expressed after TSCI and is thought to be neuroprotective. However, the mechanisms underlying the protective effects of HSPA1A after TSCI are unclear. METHODS The levels of pyroptosis and inflammation after TSCI were determined by enzyme-linked immunosorbent assay (ELISA) and western blotting analysis. The role of HSPA1A in regulating pyroptosis and inflammation in TSCI was verified by in vivo and in vitro experiments. The molecular mechanism of the effects of HSPA1A in TSCI was elucidated by bioinformatics and coimmunoprecipitation analyses. RESULTS Pyroptosis and inflammation are significantly increased after TSCI. HSPA1A overexpression in microglia attenuated nigericin- and lipopolysaccharide (LPS)-induced pyroptosis and inflammation in vitro, whereas knockdown of HSPA1A aggravated pyroptosis and inflammation. In vivo, overexpression of HSPA1A reduced tissue damage, nerve cell death, pyroptosis, and inflammation in TSCI rats and promoted functional recovery. Mechanistically, we identified that HSPA1A interacts with dual specificity phosphatase 1 (DUSP1) and inhibits activation of the mitogen-activated protein kinase (MAPK) pathway, thereby attenuating pyroptosis and inflammation. CONCLUSION HSPA1A reduces pyroptosis and inflammation after TSCI by upregulating DUSP1 and inhibiting MAPK pathway activation. HSPA1A activation has potential as a therapeutic approach to promote functional recovery after TSCI.
Collapse
Affiliation(s)
- Xuegang He
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Bo Deng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Cangyu Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Fengguang Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Daxue Zhu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Yong Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Bing Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Xuchang Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China.
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China.
| | - Yonggang Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China.
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China.
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China.
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
13
|
Gu HY, Liu N. Mechanism of effect and therapeutic potential of NLRP3 inflammasome in spinal cord injury. Exp Neurol 2025; 384:115059. [PMID: 39571746 DOI: 10.1016/j.expneurol.2024.115059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Spinal cord injury (SCI) is a serious and disabling central nervous system injury that can trigger various neuropathological conditions, resulting in neuronal damage and release of various pro-inflammatory mediators, leading to neurological dysfunction. Currently, surgical decompression, drugs and rehabilitation are primarily used to relieve symptoms and improve endogenous repair mechanisms; however, they cannot directly promote nerve regeneration and functional recovery. SCI can be divided into primary and secondary injuries. Secondary injury is key to determining the severity of injury, whereas inflammation and cell death are important pathological mechanisms in the process of secondary SCI. The activation of the inflammasome complex is thought to be a necessary step in neuro-inflammation and a key trigger for neuronal death. The NLRP3 inflammasome is a cytoplasmic multiprotein complex that is considered an important factor in the development of SCI. Once the NLRP3 inflammasome is activated after SCI, NLRP3 nucleates the assembly of an inflammasome, leading to caspase 1-mediated proteolytic activation of the interleukin-1β (IL-1β) family of cytokines, and induces an inflammatory, pyroptotic cell death. Inhibition of inflammasomes can effectively inhibit inflammation and cell death in the body and promote the recovery of nerve function after SCI. Therefore, inhibition of NLRP3 inflammasome activation may be a promising approach for the treatment of SCI. In this review, we describe the current understanding of NLRP3 inflammasome activation in SCI pathogenesis and its subsequent impact on SCI and summarize drugs and other potential inhibitors based on NLRP3 inflammasome regulation. The objective of this study was to emphasize the role of the NLRP3 inflammasome in SCI, and provide a new therapeutic strategy and theoretical basis for targeting the NLRP3 inflammasome as a therapy for SCI.
Collapse
Affiliation(s)
- Hou-Yun Gu
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital), Southern Medical University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| | - Ning Liu
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital), Southern Medical University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
14
|
Cáceres E, Olivella JC, Di Napoli M, Raihane AS, Divani AA. Immune Response in Traumatic Brain Injury. Curr Neurol Neurosci Rep 2024; 24:593-609. [PMID: 39467990 PMCID: PMC11538248 DOI: 10.1007/s11910-024-01382-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/30/2024]
Abstract
PURPOSE OF REVIEW This review aims to comprehensively examine the immune response following traumatic brain injury (TBI) and how its disruption can impact healing and recovery. RECENT FINDINGS The immune response is now considered a key element in the pathophysiology of TBI, with consequences far beyond the acute phase after injury. A delicate equilibrium is crucial for a healthy recovery. When this equilibrium is disrupted, chronic inflammation and immune imbalance can lead to detrimental effects on survival and disability. Globally, traumatic brain injury (TBI) imposes a substantial burden in terms of both years of life lost and years lived with disability. Although its epidemiology exhibits dynamic trends over time and across regions, TBI disproportionally affects the younger populations, posing psychosocial and financial challenge for communities and families. Following the initial trauma, the primary injury is succeeded by an inflammatory response, primarily orchestrated by the innate immune system. The inflammasome plays a pivotal role during this stage, catalyzing both programmed cell death pathways and the up-regulation of inflammatory cytokines and transcription factors. These events trigger the activation and differentiation of microglia, thereby intensifying the inflammatory response to a systemic level and facilitating the migration of immune cells and edema. This inflammatory response, initially originated in the brain, is monitored by our autonomic nervous system. Through the vagus nerve and adrenergic and cholinergic receptors in various peripheral lymphoid organs and immune cells, bidirectional communication and regulation between the immune and nervous systems is established.
Collapse
Affiliation(s)
- Eder Cáceres
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia.
- School of Medicine, Universidad de La Sabana, Chía, Colombia.
- Bioscience PhD. School of Engineering, Universidad de La Sabana, Chía, Colombia.
| | | | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| | - Ahmed S Raihane
- School of Medicine, University of New Mexico, Albuquerque, NM, USA
- Department of Neurology, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico Health Science Center, Albuquerque, NM, USA
| |
Collapse
|
15
|
Geng Y, Lou J, Wu J, Tao Z, Yang N, Kuang J, Wu Y, Zhang J, Xiang L, Shi J, Cai Y, Wang X, Chen J, Xiao J, Zhou K. NEMO-Binding Domain/IKKγ Inhibitory Peptide Alleviates Neuronal Pyroptosis in Spinal Cord Injury by Inhibiting ASMase-Induced Lysosome Membrane Permeabilization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405759. [PMID: 39225315 PMCID: PMC11516130 DOI: 10.1002/advs.202405759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/16/2024] [Indexed: 09/04/2024]
Abstract
A short peptide termed NEMO-binding domain (NBD) peptide has an inhibitory effect on nuclear factor kappa-B (NF-κB). Despite its efficacy in inhibiting inflammatory responses, the precise neuroprotective mechanisms of NBD peptide in spinal cord injury (SCI) remain unclear. This study aims to determine whether the pyroptosis-related aspects involved in the neuroprotective effects of NBD peptide post-SCI.Using RNA sequencing, the molecular mechanisms of NBD peptide in SCI are explored. The evaluation of functional recovery is performed using the Basso mouse scale, Nissl staining, footprint analysis, Masson's trichrome staining, and HE staining. Western blotting, enzyme-linked immunosorbent assays, and immunofluorescence assays are used to examine pyroptosis, autophagy, lysosomal membrane permeabilization (LMP), acid sphingomyelinase (ASMase), and the NF-κB/p38-MAPK related signaling pathway.NBD peptide mitigated glial scar formation, reduced motor neuron death, and enhanced functional recovery in SCI mice. Additionally, NBD peptide inhibits pyroptosis, ameliorate LMP-induced autophagy flux disorder in neuron post-SCI. Mechanistically, NBD peptide alleviates LMP and subsequently enhances autophagy by inhibiting ASMase through the NF-κB/p38-MAPK/Elk-1/Egr-1 signaling cascade, thereby mitigating neuronal death. NBD peptide contributes to functional restoration by suppressing ASMase-mediated LMP and autophagy depression, and inhibiting pyroptosis in neuron following SCI, which may have potential clinical application value.
Collapse
Affiliation(s)
- Yibo Geng
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Junsheng Lou
- Department of Orthopedic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Junnan Wu
- Department of PharmacyThe Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhou People's HospitalQuzhou324000China
| | - Zhichao Tao
- Renji College of Wenzhou Medical UniversityWenzhou325027China
| | - Ningning Yang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Jiaxuan Kuang
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
| | - Yuzhe Wu
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Jiacheng Zhang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Linyi Xiang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Jingwei Shi
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
| | - Yuepiao Cai
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
- Molecular Pharmacology Research CenterSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhou325027China
| | - Xiangyang Wang
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Jiaoxiang Chen
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
| | - Jian Xiao
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
- Molecular Pharmacology Research CenterSchool of Pharmaceutical ScienceWenzhou Medical UniversityWenzhou325027China
| | - Kailiang Zhou
- Department of OrthopaedicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
- Zhejiang Provincial Key Laboratory of OrthopaedicsWenzhou325027China
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315300China
| |
Collapse
|
16
|
Sha S, Jin N, Xie X, Zhou R, Ruan Y, Ouyang Y. Ethyl pyruvate alleviates NLRP3/Caspase-1/GSDMD-mediated neuronal pyroptosis in neonatal rats with hypoxic-ischemic brain damage. Int J Dev Neurosci 2024; 84:594-604. [PMID: 38940222 DOI: 10.1002/jdn.10357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
Pyroptosis is an inflammation-associated programmed cell death, and neuroinflammation is strongly associated with severe neurological deficits in neonatal hypoxic-ischemic encephalopathy (HIE). Ethyl pyruvate (EP), a known anti-inflammatory agent, has shown promise in the treatment of hypoxic-ischemic brain damage (HIBD) rats; nevertheless, the therapeutic mechanism of EP and its capacity to suppress neuronal pyroptosis in HIBD rats remain unclear. In both the neonatal Rice-Vannucci rat model and the OGD/R model, this study examined alterations in the NLRP3/Caspase-1/GSDMD classical pyroptosis pathway in hippocampal neurons during HIE and the potential inhibitory impact of ethyl pyruvate on this pathway. We used HE staining, immunofluorescence double staining, transmission electron microscopy, and western blot to demonstrate that EP effectively inhibited hippocampal neuronal pyroptosis and attenuated the activation of the NLRP3/Caspase-1/GSDMD signaling pathway in HIBD rats, which resulted in a reduction of neuroinflammation and facilitated neural recovery. The results suggest that EP may be a promising neuroprotective agent for treating HIE.
Collapse
Affiliation(s)
- Sha Sha
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ni Jin
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinyi Xie
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruiyu Zhou
- Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanghao Ruan
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Ying Ouyang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Gökten M, Zırh S, Sezer C, Zırh EB, Gökten DB. Beyond expectations: safinamide's unprecedented neuroprotective impact on acute spinal cord injury. Eur J Trauma Emerg Surg 2024; 50:2569-2577. [PMID: 38602541 DOI: 10.1007/s00068-024-02513-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/30/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) is the most common preventable cause of morbidity. Despite rapid advances in medicine, effective pharmacological treatment against SCI has not yet been confirmed. This study aimed to investigate the possible anti-inflammatory, antiapoptotic, and neuroprotective effects of safinamide after SCI in a rat model. METHODS A total of 40 male Wistar albino rats were randomly divided into four groups. Group 1 underwent only laminectomy. Group 2 underwent SCI after laminectomy. In group 3, SCI was performed after laminectomy, and immediately afterward, intraperitoneal physiological saline solution was administered. In group 4, SCI was performed after laminectomy, and 90 mg/kg of safinamide was given intraperitoneally immediately afterward. Moderate spinal cord damage was induced at the level of thoracic vertebra nine (T9). Neuromotor function tests were performed and levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) were measured. In both serum and spinal cord tissue, immunohistochemistry and histopathology studies were also conducted. RESULTS TNF-α, IL-1β, and IL-6 levels were found to be significantly increased in group 2 and group 3. In group 4, these levels were statistically significantly decreased. Group 4 also exhibited significant improvement in neuromotor function tests compared to the other groups. Histopathologically, it was found that group 4 showed significantly reduced inflammation and apoptosis compared to the other groups. CONCLUSION This study revealed that safinamide has neuroprotective effects against SCI due to its anti-inflammatory, antiapoptotic, and antioxidant activities.
Collapse
Affiliation(s)
| | - Selim Zırh
- Department of Histology, Binali Yıldırım University, Erzincan, Turkey
| | - Can Sezer
- Department of Neurosurgery, University of Health Sciences, Adana City Training and Research Hospital, Adana, Turkey
| | - Elham Bahador Zırh
- Department of Histology, TOBB University of Economics and Technology, Ankara, Turkey
| | - Dilara Bulut Gökten
- Department of Internal Medicine-Rheumatology, Tekirdag Namik Kemal University, Tekirdag, Turkey
| |
Collapse
|
18
|
Li F, Sun X, Sun K, Kong F, Jiang X, Kong Q. Lupenone improves motor dysfunction in spinal cord injury mice through inhibiting the inflammasome activation and pyroptosis in microglia via the nuclear factor kappa B pathway. Neural Regen Res 2024; 19:1802-1811. [PMID: 38103247 PMCID: PMC10960275 DOI: 10.4103/1673-5374.389302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 07/27/2023] [Accepted: 09/13/2023] [Indexed: 12/18/2023] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202408000-00034/figure1/v/2023-12-16T180322Z/r/image-tiff Spinal cord injury-induced motor dysfunction is associated with neuroinflammation. Studies have shown that the triterpenoid lupenone, a natural product found in various plants, has a remarkable anti-inflammatory effect in the context of chronic inflammation. However, the effects of lupenone on acute inflammation induced by spinal cord injury remain unknown. In this study, we established an impact-induced mouse model of spinal cord injury, and then treated the injured mice with lupenone (8 mg/kg, twice a day) by intraperitoneal injection. We also treated BV2 cells with lipopolysaccharide and adenosine 5'-triphosphate to simulate the inflammatory response after spinal cord injury. Our results showed that lupenone reduced IκBα activation and p65 nuclear translocation, inhibited NLRP3 inflammasome function by modulating nuclear factor kappa B, and enhanced the conversion of proinflammatory M1 microglial cells into anti-inflammatory M2 microglial cells. Furthermore, lupenone decreased NLRP3 inflammasome activation, NLRP3-induced microglial cell polarization, and microglia pyroptosis by inhibiting the nuclear factor kappa B pathway. These findings suggest that lupenone protects against spinal cord injury by inhibiting inflammasomes.
Collapse
Affiliation(s)
- Fudong Li
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopedic Surgery, Spine Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaofei Sun
- Department of Orthopedic Surgery, Spine Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Kaiqiang Sun
- Department of Orthopedic Surgery, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Fanqi Kong
- Department of Orthopedic Surgery, Spine Center, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xin Jiang
- Department of Anesthesiology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qingjie Kong
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Yang H, Hu B, Wang X, Chen W, Zhou H. The effects of hyaluronan and proteoglycan link protein 1 (HAPLN1) in ameliorating spinal cord injury mediated by Nrf2. Biotechnol Appl Biochem 2024; 71:929-939. [PMID: 38607990 DOI: 10.1002/bab.2587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/23/2024] [Indexed: 04/14/2024]
Abstract
Excessive inflammatory response and oxidative stress (OS) play an important role in the pathogenesis of spinal cord injury (SCI). Balance of inflammation and prevention of OS have been considered an effective strategy for the treatment of SCI. Hyaluronan and proteoglycan link protein 1 (HAPLN1), also known as cartilage link protein, has displayed a wide range of biological and physiological functions in different types of tissues and cells. However, whether HAPLN1 regulates inflammation and OS during SCI is unknown. Therefore, we aimed to examine whether HAPLN1 can have a protective effect on SCI. In this study, both in vitro and in vivo SCI models were established. Nissl staining and terminal deoxynucleotidyl transferase dUTP nick end labeling staining assays were used. Western blotting and enzyme-linked immunosorbent assay were employed to assess the expression of proteins. Our results demonstrate that the administration of HAPLN1 promoted the recovery of motor neurons after SCI by increasing the Basso mouse scale score, increasing the numbers of motor neurons, and preventing apoptosis of spinal cord cells. Additionally, HAPLN1 mitigated OS in spinal cord tissue after SCI by increasing the content of superoxide dismutase SOD and the activity of glutathione peroxidase but reducing the levels of malondialdehyde. Importantly, we found that HAPLN1 stimulated the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway and stimulated the expression of heme oxygenase-1 and nicotinamide adenine dinucleotide phosphate quinone oxidoreductase-1, which mediated the attenuation of HAPLN1 in activation of the NOD-like receptor protein 3 (NLRP3) inflammasome by reducing the levels of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), caspase-1, and interleukin-1β. Correspondingly, in vitro experiments show that the presence of HAPLN1 suppressed the NLRP3 inflammasome and prevented cell injury against H2O2 in PC12 cells. These effects were mediated by the Nrf2/ARE pathway, and inhibition of Nrf2 with ML385 abolished the beneficial effects of HAPLN1. Based on these findings, we conclude that HAPLN1 inhibits the NLRP3 inflammasome through the stimulation of the Nrf2/ARE pathway, thereby suppressing neuroinflammation, enhancing motor neuronal survival, and improving the recovery of nerve function after SCI.
Collapse
Affiliation(s)
- Hongzhi Yang
- Department of Orthopaedics, Jiujiang No. 1 People's Hospital, Jiujiang, Jiangxi, China
| | - Bin Hu
- Department of Orthopaedics, Jiujiang No. 1 People's Hospital, Jiujiang, Jiangxi, China
| | - Xichun Wang
- Department of Orthopaedics, Jiujiang No. 1 People's Hospital, Jiujiang, Jiangxi, China
| | - Wenjie Chen
- Department of Orthopaedics, Jiujiang No. 1 People's Hospital, Jiujiang, Jiangxi, China
| | - Huanbin Zhou
- Department of Orthopaedics, Jiujiang No. 1 People's Hospital, Balihu General Hospital, Jiujiang, Jiangxi, China
| |
Collapse
|
20
|
Khoshnavay Foumani M, Amirshahrokhi K, Namjoo Z, Niapour A. Carvedilol attenuates inflammatory reactions of lipopolysaccharide-stimulated BV2 cells and modulates M1/M2 polarization of microglia via regulating NLRP3, Notch, and PPAR-γ signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4727-4736. [PMID: 38133658 DOI: 10.1007/s00210-023-02914-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Microglial cells coordinate immune responses in the central nervous system. Carvedilol (CVL) is a non-selective β-blocker with anti-inflammatory and anti-oxidant effects. This study aims to investigate the anti-inflammatory effects and the underlying mechanisms of CVL on lipopolysaccharide (LPS)-induced inflammation in microglial BV2 cells. BV2 cells were stimulated with LPS, and the protective effects of CVL were investigated via measurement of cell viability, reactive oxygen species (ROS), and interleukin (IL)-1β liberation. The protein levels of some inflammatory cascade, Notch, and peroxisome proliferator-activated receptor (PPAR)-γ pathways and relative markers of M1/M2 microglial phenotypes were assessed. Neuroblastoma SH-SY5Y cells were cultured with a BV2-conditioned medium (CM), and the capacity of CVL to protect cell viability was evaluated. CVL displayed a protective effect against LPS stress through reducing ROS and down-regulating of nuclear factor kappa B (NF-κB) p65, NLR family pyrin domain containing-3 (NLRP3), and IL-1β proteins. LPS treatment significantly increased the levels of the M1 microglial marker inducible nitric oxide synthase (iNOS) and M1-associated cleaved-NOTCH1 and hairy and enhancer of split-1 (HES1) proteins. Conversely, LPS treatment reduced the levels of the M2 marker arginase-1 (Arg-1) and PPAR-γ proteins. CVL pre-treatment reduced the protein levels of iNOS, cleaved-NOTCH1, and HES1, while increased Arg-1 and PPAR-γ. CM of CVL-primed BV2 cells significantly improved SH-SY5Y cell viability as compared with the LPS-induced cells. CVL suppressed ROS production and alleviated the expression of inflammatory markers in LPS-stimulated BV2 cells. Our results demonstrated that targeting Notch and PPAR-γ pathways as well as directing BV2 cell polarization toward the M2 phenotype may provide a therapeutic strategy to suppress neuroinflammation by CVL.
Collapse
Affiliation(s)
- Mohammadjavad Khoshnavay Foumani
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Keyvan Amirshahrokhi
- Department of Pharmacology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zeinab Namjoo
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Ali Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
21
|
Abu-Baih RH, Ibrahim MFG, Elhamadany EY, Abu-Baih DH. Irbesartan mitigates the impact of cyclophosphamide-induced acute neurotoxicity in rats: Shedding highlights on NLRP3 inflammasome/CASP-1 pathway-driven immunomodulation. Int Immunopharmacol 2024; 135:112336. [PMID: 38801809 DOI: 10.1016/j.intimp.2024.112336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
IIrbesartan (IRB), an angiotensin II type 1 receptor (AT1R) antagonist, has been widely employed in the medical field for its effectiveness in managing hypertension. However, there have been no documented investigations regarding the immunostimulatory properties of IRB. To address this gap, this study has been performed to assess the neuroprotective impact of IRB as an immunostimulatory agent in mitigating acute neurotoxicity induced by cyclophosphamide (CYP) in rats. mRNA levels of nuclear factor erythroid 2 (Nrf-2), interleukin (IL)-18, IL-1β, and MMP-1 have been assessed using quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the levels of malondialdehyde (MDA), reduced glutathione (GSH), and superoxide dismutase (SOD) has been evaluated to assess the oxidative stress. Additionally, macrophage inflammatory protein 2 (MIP2) has been evaluated using enzyme-linked immunosorbent assay (ELISA). Western blotting has been used to investigate the protein expression of nucleotide binding oligomerization domain-like receptor protein 3 (NLRP3) and caspase-1 (CASP-1), along with an assessment of histopathological changes. Administration of IRB protected against oxidative stress by augmenting the levels of GSH and SOD as well as reducing MDA level. Also, administration of IRB led to a diminishment in the brain levels of MIP2 and MMP1. Furthermore, it led to a suppression of IL-1β and IL-18 levels, which are correlated with a reduction in the abundance of NLRP3 and subsequently CASP-1. This study provides new insights into the immunomodulatory effects of IRB in the context of CYP-induced acute neurotoxicity. Specifically, IRB exerts its effects by reducing oxidative stress, neuroinflammation, inhibiting chemokine recruitment, and mitigating neuronal degeneration through the modulation of immune markers. Therefore, it can be inferred that the use of IRB as an immunomodulator has the potential to effectively mitigate immune disorders associated with inflammation.
Collapse
Affiliation(s)
- Rania H Abu-Baih
- Drug Information Center, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | | | - Eyad Y Elhamadany
- Deraya Center for Scientific Research, Deraya University, Minia 61111, Egypt.
| | - Dalia H Abu-Baih
- Deraya Center for Scientific Research, Deraya University, Minia 61111, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| |
Collapse
|
22
|
Lou Y, Li Z, Zheng H, Yuan Z, Li W, Zhang J, Shen W, Gao Y, Ran N, Kong X, Feng S. New strategy to treat spinal cord injury: Nafamostat mesilate suppressed NLRP3-mediated pyroptosis during acute phase. Int Immunopharmacol 2024; 134:112190. [PMID: 38703569 DOI: 10.1016/j.intimp.2024.112190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Spinal cord injury (SCI) is a devastating condition for which effective clinical treatment is currently lacking. During the acute phase of SCI, myriad pathological changes give rise to subsequent secondary injury. The results of our previous studies indicated that treating rats post-SCI with nafamostat mesilate (NM) protected the blood-spinal cord barrier (BSCB) and exerted an antiapoptotic effect. However, the optimal dosage for mice with SCI and the underlying mechanisms potentially contributing to recovery, especially during the acute phase of SCI, have not been determined. In this study, we first determined the optimal dosage of NM for mice post-SCI (5 mg/kg/day). Subsequently, our RNA-seq findings revealed that NM has the potential to inhibit pyroptosis after SCI. These findings were further substantiated by subsequent Western blot (WB) and Immunofluorescence (IF) analyses in vivo. These results indicate that NM can alleviate NLRP3 (NOD-like receptor thermal protein domain associated protein 3)-mediated pyroptosis by modulating the NF-κB signaling pathway and reducing the protein expression levels of NIMA-related kinase 7 (NEK7) and cathepsin B (CTSB). In vitro experimental results supported our in vivo findings, revealing the effectiveness of NM in suppressing pyroptosis induced by adenosine triphosphate (ATP) and lipopolysaccharide (LPS) in BV2 cells. These results underscore the potential of NM to regulate NLRP3-mediated pyroptosis following SCI. Notably, compared with other synthetic compounds, NM exhibits greater versatility, suggesting that it is a promising clinical treatment option for SCI.
Collapse
Affiliation(s)
- Yongfu Lou
- Department of Orthopedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Zonghao Li
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China
| | - Han Zheng
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China
| | - Zhongze Yuan
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China
| | - Wenxiang Li
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China
| | - Jianping Zhang
- Division of Surgery and Interventional Science, University College London, London HA7 4LP, United Kingdom
| | - Wenyuan Shen
- Department of Orthopedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Yiming Gao
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China
| | - Ning Ran
- Department of Orthopedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China.
| | - Xiaohong Kong
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China.
| | - Shiqing Feng
- Department of Orthopedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China.
| |
Collapse
|
23
|
Cao Q, Gu L, Wang L, Sun G, Ying T, Su H, Wang W, Sun Z. Resveratrol alleviates endoplasmic reticulum stress-induced cell death and improves functional prognosis after traumatic brain injury in mice. J Appl Biomed 2024; 22:99-106. [PMID: 38912865 DOI: 10.32725/jab.2024.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 03/27/2024] [Indexed: 06/25/2024] Open
Abstract
Resveratrol (RSV) is a polyphenol antioxidant that has been shown to have neuroprotective effects. We sought molecular mechanisms that emphasize the anti-inflammatory activity of RSV in traumatic brain injury (TBI) in mice associated with endoplasmic reticulum stress (ERS). After establishing three experimental groups (sham, TBI, and TBI+RSV), we explored the results of RSV after TBI on ERS and caspase-12 apoptotic pathways. The expression levels of C/EBP homologous protein (CHOP), glucose regulated protein 78kD (GRP78), caspase-3, and caspase-12 in cortical brain tissues were assessed by western blotting. The qPCR analysis was also performed on mRNA expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in cortical brain tissue. In addition, the expression of GRP78 in microglia (ionized calcium binding adaptor molecule 1; Iba-1) and neurons (neuronal nuclei; NeuN) was identified by immunofluorescence staining. The neurological function of mice was assessed by modified neurological severity scores (mNSS). After drug treatment, the expression of CHOP, GRP78, caspase-3 and caspase-12 decreased, and qPCR results showed that TNF-α and IL-1β were down-regulated. Immunofluorescence staining showed down-regulation of Iba-1+/GRP78+ and NeuN+/GRP78+ cells after RSV treatment. The mNSS analysis confirmed improvement after RSV treatment. RSV improved apoptosis by downregulating the ERS signaling pathway and improved neurological prognosis in mice with TBI.
Collapse
Affiliation(s)
- Qinghua Cao
- The First Affiliated Hospital of Ningbo University, Department of Neurology, Ningbo 315000, China
| | - Lei Gu
- Ningbo Medical Center Lihuili Hospital, Department of Rehabilitation, Ningbo 315000, China
| | - Liangzhu Wang
- The First Affiliated Hospital of Ningbo University, Department of Neurology, Ningbo 315000, China
| | - Guangling Sun
- The First Affiliated Hospital of Ningbo University, Department of Neurology, Ningbo 315000, China
| | - Tao Ying
- The First Affiliated Hospital of Ningbo University, Department of Neurology, Ningbo 315000, China
| | - Hang Su
- The First Affiliated Hospital of Ningbo University, Department of Neurology, Ningbo 315000, China
| | - Wei Wang
- The First Affiliated Hospital of Ningbo University, Department of Neurology, Ningbo 315000, China
| | - Zhezhe Sun
- The First Affiliated Hospital of Ningbo University, Department of Neurology, Ningbo 315000, China
| |
Collapse
|
24
|
Haque I, Thapa P, Burns DM, Zhou J, Sharma M, Sharma R, Singh V. NLRP3 Inflammasome Inhibitors for Antiepileptogenic Drug Discovery and Development. Int J Mol Sci 2024; 25:6078. [PMID: 38892264 PMCID: PMC11172514 DOI: 10.3390/ijms25116078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Epilepsy is one of the most prevalent and serious brain disorders and affects over 70 million people globally. Antiseizure medications (ASMs) relieve symptoms and prevent the occurrence of future seizures in epileptic patients but have a limited effect on epileptogenesis. Addressing the multifaceted nature of epileptogenesis and its association with the Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediated neuroinflammation requires a comprehensive understanding of the underlying mechanisms of these medications for the development of targeted therapeutic strategies beyond conventional antiseizure treatments. Several types of NLRP3 inhibitors have been developed and their effect has been validated both in in vitro and in vivo models of epileptogenesis. In this review, we discuss the advances in understanding the regulatory mechanisms of NLRP3 activation as well as progress made, and challenges faced in the development of NLRP3 inhibitors for the treatment of epilepsy.
Collapse
Affiliation(s)
- Inamul Haque
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
- Department of Math, Science and Business Technology, Kansas City Kansas Community College, Kansas City, KS 66112, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Pritam Thapa
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO 64128, USA
| | - Douglas M. Burns
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
| | - Jianping Zhou
- Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Mukut Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO 64128, USA
- Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Ram Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
| | - Vikas Singh
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO 64128, USA
- Division of Neurology, Kansas City VA Medical Center, Kansas City, MO 64128, USA
| |
Collapse
|
25
|
Liu T, Ma Z, Liu L, Pei Y, Wu Q, Xu S, Liu Y, Ding N, Guan Y, Zhang Y, Chen X. Conditioned medium from human dental pulp stem cells treats spinal cord injury by inhibiting microglial pyroptosis. Neural Regen Res 2024; 19:1105-1111. [PMID: 37862215 PMCID: PMC10749599 DOI: 10.4103/1673-5374.385309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/05/2023] [Accepted: 07/12/2023] [Indexed: 10/22/2023] Open
Abstract
Human dental pulp stem cell transplantation has been shown to be an effective therapeutic strategy for spinal cord injury. However, whether the human dental pulp stem cell secretome can contribute to functional recovery after spinal cord injury remains unclear. In the present study, we established a rat model of spinal cord injury based on impact injury from a dropped weight and then intraperitoneally injected the rats with conditioned medium from human dental pulp stem cells. We found that the conditioned medium effectively promoted the recovery of sensory and motor functions in rats with spinal cord injury, decreased expression of the microglial pyroptosis markers NLRP3, GSDMD, caspase-1, and interleukin-1β, promoted axonal and myelin regeneration, and inhibited the formation of glial scars. In addition, in a lipopolysaccharide-induced BV2 microglia model, conditioned medium from human dental pulp stem cells protected cells from pyroptosis by inhibiting the NLRP3/caspase-1/interleukin-1β pathway. These results indicate that conditioned medium from human dental pulp stem cells can reduce microglial pyroptosis by inhibiting the NLRP3/caspase-1/interleukin-1β pathway, thereby promoting the recovery of neurological function after spinal cord injury. Therefore, conditioned medium from human dental pulp stem cells may become an alternative therapy for spinal cord injury.
Collapse
Affiliation(s)
- Tao Liu
- Department of Orthopedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Ziqian Ma
- Department of Orthopedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Liang Liu
- Department of Orthopedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yilun Pei
- Department of Orthopedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Qichao Wu
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Songjie Xu
- Department of Orthopedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yadong Liu
- Department of Orthopedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Nan Ding
- Department of Stomatology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurological Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yan Zhang
- Department of Orthopedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xueming Chen
- Department of Orthopedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Pordel S, McCloskey AP, Almahmeed W, Sahebkar A. The protective effects of statins in traumatic brain injury. Pharmacol Rep 2024; 76:235-250. [PMID: 38448729 DOI: 10.1007/s43440-024-00582-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Traumatic brain injury (TBI), often referred to as the "silent epidemic", is the most common cause of mortality and morbidity worldwide among all trauma-related injuries. It is associated with considerable personal, medical, and economic consequences. Although remarkable advances in therapeutic approaches have been made, current treatments and clinical management for TBI recovery still remain to be improved. One of the factors that may contribute to this gap is that existing therapies target only a single event or pathology. However, brain injury after TBI involves various pathological mechanisms, including inflammation, oxidative stress, blood-brain barrier (BBB) disruption, ionic disturbance, excitotoxicity, mitochondrial dysfunction, neuronal necrosis, and apoptosis. Statins have several beneficial pleiotropic effects (anti-excitotoxicity, anti-inflammatory, anti-oxidant, anti-thrombotic, immunomodulatory activity, endothelial and vasoactive properties) in addition to promoting angiogenesis, neurogenesis, and synaptogenesis in TBI. Supposedly, using agents such as statins that target numerous and diverse pathological mechanisms, may be more effective than a single-target approach in TBI management. The current review was undertaken to investigate and summarize the protective mechanisms of statins against TBI. The limitations of conducted studies and directions for future research on this potential therapeutic application of statins are also discussed.
Collapse
Affiliation(s)
- Safoora Pordel
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alice P McCloskey
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
Zhao H, Fu X, Zhang Y, Chen C, Wang H. The Role of Pyroptosis and Autophagy in the Nervous System. Mol Neurobiol 2024; 61:1271-1281. [PMID: 37697221 PMCID: PMC10896877 DOI: 10.1007/s12035-023-03614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023]
Abstract
Autophagy is a conservative self-degradation system, which includes the two major processes of enveloping abnormal proteins, organelles and other macromolecules, and transferring them into lysosomes for the subsequent degradation. It holds the stability of the intracellular environment under stress. So far, three types of autophagy have been found: microautophagy, chaperone-mediated autophagy and macroautophagy. Many diseases have the pathological process of autophagy dysfunction, such as nervous system diseases. Pyroptosis is one kind of programmed cell death mediated by gasdermin (GSDM). In this process of pyroptosis, the activated caspase-3, caspase-4/5/11, or caspase-1 cleaves GSDM into the N-terminal pore-forming domain (PFD). The oligomer of PFD combines with the cell membrane to form membrane holes, thus leading to pyroptosis. Pyroptosis plays a key role in multiple tissues and organs. Many studies have revealed that autophagy and pyroptosis participate in the nervous system, but the mechanisms need to be fully clarified. Here, we focused on the recent articles on the role and mechanism of pyroptosis and autophagy in the pathological processes of the nervous system.
Collapse
Affiliation(s)
- Huijie Zhao
- Institute of Chronic Disease Risks Assessment, Henan University, Jinming Avenue, Kaifeng, 475004, China
| | - Xiaodi Fu
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Yanting Zhang
- School of Clinical Medicine, Henan University, Kaifeng, 475004, Henan, China
| | - Chaoran Chen
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Jinming Avenue, Kaifeng, 475004, China
| | - Honggang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
28
|
Tan F, Li X, Wang Z, Li J, Shahzad K, Zheng J. Clinical applications of stem cell-derived exosomes. Signal Transduct Target Ther 2024; 9:17. [PMID: 38212307 PMCID: PMC10784577 DOI: 10.1038/s41392-023-01704-0] [Citation(s) in RCA: 200] [Impact Index Per Article: 200.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/15/2023] [Accepted: 11/12/2023] [Indexed: 01/13/2024] Open
Abstract
Although stem cell-based therapy has demonstrated considerable potential to manage certain diseases more successfully than conventional surgery, it nevertheless comes with inescapable drawbacks that might limit its clinical translation. Compared to stem cells, stem cell-derived exosomes possess numerous advantages, such as non-immunogenicity, non-infusion toxicity, easy access, effortless preservation, and freedom from tumorigenic potential and ethical issues. Exosomes can inherit similar therapeutic effects from their parental cells such as embryonic stem cells and adult stem cells through vertical delivery of their pluripotency or multipotency. After a thorough search and meticulous dissection of relevant literature from the last five years, we present this comprehensive, up-to-date, specialty-specific and disease-oriented review to highlight the surgical application and potential of stem cell-derived exosomes. Exosomes derived from stem cells (e.g., embryonic, induced pluripotent, hematopoietic, mesenchymal, neural, and endothelial stem cells) are capable of treating numerous diseases encountered in orthopedic surgery, neurosurgery, plastic surgery, general surgery, cardiothoracic surgery, urology, head and neck surgery, ophthalmology, and obstetrics and gynecology. The diverse therapeutic effects of stem cells-derived exosomes are a hierarchical translation through tissue-specific responses, and cell-specific molecular signaling pathways. In this review, we highlight stem cell-derived exosomes as a viable and potent alternative to stem cell-based therapy in managing various surgical conditions. We recommend that future research combines wisdoms from surgeons, nanomedicine practitioners, and stem cell researchers in this relevant and intriguing research area.
Collapse
Affiliation(s)
- Fei Tan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China.
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China.
- The Royal College of Surgeons in Ireland, Dublin, Ireland.
- The Royal College of Surgeons of England, London, UK.
| | - Xuran Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Zhao Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Jiaojiao Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Khawar Shahzad
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Jialin Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, Shanghai, China
| |
Collapse
|
29
|
Dwyer MKR, Amelinez-Robles N, Polsfuss I, Herbert K, Kim C, Varghese N, Parry TJ, Buller B, Verdoorn TA, Billing CB, Morrison B. NTS-105 decreased cell death and preserved long-term potentiation in an in vitro model of moderate traumatic brain injury. Exp Neurol 2024; 371:114608. [PMID: 37949202 DOI: 10.1016/j.expneurol.2023.114608] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of hospitalization and death. To mitigate these human costs, the search for effective drugs to treat TBI continues. In the current study, we evaluated the efficacy of the novel neurosteroid, NTS-105, to reduce post-traumatic pathobiology in an in vitro model of moderate TBI that utilizes an organotypic hippocampal slice culture. NTS-105 inhibited activation of the androgen receptor and the mineralocorticoid receptor, partially activated the progesterone B receptor and was not active at the glucocorticoid receptor. Treatment with NTS-105 starting one hour after injury decreased post-traumatic cell death in a dose-dependent manner, with 10 nM NTS-105 being most effective. Post-traumatic administration of 10 nM NTS-105 also prevented deficits in long-term potentiation (LTP) without adversely affecting neuronal activity in naïve cultures. We propose that the high potency pleiotropic action of NTS-105 beneficial effects at multiple receptors (e.g. androgen, mineralocorticoid and progesterone) provides significant mechanistic advantages over native neurosteroids such as progesterone, which lacked clinical success for the treatment of TBI. Our results suggest that this pleiotropic pharmacology may be a promising strategy for the effective treatment of TBI, and future studies should test its efficacy in pre-clinical animal models of TBI.
Collapse
Affiliation(s)
- Mary Kate R Dwyer
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Nicolas Amelinez-Robles
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Isabella Polsfuss
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Keondre Herbert
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Carolyn Kim
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Nevin Varghese
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Tom J Parry
- NeuroTrauma Sciences, LLC, Alpharetta, GA 30009, United States of America
| | - Benjamin Buller
- NeuroTrauma Sciences, LLC, Alpharetta, GA 30009, United States of America
| | - Todd A Verdoorn
- NeuroTrauma Sciences, LLC, Alpharetta, GA 30009, United States of America
| | - Clare B Billing
- BioPharmaWorks, LLC, Groton, CT 06340, United States of America
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America.
| |
Collapse
|
30
|
Li F, Cai T, Yu L, Yu G, Zhang H, Geng Y, Kuang J, Wang Y, Cai Y, Xiao J, Wang X, Ding J, Xu H, Ni W, Zhou K. FGF-18 Protects the Injured Spinal cord in mice by Suppressing Pyroptosis and Promoting Autophagy via the AKT-mTOR-TRPML1 axis. Mol Neurobiol 2024; 61:55-73. [PMID: 37581847 DOI: 10.1007/s12035-023-03503-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/11/2023] [Indexed: 08/16/2023]
Abstract
Spinal cord injury (SCI) is a severe medical condition with lasting effects. The efficacy of numerous clinical treatments is hampered by the intricate pathophysiological mechanism of SCI. Fibroblast growth factor 18 (FGF-18) has been found to exert neuroprotective effects after brain ischaemia, but its effect after SCI has not been well explored. The aim of the present study was to explore the therapeutic effect of FGF-18 on SCI and the related mechanism. In the present study, a mouse model of SCI was used, and the results showed that FGF-18 may significantly affect functional recovery. The present findings demonstrated that FGF-18 directly promoted functional recovery by increasing autophagy and decreasing pyroptosis. In addition, FGF-18 increased autophagy, and the well-known autophagy inhibitor 3-methyladenine (3MA) reversed the therapeutic benefits of FGF-18 after SCI, suggesting that autophagy mediates the therapeutic effects of FGF-18 on SCI. A mechanistic study revealed that after stimulation of the protein kinase B (AKT)-transient receptor potential mucolipin 1 (TRPML1)-calcineurin signalling pathway, the FGF-18-induced increase in autophagy was mediated by the dephosphorylation and nuclear translocation of transcription factor E3 (TFE3). Together, these findings indicated that FGF-18 is a robust autophagy modulator capable of accelerating functional recovery after SCI, suggesting that it may be a promising treatment for SCI in the clinic.
Collapse
Affiliation(s)
- Feida Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
| | - Tingwen Cai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
| | - Letian Yu
- Renji College of Wenzhou Medical University, 325027, Wenzhou, China
| | - Gaoxiang Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
| | - Jiaxuan Kuang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, 315300, Ningbo, China
| | - Yongli Wang
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
- Department of Orthopaedics, Huzhou Basic and Clinical Translation of Orthopaedics key Laboratory, Huzhou Central Hospital, 313300, Huzhou, China
| | - Yuepiao Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China
| | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China.
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China.
| | - Hui Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China.
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China.
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China.
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027, Wenzhou, China.
- Zhejiang Provincial Key Laboratory of Orthopaedics, 325027, Wenzhou, China.
- The Second Clinical Medical College of Wenzhou Medical University, 325027, Wenzhou, China.
- Cixi Biomedical Research Institute, Wenzhou Medical University, 315300, Ningbo, China.
| |
Collapse
|
31
|
Kharazinejad E, Hassanzadeh G, Sahebkar A, Yousefi B, Reza Sameni H, Majidpoor J, Golchini E, Taghdiri Nooshabadi V, Mousavi M. The Comparative Effects of Schwann Cells and Wharton's Jelly Mesenchymal Stem Cells on the AIM2 Inflammasome Activity in an Experimental Model of Spinal Cord Injury. Neuroscience 2023; 535:1-12. [PMID: 37890609 DOI: 10.1016/j.neuroscience.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Inflammasome activation and the consequent release of pro-inflammatory cytokines play a crucial role in the development of sensory/motor deficits following spinal cord injury (SCI). Immunomodulatory activities are exhibited by Schwann cells (SCs) and Wharton's jelly mesenchymal stem cells (WJ-MSCs). In this study, we aimed to compare the effectiveness of these two cell sources in modulating the absent in melanoma 2 (AIM2) inflammasome complex in rats with SCI. The Basso, Beattie, Bresnahan (BBB) test, Nissl staining, and Luxol fast blue (LFB) staining were performed to evaluate locomotor function, neuronal survival, and myelination, respectively. Real-time polymerase chain reaction (RT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA) were employed to analyze the gene and protein expressions of inflammasome components, including AIM2, ASC, caspase-1, interleukin-1β (IL-1β), and IL-18. Both gene and protein expressions of all evaluated factors were decreased after SC or WJ-MSC treatment, with a more pronounced effect observed in the SCs group (P < 0.05). Additionally, SCs promoted neuronal survival and myelination. Moreover, the administration of 3 × 105 cells resulted in motor recovery improvement in both treatment groups (P < 0.05). Although not statistically significant, these effects were more prominent in the SC-treated animals. In conclusion, SC therapy demonstrated greater efficacy in targeting AIM2 inflammasome activation and the associated inflammatory pathway in SCI experiments compared to WJ-MSCs.
Collapse
Affiliation(s)
- Ebrahim Kharazinejad
- Department of Anatomy, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Digital Health, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behpour Yousefi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid Reza Sameni
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Tissue Engineering and Applied Cell Science, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ehsan Golchini
- Department of Operating Room, School of Paramedical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Vajihe Taghdiri Nooshabadi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Tissue Engineering and Applied Cell Science, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahboubeh Mousavi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
32
|
Shaik MG, Joshi SV, Akunuri R, Rana P, Rahman Z, Polomoni A, Yaddanapudi VM, Dandekar MP, Srinivas N. Small molecule inhibitors of NLRP3 inflammasome and GSK-3β in the management of traumatic brain injury: A review. Eur J Med Chem 2023; 259:115718. [PMID: 37573828 DOI: 10.1016/j.ejmech.2023.115718] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Traumatic brain injury (TBI) is a debilitating mental condition which causes physical disability and morbidity worldwide. TBI may damage the brain by direct injury that subsequently triggers a series of neuroinflammatory events. The activation of NLRP3 inflammasome and dysregulated host immune system has been documented in various neurological disorders such as TBI, ischemic stroke and multiple sclerosis. The activation of NLRP3 post-TBI increases the production of pro-inflammatory cytokines and caspase-1, which are major drivers of neuroinflammation and apoptosis. Similarly, GSK-3β regulates apoptosis through tyrosine kinase and canonical Wnt signalling pathways. Thus, therapeutic targeting of NLRP3 inflammasome and GSK-3β has emerged as promising strategies for regulating the post-TBI neuroinflammation and neurobehavioral disturbances. In this review, we discuss the identification & development of several structurally diverse and pharmacologically interesting small molecule inhibitors for targeting the NLRP3 inflammasome and GSK-3β in the management of TBI.
Collapse
Affiliation(s)
- Mahammad Ghouse Shaik
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| | - Swanand Vinayak Joshi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| | - Ravikumar Akunuri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India; Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Preeti Rana
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| | - Ziaur Rahman
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500 037, India
| | - Anusha Polomoni
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| | - Venkata Madhavi Yaddanapudi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| | - Manoj P Dandekar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500 037, India.
| | - Nanduri Srinivas
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India.
| |
Collapse
|
33
|
Xu A, Yang Y, Shao Y, Jiang M, Sun Y, Feng B. FHL2 regulates microglia M1/M2 polarization after spinal cord injury via PARP14-depended STAT1/6 pathway. Int Immunopharmacol 2023; 124:110853. [PMID: 37708708 DOI: 10.1016/j.intimp.2023.110853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
Neuronal apoptosis and inflammation exacerbate the secondary injury after spinal cord injury (SCI). Four and a half domains 2 (FHL2) is a multifunctional scaffold protein with tissue- and cell-type specific effects on the regulation of inflammation, but its role in SCI remains unclear. The T10 mouse spinal cord contusion model was established, and the mice were immediately injected with lentiviruses carrying FHL2 shRNA after SCI. The results showed that FHL2 expression was increased following SCI, and then gradually decreased. Moreover, FHL2 depletion aggravated functional impairment, neuronal necrosis, and enlarged lesion cavity areas in the injured spinal cord. FHL2 deficiency facilitated neuronal apoptosis by elevating cleaved caspase 3/9 expression, neuroinflammation by regulating microglia polarization, and bone loss. Indeed, FHL2 deficiency increased the secretion of TNF-α and IL-6, M1 microglia polarization, and the activation of STAT1 pathway but decreased the secretion of IL-10 and IL-4, M2 microglia polarization, and the activation of the STAT6 pathway in the spinal cord. In vitro, FHL2 silencing promoted LPS + IFN-γ-induced microglia M1 polarization through activating the STAT1 pathway and alleviated IL-4-induced microglia M2 polarization via inhibiting the STAT6 pathway. FHL2 positively regulated the expression of poly (ADP-ribose) polymerase family member 14 (PARP14) by promoting its transcription. PARP14 overexpression inhibited FHL2 silencing-induced microglia M1 polarization and relieved the inhibitory effect of FHL2 silencing on microglia M2 polarization. Collectively, the study suggests that FHL2 reduces the microglia M1/M2 polarization-mediated inflammation via PARP14-dependent STAT1/6 pathway and thereby improves functional recovery after SCI.
Collapse
Affiliation(s)
- Aihua Xu
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Yang
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Shao
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Manyu Jiang
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yongxin Sun
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Bo Feng
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
34
|
Jiang Z, Zeng Z, He H, Li M, Lan Y, Hui J, Bie P, Chen Y, Liu H, Fan H, Xia H. Lycium barbarum glycopeptide alleviates neuroinflammation in spinal cord injury via modulating docosahexaenoic acid to inhibiting MAPKs/NF-kB and pyroptosis pathways. J Transl Med 2023; 21:770. [PMID: 37907930 PMCID: PMC10617163 DOI: 10.1186/s12967-023-04648-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Lycium barbarum polysaccharide (LBP) is an active ingredient extracted from Lycium barbarum that inhibits neuroinflammation, and Lycium barbarum glycopeptide (LbGp) is a glycoprotein with immunological activity that was purified and isolated from LBP. Previous studies have shown that LbGp can regulate the immune microenvironment, but its specific mechanism of action remains unclear. AIMS In this study, we aimed to explore the mechanism of action of LbGp in the treatment of spinal cord injury through metabolomics and molecular experiments. METHODS SD male rats were randomly assigned to three experimental groups, and after establishing the spinal cord hemisection model, LbGp was administered orally. Spinal cord tissue was sampled on the seventh day after surgery for molecular and metabolomic experiments. In vitro, LbGp was administered to mimic the inflammatory microenvironment by activating microglia, and its mechanism of action in suppressing neuroinflammation was further elaborated using metabolomics and molecular biology techniques such as western blotting and q-PCR. RESULTS In vivo and in vitro experiments found that LbGp can improve the inflammatory microenvironment by inhibiting the NF-kB and pyroptosis pathways. Furthermore, LbGp induced the secretion of docosahexaenoic acid (DHA) by microglia, and DHA inhibited neuroinflammation through the MAPK/NF-κB and pyroptosis pathways. CONCLUSIONS In summary, we hypothesize that LbGp improves the inflammatory microenvironment by regulating the secretion of DHA by microglia and thereby inhibiting the MAPK/NF-κB and pyroptosis pathways and promoting nerve repair and motor function recovery. This study provides a new direction for the treatment of spinal cord injury and elucidates the potential mechanism of action of LbGp.
Collapse
Affiliation(s)
- Zhanfeng Jiang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Zhong Zeng
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - He He
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Mei Li
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Yuanxiang Lan
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Jianwen Hui
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Pengfei Bie
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Yanjun Chen
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Hao Liu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China
| | - Heng Fan
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
| | - Hechun Xia
- Ningxia Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia Hui Autonomous Region, People's Republic of China.
| |
Collapse
|
35
|
Liu Z, Cheng P, Feng T, Xie Z, Yang M, Chen Z, Hu S, Han D, Chen W. Nrf2/HO-1 blocks TXNIP/NLRP3 interaction via elimination of ROS in oxygen-glucose deprivation-induced neuronal necroptosis. Brain Res 2023; 1817:148482. [PMID: 37442251 DOI: 10.1016/j.brainres.2023.148482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/20/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
Acute ischemic stroke (AIS) is known to trigger a cascade of inflammatory events that induces secondary tissue damages. As a type of regulated inflammatory cell death, necroptosis is associated with AIS, whilst its regulation during neuroinflammation is not well understood. In particular, the actual function of NOD-like-receptor family pyrin domain-containing-3(NLRP3) inflammasome in cortical neuronal necroptosis still not clear. Herein, we explored the function of nuclear factor erythroid-2 related factor-2 (Nrf2)/heme oxygenase-1 (HO-1) in oxygen-glucose deprivation (OGD) induced neuronal necroptosis and its underlying mechanism. To establish an in vitro model of neuronal necrosis, we used OGD/caspase-8 inhibitors (Q-VD-OPh, QVD) to treat rat primary cortical neurons (PCNs) after reoxygenation, wherein we found that the model cause an elevated ROS levels by mediating TXNIP/NLRP3 interactions, which in turn activated the NLRP3 inflammasome. Also, we observed that regulation of nuclear factor erythroid-2 related factor-2 (Nrf2) promoted heme oxygenase-1 (HO-1) expression and decreased TXNIP (a protein that relate oxidative stress to activation of inflammasome) and ROS levels, which negatively regulated the expression of OGD-induced activation of NLRP3 inflammasomes. In addition, HO-1 weakened NLRP3 inflammation body activation, which suggests that Nrf2-regulated HO-1 could block the interaction between TXNIP and NLRP3 in OGD/R-treated cortical neurons by inhibiting ROS production. Our study has discovered the importance of Nrf2/HO-1 signaling cascade for inhibiting inflammasome of NLRP3, which negatively regulated necrosis. Therefore, NLRP3 is considered a potential target for a novel neuroprotective approach, which can expand the therapeutic windows of stroke drugs.
Collapse
Affiliation(s)
- Zhihan Liu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Ping Cheng
- Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Tao Feng
- Department of Rehabilitation Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Zhiyuan Xie
- Department of Gastrointestinal Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, China
| | - Meifang Yang
- Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Zhiren Chen
- Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Shuqun Hu
- Institute of Emergency Rescue Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Dong Han
- Institute of Emergency Rescue Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Weiwei Chen
- Department of Neurology, Xuzhou Central Hospital/The Xuzhou School of Clinical Medicine of Nanjing Medical University/ XuZhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu 221009, China.
| |
Collapse
|
36
|
Freire MAM, Rocha GS, Bittencourt LO, Falcao D, Lima RR, Cavalcanti JRLP. Cellular and Molecular Pathophysiology of Traumatic Brain Injury: What Have We Learned So Far? BIOLOGY 2023; 12:1139. [PMID: 37627023 PMCID: PMC10452099 DOI: 10.3390/biology12081139] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of long-lasting morbidity and mortality worldwide, being a devastating condition related to the impairment of the nervous system after an external traumatic event resulting in transitory or permanent functional disability, with a significant burden to the healthcare system. Harmful events underlying TBI can be classified into two sequential stages, primary and secondary, which are both associated with breakdown of the tissue homeostasis due to impairment of the blood-brain barrier, osmotic imbalance, inflammatory processes, oxidative stress, excitotoxicity, and apoptotic cell death, ultimately resulting in a loss of tissue functionality. The present study provides an updated review concerning the roles of brain edema, inflammation, excitotoxicity, and oxidative stress on brain changes resulting from a TBI. The proper characterization of the phenomena resulting from TBI can contribute to the improvement of care, rehabilitation and quality of life of the affected people.
Collapse
Affiliation(s)
- Marco Aurelio M. Freire
- Graduate Program in Physiological Sciences, University of the State of Rio Grande do Norte, Mossoró 59607-360, RN, Brazil
| | - Gabriel Sousa Rocha
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte, Mossoró 59607-360, RN, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Daniel Falcao
- VCU Health Systems, Virginia Commonwealth University, 23219 Richmond, VA, USA
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-900, PA, Brazil
| | - Jose Rodolfo Lopes P. Cavalcanti
- Graduate Program in Physiological Sciences, University of the State of Rio Grande do Norte, Mossoró 59607-360, RN, Brazil
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte, Mossoró 59607-360, RN, Brazil
| |
Collapse
|
37
|
Zheng JH, Yuan N, Zhang P, Liu DF, Lin W, Miao J. Acupuncture combined with moxibustion mitigates spinal cord injury-induced motor dysfunction in mice by NLRP3-IL-18 signaling pathway inhibition. J Orthop Surg Res 2023; 18:419. [PMID: 37296436 DOI: 10.1186/s13018-023-03902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI), which reportedly induces severe motor dysfunction, imposes a significant social and financial burden on affected individuals, families, communities, and nations. Acupuncture combined with moxibustion (AM) therapy has been widely used for motor dysfunction treatment, but the underlying mechanisms remain unknown. In this work, we aimed to determine whether AM therapy could alleviate motor impairment post-SCI and, if so, the potential mechanism. METHODS A SCI model was established in mice through impact methods. AM treatment was performed in SCI model mice at Dazhui (GV14) and Jiaji points (T7-T12), Mingmen (GV4), Zusanli (ST36), and Ciliao (BL32) on both sides for 30 min once per day for 28 days. The Basso-Beattie-Bresnahan score was used to assess motor function in mice. A series of experiments including astrocytes activation detected by immunofluorescence, the roles of NOD-like receptor pyrin domain-containing-3 (NLRP3)-IL-18 signaling pathway with the application of astrocyte-specific NLRP3 knockout mice, and western blot were performed to explore the specific mechanism of AM treatment in SCI. RESULTS Our data indicated that mice with SCI exposure exhibited motor dysfunction, a significant decrease of neuronal cells, a remarkable activation of astrocytes and microglia, an increase of IL-6, TNF-α, IL-18 expression, and an elevation of IL-18 colocalized with astrocytes, while astrocytes-specific NLRP3 knockout heavily reversed these changes. Besides, AM treatment simulated the neuroprotective effects of astrocyte-specific NLRP3 knockout, whereas an activator of NLRP3 nigericin partially reversed the AM neuroprotective effects. CONCLUSION AM treatment mitigates SCI-induced motor dysfunction in mice; this protective mechanism may be related to the NLRP3-IL18 signaling pathway inhibition in astrocytes.
Collapse
Affiliation(s)
- Ji-Hui Zheng
- Department of OrthopaedicsThe Graduate School, Tianjin Medical University, Tianjin, China
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China
| | - Na Yuan
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Peng Zhang
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - De-Feng Liu
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Wei Lin
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Jun Miao
- Department of OrthopaedicsTianjin Hospital, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
38
|
Liang X, Fan Y. Bidirectional two-sample Mendelian randomization analysis reveals a causal effect of interleukin-18 levels on postherpetic neuralgia risk. Front Immunol 2023; 14:1183378. [PMID: 37304287 PMCID: PMC10247971 DOI: 10.3389/fimmu.2023.1183378] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Background Postherpetic neuralgia (PHN) is a debilitating complication of herpes zoster, characterized by persistent neuropathic pain that significantly impairs patients' quality of life. Identifying factors that determine PHN susceptibility is crucial for its management. Interleukin-18 (IL-18), a pro-inflammatory cytokine implicated in chronic pain, may play a critical role in PHN development. Methods In this study, we conducted bidirectional two-sample Mendelian randomization (MR) analyses to assess genetic relationships and potential causal associations between IL-18 protein levels increasing and PHN risk, utilizing genome-wide association study (GWAS) datasets on these traits. Two IL-18 datasets obtained from the EMBL's European Bioinformatics Institute database which contained 21,758 individuals with 13,102,515 SNPs and Complete GWAS summary data on IL-18 protein levels which contained 3,394 individuals with 5,270,646 SNPs. The PHN dataset obtained from FinnGen biobank had 195,191 individuals with 16,380,406 SNPs. Results Our findings from two different datasets of IL-18 protein levels suggest a correlation between genetically predicted elevations in IL-18 protein levels and an increased susceptibility to PHN.(IVW, OR and 95% CI: 2.26, 1.07 to 4.78; p = 0.03 and 2.15, 1.10 to 4.19; p =0.03, respectively), potentially indicating a causal effect of IL-18 protein levels increasing on PHN risk. However, we did not detect any causal effect of genetic liability to PHN risk on IL-18 protein levels. Conclusion These findings suggest new insights into identifying IL-18 protein levels increasing at risk of developing PHN and may aid in the development of novel prevention and treatment approaches for PHN.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuchao Fan
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
39
|
Shan W, Li S, Yin Z. Identification of canonical pyroptosis-related genes, associated regulation axis, and related traditional Chinese medicine in spinal cord injury. Front Aging Neurosci 2023; 15:1152297. [PMID: 37273650 PMCID: PMC10232751 DOI: 10.3389/fnagi.2023.1152297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Neuroinflammation plays an important role in spinal cord injury (SCI), and pyroptosis is inflammatory-related programmed cell death. Although neuroinflammation induced by pyroptosis has been reported in SCI, there is a lack of systematic research on SCI pyroptosis and its regulation mechanism. The purpose of this study was to systematically analyze the expression of pyroptosis-related genes (PRGs) in different SCI models and associated regulation axis by bioinformatics methods. We downloaded raw counts data of seven high-throughput sequencings and two microarray datasets from the GEO database, classified by species (rat and mouse) and SCI modes (moderate contusive model, aneurysm clip impact-compression model, and hemisection model), including mRNAs, miRNAs, lncRNAs, and circRNAs, basically covering the acute, subacute and chronic stages of SCI. We performed differential analysis by R (DEseq2) or GEO2R and found that the AIM2/NLRC4/NLRP3 inflammasome-related genes, GSDMD, IL1B, and IL18, were highly expressed in SCI. Based on the canonical NLRP3 inflammasome-mediated pyroptosis-related genes (NLRP3/PRGs), we constructed transcription factors (TFs)-NLRP3/PRGs, miRNAs- Nlrp3/PRGs and lncRNAs/circRNAs/mRNAs-miRNA- Nlrp3/PRGs (ceRNA) networks. In addition, we also predicted Traditional Chinese medicine (TCM) and small, drug-like molecules with NLRP3/PRGs as potential targets. Finally, 39 up-regulated TFs were identified, which may regulate at least two of NLRP3/PRGs. A total of 7 down-regulated miRNAs were identified which could regulate Nlrp3/PRGs. ceRNA networks were constructed including 23 lncRNAs, 3 cicrRNAs, 6 mRNAs, and 44 miRNAs. A total of 24 herbs were identified which may with two NLRP3/PRGs as potential targets. It is expected to provide new ideas and therapeutic targets for the treatment of SCI.
Collapse
Affiliation(s)
- Wenshan Shan
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shuang Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Zongsheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
40
|
Müller N, Scheld M, Voelz C, Gasterich N, Zhao W, Behrens V, Weiskirchen R, Baazm M, Clarner T, Beyer C, Sanadgol N, Zendedel A. Lipocalin-2 Deficiency Diminishes Canonical NLRP3 Inflammasome Formation and IL-1β Production in the Subacute Phase of Spinal Cord Injury. Int J Mol Sci 2023; 24:ijms24108689. [PMID: 37240031 DOI: 10.3390/ijms24108689] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Spinal cord injury (SCI) results in the production of proinflammatory cytokines due to inflammasome activation. Lipocalin 2 (LCN2) is a small secretory glycoprotein upregulated by toll-like receptor (TLR) signaling in various cells and tissues. LCN2 secretion is induced by infection, injury, and metabolic disorders. In contrast, LCN2 has been implicated as an anti-inflammatory regulator. However, the role of LCN2 in inflammasome activation during SCI remains unknown. This study examined the role of Lcn2 deficiency in the NLRP3 inflammasome-dependent neuroinflammation in SCI. Lcn2-/- and wild-type (WT) mice were subjected to SCI, and locomotor function, formation of the inflammasome complex, and neuroinflammation were assessed. Our findings demonstrated that significant activation of the HMGB1/PYCARD/caspase-1 inflammatory axis was accompanied by the overexpression of LCN2 7 days after SCI in WT mice. This signal transduction results in the cleaving of the pyroptosis-inducing protein gasdermin D (GSDMD) and the maturation of the proinflammatory cytokine IL-1β. Furthermore, Lcn2-/- mice showed considerable downregulation in the HMGB1/NLRP3/PYCARD/caspase-1 axis, IL-1β production, pore formation, and improved locomotor function compared with WT. Our data suggest that LCN2 may play a role as a putative molecule for the induction of inflammasome-related neuroinflammation in SCI.
Collapse
Affiliation(s)
- Nina Müller
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Miriam Scheld
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Clara Voelz
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Natalie Gasterich
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Weiyi Zhao
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Victoria Behrens
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak 38481-7-6341, Iran
| | - Tim Clarner
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Nima Sanadgol
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
- Institute of Anatomy, Department of Biomedicine, University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
41
|
Stoica SI, Onose G, Pitica IM, Neagu AI, Ion G, Matei L, Dragu LD, Radu LE, Chivu-Economescu M, Necula LG, Anghelescu A, Diaconu CC, Munteanu C, Bleotu C. Molecular Aspects of Hypoxic Stress Effects in Chronic Ethanol Exposure of Neuronal Cells. Curr Issues Mol Biol 2023; 45:1655-1680. [PMID: 36826052 PMCID: PMC9955714 DOI: 10.3390/cimb45020107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/01/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
Experimental models of a clinical, pathophysiological context are used to understand molecular mechanisms and develop novel therapies. Previous studies revealed better outcomes for spinal cord injury chronic ethanol-consuming patients. This study evaluated cellular and molecular changes in a model mimicking spinal cord injury (hypoxic stress induced by treatment with deferoxamine or cobalt chloride) in chronic ethanol-consuming patients (ethanol-exposed neural cultures (SK-N-SH)) in order to explain the clinical paradigm of better outcomes for spinal cord injury chronic ethanol-consuming patients. The results show that long-term ethanol exposure has a cytotoxic effect, inducing apoptosis. At 24 h after the induction of hypoxic stress (by deferoxamine or cobalt chloride treatments), reduced ROS in long-term ethanol-exposed SK-N-SH cells was observed, which might be due to an adaptation to stressful conditions. In addition, the HIF-1α protein level was increased after hypoxic treatment of long-term ethanol-exposed cells, inducing fluctuations in its target metabolic enzymes proportionally with treatment intensity. The wound healing assay demonstrated that the cells recovered after stress conditions, showing that the ethanol-exposed cells that passed the acute step had the same proliferation profile as the cells unexposed to ethanol. Deferoxamine-treated cells displayed higher proliferative activity than the control cells in the proliferation-migration assay, emphasizing the neuroprotective effect. Cells have overcome the critical point of the alcohol-induced traumatic impact and adapted to ethanol (a chronic phenomenon), sustaining the regeneration process. However, further experiments are needed to ensure recovery efficiency is more effective in chronic ethanol exposure.
Collapse
Affiliation(s)
- Simona Isabelle Stoica
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
| | - Gelu Onose
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
| | - Ioana Madalina Pitica
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania
| | - Ana Iulia Neagu
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania
| | - Gabriela Ion
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania
| | - Lilia Matei
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania
| | - Laura Denisa Dragu
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania
| | - Lacramioara-Elena Radu
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania
| | | | - Laura Georgiana Necula
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania
| | - Aurelian Anghelescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila” (UMPCD), 020022 Bucharest, Romania
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
| | | | - Constantin Munteanu
- Teaching Emergency Hospital “Bagdasar-Arseni” (TEHBA), 041915 Bucharest, Romania
- Grigore T. Popa University of Medicine and Pharmacy of Iași, 700454 Iași, Romania
- Romanian Academy of Scientists, 54 Spl. Independenței Str., District 5, 050085 Bucharest, Romania
| | - Coralia Bleotu
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania
- Romanian Academy of Scientists, 54 Spl. Independenței Str., District 5, 050085 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor Str., District 5, 060101 Bucharest, Romania
| |
Collapse
|
42
|
Yang W, Ma L, Xu S, Zheng P, Du J, Wu J, Yu J, Sun T. Gentiopicroside alleviated epileptogenesis in immature rats through inactivation of NLRP3 inflammasome by inhibiting P2X7R expression. Int J Dev Neurosci 2023; 83:53-66. [PMID: 36342791 DOI: 10.1002/jdn.10237] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES This study aimed to elucidate the effects of Gentiopicroside (Gent) on epileptogenesis and underlying mechanisms. METHODS The status epilepticus (SE) model was established by intraperitoneal (i.p.) injection of lithium chloride (127 mg/kg) and pilocarpine (50 mg/kg) in immature rats. HAPI microglial cellular inflammation model was induced by lipopolysaccharide (LPS, 1 μg/ml) and adenosine triphosphate (ATP, 5 mM). The differential concentrations of Gent were used to pretreat animal (200, 400, and 800 mg/kg) and model cells (50, 100, and 200 μM). Epileptic discharges were assessed by electroencephalography (EEG) and Racine scale. Changes in spatial memory function were measured using the Morris water maze task test. Nissl and FJB staining were employed to assess the damage to hippocampus tissues. ELISA was used to detect the production of IL-1β, IL-18, and TNF-α. The expressions of P2X7R and NLRP3 were detected by q-PCR, immunofluorescence staining, and Western blot, and cell viability was determined by cell counting kit-8 (CCK-8). RESULTS Lithium chloride and pilocarpine (LICL-PILO) induced abnormal EEG activities, behavioral alterations, brain damage, and inflammatory responses in immature rats. However, Gent pretreatment significantly reduced the neuronal damage and spatial memory dysfunction induced by LICL-PILO. Additionally, Gent suppressed the production of inflammatory cytokines and inhibited the expression of P2X7R, NLRP3, ASC, and Caspase-1 in LPS/ATP-induced HAPI microglial cells. DISCUSSION Gent intervention could improve epileptogenesis in immature rats partially due to suppressing P2X7R and NLRP3 inflammasome.
Collapse
Affiliation(s)
- Weilong Yang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China.,Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Wei Hui, China
| | - Lin Ma
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Siying Xu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Ping Zheng
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Juan Du
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Jing Wu
- Laboratory Animal Centre, Ningxia Medical University, Yinchuan, China
| | - Jianqiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, China
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
43
|
Chakraborty R, Tabassum H, Parvez S. NLRP3 inflammasome in traumatic brain injury: Its implication in the disease pathophysiology and potential as a therapeutic target. Life Sci 2023; 314:121352. [PMID: 36592789 DOI: 10.1016/j.lfs.2022.121352] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Traumatic brain injury (TBI), an acquired brain injury imparted by a mechanical trauma to the head, has significant ramifications in terms of long-term disability and cost of healthcare. TBI is characterized by an initial phase of cell death owing to direct mechanical injury, followed by a secondary phase in which neuroinflammation plays a pivotal role. Activation of inflammasome complexes triggers a cascade that leads to activation of inflammatory mediators such as caspase-1, Interleukin (IL)-18, and IL-1β, eventually causing pyroptosis. NLRP3 inflammasome, a component of the innate immune response, has been implicated in a number of neurodegenerative diseases, including TBI. Recent findings indicate that NLRP3 inhibitors can potentially ameliorate neuroinflammation and improve cognition and motor function in TBI. The NLRP3 inflammasome also holds potential as a predictive biomarker for the long-term sequelae following TBI. Although several therapeutic agents have shown promising results in pre-clinical studies, none of them have been effective in human trials for TBI, to date. Thus, it is imperative that such promising therapeutic candidates are evaluated in clinical trials to assess their efficacy in alleviating neurological impairments in TBI. This review offers an insight into the pathophysiology of TBI, with an emphasis on neuroinflammation in the aftermath of TBI. We highlight the NLRP3 inflammasome and explore its role in the neuroinflammatory cascade in TBI. We also shed light on its potential as a prospective biomarker and therapeutic target for TBI management.
Collapse
Affiliation(s)
- Rohan Chakraborty
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Heena Tabassum
- Division of Basic Medical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Govt. of India, V. Ramalingaswami Bhawan, P.O. Box No. 4911, New Delhi 110029, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
44
|
Zinc Promotes Spinal Cord Injury Recovery by Blocking the Activation of NLRP3 Inflammasome Through SIRT3-Mediated Autophagy. Neurochem Res 2023; 48:435-446. [PMID: 36152137 DOI: 10.1007/s11064-022-03762-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/15/2022] [Accepted: 09/19/2022] [Indexed: 02/04/2023]
Abstract
Spinal cord injuries (SCI) are complex and cause complex neurological disorders with serious implications for the health of society. Excessive neuroinflammation is one of the pathogenesis of trauma-related central nervous system (CNS) dysfunction. The initiation of inflammatory response mainly stems from neuronal necrosis in the central nervous system. The therapeutic effects and underlying mechanisms of zinc targeting neurons were investigated in vivo and in vitro using protein chips, western blotting, reactive oxygen species (ROS) activity assays, ELISA, RT-qPCR, and immunostaining. In this study, we found that zinc promotes functional recovery. Specifically, we found that zinc increased neuronal survival and suppressed lesion size and focal apoptosis levels in vivo. Zinc administration confers neuroprotection by inhibiting NLRP3 inflammasome-associated cytokine levels probed with a protein chip. Furthermore, we found that zinc promoted SIRT3-mediated induction of autophagy, which abrogated inflammatory responses and mitochondrial ROS production in the injured spinal cord and cultured neurons. These findings suggest that zinc improves neuroinflammation and improves dyskinesia after SCI. In conclusion, zinc may be a potential therapeutic immunomodulatory challenge for the treatment of trauma-related CNS dysfunction.
Collapse
|
45
|
Expression Profiles of Long Noncoding RNAs and Messenger RNAs in a Rat Model of Spinal Cord Injury. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:6033020. [PMID: 36714328 PMCID: PMC9879695 DOI: 10.1155/2023/6033020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/20/2023]
Abstract
Spinal cord injury (SCI) is a serious disorder of the central nervous system with a high disability rate. Long noncoding RNAs (lncRNAs) are reported to mediate many biological processes. The aim of this study was to explore lncRNA and mRNA expression profiles and functional networks after SCI. Differentially expressed genes between SCI model rats and sham controls were identified by microarray assays and analyzed by functional enrichment. Key lncRNAs were identified using a support vector machine- (SVM-) recursive feature elimination (RFE) algorithm. A trans and cis regulation model was used to analyze the regulatory relationships between lncRNAs and their targets. An lncRNA-related ceRNA network was established. We identified 5465 differentially expressed lncRNAs (DE lncRNAs) and 8366 differentially expressed mRNAs (DE mRNAs) in the SCI group compared with the sham group (fold change > 2.0, p < 0.05). Four genes were confirmed by qRT-PCR which were consistent with the microarray data. GSEA analysis showed that most marked changes occurred in pathways related to immune inflammation and nerve cell function, including cytokine-cytokine receptor interaction, neuroactive ligand-receptor interaction, and GABAergic synapse. Enrichment analysis identified 30 signaling pathways, including those associated with immune inflammation response. A total of 40 key lncRNAs were identified using the SVM-RFE algorithm. A key lncRNA-mRNAs coexpression network was generated for 230 951 lncRNA-mRNA pairs with half showing positive correlations. Several key DE lncRNAs were predicted to have "cis"- or "trans"-regulated target genes. The transcription factors, Sp1, JUN, and SOX10, may regulate the interaction between XR_001837123.1 and ETS 1. In addition, five pairs of ceRNA regulatory sequences were constructed. Many mRNAs and lncRNAs were found to be dysregulated after SCI. Bioinformatic analysis showed that DE lncRNAs may play crucial roles in SCI. It is anticipated that these findings will provide new insights into the underlying mechanisms and potential therapeutic targets for SCI.
Collapse
|
46
|
Lu X, Xu G, Lin Z, Zou F, Liu S, Zhang Y, Fu W, Jiang J, Ma X, Song J. Engineered exosomes enriched in netrin-1 modRNA promote axonal growth in spinal cord injury by attenuating inflammation and pyroptosis. Biomater Res 2023; 27:3. [PMID: 36647161 PMCID: PMC9843879 DOI: 10.1186/s40824-023-00339-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/01/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) brings a heavy burden to individuals and society, and there is no effective treatment at present. Exosomes (EX) are cell secreted vesicles containing molecules such as nucleic acids and proteins, which hold promise for the treatment of SCI. Netrin-1 is an axon guidance factor that regulates neuronal growth. We investigated the effects of engineered EX enriched in netrin-1 chemically synthetic modified message RNA (modRNA) in treating SCI in an attempt to find a novel therapeutic approach for SCI. METHODS Netrin-1 modRNA was transfected into bone marrow mesenchymal stem cells to obtain EX enriched with netrin-1 (EX-netrin1). We built an inflammatory model in vitro with lipopolysaccharide (LPS) in vitro to study the therapeutic effect of EX-netrin1 on SCI. For experiments in vitro, ELISA, CCK-8 assay, immunofluorescence staining, lactate dehydrogenase release experiments test, real-time quantitative polymerase chain reaction, and western blot were conducted. At the same time, we constructed a rat model of SCI. MRI, hematoxylin-eosin and Nissl staining were used to assess the extent of SCI in rats. RESULTS In vitro experiments showed that EX had no effect on the viability of oligodendrocytes and PC12 cells. EX-netrin1 could attenuate LPS-induced inflammation and pyroptosis and accelerate axonal/dentritic growth in PC12 cells/oligodendrocytes. In addition, netrin-1 could activate the PI3K/AKT/mTOR signalling pathway upon binding to its receptor unc5b. When Unc5b and PI3K were inhibited, the effect of EX-netrin1 was weakened, which could be reversed by PI3K or mTOR activator. Our in vivo experiments indicated that EX-netrin1 could promote recovery in rats with SCI. CONCLUSION We found that EX-netrin1 regulated inflammation, pyroptosis and axon growth in SCI via the Unc5b/PI3K/AKT/mTOR pathway, which provides a new strategy for the treatment of SCI.
Collapse
Affiliation(s)
- Xiao Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Guangyu Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Zhidi Lin
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Fei Zou
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Siyang Liu
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Yuxuan Zhang
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| | - Jian Song
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| |
Collapse
|
47
|
Abo El-Magd NF, El-Kashef DH, El-Sherbiny M, Eraky SM. Hepatoprotective and cognitive-enhancing effects of hesperidin against thioacetamide-induced hepatic encephalopathy in rats. Life Sci 2023; 313:121280. [PMID: 36526046 DOI: 10.1016/j.lfs.2022.121280] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Hepatic encephalopathy (HE) is a serious neurological disorder which might occur in both acute and chronic liver injury. AIMS This study was carried out to explore the protective effects of hesperidin against experimentally induced HE. MAIN METHODS Rats were sorted into four groups each of six; Normal group, TAA group: rats were administered 350 mg/kg of TAA i.p. from day 5 to day 7. TAA+ Hesp 100 group: rats were administered hesperidin 100 mg/kg/day orally for 7 days along with i.p TAA injection 350 mg/kg from day 5 to 7. TAA+ Hesp 200 group: rats were administered hesperidin 200 mg/kg/day orally for 7 days along with i.p TAA injection 350 mg/kg from day 5 to 7. Liver function, oxidative stress biomarkers, behavioral tests in addition to histopathological examination were assessed. KEY FINDINGS Hesperidin efficiently mitigated TAA-induced HE as evidenced by significant reduction in liver enzymes, bile and ammonia levels in serum. Moreover, hesperidin restored oxidant/antioxidant balance as manifested by reduction in MDA content in both cerebral and hepatic tissues. Additionally, hesperidin improved motor and cognitive abilities besides tissues' architecture as demonstrated by behavioral tests and histopathology results, respectively. Hesperidin also decreased levels of NLRP3 and increased levels of Sirt1 and FOXO in both cerebral and hepatic tissues. Finally, hesperidin markedly decreased the expression of IL-1β and caspase-1 as shown by immunohistochemical results. SIGNIFICANCE Taken together, the hepatoprotective impact of hesperidin and its ameliorative effect on the progression of HE appear to be mediated by its modulatory influence on NLRP3/Sirt1/FOXO signaling.
Collapse
Affiliation(s)
- Nada F Abo El-Magd
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura, Egypt
| | - Salma M Eraky
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
48
|
Hu Z, Xuan L, Wu T, Jiang N, Liu X, Chang J, Wang T, Han N, Tian X. Taxifolin attenuates neuroinflammation and microglial pyroptosis via the PI3K/Akt signaling pathway after spinal cord injury. Int Immunopharmacol 2023; 114:109616. [PMID: 36700780 DOI: 10.1016/j.intimp.2022.109616] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Spinal cord injury (SCI) is a severe injury characterized by neuroinflammation and oxidative stress. Taxifolin is exhibits anti-inflammatory and antioxidative activities in neurologic diseases. However, the roles and mechanisms of taxifolin in neuroinflammation and microglial pyroptosis after SCI remain unclear. The present study aims to investigate the effect of taxifolin on SCI and its potential underlying mechanisms in in vivo and in vitro models. In this study, taxifolin markedly reduced microglial activation mediated oxidative stress, and inhibited the expression of pyroptosis-related proteins (NLRP3, GSDMD, ASC, and Caspase-1) and inflammatory cytokines (IL-1β and IL-18) after SCI, as shown by immunofluorescence staining and western blot assays. In addition, taxifolin promoted axonal regeneration and improved functional recovery after SCI. In vitro studies showed that taxifolin attenuated the activation of microglia and oxidative stress after lipopolysaccharide (LPS) + adenosine-triphosphate (ATP) stimulation in BV2 cells. We also observed that taxifolin inhibited the pyroptosis-related proteins and reduced the release of inflammatory cytokines. Moreover, to explore how taxifolin exerts its effects on microglial pyroptosis and axonal regeneration of neurons, we performed an in vitro study in BV-2 cells and PC12 cells co-culture. The results revealed that taxifolin facilitated axonal regeneration of PC12 cells in co-culture with LPS + ATP-induced BV-2 cells. Mechanistically, taxifolin regulated microglial pyroptosis via the PI3K/AKT signaling pathway. Taken together, these results suggest that taxifolin alleviates neuroinflammation and microglial pyroptosis through the PI3K/AKT signaling pathway after SCI, and promotes axonal regeneration and improves functional recovery, suggesting that taxifolin may represent a potential therapeutic agent for SCI.
Collapse
Affiliation(s)
- Zhenxin Hu
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lina Xuan
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Tingting Wu
- The First Clinical Medical Colloge, Wenzhou Medical University, Wenzhou 325035, China
| | - Nizhou Jiang
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiangjun Liu
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Jiazhen Chang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Te Wang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325088, China
| | - Nan Han
- Department of Ultrasonography, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Xiliang Tian
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
49
|
El-Baz FK, Salama A, Ali SI, Elgohary R. Lutein isolated from Scenedesmus obliquus microalga boosts immunity against cyclophosphamide-induced brain injury in rats. Sci Rep 2022; 12:22601. [PMID: 36585479 PMCID: PMC9803677 DOI: 10.1038/s41598-022-25252-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/28/2022] [Indexed: 12/31/2022] Open
Abstract
Lutein is a naturally potent antioxidant carotenoid synthesized in green microalgae with a potent ability to prevent different human chronic conditions. To date, there are no reports of the immune-stimulating effect of pure lutein isolated from Scenedesmus obliquus. Thus, we isolated the natural lutein from S. obliquus and evaluated its effectiveness as an immunostimulant against cyclophosphamide-induced brain injury. We purified all-E-(3R, 3'R, 6'R)-Lutein from S. obliquus using prep-HPLC and characterized it by 1H- and 13C-NMR spectroscopy. We assigned rats randomly to four experimental groups: the Control group got a vehicle for lutein dimethyl sulfoxide for ten successive days. The Cyclophosphamide group received a single i.p injection of Cyclophosphamide (200 mg/kg). Lutein groups received 50 and 100 (mg/kg) of lutein one time per day for ten successive days after the cyclophosphamide dose. Lutein administration reduced brain contents of Macrophage inflammatory protein2 (MIP2), cytokine-induced- neutrophil chemoattractant (CINC), and Matrix metalloproteinase 1 (MMP1). Besides, it lowered the contents of interleukin 1 beta (IL-1β) and interleukin 18 (IL-18), associated with low content of NLR pyrin domain protein 3 (NLRP3) and consequently caspase-1 compared to the cyclophosphamide group. In the histomorphometric analysis, lutein groups (50 and 100 mg/Kg) showed mild histopathological alterations as they significantly reduced nuclear pyknosis numbers by 65% and 69% respectively, compared to the cyclophosphamide group. This is the first study that showed the immunomodulatory roles of lutein against cyclophosphamide-induced brain injury via decreasing neuroinflammation, chemokines recruitment, and neuron degeneration with the modulation of immune markers. Hence, lutein can be an effective immunomodulator against inflammation-related immune disorders.
Collapse
Affiliation(s)
- Farouk K. El-Baz
- grid.419725.c0000 0001 2151 8157Plant Biochemistry Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622 Egypt
| | - Abeer Salama
- grid.419725.c0000 0001 2151 8157Pharmacology Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622 Egypt
| | - Sami I. Ali
- grid.419725.c0000 0001 2151 8157Plant Biochemistry Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622 Egypt
| | - Rania Elgohary
- grid.419725.c0000 0001 2151 8157Narcotics, Ergogenics and Poisons Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622 Egypt
| |
Collapse
|
50
|
Yin J, Gong G, Wan W, Liu X. Pyroptosis in spinal cord injury. Front Cell Neurosci 2022; 16:949939. [PMID: 36467606 PMCID: PMC9715394 DOI: 10.3389/fncel.2022.949939] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/03/2022] [Indexed: 10/21/2023] Open
Abstract
Spinal cord injury (SCI) often brings devastating consequences to patients and their families. Pathophysiologically, the primary insult causes irreversible damage to neurons and glial cells and initiates the secondary damage cascade, further leading to inflammation, ischemia, and cells death. In SCI, the release of various inflammatory mediators aggravates nerve injury. Pyroptosis is a new pro-inflammatory pattern of regulated cell death (RCD), mainly mediated by caspase-1 or caspase-11/4/5. Gasdermins family are pore-forming proteins known as the executor of pyroptosis and the gasdermin D (GSDMD) is best characterized. Pyroptosis occurs in multiple central nervous system (CNS) cell types, especially plays a vital role in the development of SCI. We review here the evidence for pyroptosis in SCI, and focus on the pyroptosis of different cells and the crosstalk between them. In addition, we discuss the interaction between pyroptosis and other forms of RCD in SCI. We also summarize the therapeutic strategies for pyroptosis inhibition, so as to provide novel ideas for improving outcomes following SCI.
Collapse
Affiliation(s)
- Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, China
- Department of Orthopedics, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenhui Wan
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinhui Liu
- Department of Orthopedics, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, China
| |
Collapse
|